IBM~ DB2" Universal Database

Application Development Guide

Version 7

SC09-2949-00

IBM~ DB2" Universal Database

Application Development Guide

Version 7

SC09-2949-00

Before using this information and the product it supports, be sure to read the general information under

7

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-1BM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Part 1. DB2 Application
Development Concepts .

Chapter 1. Getting Started with DB2
Application Development
About This Book . .
Who Should Use This Book .
How to Use This Book .
Conventions .
Related Publications.

Chapter 2. Coding a DB2 Application

Prerequisites for Programming .

DB2 Application Coding Overview
Declaring and Initializing Variables
Connecting to the Database Server
Coding Transactions
Ending the Program
Implicitly Ending a Transactlon
Application Pseudocode Framework .

Designing an Application For DB2
Access to Data . .o
Data Value Control.

Data Relationship Control

Application Logic at the Server

The IBM DB2 Universal Database Pro]ect
Add-In for Microsoft Visual C++ .

Supported SQL Statements .

Authorization Considerations .
Dynamic SQL
Static SQL.

Using APIs
Example .

Database Manager APIS Used in Embedded

SQL or DB2 CLI Programs . . .o

Setting Up the Testing Env1ronment
Creating a Test Database .

Creating Test Tables
Generating Test Data . .

Running, Testing and Debugging Your

Programs . . .

Prototyping Your SQL Statements

© Copyright IBM Corp. 1993, 2000

O I = =W W

. 10
11
. 16
.17
.19
. 19
. 20
.21
. 23
. 25
.27
.29

. 30
. 33
. 33
. 34
. 35
. 35
. 35

. 36
. 36
.37
. 37
. 38

. 40
. 40

Part 2. Embedding SQL in
Applications

Chapter 3. Embedded SQL Overview .
Embedding SQL Statements in a Host
Language . .

Creating and Preparmg the Source Flles
Creating Packages for Embedded SQL .
Precompiling. . o

Compiling and Lmkmg .

Binding .
Advantages of Deferred Bmdmg .

DB2 Bind File Description Utility - db2bfd
Application, Bind File, and Package
Relationships. S
Timestamps .

Rebinding.

Chapter 4. Writing Static SQL Programs.
Characteristics and Reasons for Using Static
SQL. .
Advantages of Statlc SQL .
Example: Static SQL Program .
How the Static Program Works
C Example: STATIC.SQC.
Java Example: Static.sqlj . .
COBOL Example: STATIC.SQB.
Coding SQL Statements to Retrieve and
Manipulate Data
Retrieving Data .
Using Host Variables . .
Declaration Generator - db2dc1gn
Using Indicator Variables
Data Types
Using an Indicator Vanable in the STATIC
program .
Selecting Multiple Rows Usmg a Cursor
Declaring and Using the Cursor
Cursors and Unit of Work C0n51derat10ns
Example: Cursor Program .
Updating and Deleting Retrieved Data .
Updating Retrieved Data.
Deleting Retrieved Data .
Types of Cursors

. 43

. 45

. 45
. 47
. 49
. 49
. 52
. 53
. 56

56

. 57
. 58
. 58

. 61

. 61
. 62
. 63
. 64
. 66
. 67
. 69

.71
.71
.71
.73
.75
.77

. 80
.81
. 81

82

. 84
.92
.92
.92
.92

iii

Example: OPENFTCH Program93

Advanced Scrolling Techniques . . . 102
Scrolling Through Data that has Already
Been Retrieved. 102
Keeping a Copy of the Data ..o 102
Retrieving the Data a Second Time . . . 102
Establishing a Position at the End of a
Table 104
Updating Prev1ously Retrleved Data .. 105
Example: UPDAT Program. 105

Diagnostic Handhng and the SQLCA

Structure. 115
Return Codes o115
SQLCODE and SQLSTATE ... 115

Token Truncation in SQLCA Structure . . 116
Handling Errors using the WHENEVER

Statement 116
Exception, Signal, Interrupt Handler
Considerations. . . T b V4
Exit List Routine Con51deratlons ... 118
Using GET ERROR MESSAGE in
Example Programs 118
Chapter 5. Writing Dynamic SQL
Programs A 4
Why Use Dynamic SQL7 oL ..o 127
Dynamic SQL Support Statements o127

Comparing Dynamic SQL with Static SQL 128
Using PREPARE, DESCRIBE, FETCH and

the SQLDA R K
Declaring and Using Cursors B (|
Example: Dynamic SQL Program . . . 133
Declaring the SQLDA 143
Preparing the Statement Using the
Minimum SQLDA Structure 144
Allocating an SQLDA with Suff1c1ent
SQLVAR Entries 145
Describing the SELECT Statement .. . 146
Acquiring Storage to Hold a Row . . . 146
Processing the Cursor 147
Allocating an SQLDA Structure ... 147
Passing Data Using an SQLDA Structure 151
Processing Interactive SQL Statements 152
Saving SQL Requests from End Users . . 153
Example: ADHOC Program 154

Variable Input to Dynamic SQL 161
Using Parameter Markers16l
Example: VARINP Program 162

The DB2 Call Level Interface (CLI) 170

Comparing Embedded SQL and DB2 CLI 170

iV Application Development Guide

Advantages of Using DB2 CLI 171
Deciding on Embedded SQL or DB2 CLI 173

Chapter 6. Common DB2 Application

Techniques175
Generated Columns176
Identity Columns . . . N V()
Declared Temporary Tables B V4
Controlling Transactions with Savepoints 179
Savepoint Restrictions 180
Savepoints and Data Definition Language
(bDL). 181
Savepoints and Buffered Inserts B .72

Using Savepoints with Cursor Blocking 182
Savepoints and XA Compliant Transaction

Managers183
Part 3. Stored Procedures. . . . 185
Chapter 7. Stored Procedures 187
Stored Procedure Overview 187
Advantages of Stored Procedures 188
Writing Stored Procedures 190

Client Application 2191

Stored Procedures on the Server o192

Writing OLE Automation Stored

Procedures 209

Example OUT Parameter Stored

Procedure o.210

Code Page Consrderatlons e .. 222

C++ Consideration 222

Graphic Host Variable Con51derat10ns .. 222

Multisite Update Consideration 223
NOT FENCED Stored Procedures 223
Returning Result Sets from Stored
Procedures 225

Example: Returnmg a Result Set from a

Stored Procedure226

Resolving Problems236
Chapter 8. Writing SQL Procedures . . . 239
Comparison of SQL Procedures and External
Procedures 239
Valid SQL Procedure Body Statements .. 240
Issuing CREATE PROCEDURE Statements 242
Handling Conditions in SQL Procedures . . 243

Declaring Condition Handlers 243

SIGNAL and RESIGNAL Statements . . 245

SQLCODE and SQLSTATE Variables in

SQL Procedures 246
Using Dynamic SQL in SQL Procedures .. 246
Nested SQL Procedures. . . . 248

Passing Parameters Between Nested SQL

Procedures 248

Returning Result Sets Frorn Nested SQL

Procedures 249

Restrictions on Nested SQL Procedures 249
Returning Result Sets From SQL Procedures 249
Returning Result Sets to Caller or Client 250

Receiving Result Sets as a Caller. . . . 251
Debugging SQL Procedures 252
Displaying Error Messages for SQL
Procedures . . . L. 252
Debugging SQL Procedures Us1ng
Intermediate Files. 255
Examples of SQL Procedures255
Chapter 9. IBM DB2 Stored Procedure
Builder261
What is Stored Procedure Bu11der7 ... 261
Advantages of Using Stored Procedure
Builder 262
Creating New Stored Procedures ... 262

Working with Existing Stored Procedures 263
Creating Stored Procedure Builder

Projects263
Debugging Stored Procedures263

Part 4. Object-Relational

Programming 265
Chapter 10. Using the Object-Relational
Capabilities 267
Why Use the DB2 Ob]ect Extens1ons7 ... 207
Object-Relational Features of DB2 . . . 267
Chapter 11. User-defined Distinct Types 273
Why Use Distinct Types?273
Defining a Distinct Type 274
Resolving Unqualified Distinct Types .. L 274
Examples of Using CREATE DISTINCT
TYPE.275
Example: Money 275
Example: Job Apphcatlon 275
Defining Tables with Distinct Types .. . 275
Example: Sales. 275
Example: Application Forms ... 276

Manipulating Distinct Types .

. 277

Examples of Manipulating Distinct Types
Example: Comparisons Between Distinct

Types and Constants.

277

. 277

Example: Casting Between Drstrnct Types
Example: Comparisons Involving Distinct

Types .
Example: Sourced UDFs Involvmg

Distinct Types .

278

. 279

. 280

Example: Assignments Involvmg Dlstlnct

Types .

. 280

Example: Assrgnments in Dynarmc SQL
Example: Assignments Involv1ng Different
. 281

Distinct Types .
Example: Use of Drstrnct Types in
UNION . S

Chapter 12. Working with Complex

Objects: User-Defined Structured Types

Structured Types Overview

Creating a Structured Type H1erarchy

Storing Objects in Typed Tables .
Storing Objects in Columns

280

. 282

. 283

. 284

. 285

. 291

Additional Properties of Structured Types

Using Structured Types in Typed Tables

Creating a Typed Table .
Populating a Typed Table .
Using Reference Types .
Comparing Reference Types
Creating a Typed View .

. 293
295

. 296
. 296

. 298
. 300
. 300
. 303

Dropping a User-Defined Type (UDT) or

Type Mapping . .
Altering or Dropping a V1ew .
Querying a Typed Table.

Queries that Dereference References

Additional Query Spec1f1cat10n
Techniques . . .
Additional Hints and Trps

Creating and Using Structured Types

Column Types .

. 305
. 306
. 306

. 307

. 309
. 311

as

. 313

Inserting Structured Type Instances 1nto a

Column .

. 313

Defining Tables w1th Structured Type

Columns.

. 314

Defining Types W1th Structured Type

Attributes

. 314

Inserting Rows that Contaln Structured

Type Values.

Retrieving and Modlfylng Structured

Type Values.

. 314

Contents

. 316

A\

Associating Transforms with a Type.
Where Transform Groups Must Be
Specified. .

Creating the Mappmg to the Host

Language Program: Transform Functions .

Working with Structured Type Host
Variables. . .

Chapter 13. Using Large Objects (LOBSs)
What are LOBs? .
Understanding Large Ob]ect Data Types
(BLOB, CLOB, DBCLOB) . .
Understanding Large Object Locators .
Example: Using a Locator to Work With a
CLOB Value

How the Sample LOBLOC Program

Works. o

C Sample: LOBLOC SQC

COBOL Sample: LOBLOC.SQB

Example: Deferring the Evaluation of a LOB

Expression .

How the Sample LOBEVAL Program
Works. S

C Sample: LOBEVAL SQC

COBOL Sample: LOBEVAL.SQB .
Indicator Variables and LOB Locators .

LOB File Reference Variables .

Example: Extracting a Document To a Flle
How the Sample LOBFILE Program
Works. oo
C Sample: LOBFILE SQC
COBOL Sample: LOBFILE.SQB

Example: Insertmg Data Into a CLOB

Column .

Chapter 14. User-Defined Functions

(UDFs) and Methods .

What are Functions and Methods" .

Why Use Functions and Methods? .

UDF And Method Concepts .

Implementing Functions and Methods .

Writing Functions and Methods .

Registering Functions and Methods .

Examples of Registering UDFs and Methods
Example: Exponentiation .o
Example: String Search .
Example: BLOB String Search .
Example: String Search over UDT
Example: External Function with UDT
Parameter

Vi Application Development Guide

. 318

. 320

321

. 340

341

. 341

. 342
. 343

. 345

. 345
. 346
. 348

. 351

. 352
. 353
. 355
. 358
. 358

360

. 360
. 361
. 362

. 364

. 365
. 365
. 366
. 369
. 370
. 371
. 371

371

. 372
. 372
. 373
. 373

. 374

Example: AVG over a UDT
Example: Counting
Example: Counting with an OLE
Automation Object
Example: Table Function Returmng
Document IDs .

Using Functions and Methods
Referring to Functions
Examples of Function Invocatlons
Using Parameter Markers in Functions
Using Qualified Function Reference.
Using Unqualified Function Reference
Summary of Function References

Chapter 15. Writing User-Defined
Functions (UDFs) and Methods
Description . .
Interface between DBZ and a UDF .
The Arguments Passed from DB2 to a
UDF . .
Summary of UDF Argument Use
How the SQL Data Types are Passed to a
UDF
Writing Scratchpads on 32-bit and 64-bit
Platforms
The UDF Include Frle sqludf h
Creating and Using Java User-Defined
Functions .o
Coding a Java UDF . .
Changing How a Java UDF Runs
Table Function Execution Model for Java
Writing OLE Automation UDFs .
Creating and Registering OLE
Automation UDFs .
Object Instance and Scratchpad
Considerations.
How the SQL Data Types are Passed to
an OLE Automation UDF .
Implementing OLE Automation UDFs in
BASIC and C++
OLE DB Table Functions
Creating an OLE DB Table Functron
Fully Qualified Rowset Names
Defining a Server Name for an OLE DB
Provider . o
Defining a User Mappmg .
Supported OLE DB Data Types .
Scratchpad Considerations .
Table Function Considerations
Table Function Error Processing .

. 375
. 375

. 376

. 376
. 377
. 377
. 378

379

. 379

380

. 380

. 385
. 385
. 387

. 387
. 400

. 402

. 410
. 411

. 412
. 412
. 414

415

. 416

. 417

. 418

. 418

. 420
. 423
. 424
. 426

. 427
. 427
. 428
. 430
. 432
. 433

Scalar Function Error Processing . . 433

Using LOB Locators as UDF Parameters or

Results . 434
Scenarios for Usmg LOB Locators . 438

Other Coding Considerations . . 438
Hints and Tips. . 439
UDF Restrictions and Caveats . 441

Examples of UDF Code . . 443
Example: Integer Divide Operator . 443
Example: Fold the CLOB, Find the Vowel 447
Example: Counter. .. . 451
Example: Weather Table Functlon . 453
Example: Function using LOB locators 461
Example: Counter OLE Automation UDF
in BASIC. . 464
Example: Counter OLE Automat1on UDF
in C++ 466

Debugging your UDF . 470

Chapter 16. Using Trlggers in an Active

DBMS . . 473

Why Use Tr1ggers7 . 473
Benefits of Triggers . 474

Overview of a Trigger . 475

Trigger Event . . . 476

Set of Affected Rows. . 477

Trigger Granularity . . 477

Trigger Activation Time. . 478

Transition Variables . . 479

Transition Tables . . 480

Triggered Action . . 482
Triggered Action Condltlon . 482
Triggered SQL Statements . . . 483
Functions Within SQL Trlggered
Statement . . 483

Trigger Cascading. . .. 484

Interactions with Referential Constralnts . . 485

Ordering of Multiple Triggers. . 485

Synergy Between Triggers, Constramts,

UDTs, UDFs, and LOBs . . 486
Extracting Information . . 486
Preventing Operations on Tables . 487
Defining Business Rules. . 487
Defining Actions . . 488

Part 5. DB2 Programmlng

Considerations . 491

Chapter 17. Programming in Complex
Environments

National Language Support Con51deratlons

Collating Sequence Overview .
Deriving Code Page Values

Deriving Locales in Application Programs
National Language Support Apphcatlon

Development
DBCS Character Sets

Extended UNIX Code (EUC) Character

Sets
Running CLI / ODBC /]DBC / SQL]
Programs in a DBCS Environment .

Japanese and Traditional Chinese EUC

and UCS-2 Code Set Considerations.
Considerations for Multisite Updates

Remote Unit of Work

Multisite Update . .
Accessing Host or AS/400 Servers .
Multiple Thread Database Access

Recommendations for Using Multiple

Threads . .
Multithreaded UNIX Apphcatlons

Working with Code Page and Country

Code .

Potential Pltfalls when Us1ng Multlple

Threads .
Concurrent Transactlons

Potential Pitfalls when Using Concurrent

Transactions
X/Open XA Interface Programmlng
Considerations. L.
Application Llnkage

Working with Large Volumes of Data Across

a Network .

Chapter 18. Programming Considerations

in a Partitioned Environment
Improving Performance.
Using FOR READ ONLY Cursors

Using Directed DSS and Local Bypass .

Using Buffered Inserts .

Example: Extracting Large Volume of

Data (largevol.c) .
Creating a Test Environment .
Error-Handling Considerations

Severe Errors

Merged Multiple SQLCA Structures

Identifying the Partition that Returned

the Error.

Contents

. 493

493

. 494
. 499

500

. 501
. 508

. 509

. 510

. 511
. 525
. 525
. 525
. 532
. 533

. 534

. 534

. 535
. 537

. 537

. 539
. 542

. 542

. 545
. 545
. 545
. 545
. 547

. 552
. 558
. 558
. 559
. 559

. 560

vii

Debugging . .
Diagnosing a Looplng or Suspended
application . .

Chapter 19. Writing Programs for DB2
Federated Systems.

Introduction to DB2 Federated Systems
Accessing Data Source Tables and Views .

Working with Nicknames .

Using Isolation Levels to Maintain Data

Integrity .

Working with Data Type Mappmgs

How DB2 Determines What Data Types

to Define Locally . . .

Default Data Type Mappings . .o

How You Can Override Default Type

Mappings and Create New Ones.

Using Distributed Requests to Query Data
Sources . .

Coding D1str1buted Requests .

Using Server Options to Facilitate

Optimization . .
Invoking Data Source Functlons .

Enabling DB2 to Invoke Data Source

Functions .

Reducing the Overhead of Invoklng a

Function . .

Specifying Functlon Names in the

CREATE FUNCTION MAPPING

Statement .

Discontinuing Functlon Mapprngs
Using Pass-Through to Query Data Sources
Directly . .

SQL Processmg in Pass Through Sessmns

Considerations and Restrictions .

. 560
. 560
. 563
. 563
. 564
. 564

. 568
. 569

. 569
. 569

. 570

. 571
. 571

. 572
. 574

. 574

. 574

. 576

. 576

. 576

576

. 577

Part 6. Language Considerations 579

Chapter 20. Programming in C and C++
Programming Considerations for C and C++
Language Restrictions for C and C++ .
Trigraph Sequences for C and C++ .
C++ Type Decoration Consideration
Input and Output Files for C and C++.
Include Files for C and C++
Including Files in C and C++ .
Embedding SQL Statements in C and C++
Host Variables in C and C++ . .
Naming Host Variables in C and C++ .
Declaring Host Variables in C and C++

viii Application Development Guide

581
581

. 581
. 581
. 582
. 582
. 583
. 585

586

. 588
. 588

589

Indicator Variables in C and C++
Graphic Host Variable Declarations in C
or C++
LOB Data Declaratrons in C or C++
LOB Locator Declarations in C or C++
File Reference Declarations in C or C++
Initializing Host Variables in C and C++
C Macro Expansion . . .
Host Structure Support in C and C++ .
Indicator Tables in C and C++
Null-terminated Strings in C and C++
Pointer Data Types in C and C++
Using Class Data Members as Host
Variables in C and C++ . .
Using Qualification and Member
Operators in C and C++ .
Handling Graphic Host Variables in C
and C++. .
Japanese or Tradrtlonal Chmese EUC and
UCS-2 Considerations in C and C++
Supported SQL Data Types in C and C++
FOR BIT DATA in C and C++.
SQLSTATE and SQLCODE Variables in C
and C++.

Chapter 21. Programming in Java
Programming Considerations for Java .
Comparison of SQLJ to JDBC .
Advantages of Java over Other
Languages . .
SQL Security in]ava
Source and Output Files for]ava
Java Class Libraries .
Java Packages . .
Supported SQL Data Types in]ava .
SQLSTATE and SQLCODE Values in Java
Trace Facilities in Java
Creating Java Applications and Applets
JDBC Programming . .o
How the DB2Appl Program Works .
Distributing a JDBC Application .
Distributing and Runmng a JDBC Applet
JDBC 2.0. .
SQLJ Programming .
DB2 SQLJ Support
Embedding SQL Statements in]ava
Host Variables in Java .
Calls to Stored Procedures and Functlons
in SQLJ . .
Compiling and Runnlng SQL] Programs

. 593

. 593
. 596

598
599
600

. 600
. 602
. 603

604

. 606

. 607

. 608

. 609

. 614

615

. 620

. 620

. 623
. 623
. 623

. 624
. 624
. 624
. 625
. 625
. 625

627

. 627

628

. 630
. 630

. 633
633

. 634
. 637
. 637
. 639
. 646

. 646

646

SQLJ Translator Options .
Stored Procedures and UDFs in Java

Where to Put Java Classes .

Updating Java Classes for Routlnes

Debugging Stored Procedures in Java .

Java Stored Procedures and UDFs

Using LOBs and Graphical Objects With

JDBC 1.22
JDBC and SQLJ Interoperablhty
Session Sharing

Connection Resource Management in]ava

Chapter 22. Programming in Perl .
Programming Considerations for Perl .
Perl Restrictions

Connecting to a Database Usmg Perl
Fetching Results in Perl .

Parameter Markers in Perl .

SQLSTATE and SQLCODE Variables in Perl

Perl DB2 Application Example

Chapter 23. Programming in COBOL
Programming Considerations for COBOL
Language Restrictions in COBOL
Input and Output Files for COBOL .
Include Files for COBOL .
Embedding SQL Statements in COBOL
Host Variables in COBOL . ..
Naming Host Variables in COBOL .
Declaring Host Variables
Indicator Variables in COBOL.
LOB Declarations in COBOL .
LOB Locator Declarations in COBOL
File Reference Declarations in COBOL
Host Structure Support in COBOL .
Indicator Tables in COBOL.
Using REDEFINES in COBOL Group
Data Items .

Types .
Supported SQL Data Types in COBOL
FOR BIT DATA in COBOL. .
SQLSTATE and SQLCODE Variables in
COBOL .

Japanese or Tradltlonal Chlnese EUC and

UCS-2 Considerations for COBOL
Object Oriented COBOL

Chapter 24. Programming in FORTRAN

Using BINARY/ COMP 4 COBOL Data

. 648
. 649
. 650
. 651
. 651
. 654

. 657
. 658
. 659

659

. 661
. 661
. 661
. 661
. 662

. 663
663

. 664

. 665

665

. 665
. 665
. 665
. 668
. 671
. 671
. 671
. 675
. 675
. 676

677

. 677
. 680

. 680
. 681
. 681
. 684
. 685

. 685
. 686

687

Programming Considerations for FORTRAN 687

Language Restrictions in FORTRAN
Call by Reference in FORTRAN .
Debugging and Comment Lines in
FORTRAN . .
Precompiling C0n51derat10ns for
FORTRAN . .
Input and Output Files for FORTRAN
Include Files for FORTRAN
Including Files in FORTRAN . .
Embedding SQL Statements in FORTRAN
Host Variables in FORTRAN . S
Naming Host Variables in FORTRAN .
Declaring Host Variables .
Indicator Variables in FORTRAN.
LOB Declarations in FORTRAN . .
LOB Locator Declarations in FORTRAN

File Reference Declarations in FORTRAN

Supported SQL Data Types in FORTRAN
SQLSTATE and SQLCODE Variables in
FORTRAN .

Considerations for Mult1 byte Character Sets

in FORTRAN . .
Japanese or Traditional Ch1nese EUC and
UCS-2 Considerations for FORTRAN

Chapter 25. Programming in REXX .
Programming Considerations for REXX
Language Restrictions for REXX .
Registering SQLEXEC, SQLDBS and
SQLDB2 in REXX . . .
Embedding SQL Statements in REXX .
Host Variables in REXX.
Naming Host Variables in REXX
Referencing Host Variables in REXX
Indicator Variables in REXX
Predefined REXX Variables.
LOB Host Variables in REXX .
LOB Locator Declarations in REXX .

LOB File Reference Declarations in REXX

Clearing LOB Host Variables in REXX
Supported SQL Data Types in REXX
Using Cursors in REXX.
Execution Requirements for REXX .
Bind Files for REXX .
API Syntax for REXX
REXX Stored Procedures .
Calling Stored Procedures in REXX
Japanese or Traditional Chinese EUC
Considerations for REXX

Contents

. 687
. 687

. 688

. 688
. 688
. 688
. 691

691

. 693
. 693
. 693
. 696
. 696

697
697
698

. 700

. 700

. 701

. 703
. 703
. 704

. 704
. 705
. 707
. 707
. 707
. 708
. 708
. 710
. 710

711
712

. 712
. 714
. 715
. 715
. 716
. 718
. 718

. 720

ix

Part 7. Appendixes .
Appendix A. Supported SQL Statements

Appendix B. Sample Programs
DB2 API Non-Embedded SQL Samples
DB2 API Embedded SQL Samples

Embedded SQL Samples With No DB2 APIs

User-Defined Function Samples .

DB2 Call Level Interface Samples

Java Samples . . .

SQL Procedure Samples

ADO, RDO, and MTS Samples .
Object Linking and Embedding Samples .
Command Line Processor Samples .

Log Management User Exit Samples

Appendix C. DB2DARI and DB2GENERAL

Stored Procedures and UDFs .
DB2DARI Stored Procedures .

Using the SQLDA in a Client Apphcatlon

Using Host Variables in a DB2DARI
Client.

Using the SQLDA in a Stored Procedure
Summary of Data Structure Usage .
Input/Output SQLDA and SQLCA
Structures

Return Values for DBZDARI Stored
Procedures .

DB2GENERAL UDFs and Stored Procedures

Supported SQL Data Types

Classes for Java Stored Procedures and

UDFs . .

NOT FENCED Stored Procedures
Example Input-SQLDA Programs .

How the Example Input-SQLDA Cllent

Application Works oo

C Example: V5SPCLLSQC .

How the Example Input-SQLDA Stored

Procedure Works . e

C Example: VSSPSRVSQC

Appendix D. Programming in a Host or
AS/400 Environment .
Using Data Definition Language (DDL)
Using Data Manipulation Language (DML)
Numeric Data Types .
Mixed-Byte Data .
Long Fields .

X Application Development Guide

. 721

723

. 729
. 733
. 736

738

. 740
. 740
. 742
. 744
. 746
. 747
. 748
. 749

. 751

. 751
751

. 752

752

. 753

. 754

. 755
755

. 756

. 757
. 763
. 764

. 765
. 767

. 770
. 771

. 773
. 774

775

. 775
. 775
. 775

Large Object (LOB) Data Type

User Defined Types (UDTs)

ROWID Data Type .o

64-bit Integer (BIGINT) data type
Using Data Control Language (DCL)
Connecting and Disconnecting
Precompiling

Blocking . .

Package Attrlbutes

C Null-terminated Strings .

Standalone SQLCODE and SQLSTATE
Defining a Sort Order
Managing Referential Integrity
Locking . .
Differences in SQLCODEs and SQLSTATEs
Using System Catalogs .

Numeric Conversion OVQI‘ﬂOWS on Retrleval

Assignments
Isolation Levels
Stored Procedures.

Stored Procedure Bullder
NOT ATOMIC Compound SQL .
Multisite Update with DB2 Connect.
Host or AS/400 Server SQL Statements
Supported by DB2 Connect
Host or AS/400 Server SQL Statements
Rejected by DB2 Connect .

Appendix E. Simulating EBCDIC Binary
Collation Coe

Appendix F. Using the DB2 Library .

DB2 PDF Files and Printed Books
DB2 Information . .
Printing the PDF Books .
Ordering the Printed Books

DB2 Online Documentation
Accessing Online Help .
Viewing Information Online
Using DB2 Wizards .
Setting Up a Document Server
Searching Information Online .

Appendix G. Notices
Trademarks .

Index

Contacting IBM .
Product Information .

. 775
. 775
. 776
. 776
. 776
. 776
. 777
. 777
. 778
. 779

779

. 779
. 779
. 780

780

. 781

. 781
. 781
. 782
. 783
. 785
. 785

. 786

. 787

. 789

. 795
. 795
. 795
. 804
. 805
. 806
. 806
. 808
. 810
. 811
. 812

. 813
. 816

. 819

. 847
. 847

Part 1. DB2 Application Development Concepts

© Copyright IBM Corp. 1993, 2000

2 Application Development Guide

Chapter 1. Getting Started with DB2 Application
Development

About This Book.3 Conventions7
Who Should Use This Book . B Related Publications.8
How to Use This Book.4

About This Book

This book discusses how to design and code application programs that access
DB2 databases. It presents detailed information on the use of Structured
Query Language (SQL) in supported host language programs. For information
on language support for your specific operating system, see the Application
Building Guide. This book also provides an overview of some of the DB2
utilities that you can use to help create DB2 applications. These utilities
include [i j - i

tdﬁim_pa,gejd and P'Fhap’rpr 9_IBM DB2 Stored Procedure Builder” onl

page2all

You can access data with:

* SQL statements embedded in a host language, including embedded SQL for
Java (SQLJ)

¢ dynamic APIs including Java Database Connectivity (JDBC), Perl DBI, and
DB2 Call Level Interface (DB2 CLI)

This book discusses all these ways to access data except DB2 CLI, which is
discussed in the CLI Guide and Reference. JDBC, SQL]J, and DB2 CLI provide
some data access capabilities that are not available through embedded SQL.
These capabilities include scrollable cursors and stored procedures that return
multiple result sets. See the discussion in [!/Access to Data” an page 23 to help
you decide which data access method to use.

To effectively use the information in this book to design, write, and test your
DB2 application programs, you need to refer to the SQL Reference along with
this book. If you are using the DB2 Call Level Interface (CLI) or Open
Database Connectivity (ODBC) interface in your applications to access DB2
databases, refer to the CLI Guide and Reference. To perform database manager
administration functions using the DB2 administration APIs in your
application programs, refer to the Administrative API Reference.

You can also develop applications where one part of the application runs on
the client and another part runs on the server. Version 7 of DB2 introduces

© Copyright IBM Corp. 1993, 2000 3

support for stored procedures with enhanced portability and scalability across
}Elatforms. Stored procedures are discussed in I!Chapter 7 Stored Pracedures’]

You can use object-based extensions to DB2 to make your DB2 application
programs more powerful, flexible, and active than traditional DB2
applications. The extensions include large objects (LOBs), distinct types,
structured types, user-defined functions (UDFs), and triggers. These features
of DB2 are described in:

References to DB2 in this book should be understood to mean the DB2
Universal Database product on UNIX, Linux, OS/2, and Windows 32-bit
operating systems. References to DB2 on other platforms use a specific
product name and platform, such as DB2 Universal Database for AS/400.

Who Should Use This Book

This book is intended for programmers who are experienced with SQL and
with one or more of the supported programming languages.

How to Use This Book

This book is organized, by task, into the following parts, chapters, and
appendices:

* Part 1 DR2 Application Development Conceptd contains information you

need to use this book and an overview of the methods you can use to
develop applications for DB2 Universal Database.

— Chapter 1_Getting Started with DB2 Application Development describes

the structure of this book and the conventions used in it.

— Chapter 2. Coding a DB2 Application introduces the overall application

development process using DB2. It discusses and compares the
important application design issues you need to consider prior to coding

4 Application Development Guide

your applications. This chapter concludes with information to help you
set up a test environment where you can begin to develop your
applications.

* Bart2 Embedding SQI. in Applicationd describes how to embed static and

dynamic SQL in your applications. This information includes a description
of the utilities that you can use to help create your embedded SQL
applications.

— Embedding SQL Statements in a Host Languagd discusses the process of
creating a DB2 application by embedding SQL in host languages such as
C/C++, Java, and COBOL. It contains an overview of the DB2
precompiler, compiling and linking the application, and binding the
embedded SQL statements to the database.

— Chapter 4 Writing Static SQI Programd discusses the details of coding

your DB2 embedded SQL application using static SQL statements. It
contains detailed guidelines and considerations for using static SQL.

— Chapter 5 Writing Dynamic SQL Programd discusses the details of
coding your DB2 embedded SQL application using dynamic SQL
statements. It contains detailed guidelines and considerations for using
dynamic SQL.

— Chapter 6 Commaon DB? Application Techniqued discusses DB2 features
that help you with common application development problems. These
features include the ability to automatically create unique row identifiers,
to create columns that are dynamically derived from an expression, and
to create and use declared temporary tables.

« Part3 Stored Pracedured discusses how to use stored procedures to
improve the performance of database applications that run in client/server
environments.

— Chapter 7 Stared Pracedured describes how to write stored procedures

and the client applications that call stored procedures using host
languages.

— Chapter 8 Writing SQI. Pracedured describes how to write stored

procedures in SQL by issuing a CREATE PROCEDURE statement. SQL
procedures encode their procedural logic using SQL in the body of the
CREATE PROCEDURE statement.

— Chapter 9 TBM DR?2 Stored Pracedure Builded describes the IBM DB2

Stored Procedure Builder, a graphical application that supports the rapid
development of stored procedures for DB2. Stored Procedure Builder
helps you create both SQL and Java stored procedures.

* Part 4 _Object-Relational Programming describes how to use the
object-relational support provided by DB2. This information includes an
introduction to and detailed instructions on how to use large objects,
user-defined functions, user-defined distinct types, and triggers.

Chapter 1. Getting Started with DB2 Application Development 5

— Chapter 10 TIsing the Object-Relational Capabilitied introduces the

object-oriented capabilities of DB2. It explains how to extend your
traditional application to one that takes advantage of DB2 capabilities
such as large objects, user-defined functions, and user-defined distinct
types in an object-oriented context.

— Chapter 11 User=defined Distinct Typed describes how to create and use

your own data types in applications. It explains how to use distinct types
as a foundation for object-oriented extensions to the built-in data types.

% describes how to create and use structured types in applications. It

explains how to model objects as hierarchies of structured types, access
instances of structured types as rows or columns in tables, and bind
structured types into and out of your applications.

— Chapter 13 Using T arge Objects (L OBs) describes how to define and use

data types that can store data objects as binary or text strings of up to
two gigabytes in size. It also explains how to efficiently use LOBs in a
networked environment.

— Chapter 14 User-Defined Functions (IIDFs) and Methadd describes how

to write your own extensions to SQL. It explains how to use UDFs to
express the behavior of your data objects.

describes how to write user-defined functions that extend your DB2
applications. Topics include the details of writing a user-defined
function, programming considerations for user-defined functions, and
several examples that show you how to exploit this important capability.
In addition, this chapter describes user-defined table functions, OLE DB
table functions, and OLE automation UDFs.

— Chapter 16 1sing Triggers in an Active DBMS describes how to use

triggers to encapsulate and enforce business rules within all of your
database applications.

¢ Part5 DR2 Programming Considerationd contains information on special

application development considerations.

— Chapter 17_Programming in Complex Environmentd discusses advanced

programming topics such as national language support, dealing with
Extended UNIX® Code (EUC) code pages for databases and applications,
accessing multiple databases within a unit of work, and creating
multi-threaded applications.

B T T P P Y T l

describes programming considerations if you are developing applications
that run in a partitioned environment.

— Chapter 19 Writing Programs for DB2 Federated Systemd describes how

to create applications that transparently access data from DB2 family and
Oracle data sources through a federated server.

6 Application Development Guide

* Part 6 Tanguage Considerationd contains specific information about the

programming languages that DB2 supports.

Chapter 20 Programming in C and C+4 discusses host language specific

information concerning database applications written in C and C++.

Chapter 21. Programming in Javd discusses host language specific

information concerning database applications written in Java using JDBC
or SQLJ.

Chapter 22 Programming in Per] discusses host language specific

information concerning database applications written in Perl using the
DBD::DB2 database driver for the Perl Database Interface (DBI) Module.

Chapter 23_Programming in COBOL| discusses host language specific

information concerning database applications written in COBOL.

Chapter 24 Programming in FEORTRANI discusses host language specific

information concerning database applications written in FORTRAN.

Chapter 25 Programming in REXX discusses host language specific

information concerning database applications written in REXX.

* The Appendices contain supplemental information to which you may need
to refer when developing DB2 applications.

lists the SQL statements

supported by DB2 Universal Database.

Appendix B Sample Pragramd contains information on supplied sample
programs for supported host languages and describes how they work.
Appendix C DRIDART and DR2GENERAT . Stored Pracedures and TIDFY

contains information you can use to create stored procedures and UDFs
that are compatible with previous versions of DB2 Universal Database.

describes
programming considerations for DB2 Connect if you access host or
AS/400 database servers in your applications in a distributed
environment.

Appendix E_Simulating FBCDIC Binary Collationl describes how to

collate DB2 character strings according to an EBCDIC, or user-defined,
collating sequence.

Appendix F Tlsing the DRB? Tibrary shows you where you can get more

information for the DB2 Universal Database product.

Conventions
This book uses the following conventions:

Directories and Paths

This book uses the UNIX convention for delimiting directories, for
example: sqllib/samples/java. You can convert these paths to
Windows 32-bit operating system and OS/2 paths by changing the /
to a \ and prepending the appropriate installation drive and directory.

Chapter 1. Getting Started with DB2 Application Development 7

Italics Indicates one of the following;:
* Introduction of a new term
* Variable names or values that are supplied by the user
* Reference to another source of information, for example, a book or
CD-ROM
* General emphasis

UPPERCASE
Indicates one of the following:
* Abbreviations
* Database manager data types
* SQL statements

Example
Indicates one of the following:
¢ Coding examples and code fragments
¢ Examples of output, similar to what is displayed by the system
* Examples of specific data values
* Examples of system messages
* File and directory names
* Information that you are instructed to type
* Java method names
¢ Function names
* API names

Bold Bold text emphasizes a point.

Related Publications

The following manuals describe how to develop applications for international
use and for specific countries:

Form Number Book Title

SE09-8001-03 National Language Design Guide, Volume 1

SE09-8002-03 NLS Reference Manual, Release 4

8 Application Development Guide

Chapter 2. Coding a DB2 Application

Prerequisites for Programming .
DB2 Application Coding Overview
Declaring and Initializing Variables
Declaring Variables that Interact with
the Database Manager. .
Handling Errors and Warnings.
Using Additional Nonexecutable
Statements .
Connecting to the Database Server
Coding Transactions
Beginning a Transaction .
Ending a Transaction .
Ending the Program
Implicitly Ending a Transactlon
On Most Supported Operating Systems
On Windows 32-bit Operating Systems
When Using the DB2 Context APIs
Application Pseudocode Framework .
Designing an Application For DB2
Access to Data . .o
Embedded SQL . .
DB2 Call Level Interface (DB2 CLI) and
Open Database Connect1v1ty (ODBC)
JDBC
Microsoft Spec1f1cat10ns .
Perl DBI
Query Products .
Data Value Control.
Data Types
Unique Constraints
Table Check Constraints .
Referential Integrity Constraints
Views with Check Option

.9
. 10
.1

.11
. 14

. 16
. 16
.17
. 18
. 18
.19
.19

20
20

. 20
. 20
.21
.23
. 23

. 24
. 24
. 25
. 25
. 25
. 25
. 26
. 26
. 26
. 26
.27

Application Logic and Program Variable
Types . . o
Data Relationship Control
Referential Integrity Constraints
Triggers .
Application Logic .
Application Logic at the Server
Stored Procedures .
User-Defined Functions .
Triggers
The IBM DB2 Umversal Database Pro]ect
Add-In for Microsoft Visual C++ .
Activating the IBM DB2 Universal
Database Project Add-In for Microsoft
Visual C++ . .
Activating the IBM DBZ Umversal
Database Tools Add-In for Microsoft
Visual C++ .o
Supported SQL Statements .
Authorization Considerations .
Dynamic SQL
Static SQL.
Using APIs
Example .
Database Manager APIs Used in Embedded
SQL or DB2 CLI Programs . . .o
Setting Up the Testing Env1ronment
Creating a Test Database .
Creating Test Tables
Generating Test Data . .
Running, Testing and Debugging Your
Programs . .
Prototyping Your SQL Statements

.27
.27
. 28
. 28
. 29
.29
. 29
.29
.29

. 30

.32

.32
. 33
. 33
. 34
. 35
. 35
. 35

. 36
. 36
.37
.37
. 38

. 40
. 40

Prerequisites for Programming

This chapter presents a model of the logical parts of a DB2 application and

discusses the individual strengths of the supported DB2 programming APIs.
Programmers who are new to developing a DB2 application should read the

entire chapter closely.

The application development process described in this book assumes that you
have established the appropriate operating environment. This means that the
following are properly installed and configured:

* A supported compiler or interpreter for developing your applications.

© Copyright IBM Corp. 1993, 2000

* DB2 Universal Database, either locally or remotely.
* DB2 Application Development Client.

For details on how to accomplish these tasks, refer to the Application Building
Guide and the Quick Beginnings books for your operating environment.

You can develop applications at a server, or on any client, that has the DB2
Application Development Client (DB2 Application Development Client)
installed. You can run applications with either the server, the DB2 Run-Time
Client, or the DB2 Administrative Client. You can also develop Java JDBC
programs on one of these clients, provided that you install the "Java
Enablement” component when you install the client. That means you can
execute any DB2 application on these clients. However, unless you also install
the DB2 Application Development Client with these clients, you can only
develop JDBC applications on them.

DB2 supports the C, C++, Java (SQLJ), COBOL, and FORTRAN programming
languages through its precompilers. In addition, DB2 provides support for the
Perl, Java (JDBC), and REXX dynamically interpreted languages. For
information on the specific precompilers provided by DB2, and the languages
supported on your platform, refer to the Application Building Guide.

Note: FORTRAN and REXX support stabilized in DB2 Version 5, and no
enhancements for FORTRAN or REXX support are planned for the
future.

DB2 provides a sample database which you require when running the

supplied sample programs. For information about the sample database and its

contents, refer to the SQL Reference.

DB2 Application Coding Overview
A DB2 application program consists of several parts:
1. Declaring and initializing variables
2. Connecting to the database
3. Performing one or more fransactions
4. Disconnecting from the database
5. Ending the program
A transaction is a set of database operations that must conclude successfully
before being committed to the database. With embedded SQL, a transaction
begins implicitly and ends when the application executes either a COMMIT or

ROLLBACK statement. An example of a transaction is the entry of a
customer’s deposit, and the updating of the customer’s balance.

10 Application Development Guide

Certain SQL statements must appear at the beginning and end of the program
to handle the transition from the host language to the embedded SQL
statements.

The beginning of every program must contain:

* Declarations of all variables and data structures that the database manager
uses to interact with the host program

* SQL statements that provide for error handling by setting up the SQL
Communications Area (SQLCA)

Note that DB2 applications written in Java throw an SQLException, which
you handle in a catch block, rather than using the SQLCA.

The body of every program contains the SQL statements that access and
manage data. These statements constitute transactions. Transactions must
include the following statements:
* The CONNECT statement, which establishes a connection to a database
server
* One or more:
— Data manipulation statements (for example, the SELECT statement)
— Data definition statements (for example, the CREATE statement)

— Data control statements (for example, the GRANT statement)
* Either the COMMIT or ROLLBACK statement to end the transaction

The end of the application program typically contains SQL statements that:
* Release the program’s connection to the database server
* Clean up any resource

Declaring and Initializing Variables
To code a DB2 application, you must first declare:

* the variables that interact with the database manager
* the SQLCA, if applicable

Declaring Variables that Interact with the Database Manager
All variables that interact with the database manager must be declared in an

SQL declare section. You must code an SQL declare section with the following
structure:

1. the SQL statement BEGIN DECLARE SECTION

2. a group of one or more variable declarations

3. the SQL statement END DECLARE SECTION
Host program variables declared in an SQL declare section are called host
variables. You can use host variables in host-variable references in SQL

statements. Host-variable is a tag used in syntax diagrams in the SQL Reference.
A program may contain multiple SQL declare sections.

Chapter 2. Coding a DB2 Application 11

The attributes of each host variable depend on how the variable is used in the
SQL statement. For example, variables that receive data from or store data in
DB2 tables must have data type and length attributes compatible with the
column being accessed. To determine the data type for each variable, §ou

must be familiar with DB2 data types, which are explained in

Declaring Variables that Represent SQL Objects: For DB2 Version 7, the
names of tables, aliases, views, and correlations have a maximum length of
128 bytes. Column names have a maximum length of 30 bytes. In DB2 Version
7, schema names have a maximum length of 30 bytes. Future releases of DB2
may increase the lengths of column names and other identifiers of SQL objects
up to 128 bytes. If you declare variables that represent SQL objects with less
than 128 byte lengths, future increases in SQL object identifier lengths may
affect the stability of your applications. For example, if you declare the
variable char[9]schema_name in a C++ application to hold a schema name,
your application functions properly for the allowed schema names in DB2
Version 6, which have a maximum length of 8 bytes.

char[9] schema_name; /* holds null-delimited schema name of up to 8 bytes;
works for DB2 Version 6, but may truncate schema names in future releases =/

However, if you migrate the database to DB2 Version 7, which accepts schema
names with a maximum length of 30 bytes, your application cannot
differentiate between the schema names LONGSCHEMAL and LONGSCHEMA2. The
database manager truncates the schema names to their 8-byte limit of
LONGSCHE, and any statement in your application that depends on
differentiating the schema names fails. To increase the longevity of your
application, declare the schema name variable with a 128-byte length as
follows:

char[129] schema_name; /* holds null-delimited schema name of up to 128 bytes
good for DB2 Version 7 and beyond */

To improve the future operation of your application, consider declaring all of
the variables in your applications that represent SQL object names with
lengths of 128 bytes. You must weigh the advantage of improved
compatibility against the increased system resources that longer variables
require.

To ease the use of this coding practice and increase the clarity of your C/C++
application code, consider using C macro expansion to declare the lengths of
these SQL object identifiers. Since the include file sq1.h declares
SQL_MAX_IDENT to be 128, you can easily declare SQL object identifiers
with the SQL_MAX_IDENT macro. For example:

12 Application Development Guide

#include <sql.h>
char[SQL_MAX_IDENT+1] schema_name;
char[SQL_MAX_IDENT+1] table_name;
char[SQL_MAX_IDENT+1] employee column;
char[SQL_MAX_IDENT+1] manager_column;

For more information on C macro expansion, see XC Macro Expansion” onl

Relating Host Variables to an SQL Statement: You can use host variables to
receive data from the database manager or to transfer data to it from the host
program. Host variables that receive data from the database manager are
output host variables, while those that transfer data to it from the host program
are input host variables.

Consider the following SELECT INTO statement:

SELECT HIREDATE, EDLEVEL
INTO :hdate, :1vl
FROM EMPLOYEE
WHERE EMPNO = :idno

It contains two output host variables, hdate and 1v1, and one input host
variable, idno. The database manager uses the data stored in the host variable
idno to determine the EMPNO of the row that is retrieved from the
EMPLOYEE table. If the database manager finds a row that meets the search
criteria, hdate and 1v1 receive the data stored in the columns HIREDATE and
EDLEVEL, respectively. This statement illustrates an interaction between the
host program and the database manager using columns of the EMPLOYEE
table.

Each column of a table is assigned a data type in the CREATE TABLE
definition. You must relate this data type to the host language data type
defined in the Supported SQL Data Types section of each language-specific
chapter in this document. For example, the INTEGER data type is a 32-bit
signed integer. This is equivalent to the following data description entries in
each of the host languages, respectively:

C/C++:
sqlint32 variable _name;

Java: int variable_name;

COBOL:
01 variable-name PICTURE S9(9) COMPUTATIONAL-5.

FORTRAN:
INTEGER*4 variable_name

Chapter 2. Coding a DB2 Application 13

For the list of supported SQL data types and the corresponding host language
data types, see the following:

e for C/C++, l’%]ppnr’rpd SQL Data Types in C and C++” on page 61 G|

e for Java, |‘91mnm‘fpd SQI. Data Types in Java” on page 625

for COBOL, I”‘:nmnnr’rpd SQI Da’ra Types in COBOT " on page 681

4 : ”

—
o

=

=
s
>
%

In order to determine exactly how to define the host variable for use with a
column, you need to find out the SQL data type for that column. Do this by
querying the system catalog, which is a set of views containing information
about all tables created in the database. The SQL Reference describes this
catalog.

After you have determined the data types, you can refer to the conversion
charts in the host language chapters and code the appropriate declarations.
The Declaration Generator utility (db2dclgn) is also available for generating
the appropriate declarations for a glven table in a database. For more
information on db2dc1gn, see = 7

and refer to the Command Reference.

[[able 4 on page 74 shows examples of declarations in the supported host
languages. Note that REXX applications do not need to declare host variables

except for LOB locators and file reference variables. The contents of the
variable determine other host variable data types and sizes at run time.

[Cable 4 also shows the BEGIN and END DECLARE SECTION statements.
Observe how the delimiters for SQL statements differ for each language. For
the exact rules of placement, continuation, and delimiting of these statements,
see the language-specific chapters of this book.

Handling Errors and Warnings
The SQL Communications Area (SQLCA) is discussed in detail later in this

chapter. This section presents an overview. To declare the SQLCA, code the
INCLUDE SQLCA statement in your program.

For C or C++ applications use:
EXEC SQL INCLUDE SQLCA;

For Java applications: You do not explicitly use the SQLCA in Java. Instead,
use the SQLException instance methods to get the SQLSTATE and SQLCODE
values. See I'SQI STATE and SQIL.CODE Values in Java” on page 627 for more
details.

For COBOL applications use:
EXEC SQL INCLUDE SQLCA END-EXEC.

14 Application Development Guide

For FORTRAN applications use:
EXEC SQL INCLUDE SQLCA

When you preprocess your program, the database manager inserts host
language variable declarations in place of the INCLUDE SQLCA statement.
The system communicates with your program using the variables for warning
flags, error codes, and diagnostic information.

After executing each SQL statement, the system returns a return code in both
SQLCODE and SQLSTATE. SQLCODE is an integer value that summarizes
the execution of the statement, and SQLSTATE is a character field that
provides common error codes across IBM’s relational database products.
SQLSTATE also conforms to the ISO/ANS SQL92 and FIPS 127-2 standard.

Note: FIPS 127-2 refers to Federal Information Processing Standards Publication
127-2 for Database Language SQL. ISO/ANS SQL92 refers to American
National Standard Database Language SQL X3.135-1992 and International
Standard ISO/IEC 9075:1992, Database Language SQL.

Note that if SQLCODE is less than 0, it means an error has occurred and the
statement has not been processed. If the SQLCODE is greater than 0, it means
a warning has been issued, but the statement is still processed. See the
Message Reference for a listing of SQLCODE and SQLSTATE error conditions.

If you want the system to control error checking after each SQL statement, use
the WHENEVER statement.

Note: Embedded SQL for Java (SQLJ) applications cannot use the
WHENEVER statement. Use the SQLException methods described in
E'SQISTATE and SQIL.CODE Values in Java” aon page 627 to handle

errors returned by SQL statements.

The following WHENEVER statement indicates to the system what to do
when it encounters a negative SQLCODE:

WHENEVER SQLERROR GO TO errchk

That is, whenever an SQL error occurs, program control is transferred to code
that follows the label, such as errchk. This code should include logic to
analyze the error indicators in the SQLCA. Depending upon the ERRCHK
definition, action may be taken to execute the next sequential program
instruction, to perform some special functions, or as in most situations, to roll
back the current transaction and terminate the program. See
[[ransactions” on page 17 for more information on a transaction and
UDiagnostic Handling and the SQLCA Structure” on page 115 for more
information about how to control error checking in your application program.

Chapter 2. Coding a DB2 Application 15

Exercise caution when using the WHENEVER SQLERROR statement. If your
application’s error handling code contains SQL statements, and if these
statements result in an error while processing the original error, your
application may enter an infinite loop. This situation is difficult to
troubleshoot. The first statement in the destination of a WHENEVER
SQLERROR should be WHENEVER SQLERROR CONTINUE. This statement
resets the error handler. After this statement, you can safely use SQL
statements.

For a DB2 application written in C or C++, if the application is made up of
multiple source files, only one of the files should include the EXEC SQL
INCLUDE SQLCA statement to avoid multiple definitions of the SQLCA. The
remaining source files should use the following lines:

#include "sqlca.h"
extern struct sqlca sqlca;

If your application must be compliant with the ISO/ANS SQL92 or FIPS 127-2
standard, do not use the above statements or the INCLUDE SQLCA statement.
For more information on the ISO/ANS SQI92 and FIPS 127-2 standards, see
I'Definition of FIPS 127-2 and ISO/ANS SQI 92” on page 149. For the

alternative to coding the above statements, see the following:

+ For C or C++ applications, see 'SQLSTATE and SQL.CODE Variables in (

”

+ For COBOL applications, 'SQL STATE and SQI CODE Variahles in CORQILA

+ For FORTRAN applications, ‘SQLSTATE and SQILCODE Variables inl

Using Additional Nonexecutable Statements
Generally, other nonexecutable SQL statements are also part of this section of

the program. Both the SQL Reference and subsequent chapters of this manual
discuss nonexecutable statements. Examples of nonexecutable statements are:
* INCLUDE text-file-name

* INCLUDE SQLDA

* DECLARE CURSOR

Connecting to the Database Server

Your program must establish a connection to the target database server before
it can run any executable SQL statements. This connection identifies both the
authorization ID of the user who is running the program, and the name of the
database server on which the program is run. Generally, your application
process can only connect to one database server at a time. This server is called
the current server. However, your application can connect to multiple database
servers within a multisite update environment. In this case, only one server
can be the current server. For more information on multisite updates, see

7 ”

16 Application Development Guide

Your program can establish a connection to a database server either:
¢ explicitly, using the CONNECT statement

* implicitly, connecting to the default database server

* for Java applications, through a Connection instance

Refer to the SQL Reference for a discussion of connection states and how to use
the CONNECT statement. Upon initialization, the application requester
establishes a default database server. If implicit connects are enabled,
application processes started after initialization connect implicitly to the
default database server. It is good practice to use the CONNECT statement as
the first SQL statement executed by an application program. This avoids
accidentally executing SQL statements against the default database.

After the connection has been established, your program can issue SQL
statements that:

* Manipulate data

* Define and maintain database objects

* Initiate control operations, such as granting user authority, or committing
changes to the database

A connection lasts until a CONNECT RESET, CONNECT TO, or
DISCONNECT statement is issued. In a multisite update environment, a
connection also lasts until a DB2 RELEASE then DB2 COMMIT is issued. A
CONNECT TO statement does not terminate a connection when using

multisite update (see [Multisite [Tpdate” on page 525).
Coding Transactions

A transaction is a sequence of SQL statements (possibly with intervening host
language code) that the database manager treats as a whole. An alternative
term that is often used for transaction is unit of work.

To ensure the consistency of data at the transaction level, the system makes
sure that either all operations within a transaction are completed, or none are
completed. Suppose, for example, that the program is supposed to deduct
money from one account and add it to another. If you place both of these
updates in a single transaction, and a system failure occurs while they are in
progress, then when you restart the system, the database manager
automatically restores the data to the state it was in before the transaction
began. If a program error occurs, the database manager restores all changes
made by the statement in error. The database manager will not undo work
performed in the transaction prior to execution of the statement in error,
unless you specifically roll it back.

You can code one or more transactions within a single application program,

and it is possible to access more than one database from within a single
transaction. A transaction that accesses more than one database is called a

Chapter 2. Coding a DB2 Application 17

multisite update. For information on these topics, see 'Remote 1Init of Work’]

bn page 525 and 'Multisite Update” on page 525.

Beginning a Transaction
A transaction begins implicitly with the first executable SQL statement and

ends with either a COMMIT or a ROLLBACK statement, or when the
program ends.

In contrast, the following six statements do not start a transaction because
they are not executable statements:

BEGIN DECLARE SECTION INCLUDE SQLCA
END DECLARE SECTION INCLUDE SQLDA
DECLARE CURSOR WHENEVER

An executable SQL statement always occurs within a transaction. If a program
contains an executable SQL statement after a transaction ends, it automatically
starts a new transaction.

Ending a Transaction
To end a transaction, you can use either:

* The COMMIT statement to save its changes
* The ROLLBACK statement to ensure that these changes are not saved

Using the COMMIT Statement: This statement ends the current transaction.
It makes the database changes performed during the current transaction
visible to other processes.

You should commit changes as soon as application requirements permit. In
particular, write your programs so that uncommitted changes are not held
while waiting for input from a terminal, as this can result in database
resources being held for a long time. Holding these resources prevents other
applications that need these resources from running.

The COMMIT statement has no effect on the contents of host variables.

Your application programs should explicitly end any transactions prior to

terminating. If you do not end transactions explicitly, DB2 automatically

commits all the changes made during the program’s pending transaction

when the program ends successfully, except on Windows 32-bit operating

systems. DB2 rolls back the changes under the following conditions:

* Alog full condition

* Any other system condition that causes database manager processing to
end

On Windows 32-bit operating systems, if you do not explicitly commit the
transaction, the database manager always rolls back the changes.

18 Application Development Guide

For more information about program termination, see 'Ending the Program’]

and f’T)iagnanc Han(‘]ling and the SOQI.CA Structure” on page 114

Using the ROLLBACK Statement: This statement ends the current
transaction, and restores the data to the state it was in prior to beginning the
transaction.

The ROLLBACK statement has no effect on the contents of host variables.

If you use a ROLLBACK statement in a routine that was entered because of
an error or warning and you use the SQL WHENEVER statement, then you
should specify WHENEVER SQLERROR CONTINUE and WHENEVER
SQLWARNING CONTINUE before the ROLLBACK. This avoids a program
loop if the ROLLBACK fails with an error or warning.

In the event of a severe error, you will receive a message indicating that you
cannot issue a ROLLBACK statement. Do not issue a ROLLBACK statement if
a severe error occurs such as the loss of communications between the client
and server applications, or if the database gets corrupted. After a severe error,
the only statement you can issue is a CONNECT statement.

Ending the Program
To properly end your program:
1. End the current transaction (if one is in progress) by explicitly issuing
either a COMMIT statement or a ROLLBACK statement.

2. Release your connection to the database server by using the CONNECT
RESET statement.

3. Clean up resources used by the program. For example, free any temporary
storage or data structures that are used.

Note: If the current transaction is still active when the program terminates,
DB2 implicitly ends the transaction. Since DB2’s behavior when it
implicitly ends a transaction is platform specific, you should explicitly
end all transactions by issuing a COMMIT or a ROLLBACK statement

before the program terminates. See [Implicitly Ending a Transaction for

details on how DB2 implicitly ends a transaction.

Implicitly Ending a Transaction
If your program terminates without ending the current transaction, DB2

implicitly ends the current transaction (see ’/Ending the Pragram’] for details
on how to properly end your program). DB2 implicitly terminates the current
transaction by issuing either a COMMIT or a ROLLBACK statement when the
application ends. Whether DB2 issues a COMMIT or ROLLBACK depends on
factors such as:

* Whether the application terminated normally

* The platform on which the DB2 server runs

Chapter 2. Coding a DB2 Application 19

+ Whether the application uses the context APIs (see Multiple Thread

Database Access” on page 533)

On Most Supported Operating Systems
DB2 implicitly commits a transaction if the termination is normal, or implicitly

rolls back the transaction if it is abnormal. Note that what your program
considers to be an abnormal termination may not be considered abnormal by
the database manager. For example, you may code exit(-16) when your
application encounters an unexpected error and terminate your application
abruptly. The database manager considers this to be a normal termination and
commits the transaction. The database manager considers items such as an
exception or a segmentation violation as abnormal terminations.

On Windows 32-bit Operating Systems
DB2 always rolls back the transaction regardless of whether your application

terminates normally or abnormally, unless you explicitly commit the
transaction using the COMMIT statement.

When Using the DB2 Context APIs
Your application can use any of the DB2 APIs to set up and pass application

contexts between threads as described in L !

. If your application uses these DB2 APIs, DB2 implicitly rolls
back the transaction regardless of whether your application terminates
normally or abnormally. Unless you explicitly commit the transaction using
the COMMIT statement, DB2 rolls back the transaction.

Application Pseudocode Framework

summarizes the general
framework for a DB2 application program in pseudocode format. You must, of
course, tailor this framework to suit your own program.

Start Program

EXEC SQL BEGIN DECLARE SECTION
DECLARE USERID FIXED CHARACTER (8)
DECLARE PW FIXED CHARACTER (8)

Application

(other host variable declarations) Setup

EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK

(program logic)

EXEC SQL CONNECT TO database A USER :userid USING :pw

EXEC SQL SELECT ...

EXEC SQL INSERT ... First Unit
(more SQL statements) of Work

EXEC SQL COMMIT

(more program logic)

20 Application Development Guide

EXEC SQL CONNECT TO database B USER :userid USING :pw

EXEC SQL SELECT ...

EXEC SQL DELETE ... Second Unit
(more SQL statements) of Work

EXEC SQL COMMIT

(more program logic)

EXEC SQL CONNECT TO database A

EXEC SQL SELECT ...

EXEC SQL DELETE ... Third Unit
(more SQL statements) of Work

EXEC SQL COMMIT

(more program logic)

EXEC SQL CONNECT RESET
ERRCHK
Application
(check error information in SQLCA) Cleanup

End Program

Designing an

Application For DB2

DB2 provides you with a variety of application development capabilities that
you can use to supplement or extend the traditional capabilities of an
application. As an application designer, you must make the most fundamental
design decision: Which DB2 capabilities should I use in the design of my
application? In order to make appropriate choices, you need to consider both
the database design and target environments for your application. For
example, you can choose to enforce some business rules in your database
design instead of including the logic in your application.

The capabilities you use and the extent to which you use them can vary
greatly. This section is an overview of the capabilities available that can
significantly affect your design and provides some reasons for why you might
choose one over another. For more information and detail on any of the
capabilities described, a reference to more detail is provided.

The capabilities that you need to consider include:

* Accessing the data using:
— Embedded SQL, including embedded SQL]J for Java (SQLJ)
— DB2 Call Level Interface (DB2 CLI), Open Database Connectivity
(ODBC), and Java Database Connectivity (JDBC)
— Microsoft Specifications
— Perl DBI
— Query products

Chapter 2. Coding a DB2 Application 21

* Controlling data values using:
— Data types (built-in or user-defined)
Table check constraints
Referential integrity constraints
— Views using the CHECK OPTION
— Application logic and variable types

* Controlling the relationship between data values using:
— Referential integrity constraints
— Triggers
— Application logic
* Executing programs at the server using:
— Stored procedures
— User-defined functions
— Triggers

You will notice that this list mentions some capabilities more than once, such
as triggers. This reflects the flexibility of these capabilities to address more
than one design criteria.

Your first and most fundamental decision is whether or not to move the logic
to enforce application related rules about the data into the database.

The key advantage in transferring logic focussed on the data from the
application into the database is that your application becomes more
independent of the data. The logic surrounding your data is centralized in one
place, the database. This means that you can change data or data logic once
and affect all applications immediately.

This latter advantage is very powerful, but you must also consider that any
data logic put into the database affects all users of the data equally. You must
consider whether the rules and constraints that you wish to impose on the
data apply to all users of the data or just the users of your application.

Your application requirements may also affect whether to enforce rules at the
database or the application. For example, you may need to process validation
errors on data entry in a specific order. In general, you should do these types
of data validation in the application code.

You should also consider the computing environment where the application is
used. You need to consider the difference between performing logic on the
client machines against running the logic on the usually more powerful
database server machines using either stored procedures, UDFs, or a
combination of both.

22 Application Development Guide

In some cases, the correct answer is to include the enforcement in both the
application (perhaps due to application specific requirements) and in the
database (perhaps due to other interactive uses outside the application).

Access to Data

In a relational database, you must use SQL to access the desired data, but you
may choose how to integrate the SQL into your application. You can choose
from the following interfaces and their supported languages:

Embedded SQL
C/C++, COBOL, FORTRAN, Java (SQLJ), REXX

DB2 CLI and ODBC
C/C++, Java (JDBC)

Microsoft Specifications, including ADO, RDO, and OLE DB
Visual Basic, Visual C++

Perl DBI
Perl

Query Products
Lotus Approach, IBM Query Management Facility

Embedded SQL
Embedded SQL has the advantage that it can consist of either static or

dynamic SQL or a mixture of both types. If the content and format of your
SQL statements will be frozen when your application is in use, you should
consider using embedded static SQL in your application. With static SQL, the
person who executes the application temporarily inherit the privileges of the
user that bound the application to the database. Unless you bind the
application with the DYNAMICRULES BIND option, dynamic SQL uses the
privileges of the person who executes the application. In general, you should
use embedded dynamic SQL where the executable statements are determined
at run time. This creates a more secure application program that can handle a
greater variety of input.

Note: Embedded SQL for Java (SQLJ) applications can only embed static SQL
statements. However, you can use JDBC to make dynamic SQL calls in
SQLJ applications.

You must precompile embedded SQL applications to convert the SQL
statements into host language commands before using your programming
language compiler. In addition, you must bind the SQL in the application to
the database for the application to run.

For additional information on using embedded SQL, refer to m

”

Chapter 2. Coding a DB2 Application 23

REXX Considerations: REXX applications use APIs which enable them to use
most of the features provided by database manager APIs and SQL. Unlike
applications written in a compiled language, REXX applications are not
precompiled. Instead, a dynamic SQL handler processes all SQL statements.
By combining REXX with these callable APIs, you have access to most of the
database manager capabilities. Although REXX does not directly support some
APIs using embedded SQL, they can be accessed using the DB2 Command
Line Processor from within the REXX application.

As REXX is an interpretive language, you may find it is easier to develop and
debug your application prototypes in REXX as compared to compiled host
languages. Note that while DB2 applications coded in REXX do not provide
the performance of DB2 applications that use compiled languages, they do
provide the ability to create DB2 applications without precompiling,
compiling, linking, or using additional software.

For details of coding and building DB2 applications using REXX, see

DB2 Call Level Interface (DB2 CLI) and Open Database Connectivity
(ODBC)
The DB2 Call Level Interface (DB2 CLI) is IBM’s callable SQL interface to the

DB2 family of database servers. It is a C and C++ application programming
interface for relational database access, and it uses function calls to pass
dynamic SQL statements as function arguments. A callable SQL interface is an
application program interface (API) for database access, which uses function
calls to invoke dynamic SQL statements. It is an alternative to embedded
dynamic SQL, but unlike embedded SQL, it does not require precompiling or
binding.

DB2 CLI is based on the Microsoft Open Database Connectivity (ODBC)
specification, and the X/Open® specifications. IBM chose these specifications
to follow industry standards, and to provide a shorter learning curve for DB2
application programmers who are familiar with either of these database
interfaces.

For more information on the ODBC support in DB2, see the CLI Guide and
Reference.

JDBC
DB2’s Java support includes JDBC, a vendor-neutral dynamic SQL interface

that provides data access to your application through standardized Java
methods. JDBC is similar to DB2 CLI in that you do not have to precompile or
bind a JDBC program. As a vendor-neutral standard, JDBC applications offer
increased portability.

24 Application Development Guide

An application written using JDBC uses only dynamic SQL. The JDBC
interface imposes additional processing overhead.

For additional information on JDBC, refer to JDBC Programming” ol

Microsoft Specifications
You can write database applications that conform to the ActiveX Data Object

(ADO) in Microsoft Visual Basic' or Visual C++ . ADO applications use the
OLE DB Bridge. You can write database applications that conform to the
Remote Data Object (RDO) specifications in Visual Basic. You can also define
OLE DB table functions that return data from OLE DB providers. For more
information on OLE DB table functions, see “

This book does not attempt to provide a tutorial on writing applications that
conform to the ADO and RDO specifications. For full samples of DB2
applications that use the ADO and RDO specifications, refer to the following
directories:

 For samples written in Visual Basic, refer to sq11ib\samples\VB
* For samples written in Visual C++, refer to sqllib\samples\VC
* For samples that use the RDO specification, refer to sq11ib\samples\RDO

« For samples that use the Microsoft Transaction Server ', refer to
sqllib\samples\MTS

Perl DBI
DB2 supports the Perl Database Interface (DBI) specification for data access

through the DBD::DB2 driver. For more 1nformat10n on creating apphatlons
with the Perl DBI that access DB2 databases, see i

” . The DB2 Universal Datahase Perl DBI Webh sitd at
http://www.ibm.com/software/data/db2/perl/ contains the latest DBD::DB2
driver and information on the support available for your platform.

Query Products
Query products including IBM Query Management Facility (QMF) and Lotus

Notes support query development and reporting. The products vary in how
SQL statements are developed and the degree of logic that can be introduced.
Depending on your needs, this approach may meet your requirements to
access data. This book does not provide further information on query
products.

Data Value Control

One traditional area of application logic is validating and protecting data

integrity by controlling the values allowed in the database. Applications have
logic that specifically checks data values as they are entered for validity. (For
example, checking that the department number is a valid number and that it

Chapter 2. Coding a DB2 Application 25

http://www.ibm.com/software/data/db2/perl/

refers to an existing department.) There are several different ways of
providing these same capabilities in DB2, but from within the database.

Data Types
The database stores every data element in a column of a table, and defines

each column with a data type. This data type places certain limits on the
types of values for the column. For example, an integer must be a number
within a fixed range. The use of the column in SQL statements must conform
to certain behaviors; for instance, the database does not compare an integer to
a character string. DB2 includes a set of built-in data types with defined
characteristics and behaviors. DB2 also supports defining your own data
types, called user-defined distinct types, that are based on the built-in types but
do not automatically support all the behaviors of the built-in type. You can
also use data types, like binary large object (BLOB), to store data that may
consist of a set of related values, such as a data structure.

For additional information on data types, refer to the SQL Reference.

Unique Constraints
Unique constraints prevent occurrences of duplicate values in one or more

columns within a table. Unique and primary keys are the supported unique
constraints. For example, you can define a unique constraint on the DEPTNO
column in the DEPARTMENT table to ensure that the same department
number is not given to two departments.

Use unique constraints if you need to enforce a uniqueness rule for all
applications that use the data in a table. For additional information on unique
constraints, refer to the SQL Reference.

Table Check Constraints
You can use a table check constraint to define restrictions, beyond those of the

data type, on the values that are allowed for a column in the table. Table
check constraints take the form of range checks or checks against other values
in the same row of the same table.

If the rule applies for all applications that use the data, use a table check
constraint to enforce your restriction on the data allowed in the table. Table
check constraints make the restriction generally applicable and easier to
maintain.

For additional information on table check constraints, refer to the SQL
Reference.

Referential Integrity Constraints
Use referential integrity (RI) constraints if you must maintain value-based

relationships for all applications that use the data. For example, you can use
an RI constraint to ensure that the value of a DEPTNO column in an

26 Application Development Guide

EMPLOYEE table matches a value in the DEPARTMENT table. This constraint
prevents inserts, updates or deletes that would otherwise result in missing
DEPARTMENT information. By centralizing your rules in the database, RI
constraints make the rules generally applicable and easier to maintain.

See 'Data Relationship Contral”l for further uses of RI constraints.

For additional information on referential integrity, refer to the SQL Reference.

Views with Check Option
If your application cannot define the desired rules as table check constraints,

or the rules do not apply to all uses of the data, there is another alternative to
placing the rules in the application logic. You can consider creating a view of
the table with the conditions on the data as part of the WHERE clause and the
WITH CHECK OPTION clause specified. This view definition restricts the
retrieval of data to the set that is valid for your application. Additionally, if
you can update the view, the WITH CHECK OPTION clause restricts updates,
inserts, and deletes to the rows applicable to your application.

For additional information on the WITH CHECK OPTION, refer to the SQL
Reference.

Application Logic and Program Variable Types
When you write your application logic in a programming language, you also

declare variables to provide some of the same restrictions on data that are
described above. In addition, you can choose to write code to enforce rules in
the application instead of the database. Place the logic in the application
server when:

* The rules are not generally applicable, except in the case of views noted in

N T

* You do not have control over the definitions of the data in the database
* You believe the rule can be more effectively handled in the application logic

For example, processing errors on input data in the order that they are
entered may be required, but cannot be guaranteed from the order of
operations within the database.

Data Relationship Control

Another major area of focus in application logic is in the area of managing the
relationships between different logical entities in your system. For example, if
you add a new department, then you need to create a new account code. DB2
provides two methods of managing the relationships between different objects
in your database: referential integrity constraints and triggers.

Chapter 2. Coding a DB2 Application 27

Referential Integrity Constraints
Referential integrity (RI) constraints, considered from the perspective of data

relationship control, allow you to control the relationships between data in
more than one table. Use the CREATE TABLE or ALTER TABLE statements to
define the behavior of operations that affect the related primary key, such as
DELETE and UPDATE.

RI constraints enforce your rules on the data across one or more tables. If the
rules apply for all applications that use the data, then RI constraints centralize
the rules in the database. This makes the rules generally applicable and easier
to maintain.

For additional information on referential integrity, refer to the SQL Reference.

Triggers
You can use triggers before or after an update to support logic that can also

be performed in an application. If the rules or operations supported by the
triggers apply for all applications that use the data, then triggers centralize the
rules or operations in the database, making it generally applicable and easier
to maintain.

For additional information on triggers, see Chapter 16 _Using Triggers in an
Active DBMS” on page 473 and refer to the SQL Reference.

Using Triggers Before an Update: Using triggers that run before an update
or insert, values that are being updated or inserted can be modified before the
database is actually modified. These can be used to transform input from the
application (user view of the data) to an internal database format where
desired. These before triggers can also be used to cause other non-database
operations to be activated through user-defined functions.

Using Triggers After an Update: Triggers that run after an update, insert or
delete can be used in several ways:

* Triggers can update, insert, or delete data in the same or other tables. This
is useful to maintain relationships between data or to keep audit trail
information.

* Triggers can check data against values of data in the rest of the table or in
other tables. This is useful when you cannot use RI constraints or check
constraints because of references to data from other rows from this or other
tables.

» Triggers can use user-defined functions to activate non-database operations.
This is useful, for example, for issuing alerts or updating information
outside the database.

28 Application Development Guide

Application Logic

You may decide to write code to enforce rules or perform related operations
in the application instead of the database. You must do this for cases where
you cannot generally apply the rules to the database. You may also choose to
place the logic in the application when you do not have control over the
definitions of the data in the database or you believe the application logic can
handle the rules or operations more efficiently.

Application Logic at the Server

A final aspect of application design for which DB2 offers additional capability
is running some of your application logic at the database server. Usually you
will choose this design to improve performance, but you may also run
application logic at the server to support common functions.

Stored Procedures
A stored procedure is a routine for your application that is called from client

application logic but runs on the database server. The most common reason to
use a stored procedure is for database intensive processing that produces only
small amounts of result data. This can save a large amount of communications
across the network during the execution of the stored procedure. You may
also consider using a stored procedure for a set of operations that are
common to multiple applications. In this way, all the applications use the
same logic to perform the operation.

For additional information on Stored Procedures, refer to Chapter 7 Stared

Procedures” on page 187,

User-Defined Functions
You can write a user-defined function (UDF) for use in performing operations

within an SQL statement to return:

* A single scalar value (scalar function)

* A table from a non-DB2 data source, for example, an ASCII file or a Web
page (table function)

A UDF cannot contain SQL statements. UDFs are useful for tasks like
transforming data values, performing calculations on one or more data values,
or extracting parts of a value (such as extracting parts of a large object).

For additional information on writing user-defined functions, refer to
Triggers
In ETri , it is noted that triggers can be used to invoke

user-defined functions. This is useful when you always want a certain
non-SQL operation performed when specific statements occur, or data values

”

Chapter 2. Coding a DB2 Application 29

are changed. Examples include such operations as issuing an electronic mail
message under specific circumstances or writing alert type information to a
file.

For additional information on triggers, refer to !Chapter 16. Using Triggers inl
| é l‘ I)lsnjs 7 423'
The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++ is a
collection of management tools and wizards that plug into the Visual C++
component of Visual Studio IDE. The tools and wizards automate and

simplify the various tasks involved in developing applications for DB2 using
embedded SQL.

You can use the IBM DB2 Universal Database Project Add-In for Microsoft
Visual C++ to develop, package, and deploy:

* Stored procedures written in C/C++ for DB2 Universal Database on
Windows 32-bit operating systems

* Windows 32-bit C/C++ embedded SQL client applications that access DB2
Universal Database servers

* Windows 32-bit C/C++ client applications that invoke stored procedures
using C/C++ function call wrappers

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
allows you to focus on the design and logic of your DB2 applications rather
than the actual building and deployment of it.

Some of the tasks performed by the IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++ include:

* Creating a new embedded SQL module

* Inserting SQL statements into an embedded SQL module using SQL Assist
* Adding imported stored procedures

* Creating an exported stored procedure

* Packaging the DB2 Project

* Deploying the DB2 project from within Visual C++

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++ is
presented in the form of a toolbar. The toolbar buttons include:

DB2 Project Properties
Manages the project properties (development database and
code-generation options)

New DB2 Object
Adds a new embedded SQL module, imported stored procedure, or
exported stored procedure

30 Application Development Guide

DB2 Embedded SQL Modules
Manages the list of embedded SQL modules and their precompiler
options

DB2 Imported Stored Procedures

Manages the list of imported stored procedures

DB2 Exported Stored Procedures
Manages the list of exported stored procedures

Package DB2 Project
Packages the DB2 external project files

Deploy DB2 Project
Deploys the packaged DB2 external project files

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
also has the following three hidden buttons that can be made visible using the
standard Visual C++ tools customization options:

New DB2 Embedded SQL Module
Adds a new C/C++ embedded SQL module

New DB2 Imported Stored Procedure
Imports a new database stored procedure

New DB2 Exported Stored Procedure
Exports a new database stored procedure

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++ can
automatically generate the following code elements:

* Skeletal embedded SQL module files with optional sample SQL statements
* Standard database connect and disconnect embedded SQL functions

* Imported stored procedure call wrapper functions

* Exported stored procedure function templates

* Exported stored procedure data definition language (DDL) files

Terminology associated with the IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++:

IDE project
The standard Visual C++ project

DB2 project
The collection of DB2 project objects that are inserted into the IDE
project. DB2 project objects can be inserted into any Visual C++
project. The DB2 project allows you to manage the various DB2

Chapter 2. Coding a DB2 Application 31

objects such as embedded SQL modules, imported stored procedures,
and exported stored procedures. You can add, delete, and modify
these objects and their properties.

module
A C/C++ source code file that might contain SQL statements.

development database
The database that is used to compile embedded SQL modules. The
development database is also used to look up the list of importable
database stored procedure definitions.

embedded SQL module
A C/C++ source code file that contains embedded static or dynamic
SQL.

imported stored procedure
A stored procedure, already defined in the database, that the project
invokes.

exported stored procedure
A database stored procedure that is built and defined by the project.

Activating the IBM DB2 Universal Database Project Add-In for Microsoft
Visual C++
To activate the IBM DB2 Universal Database Project Add-In for Microsoft

Visual C++, perform the following steps:
Step 1. Register the add-in, if you have not already done so, by entering:
db2vcemd register

on the command line.

Step 2. Select Tools —> Customize. The Customize notebook opens.

Step 3. Select the Add-ins and Macro Files tab. The Add-ins and Macro Files
page opens.

Step 4. Select the IBM DB2 Project Add-In check box.

Step 5. Click OK. A floating toolbar will be created.

Note: If the toolbar is accidentally closed, you can either deactivate then
reactivate the add-in or use the Microsoft Visual C++ standard
customization options to redisplay the toolbar.

Activating the IBM DB2 Universal Database Tools Add-In for Microsoft
Visual C++
The DB2 Tools Add-In is a toolbar that enables the launch of some of the DB2

administration and development tools from within the Visual C++ integrated
development environment.

32 Application Development Guide

To activate the IBM DB2 Universal Database Tools Add-In for Microsoft Visual
C++, perform the following steps:

Step 1. Register the add-in, if you have not already done so, by entering:

db2vcemd register

on the command line.
Step 2. Select Tools —> Customize. The Customize notebook opens.
Step 3. Select the Add-ins and Macro Files tab.
Step 4. Select the IBM DB2 Tools Add-In check box.
Step 5. Click OK. A floating toolbar will be created.

Note: If the toolbar is accidentally closed, you can either deactivate then
reactivate the add-in or use the Visual C++ standard customization
options to redisplay the toolbar.

For more information on the IBM DB2 Universal Database Project Add-In for
Microsoft Visual C++, refer to:

* The online help for the IBM DB2 Universal Database Project Add-In for
Microsoft Visual C++.

Supported SQL Statements

The SQL language provides for data definition, retrieval, update, and control
operations from within an application. [Lahle 37 an page 723 shows the SQL
statements supported by the DB2 product and whether the statement is
supported dynamically, through the CLP, or through the DB2 CLI You can
use Mable 37 on page 723 as a quick reference aid. For a complete discussion of
all the statements, including their syntax, refer to the SQL Reference.

Authorization Considerations

An authorization allows a user or group to perform a general task such as
connecting to a database, creating tables, or administering a system. A privilege
gives a user or group the right to access one specific database object in a
specified way. DB2 uses a set of privileges to provide protection for the
information that you store in it. For more information about the different
privileges, refer to the Administration Guide: Planning.

Most SQL statements require some type of privilege on the database objects
which the statement utilizes. Most API calls usually do not require any
privilege on the database objects which the call utilizes, however, many APIs
require that you possess the necessary authority in order to invoke them. The
DB2 APIs enable you to perform the DB2 administrative functions from

Chapter 2. Coding a DB2 Application 33

http://www.ibm.com/software/data/db2/udb/ide/index.html

within your application program. For example, to recreate a package stored in
the database without the need for a bind file, you can use the sqlarbnd (or
REBIND) API. For details on each DB2 API, refer to the Administrative API
Reference.

For information on the required privilege to issue each SQL statement, refer to
the SQL Reference. For information on the required privilege and authority to
issue each API call, refer to the Administrative API Reference.

When you design your application, consider the privileges your users will
need to run the application. The privileges required by your users depend on:

* whether your application uses dynamic SQL, including JDBC and DB2 CLlI,
or static SQL

* which APIs the application uses

Dynamic SQL
To use dynamic SQL in a package bound with DYNAMICRULES RUN
(default), the person that runs a dynamic SQL application must have the
privileges necessary to issue each SQL request performed, as well as the
EXECUTE privilege on the package. The privileges may be granted to the

user’s authorization ID, to any group of which the user is a member, or to
PUBLIC.

If you bind the application with the DYNAMICRULES BIND option, DB2
associates your authorization ID with the application packages. This allows
any user that runs the application to inherit the privileges associated your
authorization ID.

The person binding the application (for embedded dynamic SQL applications)
only needs the BINDADD authority on the database, if the program contains

no static SQL. Again, this privilege can be granted to the user’s authorization
ID, to a group of which the user is a member, or to PUBLIC.

When you bind a dynamic SQL package with the DYNAMICRULES BIND
option, the user that runs the application only needs the EXECUTE privilege
on the package. To bind a dynamic SQL application with the
DYNAMICRULES BIND option, you must have the privileges necessary to
perform all the dynamic and static SQL statements in the application. If you
have SYSADM or DBADM authority and bind packages with
DYNAMICRULES BIND, consider using the OWNER BIND option to
designate a different authorization ID. OWNER BIND prevents the package
from automatically inheriting SYSADM or DBADM privileges on dynamic
SQL statements. For more information on DYNAMICRULES BIND and
OWNER BIND, refer to the BIND command in the Command Reference.

34 Application Development Guide

Static SQL

To use static SQL, the user running the application only needs the EXECUTE
privilege on the package. No privileges are required for each of the statements
that make up the package. The EXECUTE privilege may be granted to the
user’s authorization ID, to any group of which the user is a member, or to
PUBLIC.

Unless you specify the VALIDATE RUN option when binding the application,
the authorization ID you use to bind the application must have the privileges
necessary to perform all the statements in the application. If VALIDATE RUN
was specified at BIND time, all authorization failures for any static SQL
within this package will not cause the BIND to fail and those statements will
be revalidated at run time. The person binding the application must always
have BINDADD authority. The privileges needed to execute the statements
must be granted to the user’s authorization ID or to PUBLIC. Group
privileges are not used when binding static SQL statements. As with dynamic
SQL, the BINDADD privilege can be granted to the user authorization ID, to a
group of which the user is a member, or to PUBLIC.

These properties of static SQL give you very precise control over access to
information in DB2. See the example at the end of this section for a possible
application of this.

Using APIs

Most of the APIs provided by DB2 do not require the use of privileges,
however, many do require some kind of authority to invoke. For the APIs that
do require a privilege, the privilege must be granted to the user running the
application. The privilege may be granted to the user’s authorization ID, to
any group of which the user is a member, or to PUBLIC. For information on
the required privilege and authority to issue each API call, see the
Administrative API Reference.

Example

Consider two users, PAYROLL and BUDGET, who need to perform queries
against the STAFF table. PAYROLL is responsible for paying the employees of
the company, so it needs to issue a variety of SELECT statements when
issuing paychecks. PAYROLL needs to be able to access each employee’s
salary. BUDGET is responsible for determining how much money is needed to
pay the salaries. BUDGET should not, however, be able to see any particular
employee’s salary.

Since PAYROLL issues many different SELECT statements, the application you
design for PAYROLL could probably make good use of dynamic SQL. This
would require that PAYROLL have SELECT privilege on the STAFF table. This
is not a problem since PAYROLL needs full access to the table anyhow.

Chapter 2. Coding a DB2 Application 35

BUDGET, on the other hand, should not have access to each employee’s
salary. This means that you should not grant SELECT privilege on the STAFF
table to BUDGET. Since BUDGET does need access to the total of all the
salaries in the STAFF table, you could build a static SQL application to
execute a SELECT SUM(SALARY) FROM STAFF, bind the application and
grant the EXECUTE privilege on your application’s package to BUDGET. This
lets BUDGET get the needed information without exposing the information
that BUDGET should not see.

Database Manager APIs Used in Embedded SQL or DB2 CLI Programs

Your application can use APIs to access database manager facilities that are
not available using SQL statements. For complete details on the APIs available
with the database manager and how to call them, refer to the examples in the
Administrative API Reference.

You can use the DB2 APIs to:

* Manipulate the database manager environment, which includes cataloging
and uncataloging databases and nodes, and scanning database and node
directories. You can also use APIs to create, delete, and migrate databases

* Provide facilities to import and export data, and administer, backup, and
restore the database

* Manipulate the database manager configuration file and the database
configuration files
* Provide operations specific to the client/server environment

* Provide the run-time interface for precompiled SQL statements. These APIs
are not usually called directly by the programmer. Instead, they are inserted
into the modified source file by the precompiler after processing.

The database manager includes APIs for language vendors who want to write
their own precompiler, and other APIs useful for developing applications.

For complete details on the APIs available with the database manager and
how to call them, see the examples in the Administrative API Reference.

Setting Up the Testing Environment

In order to perform many of the tasks described in the following sections, you
should set up a test environment. For example, you need a database to test
your application’s SQL code.

A testing environment should include the following:

36 Application Development Guide

* A test database. If your application updates, inserts, or deletes data from
tables and views, use test data to verify its execution. If it only retrieves
data from tables and views, consider using production-level data when
testing it.

* Test input data. The input data used to test an application should be valid
data that represents all possible input conditions. If the application verifies
that input data is valid, include both valid and invalid data to verify that
the valid data is processed and the invalid data is flagged.

Creating a Test Database

If you must create a test database, write a small server application that calls
the CREATE DATABASE AP]I, or use the command line processor. Refer to the
Command Reference for information about the command line processor, or the
Administrative API Reference for information about the CREATE DATABASE
APL

Creating Test Tables

To design the test tables and views needed, first analyze the data needs of the
application. To create a table, you need the CREATETAB authority and the
CREATEIN privilege on the schema. Refer to the information on the CREATE
TABLE statement in the SQL Reference for alternative authorities.

List the data the application accesses and describe how each data item is
accessed. For example, suppose the application being developed accesses the
TEST.TEMPL, TEST.TDEPT, and TEST.TPROJ tables. You could record the type
of accesses as shown in

Table 1. Description of the Application Data

Table or View Insert Delete Column Name Data Type Update
Name Rows Rows Access
TEST.TEMPL No No EMPNO CHAR(6) Yes
LASTNAME VARCHAR(15) Yes
WORKDEPT CHAR(3) Yes
PHONENO CHAR(4)
JOBCODE DECIMAL(3)
TEST.TDEPT No No DEPTNO CHAR(3)
MGRNO CHAR(6)
TEST.TPROJ Yes Yes PROJNO CHAR(6) Yes
DEPTNO CHAR(3) Yes
RESPEMP CHAR(6) Yes
PRSTAFF DECIMAL(5,2) Yes
PRSTDATE DECIMAL(6) Yes
PRENDATE DECIMAL(6)

Chapter 2. Coding a DB2 Application 37

When the description of the application data access is complete, construct the
test tables and views that are needed to test the application:

* Create a test table when the application modifies data in a table or a view.
Create the following test tables using the CREATE TABLE SQL statement:
- TEMPL
- TPROJ

* Create a test view when the application does not modify data in the
production database.

In this example, create a test view of the TDEPT table using the CREATE
VIEW SQL statement.

If the database schema is being developed along with the application, the
definitions of the test tables might be refined repeatedly during the
development process. Usually, the primary application cannot both create the
tables and access them because the database manager cannot bind statements
that refer to tables and views that do not exist. To make the process of
creating and changing tables less time-consuming, consider developing a
separate application to create the tables. Of course you can always create test
tables interactively using the Command Line Processor (CLP).

Generating Test Data
Use any of the following methods to insert data into a table:

* INSERT...VALUES (an SQL statement) puts one or more rows into a table
each time the command is issued.

* INSERT...SELECT obtains data from an existing table (based on a SELECT
clause) and puts it into the table identified with the INSERT statement.

* The IMPORT or LOAD utility inserts large amounts of new or existing data
from a defined source.

* The RESTORE utility can be used to duplicate the contents of an existing
database into an identical test database by using a BACKUP copy of the
original database.

For information about the INSERT statement, refer to the SQL Reference. For
information about the IMPORT, LOAD, and RESTORE utilities, refer to the
Administration Guide.

The following SQL statements demonstrate a technique you can use to
populate your tables with randomly generated test data. Suppose the table
EMP contains four columns, ENO (employee number), LASTNAME (last
name), HIREDATE (date of hire) and SALARY (employee’s salary) as in the
following CREATE TABLE statement:

CREATE TABLE EMP (ENO INTEGER, LASTNAME VARCHAR(30),
HIREDATE DATE, SALARY INTEGER);

38 Application Development Guide

Suppose you want to populate this table with employee numbers from 1 to a
number, say 100, with random data for the rest of the columns. You can do
this using the following SQL statement:

INSERT INTO EMP

-- generate 100 records

WITH DT(ENO) AS (VALUES(1) UNION ALL
SELECT ENO+1 FROM DT WHERE ENO < 100)

-- Now, use the generated records in DT to create other columns
-- of the employee record.
SELECT ENO, HA

TRANSLATE (CHAR(INTEGER(RAND()*1000000)),

CASE MOD(ENO,4) WHEN O THEN 'aeiou' "bedfg'
WHEN 1 THEN 'aeiou' "hjkIm'
WHEN 2 THEN 'aeiou' ‘npqgrs'

ELSE 'aeiou' "twxyz' END,

'1234567890') AS LASTNAME,
CURRENT DATE - (RAND()*10957) DAYS AS HIREDATE, |
INTEGER (10000+RAND () *200000) AS SALARY H

FROM DT;

SELECT * FROM EMP;

The following is an explanation of the above statement:

1.

The first part of the INSERT statement generates 100 records for the first
100 employees using a recursive subquery to generate the employee
numbers. Each record contains the employee number. To change the
number of employees, use a number other than 100.

The SELECT statement generates the LASTNAME column. It begins by
generating a random integer up to 6 digits long using the RAND function.
It then converts the integer to its numeric character format using the
CHAR function.

To convert the numeric characters to alphabet characters, the statement
uses the TRANSLATE function to convert the ten numeric characters (0
through 9) to alphabet characters. Since there are more than 10 alphabet
characters, the statement selects from five different translations. This
results in names having enough random vowels to be pronounceable and
so the vowels are included in each translation.

The statement generates a random HIREDATE value. The value of
HIREDATE ranges back from the current date to 30 years ago. HIREDATE
is calculated by subtracting a random number of days between 0 and

10 957 from the current date. (10 957 is the number of days in 30 years.)
Finally, the statement randomly generates the SALARY. The minimum
salary is 10 000, to which a random number from 0 to 200 000 is added.

For sample programs that are helpful in generating random test data, please
see the fillcli.sqc and fillsrv.sqc sample programs in the
sql1ib/samples/c subdirectory.

Chapter 2. Coding a DB2 Application 39

You may also want to consider prototyping any user-defined functions (UDF)
you are developing against the test data. For more information on why and
how you write UDFs, see [‘Chapter 15. Writing ser-Defined Functions (1JDFs)

Ia_n_d_hd_etb_o_d_s_on_pa_gg&&ﬂ and |’ Chanfpr 14 qur-]')pfme(‘] Functions (IJDEs)

Running, Testing and Debugging Your Programs

The Application Building Guide tells you how to run your program in your
environment. You can do the following to help you during the testing and
debugging of your code:

* Use the same techniques discussed in I'Protatyping Your SQI Statements’].

These include using the command line processor, the Explain facility,
analyzing the system catalog views for information about the tables and
databases your program is manipulating, and updating certain system
catalog statistics to simulate production conditions.

* Use the database system monitor to capture certain optimizing information
for analysis. See the System Monitor Guide and Reference.

* Use the flagger facility to check the syntax of SQL statements in
applications being developed for DB2 Universal Database for OS/390, or
for conformance to the SQL92 Entry Level standard. This facility is invoked
durmg precompﬂatlon For information about how to do this, see

Z , towards the end of the section.

* Make full use of the error-handling APIs. For example, you can use
error-handling APIs to print all messages during the testing phase. For
more information about error-handling APIs, see the Administrative API
Reference.

Prototyping Your SQL Statements

As you design and code your application, you can take advantage of certain
database manager features and utilities to prototype portions of your SQL
code, and to improve performance. For example, you can do the following:

* Use the Command Center or the command line processor (CLP) to test
many SQL statements before you attempt to compile and link a complete
program.

This allows you to define and manipulate information stored in a database
table, index, or view. You can add, delete, or update information as well as
generate reports from the contents of tables. Note that you have to
minimally change the syntax for some SQL statements in order to use host
variables in your embedded SQL program. Host variables are used to store
data that is output to your screen. In addition, some embedded SQL
statements (such as BEGIN DECLARE SECTION) are not supported by the

40 Application Development Guide

Command Center or CLP as they are not relevant to that environment. See

[able 37 on page 723 to see which SQL statements are not supported by the
CLP.

You can also redirect the input and output of command line processor
requests. For example, you could create one or more files containing SQL
statements you need as input into a command line processor request, to
save retyping the statement.

For information about the command line processor, refer to the Command
Reference. For information about the Command Center, refer to the
Administration Guide.

Use the Explain facility to get an idea of the estimated costs of the DELETE,
INSERT, UPDATE, or SELECT statements you plan to use in your program.
The Explain facility places the information about the structure and the
estimated costs of the subject statement into user supplied tables. You can
view this information using Visual Explain or the db2exfmt utility.

For information about how to use the Explain facility, refer to the
Administration Guide: Implementation.

Use the system catalog views to easily retrieve information about existing
databases. The database manager creates and maintains the system catalog
tables on which the views are based during normal operation as databases
are created, altered, and updated. These views contain data about each
database, including authorities granted, column names, data types, indexes,
package dependencies, referential constraints, table names, views, and so
on. Data in the system catalog views is available through normal SQL query
facilities.

You can update some system catalog views containing statistical
information used by the SQL optimizer. You may change some columns in
these views to influence the optimizer or to investigate the performance of
hypothetical databases. You can use this method to simulate a production
system on your development or test system and analyze how queries
perform.

For a complete description of each system catalog view, refer to the
appendix in the SQL Reference. For information about system catalog
statistics and which ones you can change, refer to the Administration Guide:
Implementation.

Chapter 2. Coding a DB2 Application 41

42 Application Development Guide

Part 2. Embedding SQL in Applications

© Copyright IBM Corp. 1993, 2000

43

44 Application Development Guide

Chapter 3. Embedded SQL Overview

Embedding SQL Statements in a Host Binding Dynamic Statements 54
Language45 Resolving Unqualified Table Names . . 54
Creating and Preparmg the Source Flles .. 47 Other Binding Considerations55
Creating Packages for Embedded SQL . . . 49 Advantages of Deferred Binding . . . 56
Precompiling. P DB2 Bind File Description Utility - db2bfd 56
Source File Requirements51 Application, Bind File, and Package
Compiling and Linking52 Relationships. . 57
Binding53 Timestamps . . 58
Renaming Packages53 Rebinding. . 58

Embedding SQL Statements in a Host Language

You can write applications with SQL statements embedded within a host

language. The SQL statements provide the database interface, while the host

language provides the remaining support needed for the application to

execute.

[able 2 shows an SQL statement embedded in a host language application. In
the example, the application checks the SQLCODE field of the SQLCA structure to

determine whether the update was successful.

Table 2. Embedding SQL Statements in a Host Language

Language Sample Source Code

C/C++ EXEC SQL UPDATE staff SET job = 'Clerk' WHERE job = 'Mgr';

if (SQLCODE < 0)

printf("Update Error: SQLCODE = %1d \n", SQLCODE);

Java (SQLJ) try {

#sql { UPDATE staff SET job = 'Clerk' WHERE job = 'Mgr'

}
catch (SQLException e) {

printin("Update Error: SQLCODE = " + e.getErrorCode());

COBOL EXEC SQL UPDATE staff SET job = 'Clerk' WHERE job =

IF SQLCODE LESS THAN 0

DISPLAY 'UPDATE ERROR: SQLCODE = ', SQLCODE.

FORTRAN EXEC SQL UPDATE staff SET job = 'Clerk' WHERE job =

if (sqlcode .1t. 0) THEN

write(*,*) 'Update error: sqlcode = ', sqlcode

© Copyright IBM Corp. 1993, 2000

45

SQL statements placed in an application are not specific to the host language.
The database manager provides a way to convert the SQL syntax for
processin