
IBM
®

DB2
®

Universal Database

Application Development Guide
Version 7

SC09-2949-00

���

IBM
®

DB2
®

Universal Database

Application Development Guide
Version 7

SC09-2949-00

���

Before using this information and the product it supports, be sure to read the general information under
“Appendix G. Notices” on page 813.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Part 1. DB2 Application
Development Concepts 1

Chapter 1. Getting Started with DB2
Application Development 3
About This Book 3
Who Should Use This Book 4
How to Use This Book 4

Conventions 7
Related Publications. 8

Chapter 2. Coding a DB2 Application . . . 9
Prerequisites for Programming 9
DB2 Application Coding Overview 10

Declaring and Initializing Variables . . . 11
Connecting to the Database Server . . . 16
Coding Transactions 17
Ending the Program 19
Implicitly Ending a Transaction 19
Application Pseudocode Framework . . . 20

Designing an Application For DB2 21
Access to Data 23
Data Value Control. 25
Data Relationship Control 27
Application Logic at the Server 29
The IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++ 30

Supported SQL Statements 33
Authorization Considerations 33

Dynamic SQL 34
Static SQL. 35
Using APIs 35
Example 35

Database Manager APIs Used in Embedded
SQL or DB2 CLI Programs 36
Setting Up the Testing Environment 36

Creating a Test Database 37
Creating Test Tables 37
Generating Test Data 38

Running, Testing and Debugging Your
Programs 40
Prototyping Your SQL Statements 40

Part 2. Embedding SQL in
Applications 43

Chapter 3. Embedded SQL Overview . . . 45
Embedding SQL Statements in a Host
Language 45
Creating and Preparing the Source Files. . . 47
Creating Packages for Embedded SQL . . . 49

Precompiling. 49
Compiling and Linking 52
Binding 53
Advantages of Deferred Binding 56
DB2 Bind File Description Utility - db2bfd 56
Application, Bind File, and Package
Relationships. 57
Timestamps 58
Rebinding. 58

Chapter 4. Writing Static SQL Programs. . 61
Characteristics and Reasons for Using Static
SQL. 61
Advantages of Static SQL 62
Example: Static SQL Program 63

How the Static Program Works 64
C Example: STATIC.SQC 66
Java Example: Static.sqlj 67
COBOL Example: STATIC.SQB 69

Coding SQL Statements to Retrieve and
Manipulate Data 71

Retrieving Data 71
Using Host Variables 71

Declaration Generator - db2dclgn 73
Using Indicator Variables 75

Data Types 77
Using an Indicator Variable in the STATIC
program 80

Selecting Multiple Rows Using a Cursor . . 81
Declaring and Using the Cursor 81
Cursors and Unit of Work Considerations 82
Example: Cursor Program 84

Updating and Deleting Retrieved Data . . . 92
Updating Retrieved Data. 92
Deleting Retrieved Data 92
Types of Cursors 92

© Copyright IBM Corp. 1993, 2000 iii

Example: OPENFTCH Program 93
Advanced Scrolling Techniques 102

Scrolling Through Data that has Already
Been Retrieved. 102
Keeping a Copy of the Data 102
Retrieving the Data a Second Time . . . 102
Establishing a Position at the End of a
Table 104
Updating Previously Retrieved Data . . 105
Example: UPDAT Program. 105

Diagnostic Handling and the SQLCA
Structure 115

Return Codes 115
SQLCODE and SQLSTATE 115
Token Truncation in SQLCA Structure . . 116
Handling Errors using the WHENEVER
Statement 116
Exception, Signal, Interrupt Handler
Considerations 117
Exit List Routine Considerations 118
Using GET ERROR MESSAGE in
Example Programs 118

Chapter 5. Writing Dynamic SQL
Programs 127
Why Use Dynamic SQL? 127

Dynamic SQL Support Statements . . . 127
Comparing Dynamic SQL with Static SQL 128

Using PREPARE, DESCRIBE, FETCH and
the SQLDA 131

Declaring and Using Cursors 131
Example: Dynamic SQL Program . . . 133
Declaring the SQLDA 143
Preparing the Statement Using the
Minimum SQLDA Structure 144
Allocating an SQLDA with Sufficient
SQLVAR Entries 145
Describing the SELECT Statement . . . 146
Acquiring Storage to Hold a Row . . . 146
Processing the Cursor 147
Allocating an SQLDA Structure 147
Passing Data Using an SQLDA Structure 151
Processing Interactive SQL Statements 152
Saving SQL Requests from End Users . . 153
Example: ADHOC Program 154

Variable Input to Dynamic SQL 161
Using Parameter Markers 161
Example: VARINP Program 162

The DB2 Call Level Interface (CLI) 170
Comparing Embedded SQL and DB2 CLI 170

Advantages of Using DB2 CLI 171
Deciding on Embedded SQL or DB2 CLI 173

Chapter 6. Common DB2 Application
Techniques 175
Generated Columns 176
Identity Columns 176
Declared Temporary Tables 177
Controlling Transactions with Savepoints 179

Savepoint Restrictions 180
Savepoints and Data Definition Language
(DDL). 181
Savepoints and Buffered Inserts 182
Using Savepoints with Cursor Blocking 182
Savepoints and XA Compliant Transaction
Managers 183

Part 3. Stored Procedures 185

Chapter 7. Stored Procedures 187
Stored Procedure Overview 187
Advantages of Stored Procedures 188
Writing Stored Procedures 190

Client Application 191
Stored Procedures on the Server 192
Writing OLE Automation Stored
Procedures 209
Example OUT Parameter Stored
Procedure 210
Code Page Considerations 222
C++ Consideration 222
Graphic Host Variable Considerations . . 222
Multisite Update Consideration 223

NOT FENCED Stored Procedures 223
Returning Result Sets from Stored
Procedures 225

Example: Returning a Result Set from a
Stored Procedure 226
Resolving Problems 236

Chapter 8. Writing SQL Procedures . . . 239
Comparison of SQL Procedures and External
Procedures 239
Valid SQL Procedure Body Statements . . . 240
Issuing CREATE PROCEDURE Statements 242
Handling Conditions in SQL Procedures . . 243

Declaring Condition Handlers 243
SIGNAL and RESIGNAL Statements . . 245

iv Application Development Guide

SQLCODE and SQLSTATE Variables in
SQL Procedures 246

Using Dynamic SQL in SQL Procedures . . 246
Nested SQL Procedures 248

Passing Parameters Between Nested SQL
Procedures 248
Returning Result Sets From Nested SQL
Procedures 249
Restrictions on Nested SQL Procedures 249

Returning Result Sets From SQL Procedures 249
Returning Result Sets to Caller or Client 250
Receiving Result Sets as a Caller 251

Debugging SQL Procedures 252
Displaying Error Messages for SQL
Procedures 252
Debugging SQL Procedures Using
Intermediate Files 255

Examples of SQL Procedures 255

Chapter 9. IBM DB2 Stored Procedure
Builder 261
What is Stored Procedure Builder? 261
Advantages of Using Stored Procedure
Builder 262

Creating New Stored Procedures. . . . 262
Working with Existing Stored Procedures 263
Creating Stored Procedure Builder
Projects 263
Debugging Stored Procedures 263

Part 4. Object-Relational
Programming 265

Chapter 10. Using the Object-Relational
Capabilities 267
Why Use the DB2 Object Extensions? . . . 267

Object-Relational Features of DB2 . . . 267

Chapter 11. User-defined Distinct Types 273
Why Use Distinct Types? 273
Defining a Distinct Type 274
Resolving Unqualified Distinct Types . . . 274
Examples of Using CREATE DISTINCT
TYPE 275

Example: Money 275
Example: Job Application 275

Defining Tables with Distinct Types 275
Example: Sales 275
Example: Application Forms 276

Manipulating Distinct Types 277
Examples of Manipulating Distinct Types 277

Example: Comparisons Between Distinct
Types and Constants 277
Example: Casting Between Distinct Types 278
Example: Comparisons Involving Distinct
Types 279
Example: Sourced UDFs Involving
Distinct Types 280
Example: Assignments Involving Distinct
Types 280
Example: Assignments in Dynamic SQL 280
Example: Assignments Involving Different
Distinct Types 281
Example: Use of Distinct Types in
UNION 282

Chapter 12. Working with Complex
Objects: User-Defined Structured Types . 283
Structured Types Overview 284

Creating a Structured Type Hierarchy . . 285
Storing Objects in Typed Tables 291
Storing Objects in Columns 293
Additional Properties of Structured Types 295

Using Structured Types in Typed Tables . . 296
Creating a Typed Table 296
Populating a Typed Table 298
Using Reference Types 300
Comparing Reference Types 300
Creating a Typed View 303
Dropping a User-Defined Type (UDT) or
Type Mapping 305
Altering or Dropping a View 306
Querying a Typed Table. 306
Queries that Dereference References . . 307
Additional Query Specification
Techniques 309
Additional Hints and Tips 311

Creating and Using Structured Types as
Column Types 313

Inserting Structured Type Instances into a
Column 313
Defining Tables with Structured Type
Columns 314
Defining Types with Structured Type
Attributes 314
Inserting Rows that Contain Structured
Type Values 314
Retrieving and Modifying Structured
Type Values 316

Contents v

Associating Transforms with a Type. . . 318
Where Transform Groups Must Be
Specified 320
Creating the Mapping to the Host
Language Program: Transform Functions . 321
Working with Structured Type Host
Variables 340

Chapter 13. Using Large Objects (LOBs) 341
What are LOBs? 341
Understanding Large Object Data Types
(BLOB, CLOB, DBCLOB) 342
Understanding Large Object Locators . . . 343
Example: Using a Locator to Work With a
CLOB Value 345

How the Sample LOBLOC Program
Works. 345
C Sample: LOBLOC.SQC 346
COBOL Sample: LOBLOC.SQB 348

Example: Deferring the Evaluation of a LOB
Expression 351

How the Sample LOBEVAL Program
Works. 352
C Sample: LOBEVAL.SQC 353
COBOL Sample: LOBEVAL.SQB 355
Indicator Variables and LOB Locators . . 358

LOB File Reference Variables 358
Example: Extracting a Document To a File 360

How the Sample LOBFILE Program
Works. 360
C Sample: LOBFILE.SQC 361
COBOL Sample: LOBFILE.SQB 362

Example: Inserting Data Into a CLOB
Column 364

Chapter 14. User-Defined Functions
(UDFs) and Methods 365
What are Functions and Methods? 365
Why Use Functions and Methods? 366
UDF And Method Concepts 369
Implementing Functions and Methods . . . 370
Writing Functions and Methods 371
Registering Functions and Methods 371
Examples of Registering UDFs and Methods 371

Example: Exponentiation 372
Example: String Search 372
Example: BLOB String Search 373
Example: String Search over UDT . . . 373
Example: External Function with UDT
Parameter 374

Example: AVG over a UDT 375
Example: Counting 375
Example: Counting with an OLE
Automation Object 376
Example: Table Function Returning
Document IDs 376

Using Functions and Methods 377
Referring to Functions 377
Examples of Function Invocations . . . 378
Using Parameter Markers in Functions 379
Using Qualified Function Reference . . . 379
Using Unqualified Function Reference 380
Summary of Function References . . . 380

Chapter 15. Writing User-Defined
Functions (UDFs) and Methods 385
Description 385
Interface between DB2 and a UDF 387

The Arguments Passed from DB2 to a
UDF 387
Summary of UDF Argument Use . . . 400
How the SQL Data Types are Passed to a
UDF 402
Writing Scratchpads on 32-bit and 64-bit
Platforms 410
The UDF Include File: sqludf.h 411

Creating and Using Java User-Defined
Functions 412

Coding a Java UDF 412
Changing How a Java UDF Runs . . . 414
Table Function Execution Model for Java 415

Writing OLE Automation UDFs 416
Creating and Registering OLE
Automation UDFs 417
Object Instance and Scratchpad
Considerations 418
How the SQL Data Types are Passed to
an OLE Automation UDF 418
Implementing OLE Automation UDFs in
BASIC and C++ 420

OLE DB Table Functions 423
Creating an OLE DB Table Function . . 424
Fully Qualified Rowset Names 426
Defining a Server Name for an OLE DB
Provider 427
Defining a User Mapping 427
Supported OLE DB Data Types 428

Scratchpad Considerations 430
Table Function Considerations 432
Table Function Error Processing 433

vi Application Development Guide

Scalar Function Error Processing 433
Using LOB Locators as UDF Parameters or
Results 434

Scenarios for Using LOB Locators . . . 438
Other Coding Considerations 438

Hints and Tips 439
UDF Restrictions and Caveats. 441

Examples of UDF Code 443
Example: Integer Divide Operator . . . 443
Example: Fold the CLOB, Find the Vowel 447
Example: Counter. 451
Example: Weather Table Function . . . 453
Example: Function using LOB locators 461
Example: Counter OLE Automation UDF
in BASIC. 464
Example: Counter OLE Automation UDF
in C++ 466

Debugging your UDF 470

Chapter 16. Using Triggers in an Active
DBMS 473
Why Use Triggers? 473

Benefits of Triggers 474
Overview of a Trigger 475
Trigger Event 476
Set of Affected Rows 477
Trigger Granularity 477
Trigger Activation Time 478
Transition Variables 479
Transition Tables 480
Triggered Action 482

Triggered Action Condition 482
Triggered SQL Statements 483
Functions Within SQL Triggered
Statement 483

Trigger Cascading. 484
Interactions with Referential Constraints . . 485
Ordering of Multiple Triggers 485
Synergy Between Triggers, Constraints,
UDTs, UDFs, and LOBs 486

Extracting Information 486
Preventing Operations on Tables 487
Defining Business Rules. 487
Defining Actions 488

Part 5. DB2 Programming
Considerations 491

Chapter 17. Programming in Complex
Environments 493
National Language Support Considerations 493

Collating Sequence Overview 494
Deriving Code Page Values 499
Deriving Locales in Application Programs 500
National Language Support Application
Development 501
DBCS Character Sets 508
Extended UNIX Code (EUC) Character
Sets 509
Running CLI/ODBC/JDBC/SQLJ
Programs in a DBCS Environment . . . 510
Japanese and Traditional Chinese EUC
and UCS-2 Code Set Considerations. . . 511

Considerations for Multisite Updates . . . 525
Remote Unit of Work 525
Multisite Update 525

Accessing Host or AS/400 Servers 532
Multiple Thread Database Access 533

Recommendations for Using Multiple
Threads 534
Multithreaded UNIX Applications
Working with Code Page and Country
Code 534
Potential Pitfalls when Using Multiple
Threads 535

Concurrent Transactions 537
Potential Pitfalls when Using Concurrent
Transactions 537

X/Open XA Interface Programming
Considerations 539

Application Linkage 542
Working with Large Volumes of Data Across
a Network 542

Chapter 18. Programming Considerations
in a Partitioned Environment 545
Improving Performance 545

Using FOR READ ONLY Cursors . . . 545
Using Directed DSS and Local Bypass . . 545
Using Buffered Inserts 547
Example: Extracting Large Volume of
Data (largevol.c) 552

Creating a Test Environment 558
Error-Handling Considerations 558

Severe Errors 559
Merged Multiple SQLCA Structures. . . 559
Identifying the Partition that Returned
the Error 560

Contents vii

Debugging 560
Diagnosing a Looping or Suspended
application 560

Chapter 19. Writing Programs for DB2
Federated Systems. 563
Introduction to DB2 Federated Systems . . 563
Accessing Data Source Tables and Views . . 564

Working with Nicknames 564
Using Isolation Levels to Maintain Data
Integrity 568

Working with Data Type Mappings 569
How DB2 Determines What Data Types
to Define Locally 569
Default Data Type Mappings 569
How You Can Override Default Type
Mappings and Create New Ones. . . . 570

Using Distributed Requests to Query Data
Sources 571

Coding Distributed Requests 571
Using Server Options to Facilitate
Optimization 572

Invoking Data Source Functions 574
Enabling DB2 to Invoke Data Source
Functions 574
Reducing the Overhead of Invoking a
Function 574
Specifying Function Names in the
CREATE FUNCTION MAPPING
Statement 576
Discontinuing Function Mappings . . . 576

Using Pass-Through to Query Data Sources
Directly 576

SQL Processing in Pass-Through Sessions 576
Considerations and Restrictions 577

Part 6. Language Considerations 579

Chapter 20. Programming in C and C++ 581
Programming Considerations for C and C++ 581
Language Restrictions for C and C++ . . . 581

Trigraph Sequences for C and C++ . . . 581
C++ Type Decoration Consideration . . 582

Input and Output Files for C and C++ . . . 582
Include Files for C and C++ 583

Including Files in C and C++ 585
Embedding SQL Statements in C and C++ 586
Host Variables in C and C++ 588

Naming Host Variables in C and C++ . . 588
Declaring Host Variables in C and C++ 589

Indicator Variables in C and C++ . . . 593
Graphic Host Variable Declarations in C
or C++ 593
LOB Data Declarations in C or C++. . . 596
LOB Locator Declarations in C or C++ 598
File Reference Declarations in C or C++ 599
Initializing Host Variables in C and C++ 600
C Macro Expansion 600
Host Structure Support in C and C++ . . 602
Indicator Tables in C and C++ 603
Null-terminated Strings in C and C++ 604
Pointer Data Types in C and C++ . . . 606
Using Class Data Members as Host
Variables in C and C++ 607
Using Qualification and Member
Operators in C and C++ 608
Handling Graphic Host Variables in C
and C++ 609
Japanese or Traditional Chinese EUC, and
UCS-2 Considerations in C and C++ . . 614

Supported SQL Data Types in C and C++ 615
FOR BIT DATA in C and C++. 620

SQLSTATE and SQLCODE Variables in C
and C++ 620

Chapter 21. Programming in Java . . . 623
Programming Considerations for Java . . . 623

Comparison of SQLJ to JDBC 623
Advantages of Java over Other
Languages 624
SQL Security in Java 624
Source and Output Files for Java. . . . 624
Java Class Libraries 625
Java Packages 625
Supported SQL Data Types in Java . . . 625
SQLSTATE and SQLCODE Values in Java 627
Trace Facilities in Java 627
Creating Java Applications and Applets 628

JDBC Programming 630
How the DB2Appl Program Works . . . 630
Distributing a JDBC Application 633
Distributing and Running a JDBC Applet 633
JDBC 2.0 634

SQLJ Programming 637
DB2 SQLJ Support 637
Embedding SQL Statements in Java . . . 639
Host Variables in Java 646
Calls to Stored Procedures and Functions
in SQLJ 646
Compiling and Running SQLJ Programs 646

viii Application Development Guide

SQLJ Translator Options 648
Stored Procedures and UDFs in Java . . . 649

Where to Put Java Classes 650
Updating Java Classes for Routines . . . 651
Debugging Stored Procedures in Java . . 651
Java Stored Procedures and UDFs . . . 654

Using LOBs and Graphical Objects With
JDBC 1.22 657
JDBC and SQLJ Interoperability 658

Session Sharing 659
Connection Resource Management in Java 659

Chapter 22. Programming in Perl 661
Programming Considerations for Perl . . . 661
Perl Restrictions 661
Connecting to a Database Using Perl . . . 661
Fetching Results in Perl 662
Parameter Markers in Perl 663
SQLSTATE and SQLCODE Variables in Perl 663
Perl DB2 Application Example 664

Chapter 23. Programming in COBOL . . 665
Programming Considerations for COBOL 665
Language Restrictions in COBOL 665
Input and Output Files for COBOL 665
Include Files for COBOL 665
Embedding SQL Statements in COBOL . . 668
Host Variables in COBOL 671

Naming Host Variables in COBOL . . . 671
Declaring Host Variables 671
Indicator Variables in COBOL. 675
LOB Declarations in COBOL 675
LOB Locator Declarations in COBOL . . 676
File Reference Declarations in COBOL 677
Host Structure Support in COBOL . . . 677
Indicator Tables in COBOL. 680
Using REDEFINES in COBOL Group
Data Items 680
Using BINARY/COMP-4 COBOL Data
Types 681

Supported SQL Data Types in COBOL . . . 681
FOR BIT DATA in COBOL 684

SQLSTATE and SQLCODE Variables in
COBOL 685
Japanese or Traditional Chinese EUC, and
UCS-2 Considerations for COBOL 685
Object Oriented COBOL 686

Chapter 24. Programming in FORTRAN 687
Programming Considerations for FORTRAN 687

Language Restrictions in FORTRAN . . . 687
Call by Reference in FORTRAN 687
Debugging and Comment Lines in
FORTRAN 688
Precompiling Considerations for
FORTRAN 688

Input and Output Files for FORTRAN . . . 688
Include Files for FORTRAN 688

Including Files in FORTRAN 691
Embedding SQL Statements in FORTRAN 691
Host Variables in FORTRAN 693

Naming Host Variables in FORTRAN . . 693
Declaring Host Variables 693
Indicator Variables in FORTRAN. . . . 696
LOB Declarations in FORTRAN 696
LOB Locator Declarations in FORTRAN 697
File Reference Declarations in FORTRAN 697

Supported SQL Data Types in FORTRAN 698
SQLSTATE and SQLCODE Variables in
FORTRAN 700
Considerations for Multi-byte Character Sets
in FORTRAN 700
Japanese or Traditional Chinese EUC, and
UCS-2 Considerations for FORTRAN . . . 701

Chapter 25. Programming in REXX . . . 703
Programming Considerations for REXX . . 703
Language Restrictions for REXX 704

Registering SQLEXEC, SQLDBS and
SQLDB2 in REXX 704

Embedding SQL Statements in REXX . . . 705
Host Variables in REXX 707

Naming Host Variables in REXX 707
Referencing Host Variables in REXX . . 707
Indicator Variables in REXX 708
Predefined REXX Variables. 708
LOB Host Variables in REXX 710
LOB Locator Declarations in REXX . . . 710
LOB File Reference Declarations in REXX 711
Clearing LOB Host Variables in REXX 712

Supported SQL Data Types in REXX . . . 712
Using Cursors in REXX 714

Execution Requirements for REXX 715
Bind Files for REXX 715

API Syntax for REXX 716
REXX Stored Procedures 718

Calling Stored Procedures in REXX . . . 718
Japanese or Traditional Chinese EUC
Considerations for REXX 720

Contents ix

Part 7. Appendixes 721

Appendix A. Supported SQL Statements 723

Appendix B. Sample Programs 729
DB2 API Non-Embedded SQL Samples . . 733
DB2 API Embedded SQL Samples 736
Embedded SQL Samples With No DB2 APIs 738
User-Defined Function Samples 740
DB2 Call Level Interface Samples 740
Java Samples 742
SQL Procedure Samples. 744
ADO, RDO, and MTS Samples 746
Object Linking and Embedding Samples . . 747
Command Line Processor Samples 748
Log Management User Exit Samples . . . 749

Appendix C. DB2DARI and DB2GENERAL
Stored Procedures and UDFs 751
DB2DARI Stored Procedures 751

Using the SQLDA in a Client Application 751
Using Host Variables in a DB2DARI
Client 752
Using the SQLDA in a Stored Procedure 752
Summary of Data Structure Usage . . . 753
Input/Output SQLDA and SQLCA
Structures 754
Return Values for DB2DARI Stored
Procedures 755

DB2GENERAL UDFs and Stored Procedures 755
Supported SQL Data Types 756
Classes for Java Stored Procedures and
UDFs 757
NOT FENCED Stored Procedures . . . 763

Example Input-SQLDA Programs 764
How the Example Input-SQLDA Client
Application Works 765
C Example: V5SPCLI.SQC 767
How the Example Input-SQLDA Stored
Procedure Works 770
C Example: V5SPSRV.SQC 771

Appendix D. Programming in a Host or
AS/400 Environment 773
Using Data Definition Language (DDL) . . 774
Using Data Manipulation Language (DML) 775

Numeric Data Types 775
Mixed-Byte Data 775
Long Fields 775

Large Object (LOB) Data Type 775
User Defined Types (UDTs) 775
ROWID Data Type 776
64-bit Integer (BIGINT) data type . . . 776

Using Data Control Language (DCL) . . . 776
Connecting and Disconnecting 776
Precompiling 777

Blocking 777
Package Attributes 778
C Null-terminated Strings 779
Standalone SQLCODE and SQLSTATE 779

Defining a Sort Order 779
Managing Referential Integrity 779
Locking 780
Differences in SQLCODEs and SQLSTATEs 780
Using System Catalogs 781
Numeric Conversion Overflows on Retrieval
Assignments 781
Isolation Levels 781
Stored Procedures. 782

Stored Procedure Builder 783
NOT ATOMIC Compound SQL 785
Multisite Update with DB2 Connect. . . . 785
Host or AS/400 Server SQL Statements
Supported by DB2 Connect 786
Host or AS/400 Server SQL Statements
Rejected by DB2 Connect 787

Appendix E. Simulating EBCDIC Binary
Collation 789

Appendix F. Using the DB2 Library . . . 795
DB2 PDF Files and Printed Books 795

DB2 Information 795
Printing the PDF Books 804
Ordering the Printed Books 805

DB2 Online Documentation 806
Accessing Online Help 806
Viewing Information Online 808
Using DB2 Wizards 810
Setting Up a Document Server 811
Searching Information Online 812

Appendix G. Notices 813
Trademarks 816

Index 819

Contacting IBM 847
Product Information 847

x Application Development Guide

Part 1. DB2 Application Development Concepts

© Copyright IBM Corp. 1993, 2000 1

2 Application Development Guide

Chapter 1. Getting Started with DB2 Application
Development

About This Book 3
Who Should Use This Book 4
How to Use This Book 4

Conventions 7
Related Publications. 8

About This Book

This book discusses how to design and code application programs that access
DB2 databases. It presents detailed information on the use of Structured
Query Language (SQL) in supported host language programs. For information
on language support for your specific operating system, see the Application
Building Guide. This book also provides an overview of some of the DB2
utilities that you can use to help create DB2 applications. These utilities
include “The IBM DB2 Universal Database Project Add-In for Microsoft Visual
C++” on page 30 and “Chapter 9. IBM DB2 Stored Procedure Builder” on
page 261.

You can access data with:
v SQL statements embedded in a host language, including embedded SQL for

Java (SQLJ)
v dynamic APIs including Java Database Connectivity (JDBC), Perl DBI, and

DB2 Call Level Interface (DB2 CLI)

This book discusses all these ways to access data except DB2 CLI, which is
discussed in the CLI Guide and Reference. JDBC, SQLJ, and DB2 CLI provide
some data access capabilities that are not available through embedded SQL.
These capabilities include scrollable cursors and stored procedures that return
multiple result sets. See the discussion in “Access to Data” on page 23 to help
you decide which data access method to use.

To effectively use the information in this book to design, write, and test your
DB2 application programs, you need to refer to the SQL Reference along with
this book. If you are using the DB2 Call Level Interface (CLI) or Open
Database Connectivity (ODBC) interface in your applications to access DB2
databases, refer to the CLI Guide and Reference. To perform database manager
administration functions using the DB2 administration APIs in your
application programs, refer to the Administrative API Reference.

You can also develop applications where one part of the application runs on
the client and another part runs on the server. Version 7 of DB2 introduces

© Copyright IBM Corp. 1993, 2000 3

support for stored procedures with enhanced portability and scalability across
platforms. Stored procedures are discussed in “Chapter 7. Stored Procedures”
on page 187.

You can use object-based extensions to DB2 to make your DB2 application
programs more powerful, flexible, and active than traditional DB2
applications. The extensions include large objects (LOBs), distinct types,
structured types, user-defined functions (UDFs), and triggers. These features
of DB2 are described in:
v “Chapter 10. Using the Object-Relational Capabilities” on page 267
v “Chapter 11. User-defined Distinct Types” on page 273
v “Chapter 12. Working with Complex Objects: User-Defined Structured

Types” on page 283
v “Chapter 13. Using Large Objects (LOBs)” on page 341
v “Chapter 14. User-Defined Functions (UDFs) and Methods” on page 365
v “Chapter 15. Writing User-Defined Functions (UDFs) and Methods” on

page 385
v “Chapter 16. Using Triggers in an Active DBMS” on page 473

References to DB2 in this book should be understood to mean the DB2
Universal Database product on UNIX, Linux, OS/2, and Windows 32-bit
operating systems. References to DB2 on other platforms use a specific
product name and platform, such as DB2 Universal Database for AS/400.

Who Should Use This Book

This book is intended for programmers who are experienced with SQL and
with one or more of the supported programming languages.

How to Use This Book

This book is organized, by task, into the following parts, chapters, and
appendices:
v Part 1. DB2 Application Development Concepts contains information you

need to use this book and an overview of the methods you can use to
develop applications for DB2 Universal Database.
– Chapter 1. Getting Started with DB2 Application Development describes

the structure of this book and the conventions used in it.
– Chapter 2. Coding a DB2 Application introduces the overall application

development process using DB2. It discusses and compares the
important application design issues you need to consider prior to coding

4 Application Development Guide

your applications. This chapter concludes with information to help you
set up a test environment where you can begin to develop your
applications.

v Part 2. Embedding SQL in Applications describes how to embed static and
dynamic SQL in your applications. This information includes a description
of the utilities that you can use to help create your embedded SQL
applications.
– Embedding SQL Statements in a Host Language discusses the process of

creating a DB2 application by embedding SQL in host languages such as
C/C++, Java, and COBOL. It contains an overview of the DB2
precompiler, compiling and linking the application, and binding the
embedded SQL statements to the database.

– Chapter 4. Writing Static SQL Programs discusses the details of coding
your DB2 embedded SQL application using static SQL statements. It
contains detailed guidelines and considerations for using static SQL.

– Chapter 5. Writing Dynamic SQL Programs discusses the details of
coding your DB2 embedded SQL application using dynamic SQL
statements. It contains detailed guidelines and considerations for using
dynamic SQL.

– Chapter 6. Common DB2 Application Techniques discusses DB2 features
that help you with common application development problems. These
features include the ability to automatically create unique row identifiers,
to create columns that are dynamically derived from an expression, and
to create and use declared temporary tables.

v Part 3. Stored Procedures discusses how to use stored procedures to
improve the performance of database applications that run in client/server
environments.
– Chapter 7. Stored Procedures describes how to write stored procedures

and the client applications that call stored procedures using host
languages.

– Chapter 8. Writing SQL Procedures describes how to write stored
procedures in SQL by issuing a CREATE PROCEDURE statement. SQL
procedures encode their procedural logic using SQL in the body of the
CREATE PROCEDURE statement.

– Chapter 9. IBM DB2 Stored Procedure Builder describes the IBM DB2
Stored Procedure Builder, a graphical application that supports the rapid
development of stored procedures for DB2. Stored Procedure Builder
helps you create both SQL and Java stored procedures.

v Part 4. Object-Relational Programming describes how to use the
object-relational support provided by DB2. This information includes an
introduction to and detailed instructions on how to use large objects,
user-defined functions, user-defined distinct types, and triggers.

Chapter 1. Getting Started with DB2 Application Development 5

– Chapter 10. Using the Object-Relational Capabilities introduces the
object-oriented capabilities of DB2. It explains how to extend your
traditional application to one that takes advantage of DB2 capabilities
such as large objects, user-defined functions, and user-defined distinct
types in an object-oriented context.

– Chapter 11. User-defined Distinct Types describes how to create and use
your own data types in applications. It explains how to use distinct types
as a foundation for object-oriented extensions to the built-in data types.

– Chapter 12. Working with Complex Objects: User-Defined Structured
Types describes how to create and use structured types in applications. It
explains how to model objects as hierarchies of structured types, access
instances of structured types as rows or columns in tables, and bind
structured types into and out of your applications.

– Chapter 13. Using Large Objects (LOBs) describes how to define and use
data types that can store data objects as binary or text strings of up to
two gigabytes in size. It also explains how to efficiently use LOBs in a
networked environment.

– Chapter 14. User-Defined Functions (UDFs) and Methods describes how
to write your own extensions to SQL. It explains how to use UDFs to
express the behavior of your data objects.

– Chapter 15. Writing User-Defined Functions (UDFs) and Methods
describes how to write user-defined functions that extend your DB2
applications. Topics include the details of writing a user-defined
function, programming considerations for user-defined functions, and
several examples that show you how to exploit this important capability.
In addition, this chapter describes user-defined table functions, OLE DB
table functions, and OLE automation UDFs.

– Chapter 16. Using Triggers in an Active DBMS describes how to use
triggers to encapsulate and enforce business rules within all of your
database applications.

v Part 5. DB2 Programming Considerations contains information on special
application development considerations.
– Chapter 17. Programming in Complex Environments discusses advanced

programming topics such as national language support, dealing with
Extended UNIX® Code (EUC) code pages for databases and applications,
accessing multiple databases within a unit of work, and creating
multi-threaded applications.

– Chapter 18. Programming Considerations in a Partitioned Environment
describes programming considerations if you are developing applications
that run in a partitioned environment.

– Chapter 19. Writing Programs for DB2 Federated Systems describes how
to create applications that transparently access data from DB2 family and
Oracle data sources through a federated server.

6 Application Development Guide

v Part 6. Language Considerations contains specific information about the
programming languages that DB2 supports.
– Chapter 20. Programming in C and C++ discusses host language specific

information concerning database applications written in C and C++.
– Chapter 21. Programming in Java discusses host language specific

information concerning database applications written in Java using JDBC
or SQLJ.

– Chapter 22. Programming in Perl discusses host language specific
information concerning database applications written in Perl using the
DBD::DB2 database driver for the Perl Database Interface (DBI) Module.

– Chapter 23. Programming in COBOL discusses host language specific
information concerning database applications written in COBOL.

– Chapter 24. Programming in FORTRAN discusses host language specific
information concerning database applications written in FORTRAN.

– Chapter 25. Programming in REXX discusses host language specific
information concerning database applications written in REXX.

v The Appendices contain supplemental information to which you may need
to refer when developing DB2 applications.
– Appendix A. Supported SQL Statements lists the SQL statements

supported by DB2 Universal Database.
– Appendix B. Sample Programs contains information on supplied sample

programs for supported host languages and describes how they work.
– Appendix C. DB2DARI and DB2GENERAL Stored Procedures and UDFs

contains information you can use to create stored procedures and UDFs
that are compatible with previous versions of DB2 Universal Database.

– Appendix D. Programming in a Host or AS/400 Environment describes
programming considerations for DB2 Connect if you access host or
AS/400 database servers in your applications in a distributed
environment.

– Appendix E. Simulating EBCDIC Binary Collation describes how to
collate DB2 character strings according to an EBCDIC, or user-defined,
collating sequence.

– Appendix F. Using the DB2 Library shows you where you can get more
information for the DB2 Universal Database product.

Conventions
This book uses the following conventions:

Directories and Paths
This book uses the UNIX convention for delimiting directories, for
example: sqllib/samples/java. You can convert these paths to
Windows 32-bit operating system and OS/2 paths by changing the /
to a \ and prepending the appropriate installation drive and directory.

Chapter 1. Getting Started with DB2 Application Development 7

Italics Indicates one of the following:
v Introduction of a new term
v Variable names or values that are supplied by the user
v Reference to another source of information, for example, a book or

CD-ROM
v General emphasis

UPPERCASE
Indicates one of the following:
v Abbreviations
v Database manager data types
v SQL statements

Example
Indicates one of the following:
v Coding examples and code fragments
v Examples of output, similar to what is displayed by the system
v Examples of specific data values
v Examples of system messages
v File and directory names
v Information that you are instructed to type
v Java method names
v Function names
v API names

Bold Bold text emphasizes a point.

Related Publications
The following manuals describe how to develop applications for international
use and for specific countries:

Form Number Book Title

SE09-8001-03 National Language Design Guide, Volume 1

SE09-8002-03 NLS Reference Manual, Release 4

8 Application Development Guide

Chapter 2. Coding a DB2 Application

Prerequisites for Programming 9
DB2 Application Coding Overview 10

Declaring and Initializing Variables . . . 11
Declaring Variables that Interact with
the Database Manager. 11
Handling Errors and Warnings 14
Using Additional Nonexecutable
Statements 16

Connecting to the Database Server . . . 16
Coding Transactions 17

Beginning a Transaction 18
Ending a Transaction 18

Ending the Program 19
Implicitly Ending a Transaction 19

On Most Supported Operating Systems 20
On Windows 32-bit Operating Systems 20
When Using the DB2 Context APIs . . 20

Application Pseudocode Framework . . . 20
Designing an Application For DB2 21

Access to Data 23
Embedded SQL 23
DB2 Call Level Interface (DB2 CLI) and
Open Database Connectivity (ODBC) . 24
JDBC 24
Microsoft Specifications 25
Perl DBI 25
Query Products 25

Data Value Control. 25
Data Types 26
Unique Constraints 26
Table Check Constraints 26
Referential Integrity Constraints . . . 26
Views with Check Option 27

Application Logic and Program Variable
Types 27

Data Relationship Control 27
Referential Integrity Constraints . . . 28
Triggers 28
Application Logic 29

Application Logic at the Server 29
Stored Procedures 29
User-Defined Functions 29
Triggers 29

The IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++ 30

Activating the IBM DB2 Universal
Database Project Add-In for Microsoft
Visual C++ 32
Activating the IBM DB2 Universal
Database Tools Add-In for Microsoft
Visual C++ 32

Supported SQL Statements 33
Authorization Considerations 33

Dynamic SQL 34
Static SQL. 35
Using APIs 35
Example 35

Database Manager APIs Used in Embedded
SQL or DB2 CLI Programs 36
Setting Up the Testing Environment 36

Creating a Test Database 37
Creating Test Tables 37
Generating Test Data 38

Running, Testing and Debugging Your
Programs 40
Prototyping Your SQL Statements 40

Prerequisites for Programming

This chapter presents a model of the logical parts of a DB2 application and
discusses the individual strengths of the supported DB2 programming APIs.
Programmers who are new to developing a DB2 application should read the
entire chapter closely.

The application development process described in this book assumes that you
have established the appropriate operating environment. This means that the
following are properly installed and configured:
v A supported compiler or interpreter for developing your applications.

© Copyright IBM Corp. 1993, 2000 9

v DB2 Universal Database, either locally or remotely.
v DB2 Application Development Client.

For details on how to accomplish these tasks, refer to the Application Building
Guide and the Quick Beginnings books for your operating environment.

You can develop applications at a server, or on any client, that has the DB2
Application Development Client (DB2 Application Development Client)
installed. You can run applications with either the server, the DB2 Run-Time
Client, or the DB2 Administrative Client. You can also develop Java JDBC
programs on one of these clients, provided that you install the ″Java
Enablement″ component when you install the client. That means you can
execute any DB2 application on these clients. However, unless you also install
the DB2 Application Development Client with these clients, you can only
develop JDBC applications on them.

DB2 supports the C, C++, Java (SQLJ), COBOL, and FORTRAN programming
languages through its precompilers. In addition, DB2 provides support for the
Perl, Java (JDBC), and REXX dynamically interpreted languages. For
information on the specific precompilers provided by DB2, and the languages
supported on your platform, refer to the Application Building Guide.

Note: FORTRAN and REXX support stabilized in DB2 Version 5, and no
enhancements for FORTRAN or REXX support are planned for the
future.

DB2 provides a sample database which you require when running the
supplied sample programs. For information about the sample database and its
contents, refer to the SQL Reference.

DB2 Application Coding Overview

A DB2 application program consists of several parts:
1. Declaring and initializing variables
2. Connecting to the database
3. Performing one or more transactions
4. Disconnecting from the database
5. Ending the program

A transaction is a set of database operations that must conclude successfully
before being committed to the database. With embedded SQL, a transaction
begins implicitly and ends when the application executes either a COMMIT or
ROLLBACK statement. An example of a transaction is the entry of a
customer’s deposit, and the updating of the customer’s balance.

10 Application Development Guide

Certain SQL statements must appear at the beginning and end of the program
to handle the transition from the host language to the embedded SQL
statements.

The beginning of every program must contain:
v Declarations of all variables and data structures that the database manager

uses to interact with the host program
v SQL statements that provide for error handling by setting up the SQL

Communications Area (SQLCA)
Note that DB2 applications written in Java throw an SQLException, which
you handle in a catch block, rather than using the SQLCA.

The body of every program contains the SQL statements that access and
manage data. These statements constitute transactions. Transactions must
include the following statements:
v The CONNECT statement, which establishes a connection to a database

server
v One or more:

– Data manipulation statements (for example, the SELECT statement)
– Data definition statements (for example, the CREATE statement)
– Data control statements (for example, the GRANT statement)

v Either the COMMIT or ROLLBACK statement to end the transaction

The end of the application program typically contains SQL statements that:
v Release the program’s connection to the database server
v Clean up any resource

Declaring and Initializing Variables
To code a DB2 application, you must first declare:
v the variables that interact with the database manager
v the SQLCA, if applicable

Declaring Variables that Interact with the Database Manager
All variables that interact with the database manager must be declared in an
SQL declare section. You must code an SQL declare section with the following
structure:
1. the SQL statement BEGIN DECLARE SECTION

2. a group of one or more variable declarations
3. the SQL statement END DECLARE SECTION

Host program variables declared in an SQL declare section are called host
variables. You can use host variables in host-variable references in SQL
statements. Host-variable is a tag used in syntax diagrams in the SQL Reference.
A program may contain multiple SQL declare sections.

Chapter 2. Coding a DB2 Application 11

The attributes of each host variable depend on how the variable is used in the
SQL statement. For example, variables that receive data from or store data in
DB2 tables must have data type and length attributes compatible with the
column being accessed. To determine the data type for each variable, you
must be familiar with DB2 data types, which are explained in “Data Types”
on page 77.

Declaring Variables that Represent SQL Objects: For DB2 Version 7, the
names of tables, aliases, views, and correlations have a maximum length of
128 bytes. Column names have a maximum length of 30 bytes. In DB2 Version
7, schema names have a maximum length of 30 bytes. Future releases of DB2
may increase the lengths of column names and other identifiers of SQL objects
up to 128 bytes. If you declare variables that represent SQL objects with less
than 128 byte lengths, future increases in SQL object identifier lengths may
affect the stability of your applications. For example, if you declare the
variable char[9]schema_name in a C++ application to hold a schema name,
your application functions properly for the allowed schema names in DB2
Version 6, which have a maximum length of 8 bytes.

char[9] schema_name; /* holds null-delimited schema name of up to 8 bytes;
works for DB2 Version 6, but may truncate schema names in future releases */

However, if you migrate the database to DB2 Version 7, which accepts schema
names with a maximum length of 30 bytes, your application cannot
differentiate between the schema names LONGSCHEMA1 and LONGSCHEMA2. The
database manager truncates the schema names to their 8-byte limit of
LONGSCHE, and any statement in your application that depends on
differentiating the schema names fails. To increase the longevity of your
application, declare the schema name variable with a 128-byte length as
follows:

char[129] schema_name; /* holds null-delimited schema name of up to 128 bytes
good for DB2 Version 7 and beyond */

To improve the future operation of your application, consider declaring all of
the variables in your applications that represent SQL object names with
lengths of 128 bytes. You must weigh the advantage of improved
compatibility against the increased system resources that longer variables
require.

To ease the use of this coding practice and increase the clarity of your C/C++
application code, consider using C macro expansion to declare the lengths of
these SQL object identifiers. Since the include file sql.h declares
SQL_MAX_IDENT to be 128, you can easily declare SQL object identifiers
with the SQL_MAX_IDENT macro. For example:

12 Application Development Guide

#include <sql.h>
char[SQL_MAX_IDENT+1] schema_name;
char[SQL_MAX_IDENT+1] table_name;
char[SQL_MAX_IDENT+1] employee_column;
char[SQL_MAX_IDENT+1] manager_column;

For more information on C macro expansion, see “C Macro Expansion” on
page 600.

Relating Host Variables to an SQL Statement: You can use host variables to
receive data from the database manager or to transfer data to it from the host
program. Host variables that receive data from the database manager are
output host variables, while those that transfer data to it from the host program
are input host variables.

Consider the following SELECT INTO statement:
SELECT HIREDATE, EDLEVEL

INTO :hdate, :lvl
FROM EMPLOYEE
WHERE EMPNO = :idno

It contains two output host variables, hdate and lvl, and one input host
variable, idno. The database manager uses the data stored in the host variable
idno to determine the EMPNO of the row that is retrieved from the
EMPLOYEE table. If the database manager finds a row that meets the search
criteria, hdate and lvl receive the data stored in the columns HIREDATE and
EDLEVEL, respectively. This statement illustrates an interaction between the
host program and the database manager using columns of the EMPLOYEE
table.

Each column of a table is assigned a data type in the CREATE TABLE
definition. You must relate this data type to the host language data type
defined in the Supported SQL Data Types section of each language-specific
chapter in this document. For example, the INTEGER data type is a 32-bit
signed integer. This is equivalent to the following data description entries in
each of the host languages, respectively:

C/C++:
sqlint32 variable_name;

Java: int variable_name;

COBOL:
01 variable-name PICTURE S9(9) COMPUTATIONAL-5.

FORTRAN:
INTEGER*4 variable_name

Chapter 2. Coding a DB2 Application 13

For the list of supported SQL data types and the corresponding host language
data types, see the following:
v for C/C++, “Supported SQL Data Types in C and C++” on page 615
v for Java, “Supported SQL Data Types in Java” on page 625
v for COBOL, “Supported SQL Data Types in COBOL” on page 681
v for FORTRAN, “Supported SQL Data Types in FORTRAN” on page 698
v for REXX, “Supported SQL Data Types in REXX” on page 712

In order to determine exactly how to define the host variable for use with a
column, you need to find out the SQL data type for that column. Do this by
querying the system catalog, which is a set of views containing information
about all tables created in the database. The SQL Reference describes this
catalog.

After you have determined the data types, you can refer to the conversion
charts in the host language chapters and code the appropriate declarations.
The Declaration Generator utility (db2dclgn) is also available for generating
the appropriate declarations for a given table in a database. For more
information on db2dclgn, see “Declaration Generator - db2dclgn” on page 73
and refer to the Command Reference.

Table 4 on page 74 shows examples of declarations in the supported host
languages. Note that REXX applications do not need to declare host variables
except for LOB locators and file reference variables. The contents of the
variable determine other host variable data types and sizes at run time.

Table 4 also shows the BEGIN and END DECLARE SECTION statements.
Observe how the delimiters for SQL statements differ for each language. For
the exact rules of placement, continuation, and delimiting of these statements,
see the language-specific chapters of this book.

Handling Errors and Warnings
The SQL Communications Area (SQLCA) is discussed in detail later in this
chapter. This section presents an overview. To declare the SQLCA, code the
INCLUDE SQLCA statement in your program.

For C or C++ applications use:
EXEC SQL INCLUDE SQLCA;

For Java applications: You do not explicitly use the SQLCA in Java. Instead,
use the SQLException instance methods to get the SQLSTATE and SQLCODE
values. See “SQLSTATE and SQLCODE Values in Java” on page 627 for more
details.

For COBOL applications use:
EXEC SQL INCLUDE SQLCA END-EXEC.

14 Application Development Guide

For FORTRAN applications use:
EXEC SQL INCLUDE SQLCA

When you preprocess your program, the database manager inserts host
language variable declarations in place of the INCLUDE SQLCA statement.
The system communicates with your program using the variables for warning
flags, error codes, and diagnostic information.

After executing each SQL statement, the system returns a return code in both
SQLCODE and SQLSTATE. SQLCODE is an integer value that summarizes
the execution of the statement, and SQLSTATE is a character field that
provides common error codes across IBM’s relational database products.
SQLSTATE also conforms to the ISO/ANS SQL92 and FIPS 127-2 standard.

Note: FIPS 127-2 refers to Federal Information Processing Standards Publication
127-2 for Database Language SQL. ISO/ANS SQL92 refers to American
National Standard Database Language SQL X3.135-1992 and International
Standard ISO/IEC 9075:1992, Database Language SQL.

Note that if SQLCODE is less than 0, it means an error has occurred and the
statement has not been processed. If the SQLCODE is greater than 0, it means
a warning has been issued, but the statement is still processed. See the
Message Reference for a listing of SQLCODE and SQLSTATE error conditions.

If you want the system to control error checking after each SQL statement, use
the WHENEVER statement.

Note: Embedded SQL for Java (SQLJ) applications cannot use the
WHENEVER statement. Use the SQLException methods described in
“SQLSTATE and SQLCODE Values in Java” on page 627 to handle
errors returned by SQL statements.

The following WHENEVER statement indicates to the system what to do
when it encounters a negative SQLCODE:

WHENEVER SQLERROR GO TO errchk

That is, whenever an SQL error occurs, program control is transferred to code
that follows the label, such as errchk. This code should include logic to
analyze the error indicators in the SQLCA. Depending upon the ERRCHK
definition, action may be taken to execute the next sequential program
instruction, to perform some special functions, or as in most situations, to roll
back the current transaction and terminate the program. See “Coding
Transactions” on page 17 for more information on a transaction and
“Diagnostic Handling and the SQLCA Structure” on page 115 for more
information about how to control error checking in your application program.

Chapter 2. Coding a DB2 Application 15

Exercise caution when using the WHENEVER SQLERROR statement. If your
application’s error handling code contains SQL statements, and if these
statements result in an error while processing the original error, your
application may enter an infinite loop. This situation is difficult to
troubleshoot. The first statement in the destination of a WHENEVER
SQLERROR should be WHENEVER SQLERROR CONTINUE. This statement
resets the error handler. After this statement, you can safely use SQL
statements.

For a DB2 application written in C or C++, if the application is made up of
multiple source files, only one of the files should include the EXEC SQL
INCLUDE SQLCA statement to avoid multiple definitions of the SQLCA. The
remaining source files should use the following lines:

#include "sqlca.h"
extern struct sqlca sqlca;

If your application must be compliant with the ISO/ANS SQL92 or FIPS 127-2
standard, do not use the above statements or the INCLUDE SQLCA statement.
For more information on the ISO/ANS SQL92 and FIPS 127-2 standards, see
“Definition of FIPS 127-2 and ISO/ANS SQL92” on page 15. For the
alternative to coding the above statements, see the following:
v For C or C++ applications, see “SQLSTATE and SQLCODE Variables in C

and C++” on page 620
v For COBOL applications, “SQLSTATE and SQLCODE Variables in COBOL”

on page 685
v For FORTRAN applications, “SQLSTATE and SQLCODE Variables in

FORTRAN” on page 700

Using Additional Nonexecutable Statements
Generally, other nonexecutable SQL statements are also part of this section of
the program. Both the SQL Reference and subsequent chapters of this manual
discuss nonexecutable statements. Examples of nonexecutable statements are:
v INCLUDE text-file-name
v INCLUDE SQLDA
v DECLARE CURSOR

Connecting to the Database Server
Your program must establish a connection to the target database server before
it can run any executable SQL statements. This connection identifies both the
authorization ID of the user who is running the program, and the name of the
database server on which the program is run. Generally, your application
process can only connect to one database server at a time. This server is called
the current server. However, your application can connect to multiple database
servers within a multisite update environment. In this case, only one server
can be the current server. For more information on multisite updates, see
“Multisite Update” on page 525.

16 Application Development Guide

Your program can establish a connection to a database server either:
v explicitly, using the CONNECT statement
v implicitly, connecting to the default database server
v for Java applications, through a Connection instance

Refer to the SQL Reference for a discussion of connection states and how to use
the CONNECT statement. Upon initialization, the application requester
establishes a default database server. If implicit connects are enabled,
application processes started after initialization connect implicitly to the
default database server. It is good practice to use the CONNECT statement as
the first SQL statement executed by an application program. This avoids
accidentally executing SQL statements against the default database.

After the connection has been established, your program can issue SQL
statements that:
v Manipulate data
v Define and maintain database objects
v Initiate control operations, such as granting user authority, or committing

changes to the database

A connection lasts until a CONNECT RESET, CONNECT TO, or
DISCONNECT statement is issued. In a multisite update environment, a
connection also lasts until a DB2 RELEASE then DB2 COMMIT is issued. A
CONNECT TO statement does not terminate a connection when using
multisite update (see “Multisite Update” on page 525).

Coding Transactions
A transaction is a sequence of SQL statements (possibly with intervening host
language code) that the database manager treats as a whole. An alternative
term that is often used for transaction is unit of work.

To ensure the consistency of data at the transaction level, the system makes
sure that either all operations within a transaction are completed, or none are
completed. Suppose, for example, that the program is supposed to deduct
money from one account and add it to another. If you place both of these
updates in a single transaction, and a system failure occurs while they are in
progress, then when you restart the system, the database manager
automatically restores the data to the state it was in before the transaction
began. If a program error occurs, the database manager restores all changes
made by the statement in error. The database manager will not undo work
performed in the transaction prior to execution of the statement in error,
unless you specifically roll it back.

You can code one or more transactions within a single application program,
and it is possible to access more than one database from within a single
transaction. A transaction that accesses more than one database is called a

Chapter 2. Coding a DB2 Application 17

multisite update. For information on these topics, see “Remote Unit of Work”
on page 525 and “Multisite Update” on page 525.

Beginning a Transaction
A transaction begins implicitly with the first executable SQL statement and
ends with either a COMMIT or a ROLLBACK statement, or when the
program ends.

In contrast, the following six statements do not start a transaction because
they are not executable statements:

BEGIN DECLARE SECTION INCLUDE SQLCA
END DECLARE SECTION INCLUDE SQLDA
DECLARE CURSOR WHENEVER

An executable SQL statement always occurs within a transaction. If a program
contains an executable SQL statement after a transaction ends, it automatically
starts a new transaction.

Ending a Transaction
To end a transaction, you can use either:
v The COMMIT statement to save its changes
v The ROLLBACK statement to ensure that these changes are not saved

Using the COMMIT Statement: This statement ends the current transaction.
It makes the database changes performed during the current transaction
visible to other processes.

You should commit changes as soon as application requirements permit. In
particular, write your programs so that uncommitted changes are not held
while waiting for input from a terminal, as this can result in database
resources being held for a long time. Holding these resources prevents other
applications that need these resources from running.

The COMMIT statement has no effect on the contents of host variables.

Your application programs should explicitly end any transactions prior to
terminating. If you do not end transactions explicitly, DB2 automatically
commits all the changes made during the program’s pending transaction
when the program ends successfully, except on Windows 32-bit operating
systems. DB2 rolls back the changes under the following conditions:
v A log full condition
v Any other system condition that causes database manager processing to

end

On Windows 32-bit operating systems, if you do not explicitly commit the
transaction, the database manager always rolls back the changes.

18 Application Development Guide

For more information about program termination, see “Ending the Program”
and “Diagnostic Handling and the SQLCA Structure” on page 115.

Using the ROLLBACK Statement: This statement ends the current
transaction, and restores the data to the state it was in prior to beginning the
transaction.

The ROLLBACK statement has no effect on the contents of host variables.

If you use a ROLLBACK statement in a routine that was entered because of
an error or warning and you use the SQL WHENEVER statement, then you
should specify WHENEVER SQLERROR CONTINUE and WHENEVER
SQLWARNING CONTINUE before the ROLLBACK. This avoids a program
loop if the ROLLBACK fails with an error or warning.

In the event of a severe error, you will receive a message indicating that you
cannot issue a ROLLBACK statement. Do not issue a ROLLBACK statement if
a severe error occurs such as the loss of communications between the client
and server applications, or if the database gets corrupted. After a severe error,
the only statement you can issue is a CONNECT statement.

Ending the Program
To properly end your program:
1. End the current transaction (if one is in progress) by explicitly issuing

either a COMMIT statement or a ROLLBACK statement.
2. Release your connection to the database server by using the CONNECT

RESET statement.
3. Clean up resources used by the program. For example, free any temporary

storage or data structures that are used.

Note: If the current transaction is still active when the program terminates,
DB2 implicitly ends the transaction. Since DB2’s behavior when it
implicitly ends a transaction is platform specific, you should explicitly
end all transactions by issuing a COMMIT or a ROLLBACK statement
before the program terminates. See Implicitly Ending a Transaction for
details on how DB2 implicitly ends a transaction.

Implicitly Ending a Transaction
If your program terminates without ending the current transaction, DB2
implicitly ends the current transaction (see “Ending the Program” for details
on how to properly end your program). DB2 implicitly terminates the current
transaction by issuing either a COMMIT or a ROLLBACK statement when the
application ends. Whether DB2 issues a COMMIT or ROLLBACK depends on
factors such as:
v Whether the application terminated normally
v The platform on which the DB2 server runs

Chapter 2. Coding a DB2 Application 19

v Whether the application uses the context APIs (see “Multiple Thread
Database Access” on page 533)

On Most Supported Operating Systems
DB2 implicitly commits a transaction if the termination is normal, or implicitly
rolls back the transaction if it is abnormal. Note that what your program
considers to be an abnormal termination may not be considered abnormal by
the database manager. For example, you may code exit(-16) when your
application encounters an unexpected error and terminate your application
abruptly. The database manager considers this to be a normal termination and
commits the transaction. The database manager considers items such as an
exception or a segmentation violation as abnormal terminations.

On Windows 32-bit Operating Systems
DB2 always rolls back the transaction regardless of whether your application
terminates normally or abnormally, unless you explicitly commit the
transaction using the COMMIT statement.

When Using the DB2 Context APIs
Your application can use any of the DB2 APIs to set up and pass application
contexts between threads as described in “Multiple Thread Database Access”
on page 533. If your application uses these DB2 APIs, DB2 implicitly rolls
back the transaction regardless of whether your application terminates
normally or abnormally. Unless you explicitly commit the transaction using
the COMMIT statement, DB2 rolls back the transaction.

Application Pseudocode Framework
Pseudocode Framework for Coding Programs summarizes the general
framework for a DB2 application program in pseudocode format. You must, of
course, tailor this framework to suit your own program.
Start Program
EXEC SQL BEGIN DECLARE SECTION |

DECLARE USERID FIXED CHARACTER (8) |
DECLARE PW FIXED CHARACTER (8) |

| Application
(other host variable declarations) | Setup

|
EXEC SQL END DECLARE SECTION |
EXEC SQL INCLUDE SQLCA |
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK |

(program logic)

EXEC SQL CONNECT TO database A USER :userid USING :pw |
EXEC SQL SELECT ... |
EXEC SQL INSERT ... | First Unit

(more SQL statements) | of Work
EXEC SQL COMMIT |

(more program logic)

20 Application Development Guide

EXEC SQL CONNECT TO database B USER :userid USING :pw |
EXEC SQL SELECT ... |
EXEC SQL DELETE ... | Second Unit

(more SQL statements) | of Work
EXEC SQL COMMIT |

(more program logic)

EXEC SQL CONNECT TO database A |
EXEC SQL SELECT ... |
EXEC SQL DELETE ... | Third Unit

(more SQL statements) | of Work
EXEC SQL COMMIT |

(more program logic)

EXEC SQL CONNECT RESET |
ERRCHK |

| Application
(check error information in SQLCA) | Cleanup

|
End Program

Designing an Application For DB2

DB2 provides you with a variety of application development capabilities that
you can use to supplement or extend the traditional capabilities of an
application. As an application designer, you must make the most fundamental
design decision: Which DB2 capabilities should I use in the design of my
application? In order to make appropriate choices, you need to consider both
the database design and target environments for your application. For
example, you can choose to enforce some business rules in your database
design instead of including the logic in your application.

The capabilities you use and the extent to which you use them can vary
greatly. This section is an overview of the capabilities available that can
significantly affect your design and provides some reasons for why you might
choose one over another. For more information and detail on any of the
capabilities described, a reference to more detail is provided.

The capabilities that you need to consider include:
v Accessing the data using:

– Embedded SQL, including embedded SQLJ for Java (SQLJ)
– DB2 Call Level Interface (DB2 CLI), Open Database Connectivity

(ODBC), and Java Database Connectivity (JDBC)
– Microsoft Specifications
– Perl DBI
– Query products

Chapter 2. Coding a DB2 Application 21

v Controlling data values using:
– Data types (built-in or user-defined)
– Table check constraints
– Referential integrity constraints
– Views using the CHECK OPTION
– Application logic and variable types

v Controlling the relationship between data values using:
– Referential integrity constraints
– Triggers
– Application logic

v Executing programs at the server using:
– Stored procedures
– User-defined functions
– Triggers

You will notice that this list mentions some capabilities more than once, such
as triggers. This reflects the flexibility of these capabilities to address more
than one design criteria.

Your first and most fundamental decision is whether or not to move the logic
to enforce application related rules about the data into the database.

The key advantage in transferring logic focussed on the data from the
application into the database is that your application becomes more
independent of the data. The logic surrounding your data is centralized in one
place, the database. This means that you can change data or data logic once
and affect all applications immediately.

This latter advantage is very powerful, but you must also consider that any
data logic put into the database affects all users of the data equally. You must
consider whether the rules and constraints that you wish to impose on the
data apply to all users of the data or just the users of your application.

Your application requirements may also affect whether to enforce rules at the
database or the application. For example, you may need to process validation
errors on data entry in a specific order. In general, you should do these types
of data validation in the application code.

You should also consider the computing environment where the application is
used. You need to consider the difference between performing logic on the
client machines against running the logic on the usually more powerful
database server machines using either stored procedures, UDFs, or a
combination of both.

22 Application Development Guide

In some cases, the correct answer is to include the enforcement in both the
application (perhaps due to application specific requirements) and in the
database (perhaps due to other interactive uses outside the application).

Access to Data
In a relational database, you must use SQL to access the desired data, but you
may choose how to integrate the SQL into your application. You can choose
from the following interfaces and their supported languages:

Embedded SQL
C/C++, COBOL, FORTRAN, Java (SQLJ), REXX

DB2 CLI and ODBC
C/C++, Java (JDBC)

Microsoft Specifications, including ADO, RDO, and OLE DB
Visual Basic, Visual C++

Perl DBI
Perl

Query Products
Lotus Approach, IBM Query Management Facility

Embedded SQL
Embedded SQL has the advantage that it can consist of either static or
dynamic SQL or a mixture of both types. If the content and format of your
SQL statements will be frozen when your application is in use, you should
consider using embedded static SQL in your application. With static SQL, the
person who executes the application temporarily inherit the privileges of the
user that bound the application to the database. Unless you bind the
application with the DYNAMICRULES BIND option, dynamic SQL uses the
privileges of the person who executes the application. In general, you should
use embedded dynamic SQL where the executable statements are determined
at run time. This creates a more secure application program that can handle a
greater variety of input.

Note: Embedded SQL for Java (SQLJ) applications can only embed static SQL
statements. However, you can use JDBC to make dynamic SQL calls in
SQLJ applications.

You must precompile embedded SQL applications to convert the SQL
statements into host language commands before using your programming
language compiler. In addition, you must bind the SQL in the application to
the database for the application to run.

For additional information on using embedded SQL, refer to “Chapter 4.
Writing Static SQL Programs” on page 61.

Chapter 2. Coding a DB2 Application 23

REXX Considerations: REXX applications use APIs which enable them to use
most of the features provided by database manager APIs and SQL. Unlike
applications written in a compiled language, REXX applications are not
precompiled. Instead, a dynamic SQL handler processes all SQL statements.
By combining REXX with these callable APIs, you have access to most of the
database manager capabilities. Although REXX does not directly support some
APIs using embedded SQL, they can be accessed using the DB2 Command
Line Processor from within the REXX application.

As REXX is an interpretive language, you may find it is easier to develop and
debug your application prototypes in REXX as compared to compiled host
languages. Note that while DB2 applications coded in REXX do not provide
the performance of DB2 applications that use compiled languages, they do
provide the ability to create DB2 applications without precompiling,
compiling, linking, or using additional software.

For details of coding and building DB2 applications using REXX, see
“Chapter 25. Programming in REXX” on page 703.

DB2 Call Level Interface (DB2 CLI) and Open Database Connectivity
(ODBC)
The DB2 Call Level Interface (DB2 CLI) is IBM’s callable SQL interface to the
DB2 family of database servers. It is a C and C++ application programming
interface for relational database access, and it uses function calls to pass
dynamic SQL statements as function arguments. A callable SQL interface is an
application program interface (API) for database access, which uses function
calls to invoke dynamic SQL statements. It is an alternative to embedded
dynamic SQL, but unlike embedded SQL, it does not require precompiling or
binding.

DB2 CLI is based on the Microsoft™ Open Database Connectivity (ODBC)
specification, and the X/Open® specifications. IBM chose these specifications
to follow industry standards, and to provide a shorter learning curve for DB2
application programmers who are familiar with either of these database
interfaces.

For more information on the ODBC support in DB2, see the CLI Guide and
Reference.

JDBC
DB2’s Java support includes JDBC, a vendor-neutral dynamic SQL interface
that provides data access to your application through standardized Java
methods. JDBC is similar to DB2 CLI in that you do not have to precompile or
bind a JDBC program. As a vendor-neutral standard, JDBC applications offer
increased portability.

24 Application Development Guide

An application written using JDBC uses only dynamic SQL. The JDBC
interface imposes additional processing overhead.

For additional information on JDBC, refer to “JDBC Programming” on
page 630.

Microsoft Specifications
You can write database applications that conform to the ActiveX Data Object
(ADO) in Microsoft Visual Basic™ or Visual C++™. ADO applications use the
OLE DB Bridge. You can write database applications that conform to the
Remote Data Object (RDO) specifications in Visual Basic. You can also define
OLE DB table functions that return data from OLE DB providers. For more
information on OLE DB table functions, see “OLE DB Table Functions” on
page 423.

This book does not attempt to provide a tutorial on writing applications that
conform to the ADO and RDO specifications. For full samples of DB2
applications that use the ADO and RDO specifications, refer to the following
directories:
v For samples written in Visual Basic, refer to sqllib\samples\VB

v For samples written in Visual C++, refer to sqllib\samples\VC

v For samples that use the RDO specification, refer to sqllib\samples\RDO

v For samples that use the Microsoft Transaction Server™, refer to
sqllib\samples\MTS

Perl DBI
DB2 supports the Perl Database Interface (DBI) specification for data access
through the DBD::DB2 driver. For more information on creating appliations
with the Perl DBI that access DB2 databases, see “Chapter 22. Programming in
Perl” on page 661. The DB2 Universal Database Perl DBI Web site at
http://www.ibm.com/software/data/db2/perl/ contains the latest DBD::DB2
driver and information on the support available for your platform.

Query Products
Query products including IBM Query Management Facility (QMF) and Lotus
Notes support query development and reporting. The products vary in how
SQL statements are developed and the degree of logic that can be introduced.
Depending on your needs, this approach may meet your requirements to
access data. This book does not provide further information on query
products.

Data Value Control
One traditional area of application logic is validating and protecting data
integrity by controlling the values allowed in the database. Applications have
logic that specifically checks data values as they are entered for validity. (For
example, checking that the department number is a valid number and that it

Chapter 2. Coding a DB2 Application 25

http://www.ibm.com/software/data/db2/perl/

refers to an existing department.) There are several different ways of
providing these same capabilities in DB2, but from within the database.

Data Types
The database stores every data element in a column of a table, and defines
each column with a data type. This data type places certain limits on the
types of values for the column. For example, an integer must be a number
within a fixed range. The use of the column in SQL statements must conform
to certain behaviors; for instance, the database does not compare an integer to
a character string. DB2 includes a set of built-in data types with defined
characteristics and behaviors. DB2 also supports defining your own data
types, called user-defined distinct types, that are based on the built-in types but
do not automatically support all the behaviors of the built-in type. You can
also use data types, like binary large object (BLOB), to store data that may
consist of a set of related values, such as a data structure.

For additional information on data types, refer to the SQL Reference.

Unique Constraints
Unique constraints prevent occurrences of duplicate values in one or more
columns within a table. Unique and primary keys are the supported unique
constraints. For example, you can define a unique constraint on the DEPTNO
column in the DEPARTMENT table to ensure that the same department
number is not given to two departments.

Use unique constraints if you need to enforce a uniqueness rule for all
applications that use the data in a table. For additional information on unique
constraints, refer to the SQL Reference.

Table Check Constraints
You can use a table check constraint to define restrictions, beyond those of the
data type, on the values that are allowed for a column in the table. Table
check constraints take the form of range checks or checks against other values
in the same row of the same table.

If the rule applies for all applications that use the data, use a table check
constraint to enforce your restriction on the data allowed in the table. Table
check constraints make the restriction generally applicable and easier to
maintain.

For additional information on table check constraints, refer to the SQL
Reference.

Referential Integrity Constraints
Use referential integrity (RI) constraints if you must maintain value-based
relationships for all applications that use the data. For example, you can use
an RI constraint to ensure that the value of a DEPTNO column in an

26 Application Development Guide

EMPLOYEE table matches a value in the DEPARTMENT table. This constraint
prevents inserts, updates or deletes that would otherwise result in missing
DEPARTMENT information. By centralizing your rules in the database, RI
constraints make the rules generally applicable and easier to maintain.

See “Data Relationship Control” for further uses of RI constraints.

For additional information on referential integrity, refer to the SQL Reference.

Views with Check Option
If your application cannot define the desired rules as table check constraints,
or the rules do not apply to all uses of the data, there is another alternative to
placing the rules in the application logic. You can consider creating a view of
the table with the conditions on the data as part of the WHERE clause and the
WITH CHECK OPTION clause specified. This view definition restricts the
retrieval of data to the set that is valid for your application. Additionally, if
you can update the view, the WITH CHECK OPTION clause restricts updates,
inserts, and deletes to the rows applicable to your application.

For additional information on the WITH CHECK OPTION, refer to the SQL
Reference.

Application Logic and Program Variable Types
When you write your application logic in a programming language, you also
declare variables to provide some of the same restrictions on data that are
described above. In addition, you can choose to write code to enforce rules in
the application instead of the database. Place the logic in the application
server when:
v The rules are not generally applicable, except in the case of views noted in

“Views with Check Option”
v You do not have control over the definitions of the data in the database
v You believe the rule can be more effectively handled in the application logic

For example, processing errors on input data in the order that they are
entered may be required, but cannot be guaranteed from the order of
operations within the database.

Data Relationship Control
Another major area of focus in application logic is in the area of managing the
relationships between different logical entities in your system. For example, if
you add a new department, then you need to create a new account code. DB2
provides two methods of managing the relationships between different objects
in your database: referential integrity constraints and triggers.

Chapter 2. Coding a DB2 Application 27

Referential Integrity Constraints
Referential integrity (RI) constraints, considered from the perspective of data
relationship control, allow you to control the relationships between data in
more than one table. Use the CREATE TABLE or ALTER TABLE statements to
define the behavior of operations that affect the related primary key, such as
DELETE and UPDATE.

RI constraints enforce your rules on the data across one or more tables. If the
rules apply for all applications that use the data, then RI constraints centralize
the rules in the database. This makes the rules generally applicable and easier
to maintain.

For additional information on referential integrity, refer to the SQL Reference.

Triggers
You can use triggers before or after an update to support logic that can also
be performed in an application. If the rules or operations supported by the
triggers apply for all applications that use the data, then triggers centralize the
rules or operations in the database, making it generally applicable and easier
to maintain.

For additional information on triggers, see “Chapter 16. Using Triggers in an
Active DBMS” on page 473 and refer to the SQL Reference.

Using Triggers Before an Update: Using triggers that run before an update
or insert, values that are being updated or inserted can be modified before the
database is actually modified. These can be used to transform input from the
application (user view of the data) to an internal database format where
desired. These before triggers can also be used to cause other non-database
operations to be activated through user-defined functions.

Using Triggers After an Update: Triggers that run after an update, insert or
delete can be used in several ways:
v Triggers can update, insert, or delete data in the same or other tables. This

is useful to maintain relationships between data or to keep audit trail
information.

v Triggers can check data against values of data in the rest of the table or in
other tables. This is useful when you cannot use RI constraints or check
constraints because of references to data from other rows from this or other
tables.

v Triggers can use user-defined functions to activate non-database operations.
This is useful, for example, for issuing alerts or updating information
outside the database.

28 Application Development Guide

Application Logic
You may decide to write code to enforce rules or perform related operations
in the application instead of the database. You must do this for cases where
you cannot generally apply the rules to the database. You may also choose to
place the logic in the application when you do not have control over the
definitions of the data in the database or you believe the application logic can
handle the rules or operations more efficiently.

Application Logic at the Server
A final aspect of application design for which DB2 offers additional capability
is running some of your application logic at the database server. Usually you
will choose this design to improve performance, but you may also run
application logic at the server to support common functions.

Stored Procedures
A stored procedure is a routine for your application that is called from client
application logic but runs on the database server. The most common reason to
use a stored procedure is for database intensive processing that produces only
small amounts of result data. This can save a large amount of communications
across the network during the execution of the stored procedure. You may
also consider using a stored procedure for a set of operations that are
common to multiple applications. In this way, all the applications use the
same logic to perform the operation.

For additional information on Stored Procedures, refer to “Chapter 7. Stored
Procedures” on page 187.

User-Defined Functions
You can write a user-defined function (UDF) for use in performing operations
within an SQL statement to return:
v A single scalar value (scalar function)
v A table from a non-DB2 data source, for example, an ASCII file or a Web

page (table function)

A UDF cannot contain SQL statements. UDFs are useful for tasks like
transforming data values, performing calculations on one or more data values,
or extracting parts of a value (such as extracting parts of a large object).

For additional information on writing user-defined functions, refer to
“Chapter 15. Writing User-Defined Functions (UDFs) and Methods” on
page 385.

Triggers
In “Triggers” on page 28, it is noted that triggers can be used to invoke
user-defined functions. This is useful when you always want a certain
non-SQL operation performed when specific statements occur, or data values

Chapter 2. Coding a DB2 Application 29

are changed. Examples include such operations as issuing an electronic mail
message under specific circumstances or writing alert type information to a
file.

For additional information on triggers, refer to “Chapter 16. Using Triggers in
an Active DBMS” on page 473.

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++ is a
collection of management tools and wizards that plug into the Visual C++
component of Visual Studio IDE. The tools and wizards automate and
simplify the various tasks involved in developing applications for DB2 using
embedded SQL.

You can use the IBM DB2 Universal Database Project Add-In for Microsoft
Visual C++ to develop, package, and deploy:

v Stored procedures written in C/C++ for DB2 Universal Database on
Windows 32-bit operating systems

v Windows 32-bit C/C++ embedded SQL client applications that access DB2
Universal Database servers

v Windows 32-bit C/C++ client applications that invoke stored procedures
using C/C++ function call wrappers

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
allows you to focus on the design and logic of your DB2 applications rather
than the actual building and deployment of it.

Some of the tasks performed by the IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++ include:
v Creating a new embedded SQL module
v Inserting SQL statements into an embedded SQL module using SQL Assist
v Adding imported stored procedures
v Creating an exported stored procedure
v Packaging the DB2 Project
v Deploying the DB2 project from within Visual C++

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++ is
presented in the form of a toolbar. The toolbar buttons include:

DB2 Project Properties
Manages the project properties (development database and
code-generation options)

New DB2 Object
Adds a new embedded SQL module, imported stored procedure, or
exported stored procedure

30 Application Development Guide

DB2 Embedded SQL Modules
Manages the list of embedded SQL modules and their precompiler
options

DB2 Imported Stored Procedures
Manages the list of imported stored procedures

DB2 Exported Stored Procedures
Manages the list of exported stored procedures

Package DB2 Project
Packages the DB2 external project files

Deploy DB2 Project
Deploys the packaged DB2 external project files

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
also has the following three hidden buttons that can be made visible using the
standard Visual C++ tools customization options:

New DB2 Embedded SQL Module
Adds a new C/C++ embedded SQL module

New DB2 Imported Stored Procedure
Imports a new database stored procedure

New DB2 Exported Stored Procedure
Exports a new database stored procedure

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++ can
automatically generate the following code elements:
v Skeletal embedded SQL module files with optional sample SQL statements
v Standard database connect and disconnect embedded SQL functions
v Imported stored procedure call wrapper functions
v Exported stored procedure function templates
v Exported stored procedure data definition language (DDL) files

Terminology associated with the IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++:

IDE project
The standard Visual C++ project

DB2 project
The collection of DB2 project objects that are inserted into the IDE
project. DB2 project objects can be inserted into any Visual C++
project. The DB2 project allows you to manage the various DB2

Chapter 2. Coding a DB2 Application 31

objects such as embedded SQL modules, imported stored procedures,
and exported stored procedures. You can add, delete, and modify
these objects and their properties.

module
A C/C++ source code file that might contain SQL statements.

development database
The database that is used to compile embedded SQL modules. The
development database is also used to look up the list of importable
database stored procedure definitions.

embedded SQL module
A C/C++ source code file that contains embedded static or dynamic
SQL.

imported stored procedure
A stored procedure, already defined in the database, that the project
invokes.

exported stored procedure
A database stored procedure that is built and defined by the project.

Activating the IBM DB2 Universal Database Project Add-In for Microsoft
Visual C++
To activate the IBM DB2 Universal Database Project Add-In for Microsoft
Visual C++, perform the following steps:
Step 1. Register the add-in, if you have not already done so, by entering:

db2vccmd register

on the command line.
Step 2. Select Tools —> Customize. The Customize notebook opens.
Step 3. Select the Add-ins and Macro Files tab. The Add-ins and Macro Files

page opens.
Step 4. Select the IBM DB2 Project Add-In check box.
Step 5. Click OK. A floating toolbar will be created.

Note: If the toolbar is accidentally closed, you can either deactivate then
reactivate the add-in or use the Microsoft Visual C++ standard
customization options to redisplay the toolbar.

Activating the IBM DB2 Universal Database Tools Add-In for Microsoft
Visual C++
The DB2 Tools Add-In is a toolbar that enables the launch of some of the DB2
administration and development tools from within the Visual C++ integrated
development environment.

32 Application Development Guide

To activate the IBM DB2 Universal Database Tools Add-In for Microsoft Visual
C++, perform the following steps:
Step 1. Register the add-in, if you have not already done so, by entering:

db2vccmd register

on the command line.
Step 2. Select Tools —> Customize. The Customize notebook opens.
Step 3. Select the Add-ins and Macro Files tab.
Step 4. Select the IBM DB2 Tools Add-In check box.
Step 5. Click OK. A floating toolbar will be created.

Note: If the toolbar is accidentally closed, you can either deactivate then
reactivate the add-in or use the Visual C++ standard customization
options to redisplay the toolbar.

For more information on the IBM DB2 Universal Database Project Add-In for
Microsoft Visual C++, refer to:
v The online help for the IBM DB2 Universal Database Project Add-In for

Microsoft Visual C++.
v http://www.ibm.com/software/data/db2/udb/ide/index.html.

Supported SQL Statements

The SQL language provides for data definition, retrieval, update, and control
operations from within an application. Table 37 on page 723 shows the SQL
statements supported by the DB2 product and whether the statement is
supported dynamically, through the CLP, or through the DB2 CLI. You can
use Table 37 on page 723 as a quick reference aid. For a complete discussion of
all the statements, including their syntax, refer to the SQL Reference.

Authorization Considerations

An authorization allows a user or group to perform a general task such as
connecting to a database, creating tables, or administering a system. A privilege
gives a user or group the right to access one specific database object in a
specified way. DB2 uses a set of privileges to provide protection for the
information that you store in it. For more information about the different
privileges, refer to the Administration Guide: Planning.

Most SQL statements require some type of privilege on the database objects
which the statement utilizes. Most API calls usually do not require any
privilege on the database objects which the call utilizes, however, many APIs
require that you possess the necessary authority in order to invoke them. The
DB2 APIs enable you to perform the DB2 administrative functions from

Chapter 2. Coding a DB2 Application 33

http://www.ibm.com/software/data/db2/udb/ide/index.html

within your application program. For example, to recreate a package stored in
the database without the need for a bind file, you can use the sqlarbnd (or
REBIND) API. For details on each DB2 API, refer to the Administrative API
Reference.

For information on the required privilege to issue each SQL statement, refer to
the SQL Reference. For information on the required privilege and authority to
issue each API call, refer to the Administrative API Reference.

When you design your application, consider the privileges your users will
need to run the application. The privileges required by your users depend on:
v whether your application uses dynamic SQL, including JDBC and DB2 CLI,

or static SQL
v which APIs the application uses

Dynamic SQL
To use dynamic SQL in a package bound with DYNAMICRULES RUN
(default), the person that runs a dynamic SQL application must have the
privileges necessary to issue each SQL request performed, as well as the
EXECUTE privilege on the package. The privileges may be granted to the
user’s authorization ID, to any group of which the user is a member, or to
PUBLIC.

If you bind the application with the DYNAMICRULES BIND option, DB2
associates your authorization ID with the application packages. This allows
any user that runs the application to inherit the privileges associated your
authorization ID.

The person binding the application (for embedded dynamic SQL applications)
only needs the BINDADD authority on the database, if the program contains
no static SQL. Again, this privilege can be granted to the user’s authorization
ID, to a group of which the user is a member, or to PUBLIC.

When you bind a dynamic SQL package with the DYNAMICRULES BIND
option, the user that runs the application only needs the EXECUTE privilege
on the package. To bind a dynamic SQL application with the
DYNAMICRULES BIND option, you must have the privileges necessary to
perform all the dynamic and static SQL statements in the application. If you
have SYSADM or DBADM authority and bind packages with
DYNAMICRULES BIND, consider using the OWNER BIND option to
designate a different authorization ID. OWNER BIND prevents the package
from automatically inheriting SYSADM or DBADM privileges on dynamic
SQL statements. For more information on DYNAMICRULES BIND and
OWNER BIND, refer to the BIND command in the Command Reference.

34 Application Development Guide

Static SQL
To use static SQL, the user running the application only needs the EXECUTE
privilege on the package. No privileges are required for each of the statements
that make up the package. The EXECUTE privilege may be granted to the
user’s authorization ID, to any group of which the user is a member, or to
PUBLIC.

Unless you specify the VALIDATE RUN option when binding the application,
the authorization ID you use to bind the application must have the privileges
necessary to perform all the statements in the application. If VALIDATE RUN
was specified at BIND time, all authorization failures for any static SQL
within this package will not cause the BIND to fail and those statements will
be revalidated at run time. The person binding the application must always
have BINDADD authority. The privileges needed to execute the statements
must be granted to the user’s authorization ID or to PUBLIC. Group
privileges are not used when binding static SQL statements. As with dynamic
SQL, the BINDADD privilege can be granted to the user authorization ID, to a
group of which the user is a member, or to PUBLIC.

These properties of static SQL give you very precise control over access to
information in DB2. See the example at the end of this section for a possible
application of this.

Using APIs
Most of the APIs provided by DB2 do not require the use of privileges,
however, many do require some kind of authority to invoke. For the APIs that
do require a privilege, the privilege must be granted to the user running the
application. The privilege may be granted to the user’s authorization ID, to
any group of which the user is a member, or to PUBLIC. For information on
the required privilege and authority to issue each API call, see the
Administrative API Reference.

Example
Consider two users, PAYROLL and BUDGET, who need to perform queries
against the STAFF table. PAYROLL is responsible for paying the employees of
the company, so it needs to issue a variety of SELECT statements when
issuing paychecks. PAYROLL needs to be able to access each employee’s
salary. BUDGET is responsible for determining how much money is needed to
pay the salaries. BUDGET should not, however, be able to see any particular
employee’s salary.

Since PAYROLL issues many different SELECT statements, the application you
design for PAYROLL could probably make good use of dynamic SQL. This
would require that PAYROLL have SELECT privilege on the STAFF table. This
is not a problem since PAYROLL needs full access to the table anyhow.

Chapter 2. Coding a DB2 Application 35

BUDGET, on the other hand, should not have access to each employee’s
salary. This means that you should not grant SELECT privilege on the STAFF
table to BUDGET. Since BUDGET does need access to the total of all the
salaries in the STAFF table, you could build a static SQL application to
execute a SELECT SUM(SALARY) FROM STAFF, bind the application and
grant the EXECUTE privilege on your application’s package to BUDGET. This
lets BUDGET get the needed information without exposing the information
that BUDGET should not see.

Database Manager APIs Used in Embedded SQL or DB2 CLI Programs

Your application can use APIs to access database manager facilities that are
not available using SQL statements. For complete details on the APIs available
with the database manager and how to call them, refer to the examples in the
Administrative API Reference.

You can use the DB2 APIs to:
v Manipulate the database manager environment, which includes cataloging

and uncataloging databases and nodes, and scanning database and node
directories. You can also use APIs to create, delete, and migrate databases

v Provide facilities to import and export data, and administer, backup, and
restore the database

v Manipulate the database manager configuration file and the database
configuration files

v Provide operations specific to the client/server environment
v Provide the run-time interface for precompiled SQL statements. These APIs

are not usually called directly by the programmer. Instead, they are inserted
into the modified source file by the precompiler after processing.

The database manager includes APIs for language vendors who want to write
their own precompiler, and other APIs useful for developing applications.

For complete details on the APIs available with the database manager and
how to call them, see the examples in the Administrative API Reference.

Setting Up the Testing Environment

In order to perform many of the tasks described in the following sections, you
should set up a test environment. For example, you need a database to test
your application’s SQL code.

A testing environment should include the following:

36 Application Development Guide

v A test database. If your application updates, inserts, or deletes data from
tables and views, use test data to verify its execution. If it only retrieves
data from tables and views, consider using production-level data when
testing it.

v Test input data. The input data used to test an application should be valid
data that represents all possible input conditions. If the application verifies
that input data is valid, include both valid and invalid data to verify that
the valid data is processed and the invalid data is flagged.

Creating a Test Database
If you must create a test database, write a small server application that calls
the CREATE DATABASE API, or use the command line processor. Refer to the
Command Reference for information about the command line processor, or the
Administrative API Reference for information about the CREATE DATABASE
API.

Creating Test Tables
To design the test tables and views needed, first analyze the data needs of the
application. To create a table, you need the CREATETAB authority and the
CREATEIN privilege on the schema. Refer to the information on the CREATE
TABLE statement in the SQL Reference for alternative authorities.

List the data the application accesses and describe how each data item is
accessed. For example, suppose the application being developed accesses the
TEST.TEMPL, TEST.TDEPT, and TEST.TPROJ tables. You could record the type
of accesses as shown in Table 1.

Table 1. Description of the Application Data

Table or View
Name

Insert
Rows

Delete
Rows

Column Name Data Type Update
Access

TEST.TEMPL No No EMPNO
LASTNAME
WORKDEPT
PHONENO
JOBCODE

CHAR(6)
VARCHAR(15)
CHAR(3)
CHAR(4)
DECIMAL(3)

Yes
Yes
Yes

TEST.TDEPT No No DEPTNO
MGRNO

CHAR(3)
CHAR(6)

TEST.TPROJ Yes Yes PROJNO
DEPTNO
RESPEMP
PRSTAFF
PRSTDATE
PRENDATE

CHAR(6)
CHAR(3)
CHAR(6)
DECIMAL(5,2)
DECIMAL(6)
DECIMAL(6)

Yes
Yes
Yes
Yes
Yes

Chapter 2. Coding a DB2 Application 37

When the description of the application data access is complete, construct the
test tables and views that are needed to test the application:
v Create a test table when the application modifies data in a table or a view.

Create the following test tables using the CREATE TABLE SQL statement:
– TEMPL
– TPROJ

v Create a test view when the application does not modify data in the
production database.
In this example, create a test view of the TDEPT table using the CREATE
VIEW SQL statement.

If the database schema is being developed along with the application, the
definitions of the test tables might be refined repeatedly during the
development process. Usually, the primary application cannot both create the
tables and access them because the database manager cannot bind statements
that refer to tables and views that do not exist. To make the process of
creating and changing tables less time-consuming, consider developing a
separate application to create the tables. Of course you can always create test
tables interactively using the Command Line Processor (CLP).

Generating Test Data
Use any of the following methods to insert data into a table:
v INSERT...VALUES (an SQL statement) puts one or more rows into a table

each time the command is issued.
v INSERT...SELECT obtains data from an existing table (based on a SELECT

clause) and puts it into the table identified with the INSERT statement.
v The IMPORT or LOAD utility inserts large amounts of new or existing data

from a defined source.
v The RESTORE utility can be used to duplicate the contents of an existing

database into an identical test database by using a BACKUP copy of the
original database.

For information about the INSERT statement, refer to the SQL Reference. For
information about the IMPORT, LOAD, and RESTORE utilities, refer to the
Administration Guide.

The following SQL statements demonstrate a technique you can use to
populate your tables with randomly generated test data. Suppose the table
EMP contains four columns, ENO (employee number), LASTNAME (last
name), HIREDATE (date of hire) and SALARY (employee’s salary) as in the
following CREATE TABLE statement:

CREATE TABLE EMP (ENO INTEGER, LASTNAME VARCHAR(30),
HIREDATE DATE, SALARY INTEGER);

38 Application Development Guide

Suppose you want to populate this table with employee numbers from 1 to a
number, say 100, with random data for the rest of the columns. You can do
this using the following SQL statement:
INSERT INTO EMP
-- generate 100 records
WITH DT(ENO) AS (VALUES(1) UNION ALL
SELECT ENO+1 FROM DT WHERE ENO < 100) �1�

-- Now, use the generated records in DT to create other columns
-- of the employee record.
SELECT ENO, �2�

TRANSLATE(CHAR(INTEGER(RAND()*1000000)), �3�
CASE MOD(ENO,4) WHEN 0 THEN 'aeiou' || 'bcdfg'

WHEN 1 THEN 'aeiou' || 'hjklm'
WHEN 2 THEN 'aeiou' || 'npqrs'

ELSE 'aeiou' || 'twxyz' END,
'1234567890') AS LASTNAME,

CURRENT DATE - (RAND()*10957) DAYS AS HIREDATE, �4�
INTEGER(10000+RAND()*200000) AS SALARY �5�

FROM DT;

SELECT * FROM EMP;

The following is an explanation of the above statement:
1. The first part of the INSERT statement generates 100 records for the first

100 employees using a recursive subquery to generate the employee
numbers. Each record contains the employee number. To change the
number of employees, use a number other than 100.

2. The SELECT statement generates the LASTNAME column. It begins by
generating a random integer up to 6 digits long using the RAND function.
It then converts the integer to its numeric character format using the
CHAR function.

3. To convert the numeric characters to alphabet characters, the statement
uses the TRANSLATE function to convert the ten numeric characters (0
through 9) to alphabet characters. Since there are more than 10 alphabet
characters, the statement selects from five different translations. This
results in names having enough random vowels to be pronounceable and
so the vowels are included in each translation.

4. The statement generates a random HIREDATE value. The value of
HIREDATE ranges back from the current date to 30 years ago. HIREDATE
is calculated by subtracting a random number of days between 0 and
10 957 from the current date. (10 957 is the number of days in 30 years.)

5. Finally, the statement randomly generates the SALARY. The minimum
salary is 10 000, to which a random number from 0 to 200 000 is added.

For sample programs that are helpful in generating random test data, please
see the fillcli.sqc and fillsrv.sqc sample programs in the
sqllib/samples/c subdirectory.

Chapter 2. Coding a DB2 Application 39

You may also want to consider prototyping any user-defined functions (UDF)
you are developing against the test data. For more information on why and
how you write UDFs, see “Chapter 15. Writing User-Defined Functions (UDFs)
and Methods” on page 385 and “Chapter 14. User-Defined Functions (UDFs)
and Methods” on page 365.

Running, Testing and Debugging Your Programs

The Application Building Guide tells you how to run your program in your
environment. You can do the following to help you during the testing and
debugging of your code:
v Use the same techniques discussed in “Prototyping Your SQL Statements”.

These include using the command line processor, the Explain facility,
analyzing the system catalog views for information about the tables and
databases your program is manipulating, and updating certain system
catalog statistics to simulate production conditions.

v Use the database system monitor to capture certain optimizing information
for analysis. See the System Monitor Guide and Reference.

v Use the flagger facility to check the syntax of SQL statements in
applications being developed for DB2 Universal Database for OS/390, or
for conformance to the SQL92 Entry Level standard. This facility is invoked
during precompilation. For information about how to do this, see
“Precompiling” on page 49, towards the end of the section.

v Make full use of the error-handling APIs. For example, you can use
error-handling APIs to print all messages during the testing phase. For
more information about error-handling APIs, see the Administrative API
Reference.

Prototyping Your SQL Statements

As you design and code your application, you can take advantage of certain
database manager features and utilities to prototype portions of your SQL
code, and to improve performance. For example, you can do the following:
v Use the Command Center or the command line processor (CLP) to test

many SQL statements before you attempt to compile and link a complete
program.
This allows you to define and manipulate information stored in a database
table, index, or view. You can add, delete, or update information as well as
generate reports from the contents of tables. Note that you have to
minimally change the syntax for some SQL statements in order to use host
variables in your embedded SQL program. Host variables are used to store
data that is output to your screen. In addition, some embedded SQL
statements (such as BEGIN DECLARE SECTION) are not supported by the

40 Application Development Guide

Command Center or CLP as they are not relevant to that environment. See
Table 37 on page 723 to see which SQL statements are not supported by the
CLP.
You can also redirect the input and output of command line processor
requests. For example, you could create one or more files containing SQL
statements you need as input into a command line processor request, to
save retyping the statement.
For information about the command line processor, refer to the Command
Reference. For information about the Command Center, refer to the
Administration Guide.

v Use the Explain facility to get an idea of the estimated costs of the DELETE,
INSERT, UPDATE, or SELECT statements you plan to use in your program.
The Explain facility places the information about the structure and the
estimated costs of the subject statement into user supplied tables. You can
view this information using Visual Explain or the db2exfmt utility.
For information about how to use the Explain facility, refer to the
Administration Guide: Implementation.

v Use the system catalog views to easily retrieve information about existing
databases. The database manager creates and maintains the system catalog
tables on which the views are based during normal operation as databases
are created, altered, and updated. These views contain data about each
database, including authorities granted, column names, data types, indexes,
package dependencies, referential constraints, table names, views, and so
on. Data in the system catalog views is available through normal SQL query
facilities.
You can update some system catalog views containing statistical
information used by the SQL optimizer. You may change some columns in
these views to influence the optimizer or to investigate the performance of
hypothetical databases. You can use this method to simulate a production
system on your development or test system and analyze how queries
perform.
For a complete description of each system catalog view, refer to the
appendix in the SQL Reference. For information about system catalog
statistics and which ones you can change, refer to the Administration Guide:
Implementation.

Chapter 2. Coding a DB2 Application 41

42 Application Development Guide

Part 2. Embedding SQL in Applications

© Copyright IBM Corp. 1993, 2000 43

44 Application Development Guide

Chapter 3. Embedded SQL Overview

Embedding SQL Statements in a Host
Language 45
Creating and Preparing the Source Files. . . 47
Creating Packages for Embedded SQL . . . 49

Precompiling. 49
Source File Requirements 51

Compiling and Linking 52
Binding 53

Renaming Packages 53

Binding Dynamic Statements 54
Resolving Unqualified Table Names . . 54
Other Binding Considerations 55

Advantages of Deferred Binding 56
DB2 Bind File Description Utility - db2bfd 56
Application, Bind File, and Package
Relationships. 57
Timestamps 58
Rebinding. 58

Embedding SQL Statements in a Host Language

You can write applications with SQL statements embedded within a host
language. The SQL statements provide the database interface, while the host
language provides the remaining support needed for the application to
execute.

Table 2 shows an SQL statement embedded in a host language application. In
the example, the application checks the SQLCODE field of the SQLCA structure to
determine whether the update was successful.

Table 2. Embedding SQL Statements in a Host Language

Language Sample Source Code

C/C++ EXEC SQL UPDATE staff SET job = 'Clerk' WHERE job = 'Mgr';
if (SQLCODE < 0)

printf("Update Error: SQLCODE = %ld \n", SQLCODE);

Java (SQLJ) try {
#sql { UPDATE staff SET job = 'Clerk' WHERE job = 'Mgr' };

}
catch (SQLException e) {

println("Update Error: SQLCODE = " + e.getErrorCode());
}

COBOL EXEC SQL UPDATE staff SET job = 'Clerk' WHERE job = 'Mgr' END_EXEC.
IF SQLCODE LESS THAN 0

DISPLAY 'UPDATE ERROR: SQLCODE = ', SQLCODE.

FORTRAN EXEC SQL UPDATE staff SET job = 'Clerk' WHERE job = 'Mgr'
if (sqlcode .lt. 0) THEN

write(*,*) 'Update error: sqlcode = ', sqlcode

© Copyright IBM Corp. 1993, 2000 45

SQL statements placed in an application are not specific to the host language.
The database manager provides a way to convert the SQL syntax for
processing by the host language.

For the C, C++, COBOL or FORTRAN languages, this conversion is handled
by the DB2 precompiler. The DB2 precompiler is invoked using the PREP
command. The precompiler converts embedded SQL statements directly into
DB2 run-time services API calls.

For the Java language, the SQLJ translator converts SQLJ clauses into JDBC
statements. The SQLJ translator is invoked with the SQLJ command.

When the precompiler processes a source file, it specifically looks for SQL
statements and avoids the non-SQL host language. It can find SQL statements
because they are surrounded by special delimiters. For the syntax information
necessary to embed SQL statements in the language you are using, see the
following:
v for C/C++, “Embedding SQL Statements in C and C++” on page 586
v for Java (SQLJ), “Embedding SQL Statements in Java” on page 639
v for COBOL, “Embedding SQL Statements in COBOL” on page 668
v for FORTRAN, “Embedding SQL Statements in FORTRAN” on page 691
v for REXX, “Embedding SQL Statements in REXX” on page 705

Table 3 shows how to use delimiters and comments to create valid embedded
SQL statements in the supported compiled host languages.

Table 3. Embedding SQL Statements in a Host Language

Language Sample Source Code

C/C++ /* Only C or C++ comments allowed here */
EXEC SQL

-- SQL comments or
/* C comments or */
// C++ comments allowed here
DECLARE C1 CURSOR FOR sname;

/* Only C or C++ comments allowed here */

SQLJ /* Only Java comments allowed here */
#sql c1 = {

-- SQL comments or
/* Java comments or */
// Java comments allowed here
SELECT name FROM employee

};
/* Only Java comments allowed here */

46 Application Development Guide

Table 3. Embedding SQL Statements in a Host Language (continued)

Language Sample Source Code

COBOL * See COBOL documentation for comment rules
* Only COBOL comments are allowed here
EXEC SQL

-- SQL comments or
* full-line COBOL comments are allowed here

DECLARE C1 CURSOR FOR sname END-EXEC.
* Only COBOL comments are allowed here

FORTRAN C Only FORTRAN comments are allowed here
EXEC SQL
+ -- SQL comments, and

C full-line FORTRAN comment are allowed here
+ DECLARE C1 CURSOR FOR sname
I=7 ! End of line FORTRAN comments allowed here

C Only FORTRAN comments are allowed here

Creating and Preparing the Source Files

You can create the source code in a standard ASCII file, called a source file,
using a text editor. The source file must have the proper extension for the host
language in which you write your code. See Table 38 on page 731 to find out
the required file extension for the host language you are using.

Note: Not all platforms support all host languages. See the Application
Building Guide for specific information.

For this discussion, assume that you have already written the source code.

If you have written your application using a compiled host language, you
must follow additional steps to build your application. Along with compiling
and linking your program, you must precompile and bind it.

Simply stated, precompiling converts embedded SQL statements into DB2
run-time API calls that a host compiler can process, and creates a bind file.
The bind file contains information on the SQL statements in the application
program. The BIND command creates a package in the database. Optionally, the
precompiler can perform the bind step at precompile time.

Binding is the process of creating a package from a bind file and storing it in a
database. If your application accesses more than one database, you must
create a package for each database.

Figure 1 on page 48 shows the order of these steps, along with the various
modules of a typical compiled DB2 application. You may wish to refer to it as

Chapter 3. Embedded SQL Overview 47

you read through the following sections about what happens at each stage of
program preparation.

Source Files

With SQL

Statements

Modified

Source Files

Object

Files

Source Files

Without SQL

Statements

Libraries

Precompiler

(db2 PREP)

PACKAGE

Create a

Package

Host Language Compiler

Host Language Linker

Executable

Program

Database Manager Package (Package)

Bind

File

Binder

(db2 BIND)

BINDFILE

Create a

Bind File

1

2

3

4

6

5

Figure 1. Preparing Programs Written in Compiled Host Languages

48 Application Development Guide

Creating Packages for Embedded SQL

To run applications written in compiled host languages, you must create the
packages needed by the database manager at execution time. This involves
the following steps as shown in Figure 1 on page 48:
v Precompiling (step 2), to convert embedded SQL source statements into a

form the database manager can use,
v Compiling and Linking (steps 3 and 4), to create the required object

modules, and,
v Binding (step 5), to create the package to be used by the database manager

when the program is run.

Other topics discussed in this section include:
v Application, Bind File, and Package Relationships, and,
v Rebinding, which describes when and how to rebind packages.

To create the packages needed by SQLJ applications, you need to use both the
SQLJ translator and db2profc command. For more information on using the
SQLJ translator, see “SQLJ Programming” on page 637.

Precompiling
After you create the source files, you must precompile each host language file
containing SQL statements with the PREP command for host language source
files. The precompiler converts SQL statements contained in the source file to
comments, and generates the DB2 run-time API calls for those statements.

Before precompiling an application you must connect to a server, either
implicitly or explicitly. Although you precompile application programs at the
client workstation and the precompiler generates modified source and
messages on the client, the precompiler uses the server connection to perform
some of the validation.

The precompiler also creates the information the database manager needs to
process the SQL statements against a database. This information is stored in a
package, in a bind file, or in both, depending on the precompiler options
selected.

A typical example of using the precompiler follows. To precompile a C
embedded SQL source file called filename.sqc, you can issue the following
command to create a C source file with the default name filename.c and a
bind file with the default name filename.bnd:

DB2 PREP filename.sqc BINDFILE

For detailed information on precompiler syntax and options, see the Command
Reference.

Chapter 3. Embedded SQL Overview 49

The precompiler generates up to four types of output:
v Modified source
v Package
v Bind file
v Message file

Modified Source
This file is the new version of the original source file after the
precompiler converts the SQL statements into DB2 run-time
API calls. It is given the appropriate host language extension.

Package If you use the PACKAGE option (the default), or do not
specify any of the BINDFILE, SYNTAX, or SQLFLAG options,
the package is stored in the connected database. The package
contains all the information required to execute the static SQL
statements of a particular source file against this database
only. Unless you specify a different name with the PACKAGE
USING option, the precompiler forms the package name from
the first 8 characters of the source file name.

With the PACKAGE option, the database used during the
precompile process must contain all of the database objects
referenced by the static SQL statements in the source file. For
example, you cannot precompile a SELECT statement unless
the table it references exists in the database.

Bind File If you use the BINDFILE option, the precompiler creates a
bind file (with extension .bnd) that contains the data required
to create a package. This file can be used later with the BIND
command to bind the application to one or more databases. If
you specify BINDFILE and do not specify the PACKAGE
option, binding is deferred until you invoke the BIND
command. Note that for the Command Line Processor (CLP),
the default for PREP does not specify the BINDFILE option.
Thus, if you are using the CLP and want the binding to be
deferred, you need to specify the BINDFILE option.

If you request a bind file at precompile time but do not
specify the PACKAGE, that is, you do not create a package,
certain object existence and authorization SQLCODEs are
treated as warnings instead of errors. This enables you to
precompile a program and create a bind file without requiring
that the referenced objects be present, or requiring that you
possess the authority to execute the SQL statements being
precompiled. For a list of the specific SQLCODEs that are
treated as warnings instead of errors refer to the Command
Reference.

50 Application Development Guide

Message File If you use the MESSAGES option, the precompiler redirects
messages to the indicated file. These messages include
warnings and error messages that describe problems
encountered during precompilation. If the source file does not
precompile successfully, use the warning and error messages
to determine the problem, correct the source file, and then
attempt to precompile the source file again. If you do not use
the MESSAGES option, precompilation messages are written
to the standard output.

Source File Requirements
You must always precompile a source file against a specific database, even if
eventually you do not use the database with the application. In practice, you
can use a test database for development, and after you fully test the
application, you can bind its bind file to one or more production databases.
See “Advantages of Deferred Binding” on page 56 for other ways to use this
feature.

If your application uses a code page that is not the same as your database
code page, you need to consider which code page to use when precompiling.
See “Conversion Between Different Code Pages” on page 504.

If your application uses user-defined functions (UDFs) or user-defined distinct
types (UDTs), you may need to use the FUNCPATH option when you
precompile your application. This option specifies the function path that is
used to resolve UDFs and UDTs for applications containing static SQL. If
FUNCPATH is not specified, the default function path is SYSIBM, SYSFUN,
USER, where USER refers to the current user ID. For more information on
bind options refer to the Command Reference.

To precompile an application program that accesses more than one server, you
can do one of the following:
v Split the SQL statements for each database into separate source files. Do not

mix SQL statements for different databases in the same file. Each source file
can be precompiled against the appropriate database. This is the
recommended method.

v Code your application using dynamic SQL statements only, and bind
against each database your program will access.

v If all the databases look the same, that is, they have the same definition,
you can group the SQL statements together into one source file.

The same procedures apply if your application will access a host or AS/400
application server through DB2 Connect. Precompile it against the server to
which it will be connecting, using the PREP options available for that server.

Chapter 3. Embedded SQL Overview 51

If you are precompiling an application that will run on DB2 Universal
Database for OS/390, consider using the flagger facility to check the syntax of
the SQL statements. The flagger indicates SQL syntax that is supported by
DB2 Universal Database, but not supported by DB2 Universal Database for
OS/390. You can also use the flagger to check that your SQL syntax conforms
to the SQL92 Entry Level syntax. You can use the SQLFLAG option on the
PREP command to invoke it and to specify the version of DB2 Universal
Database for OS/390 SQL syntax to be used for comparison. The flagger
facility will not enforce any changes in SQL use; it only issues informational
and warning messages regarding syntax incompatibilities, and does not
terminate preprocessing abnormally.

For details about the PREP command, refer to the Command Reference.

Compiling and Linking
Compile the modified source files and any additional source files that do not
contain SQL statements using the appropriate host language compiler. The
language compiler converts each modified source file into an object module.

Refer to the Application Building Guide or other programming documentation
for your operating platform for any exceptions to the default compile options.
Refer to your compiler’s documentation for a complete description of
available compile options.

The host language linker creates an executable application. For example:
v On OS/2 and Windows 32-bit operating systems, the application can be an

executable file or a dynamic link library (DLL).
v On UNIX-based systems, the application can be an executable load module

or a shared library.

Note: Although applications can be DLLs on Windows 32-bit operating
systems, the DLLs are loaded directly by the application and not by the
DB2 database manager. On Windows 32-bit operating systems, the
database manager can load DLLs. Stored procedures are normally built
as DLLs or shared libraries. For information on using stored
procedures, see “Chapter 7. Stored Procedures” on page 187.

For information on creating executable files on other platforms supported by
DB2, refer to the Application Building Guide.

To create the executable file, link the following:
v User object modules, generated by the language compiler from the

modified source files and other files not containing SQL statements
v Host language library APIs, supplied with the language compiler

52 Application Development Guide

v The database manager library containing the database manager APIs for
your operating environment. Refer to the Application Building Guide or other
programming documentation for your operating platform for the specific
name of the database manager library you need for your database manager
APIs.

Binding
Binding is the process that creates the package the database manager needs in
order to access the database when the application is executed. Binding can be
done implicitly by specifying the PACKAGE option during precompilation, or
explicitly by using the BIND command against the bind file created during
precompilation.

A typical example of using the BIND command follows. To bind a bind file
named filename.bnd to the database, you can issue the following command:

DB2 BIND filename.bnd

For detailed information on BIND command syntax and options, refer to the
Command Reference.

One package is created for each separately precompiled source code module.
If an application has five source files, of which three require precompilation,
three packages or bind files are created. By default, each package is given a
name that is the same as the name of the source module from which the .bnd
file originated, but truncated to 8 characters. If the name of this newly created
package is the same as a package that currently exists in the target database,
the new package replaces the previously existing package. To explicitly specify
a different package name, you must use the PACKAGE USING option on the
PREP command. See the Command Reference for details.

Renaming Packages
When creating multiple versions of an application, you should avoid
conflicting names by renaming your package. For example, if you have an
application called foo (compiled from foo.sqc), you precompile it and send it
to all the users of your application. The users bind the application to the
database, and then run the application. To make subsequent changes, create a
new version of foo and send this application and its bind file to the users that
require the new version. The new users bind foo.bnd and the new application
runs without any problem. However, when users attempt to run the old
version of the application, they receive a timestamp conflict on the FOO
package (which indicates that the package in the database does not match the
application being run) so they rebind the client. (See “Timestamps” on page 58
for more information on package timestamps.) Now the users of the new
application receive a timestamp conflict. This problem is caused because both
applications use packages with the same name.

Chapter 3. Embedded SQL Overview 53

The solution is to use package renaming. When you build the first version of
FOO, you precompile it with the command:

DB2 PREP FOO.SQC BINDFILE PACKAGE USING FOO1

After you distribute this application, users can bind and run it without any
problem. When you build the new version, you precompile it with the
command:

DB2 PREP FOO.SQC BINDFILE PACKAGE USING FOO2

After you distribute the new application, it will also bind and run without
any problem. Since the package name for the new version is FOO2 and the
package name for the first version is FOO1, there is no naming conflict and
both versions of the application can be used.

Binding Dynamic Statements
For dynamically prepared statements, the values of a number of special
registers determine the statement compilation environment:
v The CURRENT QUERY OPTIMIZATION special register determines which

optimization class is used.
v The CURRENT FUNCTION PATH special register determines the function

path used for UDF and UDT resolution.
v The CURRENT EXPLAIN SNAPSHOT register determines whether explain

snapshot information is captured.
v The CURRENT EXPLAIN MODE register determines whether explain table

information is captured, for any eligible dynamic SQL statement. The
default values for these special registers are the same defaults used for the
related bind options. For information on special registers and their
interaction with BIND options, refer to the appendix of the SQL Reference.

Resolving Unqualified Table Names
You can handle unqualified table names in your application by using one of
the following methods:
v For each user, bind the package with different COLLECTION parameters

from different authorization identifiers by using the following commands:
CONNECT TO db_name USER user_name
BIND file_name COLLECTION schema_name

In the above example, db_name is the name of the database, user_name is the
name of the user, and file_name is the name of the application that will be
bound. Note that user_name and schema_name are usually the same value.
Then use the SET CURRENT PACKAGESET statement to specify which
package to use, and therefore, which qualifiers will be used. The default
qualifier is the authorization identifier that is used when binding the
package. For an example of how to use the SET CURRENT PACKAGESET
statement, refer to the SQL Reference.

54 Application Development Guide

v Create views for each user with the same name as the table so the
unqualified table names resolve correctly. (Note that the QUALIFIER option
is DB2 Connect only, meaning that it can only be used when using a host
server.)

v Create an alias for each user to point to the desired table.

Other Binding Considerations
If your application code page uses a different code page from your database
code page, you may need to consider which code page to use when binding.
See “Conversion Between Different Code Pages” on page 504.

If your application issues calls to any of the database manager utility APIs,
such as IMPORT or EXPORT, you must bind the supplied utility bind files to
the database. For details, refer to the Quick Beginnings guide for your
platform.

You can use bind options to control certain operations that occur during
binding, as in the following examples:
v The QUERYOPT bind option takes advantage of a specific optimization

class when binding.
v The EXPLSNAP bind option stores Explain Snapshot information for

eligible SQL statements in the Explain tables.
v The FUNCPATH bind option properly resolves user-defined distinct types

and user-defined functions in static SQL.

For information on bind options, refer to the section on the BIND command in
the Command Reference.

If the bind process starts but never returns, it may be that other applications
connected to the database hold locks that you require. In this case, ensure that
no applications are connected to the database. If they are, disconnect all
applications on the server and the bind process will continue.

If your application will access a server using DB2 Connect, you can use the
BIND options available for that server. For details on the BIND command and
its options, refer to the Command Reference.

Bind files are not backward compatible with previous versions of DB2
Universal Database. In mixed-level environments, DB2 can only use the
functions available to the lowest level of the database environment. For
example, if a V5.2 client connects to a V5.0 server, the client will only be able
to use V5.0 functions. As bind files express the functionality of the database,
they are subject to the mixed-level restriction.

If you need to rebind higher-level bind files on lower-level systems, you can:

Chapter 3. Embedded SQL Overview 55

v Use a lower-level DB2 Application Development Client to connect to the
higher-level server and create bind files which can be shipped and bound
to the lower-level DB2 Universal Database environment.

v Use a higher-level DB2 client in the lower-level production environment to
bind the higher-level bind files that were created in the test environment.
The higher-level client passes only the options that apply to the lower-level
server.

Advantages of Deferred Binding
Precompiling with binding enabled allows an application to access only the
database used during the precompile process. Precompiling with binding
deferred, however, allows an application to access many databases, because
you can bind the BIND file against each one. This method of application
development is inherently more flexible in that applications are precompiled
only once, but the application can be bound to a database at any time.

Using the BIND API during execution allows an application to bind itself,
perhaps as part of an installation procedure or before an associated module is
executed. For example, an application can perform several tasks, only one of
which requires the use of SQL statements. You can design the application to
bind itself to a database only when the application calls the task requiring
SQL statements, and only if an associated package does not already exist.

Another advantage of the deferred binding method is that it lets you create
packages without providing source code to end users. You can ship the
associated bind files with the application.

DB2 Bind File Description Utility - db2bfd
With the DB2 Bind File Description (db2bfd) utility, you can easily display the
contents of a bind file to examine and verify the SQL statements within it, as
well as display the precompile options used to create the bind file. This may
be useful in problem determination related to your application’s bind file.

The db2bfd utility is located in the bin subdirectory of the sqllib directory of
the instance.

Its syntax is:

56 Application Development Guide

WW X
(1) (5)

db2bfd -h filespec
(2)

-b
(3)

-s
(4)

-v

WY

Notes:

1 Display the help information.

2 Display bind file header.

3 Display SQL statements.

4 Display host variable declarations

5 The name of the bind file.

For more information on db2bfd, refer to the Command Reference.

Application, Bind File, and Package Relationships
A package is an object stored in the database that includes information
needed to execute specific SQL statements in a single source file. A database
application uses one package for every precompiled source file used to build
the application. Each package is a separate entity, and has no relationship to
any other packages used by the same or other applications. Packages are
created by running the precompiler against a source file with binding enabled,
or by running the binder at a later time with one or more bind files.

Database applications use packages for some of the same reasons that
applications are compiled: improved performance and compactness. By
precompiling an SQL statement, the statement is compiled into the package
when the application is built, instead of at run time. Each statement is parsed,
and a more efficiently interpreted operand string is stored in the package. At
run time, the code generated by the precompiler calls run-time services
database manager APIs with any variable information required for input or
output data, and the information stored in the package is executed.

The advantages of precompilation apply only to static SQL statements. SQL
statements that are executed dynamically (using PREPARE and EXECUTE or
EXECUTE IMMEDIATE) are not precompiled; therefore, they must go through
the entire set of processing steps at run time.

Note: Do not assume that a static version of an SQL statement automatically
executes faster than the same statement processed dynamically. In some

Chapter 3. Embedded SQL Overview 57

cases, static SQL is faster because of the overhead required to prepare
the dynamic statement. In other cases, the same statement prepared
dynamically executes faster, because the optimizer can make use of
current database statistics, rather than the database statistics available
at an earlier bind time. Note that if your transaction takes less than a
couple of seconds to complete, static SQL will generally be faster. To
choose which method to use, you should prototype both forms of
binding. For a detailed comparison of static and dynamic SQL, see
“Comparing Dynamic SQL with Static SQL” on page 128.

Timestamps
When generating a package or a bind file, the precompiler generates a
timestamp. The timestamp is stored in the bind file or package and in the
modified source file.

When an application is precompiled with binding enabled, the package and
modified source file are generated with timestamps that match. When the
application is run, the timestamps are checked for equality. An application
and an associated package must have matching timestamps for the application
to run, or an SQL0818N error is returned to the application.

Remember that when you bind an application to a database, the first eight
characters of the application name are used as the package name unless you
override the default by using the PACKAGE USING option on the PREP command.
This means that if you precompile and bind two programs using the same
name, the second will override the package of the first. When you run the
first program, you will get a timestamp error because the timestamp for the
modified source file no longer matches that of the package in the database.

When an application is precompiled with binding deferred, one or more bind
files and modified source files are generated with matching timestamps. To
run the application, the bind files produced by the application modules can
execute. The binding process must be done for each bind file as discussed in
“Binding” on page 53.

The application and package timestamps match because the bind file contains
the same timestamp as the one that was stored in the modified source file
during precompilation.

Rebinding
Rebinding is the process of recreating a package for an application program
that was previously bound. You must rebind packages if they have been
marked invalid or inoperative. In some situations, however, you may want to
rebind packages that are valid. For example, you may want to take advantage
of a newly created index, or make use of updated statistics after executing the
RUNSTATS command.

58 Application Development Guide

Packages can be dependent on certain types of database objects such as tables,
views, aliases, indexes, triggers, referential constraints and table check
constraints. If a package is dependent on a database object (such as a table,
view, trigger, and so on), and that object is dropped, the package is placed
into an invalid state. If the object that is dropped is a UDF, the package is
placed into an inoperative state. For more information, refer to the
Administration Guide: Planning.

Invalid packages are implicitly (or automatically) rebound by the database
manager when they are executed. Inoperative packages must be explicitly
rebound by executing either the BIND command or the REBIND command. Note
that implicit rebinding can cause unexpected errors if the implicit rebind fails.
That is, the implicit rebind error is returned on the statement being executed
which may not be the statement that is actually in error. If an attempt is made
to execute an inoperative package, an error occurs. You may decide to
explicitly rebind invalid packages rather than have the system automatically
rebind them. This enables you to control when the rebinding occurs.

The choice of which command to use to explicitly rebind a package depends
on the circumstances. You must use the BIND command to rebind a package
for a program which has been modified to include more, fewer, or changed
SQL statements. You must also use the BIND command if you need to change
any bind options from the values with which the package was originally
bound. In all other cases, use either the BIND or REBIND command. You should
use REBIND whenever your situation does not specifically require the use of
BIND, as the performance of REBIND is significantly better than that of BIND.

For details on the REBIND command, refer to the Command Reference.

Chapter 3. Embedded SQL Overview 59

60 Application Development Guide

Chapter 4. Writing Static SQL Programs

Characteristics and Reasons for Using Static
SQL. 61
Advantages of Static SQL 62
Example: Static SQL Program 63

How the Static Program Works 64
C Example: STATIC.SQC 66
Java Example: Static.sqlj 67
COBOL Example: STATIC.SQB 69

Coding SQL Statements to Retrieve and
Manipulate Data 71

Retrieving Data 71
Using Host Variables 71

Declaration Generator - db2dclgn 73
Using Indicator Variables 75

Data Types 77
Using an Indicator Variable in the STATIC
program 80

Selecting Multiple Rows Using a Cursor . . 81
Declaring and Using the Cursor 81
Cursors and Unit of Work Considerations 82

Read Only Cursors. 82
WITH HOLD Option 82

Example: Cursor Program 84
How the Cursor Program Works . . . 84
C Example: CURSOR.SQC 86
Java Example: Cursor.sqlj 88
COBOL Example: CURSOR.SQB . . . 90

Updating and Deleting Retrieved Data . . . 92
Updating Retrieved Data. 92
Deleting Retrieved Data 92
Types of Cursors 92
Example: OPENFTCH Program 93

How the OPENFTCH Program Works 93
C Example: OPENFTCH.SQC 95
Java Example: Openftch.sqlj 97
COBOL Example: OPENFTCH.SQB 100

Advanced Scrolling Techniques 102
Scrolling Through Data that has Already
Been Retrieved. 102
Keeping a Copy of the Data 102
Retrieving the Data a Second Time . . . 102

Retrieving from the Beginning . . . 103
Retrieving from the Middle 103
Order of Rows in the Second Result
Table 103
Retrieving in Reverse Order 104

Establishing a Position at the End of a
Table 104
Updating Previously Retrieved Data . . 105
Example: UPDAT Program. 105

How the UPDAT Program Works . . 105
C Example: UPDAT.SQC 107
Java Example: Updat.sqlj 109
COBOL Example: UPDAT.SQB . . . 111
REXX Example: UPDAT.CMD. . . . 113

Diagnostic Handling and the SQLCA
Structure 115

Return Codes 115
SQLCODE and SQLSTATE 115
Token Truncation in SQLCA Structure . . 116
Handling Errors using the WHENEVER
Statement 116
Exception, Signal, Interrupt Handler
Considerations 117
Exit List Routine Considerations 118
Using GET ERROR MESSAGE in
Example Programs 118

C Example: UTILAPI.C 119
Java Example: Catching SQLException 121
COBOL Example: CHECKERR.CBL 122
REXX Example: CHECKERR
Procedure 124

Characteristics and Reasons for Using Static SQL

When the syntax of embedded SQL statements is fully known at precompile
time, the statements are referred to as static SQL. This is in contrast to dynamic
SQL statements whose syntax is not known until run time.

Note: Static SQL is not supported in interpreted languages, such as REXX.

© Copyright IBM Corp. 1993, 2000 61

The structure of an SQL statement must be completely specified in order for a
statement to be considered static. For example, the names for the columns and
tables referenced in a statement must be fully known at precompile time. The
only information that can be specified at run time are values for any host
variables referenced by the statement. However, host variable information,
such as data types, must still be precompiled.

When a static SQL statement is prepared, an executable form of the statement
is created and stored in the package in the database. The executable form can
be constructed either at precompile time, or at a later bind time. In either case,
preparation occurs before run time. The authorization of the person binding
the application is used, and optimization is based upon database statistics and
configuration parameters that may not be current when the application runs.

Advantages of Static SQL

Programming using static SQL requires less effort than using embedded
dynamic SQL. Static SQL statements are simply embedded into the host
language source file, and the precompiler handles the necessary conversion to
database manager run-time services API calls that the host language compiler
can process.

Because the authorization of the person binding the application is used, the
end user does not require direct privileges to execute the statements in the
package. For example, an application could allow a user to update parts of a
table without granting an update privilege on the entire table. This can be
achieved by restricting the static SQL statements to allow updates only to
certain columns or a range of values.

Static SQL statements are persistent, meaning that the statements last for as
long as the package exists. Dynamic SQL statements are cached until they are
either invalidated, freed for space management reasons, or the database is
shut down. If required, the dynamic SQL statements are recompiled implicitly
by the DB2 SQL compiler whenever a cached statement becomes invalid. For
information on caching and the reasons for invalidation of a cached statement,
refer to the SQL Reference.

The key advantage of static SQL, with respect to persistence, is that the static
statements exist after a particular database is shut down, whereas dynamic
SQL statements cease to exist when this occurs. In addition, static SQL does
not have to be compiled by the DB2 SQL compiler at run time, while dynamic
SQL must be explicitly compiled at run time (for example, by using the
PREPARE statement). Because DB2 caches dynamic SQL statements, the
statements do not need to be compiled often by DB2, but they must be
compiled at least once when you execute the application.

62 Application Development Guide

There can be performance advantages to static SQL. For simple, short-running
SQL programs, a static SQL statement executes faster than the same statement
processed dynamically since the overhead of preparing an executable form of
the statement is done at precompile time instead of at run time.

Note: The performance of static SQL depends on the statistics of the database
the last time the application was bound. However, if these statistics
change, the performance of equivalent dynamic SQL can be very
different. If, for example, an index is added to a database at a later
time, an application using static SQL cannot take advantage of the
index unless it is re-bound to the database. In addition, if you are using
host variables in a static SQL statement, the optimizer will not be able
to take advantage of any distribution statistics for the table.

Example: Static SQL Program

This sample program shows examples of static SQL statements and database
manager API calls in the following supported languages:

C static.sqc

Java Static.sqlj

COBOL static.sqb

The REXX language does not support static SQL, so a sample is not provided.

This sample program contains a query that selects a single row. Such a query
can be performed using the SELECT INTO statement.

The SELECT INTO statement selects one row of data from tables in a
database, and the values in this row are assigned to host variables specified in
the statement. Host variables are discussed in detail in “Using Host Variables”
on page 71. For example, the following statement will deliver the salary of
the employee with the last name of 'HAAS' into the host variable empsal:

SELECT SALARY
INTO :empsal
FROM EMPLOYEE
WHERE LASTNAME='HAAS'

A SELECT INTO statement must be specified to return only one or zero rows.
Finding more than one row results in an error, SQLCODE -811 (SQLSTATE
21000). If several rows can be the result of a query, a cursor must be used to
process the rows. See “Selecting Multiple Rows Using a Cursor” on page 81
for more information.

For more details on the SELECT INTO statement, refer to the SQL Reference.

Chapter 4. Writing Static SQL Programs 63

For an introductory discussion on how to write SELECT statements, see
“Coding SQL Statements to Retrieve and Manipulate Data” on page 71.

How the Static Program Works
1. Include the SQLCA. The INCLUDE SQLCA statement defines and

declares the SQLCA structure, and defines SQLCODE and SQLSTATE as
elements within the structure. The SQLCODE field of the SQLCA structure
is updated with diagnostic information by the database manager after
every execution of SQL statements or database manager API calls.

2. Declare host variables. The SQL BEGIN DECLARE SECTION and END
DECLARE SECTION statements delimit the host variable declarations.
These are variables that can be referenced in SQL statements. Host
variables are used to pass data to the database manager or to hold data
returned by it. They are prefixed with a colon (:) when referenced in an
SQL statement. For more information, see “Using Host Variables” on
page 71.

3. Connect to database. The program connects to the sample database, and
requests shared access to it. (It is assumed that a START DATABASE
MANAGER API call or db2start command has been issued.) Other
programs that connect to the same database using shared access are also
granted access.

4. Retrieve data. The SELECT INTO statement retrieves a single value based
upon a query. This example retrieves the FIRSTNME column from the
EMPLOYEE table where the value of the LASTNAME column is JOHNSON. The
value SYBIL is returned and placed in the host variable firstname. The
sample tables supplied with DB2 are listed in the appendix of the SQL
Reference.

5. Process errors. The CHECKERR macro/function is an error checking utility
which is external to the program. The location of this error checking utility
depends upon the programming language used:

C For C programs that call DB2 APIs, the sqlInfoPrint
function in utilapi.c is redefined as API_SQL_CHECK in
utilapi.h. For C embedded SQL programs, the
sqlInfoPrint function in utilemb.sqc is redefined as
EMB_SQL_CHECK in utilemb.h.

Java Any SQL error is thrown as an SQLException and handled
in the catch block of the application.

COBOL CHECKERR is an external program named checkerr.cbl

See “Using GET ERROR MESSAGE in Example Programs” on page 118 for
the source code for this error checking utility.

64 Application Development Guide

6. Disconnect from database. The program disconnects from the database by
executing the CONNECT RESET statement. Note that SQLJ programs
automatically close the database connection when the program returns.

Chapter 4. Writing Static SQL Programs 65

C Example: STATIC.SQC
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "utilemb.h"

EXEC SQL INCLUDE SQLCA; �1�

int main(int argc, char *argv[])
{ int rc = 0;

char dbAlias[15] ;
char user[15] ;
char pswd[15] ;

EXEC SQL BEGIN DECLARE SECTION; �2�
char firstname[13];

EXEC SQL END DECLARE SECTION;

/* checks the command line arguments */
rc = CmdLineArgsCheck1(argc, argv, dbAlias, user, pswd); �3�
if (rc != 0) return(rc) ;

printf("\n\nSample C program: STATIC\n");

/* initialize the embedded application */
rc = EmbAppInit(dbAlias, user, pswd);
if (rc != 0) return(rc) ;

EXEC SQL SELECT FIRSTNME INTO :firstname �4�
FROM employee
WHERE LASTNAME = 'JOHNSON';

EMB_SQL_CHECK("SELECT statement"); �5�

printf("First name = %s\n", firstname);

/* terminate the embedded application */
rc = EmbAppTerm(dbAlias);
return(rc) ;

}
/* end of program : STATIC.SQC */

66 Application Development Guide

Java Example: Static.sqlj
import java.sql.*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;

class Static
{ static

{ try
{ Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance ();

}
catch (Exception e)
{ System.out.println ("\n Error loading DB2 Driver...\n");

System.out.println (e);
System.exit(1);

}
}

public static void main(String argv[])
{ try

{ System.out.println (" Java Static Sample");

String url = "jdbc:db2:sample"; // URL is jdbc:db2:dbname
Connection con = null;

// Set the connection �3�
if (argv.length == 0)
{ // connect with default id/password

con = DriverManager.getConnection(url);
}
else if (argv.length == 2)
{ String userid = argv[0];

String passwd = argv[1];

// connect with user-provided username and password
con = DriverManager.getConnection(url, userid, passwd);

}
else
{ throw new Exception("\nUsage: java Static [username password]\n");
}

// Set the default context
DefaultContext ctx = new DefaultContext(con);
DefaultContext.setDefaultContext(ctx);

String firstname = null;

#sql { SELECT FIRSTNME INTO :firstname
FROM employee
WHERE LASTNAME = 'JOHNSON' } ; �4�

System.out.println ("First name = " + firstname);
}

catch(Exception e) �5�

Chapter 4. Writing Static SQL Programs 67

{
System.out.println (e);

}
}

}

68 Application Development Guide

COBOL Example: STATIC.SQB
Identification Division.
Program-ID. "static".

Data Division.
Working-Storage Section.

copy "sql.cbl".
copy "sqlca.cbl". �1�

EXEC SQL BEGIN DECLARE SECTION END-EXEC. �2�
01 firstname pic x(12).
01 userid pic x(8).
01 passwd.

49 passwd-length pic s9(4) comp-5 value 0.
49 passwd-name pic x(18).

EXEC SQL END DECLARE SECTION END-EXEC.

77 errloc pic x(80).

Procedure Division.
Main Section.

display "Sample COBOL program: STATIC".

display "Enter your user id (default none): "
with no advancing.

accept userid.

if userid = spaces
EXEC SQL CONNECT TO sample END-EXEC

else
display "Enter your password : " with no advancing
accept passwd-name.

* Passwords in a CONNECT statement must be entered in a VARCHAR format
* with the length of the input string.

inspect passwd-name tallying passwd-length for characters
before initial " ".

EXEC SQL CONNECT TO sample USER :userid USING :passwd �3�
END-EXEC.

move "CONNECT TO" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL SELECT FIRSTNME INTO :firstname �4�
FROM EMPLOYEE
WHERE LASTNAME = 'JOHNSON' END-EXEC.

move "SELECT" to errloc.
call "checkerr" using SQLCA errloc. �5�

display "First name = ", firstname.

EXEC SQL CONNECT RESET END-EXEC. �6�
move "CONNECT RESET" to errloc.

Chapter 4. Writing Static SQL Programs 69

call "checkerr" using SQLCA errloc.

End-Prog.
stop run.

70 Application Development Guide

Coding SQL Statements to Retrieve and Manipulate Data

The database manager provides application programmers with statements for
retrieving and manipulating data; the coding task consists of embedding these
statements into the host language code. This section shows how to code
statements that will retrieve and manipulate data for one or more rows of
data in DB2 tables. (It does not go into the details of the different host
languages.) For the exact rules of placement, continuation, and delimiting SQL
statements, see:
v “Chapter 20. Programming in C and C++” on page 581
v “Chapter 21. Programming in Java” on page 623
v “Chapter 23. Programming in COBOL” on page 665
v “Chapter 24. Programming in FORTRAN” on page 687
v “Chapter 25. Programming in REXX” on page 703.

Retrieving Data
One of the most common tasks of an SQL application program is to retrieve
data. This is done using the select-statement, which is a form of query that
searches for rows of tables in the database that meet specified search
conditions. If such rows exist, the data is retrieved and put into specified
variables in the host program, where it can be used for whatever it was
designed to do.

After you have written a select-statement, you code the SQL statements that
define how information will be passed to your application.

You can think of the result of a select-statement as being a table having rows
and columns, much like a table in the database. If only one row is returned,
you can deliver the results directly into host variables specified by the
SELECT INTO statement.

If more than one row is returned, you must use a cursor to fetch them one at a
time. A cursor is a named control structure used by an application program to
point to a specific row within an ordered set of rows. For information about
how to code and use cursors, see the following sections:
v “Declaring and Using the Cursor” on page 81,
v “Selecting Multiple Rows Using a Cursor” on page 81,
v “Example: Cursor Program” on page 84.

Using Host Variables

Host variables are variables referenced by embedded SQL statements. They
transmit data between the database manager and an application program.
When you use a host variable in an SQL statement, you must prefix its name
with a colon, (:). When you use a host variable in a host language statement,
omit the colon.

Chapter 4. Writing Static SQL Programs 71

Host variables are declared in compiled host languages, and are delimited by
BEGIN DECLARE SECTION and END DECLARE SECTION statements.
These statements enable the precompiler to find the declarations.

Note: Java JDBC and SQLJ programs do not use declare sections. Host
variables in Java follow the normal Java variable declaration syntax.

Host variables are declared using a subset of the host language. For a
description of the supported syntax for your host language, see:
v “Chapter 20. Programming in C and C++” on page 581
v “Chapter 21. Programming in Java” on page 623
v “Chapter 23. Programming in COBOL” on page 665
v “Chapter 24. Programming in FORTRAN” on page 687
v “Chapter 25. Programming in REXX” on page 703.

The following rules apply to host variable declaration sections:
v All host variables must be declared in the source file before they are

referenced, except for host variables referring to SQLDA structures.
v Multiple declare sections may be used in one source file.
v The precompiler is unaware of host language variable scoping rules.

With respect to SQL statements, all host variables have a global scope
regardless of where they are actually declared in a single source file.
Therefore, host variable names must be unique within a source file.
This does not mean that the DB2 precompiler changes the scope of host
variables to global so that they can be accessed outside the scope in which
they are defined. Consider the following example:
foo1(){

.

.

.
BEGIN SQL DECLARE SECTION;
int x;
END SQL DECLARE SECTION;

x=10;
.
.
.

}

foo2(){
.
.
.
y=x;
.
.
.

}

72 Application Development Guide

Depending on the language, the above example will either fail to compile
because variable x is not declared in function foo2() or the value of x
would not be set to 10 in foo2(). To avoid this problem, you must either
declare x as a global variable, or pass x as a parameter to function foo2()
as follows:
foo1(){
.
.
.

BEGIN SQL DECLARE SECTION;
int x;
END SQL DECLARE SECTION;
x=10;
foo2(x);

.

.

.
}

foo2(int x){
.
.
.

y=x;
.
.
.
}

For further information on declaring host variables, see:
v “Declaration Generator - db2dclgn” to generate host variable declaration

source code automatically with the db2dclgn tool
v Table 4 on page 74 for examples of how host variables appear in source

code
v Table 5 on page 75 for examples of how to reference host variables in the

supported host languages
v “Naming Host Variables in REXX” on page 707 and “Referencing Host

Variables in REXX” on page 707 for information on naming and referencing
host variables in REXX

Declaration Generator - db2dclgn
The Declaration Generator speeds application development by generating
declarations for a given table in a database. It creates embedded SQL
declaration source files which you can easily insert into your applications.
db2dclgn supports the C/C++, Java, COBOL, and FORTRAN languages.

To generate declaration files, enter the db2dclgn command in the following
format:

Chapter 4. Writing Static SQL Programs 73

db2dclgn -d database-name -t table-name [options]

For example, to generate the declarations for the STAFF table in the SAMPLE
database in C in the output file staff.h, issue the following command:
db2dclgn -d sample -t staff -l C

The resulting staff.h file contains:
struct
{

short id;
struct
{

short length;
char data[9];

} name;
short dept;
char job[5];
short years;
double salary;
double comm;

} staff;

For detailed information on db2dclgn, refer to the Command Reference.

Table 4. Declaring Host Variables

Language Example Source Code

C/C++ EXEC SQL BEGIN DECLARE SECTION;
short dept=38, age=26;
double salary;
char CH;
char name1[9], NAME2[9];
/* C comment */
short nul_ind;

EXEC SQL END DECLARE SECTION;

Java // Note that Java host variable declarations follow
// normal Java variable declaration rules, and have
// no equivalent of a DECLARE SECTION

short dept=38, age=26;
double salary;
char CH;
String name1[9], NAME2[9];
/* Java comment */
short nul_ind;

74 Application Development Guide

Table 4. Declaring Host Variables (continued)

Language Example Source Code

COBOL EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 age PIC S9(4) COMP-5 VALUE 26.
01 DEPT PIC S9(9) COMP-5 VALUE 38.
01 salary PIC S9(6)V9(3) COMP-3.
01 CH PIC X(1).
01 name1 PIC X(8).
01 NAME2 PIC X(8).

* COBOL comment
01 nul-ind PIC S9(4) COMP-5.

EXEC SQL END DECLARE SECTION END-EXEC.

FORTRAN EXEC SQL BEGIN DECLARE SECTION
integer*2 age /26/
integer*4 dept /38/
real*8 salary
character ch
character*8 name1,NAME2

C FORTRAN comment
integer*2 nul_ind

EXEC SQL END DECLARE SECTION

Table 5. Referencing Host Variables

Language Example Source Code

C/C++ EXEC SQL FETCH C1 INTO :cm;
printf("Commission = %f\n", cm);

JAVA (SQLJ) #SQL { FETCH :c1 INTO :cm };
System.out.println("Commission = " + cm);

COBOL EXEC SQL FETCH C1 INTO :cm END-EXEC
DISPLAY 'Commission = ' cm

FORTRAN EXEC SQL FETCH C1 INTO :cm
WRITE(*,*) 'Commission = ', cm

Using Indicator Variables

Applications written in languages other than Java must prepare for receiving
null values by associating an indicator variable with any host variable that can
receive a null. Java applications compare the value of the host variable with
Java null to determine whether the received value is null. An indicator
variable is shared by both the database manager and the host application;
therefore, the indicator variable must be declared in the application as a host
variable. This host variable corresponds to the SQL data type SMALLINT.

Chapter 4. Writing Static SQL Programs 75

An indicator variable is placed in an SQL statement immediately after the
host variable, and is prefixed with a colon. A space can separate the indicator
variable from the host variable, but is not required. However, do not put a
comma between the host variable and the indicator variable. You can also
specify an indicator variable by using the optional INDICATOR keyword,
which you place between the host variable and its indicator.

Indicator Variables shows indicator variable usage in the supported host
languages using the INDICATOR keyword.

Language
Example Source Code

C/C++
EXEC SQL FETCH C1 INTO :cm INDICATOR :cmind;
if (cmind < 0)

printf("Commission is NULL\n");

Java (SQLJ)
#SQL { FETCH :c1 INTO :cm };
if (cm == null)

System.out.println("Commission is NULL\n");

COBOL
EXEC SQL FETCH C1 INTO :cm INDICATOR :cmind END-EXEC
IF cmind LESS THAN 0

DISPLAY 'Commission is NULL'

FORTRAN
EXEC SQL FETCH C1 INTO :cm INDICATOR :cmind
IF (cmind .LT. 0) THEN

WRITE(*,*) 'Commission is NULL'
ENDIF

In the figure, cmind is examined for a negative value. If it is not negative, the
application can use the returned value of cm. If it is negative, the fetched
value is NULL and cm should not be used. The database manager does not
change the value of the host variable in this case.

Note: If the database configuration parameter DFT_SQLMATHWARN is set to
’YES’, the value of cmind may be -2. This indicates a NULL that was
caused by evaluating an expression with an arithmetic error or by an
overflow while attempting to convert the numeric result value to the
host variable.

If the data type can handle NULLs, the application must provide a NULL
indicator. Otherwise, an error may occur. If a NULL indicator is not used, an
SQLCODE -305 (SQLSTATE 22002) is returned.

76 Application Development Guide

If the SQLCA structure indicates a truncation warning, the indicator variables
can be examined for truncation. If an indicator variable has a positive value, a
truncation occurred.
v If the seconds portion of a TIME data type is truncated, the indicator value

contains the seconds portion of the truncated data.
v For all other string data types, except large objects (LOB), the indicator

value represents the actual length of the data returned. User-defined
distinct types (UDT) are handled in the same way as their base type.

When processing INSERT or UPDATE statements, the database manager
checks the indicator variable if one exists. If the indicator variable is negative,
the database manager sets the target column value to NULL if NULLs are
allowed. If the indicator variable is zero or positive, the database manager
uses the value of the associated host variable.

The SQLWARN1 field in the SQLCA structure may contain an ’X’ or ’W’ if the
value of a string column is truncated when it is assigned to a host variable. It
contains an ’N’ if a null terminator is truncated.

A value of ’X’ is returned by the database manager only if all of the following
conditions are met:
v A mixed code page connection exists where conversion of character string

data from the database code page to the application code page involves a
change in the length of the data.

v A cursor is blocked.
v An indicator variable is provided by your application.

The value returned in the indicator variable will be the length of the resultant
character string in the application’s code page.

In all other cases involving data truncation, (as opposed to NULL terminator
truncation), the database manager returns a ’W’. In this case, the database
manager returns a value in the indicator variable to the application that is the
length of the resultant character string in the code page of the select list item
(either the application code page, the data base code page, or nothing). For
related information, refer to the SQL Reference.

Data Types
Each column of every DB2 table is given an SQL data type when the column is
created. For information about how these types are assigned to columns, refer
to the CREATE TABLE statement in the SQL Reference. The database manager
supports the following column data types:

SMALLINT
16-bit signed integer.

Chapter 4. Writing Static SQL Programs 77

INTEGER
32-bit signed integer. INT can be used as a synonym for this type.

BIGINT
64-bit signed integer.

DOUBLE
Double-precision floating point. DOUBLE PRECISION and
FLOAT(n) (where n is greater than 24) are synonyms for this type.

REAL Single-precision floating point. FLOAT(n) (where n is less than 24) is a
synonym for this type.

DECIMAL
Packed decimal. DEC, NUMERIC, and NUM are synonyms for this
type.

CHAR
Fixed-length character string of length 1 byte to 254 bytes.
CHARACTER can be used as a synonym for this type.

VARCHAR
Variable-length character string of length 1 byte to 32672 bytes.
CHARACTER VARYING and CHAR VARYING are synonyms for
this type.

LONG VARCHAR
Long variable-length character string of length 1 byte to 32 700 bytes.

CLOB Large object variable-length character string of length 1 byte to 2
gigabytes.

BLOB Large object variable-length binary string of length 1 byte to 2
gigabytes.

DATE Character string of length 10 representing a date.

TIME Character string of length 8 representing a time.

TIMESTAMP
Character string of length 26 representing a timestamp.

The following data types are supported only in double-byte character set
(DBCS) and Extended UNIX Code (EUC) character set environments:

GRAPHIC
Fixed-length graphic string of length 1 to 127 double-byte characters.

VARGRAPHIC
Variable-length graphic string of length 1 to 16336 double-byte
characters.

78 Application Development Guide

LONG VARGRAPHIC
Long variable-length graphic string of length 1 to 16 350 double-byte
characters.

DBCLOB
Large object variable-length graphic string of length 1 to 1 073 741 823
double-byte characters.

Notes:

1. Every supported data type can have the NOT NULL attribute. This is
treated as another type.

2. The above set of data types can be extended by defining user-defined
distinct types (UDT). UDTs are separate data types which use the
representation of one of the built-in SQL types.

Supported host languages have data types that correspond to the majority of
the database manager data types. Only these host language data types can be
used in host variable declarations. When the precompiler finds a host variable
declaration, it determines the appropriate SQL data type value. The database
manager uses this value to convert the data exchanged between itself and the
application.

As the application programmer, it is important for you to understand how the
database manager handles comparisons and assignments between different
data types. Simply put, data types must be compatible with each other during
assignment and comparison operations, whether the database manager is
working with two SQL column data types, two host-language data types, or
one of each.

The general rule for data type compatibility is that all supported host-language
numeric data types are comparable and assignable with all database manager
numeric data types, and all host-language character types are compatible with
all database manager character types; numeric types are incompatible with
character types. However, there are also some exceptions to this general rule
depending on host language idiosyncrasies and limitations imposed when
working with large objects.

Within SQL statements, DB2 provides conversions between compatible data
types. For example, in the following SELECT statement, SALARY and BONUS
are DECIMAL columns; however, each employee’s total compensation is
returned as DOUBLE data:

SELECT EMPNO, DOUBLE(SALARY+BONUS) FROM EMPLOYEE

Note that the execution of the above statement includes conversion between
DECIMAL and DOUBLE data types. To make the query results more readable
on your screen, you could use the following SELECT statement:

Chapter 4. Writing Static SQL Programs 79

SELECT EMPNO, DIGIT(SALARY+BONUS) FROM EMPLOYEE

To convert data within your application, contact your compiler vendor for
additional routines, classes, built-in types, or APIs that supports this
conversion.

Character data types may also be subject to character conversion. If your
application code page is not the same as your database code page, see
“Conversion Between Different Code Pages” on page 504.

For the list of supported SQL data types and the corresponding host language
data types, see the following:
v for C/C++, “Supported SQL Data Types in C and C++” on page 615
v for Java, “Supported SQL Data Types in Java” on page 625
v for COBOL, “Supported SQL Data Types in COBOL” on page 681
v for FORTRAN, “Supported SQL Data Types in FORTRAN” on page 698
v for REXX, “Supported SQL Data Types in REXX” on page 712.

For more information about SQL data types, the rules of assignments and
comparisons, and data conversion and conversion errors, refer to the SQL
Reference.

Using an Indicator Variable in the STATIC program
The following code segments show the modification to the corresponding
segments in the C version of the sample STATIC program, listed in “C
Example: STATIC.SQC” on page 66. They show the implementation of
indicator variables on data columns that are nullable. In this example, the
STATIC program is extended to select another column, WORKDEPT. This column
can have a null value. An indicator variable needs to be declared as a host
variable before being used.

...

EXEC SQL BEGIN DECLARE SECTION;
char wd[3];
short wd_ind;
char firstname[13];

...

EXEC SQL END DECLARE SECTION;

...

/* CONNECT TO SAMPLE DATABASE */

...

80 Application Development Guide

EXEC SQL SELECT FIRSTNME, WORKDEPT INTO :firstname, :wd:wdind
FROM EMPLOYEE
WHERE LASTNAME = 'JOHNSON';

...

Selecting Multiple Rows Using a Cursor

To allow an application to retrieve a set of rows, SQL uses a mechanism called
a cursor.

To help understand the concept of a cursor, assume that the database manager
builds a result table to hold all the rows retrieved by executing a SELECT
statement. A cursor makes rows from the result table available to an
application, by identifying or pointing to a current row of this table. When a
cursor is used, an application can retrieve each row sequentially from the
result table until an end of data condition, that is, the NOT FOUND
condition, SQLCODE +100 (SQLSTATE 02000) is reached. The set of rows
obtained as a result of executing the SELECT statement can consist of zero,
one, or more rows, depending on the number of rows that satisfy the search
condition.

The steps involved in processing a cursor are as follows:
1. Specify the cursor using a DECLARE CURSOR statement.
2. Perform the query and build the result table using the OPEN statement.
3. Retrieve rows one at a time using the FETCH statement.
4. Process rows with the DELETE or UPDATE statements (if required).
5. Terminate the cursor using the CLOSE statement.

An application can use several cursors concurrently. Each cursor requires its
own set of DECLARE CURSOR, OPEN, CLOSE, and FETCH statements.

See “Example: Cursor Program” on page 84 for an example of how an
application can select a set of rows and, using a cursor, process the set one
row at a time.

Declaring and Using the Cursor
The DECLARE CURSOR statement defines and names the cursor, identifying
the set of rows to be retrieved using a SELECT statement.

The application assigns a name for the cursor. This name is referred to in
subsequent OPEN, FETCH, and CLOSE statements. The query is any valid
select statement.

Declare Cursor Statement shows a DECLARE statement associated with a
static SELECT statement.

Chapter 4. Writing Static SQL Programs 81

Language
Example Source Code

C/C++
EXEC SQL DECLARE C1 CURSOR FOR

SELECT PNAME, DEPT FROM STAFF
WHERE JOB=:host_var;

Java (SQLJ)
#sql iterator cursor1(host_var data type);
#sql cursor1 = { SELECT PNAME, DEPT FROM STAFF

WHERE JOB=:host_var };

COBOL
EXEC SQL DECLARE C1 CURSOR FOR

SELECT NAME, DEPT FROM STAFF
WHERE JOB=:host-var END-EXEC.

FORTRAN
EXEC SQL DECLARE C1 CURSOR FOR
+ SELECT NAME, DEPT FROM STAFF
+ WHERE JOB=:host_var

Note: The placement of the DECLARE statement is arbitrary, but it must be
placed above the first use of the cursor.

Cursors and Unit of Work Considerations
The actions of a COMMIT or ROLLBACK operation vary for cursors,
depending on how the cursors are declared.

Read Only Cursors
If a cursor is determined to be read only and uses a repeatable read isolation
level, repeatable read locks are still gathered and maintained on system tables
needed by the unit of work. Therefore, it is important for applications to
periodically issue COMMIT statements, even for read only cursors.

WITH HOLD Option
If an application completes a unit of work by issuing a COMMIT statement,
all open cursors, except those declared using the WITH HOLD option, are
automatically closed by the database manager.

A cursor that is declared WITH HOLD maintains the resources it accesses
across multiple units of work. The exact effect of declaring a cursor WITH
HOLD depends on how the unit of work ends.

If the unit of work ends with a COMMIT statement, open cursors defined
WITH HOLD remain OPEN. The cursor is positioned before the next logical
row of the result table. In addition, prepared statements referencing OPEN
cursors defined WITH HOLD are retained. Only FETCH and CLOSE requests

82 Application Development Guide

associated with a particular cursor are valid immediately following the
COMMIT. UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT
OF statements are valid only for rows fetched within the same unit of work. If
a package is rebound during a unit of work, all held cursors are closed.

If the unit of work ends with a ROLLBACK statement, all open cursors are
closed, all locks acquired during the unit of work are released, and all
prepared statements that are dependent on work done in that unit are
dropped.

For example, suppose that the TEMPL table contains 1000 entries. You want to
update the salary column for all employees, and you expect to issue a
COMMIT statement every time you update 100 rows.
1. Declare the cursor using the WITH HOLD option:

EXEC SQL DECLARE EMPLUPDT CURSOR WITH HOLD FOR
SELECT EMPNO, LASTNAME, PHONENO, JOBCODE, SALARY
FROM TEMPL FOR UPDATE OF SALARY

2. Open the cursor and fetch data from the result table one row at a time:
EXEC SQL OPEN EMPLUPDT

.

.

.

EXEC SQL FETCH EMPLUPDT
INTO :upd_emp, :upd_lname, :upd_tele, :upd_jobcd, :upd_wage,

3. When you want to update or delete a row, use an UPDATE or DELETE
statement using the WHERE CURRENT OF option. For example, to
update the current row, your program can issue:
EXEC SQL UPDATE TEMPL SET SALARY = :newsalary

WHERE CURRENT OF EMPLUPDT

4. After a COMMIT is issued, you must issue a FETCH before you can
update another row.

You should include code in your application to detect and handle an
SQLCODE -501 (SQLSTATE 24501), which can be returned on a FETCH or
CLOSE statement if your application either:
v Uses cursors declared WITH HOLD
v Executes more than one unit of work and leaves a WITH HOLD cursor

open across the unit of work boundary (COMMIT WORK).

If an application invalidates its package by dropping a table on which it is
dependent, the package gets rebound dynamically. If this is the case, an
SQLCODE -501 (SQLSTATE 24501) is returned for a FETCH or CLOSE
statement because the database manager closes the cursor. The way to handle

Chapter 4. Writing Static SQL Programs 83

an SQLCODE -501 (SQLSTATE 24501) in this situation depends on whether
you want to fetch rows from the cursor.
v If you want to fetch rows from the cursor, open the cursor, then run the

FETCH statement. Note, however, that the OPEN statement repositions the
cursor to the start. The previous position held at the COMMIT WORK
statement is lost.

v If you do not want to fetch rows from the cursor, do not issue any more
SQL requests against the cursor.

WITH RELEASE Option: When an application closes a cursor using the
WITH RELEASE option, DB2 attempts to release all READ locks that the
cursor still holds. The cursor will only continue to hold WRITE locks. If the
application closes the cursor without using the RELEASE option, the READ
and WRITE locks will be released when the unit of work completes.

Example: Cursor Program
This sample program shows the SQL statements that define and use a cursor.
The cursor is processed using static SQL. The sample is available in the
following programming languages:

C cursor.sqc

Java Cursor.sqlj

COBOL cursor.sqb

Since REXX does not support static SQL, a sample is not provided. See
“Example: Dynamic SQL Program” on page 133 for a REXX example that
processes a cursor dynamically.

How the Cursor Program Works
1. Declare the cursor. The DECLARE CURSOR statement associates the

cursor c1 to a query. The query identifies the rows that the application
retrieves using the FETCH statement. The job field of staff is defined to
be updatable, even though it is not specified in the result table.

2. Open the cursor. The cursor c1 is opened, causing the database manager
to perform the query and build a result table. The cursor is positioned
before the first row.

3. Retrieve a row. The FETCH statement positions the cursor at the next row
and moves the contents of the row into the host variables. This row
becomes the current row.

4. Close the cursor. The CLOSE statement is issued, releasing the resources
associated with the cursor. The cursor can be opened again, however.

The CHECKERR macro/function is an error checking utility which is external to
the program. The location of this error checking utility depends upon the
programming language used:

84 Application Development Guide

C For C programs that call DB2 APIs, the sqlInfoPrint function
in utilapi.c is redefined as API_SQL_CHECK in utilapi.h. For C
embedded SQL programs, the sqlInfoPrint function in
utilemb.sqc is redefined as EMB_SQL_CHECK in utilemb.h.

Java Any SQL error is thrown as an SQLException and handled in
the catch block of the application.

COBOL CHECKERR is an external program named checkerr.cbl

FORTRAN CHECKERR is a subroutine located in the util.f file.

See “Using GET ERROR MESSAGE in Example Programs” on page 118 for the
source code for this error checking utility.

Chapter 4. Writing Static SQL Programs 85

C Example: CURSOR.SQC
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "utilemb.h"

EXEC SQL INCLUDE SQLCA;

int main(int argc, char *argv[])
{

EXEC SQL BEGIN DECLARE SECTION;
char pname[10];
short dept;
char userid[9];
char passwd[19];

EXEC SQL END DECLARE SECTION;

printf("Sample C program: CURSOR \n");

if (argc == 1)
{

EXEC SQL CONNECT TO sample;
EMB_SQL_CHECK("CONNECT TO SAMPLE");
}
else if (argc == 3)
{

strcpy (userid, argv[1]);
strcpy (passwd, argv[2]);
EXEC SQL CONNECT TO sample USER :userid USING :passwd;
EMB_SQL_CHECK("CONNECT TO SAMPLE");

}
else
{

printf ("\nUSAGE: cursor [userid passwd]\n\n");
return 1;

} /* endif */

EXEC SQL DECLARE c1 CURSOR FOR �1�
SELECT name, dept FROM staff WHERE job='Mgr'
FOR UPDATE OF job;

EXEC SQL OPEN c1; �2�
EMB_SQL_CHECK("OPEN CURSOR");

do
{

EXEC SQL FETCH c1 INTO :pname, :dept; �3�
if (SQLCODE != 0) break;

printf("%-10.10s in dept. %2d will be demoted to Clerk\n",
pname, dept);

} while (1);

EXEC SQL CLOSE c1; �4�

86 Application Development Guide

EMB_SQL_CHECK("CLOSE CURSOR");

EXEC SQL ROLLBACK;
EMB_SQL_CHECK("ROLLBACK");
printf("\nOn second thought -- changes rolled back.\n");

EXEC SQL CONNECT RESET;
EMB_SQL_CHECK("CONNECT RESET");
return 0;

}
/* end of program : CURSOR.SQC */

Chapter 4. Writing Static SQL Programs 87

Java Example: Cursor.sqlj
import java.sql.*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;

#sql iterator CursorByName(String name, short dept) ;
#sql iterator CursorByPos(String, short) ;

class Cursor
{ static

{ try
{ Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance ();
}
catch (Exception e)
{ System.out.println ("\n Error loading DB2 Driver...\n");

System.out.println (e);
System.exit(1);

}
}

public static void main(String argv[])
{ try

{ System.out.println (" Java Cursor Sample");

String url = "jdbc:db2:sample"; // URL is jdbc:db2:dbname
Connection con = null;

// Set the connection
if (argv.length == 0)
{ // connect with default id/password

con = DriverManager.getConnection(url);
}
else if (argv.length == 2)
{ String userid = argv[0];

String passwd = argv[1];

// connect with user-provided username and password
con = DriverManager.getConnection(url, userid, passwd);

}
else
{ throw new Exception("\nUsage: java Cursor [username password]\n");
}

// Set the default context
DefaultContext ctx = new DefaultContext(con);
DefaultContext.setDefaultContext(ctx);

// Enable transactions
con.setAutoCommit(false);

// Using cursors
try
{ CursorByName cursorByName;

CursorByPos cursorByPos;

88 Application Development Guide

String name = null;
short dept=0;

// Using the JDBC ResultSet cursor method
System.out.println("\nUsing the JDBC ResultSet cursor method");
System.out.println(" with a 'bind by name' cursor ...\n");

#sql cursorByName = {
SELECT name, dept FROM staff WHERE job='Mgr' }; �1�

while (cursorByName.next()) �2�
{ name = cursorByName.name(); �3�

dept = cursorByName.dept();

System.out.print (" name= " + name);
System.out.print (" dept= " + dept);
System.out.print ("\n");

}
cursorByName.close(); �4�

// Using the SQLJ iterator cursor method
System.out.println("\nUsing the SQLJ iterator cursor method");
System.out.println(" with a 'bind by position' cursor ...\n");

#sql cursorByPos = {
SELECT name, dept FROM staff WHERE job='Mgr' }; �1� �2�

while (true)
{ #sql { FETCH :cursorByPos INTO :name, :dept }; �3�

if (cursorByPos.endFetch()) break;

System.out.print (" name= " + name);
System.out.print (" dept= " + dept);
System.out.print ("\n");

}
cursorByPos.close(); �4�

}
catch(Exception e)
{ throw e;
}
finally
{ // Rollback the transaction

System.out.println("\nRollback the transaction...");
#sql { ROLLBACK };
System.out.println("Rollback done.");

}
}
catch(Exception e)
{ System.out.println (e);
}

}
}

Chapter 4. Writing Static SQL Programs 89

COBOL Example: CURSOR.SQB
Identification Division.
Program-ID. "cursor".

Data Division.
Working-Storage Section.

copy "sqlenv.cbl".
copy "sql.cbl".
copy "sqlca.cbl".

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 pname pic x(10).
77 dept pic s9(4) comp-5.
01 userid pic x(8).
01 passwd.

49 passwd-length pic s9(4) comp-5 value 0.
49 passwd-name pic x(18).

EXEC SQL END DECLARE SECTION END-EXEC.

77 errloc pic x(80).

Procedure Division.
Main Section.

display "Sample COBOL program: CURSOR".

display "Enter your user id (default none): "
with no advancing.

accept userid.

if userid = spaces
EXEC SQL CONNECT TO sample END-EXEC

else
display "Enter your password : " with no advancing
accept passwd-name.

* Passwords in a CONNECT statement must be entered in a VARCHAR format
* with the length of the input string.

inspect passwd-name tallying passwd-length for characters
before initial " ".

EXEC SQL CONNECT TO sample USER :userid USING :passwd
END-EXEC.

move "CONNECT TO" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL DECLARE c1 CURSOR FOR �1�
SELECT name, dept FROM staff
WHERE job='Mgr'
FOR UPDATE OF job END-EXEC.

EXEC SQL OPEN c1 END-EXEC. �2�
move "OPEN CURSOR" to errloc.
call "checkerr" using SQLCA errloc.

90 Application Development Guide

perform Fetch-Loop thru End-Fetch-Loop
until SQLCODE not equal 0.

EXEC SQL CLOSE c1 END-EXEC. �4�
move "CLOSE CURSOR" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL ROLLBACK END-EXEC.
move "ROLLBACK" to errloc.
call "checkerr" using SQLCA errloc.
DISPLAY "On second thought -- changes rolled back.".

EXEC SQL CONNECT RESET END-EXEC.
move "CONNECT RESET" to errloc.
call "checkerr" using SQLCA errloc.

End-Main.
go to End-Prog.

Fetch-Loop Section.
EXEC SQL FETCH c1 INTO :PNAME, :DEPT END-EXEC. �3�
if SQLCODE not equal 0

go to End-Fetch-Loop.
display pname, " in dept. ", dept,

" will be demoted to Clerk".
End-Fetch-Loop. exit.

End-Prog.
stop run.

Chapter 4. Writing Static SQL Programs 91

Updating and Deleting Retrieved Data

It is possible to update and delete the row referenced by a cursor. For a row
to be updatable, the query corresponding to the cursor must not be read-only.
For a description of what makes a query updatable or deletable, refer to the
SQL Reference.

Updating Retrieved Data
To update with a cursor, use the WHERE CURRENT OF clause in an
UPDATE statement. Use the FOR UPDATE clause to tell the system that you
want to update some columns of the result table. You can specify a column in
the FOR UPDATE without it being in the fullselect; therefore, you can update
columns that are not explicitly retrieved by the cursor. If the FOR UPDATE
clause is specified without column names, all columns of the table or view
identified in the first FROM clause of the outer fullselect are considered to be
updatable. Do not name more columns than you need in the FOR UPDATE
clause. In some cases, naming extra columns in the FOR UPDATE clause can
cause DB2 to be less efficient in accessing the data.

Deleting Retrieved Data
Deletion with a cursor is done using the WHERE CURRENT OF clause in a
DELETE statement. In general, the FOR UPDATE clause is not required for
deletion of the current row of a cursor. The only exception occurs when using
dynamic SQL (see “Chapter 5. Writing Dynamic SQL Programs” on page 127
for information on dynamic SQL) for either the SELECT statement or the
DELETE statement in an application which has been precompiled with
LANGLEVEL set to SAA1, and bound with BLOCKING ALL. In this case, a
FOR UPDATE clause is necessary in the SELECT statement. Refer to the
Command Reference for information on the precompiler options.

The DELETE statement causes the row being referenced by the cursor to be
deleted. This leaves the cursor positioned before the next row and a FETCH
statement must be issued before additional WHERE CURRENT OF operations
may be performed against the cursor.

Types of Cursors
Cursors fall into three categories:

Read only
The rows in the cursor can only be read, not updated. Read-only
cursors are used when an application will only read data, not modify
it. A cursor is considered read only if it is based on a read-only
select-statement. See the rules in “Updating Retrieved Data” for
select-statements which define non-updatable result tables.

There can be performance advantages for read-only cursors. For more
information on read-only cursors, refer to the Administration Guide:
Implementation.

92 Application Development Guide

Updatable
The rows in the cursor can be updated. Updatable cursors are used
when an application modifies data as the rows in the cursor are
fetched. The specified query can only refer to one table or view. The
query must also include the FOR UPDATE clause, naming each
column that will be updated (unless the LANGLEVEL MIA
precompile option is used).

Ambiguous
The cursor cannot be determined to be updatable or read only from
its definition or context. This can happen when a dynamic SQL
statement is encountered that could be used to change a cursor that
would otherwise be considered read-only.

An ambiguous cursor is treated as read only if the BLOCKING ALL
option is specified when precompiling or binding. Otherwise, it is
considered updatable.

Note: Cursors processed dynamically are always ambiguous.

For a complete list of criteria used to determine whether a cursor is read-only,
updatable, or ambiguous, refer to the SQL Reference.

Example: OPENFTCH Program
This example selects from a table using a cursor, opens the cursor, and fetches
rows from the table. For each row fetched, it decides if the row should be
deleted or updated (based on a simple criteria). The sample is available in the
following programming languages:

C openftch.sqc

Java Openftch.sqlj and OpF_Curs.sqlj

COBOL openftch.sqb

The REXX language does not support static SQL, so a sample is not provided.

How the OPENFTCH Program Works
1. Declare the cursor. The DECLARE CURSOR statement associates the

cursor c1 to a query. The query identifies the rows that the application
retrieves using the FETCH statement. The job field of staff is defined to
be updatable, even though it is not specified in the result table.

2. Open the cursor. The cursor c1 is opened, causing the database manager
to perform the query and build a result table. The cursor is positioned
before the first row.

3. Retrieve a row. The FETCH statement positions the cursor at the next row
and moves the contents of the row into the host variables. This row
becomes the current row.

Chapter 4. Writing Static SQL Programs 93

4. Update OR Delete the current row. The current row is either updated or
deleted, depending upon the value of dept returned with the FETCH
statement.
If an UPDATE is performed, the position of the cursor remains on this row
because the UPDATE statement does not change the position of the
current row.
If a DELETE statement is performed, a different situation arises, because
the current row is deleted. This is equivalent to being positioned before the
next row, and a FETCH statement must be issued before additional
WHERE CURRENT OF operations are performed.

5. Close the cursor. The CLOSE statement is issued, releasing the resources
associated with the cursor. The cursor can be opened again, however.

The CHECKERR macro/function is an error checking utility which is external to
the program. The location of this error checking utility depends upon the
programming language used:

C For C programs that call DB2 APIs, the sqlInfoPrint function
in utilapi.c is redefined as API_SQL_CHECK in utilapi.h. For C
embedded SQL programs, the sqlInfoPrint function in
utilemb.sqc is redefined as EMB_SQL_CHECK in utilemb.h.

Java Any SQL error is thrown as an SQLException and handled in
the catch block of the application.

COBOL CHECKERR is an external program named checkerr.cbl.

See “Using GET ERROR MESSAGE in Example Programs” on page 118 for the
source code for this error checking utility.

94 Application Development Guide

C Example: OPENFTCH.SQC
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "utilemb.h"

EXEC SQL INCLUDE SQLCA;

int main(int argc, char *argv[])
{

EXEC SQL BEGIN DECLARE SECTION;
char pname[10];
short dept;
char userid[9];
char passwd[19];

EXEC SQL END DECLARE SECTION;

printf("Sample C program: OPENFTCH\n");

if (argc == 1)
{

EXEC SQL CONNECT TO sample;
EMB_SQL_CHECK("CONNECT TO SAMPLE");

}
else if (argc == 3)
{

strcpy (userid, argv[1]);
strcpy (passwd, argv[2]);
EXEC SQL CONNECT TO sample USER :userid USING :passwd;
EMB_SQL_CHECK("CONNECT TO SAMPLE");

}
else
{

printf ("\nUSAGE: openftch [userid passwd]\n\n");
return 1;

} /* endif */

EXEC SQL DECLARE c1 CURSOR FOR �1�
SELECT name, dept FROM staff WHERE job='Mgr'
FOR UPDATE OF job;

EXEC SQL OPEN c1; �2�
EMB_SQL_CHECK("OPEN CURSOR");

do
{

EXEC SQL FETCH c1 INTO :pname, :dept; �3�
if (SQLCODE != 0) break;

if (dept > 40)
{

printf("%-10.10s in dept. %2d will be demoted to Clerk\n",
pname, dept);

EXEC SQL UPDATE staff SET job = 'Clerk' �4�

Chapter 4. Writing Static SQL Programs 95

WHERE CURRENT OF c1;
EMB_SQL_CHECK("UPDATE STAFF");

}
else
{

printf ("%-10.10s in dept. %2d will be DELETED!\n",
pname, dept);

EXEC SQL DELETE FROM staff WHERE CURRENT OF c1;
EMB_SQL_CHECK("DELETE");

} /* endif */
} while (1);

EXEC SQL CLOSE c1; �5�
EMB_SQL_CHECK("CLOSE CURSOR");

EXEC SQL ROLLBACK;
EMB_SQL_CHECK("ROLLBACK");
printf("\nOn second thought -- changes rolled back.\n");

EXEC SQL CONNECT RESET;
EMB_SQL_CHECK("CONNECT RESET");
return 0;

}
/* end of program : OPENFTCH.SQC */

96 Application Development Guide

Java Example: Openftch.sqlj
OpF_Curs.sqlj
// PURPOSE : This file, named OpF_Curs.sqlj, contains the definition
// of the class OpF_Curs used in the sample program Openftch.

import sqlj.runtime.ForUpdate;
#sql public iterator OpF_Curs implements ForUpdate (String, short);

Openftch.sqlj
import java.sql.*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;

class Openftch
{ static

{ try
{ Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance ();
}
catch (Exception e)
{ System.out.println ("\n Error loading DB2 Driver...\n");

System.out.println (e);
System.exit(1);

}
}

public static void main(String argv[])
{ try

{ System.out.println (" Java Openftch Sample");

String url = "jdbc:db2:sample"; // URL is jdbc:db2:dbname
Connection con = null;

// Set the connection
if (argv.length == 0)
{ // connect with default id/password

con = DriverManager.getConnection(url);
}
else if (argv.length == 2)
{ String userid = argv[0];

String passwd = argv[1];

// connect with user-provided username and password
con = DriverManager.getConnection(url, userid, passwd);

}
else
{ throw new Exception(

"\nUsage: java Openftch [username password]\n");
} // if - else if - else

// Set the default context
DefaultContext ctx = new DefaultContext(con);
DefaultContext.setDefaultContext(ctx);

// Enable transactions

Chapter 4. Writing Static SQL Programs 97

con.setAutoCommit(false);

// Executing SQLJ positioned update/delete statements.
try
{ OpF_Curs forUpdateCursor;

String name = null;
short dept=0;

#sql forUpdateCursor =
{ SELECT name, dept

FROM staff
WHERE job='Mgr'

}; // #sql �1��2�

while (true)
{ #sql

{ FETCH :forUpdateCursor
INTO :name, :dept

}; // #sql �3�
if (forUpdateCursor.endFetch()) break;

if (dept > 40)
{ System.out.println (

name + " in dept. "
+ dept + " will be demoted to Clerk");

#sql
{ UPDATE staff SET job = 'Clerk'

WHERE CURRENT OF :forUpdateCursor
}; // #sql �4�

}
else
{ System.out.println (

name + " in dept. " + dept
+ " will be DELETED!");

#sql
{ DELETE FROM staff

WHERE CURRENT OF :forUpdateCursor
}; // #sql

} // if - else
}
forUpdateCursor.close(); �5�

}
catch(Exception e)
{ throw e;
}
finally
{ // Rollback the transaction

System.out.println("\nRollback the transaction...");
#sql { ROLLBACK };
System.out.println("Rollback done.");

} // try - catch - finally
}
catch(Exception e)

98 Application Development Guide

{ System.out.println (e);
} // try - catch

} // main
} // class Openftch

Chapter 4. Writing Static SQL Programs 99

COBOL Example: OPENFTCH.SQB
Identification Division.
Program-ID. "openftch".

Data Division.
Working-Storage Section.

copy "sqlca.cbl".

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 pname pic x(10).
01 dept pic s9(4) comp-5.
01 userid pic x(8).
01 passwd.

49 passwd-length pic s9(4) comp-5 value 0.
49 passwd-name pic x(18).

EXEC SQL END DECLARE SECTION END-EXEC.

77 errloc pic x(80).

Procedure Division.
Main Section.

display "Sample COBOL program: OPENFTCH".

* Get database connection information.
display "Enter your user id (default none): "

with no advancing.
accept userid.

if userid = spaces
EXEC SQL CONNECT TO sample END-EXEC

else
display "Enter your password : " with no advancing
accept passwd-name.

* Passwords in a CONNECT statement must be entered in a VARCHAR format
* with the length of the input string.

inspect passwd-name tallying passwd-length for characters
before initial " ".

EXEC SQL CONNECT TO sample USER :userid USING :passwd
END-EXEC.

move "CONNECT TO" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL DECLARE c1 CURSOR FOR �1�
SELECT name, dept FROM staff
WHERE job='Mgr'
FOR UPDATE OF job END-EXEC.

EXEC SQL OPEN c1 END-EXEC �2�
move "OPEN" to errloc.
call "checkerr" using SQLCA errloc.

* call the FETCH and UPDATE/DELETE loop.

100 Application Development Guide

perform Fetch-Loop thru End-Fetch-Loop
until SQLCODE not equal 0.

EXEC SQL CLOSE c1 END-EXEC. �5�
move "CLOSE" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL ROLLBACK END-EXEC.
move "ROLLBACK" to errloc.
call "checkerr" using SQLCA errloc.
display "On second thought -- changes rolled back.".

EXEC SQL CONNECT RESET END-EXEC.
move "CONNECT RESET" to errloc.
call "checkerr" using SQLCA errloc.

End-Main.
go to End-Prog.

Fetch-Loop Section.
EXEC SQL FETCH c1 INTO :pname, :dept END-EXEC. �3�
if SQLCODE not equal 0

go to End-Fetch-Loop.

if dept greater than 40
go to Update-Staff.

Delete-Staff.
display pname, " in dept. ", dept,

" will be DELETED!".

EXEC SQL DELETE FROM staff WHERE CURRENT OF c1 END-EXEC.
move "DELETE" to errloc.
call "checkerr" using SQLCA errloc.

go to End-Fetch-Loop.

Update-Staff.
display pname, " in dept. ", dept,

" will be demoted to Clerk".

EXEC SQL UPDATE staff SET job = 'Clerk' �4�
WHERE CURRENT OF c1 END-EXEC.

move "UPDATE" to errloc.
call "checkerr" using SQLCA errloc.

End-Fetch-Loop. exit.

End-Prog.
stop run.

Chapter 4. Writing Static SQL Programs 101

Advanced Scrolling Techniques

The following topics on advanced scrolling techniques are discussed in this
section:
v Scrolling Through Data that has Already Been Retrieved
v Keeping a Copy of the Data
v Retrieving the Data a Second Time
v Establishing a Position at the End of a Table
v Updating Previously Retrieved Data

Scrolling Through Data that has Already Been Retrieved
When an application retrieves data from the database, the FETCH statement
allows it to scroll forward through the data, however, the database manager
has no embedded SQL statement that allows it scroll backwards through the
data, (equivalent to a backward FETCH). DB2 CLI and Java, however, do
support a backward FETCH through read-only scrollable cursors. Refer to the
CLI Guide and Reference and see “Creating Java Applications and Applets” on
page 628 for more information on scrollable cursors. For embedded SQL
applications, you can use the following techniques to scroll through data that
has been retrieved:
1. Keep a copy of the data that has been fetched and scroll through it by

some programming technique.
2. Use SQL to retrieve the data again, typically by a second SELECT

statement.

These options are discussed in more detail in:
v Keeping a Copy of the Data
v Retrieving the Data a Second Time

Keeping a Copy of the Data
An application can save fetched data in virtual storage. If the data does not fit
in virtual storage, the application can write the data to a temporary file. One
effect of this approach is that a user, scrolling backward, always sees exactly
the same data that was fetched, even if the data in the database was changed
in the interim by a transaction.

Using an isolation level of repeatable read, the data you retrieve from a
transaction can be retrieved again by closing and opening a cursor. Other
applications are prevented from updating the data in your result set. Isolation
levels and locking can affect how users update data.

Retrieving the Data a Second Time
This technique depends on the order in which you want to see the data again:
v Retrieving from the Beginning
v Retrieving from the Middle
v Order of Rows in the Second Result Table
v Retrieving in Reverse Order

102 Application Development Guide

Retrieving from the Beginning
To retrieve the data again from the beginning, merely close the active cursor
and reopen it. This action positions the cursor at the beginning of the result
table. But, unless the application holds locks on the table, others may have
changed it, so what had been the first row of the result table may no longer
be.

Retrieving from the Middle
To retrieve data a second time from somewhere in the middle of the result
table, execute a second SELECT statement and declare a second cursor on the
statement. For example, suppose the first SELECT statement was:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
ORDER BY DEPTNO

Now, suppose that you want to return to the rows that start with
DEPTNO = 'M95' and fetch sequentially from that point. Code the following:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
AND DEPTNO >= 'M95'
ORDER BY DEPTNO

This statement positions the cursor where you want it.

Order of Rows in the Second Result Table
The rows of the second result table may not be displayed in the same order as
in the first. The database manager does not consider the order of rows as
significant unless the SELECT statement uses ORDER BY. Thus, if there are
several rows with the same DEPTNO value, the second SELECT statement may
retrieve them in a different order from the first. The only guarantee is that
they will all be in order by department number, as demanded by the clause
ORDER BY DEPTNO.

The difference in ordering could occur even if you were to execute the same
SQL statement, with the same host variables, a second time. For example, the
statistics in the catalog could be updated between executions, or indexes
could be created or dropped. You could then execute the SELECT statement
again.

The ordering is more likely to change if the second SELECT has a predicate
that the first did not have; the database manager could choose to use an index
on the new predicate. For example, it could choose an index on LOCATION for
the first statement in our example and an index on DEPTNO for the second.
Because rows are fetched in order by the index key, the second order need not
be the same as the first.

Chapter 4. Writing Static SQL Programs 103

Again, executing two similar SELECT statements can produce a different
ordering of rows, even if no statistics change and no indexes are created or
dropped. In the example, if there are many different values of LOCATION, the
database manager could choose an index on LOCATION for both statements. Yet
changing the value of DEPTNO in the second statement to the following, could
cause the database manager to choose an index on DEPTNO:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
AND DEPTNO >= 'Z98'
ORDER BY DEPTNO

Because of the subtle relationships between the form of an SQL statement and
the values in this statement, never assume that two different SQL statements
will return rows in the same order unless the order is uniquely determined by
an ORDER BY clause.

Retrieving in Reverse Order
Ascending ordering of rows is the default. If there is only one row for each
value of DEPTNO, then the following statement specifies a unique ascending
ordering of rows:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
ORDER BY DEPTNO

To retrieve the same rows in reverse order, specify that the order is
descending, as in the following statement:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
ORDER BY DEPTNO DESC

A cursor on the second statement retrieves rows in exactly the opposite order
from a cursor on the first statement. Order of retrieval is guaranteed only if
the first statement specifies a unique ordering sequence.

For retrieving rows in reverse order, it can be useful to have two indexes on
the DEPTNO column, one in ascending order and the other in descending order.

Establishing a Position at the End of a Table
The database manager does not guarantee an order to data stored in a table;
therefore, the end of a table is not defined. However, order is defined on the
result of an SQL statement:

SELECT * FROM DEPARTMENT
ORDER BY DEPTNO DESC

For this example, the following statement positions the cursor at the row with
the highest DEPTNO value:

104 Application Development Guide

SELECT * FROM DEPARTMENT
WHERE DEPTNO =
(SELECT MAX(DEPTNO) FROM DEPARTMENT)

Note, however, that if several rows have the same value, the cursor is
positioned on the first of them.

Updating Previously Retrieved Data
To scroll backward and update data that was retrieved previously, you can
use a combination of the techniques discussed in “Scrolling Through Data that
has Already Been Retrieved” on page 102 and “Updating Retrieved Data” on
page 92. You can do one of two things:
1. If you have a second cursor on the data to be updated and if the SELECT

statement uses none of the restricted elements, you can use a
cursor-controlled UPDATE statement. Name the second cursor in the
WHERE CURRENT OF clause.

2. In other cases, use UPDATE with a WHERE clause that names all the
values in the row or specifies the primary key of the table. You can
execute one statement many times with different values of the variables.

Example: UPDAT Program
The UPDAT program uses dynamic SQL to access the STAFF table in the
SAMPLE database and changes all managers to clerks. Then the program
reverses the changes by rolling back the unit of work. The sample is available
in the following programming languages:

C updat.sqc

Java Updat.sqlj

COBOL updat.sqb

REXX updat.cmd

How the UPDAT Program Works
1. Define an SQLCA structure. The INCLUDE SQLCA statement defines and

declares an SQLCA structure, and defines SQLCODE as an element within
the structure. The SQLCODE field of the SQLCA structure is updated with
error information by the database manager after execution of SQL
statements and database manager API calls.
Java applications access SQLCODE and SQLSTATE through the methods
defined for the SQLException object, and therefore do not need an
equivalent ″include SQLCA″ statement.
REXX applications have one occurrence of an SQLCA structure, named
SQLCA, predefined for application use. It can be referenced without
application definition.

2. Declare host variables. The BEGIN DECLARE SECTION and END
DECLARE SECTION statements delimit the host variable declarations.

Chapter 4. Writing Static SQL Programs 105

Host variables are used to pass data to and from the database manager.
They are prefixed with a colon (:) when referenced in an SQL statement.
Java and REXX applications do not need to declare host variables, except
(for REXX) in the case of LOB file reference variables and locators. Host
variable data types and sizes are determined at run time when the
variables are referenced.

3. Connect to database. The program connects to the sample database, and
requests shared access to it. (It is assumed that a START DATABASE
MANAGER API call or db2start command has been issued.) Other
programs that connect to the same database using shared access are also
granted access.

4. Execute the UPDATE SQL statement. The SQL statement is executed
statically with the use of a host variable. The job column of the staff
tables is set to the value of the host variable, where the job column has a
value of Mgr.

5. Execute the DELETE SQL statement The SQL statement is executed
statically with the use of a host variable. All rows that have a job column
value equal to that of the specified host variable, (jobUpdate/job-
update/job_update) are deleted.

6. Execute the INSERT SQL statement A row is inserted into the STAFF table.
This insertion implements the use of a host variable which was set prior to
the execution of this SQL statement.

7. End the transaction. End the unit of work with a ROLLBACK statement.
The result of the SQL statement executed previously can be either made
permanent using the COMMIT statement, or undone using the
ROLLBACK statement. All SQL statements within the unit of work are
affected.

The CHECKERR macro/function is an error checking utility which is external to
the program. The location of this error checking utility depends upon the
programming language used:

C For C programs that call DB2 APIs, the sqlInfoPrint function
in utilapi.c is redefined as API_SQL_CHECK in utilapi.h. For C
embedded SQL programs, the sqlInfoPrint function in
utilemb.sqc is redefined as EMB_SQL_CHECK in utilemb.h.

Java Any SQL error is thrown as an SQLException and handled in
the catch block of the application.

COBOL CHECKERR is an external program named checkerr.cbl.

REXX CHECKERR is a procedure located at bottom of the current
program.

See “Using GET ERROR MESSAGE in Example Programs” on page 118 for the
source code for this error checking utility.

106 Application Development Guide

C Example: UPDAT.SQC
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlenv.h>
#include "utilemb.h"

EXEC SQL INCLUDE SQLCA; �1�

int main(int argc, char *argv[])
{

EXEC SQL BEGIN DECLARE SECTION; �2�
char statement[256];
char userid[9];
char passwd[19];
char jobUpdate[6];

EXEC SQL END DECLARE SECTION;

printf("\nSample C program: UPDAT \n");

if (argc == 1)
{

EXEC SQL CONNECT TO sample;
EMB_SQL_CHECK("CONNECT TO SAMPLE");
}
else if (argc == 3)
{

strcpy (userid, argv[1]);
strcpy (passwd, argv[2]);
EXEC SQL CONNECT TO sample USER :userid USING :passwd; �3�

EMB_SQL_CHECK("CONNECT TO SAMPLE");
}
else
{

printf ("\nUSAGE: updat [userid passwd]\n\n");
return 1;

} /* endif */

strcpy (jobUpdate, "Clerk");
EXEC SQL UPDATE staff SET job = :jobUpdate WHERE job = 'Mgr'; �4�
EMB_SQL_CHECK("UPDATE STAFF");
printf ("All 'Mgr' have been demoted to 'Clerk'!\n");

strcpy (jobUpdate, "Sales");
EXEC SQL DELETE FROM staff WHERE job = :jobUpdate; �5�
EMB_SQL_CHECK("DELETE FROM STAFF");
printf ("All 'Sales' people have been deleted!\n");

EXEC SQL INSERT INTO staff
VALUES (999, 'Testing', 99, :jobUpdate, 0, 0, 0); �6�

EMB_SQL_CHECK("INSERT INTO STAFF");
printf ("New data has been inserted\n");

EXEC SQL ROLLBACK; �7�

Chapter 4. Writing Static SQL Programs 107

EMB_SQL_CHECK("ROLLBACK");
printf("On second thought -- changes rolled back.\n");

EXEC SQL CONNECT RESET;
EMB_SQL_CHECK("CONNECT RESET");
return 0;

}
/* end of program : UPDAT.SQC */

108 Application Development Guide

Java Example: Updat.sqlj
import java.sql.*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;

class Updat
{ static

{ try
{ Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance ();
}
catch (Exception e)
{ System.out.println ("\n Error loading DB2 Driver...\n");

System.out.println (e);
System.exit(1);

}
}

public static void main(String argv[])
{ try

{ System.out.println ("\n Java Updat Sample");

String url = "jdbc:db2:sample"; // URL is jdbc:db2:dbname
Connection con = null;

// Set the connection �3�
if (argv.length == 0)
{ // connect with default id/password

con = DriverManager.getConnection(url);
}
else if (argv.length == 2)
{ String userid = argv[0];

String passwd = argv[1];

// connect with user-provided username and password
con = DriverManager.getConnection(url, userid, passwd);

}
else
{ throw new Exception("\nUsage: java Updat [username password]\n");
}

// Set the default context
DefaultContext ctx = new DefaultContext(con);
DefaultContext.setDefaultContext(ctx);

// Enable transactions
con.setAutoCommit(false);

// UPDATE/DELETE/INSERT
try
{ String jobUpdate = null;

jobUpdate="Clerk";
#sql {UPDATE staff SET job = :jobUpdate WHERE job = 'Mgr'}; �4�

Chapter 4. Writing Static SQL Programs 109

System.out.println("\nAll 'Mgr' have been demoted to 'Clerk'!");

jobUpdate="Sales";
#sql {DELETE FROM staff WHERE job = :jobUpdate};
System.out.println("All 'Sales' people have been deleted!"); �5�

#sql {INSERT INTO staff
VALUES (999, 'Testing', 99, :jobUpdate, 0, 0, 0)}; �6�

System.out.println("New data has been inserted");
}
catch(Exception e)
{ throw e;
}
finally
{ // Rollback the transaction

System.out.println("\nRollback the transaction...");
#sql { ROLLBACK }; �7�
System.out.println("Rollback done.");

}
}
catch (Exception e)
{ System.out.println (e);
}

}
}

110 Application Development Guide

COBOL Example: UPDAT.SQB
Identification Division.
Program-ID. "updat".

Data Division.
Working-Storage Section.

copy "sql.cbl".
copy "sqlenv.cbl".
copy "sqlca.cbl". �1�

EXEC SQL BEGIN DECLARE SECTION END-EXEC. �2�
01 statement pic x(80).
01 userid pic x(8).
01 passwd.

49 passwd-length pic s9(4) comp-5 value 0.
49 passwd-name pic x(18).

01 job-update pic x(5).
EXEC SQL END DECLARE SECTION END-EXEC.

* Local variables
77 errloc pic x(80).
77 error-rc pic s9(9) comp-5.
77 state-rc pic s9(9) comp-5.

* Variables for the GET ERROR MESSAGE API
* Use application specific bound instead of BUFFER-SZ
77 buffer-size pic s9(4) comp-5 value 1024.
77 line-width pic s9(4) comp-5 value 80.
77 error-buffer pic x(1024).
77 state-buffer pic x(1024).

Procedure Division.
Main Section.

display "Sample COBOL program: UPDAT".

display "Enter your user id (default none): "
with no advancing.

accept userid.

if userid = spaces
EXEC SQL CONNECT TO sample END-EXEC

else
display "Enter your password : " with no advancing
accept passwd-name.

* Passwords in a CONNECT statement must be entered in a VARCHAR format
* with the length of the input string.

inspect passwd-name tallying passwd-length for characters
before initial " ".

EXEC SQL CONNECT TO sample USER :userid USING :passwd �3�
END-EXEC.

move "CONNECT TO" to errloc.
call "checkerr" using SQLCA errloc.

Chapter 4. Writing Static SQL Programs 111

move "Clerk" to job-update.
EXEC SQL UPDATE staff SET job=:job-update �4�

WHERE job='Mgr' END-EXEC.
move "UPDATE STAFF" to errloc.
call "checkerr" using SQLCA errloc.

display "All 'Mgr' have been demoted to 'Clerk'!".

move "Sales" to job-update.
EXEC SQL DELETE FROM staff WHERE job=:job-update END-EXEC. �5�
move "DELETE FROM STAFF" to errloc.
call "checkerr" using SQLCA errloc.

display "All 'Sales' people have been deleted!".

EXEC SQL INSERT INTO staff VALUES (999, 'Testing', 99, �6�
:job-update, 0, 0, 0) END-EXEC.

move "INSERT INTO STAFF" to errloc.
call "checkerr" using SQLCA errloc.

display "New data has been inserted".

EXEC SQL ROLLBACK END-EXEC. �7�
move "ROLLBACK" to errloc.
call "checkerr" using SQLCA errloc.

DISPLAY "On second thought -- changes rolled back."

EXEC SQL CONNECT RESET END-EXEC.
move "CONNECT RESET" to errloc.
call "checkerr" using SQLCA errloc.

End-Prog.
stop run.

112 Application Development Guide

REXX Example: UPDAT.CMD

Note: REXX programs cannot contain static SQL. This program is written
with dynamic SQL.

/* REXX program UPDAT.CMD */

parse version rexxType .
parse source platform .

if platform == 'AIX/6000' & rexxType == 'REXXSAA' then
do

rcy = SysAddFuncPkg("db2rexx")
end
else
do

if RxFuncQuery('SQLDBS') <> 0 then
rcy = RxFuncAdd('SQLDBS', 'db2ar', 'SQLDBS')

if RxFuncQuery('SQLEXEC') <> 0 then
rcy = RxFuncAdd('SQLEXEC', 'db2ar', 'SQLEXEC')

end

/* pull in command line arguments */
parse arg userid passwd .

/* check to see if the proper number of arguments have been passed in */
PARSE ARG dbname userid password .
if ((dbname = "") | ,

(userid <> "" & password = "") ,
) then do
SAY "USAGE: updat.cmd <dbname> [<userid> <password>]"

exit -1
end

/* connect to database */
SAY
SAY 'Connect to' dbname
IF password= "" THEN

CALL SQLEXEC 'CONNECT TO' dbname
ELSE

CALL SQLEXEC 'CONNECT TO' dbname 'USER' userid 'USING' password

CALL CHECKERR 'Connect to '
SAY "Connected"

say 'Sample REXX program: UPDAT.CMD'

jobupdate = "'Clerk'"
st = "UPDATE staff SET job =" jobupdate "WHERE job = 'Mgr'"
call SQLEXEC 'EXECUTE IMMEDIATE :st' �4�
call CHECKERR 'UPDATE'
say "All 'Mgr' have been demoted to 'Clerk'!"

Chapter 4. Writing Static SQL Programs 113

jobupdate = "'Sales'"
st = "DELETE FROM staff WHERE job =" jobupdate
call SQLEXEC 'EXECUTE IMMEDIATE :st' �5�
call CHECKERR 'DELETE'
say "All 'Sales' people have been deleted!"

st = "INSERT INTO staff VALUES (999, 'Testing', 99," jobupdate ", 0, 0, 0)"
call SQLEXEC 'EXECUTE IMMEDIATE :st' �6�
call CHECKERR 'INSERT'
say 'New data has been inserted'

call SQLEXEC 'ROLLBACK' �7�
call CHECKERR 'ROLLBACK'
say 'On second thought...changes rolled back.'

call SQLEXEC 'CONNECT RESET'
call CHECKERR 'CONNECT RESET'

CHECKERR:
arg errloc

if (SQLCA.SQLCODE = 0) then
return 0

else do
say '--- error report ---'
say 'ERROR occurred :' errloc
say 'SQLCODE :' SQLCA.SQLCODE

/******************************\
* GET ERROR MESSAGE API called *
******************************/
call SQLDBS 'GET MESSAGE INTO :errmsg LINEWIDTH 80'
say errmsg
say '--- end error report ---'

if (SQLCA.SQLCODE < 0) then
exit

else do
say 'WARNING - CONTINUING PROGRAM WITH ERRORS'
return 0

end
end

return 0

114 Application Development Guide

Diagnostic Handling and the SQLCA Structure

Applications issuing SQL statements and calling database manager APIs must
properly check for error conditions by examining return codes and the
SQLCA structure.

Return Codes
Most database manager APIs pass back a zero return code when successful. In
general, a non-zero return code indicates that the secondary error handling
mechanism, the SQLCA structure, may be corrupt. In this case, the called API
is not executed. A possible cause for a corrupt SQLCA structure is passing an
invalid address for the structure.

SQLCODE and SQLSTATE
Error information is returned in the SQLCODE and SQLSTATE fields of the
SQLCA structure, which is updated after every executable SQL statement and
most database manager API calls.

A source file containing executable SQL statements can provide at least one
SQLCA structure with the name sqlca. The SQLCA structure is defined in the
SQLCA include file. Source files without embedded SQL statements, but
calling database manager APIs, can also provide one or more SQLCA
structures, but their names are arbitrary.

If your application is compliant with the FIPS 127-2 standard, you can declare
the SQLSTATE and SQLCODE as host variables instead of using the SQLCA
structure. For information on how to do this, see “SQLSTATE and SQLCODE
Variables in C and C++” on page 620 for C or C++ applications, “SQLSTATE
and SQLCODE Variables in COBOL” on page 685 for COBOL applications, or
“SQLSTATE and SQLCODE Variables in FORTRAN” on page 700 for
FORTRAN applications.

An SQLCODE value of 0 means successful execution (with possible
SQLWARN warning conditions). A positive value means that the statement
was successfully executed but with a warning, as with truncation of a host
variable. A negative value means that an error condition occurred.

An additional field, SQLSTATE, contains a standardized error code consistent
across other IBM database products and across SQL92 conformant database
managers. Practically speaking, you should use SQLSTATEs when you are
concerned about portability since SQLSTATEs are common across many
database managers.

The SQLWARN field contains an array of warning indicators, even if
SQLCODE is zero. The first element of the SQLWARN array, SQLWARN0,
contains a blank if all other elements are blank. SQLWARN0 contains a W if at
least one other element contains a warning character.

Chapter 4. Writing Static SQL Programs 115

Refer to the Administrative API Reference for more information about the
SQLCA structure, and the Message Reference for a listing of SQLCODE and
SQLSTATE error conditions.

Note: If you want to develop applications that access various IBM RDBMS
servers you should:
v Where possible, have your applications check the SQLSTATE rather

than the SQLCODE.
v If your applications will use DB2 Connect, consider using the

mapping facility provided by DB2 Connect to map SQLCODE
conversions between unlike databases.

Token Truncation in SQLCA Structure
Since tokens may be truncated in the SQLCA structure, you should not use
the token info for diagnostic purposes. While you can define table and
column names with lengths of up to 128 bytes, the SQLCA tokens will be
truncated to 17 bytes plus a truncation terminator (>). Application logic
should not depend on actual values of the sqlerrmc field. Refer to the SQL
Reference for a description of the SQLCA structure, and a discussion of token
truncation.

Handling Errors using the WHENEVER Statement
The WHENEVER statement causes the precompiler to generate source code
that directs the application to go to a specified label if an error, warning, or if
no rows are found during execution. The WHENEVER statement affects all
subsequent executable SQL statements until another WHENEVER statement
alters the situation.

The WHENEVER statement has three basic forms:
EXEC SQL WHENEVER SQLERROR action
EXEC SQL WHENEVER SQLWARNING action
EXEC SQL WHENEVER NOT FOUND action

In the above statements:

SQLERROR
Identifies any condition where SQLCODE < 0.

SQLWARNING
Identifies any condition where SQLWARN(0) = W or SQLCODE > 0
but is not equal to 100.

NOT FOUND
Identifies any condition where SQLCODE = 100.

In each case, the action can be either of the following:

116 Application Development Guide

CONTINUE
Indicates to continue with the next instruction in the application.

GO TO label
Indicates to go to the statement immediately following the label
specified after GO TO. (GO TO can be two words, or one word,
GOTO.)

If the WHENEVER statement is not used, the default action is to continue
processing if an error, warning, or exception condition occurs during
execution.

The WHENEVER statement must appear before the SQL statements you want
to affect. Otherwise, the precompiler does not know that additional
error-handling code should be generated for the executable SQL statements.
You can have any combination of the three basic forms active at any time. The
order in which you declare the three forms is not significant. To avoid an
infinite looping situation, ensure that you undo the WHENEVER handling
before any SQL statements are executed inside the handler. You can do this
using the WHENEVER SQLERROR CONTINUE statement.

For a complete description of the WHENEVER statement, refer to the SQL
Reference.

Exception, Signal, Interrupt Handler Considerations
An exception, signal, or interrupt handler is a routine that gets control when
an exception, signal, or interrupt occurs. The type of handler applicable is
determined by your operating environment, as shown in the following:

Windows 32-bit Operating Systems
Pressing Ctrl-C or Ctrl-Break generates an interrupt.

OS/2 Pressing Ctrl-C or Ctrl-Break generates an operating system
exception.

UNIX Usually, pressing Ctrl-C generates the SIGINT interrupt signal. Note
that keyboards can easily be redefined so SIGINT may be generated
by a different key sequence on your machine.

For other operating systems that are not in the above list, refer to the
Application Building Guide.

Do not put SQL statements (other than COMMIT or ROLLBACK) in
exception, signal, and interrupt handlers. With these kinds of error conditions,
you normally want to do a ROLLBACK to avoid the risk of inconsistent data.

Note that you should exercise caution when coding a COMMIT and
ROLLBACK in exception/signal/interrupt handlers. If you call either of these

Chapter 4. Writing Static SQL Programs 117

statements by themselves, the COMMIT or ROLLBACK is not executed until
the current SQL statement is complete, if one is running. This is not the
behavior desired from a Ctrl-C handler.

The solution is to call the INTERRUPT API (sqleintr/sqlgintr) before
issuing a ROLLBACK. This interrupts the current SQL query (if the
application is executing one) and lets the ROLLBACK begin immediately. If
you are going to perform a COMMIT rather than a ROLLBACK, you do not
want to interrupt the current command.

When using APPC to access a remote database server (DB2 for AIX or host
database system using DB2 Connect), the application may receive a SIGUSR1
signal. This signal is generated by SNA Services/6000 when an unrecoverable
error occurs and the SNA connection is stopped. You may want to install a
signal handler in your application to handle SIGUSR1.

Refer to your platform documentation for specific details on the various
handler considerations.

Exit List Routine Considerations
Do not use SQL or DB2 API calls in exit list routines. Note that you cannot
disconnect from a database in an exit routine.

Using GET ERROR MESSAGE in Example Programs
The code clips shown in “C Example: UTILAPI.C” on page 119 and “COBOL
Example: CHECKERR.CBL” on page 122 demonstrate the use of the GET
ERROR MESSAGE API to obtain the corresponding information related to the
SQLCA passed in.

You can find information on building these examples in the README files, or in
the header section of these sample programs.

118 Application Development Guide

C Example: UTILAPI.C
#include <stdio.h>
#include <stdlib.h>
#include <sql.h>
#include <sqlenv.h>
#include <sqlda.h>
#include <sqlca.h>
#include <string.h>
#include <ctype.h>
#include "utilemb.h"

EXEC SQL INCLUDE SQLCA;

/*###
** 1. SQL_CHECK section
**
** 1.1 - SqlInfoPrint - prints on the screen everything that
** goes unexpected.
** 1.2 - TransRollback - rolls back the transaction
###*/

/**
** 1.1 - SqlInfoPrint - prints on the screen everything that
** goes unexpected.
**/
int SqlInfoPrint(char * appMsg,

struct sqlca * pSqlca,
int line,
char * file)

{ int rc = 0;

char sqlInfo[1024];
char sqlInfoToken[1024];

char sqlstateMsg[1024];
char errorMsg[1024];

if (pSqlca->sqlcode != 0 && pSqlca->sqlcode != 100)
{ strcpy(sqlInfo, "");

if(pSqlca->sqlcode < 0)
{ sprintf(sqlInfoToken, "\n---- error report ----\n");

strcat(sqlInfo, sqlInfoToken);
}
else
{ sprintf(sqlInfoToken, "\n---- warning report ----\n");

strcat(sqlInfo, sqlInfoToken);
} /* endif */

sprintf(sqlInfoToken, " app. message = %s\n", appMsg);
strcat(sqlInfo, sqlInfoToken);
sprintf(sqlInfoToken, " line = %d\n", line);
strcat(sqlInfo, sqlInfoToken);
sprintf(sqlInfoToken, " file = %s\n", file);

Chapter 4. Writing Static SQL Programs 119

strcat(sqlInfo, sqlInfoToken);
sprintf(sqlInfoToken, " SQLCODE = %ld\n", pSqlca->sqlcode);
strcat(sqlInfo, sqlInfoToken);

/* get error message */
rc = sqlaintp(errorMsg, 1024, 80, pSqlca);
/* return code is the length of the errorMsg string */
if(rc > 0)
{ sprintf(sqlInfoToken, "%s\n", errorMsg);

strcat(sqlInfo, sqlInfoToken);
}

/* get SQLSTATE message */
rc = sqlogstt(sqlstateMsg, 1024, 80, pSqlca->sqlstate);
if (rc == 0)
{ sprintf(sqlInfoToken, "%s\n", sqlstateMsg);

strcat(sqlInfo, sqlInfoToken);
}

if(pSqlca->sqlcode < 0)
{ sprintf(sqlInfoToken, "--- end error report ---\n");

strcat(sqlInfo, sqlInfoToken);

printf("%s", sqlInfo);
return 1;

}
else
{ sprintf(sqlInfoToken, "--- end warning report ---\n");

strcat(sqlInfo, sqlInfoToken);

printf("%s", sqlInfo);
return 0;

} /* endif */
} /* endif */

return 0;
}

/**
** 1.2 - TransRollback - rolls back the transaction
**/
void TransRollback()
{ int rc = 0;

/* rollback the transaction */
printf("\nRolling back the transaction ...\n") ;
EXEC SQL ROLLBACK;
rc = SqlInfoPrint("ROLLBACK", &sqlca, __LINE__, __FILE__);
if(rc == 0)
{ printf("The transaction was rolled back.\n") ;
}

}

120 Application Development Guide

Java Example: Catching SQLException
JDBC and SQLJ applications throw an SQLException when an error occurs
during SQL processing. Your applications can catch and display an
SQLException with the following code:
try {

Statement stmt = connection.createStatement();
int rowsDeleted = stmt.executeUpdate(

"DELETE FROM employee WHERE empno = '000010'");
System.out.println(rowsDeleted + " rows were deleted");

}

catch (SQLException sqle) {
System.out.println(sqle);

}

For more information on handling SQLExceptions, see “SQLSTATE and
SQLCODE Values in Java” on page 627.

Chapter 4. Writing Static SQL Programs 121

COBOL Example: CHECKERR.CBL
Identification Division.
Program-ID. "checkerr".

Data Division.
Working-Storage Section.

copy "sql.cbl".

* Local variables
77 error-rc pic s9(9) comp-5.
77 state-rc pic s9(9) comp-5.

* Variables for the GET ERROR MESSAGE API
* Use application specific bound instead of BUFFER-SZ
* 77 buffer-size pic s9(4) comp-5 value BUFFER-SZ.
* 77 error-buffer pic x(BUFFER-SZ).
* 77 state-buffer pic x(BUFFER-SZ).
77 buffer-size pic s9(4) comp-5 value 1024.
77 line-width pic s9(4) comp-5 value 80.
77 error-buffer pic x(1024).
77 state-buffer pic x(1024).

Linkage Section.
copy "sqlca.cbl" replacing ==VALUE "SQLCA "== by == ==

==VALUE 136== by == ==.
01 errloc pic x(80).

Procedure Division using sqlca errloc.
Checkerr Section.

if SQLCODE equal 0
go to End-Checkerr.

display "--- error report ---".
display "ERROR occurred : ", errloc.
display "SQLCODE : ", SQLCODE.

* GET ERROR MESSAGE API called *

call "sqlgintp" using
by value buffer-size
by value line-width
by reference sqlca
by reference error-buffer

returning error-rc.

* GET SQLSTATE MESSAGE *

call "sqlggstt" using
by value buffer-size
by value line-width
by reference sqlstate
by reference state-buffer

122 Application Development Guide

returning state-rc.

if error-rc is greater than 0
display error-buffer.

if state-rc is greater than 0
display state-buffer.

if state-rc is less than 0
display "return code from GET SQLSTATE =" state-rc.

if SQLCODE is less than 0
display "--- end error report ---"
go to End-Prog.

display "--- end error report ---"
display "CONTINUING PROGRAM WITH WARNINGS!".

End-Checkerr. exit program.
End-Prog. stop run.

Chapter 4. Writing Static SQL Programs 123

REXX Example: CHECKERR Procedure
parse version rexxType .
parse source platform .

if platform == 'AIX/6000' & rexxType == 'REXXSAA' then
do

rcy = SysAddFuncPkg("db2rexx")
end
else
do

if RxFuncQuery('SQLDBS') <> 0 then
rcy = RxFuncAdd('SQLDBS', 'db2ar', 'SQLDBS')

if RxFuncQuery('SQLEXEC') <> 0 then
rcy = RxFuncAdd('SQLEXEC', 'db2ar', 'SQLEXEC')

end

...

call CHECKERR 'INSERT'

...

CHECKERR:
arg errloc

if (SQLCA.SQLCODE = 0) then
return 0

else do
say '--- error report ---'
say 'ERROR occurred :' errloc
say 'SQLCODE :' SQLCA.SQLCODE

/******************************\
* GET ERROR MESSAGE API called *
******************************/
call SQLDBS 'GET MESSAGE INTO :errmsg LINEWIDTH 80'
say errmsg
say '--- end error report ---'

if (SQLCA.SQLCODE < 0) then
exit

else do
say 'WARNING - CONTINUING PROGRAM WITH ERRORS'
return 0

end
end

return 0

/* this variable (SYSTEM) must be user defined */
SYSTEM = AIX
if SYSTEM = OS2 then do

if RxFuncQuery('SQLDBS') <> 0 then
rcy = RxFuncAdd('SQLDBS', 'DB2AR', 'SQLDBS')

124 Application Development Guide

if RxFuncQuery('SQLEXEC') <> 0 then
rcy = RxFuncAdd('SQLEXEC', 'DB2AR', 'SQLEXEC')

end

if SYSTEM = AIX then
rcy = SysAddFuncPkg("db2rexx")

...

call CHECKERR 'INSERT'

...

CHECKERR:
arg errloc

if (SQLCA.SQLCODE = 0) then
return 0

else do
say '--- error report ---'
say 'ERROR occurred :' errloc
say 'SQLCODE :' SQLCA.SQLCODE

/******************************\
* GET ERROR MESSAGE API called *
******************************/
call SQLDBS 'GET MESSAGE INTO :errmsg LINEWIDTH 80'
say errmsg
say '--- end error report ---'

if (SQLCA.SQLCODE < 0) then
exit

else do
say 'WARNING - CONTINUING PROGRAM WITH ERRORS'
return 0

end
end

return 0

Chapter 4. Writing Static SQL Programs 125

126 Application Development Guide

Chapter 5. Writing Dynamic SQL Programs

Why Use Dynamic SQL? 127
Dynamic SQL Support Statements . . . 127
Comparing Dynamic SQL with Static SQL 128

Using PREPARE, DESCRIBE, FETCH and
the SQLDA 131

Declaring and Using Cursors 131
Example: Dynamic SQL Program . . . 133

How the Dynamic Program Works . . 133
C Example: DYNAMIC.SQC 135
Java Example: Dynamic.java 137
COBOL Example: DYNAMIC.SQB . . 139
REXX Example: DYNAMIC.CMD . . 141

Declaring the SQLDA 143
Preparing the Statement Using the
Minimum SQLDA Structure 144
Allocating an SQLDA with Sufficient
SQLVAR Entries 145
Describing the SELECT Statement . . . 146
Acquiring Storage to Hold a Row . . . 146
Processing the Cursor 147

Allocating an SQLDA Structure 147
Passing Data Using an SQLDA Structure 151
Processing Interactive SQL Statements 152

Determining Statement Type 152
Varying-List SELECT Statement . . . 153

Saving SQL Requests from End Users . . 153
Example: ADHOC Program 154

How the ADHOC Program Works . . 154
C Example: ADHOC.SQC 157

Variable Input to Dynamic SQL 161
Using Parameter Markers 161
Example: VARINP Program 162

How the VARINP Program Works . . 162
C Example: VARINP.SQC 164
Java Example: Varinp.java 166
COBOL Example: VARINP.SQB . . . 168

The DB2 Call Level Interface (CLI) 170
Comparing Embedded SQL and DB2 CLI 170
Advantages of Using DB2 CLI 171
Deciding on Embedded SQL or DB2 CLI 173

Why Use Dynamic SQL?

You may want to use dynamic SQL when:
v You need all or part of the SQL statement to be generated during

application execution.
v The objects referenced by the SQL statement do not exist at precompile

time.
v You want the statement to always use the most optimal access path, based

on current database statistics.
v You want to modify the compilation environment of the statement, that is,

experiment with the special registers.

Dynamic SQL Support Statements
The dynamic SQL support statements accept a character-string host variable
and a statement name as arguments. The host variable contains the SQL
statement to be processed dynamically in text form. The statement text is not
processed when an application is precompiled. In fact, the statement text does
not have to exist at the time the application is precompiled. Instead, the SQL
statement is treated as a host variable for precompilation purposes and the
variable is referenced during application execution. These SQL statements are
referred to as dynamic SQL.

© Copyright IBM Corp. 1993, 2000 127

Dynamic SQL support statements are required to transform the host variable
containing SQL text into an executable form and operate on it by referencing
the statement name. These statements are:

EXECUTE IMMEDIATE
Prepares and executes a statement that does not use any host
variables. All EXECUTE IMMEDIATE statements in an application are
cached in the same place at run time, so only the last statement is
known. Use this statement as an alternative to the PREPARE and
EXECUTE statements.

PREPARE
Turns the character string form of the SQL statement into an
executable form of the statement, assigns a statement name, and
optionally places information about the statement in an SQLDA
structure.

EXECUTE
Executes a previously prepared SQL statement. The statement can be
executed repeatedly within a connection.

DESCRIBE
Places information about a prepared statement into an SQLDA.

An application can execute most SQL statements dynamically. See Table 37 on
page 723 for the complete list of supported SQL statements.

Note: The content of dynamic SQL statements follows the same syntax as
static SQL statements, but with the following exceptions:
v Comments are not allowed.
v The statement cannot begin with EXEC SQL.
v The statement cannot end with the statement terminator. An

exception to this is the CREATE TRIGGER statement which can
contain a semicolon (;).

Comparing Dynamic SQL with Static SQL
The question of whether to use static or dynamic SQL for performance is
usually of great interest to programmers. The answer, of course, is that it all
depends on your situation. Refer to Table 6 on page 129 to help you decide
whether to use static or dynamic SQL. There may be certain considerations
such as security which dictate static SQL, or your environment (such as
whether you are using DB2 CLI or the CLP) which dictates dynamic SQL.

When making your decision, consider the following recommendations on
whether to choose static or dynamic SQL in a particular situation. In the
following table, 'either' means that there is no advantage to either static or
dynamic SQL. Note that these are general recommendations only. Your
specific application, its intended usage, and working environment dictate the

128 Application Development Guide

actual choice. When in doubt, prototyping your statements as static SQL, then
as dynamic SQL, and then comparing the differences is the best approach.

Table 6. Comparing Static and Dynamic SQL

Consideration Likely Best
Choice

Time to run the SQL statement:
v Less than 2 seconds
v 2 to 10 seconds
v More than 10 seconds

v Static
v either
v Dynamic

Data Uniformity
v Uniform data distribution
v Slight non-uniformity
v Highly non-uniform distribution

v Static
v either
v Dynamic

Range (<,>,BETWEEN,LIKE) Predicates
v Very Infrequent
v Occasional
v Frequent

v Static
v either
v Dynamic

Repetitious Execution
v Runs many times (10 or more times)
v Runs a few times (less than 10 times)
v Runs once

v either
v either
v Static

Nature of Query
v Random
v Permanent

v Dynamic
v either

Run Time Environment (DML/DDL)
v Transaction Processing (DML Only)
v Mixed (DML and DDL - DDL affects packages)
v Mixed (DML and DDL - DDL does not affect packages)

v either
v Dynamic
v either

Frequency of RUNSTATS
v Very infrequently
v Regularly
v Frequently

v Static
v either
v Dynamic

In general, an application using dynamic SQL has a higher start-up (or initial)
cost per SQL statement due to the need to compile the SQL statements prior
to using them. Once compiled, the execution time for dynamic SQL compared
to static SQL should be equivalent and, in some cases, faster due to better
access plans being chosen by the optimizer. Each time a dynamic statement is
executed, the initial compilation cost becomes less of a factor. If multiple users
are running the same dynamic application with the same statements, only the
first application to issue the statement realizes the cost of statement
compilation.

Chapter 5. Writing Dynamic SQL Programs 129

In a mixed DML and DDL environment, the compilation cost for a dynamic
SQL statement may vary as the statement may be implicitly recompiled by the
system while the application is running. In a mixed environment, the choice
between static and dynamic SQL must also factor in the frequency in which
packages are invalidated. If the DDL does invalidate packages, dynamic SQL
may be more efficient as only those queries executed are recompiled when
they are next used. Others are not recompiled. For static SQL, the entire
package is rebound once it has been invalidated.

Now suppose your particular application contains a mixture of the above
characteristics and some of these characteristics suggest that you use static
while others suggest dynamic. In this case, there is no clear cut decision and
you should probably use whichever method you have the most experience
with, and with which you feel most comfortable. Note that the considerations
in the above table are listed roughly in order of importance.

Note: Static and dynamic SQL each come in two types that make a difference
to the DB2 optimizer. These are:

1. Static SQL containing no host variables
This is an unlikely situation which you may see only for:
v Initialization code
v Novice training examples

This is actually the best combination from a performance perspective in
that there is no run-time performance overhead and yet the DB2
optimizer’s capabilities can be fully realized.

2. Static SQL containing host variables
This is the traditional legacy style of DB2 applications. It avoids the run
time overhead of a PREPARE and catalog locks acquired during statement
compilation. Unfortunately, the full power of the optimizer cannot be
harnessed since it does not know the entire SQL statement. A particular
problem exists with highly non-uniform data distributions.

3. Dynamic SQL containing no parameter markers
This is the typical style for random query interfaces (such as the CLP) and
is the optimizer’s preferred flavor of SQL. For complex queries, the
overhead of the PREPARE statement is usually worthwhile due to
improved execution time. For more information on parameter markers, see
“Using Parameter Markers” on page 161.

4. Dynamic SQL containing parameter markers
This is the most common type of SQL for CLI applications. The key benefit
is that the presence of parameter markers allows the cost of the PREPARE
to be amortized over the repeated executions of the statement, typically a
select or insert. This amortization is true for all repetitive dynamic SQL
applications. Unfortunately, just like static SQL with host variables, parts

130 Application Development Guide

of the DB2 optimizer will not work since complete information is
unavailable. The recommendation is to use static SQL with host variables or
dynamic SQL without parameter markers as the most efficient options.

Using PREPARE, DESCRIBE, FETCH and the SQLDA

With static SQL, host variables used in embedded SQL statements are known
at application compile time. With dynamic SQL, the embedded SQL
statements and consequently the host variables are not known until
application run time. Thus, for dynamic SQL applications, you need to deal
with the list of host variables that are used in your application. You can use
the DESCRIBE statement to obtain host variable information for any SELECT
statement that has been prepared (using PREPARE), and store that
information into the SQL descriptor area (SQLDA).

Note: Java applications do not use the SQLDA structure, and therefore do not
use the PREPARE or DESCRIBE statements. In JDBC applications you
can use a PreparedStatement object and the executeQuery() method to
generate a ResultSet object, which is the equivalent of a host language
cursor. In SQLJ applications you can also declare an SQLJ iterator
object with a CursorByPos or CursorByName cursor to return data from
FETCH statements.

When the DESCRIBE statement gets executed in your application, the
database manager defines your host variables in an SQLDA. Once the host
variables are defined in the SQLDA, you can use the FETCH statement to
assign values to the host variables, using a cursor.

For complete information on the PREPARE, DESCRIBE, and FETCH
statements, and a description of the SQLDA, refer to the SQL Reference.

For an example of a simple dynamic SQL program that uses the PREPARE,
DESCRIBE, and FETCH statements without using an SQLDA, see “Example:
Dynamic SQL Program” on page 133. For an example of a dynamic SQL
program that uses the PREPARE, DESCRIBE, and FETCH statements and an
SQLDA to process interactive SQL statements, see “Example: ADHOC
Program” on page 154.

Declaring and Using Cursors
Processing a cursor dynamically is nearly identical to processing it using static
SQL. When a cursor is declared, it is associated with a query.

In the static SQL case, the query is a SELECT statement in text form, as
shown in “Declare Cursor Statement” on page 82.

Chapter 5. Writing Dynamic SQL Programs 131

In the dynamic SQL case, the query is associated with a statement name
assigned in a PREPARE statement. Any referenced host variables are
represented by parameter markers. Table 7 shows a DECLARE statement
associated with a dynamic SELECT statement.

Table 7. Declare Statement Associated with a Dynamic SELECT

Language Example Source Code

C/C++ strcpy(prep_string, "SELECT tabname FROM syscat.tables"
"WHERE tabschema = ?");

EXEC SQL PREPARE s1 FROM :prep_string;
EXEC SQL DECLARE c1 CURSOR FOR s1;
EXEC SQL OPEN c1 USING :host_var;

Java (JDBC) PreparedStatement prep_string = ("SELECT tabname FROM syscat.tables
WHERE tabschema = ?");

prep_string.setCursor("c1");
prep_string.setString(1, host_var);
ResultSet rs = prep_string.executeQuery();

COBOL MOVE "SELECT TABNAME FROM SYSCAT.TABLES WHERE TABSCHEMA = ?"
TO PREP-STRING.

EXEC SQL PREPARE S1 FROM :PREP-STRING END-EXEC.
EXEC SQL DECLARE C1 CURSOR FOR S1 END-EXEC.
EXEC SQL OPEN C1 USING :host-var END-EXEC.

FORTRAN prep_string = 'SELECT tabname FROM syscat.tables WHERE tabschema = ?'
EXEC SQL PREPARE s1 FROM :prep_string
EXEC SQL DECLARE c1 CURSOR FOR s1
EXEC SQL OPEN c1 USING :host_var

The main difference between a static and a dynamic cursor is that a static
cursor is prepared at precompile time, and a dynamic cursor is prepared at
run time. Additionally, host variables referenced in the query are represented
by parameter markers, which are replaced by run-time host variables when
the cursor is opened.

For more information about how to use cursors, see the following sections:
v “Selecting Multiple Rows Using a Cursor” on page 81
v “Example: Cursor Program” on page 84
v “Using Cursors in REXX” on page 714

132 Application Development Guide

Example: Dynamic SQL Program
This sample program shows the processing of a cursor based upon a dynamic
SQL statement. It lists all the tables in SYSCAT.TABLES except for the tables
with the value STAFF in the name column. The sample is available in the
following programming languages:

C dynamic.sqc

Java Dynamic.java

COBOL dynamic.sqb

REXX dynamic.cmd

How the Dynamic Program Works
1. Declare host variables. This section includes declarations of three host

variables:
table_name

Used to hold the data returned during the FETCH statement
st Used to hold the dynamic SQL statement in text form
parm_var

Supplies a data value to replace the parameter marker in st.
2. Prepare the statement. An SQL statement with one parameter marker

(indicated by '?') is copied to the host variable. This host variable is passed
to the PREPARE statement for validation. The PREPARE statement parses
the SQL text and prepares an access section for the package in the same
way that the precompiler or binder does, only it happens at run time
instead of during preprocessing.

3. Declare the cursor. The DECLARE statement associates a cursor with a
dynamically prepared SQL statement. If the prepared SQL statement is a
SELECT statement, a cursor is necessary to retrieve the rows from the
result table.

4. Open the cursor. The OPEN statement initializes the cursor declared
earlier to point before the first row of the result table. The USING clause
specifies a host variable to replace the parameter marker in the prepared
SQL statement. The data type and length of the host variable must be
compatible with the associated column type and length.

5. Retrieve the data. The FETCH statement is used to move the NAME
column from the result table into the table_name host variable. The host
variable is printed before the program loops back to fetch another row.

6. Close the cursor. The CLOSE statement closes the cursor and releases the
resources associated with it.

The CHECKERR macro/function is an error checking utility which is external to
the program. The location of this error checking utility depends upon the
programming language used:

Chapter 5. Writing Dynamic SQL Programs 133

C For C programs that call DB2 APIs, the sqlInfoPrint function
in utilapi.c is redefined as API_SQL_CHECK in utilapi.h. For C
embedded SQL programs, the sqlInfoPrint function in
utilemb.sqc is redefined as EMB_SQL_CHECK in utilemb.h.

Java Any SQL error is thrown as an SQLException and handled in
the catch block of the application.

COBOL CHECKERR is an external program named checkerr.cbl.

REXX CHECKERR is a procedure located at bottom of the current
program.

See “Using GET ERROR MESSAGE in Example Programs” on page 118 for the
source code for this error checking utility.

134 Application Development Guide

C Example: DYNAMIC.SQC
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "utilemb.h"

EXEC SQL INCLUDE SQLCA;

int main(int argc, char *argv[]) {

EXEC SQL BEGIN DECLARE SECTION;
char table_name[19];
char st[80]; �1�
char parm_var[19];
char userid[9];
char passwd[19];

EXEC SQL END DECLARE SECTION;

printf("Sample C program: DYNAMIC\n");

if (argc == 1) {
EXEC SQL CONNECT TO sample;
EMB_SQL_CHECK("CONNECT TO SAMPLE");

}
else if (argc == 3) {

strcpy (userid, argv[1]);
strcpy (passwd, argv[2]);
EXEC SQL CONNECT TO sample USER :userid USING :passwd;
EMB_SQL_CHECK("CONNECT TO SAMPLE");

}
else {

printf ("\nUSAGE: dynamic [userid passwd]\n\n");
return 1;

} /* endif */

strcpy(st, "SELECT tabname FROM syscat.tables");
strcat(st, " WHERE tabname <> ?");
EXEC SQL PREPARE s1 FROM :st; �2�
EMB_SQL_CHECK("PREPARE");

EXEC SQL DECLARE c1 CURSOR FOR s1; �3�

strcpy(parm_var, "STAFF");
EXEC SQL OPEN c1 USING :parm_var; �4�
EMB_SQL_CHECK("OPEN");
do {

EXEC SQL FETCH c1 INTO :table_name; �5�
if (SQLCODE != 0) break;

printf("Table = %s\n", table_name);
} while (1);

EXEC SQL CLOSE c1; �6�
EMB_SQL_CHECK("CLOSE");

Chapter 5. Writing Dynamic SQL Programs 135

EXEC SQL COMMIT;
EMB_SQL_CHECK("COMMIT");

EXEC SQL CONNECT RESET;
EMB_SQL_CHECK("CONNECT RESET");
return 0;

}
/* end of program : DYNAMIC.SQC */

136 Application Development Guide

Java Example: Dynamic.java
import java.sql.*;

class Dynamic
{ static

{ try
{ Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance ();
}
catch (Exception e)
{ System.out.println ("\n Error loading DB2 Driver...\n");

System.out.println (e);
System.exit(1);

}
}

public static void main(String argv[])
{ try

{ System.out.println (" Java Dynamic Sample");
// Connect to Sample database

Connection con = null;
// URL is jdbc:db2:dbname
String url = "jdbc:db2:sample";

if (argv.length == 0)
{ // connect with default id/password

con = DriverManager.getConnection(url);
}
else if (argv.length == 2)
{ String userid = argv[0];

String passwd = argv[1];

// connect with user-provided username and password
con = DriverManager.getConnection(url, userid, passwd);

}
else
{ throw new Exception("\nUsage: java Dynamic [username password]\n");
}

// Enable transactions
con.setAutoCommit(false);

// Perform dynamic SQL SELECT using JDBC
try
{ PreparedStatement pstmt1 = con.prepareStatement(

"SELECT tabname FROM syscat.tables " +
"WHERE tabname <> ? " +
"ORDER BY 1"); �2�

// set cursor name for the positioned update statement
pstmt1.setCursorName("c1"); �3�
pstmt1.setString(1, "STAFF");
ResultSet rs = pstmt1.executeQuery(); �4�

System.out.print("\n");
while(rs.next()) �5�

Chapter 5. Writing Dynamic SQL Programs 137

{ String tableName = rs.getString("tabname");
System.out.println("Table = " + tableName);

};

rs.close();
pstmt1.close(); �7�
}
catch(Exception e)
{ throw e;
}
finally
{ // Rollback the transaction

System.out.println("\nRollback the transaction...");
con.rollback();
System.out.println("Rollback done.");

}
}
catch(Exception e)
{ System.out.println(e);
}

}
}

138 Application Development Guide

COBOL Example: DYNAMIC.SQB
Identification Division.
Program-ID. "dynamic".

Data Division.
Working-Storage Section.

copy "sqlenv.cbl".
copy "sql.cbl".
copy "sqlca.cbl".

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 table-name pic x(20).
01 st pic x(80). �1�
01 parm-var pic x(18).
01 userid pic x(8).
01 passwd.

49 passwd-length pic s9(4) comp-5 value 0.
49 passwd-name pic x(18).

EXEC SQL END DECLARE SECTION END-EXEC.

77 errloc pic x(80).

Procedure Division.
Main Section.

display "Sample COBOL program: DYNAMIC".

display "Enter your user id (default none): "
with no advancing.

accept userid.

if userid = spaces
EXEC SQL CONNECT TO sample END-EXEC

else
display "Enter your password : " with no advancing
accept passwd-name.

* Passwords in a CONNECT statement must be entered in a VARCHAR format
* with the length of the input string.

inspect passwd-name tallying passwd-length for characters
before initial " ".

EXEC SQL CONNECT TO sample USER :userid USING :passwd
END-EXEC.

move "CONNECT TO" to errloc.
call "checkerr" using SQLCA errloc.

move "SELECT TABNAME FROM SYSCAT.TABLES
- " ORDER BY 1
- " WHERE TABNAME <> ?" to st.

EXEC SQL PREPARE s1 FROM :st END-EXEC. �2�
move "PREPARE" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL DECLARE c1 CURSOR FOR s1 END-EXEC. �3�

Chapter 5. Writing Dynamic SQL Programs 139

move "STAFF" to parm-var.
EXEC SQL OPEN c1 USING :parm-var END-EXEC. �4�
move "OPEN" to errloc.
call "checkerr" using SQLCA errloc.

perform Fetch-Loop thru End-Fetch-Loop
until SQLCODE not equal 0.

EXEC SQL CLOSE c1 END-EXEC. �6�
move "CLOSE" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL COMMIT END-EXEC.
move "COMMIT" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL CONNECT RESET END-EXEC.
move "CONNECT RESET" to errloc.
call "checkerr" using SQLCA errloc.

End-Main.
go to End-Prog.

Fetch-Loop Section.
EXEC SQL FETCH c1 INTO :table-name END-EXEC. �5�
if SQLCODE not equal 0

go to End-Fetch-Loop.
display "TABLE = ", table-name.

End-Fetch-Loop. exit.

End-Prog.
stop run.

140 Application Development Guide

REXX Example: DYNAMIC.CMD
/* REXX DYNAMIC.CMD */

parse version rexxType .
parse source platform .

if platform == 'AIX/6000' & rexxType == 'REXXSAA' then
do

rcy = SysAddFuncPkg("db2rexx")
end
else
do

if RxFuncQuery('SQLDBS') <> 0 then
rcy = RxFuncAdd('SQLDBS', 'db2ar', 'SQLDBS')

if RxFuncQuery('SQLEXEC') <> 0 then
rcy = RxFuncAdd('SQLEXEC', 'db2ar', 'SQLEXEC')

end

/* pull in command line arguments */
parse arg userid passwd .

/* check to see if the proper number of arguments have been passed in */
PARSE ARG dbname userid password .
if ((dbname = "") | ,

(userid <> "" & password = "") ,
) then do
SAY "USAGE: dynamic.cmd <dbname> [<userid> <password>]"

exit -1
end

/* connect to database */
SAY
SAY 'Connect to' dbname
IF password= "" THEN

CALL SQLEXEC 'CONNECT TO' dbname
ELSE

CALL SQLEXEC 'CONNECT TO' dbname 'USER' userid 'USING' password

CALL CHECKERR 'Connect to '
SAY "Connected"

say 'Sample REXX program: DYNAMIC'

st = "SELECT tabname FROM syscat.tables WHERE tabname <> ? ORDER BY 1"
call SQLEXEC 'PREPARE s1 FROM :st' �2�
call CHECKERR 'PREPARE'

call SQLEXEC 'DECLARE c1 CURSOR FOR s1' �3�
call CHECKERR 'DECLARE'

parm_var = "STAFF"
call SQLEXEC 'OPEN c1 USING :parm_var' �4�

Chapter 5. Writing Dynamic SQL Programs 141

do while (SQLCA.SQLCODE = 0)
call SQLEXEC 'FETCH c1 INTO :table_name' �5�
if (SQLCA.SQLCODE = 0) then

say 'Table = ' table_name
end

call SQLEXEC 'CLOSE c1' �6�
call CHECKERR 'CLOSE'

call SQLEXEC 'CONNECT RESET'
call CHECKERR 'CONNECT RESET'

CHECKERR:
arg errloc

if (SQLCA.SQLCODE = 0) then
return 0

else do
say '--- error report ---'
say 'ERROR occurred :' errloc
say 'SQLCODE :' SQLCA.SQLCODE

/******************************\
* GET ERROR MESSAGE API called *
******************************/
call SQLDBS 'GET MESSAGE INTO :errmsg LINEWIDTH 80'
say errmsg
say '--- end error report ---'

if (SQLCA.SQLCODE < 0) then
exit

else do
say 'WARNING - CONTINUING PROGRAM WITH ERRORS'
return 0

end
end

return 0

142 Application Development Guide

Declaring the SQLDA
An SQLDA contains a variable number of occurrences of SQLVAR entries,
each of which contains a set of fields that describe one column in a row of
data as shown in Figure 2. There are two types of SQLVAR entries: base
SQLVARs, and secondary SQLVARs. For information about the two types,
refer to the SQL Reference.

Since the number of SQLVAR entries required depends on the number of
columns in the result table, an application must be able to allocate an
appropriate number of SQLVAR elements when needed. Two methods are
available as discussed below. For information about the fields of the SQLDA
that are mentioned, refer to the SQL Reference.
v Provide the largest SQLDA (that is, the one with the greatest number of

SQLVAR entries) that is needed. The maximum number of columns that can
be returned in a result table is 255. If any of the columns being returned is
either a LOB type or a distinct type, the value in SQLN is doubled, and the
number of SQLVARs needed to hold the information is doubled to 510.
However, as most SELECT statements do not even retrieve 255 columns,
most of the allocated space is unused.

v Provide a smaller SQLDA with fewer SQLVAR entries. In this case, if there
are more columns in the result than SQLVAR entries allowed for in the
SQLDA, then no descriptions are returned. Instead, the database manager
returns the number of select list items detected in the SELECT statement.
The application allocates an SQLDA with the required number of SQLVAR
entries, and then uses the DESCRIBE statement to acquire the column

HEADER

sqldaid CHAR

sqln SMALLINT

sqltype SMALLINT

sqldata POINTER

sqlname VARCHAR (30)

sqldabc INTEGER

sqld SMALLINT

sqllen SMALLINT

sqlind POINTER

OTHER SQLVARs

SQLVAR

(1 per field)

Figure 2. The SQL Descriptor Area (SQLDA)

Chapter 5. Writing Dynamic SQL Programs 143

descriptions. More details on this method are provided in “Preparing the
Statement Using the Minimum SQLDA Structure”.

For the above methods, the question arises as to how many initial SQLVAR
entries you should allocate. Each SQLVAR element uses up 44 bytes of storage
(not counting storage allocated for the SQLDATA and SQLIND fields). If
memory is plentiful, the first method of providing an SQLDA of maximum
size is easier to implement.

The second method of allocating a smaller SQLDA is only applicable to
programming languages such as C and C++ that support the dynamic
allocation of memory. For languages such as COBOL and FORTRAN that do
not support the dynamic allocation of memory, you have to use the first
method.

Preparing the Statement Using the Minimum SQLDA Structure
Suppose an application declares an SQLDA structure named minsqlda that
contains no SQLVAR entries. The SQLN field of the SQLDA describes the
number of SQLVAR entries that are allocated. In this case, SQLN must be set
to 0. Next, to prepare a statement from the character string dstring and to
enter its description into minsqlda, issue the following SQL statement
(assuming C syntax, and assuming that minsqlda is declared as a pointer to an
SQLDA structure):

EXEC SQL
PREPARE STMT INTO :*minsqlda FROM :dstring;

Suppose that the statement contained in dstring was a SELECT statement
that returns 20 columns in each row. After the PREPARE statement (or a
DESCRIBE statement), the SQLD field of the SQLDA contains the number of
columns of the result table for the prepared SELECT statement.

The SQLVARs in the SQLDA are set in the following cases:
v SQLN >= SQLD and no column is either a LOB or a distinct type

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.
v SQLN >= 2*SQLD and at least one column is a LOB or a distinct type

2* SQLD SQLVAR entries are set and SQLDOUBLED is set to 2.
v SQLD <= SQLN < 2*SQLD and at least one column is a distinct type but

there are no LOB columns
The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.
If the SQLWARN bind option is YES, a warning SQLCODE +237
(SQLSTATE 01594) is issued.

The SQLVARs in the SQLDA are NOT set (requiring allocation of additional
space and another DESCRIBE) in the following cases:

144 Application Development Guide

v SQLN < SQLD and no column is either a LOB or distinct type
No SQLVAR entries are set and SQLDOUBLED is set to blank. If the
SQLWARN bind option is YES, a warning SQLCODE +236 (SQLSTATE
01005) is issued.
Allocate SQLD SQLVARs for a successful DESCRIBE.

v SQLN < SQLD and at least one column is a distinct type but there are no
LOB columns
No SQLVAR entries are set and SQLDOUBLED is set to blank. If the
SQLWARN bind option is YES, a warning SQLCODE +239 (SQLSTATE
01005) is issued.
Allocate 2*SQLD SQLVARs for a successful DESCRIBE including the names
of the distinct types.

v SQLN < 2*SQLD and at least one column is a LOB
No SQLVAR entries are set and SQLDOUBLED is set to blank. A warning
SQLCODE +238 (SQLSTATE 01005) is issued (regardless of the setting of
the SQLWARN bind option).
Allocate 2*SQLD SQLVARs for a successful DESCRIBE.

The SQLWARN option of the BIND command is used to control whether the
DESCRIBE (or PREPARE...INTO) will return the following warnings:
v SQLCODE +236 (SQLSTATE 01005)
v SQLCODE +237 (SQLSTATE 01594)
v SQLCODE +239 (SQLSTATE 01005).

It is recommended that your application code always consider that these
SQLCODEs could be returned. The warning SQLCODE +238 (SQLSTATE
01005) is always returned when there are LOB columns in the select list and
there are insufficient SQLVARs in the SQLDA. This is the only way the
application can know that the number of SQLVARs must be doubled because
of a LOB column in the result set.

Allocating an SQLDA with Sufficient SQLVAR Entries
After the number of columns in the result table is determined, storage can be
allocated for a second, full-size SQLDA. For example, if the result table
contains 20 columns (none of which are LOB columns), a second SQLDA
structure, fulsqlda, must be allocated with at least 20 SQLVAR elements (or
40 elements if the result table contains any LOBs or distinct types). For the
rest of this example, assume that no LOBs or distinct types are in the result
table.

The storage requirements for SQLDA structures consist of the following:
v A fixed-length header, 16 bytes in length, containing fields such as SQLN

and SQLD

Chapter 5. Writing Dynamic SQL Programs 145

v A varying-length array of SQLVAR entries, of which each element is 44
bytes in length on 32-bit platforms, and 56 bytes in length on 64-bit
platforms.

The number of SQLVAR entries needed for fulsqlda was specified in the
SQLD field of minsqlda. This value was 20. Therefore, the storage allocation
required for fulsqlda used in this example is:

16 + (20 * sizeof(struct sqlvar))

Note: On 64-bit platforms, sizeof(struct sqlvar) and
sizeof(struct sqlvar2) returns 56. On 32-bit platforms,
sizeof(struct sqlvar) and sizeof(struct sqlvar2) returns 44.

This value represents the size of the header plus 20 times the size of each
SQLVAR entry, giving a total of 896 bytes.

You can use the SQLDASIZE macro to avoid doing your own calculations and
to avoid any version-specific dependencies.

Describing the SELECT Statement
Having allocated sufficient space for fulsqlda, an application must take the
following steps:
1. Store the value 20 in the SQLN field of fulsqlda.
2. Obtain information about the SELECT statement using the second SQLDA

structure, fulsqlda. Two methods are available:
v Use another PREPARE statement specifying fulsqlda instead of

minsqlda.
v Use the DESCRIBE statement specifying fulsqlda.

Using the DESCRIBE statement is preferred because the costs of preparing the
statement a second time are avoided. The DESCRIBE statement simply reuses
information previously obtained during the prepare operation to fill in the
new SQLDA structure. The following statement can be issued:

EXEC SQL DESCRIBE STMT INTO :fulsqlda

After this statement is executed, each SQLVAR element contains a description
of one column of the result table.

Acquiring Storage to Hold a Row
Before fetching any rows of the result table using an SQLDA structure, an
application must do the following:
1. Analyze each SQLVAR description to determine how much space is

required for the value of that column.
Note that for Large Object (LOB) values, when the SELECT is described,
the data type given in the SQLVAR is SQL_TYP_xLOB. This data type

146 Application Development Guide

corresponds to a plain LOB host variable, that is, the whole LOB will be
stored in memory at one time. This will work for small LOBs (up to a few
MB), but you cannot use this data type for large LOBs (say 1 GB). It will
be necessary for your application to change its column definition in the
SQLVAR to be either SQL_TYP_xLOB_LOCATOR or
SQL_TYPE_xLOB_FILE. (Note that changing the SQLTYPE field of the
SQLVAR also necessitates changing the SQLLEN field.) After changing the
column definition in the SQLVAR, your application can then allocate the
correct amount of storage for the new type. For more information on
LOBs, see “Chapter 10. Using the Object-Relational Capabilities” on
page 267.

2. Allocate storage for the value of that column.
3. Store the address of the allocated storage in the SQLDATA field of the

SQLDA structure.

These steps are accomplished by analyzing the description of each column
and replacing the content of each SQLDATA field with the address of a
storage area large enough to hold any values from that column. The length
attribute is determined from the SQLLEN field of each SQLVAR entry for data
items that are not of a LOB type. For items with a type of BLOB, CLOB, or
DBCLOB, the length attribute is determined from the SQLLONGLEN field of
the secondary SQLVAR entry.

In addition, if the specified column allows nulls, then the application must
replace the content of the SQLIND field with the address of an indicator
variable for the column.

Processing the Cursor
After the SQLDA structure is properly allocated, the cursor associated with
the SELECT statement can be opened and rows can be fetched by specifying
the USING DESCRIPTOR clause of the FETCH statement.

When finished, the cursor should be closed and any dynamically allocated
memory should be released.

Allocating an SQLDA Structure
To create an SQLDA structure with C, either embed the INCLUDE SQLDA
statement in the host language or include the SQLDA include file to get the
structure definition. Then, because the size of an SQLDA is not fixed, the
application must declare a pointer to an SQLDA structure and allocate storage
for it. The actual size of the SQLDA structure depends on the number of
distinct data items being passed using the SQLDA. (For an example of how to
code an application to process the SQLDA, see “Example: ADHOC Program”
on page 154.)

Chapter 5. Writing Dynamic SQL Programs 147

In the C/C++ programming language, a macro is provided to facilitate
SQLDA allocation. With the exception of the HP-UX platform, this macro has
the following format:

#define SQLDASIZE(n) (offsetof(struct sqlda, sqlvar) \
+ (n) × sizeof(struct sqlvar))

On the HP-UX platform, the macro has the following format:
#define SQLDASIZE(n) (sizeof(struct sqlda) \

+ (n−1) × sizeof(struct sqlvar))

The effect of this macro is to calculate the required storage for an SQLDA
with n SQLVAR elements.

To create an SQLDA structure with COBOL, you can either embed an
INCLUDE SQLDA statement or use the COPY statement. Use the COPY
statement when you want to control the maximum number of SQLVARs and
hence the amount of storage that the SQLDA uses. For example, to change the
default number of SQLVARs from 1489 to 1, use the following COPY
statement:

COPY "sqlda.cbl"
replacing --1489--
by --1--.

The FORTRAN language does not directly support self-defining data
structures or dynamic allocation. No SQLDA include file is provided for
FORTRAN, because it is not possible to support the SQLDA as a data
structure in FORTRAN. The precompiler will ignore the INCLUDE SQLDA
statement in a FORTRAN program.

However, you can create something similar to a static SQLDA structure in a
FORTRAN program, and use this structure wherever an SQLDA can be used.
The file sqldact.f contains constants that help in declaring an SQLDA
structure in FORTRAN.

Execute calls to SQLGADDR to assign pointer values to the SQLDA elements
that require them.

The following table shows the declaration and use of an SQLDA structure
with one SQLVAR element.

148 Application Development Guide

Language Example Source Code

C/C++ #include <sqlda.h>
struct sqlda *outda = (struct sqlda *)malloc(SQLDASIZE(1));

/* DECLARE LOCAL VARIABLES FOR HOLDING ACTUAL DATA */
double sal;
short salind;

/* INITIALIZE ONE ELEMENT OF SQLDA */
memcpy(outda->sqldaid,"SQLDA ",sizeof(outda->sqldaid));
outda->sqln = outda->sqld = 1;
outda->sqlvar[0].sqltype = SQL_TYP_NFLOAT;
outda->sqlvar[0].sqllen = sizeof(double);.
outda->sqlvar[0].sqldata = (unsigned char *)&sal;
outda->sqlvar[0].sqlind = (short *)&salind;

COBOL WORKING-STORAGE SECTION.
77 SALARY PIC S99999V99 COMP-3.
77 SAL-IND PIC S9(4) COMP-5.

EXEC SQL INCLUDE SQLDA END-EXEC

* Or code a useful way to save unused SQLVAR entries.
* COPY "sqlda.cbl" REPLACING --1489-- BY --1--.

01 decimal-sqllen pic s9(4) comp-5.
01 decimal-parts redefines decimal-sqllen.

05 precision pic x.
05 scale pic x.

* Initialize one element of output SQLDA
MOVE 1 TO SQLN
MOVE 1 TO SQLD
MOVE SQL-TYP-NDECIMAL TO SQLTYPE(1)

* Length = 7 digits precision and 2 digits scale

MOVE x"07" TO PRECISION.
MOVE x"02" TO SCALE.
MOVE DECIMAL-SQLLEN TO O-SQLLEN(1).

SET SQLDATA(1) TO ADDRESS OF SALARY
SET SQLIND(1) TO ADDRESS OF SAL-IND

Chapter 5. Writing Dynamic SQL Programs 149

Language Example Source Code

FORTRAN include 'sqldact.f'

integer*2 sqlvar1
parameter (sqlvar1 = sqlda_header_sz + 0*sqlvar_struct_sz)

C Declare an Output SQLDA -- 1 Variable
character out_sqlda(sqlda_header_sz + 1*sqlvar_struct_sz)

character*8 out_sqldaid ! Header
integer*4 out_sqldabc
integer*2 out_sqln
integer*2 out_sqld

integer*2 out_sqltype1 ! First Variable
integer*2 out_sqllen1
integer*4 out_sqldata1
integer*4 out_sqlind1
integer*2 out_sqlnamel1
character*30 out_sqlnamec1

equivalence(out_sqlda(sqlda_sqldaid_ofs), out_sqldaid)
equivalence(out_sqlda(sqlda_sqldabc_ofs), out_sqldabc)
equivalence(out_sqlda(sqlda_sqln_ofs), out_sqln)
equivalence(out_sqlda(sqlda_sqld_ofs), out_sqld)
equivalence(out_sqlda(sqlvar1+sqlvar_type_ofs), out_sqltype1)
equivalence(out_sqlda(sqlvar1+sqlvar_len_ofs), out_sqllen1)
equivalence(out_sqlda(sqlvar1+sqlvar_data_ofs), out_sqldata1)
equivalence(out_sqlda(sqlvar1+sqlvar_ind_ofs), out_sqlind1)
equivalence(out_sqlda(sqlvar1+sqlvar_name_length_ofs),
+ out_sqlnamel1)
equivalence(out_sqlda(sqlvar1+sqlvar_name_data_ofs),
+ out_sqlnamec1)

C Declare Local Variables for Holding Returned Data.
real*8 salary
integer*2 sal_ind

C Initialize the Output SQLDA (Header)
out_sqldaid = 'OUT_SQLDA'
out_sqldabc = sqlda_header_sz + 1*sqlvar_struct_sz
out_sqln = 1
out_sqld = 1

C Initialize VAR1
out_sqltype1 = SQL_TYP_NFLOAT
out_sqllen1 = 8
rc = sqlgaddr(%ref(salary), %ref(out_sqldata1))
rc = sqlgaddr(%ref(sal_ind), %ref(out_sqlind1))

150 Application Development Guide

In languages not supporting dynamic memory allocation, an SQLDA with the
desired number of SQLVAR elements must be explicitly declared in the host
language. Be sure to declare enough SQLVAR elements as determined by the
needs of the application.

Passing Data Using an SQLDA Structure
Greater flexibility is available when passing data using an SQLDA than is
available using lists of host variables. For example, an SQLDA can be used to
transfer data that has no native host language equivalent, such as DECIMAL
data in the C language. The sample program called ADHOC is an example
using this technique. (See “Example: ADHOC Program” on page 154.) See
Table 8 for a convenient cross-reference listing showing how the numeric
values and symbolic names are related.

Table 8. DB2 V2 SQLDA SQL Types. Numeric Values and Corresponding Symbolic Names

SQL Column Type SQLTYPE numeric
value

SQLTYPE symbolic name1

DATE 384/385 SQL_TYP_DATE / SQL_TYP_NDATE

TIME 388/389 SQL_TYP_TIME / SQL_TYP_NTIME

TIMESTAMP 392/393 SQL_TYP_STAMP / SQL_TYP_NSTAMP

n/a2 400/401 SQL_TYP_CGSTR / SQL_TYP_NCGSTR

BLOB 404/405 SQL_TYP_BLOB / SQL_TYP_NBLOB

CLOB 408/409 SQL_TYP_CLOB / SQL_TYP_NCLOB

DBCLOB 412/413 SQL_TYP_DBCLOB / SQL_TYP_NDBCLOB

VARCHAR 448/449 SQL_TYP_VARCHAR / SQL_TYP_NVARCHAR

CHAR 452/453 SQL_TYP_CHAR / SQL_TYP_NCHAR

LONG VARCHAR 456/457 SQL_TYP_LONG / SQL_TYP_NLONG

n/a3 460/461 SQL_TYP_CSTR / SQL_TYP_NCSTR

VARGRAPHIC 464/465 SQL_TYP_VARGRAPH / SQL_TYP_NVARGRAPH

GRAPHIC 468/469 SQL_TYP_GRAPHIC / SQL_TYP_NGRAPHIC

LONG VARGRAPHIC 472/473 SQL_TYP_LONGRAPH / SQL_TYP_NLONGRAPH

FLOAT 480/481 SQL_TYP_FLOAT / SQL_TYP_NFLOAT

REAL4 480/481 SQL_TYP_FLOAT / SQL_TYP_NFLOAT

DECIMAL5 484/485 SQL_TYP_DECIMAL / SQL_TYP_DECIMAL

INTEGER 496/497 SQL_TYP_INTEGER / SQL_TYP_NINTEGER

SMALLINT 500/501 SQL_TYP_SMALL / SQL_TYP_NSMALL

n/a 804/805 SQL_TYP_BLOB_FILE / SQL_TYPE_NBLOB_FILE

n/a 808/809 SQL_TYP_CLOB_FILE / SQL_TYPE_NCLOB_FILE

n/a 812/813 SQL_TYP_DBCLOB_FILE / SQL_TYPE_NDBCLOB_FILE

Chapter 5. Writing Dynamic SQL Programs 151

Table 8. DB2 V2 SQLDA SQL Types (continued). Numeric Values and Corresponding Symbolic Names

SQL Column Type SQLTYPE numeric
value

SQLTYPE symbolic name1

n/a 960/961 SQL_TYP_BLOB_LOCATOR / SQL_TYP_NBLOB_LOCATOR

n/a 964/965 SQL_TYP_CLOB_LOCATOR / SQL_TYP_NCLOB_LOCATOR

n/a 968/969 SQL_TYP_DBCLOB_LOCATOR / SQL_TYP_NDBCLOB_LOCATOR

Note: These defined types can be found in the sql.h include file located in the include sub-directory of
the sqllib directory. (For example, sqllib/include/sql.h for the C programming language.)
1. For the COBOL programming language, the SQLTYPE name does not use underscore (_) but uses a

hyphen (-) instead.
2. This is a null-terminated graphic string.
3. This is a null-terminated character string.
4. The difference between REAL and DOUBLE in the SQLDA is the length value (4 or 8).
5. Precision is in the first byte. Scale is in the second byte.

Processing Interactive SQL Statements
An application using dynamic SQL can be written to process arbitrary SQL
statements. For example, if an application accepts SQL statements from a user,
the application must be able to execute the statements without any prior
knowledge of the statements.

By using the PREPARE and DESCRIBE statements with an SQLDA structure,
an application can determine the type of SQL statement being executed, and
act accordingly.

For an example of a program that processes interactive SQL statements, see
“Example: ADHOC Program” on page 154.

Determining Statement Type
When an SQL statement is prepared, information concerning the type of
statement can be determined by examining the SQLDA structure. This
information is placed in the SQLDA structure either at statement preparation
time with the INTO clause, or by issuing a DESCRIBE statement against a
previously prepared statement.

In either case, the database manager places a value in the SQLD field of the
SQLDA structure, indicating the number of columns in the result table
generated by the SQL statement. If the SQLD field contains a zero (0), the
statement is not a SELECT statement. Since the statement is already prepared,
it can immediately be executed using the EXECUTE statement.

If the statement contains parameter markers, the USING clause must be
specified as described in the SQL Reference. The USING clause can specify
either a list of host variables or an SQLDA structure.

152 Application Development Guide

If the SQLD field is greater than zero, the statement is a SELECT statement
and must be processed as described in the following sections.

Varying-List SELECT Statement
A varying-list SELECT statement is one in which the number and types of
columns that are to be returned are not known at precompilation time. In this
case, the application does not know in advance the exact host variables that
need to be declared to hold a row of the result table.

To process a varying-list SELECT statement, an application can do the
following:
1. Declare an SQLDA. An SQLDA structure must be used to process

varying-list SELECT statements.
2. PREPARE the statement using the INTO clause. The application then

determines whether the SQLDA structure declared has enough SQLVAR
elements. If it does not, the application allocates another SQLDA structure
with the required number of SQLVAR elements, and issues an additional
DESCRIBE statement using the new SQLDA.

3. Allocate the SQLVAR elements. Allocate storage for the host variables
and indicators needed for each SQLVAR. This step involves placing the
allocated addresses for the data and indicator variables in each SQLVAR
element.

4. Process the SELECT statement. A cursor is associated with the prepared
statement, opened, and rows are fetched using the properly allocated
SQLDA structure.

These steps are described in detail in the following sections:
v “Declaring the SQLDA” on page 143
v “Preparing the Statement Using the Minimum SQLDA Structure” on

page 144
v “Allocating an SQLDA with Sufficient SQLVAR Entries” on page 145
v “Describing the SELECT Statement” on page 146
v “Acquiring Storage to Hold a Row” on page 146
v “Processing the Cursor” on page 147.

Saving SQL Requests from End Users
If your application allows users to save arbitrary SQL statements, you can
save them in a table with a column having a data type of VARCHAR, LONG
VARCHAR, CLOB, VARGRAPHIC, LONG VARGRAPHIC or DBCLOB. Note
that the VARGRAPHIC, LONG VARGRAPHIC, and DBCLOB data types are
only available in Double Byte Character Support (DBCS) and Extended UNIX
Code (EUC) environments.

You must save the source SQL statements, not the prepared versions. This
means that you must retrieve and then prepare each statement before

Chapter 5. Writing Dynamic SQL Programs 153

executing the version stored in the table. In essence, your application prepares
an SQL statement from a character string and executes this statement
dynamically.

Example: ADHOC Program
This sample program shows how the SQLDA is used to process interactive
SQL statements.

Note: The example adhoc.sqc exists for C only.

How the ADHOC Program Works
1. Define an SQLDA structure. The INCLUDE SQLDA statement defines

and declares an SQLDA structure, which is used to pass data from the
database manager to the program and back.

2. Define an SQLCA structure. The INCLUDE SQLCA statement defines an
SQLCA structure, and defines SQLCODE as an element within the structure.
The SQLCODE field of the SQLCA structure is updated with diagnostic
information by the database manager after execution of SQL statements.

3. Declare host variables. The BEGIN DECLARE SECTION and END
DECLARE SECTION statements delimit the host variable declarations.
Host variables are prefixed with a colon (:) when referenced in an SQL
statement.

4. Connect to database. The program connects to the database specified by
the user, and requests shared access to it. (It is assumed that a START
DATABASE MANAGER API call or db2start command has been issued.)
Other programs that attempt to connect to the same database in share
mode are also granted access.

5. Check completion. The SQLCA structure is checked for successful
completion of the CONNECT TO statement. An SQLCODE value of 0
indicates that the connection was successful.

6. Interactive prompt. SQL statements are entered in through the prompt
and then are sent to the process_statement function for further
processing.

7. End the transaction - COMMIT. The unit of work is ended with a
COMMIT if so chosen by the user. All changes requested by the SQL
statements entered since this last COMMIT are saved in the database.

8. End the transaction - ROLLBACK. The unit of work is ended with a
ROLLBACK if so chosen by the user. All changes requested by the SQL
statements entered since the last COMMIT or the start of the program,
are undone.

9. Disconnect from the database. The program disconnects from the
database by executing the CONNECT RESET statement. Upon return, the
SQLCA is checked for successful completion.

154 Application Development Guide

10. Copy SQL statement text to host variable. The statement text is copied
into the data area specified by the host variable st.

11. Prepare the SQLDA for processing. An initial SQLDA structure is
declared and memory is allocated through the init_da procedure to
determine what type of output the SQL statement could generate. The
SQLDA returned from this PREPARE statement reports the number of
columns that will be returned from the SQL statement.

12. SQLDA reports output columns exist. The SQL statement is a SELECT
statement. The SQLDA is initialized through the init_da procedure to
allocate memory space for the prepared SQL statement to reside in.

13. SQLDA reports no output columns. There are no columns to be
returned. The SQL statement is executed dynamically using the EXECUTE
statement.

14. Preparing memory space for the SQLDA. Memory is allocated to reflect
the column structures in the SQLDA. The required amount of memory is
selected by the SQLTYPE and the SQLLEN of the column structure in the
SQLDA.

15. Declare and open a cursor. The DECLARE statement associates the
cursor pcurs with the dynamically prepared SQL statement in
sqlStatement and the cursor is opened.

16. Retrieve a row. The FETCH statement positions the cursor at the next
row and moves the contents of the row into the SQLDA.

17. Display the column titles. The first row that is fetched is the column title
information.

18. Display the row information. The rows of information collected from
each consecutive FETCH is displayed.

19. Close the cursor. The CLOSE statement is closes the cursor, and releases
the resources associated with it.

The EMB_SQL_CHECK macro/function is an error checking utility which is
external to this program. For C programs that call DB2 APIs, the sqlInfoPrint
function in utilapi.c is redefined as API_SQL_CHECK in utilapi.h. For C
embedded SQL programs, the sqlInfoPrint function in utilemb.sqc is
redefined as EMB_SQL_CHECK in utilemb.h. See “Using GET ERROR MESSAGE
in Example Programs” on page 118 for the source code for this error checking
utility.

Note that this example uses a number of additional procedures that are
provided as utilities in the file utilemb.sqc. These include:
init_da

Allocates memory for a prepared SQL statement. An internally
described function called SQLDASIZE is used to calculate the proper
amount of memory.

Chapter 5. Writing Dynamic SQL Programs 155

alloc_host_vars
Allocates memory for data from an SQLDA pointer.

free_da
Frees up the memory that has been allocated to use an SQLDA data
structure.

print_var
Prints out the SQLDA SQLVAR variables. This procedure first
determines data type then calls the appropriate subroutines that are
required to print out the data.

display_da
Displays the output of a pointer that has been passed through. All
pertinent information on the structure of the output data is available
from this pointer, as examined in the procedure print_var.

156 Application Development Guide

C Example: ADHOC.SQC
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlenv.h>
#include <sqlcodes.h>
#include <sqlda.h> �1�
#include "utilemb.h"

#ifdef DB268K
/* Need to include ASLM for 68K applications */
#include <LibraryManager.h>

#endif

EXEC SQL INCLUDE SQLCA ; �2�

#define SQLSTATE sqlca.sqlstate

int process_statement(char *) ;

int main(int argc, char *argv[]) {

int rc ;
char sqlInput[256] ;
char st[1024] ;

EXEC SQL BEGIN DECLARE SECTION ; �3�
char userid[9] ;
char passwd[19] ;

EXEC SQL END DECLARE SECTION ;

#ifdef DB268K
/*
Before making any API calls for 68K environment,
need to initial the Library Manager
*/
InitLibraryManager(0,kCurrentZone,kNormalMemory) ;
atexit(CleanupLibraryManager) ;

#endif

printf("Sample C program : ADHOC interactive SQL\n") ;

/* Initialize the connection to a database. */
if (argc == 1) {

EXEC SQL CONNECT TO sample ;
EMB_SQL_CHECK("CONNECT TO SAMPLE") ;

}
else if (argc == 3) {

strcpy(userid, argv[1]) ;
strcpy(passwd, argv[2]) ;
EXEC SQL CONNECT TO sample USER :userid USING :passwd ; �4�
EMB_SQL_CHECK("CONNECT TO SAMPLE") ; �5�

}
else {

printf("\nUSAGE: adhoc [userid passwd]\n\n") ;

Chapter 5. Writing Dynamic SQL Programs 157

return(1) ;
} /* endif */

printf("Connected to database SAMPLE\n") ;

/* Enter the continuous command line loop. */
*sqlInput = '\0' ;
while ((*sqlInput != 'q') && (*sqlInput != 'Q')) { �6�

printf("Enter an SQL statement or 'quit' to Quit :\n") ;
gets(sqlInput) ;

if ((*sqlInput == 'q') || (*sqlInput == 'Q')) break ;

if (*sqlInput == '\0') { /* Don't process the statement */
printf("No characters entered.\n") ;
continue ;

}

strcpy(st, sqlInput) ;
while (sqlInput[strlen(sqlInput) - 1] == '\\') {

st[strlen(st) - 1] = '\0' ;
gets(sqlInput) ;
strcat(st, sqlInput) ;

}

/* Process the statement. */
rc = process_statement(st) ;

}

printf("Enter 'c' to COMMIT or Any Other key to ROLLBACK the transaction :\n") ;
gets(sqlInput) ;
if ((*sqlInput == 'c') || (*sqlInput == 'C')) {

printf("COMMITING the transactions.\n") ;
EXEC SQL COMMIT ; �7�
EMB_SQL_CHECK("COMMIT") ;

}
else { /* assume that the transaction is to be rolled back */

printf("ROLLING BACK the transactions.\n") ;
EXEC SQL ROLLBACK ; �8�
EMB_SQL_CHECK("ROLLBACK") ;

}

EXEC SQL CONNECT RESET ; �9�
EMB_SQL_CHECK("CONNECT RESET") ;

return(0) ;

}

/**
* FUNCTION : process_statement
* This function processes the inputted statement and then prepares the
* procedural SQL implementation to take place.

158 Application Development Guide

**/
int process_statement (char * sqlInput) {

int counter = 0 ;
struct sqlda * sqldaPointer ;
short sqlda_d ;

EXEC SQL BEGIN DECLARE SECTION ; �3�
char st[1024] ;

EXEC SQL END DECLARE SECTION ;

strcpy(st, sqlInput) ; �10�
/* allocate an initial SQLDA temp pointer to obtain information

about the inputted "st" */

init_da(&sqldaPointer, 1) ; �11�

EXEC SQL PREPARE statement1 from :st ;
/* EMB_SQL_CHECK("PREPARE") ; */

EXEC SQL DESCRIBE statement1 INTO :*sqldaPointer ;

/* Expecting a return code of 0 or SQL_RC_W236,
SQL_RC_W237, SQL_RC_W238, SQL_RC_W239 for cases
where this statement is a SELECT statment. */

if (SQLCODE != 0 &&
SQLCODE != SQL_RC_W236 &&
SQLCODE != SQL_RC_W237 &&
SQLCODE != SQL_RC_W238 &&
SQLCODE != SQL_RC_W239

) {
/* An unexpected warning/error has occurred. Check the SQLCA. */
EMB_SQL_CHECK("DESCRIBE") ;

} /* end if */

sqlda_d = sqldaPointer->sqld ;
free(sqldaPointer) ;

if (sqlda_d > 0) { �12�

/* this is a SELECT statement, a number of columns
are present in the SQLDA */

if (SQLCODE == SQL_RC_W236 || SQLCODE == 0)
/* this out only needs a SINGLE SQLDA */
init_da(&sqldaPointer, sqlda_d) ;

if (SQLCODE == SQL_RC_W237 ||
SQLCODE == SQL_RC_W238 ||
SQLCODE == SQL_RC_W239)

/* this output contains columns that need a DOUBLED SQLDA */
init_da(&sqldaPointer, sqlda_d * 2) ;

/* need to reassign the SQLDA with the correct number
of columns to the SQL statement */

Chapter 5. Writing Dynamic SQL Programs 159

EXEC SQL DESCRIBE statement1 INTO :*sqldaPointer ;
EMB_SQL_CHECK("DESCRIBE") ;

/* allocating the proper amount of memory
space needed for the variables */

alloc_host_vars(sqldaPointer) ; �14�

/* Don't need to check the SQLCODE for declaration of cursors */
EXEC SQL DECLARE pcurs CURSOR FOR statement1 ; �15�

EXEC SQL OPEN pcurs ; �15�
EMB_SQL_CHECK("OPEN") ;

EXEC SQL FETCH pcurs USING DESCRIPTOR :*sqldaPointer; �16�
EMB_SQL_CHECK("FETCH") ;

/* if the FETCH is successful, obtain data from SQLDA */
/* display the column titles */
display_col_titles(sqldaPointer) ; �17�

/* display the rows that are fetched */
while (SQLCODE == 0) {

counter++ ;
display_da(sqldaPointer) ; �18�
EXEC SQL FETCH pcurs USING DESCRIPTOR :*sqldaPointer ;

} /* endwhile */

EXEC SQL CLOSE pcurs ; �19�
EMB_SQL_CHECK("CLOSE CURSOR") ;
printf("\n %d record(s) selected\n\n", counter) ;

/* Free the memory allocated to this SQLDA. */
free_da(sqldaPointer) ;

} else { /* this is not a SELECT statement, execute SQL statement */ �13�
EXEC SQL EXECUTE statement1 ;
EMB_SQL_CHECK("Executing the SQL statement") ;

} /* end if */

return(0) ;

} /* end of program : ADHOC.SQC */

160 Application Development Guide

Variable Input to Dynamic SQL

This section shows you how to use parameter markers in your dynamic SQL
applications to represent host variable information. It includes:
v Using Parameter Markers
v Example: VARINP Program

Using Parameter Markers
A dynamic SQL statement cannot contain host variables, because host variable
information (data type and length) is available only during application
precompilation. At execution time, the host variable information is not
present. Therefore, a new method is needed to represent application variables.
Host variables are represented by a question mark (?) which is called a
parameter marker. Parameter markers indicate the places in which a host
variable is to be substituted inside of an SQL statement. The parameter
marker takes on an assumed data type and length that is dependent on the
context of its use inside the SQL statement.

If the data type of a parameter marker is not obvious from the context of the
statement in which it is used, the type can be specified using a CAST. Such a
parameter marker is considered a typed parameter marker. Typed parameter
markers will be treated like a host variable of the given type. For example, the
statement SELECT ? FROM SYSCAT.TABLES is invalid because DB2 does not
know the type of the result column. However, the statement
SELECT CAST(? AS INTEGER) FROM SYSCAT.TABLES, is valid because the cast
promises that the parameter marker represents an INTEGER, so DB2 knows the
type of the result column.

A character string containing a parameter marker might look like the
following:

DELETE FROM TEMPL WHERE EMPNO = ?

When this statement is executed, a host variable or SQLDA structure is
specified by the USING clause of the EXECUTE statement. The contents of the
host variable are used when the statement executes.

If the SQL statement contains more than one parameter marker, then the
USING clause of the EXECUTE statement must either specify a list of host
variables (one for each parameter marker), or it must identify an SQLDA that
has an SQLVAR entry for each parameter marker. (Note that for LOBs, there
are two SQLVARs per parameter marker.) The host variable list or SQLVAR
entries are matched according to the order of the parameter markers in the
statement, and they must have compatible data types.

Chapter 5. Writing Dynamic SQL Programs 161

Note that using a parameter marker with dynamic SQL is like using host
variables with static SQL. In either case, the optimizer does not use
distribution statistics, and possibly may not choose the best access plan.

The rules that apply to parameter markers are listed under the PREPARE
statement in the SQL Reference.

Example: VARINP Program
This is an example of an UPDATE that uses a parameter marker in the search
and update conditions. The sample is available in the following programming
languages:

C varinp.sqc

Java Varinp.java

COBOL varinp.sqb

How the VARINP Program Works
1. Prepare the SELECT SQL statement The PREPARE statement is called to

dynamically prepare an SQL statement. In this SQL statement, parameter
markers are denoted by the ?. The job field of staff is defined to be
updatable, even though it is not specified in the result table.

2. Declare the cursor. The DECLARE CURSOR statement associates the
cursor c1 to the query that was prepared in �1�.

3. Open the cursor. The cursor c1 is opened, causing the database manager
to perform the query and build a result table. The cursor is positioned
before the first row.

4. Prepare the UPDATE SQL statement The PREPARE statement is called to
dynamically prepare an SQL statement. The parameter marker in this
statement is set to be Clerk but can be changed dynamically to anything,
as long as it conforms to the column data type it is being updated into.

5. Retrieve a row. The FETCH statement positions the cursor at the next row
and moves the contents of the row into the host variables. This row
becomes the CURRENT row.

6. Update the current row. The current row and specified column, job, is
updated with the content of the passed parameter parm_var.

7. Close the cursor. The CLOSE statement is issued, releasing the resources
associated with the cursor. The cursor can be opened again, however.

The CHECKERR macro/function is an error checking utility which is external to
the program. The location of this error checking utility depends upon the
programming language used:

C For C programs that call DB2 APIs, the sqlInfoPrint function
in utilapi.c is redefined as API_SQL_CHECK in utilapi.h. For C

162 Application Development Guide

embedded SQL programs, the sqlInfoPrint function in
utilemb.sqc is redefined as EMB_SQL_CHECK in utilemb.h.

Java Any SQL error is thrown as an SQLException and handled in
the catch block of the application.

COBOL CHECKERR is an external program named checkerr.cbl

See “Using GET ERROR MESSAGE in Example Programs” on page 118 for the
source code for this error checking utility.

Chapter 5. Writing Dynamic SQL Programs 163

C Example: VARINP.SQC
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "utilemb.h"

EXEC SQL INCLUDE SQLCA;

int main(int argc, char *argv[])
{

EXEC SQL BEGIN DECLARE SECTION;
char pname[10];
short dept;
char userid[9];
char passwd[19];
char st[255];
char parm_var[6];

EXEC SQL END DECLARE SECTION;

printf("Sample C program: VARINP \n");

if (argc == 1)
{

EXEC SQL CONNECT TO sample;
EMB_SQL_CHECK("CONNECT TO SAMPLE");
}
else if (argc == 3)
{

strcpy (userid, argv[1]);
strcpy (passwd, argv[2]);
EXEC SQL CONNECT TO sample USER :userid USING :passwd;
EMB_SQL_CHECK("CONNECT TO SAMPLE");

}
else
{

printf ("\nUSAGE: varinp [userid passwd]\n\n");
return 1;

} /* endif */

strcpy (st, "SELECT name, dept FROM staff ");
strcat (st, "WHERE job = ? FOR UPDATE OF job");
EXEC SQL PREPARE s1 FROM :st; �1�
EMB_SQL_CHECK("PREPARE");

EXEC SQL DECLARE c1 CURSOR FOR s1; �2�

strcpy (parm_var, "Mgr");
EXEC SQL OPEN c1 USING :parm_var; �3�
EMB_SQL_CHECK("OPEN");

strcpy (parm_var, "Clerk");
strcpy (st, "UPDATE staff SET job = ? WHERE CURRENT OF c1");
EXEC SQL PREPARE s2 from :st; �4�

164 Application Development Guide

do
{

EXEC SQL FETCH c1 INTO :pname, :dept; �5�
if (SQLCODE != 0) break;

printf("%-10.10s in dept. %2d will be demoted to Clerk\n",
pname, dept);

EXEC SQL EXECUTE s2 USING :parm_var; �6�
EMB_SQL_CHECK("EXECUTE");

} while (1);

EXEC SQL CLOSE c1; �7�
EMB_SQL_CHECK("CLOSE CURSOR");

EXEC SQL ROLLBACK;
EMB_SQL_CHECK("ROLLBACK");
printf("\nOn second thought -- changes rolled back.\n");

EXEC SQL CONNECT RESET;
EMB_SQL_CHECK("CONNECT RESET");
return 0;

}
/* end of program : VARINP.SQC */

Chapter 5. Writing Dynamic SQL Programs 165

Java Example: Varinp.java
import java.sql.*;

class Varinp
{ static

{ try
{ Class.forName ("COM.ibm.db2.jdbc.app.DB2Driver").newInstance ();
}
catch (Exception e)
{ System.out.println ("\n Error loading DB2 Driver...\n");

System.out.println (e);
System.exit(1);

}
}

public static void main(String argv[])
{ try

{ System.out.println (" Java Varinp Sample");
// Connect to Sample database

Connection con = null;
// URL is jdbc:db2:dbname
String url = "jdbc:db2:sample";

if (argv.length == 0)
{ // connect with default id/password

con = DriverManager.getConnection(url);
}
else if (argv.length == 2)
{ String userid = argv[0];

String passwd = argv[1];

// connect with user-provided username and password
con = DriverManager.getConnection(url, userid, passwd);

}
else
{ throw new Exception("\nUsage: java Varinp [username password]\n");
}

// Enable transactions
con.setAutoCommit(false);

// Perform dynamic SQL using JDBC
try
{ PreparedStatement pstmt1 = con.prepareStatement(

"SELECT name, dept FROM staff WHERE job = ? FOR UPDATE OF job"); �1�
// set cursor name for the positioned update statement
pstmt1.setCursorName("c1"); �2�
pstmt1.setString(1, "Mgr");
ResultSet rs = pstmt1.executeQuery(); �3�

PreparedStatement pstmt2 = con.prepareStatement(
"UPDATE staff SET job = ? WHERE CURRENT OF c1"); �4�

pstmt2.setString(1, "Clerk");

166 Application Development Guide

System.out.print("\n");
while(rs.next()) �5�
{ String name = rs.getString("name");

short dept = rs.getShort("dept");
System.out.println(name + " in dept. " + dept

+ " will be demoted to Clerk");

pstmt2.executeUpdate(); �6�
};

rs.close();
pstmt1.close(); �7�
pstmt2.close();
}
catch(Exception e)
{ throw e;
}
finally
{ // Rollback the transaction

System.out.println("\nRollback the transaction...");
con.rollback();
System.out.println("Rollback done.");

}
}
catch(Exception e)
{ System.out.println(e);
}

}
}

Chapter 5. Writing Dynamic SQL Programs 167

COBOL Example: VARINP.SQB
Identification Division.
Program-ID. "varinp".

Data Division.
Working-Storage Section.

copy "sqlca.cbl".

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 pname pic x(10).
01 dept pic s9(4) comp-5.
01 st pic x(127).
01 parm-var pic x(5).
01 userid pic x(8).
01 passwd.

49 passwd-length pic s9(4) comp-5 value 0.
49 passwd-name pic x(18).

EXEC SQL END DECLARE SECTION END-EXEC.

77 errloc pic x(80).

Procedure Division.
Main Section.

display "Sample COBOL program: VARINP".

* Get database connection information.
display "Enter your user id (default none): "

with no advancing.
accept userid.

if userid = spaces
EXEC SQL CONNECT TO sample END-EXEC

else
display "Enter your password : " with no advancing
accept passwd-name.

* Passwords in a CONNECT statement must be entered in a VARCHAR format
* with the length of the input string.

inspect passwd-name tallying passwd-length for characters
before initial " ".

EXEC SQL CONNECT TO sample USER :userid USING :passwd
END-EXEC.

move "CONNECT TO" to errloc.
call "checkerr" using SQLCA errloc.

move "SELECT name, dept FROM staff
- " WHERE job = ? FOR UPDATE OF job" to st.

EXEC SQL PREPARE s1 FROM :st END-EXEC. �1�
move "PREPARE" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL DECLARE c1 CURSOR FOR s1 END-EXEC. �2�

168 Application Development Guide

move "Mgr" to parm-var.

EXEC SQL OPEN c1 USING :parm-var END-EXEC �3�
move "OPEN" to errloc.
call "checkerr" using SQLCA errloc.

move "Clerk" to parm-var.
move "UPDATE staff SET job = ? WHERE CURRENT OF c1" to st.

EXEC SQL PREPARE s2 from :st END-EXEC. �4�
move "PREPARE S2" to errloc.
call "checkerr" using SQLCA errloc.

* call the FETCH and UPDATE loop.
perform Fetch-Loop thru End-Fetch-Loop

until SQLCODE not equal 0.

EXEC SQL CLOSE c1 END-EXEC. �7�
move "CLOSE" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL ROLLBACK END-EXEC.
move "ROLLBACK" to errloc.
call "checkerr" using SQLCA errloc.
DISPLAY "On second thought -- changes rolled back.".

EXEC SQL CONNECT RESET END-EXEC.
move "CONNECT RESET" to errloc.
call "checkerr" using SQLCA errloc.

End-Main.
go to End-Prog.

Fetch-Loop Section.
EXEC SQL FETCH c1 INTO :pname, :dept END-EXEC. �5�
if SQLCODE not equal 0

go to End-Fetch-Loop.
display pname, " in dept. ", dept,

" will be demoted to Clerk".

EXEC SQL EXECUTE s2 USING :parm-var END-EXEC. �6�
move "EXECUTE" to errloc.
call "checkerr" using SQLCA errloc.

End-Fetch-Loop. exit.

End-Prog.
stop run.

Chapter 5. Writing Dynamic SQL Programs 169

The DB2 Call Level Interface (CLI)

An application that uses an embedded SQL interface requires a precompiler to
convert the SQL statements into code, which is then compiled, bound to the
database, and executed. In contrast, a DB2 CLI application does not have to
be precompiled or bound, but instead uses a standard set of functions to
execute SQL statements and related services at run time.

This difference is important because, traditionally, precompilers have been
specific to each database product, which effectively ties your applications to
that product. DB2 CLI enables you to write portable applications that are
independent of any particular database product. This independence means
DB2 CLI applications do not have to be recompiled or rebound to access
different DB2 databases, including DRDA databases. They just connect to the
appropriate database at run time.

Comparing Embedded SQL and DB2 CLI
DB2 CLI and embedded SQL also differ in the following ways:
v DB2 CLI does not require the explicit declaration of cursors. DB2 CLI has a

supply of cursors that get used as needed. The application can then use the
generated cursor in the normal cursor fetch model for multiple row SELECT
statements and positioned UPDATE and DELETE statements.

v The OPEN statement is not used in DB2 CLI. Instead, the execution of a
SELECT automatically causes a cursor to be opened.

v Unlike embedded SQL, DB2 CLI allows the use of parameter markers on
the equivalent of the EXECUTE IMMEDIATE statement (the SQLExecDirect()
function).

v A COMMIT or ROLLBACK in DB2 CLI is issued via the SQLEndTran() function
call rather than by passing it as an SQL statement.

v DB2 CLI manages statement related information on behalf of the
application, and provides a statement handle to refer to it as an abstract
object. This handle eliminates the need for the application to use product
specific data structures.

v Similar to the statement handle, the environment handle and connection handle
provide a means to refer to all global variables and connection specific
information. The descriptor handle describes either the parameters of an SQL
statement or the columns of a result set.

v DB2 CLI uses the SQLSTATE values defined by the X/Open SQL CAE
specification. Although the format and most of the values are consistent
with values used by the IBM relational database products, there are
differences. (There are also differences between ODBC SQLSTATES and the
X/Open defined SQLSTATES).

v DB2 CLI supports scrollable cursors. With scrollable cursors, you can scroll
through a static cursor as follows:
– Forward by one or more rows

170 Application Development Guide

– Backward by one or more rows
– From the first row by one or more rows
– From the last row by one or more rows.

Despite these differences, there is an important common concept between
embedded SQL and DB2 CLI: DB2 CLI can execute any SQL statement that can
be prepared dynamically in embedded SQL.

Note: DB2 CLI can also accept some SQL statements that cannot be prepared
dynamically, such as compound SQL statements.

Table 37 on page 723 lists each SQL statement, and indicates whether or not it
can be executed using DB2 CLI. The table also indicates if the command line
processor can be used to execute the statement interactively, (useful for
prototyping SQL statements).

Each DBMS may have additional statements that you can dynamically
prepare. In this case, DB2 CLI passes the statements to the DBMS. There is
one exception: the COMMIT and ROLLBACK statement can be dynamically
prepared by some DBMSs but are not passed. In this case, use the
SQLEndTran() function to specify either the COMMIT or ROLLBACK
statement.

Advantages of Using DB2 CLI

The DB2 CLI interface has several key advantages over embedded SQL.
v It is ideally suited for a client-server environment, in which the target

database is not known when the application is built. It provides a consistent
interface for executing SQL statements, regardless of which database server
the application is connected to.

v It increases the portability of applications by removing the dependence on
precompilers.

v Individual DB2 CLI applications do not need to be bound to each database,
only bind files shipped with DB2 CLI need to be bound once for all DB2
CLI applications. This can significantly reduce the amount of management
required for the application once it is in general use.

v DB2 CLI applications can connect to multiple databases, including multiple
connections to the same database, all from the same application. Each
connection has its own commit scope. This is much simpler using CLI than
using embedded SQL where the application must make use of
multi-threading to achieve the same result.

v DB2 CLI eliminates the need for application controlled, often complex data
areas, such as the SQLDA and SQLCA, typically associated with embedded
SQL applications. Instead, DB2 CLI allocates and controls the necessary
data structures, and provides a handle for the application to reference them.

Chapter 5. Writing Dynamic SQL Programs 171

v DB2 CLI enables the development of multi-threaded thread-safe
applications where each thread can have its own connection and a separate
commit scope from the rest. DB2 CLI achieves this by eliminating the data
areas described above, and associating all such data structures that are
accessible to the application with a specific handle. Unlike embedded SQL,
a multi-threaded CLI application does not need to call any of the context
management DB2 APIs; this is handled by the DB2 CLI driver
automatically.

v DB2 CLI provides enhanced parameter input and fetching capability,
allowing arrays of data to be specified on input, retrieving multiple rows of
a result set directly into an array, and executing statements that generate
multiple result sets.

v DB2 CLI provides a consistent interface to query catalog (Tables, Columns,
Foreign Keys, Primary Keys, etc.) information contained in the various
DBMS catalog tables. The result sets returned are consistent across DBMSs.
This shields the application from catalog changes across releases of database
servers, as well as catalog differences amongst different database servers;
thereby saving applications from writing version specific and server specific
catalog queries.

v Extended data conversion is also provided by DB2 CLI, requiring less
application code when converting information between various SQL and C
data types.

v DB2 CLI incorporates both the ODBC and X/Open CLI functions, both of
which are accepted industry specifications. DB2 CLI is also aligned with the
emerging ISO CLI standard. Knowledge that application developers invest
in these specifications can be applied directly to DB2 CLI development, and
vice versa. This interface is intuitive to grasp for those programmers who
are familiar with function libraries but know little about product specific
methods of embedding SQL statements into a host language.

v DB2 CLI provides the ability to retrieve multiple rows and result sets
generated from a stored procedure residing on a DB2 Universal Database
(or DB2 for MVS/ESA version 5 or later) server. However, note that this
capability exists for Version 5 DB2 Universal Database clients using
embedded SQL if the stored procedure resides on a server accessible from a
DataJoiner Version 2 server.

v DB2 CLI supports server-side scrollable cursors that can be used in
conjunction with array output. This is useful in GUI applications that
display database information in scroll boxes that make use of the Page Up,
Page Down, Home and End keys. You can declare a read-only cursor as
scrollable then move forward or backward through the result set by one or
more rows. You can also fetch rows by specifying an offset from:
– The current row
– The beginning or end of the result set
– A specific row you have previously set with a bookmark.

172 Application Development Guide

v DB2 CLI applications can dynamically describe parameters in an SQL
statement the same way that CLI and Embedded SQL applications describe
result sets. This enables CLI applications to dynamically process SQL
statements that contain parameter markers without knowing the data type
of those parameter markers in advance. When the SQL statement is
prepared, describe information is returned detailing the data types of the
parameters.

Deciding on Embedded SQL or DB2 CLI
Which interface you choose depends on your application.

DB2 CLI is ideally suited for query-based graphical user interface (GUI)
applications that require portability. The advantages listed above, may make
using DB2 CLI seem like the obvious choice for any application. There is
however, one factor that must be considered, the comparison between static
and dynamic SQL. It is much easier to use static SQL in embedded
applications.

For more information on using static SQL in CLI applications, refer to the Web
page at:

http://www.ibm.com/software/data/db2/udb/staticcli

Static SQL has several advantages:
v Performance

Dynamic SQL is prepared at run time, static SQL is prepared at precompile
time. As well as requiring more processing, the preparation step may incur
additional network-traffic at run time. This additional step (and
network-traffic), however, will not be required if the DB2 CLI application
makes use of deferred prepare.
It is important to note that static SQL will not always have better
performance than dynamic SQL. Dynamic SQL can make use of changes to
the database, such as new indexes, and can use current database statistics to
choose the optimal access plan. In addition, precompilation of statements
can be avoided if they are cached.

v Encapsulation and Security
In static SQL, the authorizations to objects (such as a table, view) are
associated with a package and are validated at package binding time. This
means that database administrators need only to grant execute on a
particular package to a set of users (thus encapsulating their privileges in
the package) without having to grant them explicit access to each database
object. In dynamic SQL, the authorizations are validated at run time on a
per statement basis; therefore, users must be granted explicit access to each
database object. This permits these users access to parts of the object that
they do not have a need to access.

v Embedded SQL is supported in languages other than C or C++.

Chapter 5. Writing Dynamic SQL Programs 173

v For fixed query selects, embedded SQL is simpler.

If an application requires the advantages of both interfaces, it is possible to
make use of static SQL within a DB2 CLI application by creating a stored
procedure that contains the static SQL. The stored procedure is called from
within a DB2 CLI application and is executed on the server. Once the stored
procedure is created, any DB2 CLI or ODBC application can call it. For more
information, refer to the CLI Guide and Reference.

For more information on using static SQL in CLI applications, refer to the Web
page at:

http://www.ibm.com/software/data/db2/udb/staticcli

It is also possible to write a mixed application that uses both DB2 CLI and
embedded SQL, taking advantage of their respective benefits. In this case,
DB2 CLI is used to provide the base application, with key modules written
using static SQL for performance or security reasons. This complicates the
application design, and should only be used if stored procedures do not meet
the applications requirements. For more information, refer to the section on
Mixing Embedded SQL and DB2 CLI in the CLI Guide and Reference.

Ultimately, the decision on when to use each interface, will be based on
individual preferences and previous experience rather than on any one factor.

174 Application Development Guide

Chapter 6. Common DB2 Application Techniques

Generated Columns 176
Identity Columns 176
Declared Temporary Tables 177
Controlling Transactions with Savepoints 179

Savepoint Restrictions 180
Savepoints and Data Definition Language
(DDL). 181

Savepoints and Buffered Inserts 182
Using Savepoints with Cursor Blocking 182
Savepoints and XA Compliant Transaction
Managers 183

DB2 enables you to use embedded SQL to handle common database
application development problems.

Generated columns
Rather than using cumbersome insert and update triggers, DB2
enables you to include generated columns in your tables using the
GENERATED ALWAYS AS clause. Generated columns provide
automatically updated values derived from an SQL expression.

Identity columns
DB2 application developers often need to create a primary key for
every row in a table. If you create a table that uses an identity column
for the primary key, DB2 automatically inserts a unique value. When
you use identity columns, your applications can benefit from
increased performance due to a reduction in lock contention.

Declared temporary tables
Declared temporary tables are similar to regular tables, but persist
only as long as the database connection and are not subject to locking
or logging. If your application creates tables to process large amounts
of data and drops those tables once the application has finished
manipulating that data, consider using declared temporary tables.
Declared temporary tables can increase the performance of your
application and, for applications designed for concurrent users,
simplify your application development effort.

External savepoints
While COMMIT and ROLLBACK statements enable you to control the
behavior of an entire transaction, savepoints enable you to exercise
more granular control within transactions. Savepoint blocks group
several SQL statements together. If one of the sub-statements in the
savepoint block results in an error, you can roll back just the failing
sub-statement and complete the work of the other sub-statements.

© Copyright IBM Corp. 1993, 2000 175

Generated Columns

A generated column is a column that derives the values for each row from an
expression, rather than from an insert or update operation. While combining
an update trigger and an insert trigger can achieve a similar effect, using a
generated column guarantees that the derived value is consistent with the
expression.

To create a generated column in a table, use the GENERATED ALWAYS AS
clause for the column and include the expression from which the value for the
column will be derived. You can include the GENERATED ALWAYS AS clause
in ALTER TABLE or CREATE TABLE statements. The following example
creates a table with two regular columns, “c1” and “c2”, and two generated
columns, “c3” and “c4”, that are derived from the regular columns of the
table.

CREATE TABLE T1(c1 INT, c2 DOUBLE,
c3 DOUBLE GENERATED ALWAYS AS (c1 + c2),
c4 GENERATED ALWAYS AS

(CASE
WHEN c1 > c2 THEN 1
ELSE NULL

END)
);

For more information on using generated columns to improve the
performance of your applications, refer to the Administration Guide. For more
information on creating generated columns, refer to the CREATE TABLE
statement syntax in the SQL Reference.

Identity Columns

Identity columns provide DB2 application developers with an easy way of
automatically generating a unique primary key value for every row in a table.
To create an identity column, include the IDENTITY clause in your CREATE
TABLE or ALTER TABLE statement.

Use identity columns in your applications to avoid the concurrency and
performance problems that can occur when an application generates its own
unique counter outside the database. When you do not use identity columns
to automatically generate unique primary keys, a common design is to store a
counter in a table with a single row. Each transaction then locks this table,
increments the number, and then commits the transaction to unlock the
counter. Unfortunately, this design only allows a single transaction to
increment the counter at a time.

In contrast, if you use an identity column to automatically generate primary
keys, the application can achieve much higher levels of concurrency. With

176 Application Development Guide

identity columns, DB2 maintains the counter so that transactions do not have
to lock the counter. Applications that use identity columns can perform better
because an uncommitted transaction that has incremented the counter does
not prevent other subsequent transactions from also incrementing the counter.

The counter for the identity column is incremented or decremented
independently of the transaction. If a given transaction increments an identity
counter two times, that transaction may see a gap in the two numbers that are
generated because there may be other transactions concurrently incrementing
the same identity counter.

An identity column may appear to have generated gaps in the counter, as the
result of a transaction that was rolled back, or because the database cached a
range of values that have been deactivated (normally or abnormally) before all
the cached values were assigned.

For more information on identity columns, refer to the Administration Guide.
For more information on the IDENTITY clause of the CREATE TABLE and
ALTER TABLE stataments, refer to the SQL Reference.

Declared Temporary Tables

A declared temporary table is a temporary table that is only accessible to SQL
statements that are issued by the application which created the temporary
table. A declared temporary table does not persist beyond the duration of the
connection of the application to the database.

Use declared temporary tables to potentially improve the performance of your
applications. When you create a declared temporary table, DB2 does not insert
an entry into the system catalog tables, and therefore your server does not
suffer from catalog contention issues. In comparison to regular tables, DB2
does not lock declared temporary tables or their rows, and does not log
declared temporary tables or their contents. If your current application creates
tables to process large amounts of data and drops those tables once the
application has finished manipulating that data, consider using declared
temporary tables instead of regular tables.

If you develop applications written for concurrent users, your applications can
take advantage of declared temporary tables. Unlike regular tables, declared
temporary tables are not subject to name collision. For each instance of the
application, DB2 can create a declared temporary table with an identical
name. For example, to write an application for concurrent users that uses
regular tables to process large amounts of temporary data, you must ensure
that each instance of the application uses a unique name for the regular table
that holds the temporary data. Typically, you would create another table that
tracks the names of the tables that are in use at any given time. With declared

Chapter 6. Common DB2 Application Techniques 177

temporary tables, simply specify one declared temporary table name for your
temporary data. DB2 guarantees that each instance of the application uses a
unique table.

To use a declared temporary table, perform the following steps:
Step 1. Ensure that a USER TEMPORARY TABLESPACE exists. If a USER

TEMPORARY TABLESPACE does not exist, issue a CREATE USER
TEMPORARY TABLESPACE statement.

Step 2. Issue a DECLARE GLOBAL TEMPORARY TABLE statement in your
application.

The schema for declared temporary tables is always SESSION. To use the
declared temporary table in your SQL statements, you must refer to the table
using the SESSION schema qualifier either explicitly or by using a DEFAULT
schema of SESSION to qualify any unqualified references. In the following
example, the table name is always qualified by the schema name SESSION
when you create a declared temporary table named TT1 with the following
statement:

DECLARE GLOBAL TEMPORARY TABLE TT1

To select the contents of the column1 column from the declared temporary
table created in the previous example, use the following statement:

SELECT column1 FROM SESSION.TT1;

Note that DB2 also enables you to create persistent tables with the SESSION
schema. If you create a persistent table with the qualified name SESSION.TT3,
you can then create a declared temporary table with the qualified name
SESSION.TT3. In this situation, DB2 always resolves references to persistent
and declared temporary tables with identical qualified names to the declared
temporary table. To avoid confusing persistent tables with declared temporary
tables, you should not create persistent tables using the SESSION schema.

If you create an application that includes a static SQL reference to a table,
view, or alias qualified with the SESSION schema, the DB2 precompiler does
not compile that statement at bind time and marks the statement as “needing
compilation”. At run time, DB2 compiles the statement. This behavior is called
incremental binding. DB2 automatically performs incremental binding for static
SQL references to tables, views, and aliases qualified with the SESSION
schema. You do not need to specify the VALIDATE RUN option on the BIND
or PRECOMPILE command to enable incremental binding for these
statements.

If you issue a ROLLBACK statement for a transaction that includes a
DECLARE GLOBAL TEMPORARY TABLE statement, DB2 drops the declared
temporary table. If you issue a DROP TABLE statement for a declared
temporary table, issuing a ROLLBACK statement for that transaction only

178 Application Development Guide

restores an empty declared temporary table. A ROLLBACK of a DROP TABLE
statement does not restore the rows that existed in the declared temporary
table.

The default behavior of a declared temporary table is to delete all rows from
the table when you commit a transaction. However, if one or more WITH
HOLD cursors are still open on the declared temporary table, DB2 does not
delete the rows from the table when you commit a transaction. To avoid
deleting all rows when you commit a transaction, create the temporary table
using the ON COMMIT PRESERVE ROWS clause in the DECLARE GLOBAL
TEMPORARY TABLE statement.

If you modify the contents of a declared temporary table using an INSERT,
UPDATE, or DELETE statement within a transaction, and roll back that
transaction, DB2 deletes all of the rows of the declared temporary table. If you
attempt to modify the contents of a declared temporary table using an
INSERT, UPDATE, or DELETE statement, and the statement fails, DB2 deletes
all of the rows of the declared temporary table.

In a partitioned environment, when a node failure is encountered, all declared
temporary tables that have a partition on the failed node become unusable.
Any subsequent access to those unusable declared temporary tables returns an
error (SQL1477N). When your application encounters an unusable declared
temporary table the application can either drop the table or recreate the table
by specifying the WITH REPLACE clause in the DECLARE GLOBAL
TEMPORARY TABLE statement.

Declared temporary tables are subject to a number of restrictions. For
example, you cannot define indexes, aliases, or views for declared temporary
tables. You cannot use IMPORT and LOAD to populate declared temporary
tables. For the complete syntax of the DECLARE GLOBAL TEMPORARY
TABLE statement, and a complete list of the restrictions on declared
temporary tables, refer to the SQL Reference.

Controlling Transactions with Savepoints

A savepoint is a mechanism of undoing work done by the DBMS when a
database request fails. Savepoints make non-atomic database requests behave
atomically. If an error occurs during execution, the savepoint can be used to
undo changes made by the transaction between the time the savepoint was
started and the time the savepoint rollback is requested.

A savepoint is similar to a compound SQL statement. It allows you to group
several SQL statements into a single executable block. Before the first
sub-statement of the block is executed, a savepoint request to start a savepoint
block is required. If any of the sub-statements end in an error, only that

Chapter 6. Common DB2 Application Techniques 179

sub-statement will be rolled back. This provides more granularity than a
compound SQL statement, in which a single error causes the entire block to
end in an error and rolls back the entire compound SQL statement. At the end
of a savepoint block of statements, you can either release the savepoint, or
rollback to the savepoint.

The following SQL statements enable you to create and control savepoints:

SAVEPOINT
To set a savepoint, issue a SAVEPOINT SQL statement. To improve
the clarity of your code, you can choose a meaningful name for the
savepoint. For example:
SAVEPOINT savepoint1 ON ROLLBACK RETAIN CURSORS

RELEASE SAVEPOINT
To release a savepoint, issue a RELEASE SAVEPOINT SQL statement.
If you do not explicitly release a savepoint with a RELEASE
SAVEPOINT SQL statement, it is released at the end of the
transaction. For example:
RELEASE SAVEPOINT savepoint1

ROLLBACK TO SAVEPOINT
To rollback to a savepoint, issue a ROLLBACK TO SAVEPOINT SQL
statement. For example:
ROLLBACK TO SAVEPOINT

For the complete syntax of the SAVEPOINT, RELEASE SAVEPOINT, and
ROLLBACK TO SAVEPOINT statements, refer to the SQL Reference.

Savepoint Restrictions
DB2 Universal Database places the following restrictions on your use of
savepoints in applications:

Atomic compound SQL
DB2 does not enable you to use savepoints within atomic compound
SQL. You cannot use atomic compound SQL within a savepoint.

Nested Savepoints
DB2 does not support the use of a savepoint within another
savepoint.

Triggers
DB2 does not support the use of savepoints in triggers.

Quantity of savepoints within a transaction
DB2 enables you to set and use as many savepoints as you require
within a transaction.

SET INTEGRITY statement
Within a savepoint, DB2 treats SET INTEGRITY statements as DDL

180 Application Development Guide

statements. For more information on using DDL in savepoints, see
“Savepoints and Data Definition Language (DDL)”.

Savepoints and Data Definition Language (DDL)
DB2 enables you to include DDL statements within a savepoint. If the
application successfully releases a savepoint that executes DDL statements, the
application can continue to use the SQL objects created by the DDL. However,
if the application issues a ROLLBACK TO SAVEPOINT statement for a
savepoint that executes DDL statements, DB2 marks any cursors that depend
on the effects of those DDL statements as invalid.

In the following example, the application attempts to fetch from three
previously opened cursors after issuing a ROLLBACK TO SAVEPOINT
statement:

SAVEPOINT savepoint_name;
PREPARE s1 FROM 'SELECT FROM t1';
--issue DDL statement for t1

ALTER TABLE t1 ADD COLUMN...
PREPARE s2 FROM 'SELECT FROM t2';
--issue DDL statement for t3

ALTER TABLE t3 ADD COLUMN...
PREPARE s3 FROM 'SELECT FROM t3';
OPEN c1 USING s1;
OPEN c2 USING s2;
OPEN c3 USING s3;

ROLLBACK TO SAVEPOINT
FETCH c1; --invalid (SQLCODE −910)
FETCH c2; --successful
FETCH c3; --invalid (SQLCODE −910)

At the ROLLBACK TO SAVEPOINT statement, DB2 marks cursors “c1” and
“c3” as invalid because the SQL objects on which they depend have been
manipulated by DDL statements within the savepoint. However, a FETCH
using cursor “c2” from the example is successful after the ROLLBACK TO
SAVEPOINT statement.

You can issue a CLOSE statement to close invalid cursors. If you issue a
FETCH against an invalid cursor, DB2 returns SQLCODE −910. If you issue an
OPEN statement against an invalid cursor, DB2 returns SQLCODE −502. If
you issue an UPDATE or DELETE WHERE CURRENT OF statement against
an invalid cursor, DB2 returns SQLCODE −910.

Within savepoints, DB2 treats tables with the NOT LOGGED INITIALLY
property and temporary tables as follows:

NOT LOGGED INITIALLY tables
Within a savepoint, you can create a table with the NOT LOGGED
INITIALLY property, or alter a table to have the NOT LOGGED
INITIALLY property. For these savepoints, however, DB2 treats

Chapter 6. Common DB2 Application Techniques 181

ROLLBACK TO SAVEPOINT statements as ROLLBACK WORK
statements and rolls back the entire transaction.

DECLARE TEMPORARY TABLE inside savepoint
If a temporary table is declared within a savepoint, a ROLLBACK TO
SAVEPOINT statement drops the temporary table.

DECLARE TEMPORARY TABLE outside savepoint
If a temporary table is declared outside a savepoint, a ROLLBACK TO
SAVEPOINT statement does not drop the temporary table.

Savepoints and Buffered Inserts
To improve the performance of DB2 applications, you can use buffered inserts
in your applications by precompiling or binding with the INSERT BUF option.
If your application takes advantage of both buffered inserts and savepoints,
DB2 flushes the buffer before executing SAVEPOINT, RELEASE SAVEPOINT,
OR ROLLBACK TO SAVEPOINT statements.

For more information on using buffered inserts in an application, see “Using
Buffered Inserts” on page 547. For more information on precompiling and
binding applications, refer to the Command Reference.

Using Savepoints with Cursor Blocking
If your application uses savepoints, consider preventing cursor clocking by
precompiling or binding the application with the precompile option
BLOCKING NO. While blocking cursors can improve the performance of your
application by pre-fetching multiple rows, the data returned by an application
that uses savepoints and blocking cursors may not reflect data that has been
committed to the database.

If you do not precompile the application using BLOCKING NO, and your
application issues a FETCH statement after a ROLLBACK TO SAVEPOINT
has occurred, the FETCH statement may retrieve deleted data. For example,
assume that the application containing the following SQL is precompiled
without the BLOCKING NO option:

CREATE TABLE t1(c1 INTEGER);
DECLARE CURSOR c1 AS 'SELECT c1 FROM t1 ORDER BY c1';
INSERT INTO t1 VALUES (1);
SAVEPOINT showFetchDelete;

INSERT INTO t1 VALUES (2);
INSERT INTO t1 VALUES (3);
OPEN CURSOR c1;
FETCH c1; --get first value and cursor block
ALTER TABLE t1... --add constraint

ROLLBACK TO SAVEPOINT;
FETCH c1; --retrieves second value from cursor block

When your application issues the first FETCH on table “t1”, the DB2 server
sends a block of column values (1, 2 and 3) to the client application. These

182 Application Development Guide

column values are stored locally by the client. When your application issues
the ROLLBACK TO SAVEPOINT SQL statement, column values '2' and '3' are
deleted from the table. After the ROLLBACK TO SAVEPOINT statement, the
next FETCH from the table returns column value '2' even though that value
no longer exists in the table. The application receives this value because it
takes advantage of the cursor blocking option to improve performance and
accesses the data that it has stored locally.

For more information on precompiling and binding applications, refer to the
Command Reference.

Savepoints and XA Compliant Transaction Managers
If there are any active savepoints in an application when an XA compliant
transaction manager issues an XA_END request, DB2 issues a RELEASE
SAVEPOINT statement.

Chapter 6. Common DB2 Application Techniques 183

184 Application Development Guide

Part 3. Stored Procedures

© Copyright IBM Corp. 1993, 2000 185

186 Application Development Guide

Chapter 7. Stored Procedures

Stored Procedure Overview 187
Advantages of Stored Procedures 188
Writing Stored Procedures 190

Client Application 191
Allocating Host Variables 192
Calling Stored Procedures 192
Running the Client Application . . . 192

Stored Procedures on the Server 192
Registering Stored Procedures. . . . 193
Variable Declaration and CREATE
PROCEDURE Examples. 206
SQL Statements in Stored Procedures 207
Nested Stored Procedures 208
Restrictions 209

Writing OLE Automation Stored
Procedures 209
Example OUT Parameter Stored
Procedure 210

OUT Client Description 212
Example OUT Client Application: Java 214

Example OUT Client Application: C 216
OUT Stored Procedure Description . . 217
Example OUT Parameter Stored
Procedure: Java 218
Example OUT Parameter Stored
Procedure: C 220

Code Page Considerations 222
C++ Consideration 222
Graphic Host Variable Considerations . . 222
Multisite Update Consideration 223

NOT FENCED Stored Procedures 223
Returning Result Sets from Stored
Procedures 225

Example: Returning a Result Set from a
Stored Procedure 226

C Example: SPSERVER.SQC
(one_result_set_to_client) 228
Java Example: Spserver.java
(resultSetToClient) 229

Resolving Problems 236

Stored Procedure Overview

Use stored procedures to improve the performance of your client/server
applications. A stored procedure is a function in a shared library accessible to
the database server. Stored procedures access the database locally and return
information to client applications. A stored procedure saves the overhead of
having a remote application pass multiple SQL statements to the server. With
a single CALL statement, a client application invokes the stored procedure,
which then performs the database access work and returns the results to the
client application.

You can write stored procedures using SQL, called SQL procedures. For more
information on writing SQL procedures, see “Chapter 8. Writing SQL
Procedures” on page 239. You can also write stored procedures using
languages such as C or Java. You do not have to write client applications in
the same language as the stored procedure. When the language of the client
application and the stored procedure differ, DB2 transparently passes the
values between the client and the stored procedure.

You can use the DB2 Stored Procedure Builder (SPB) to help develop Java or
SQL stored procedures. You can integrate SPB with popular application
development tools, including Microsoft Visual Studio and IBM Visual Age for
Java, or you can use it as a standalone utility. To help you create your stored

© Copyright IBM Corp. 1993, 2000 187

procedures, SPB provides design assistants that guide you through basic
design patterns, help you create SQL queries, and estimate the performance
cost of invoking a stored procedure.

For more information on the DB2 Stored Procedure Builder, see “Chapter 9.
IBM DB2 Stored Procedure Builder” on page 261.

Advantages of Stored Procedures

Figure 3 shows how a normal database manager application accesses a
database located on a database server.

All database access must go across the network which, in some cases, results
in poor performance.

Using stored procedures allows a client application to pass control to a stored
procedure on the database server. This allows the stored procedure to perform
intermediate processing on the database server, without transmitting
unnecessary data across the network. Only those records that are actually
required at the client need to be transmitted. This can result in reduced
network traffic and better overall performance. Figure 4 shows this feature.

Network

Database
Server

Client
Application

Database

Database
Client

DB2 Client DB2

Figure 3. Application Accessing a Database on a Server

188 Application Development Guide

Applications using stored procedures have the following advantages:
v Reduced network traffic

A properly designed application that processes large amounts of data using
stored procedures returns only the data that is needed by the client. This
reduces the amount of data transmitted across the network.

v Improved performance of server intensive work
The more SQL statements that are grouped together for execution, the
larger the savings in network traffic. A typical application requires two trips
across the network for each SQL statement, whereas an application using
the stored procedure technique requires two trips across the network for
each group of SQL statements. This reduces the number of trips, resulting in
a savings from the overhead associated with each trip.

v Access to features that exist only on the database server, including:
– Commands to list directories on the server (such as LIST DATABASE

DIRECTORY and LIST NODE DIRECTORY) can only run on the server.
– The stored procedure may have the advantage of increased memory and

disk space if the server computer is so equipped.
– Additional software installed only on the database server could be

accessed by the stored procedure.

Client
Application

Database

Database
Client

Stored
Procedure

DB2

Database
Server

DB2 Client

Figure 4. Application Using a Stored Procedure

Chapter 7. Stored Procedures 189

Writing Stored Procedures

An application design that includes a stored procedure consists of separate
client and server applications. The server application, called the stored
procedure, is contained in a shared library or class library on the server. You
must compile and access the stored procedure on the server instance where
the database resides. The client application contains a CALL statement to the
stored procedure. The CALL statement can pass parameters to and return
parameters from the stored procedure. You can write the stored procedure
and the client application using different languages. The client application can
be executed on on a platform different from the stored procedure.

The client application performs the following tasks:
1. Declares, allocates, and initializes storage for the optional data structures

and host variables.
2. Connects to a database by executing the CONNECT TO statement, or by

doing an implicit connect. Refer to the SQL Reference for details.
3. Invokes the stored procedure through the SQL CALL statement.
4. Issues a COMMIT or ROLLBACK to the database.

Note: While the stored procedure can issue COMMIT or ROLLBACK
statements, the recommended practice is to have the client
application issue to issue the COMMIT or ROLLBACK. This enables
your client application to evaluate the data returned by the stored
procedure and to decide whether to commit the transaction or roll it
back.

5. Disconnects from the database.

Note that you can code SQL statements in any of the above steps.

When invoked, the stored procedure performs the following tasks:
1. Accepts the parameters from the client application.
2. Executes on the database server under the same transaction as the client

application.
3. Optionally, issues one or more COMMIT or ROLLBACK statements.

Note: While the stored procedure can issue COMMIT or ROLLBACK
statements, the recommended practice is to have the client
application issue the COMMIT or ROLLBACK statements. This
enables your client application to evaluate the data returned by the
stored procedure and to decide whether to commit the transaction
or roll it back.

4. Returns SQLCA information and optional output data to the client
application.

190 Application Development Guide

The stored procedure executes when called by the client application. Control
is returned to the client when the server procedure finishes processing. You
can put several stored procedures into one library.

This chapter describes how to write stored procedures with the following
parameter styles:

DB2SQL The stored procedure receives parameters that you declare in
the CREATE PROCEDURE statement as host variables from
the CALL statement in the client application. DB2 allocates
additional parameters for DB2SQL stored procedures.

GENERAL The stored procedure receives parameters as host variables
from the CALL statement in the client application. The stored
procedure does not directly pass null indicators to the client
application. GENERAL is the equivalent of SIMPLE stored
procedures for DB2 Universal Database for OS/390.

GENERAL WITH NULLS
For each parameter declared by the user, DB2 allocates a
corresponding INOUT parameter null indicator. Like
GENERAL, parameters are passed as host variables.
GENERAL WITH NULLS is the equivalent of SIMPLE WITH
NULLS stored procedures for DB2 Universal Database for
OS/390.

JAVA The stored procedure uses a parameter passing convention
that conforms to the SQLJ Routines specification. The stored
procedure receives IN parameters as host variables, and
receives OUT and INOUT parameters as single entry arrays.

You must register each stored procedure for the previously listed parameter
styles with a CREATE PROCEDURE statement. The CREATE PROCEDURE
statement specifies the procedure name, arguments, location, and parameter
style of each stored procedure. These parameter styles offer increased
portability and scalability of your stored procedure code across the DB2
family.

For information on using the only styles of stored procedures supported by
versions of DB2 prior to DB2 Universal Database Version 6, that is, the
DB2DARI and DB2GENERAL parameter styles, see “Appendix C. DB2DARI
and DB2GENERAL Stored Procedures and UDFs” on page 751.

Client Application
The client application performs several steps before calling the stored
procedure. It must be connected to a database, and it must declare, allocate,
and initialize host variables or an SQLDA structure. The SQL CALL statement
can accept a series of host variables, or an SQLDA structure. Refer to the SQL

Chapter 7. Stored Procedures 191

Reference for descriptions of the SQL CALL statement and the SQLDA
structure. For information on using the SQLDA structure in a client
application, see “Appendix C. DB2DARI and DB2GENERAL Stored
Procedures and UDFs” on page 751.

Allocating Host Variables
Use the following steps to allocate the necessary input host variables on the
client side of a stored procedure:
1. Declare enough host variables for all input variables that will be passed to

the stored procedure.
2. Determine which input host variables can also be used to return values

back from the stored procedure to the client.
3. Declare host variables for any additional values returned from the stored

procedure to the client.

When writing the client portion of your stored procedure, you should attempt
to overload as many of the host variables as possible by using them for both
input and output. This will increase the efficiency of handling multiple host
variables. For example, when returning an SQLCODE to the client from the
stored procedure, try to use an input host variable that is declared as an
INTEGER to return the SQLCODE.

Note: Do not allocate storage for these structures on the database server. The
database manager automatically allocates duplicate storage based upon
the storage allocated by the client application. Do not alter any storage
pointers for the input/output parameters on the stored procedure side.
Attempting to replace a pointer with a locally created storage pointer
will cause an error with SQLCODE -1133 (SQLSTATE 39502).

Calling Stored Procedures
You can invoke a stored procedure stored at the location of the database by
using the SQL CALL statement. Refer to the SQL Reference for a complete
description of the CALL statement. Using the CALL statement is the
recommended method of invoking stored procedures.

Running the Client Application
The client application must ensure that a database connection has been made
before invoking the stored procedure, or an error is returned. After the
database connection and data structure initialization, the client application
calls the stored procedure and passes any required data. The application
disconnects from the database. Note that you can code SQL statements in any
of the above steps.

Stored Procedures on the Server
The stored procedure is invoked by the SQL CALL statement and executes
using data passed to it by the client application. The parameter style with
which you register the stored procedure in the database manager with the

192 Application Development Guide

CREATE PROCEDURE statement determines how the stored procedure
receives data from the client application.

Registering Stored Procedures
To use the CREATE PROCEDURE statement, you must declare the following:
v Procedure name
v Mode, name, and SQL data type of each parameter
v EXTERNAL name and location
v PARAMETER STYLE

Your CREATE PROCEDURE should also declare the following:
v Whether it runs FENCED or NOT FENCED
v The type of SQL statements contained in the procedure body, if any

You can find more information on the CREATE PROCEDURE statement,
including its full syntax and options for DB2 family compatibility, in the SQL
Reference. Descriptions of typical usages of the CREATE PROCEDURE
statement follow.

Procedure Names: You can overload stored procedures only by using the
same name for procedures that accept a unique number of parameters. Since
DB2 does not distinguish between data types, you cannot overload stored
procedures based on parameter data types.

For example, issuing the following CREATE PROCEDURE statements will
work because they accept one and two parameters, respectively:

CREATE PROCEDURE OVERLOAD (IN VAR1 INTEGER) ...
CREATE PROCEDURE OVERLOAD (IN VAR1 INTEGER, IN VAR2 INTEGER) ...

However, DB2 will fail to register the second stored procedure in the
following example because it has the same number of parameters as the first
stored procedure with the same name:

CREATE PROCEDURE OVERLOADFAIL (IN VAR1 INTEGER) ...
CREATE PROCEDURE OVERLOADFAIL (IN VAR2 VARCHAR(15)) ...

Parameter Modes: An explicit parameter is a parameter that you explicitly
declare in the parameter list of the CREATE PROCEDURE statement. An
implicit parameter is a parameter that is automatically supplied by DB2; for
example, a PARAMETER STYLE GENERAL WITH NULLS stored procedure
automatically supplies an array of null indicators for the explicit parameters.
When you write a stored procedure, you must consider both the explicit and
implicit parameters for your stored procedure. When you write a client
application, you only have to handle the explicit parameters for the stored
procedure. You must declare every explicit parameter as either an IN, OUT, or

Chapter 7. Stored Procedures 193

INOUT parameter with a name and SQL data type. For examples of CREATE
PROCEDURE statements, see “Variable Declaration and CREATE
PROCEDURE Examples” on page 206.

IN Passes a value to the stored procedure from the client application, but
returns no value to the client application when control returns to the
client application

OUT Stores a value that is passed to the client application when the stored
procedure terminates

INOUT
Passes a value to the stored procedure from the client application, and
returns a value to the client application when the stored procedure
terminates

Location: The EXTERNAL clause of the CREATE PROCEDURE statement
tells the database manager the location of the library that contains the stored
procedure. If you do not specify an absolute path for the library, or a jar name
for Java stored procedures, the database manager searches the function
directory. The function directory is a directory defined for your operating system
as follows:

Unix operating systems
sqllib/function

OS/2 or Windows 32-bit operating systems
instance_name\function, where instance_name represents the value of
the DB2INSTPROF instance-specific registry setting. If DB2INSTPROF
is not set, instance_name represents the value of the %DB2PATH%
environment variable. The default value of the %DB2PATH%
environment variable is the path in which you installed DB2.

If DB2 does not find the stored procedure in instance_name\function,
DB2 searches the directories defined by the PATH and LIBPATH
environment variables.

For example, the function directory for a Windows 32-bit operating
system server with DB2 installed in the C:\sqllib directory, where you
have not set the DB2INSTPROF registry setting, is:

C:\sqllib\function

Note: You should give your library a name that is different than the stored
procedure name. If DB2 locates the library in the search path, DB2
executes any stored procedure with the same name as the library which
contains the stored procedure as a FENCED DB2DARI procedure.

For LANGUAGE C stored procedures, specify:
v The library name, taking the form of either:

194 Application Development Guide

– A library found in the function directory
– An absolute path including the library name

v The entry point for the stored procedure in the library. If you do not specify
an entry point, the database manager will use the default entry point. The
IBM XLC compiler on AIX allows you to specify any exported function
name in the library as the default entry point. This is the function that is
called if only the library name is specified in a stored procedure call or
CREATE FUNCTION statement. To specify a default entry point, use the -e
option in the link step. For example: -e funcname makes funcname the
default entry point. On other UNIX platforms, no such mechanism exists,
so the default entry point is assumed by DB2 to be the same name as the
library itself.

On a UNIX-based system, for example, mymod!proc8 directs the database
manager to the sqllib/function/mymod library and to use entry point proc8
within that library. On Windows 32-bit and OS/2 operating systems
mymod!proc8 directs the database manager to load the mymod.dll file from the
function directory and call the proc8() procedure in the dynamic link library
(DLL).

For LANGUAGE JAVA stored procedures, use the following syntax:
[<jar-file-name>:]<class-name>.<method-name>

The following list defines the EXTERNAL keywords for Java stored
procedures:

jar-file-name
If a jar file installed in the database contains the stored procedure
method, you must include this value. The keyword represents the
name of the jar file, and is delimitied by a colon (:). If you do not
specify a jar file name, the database manager looks for the class in the
function directory. For more information on installing jar files, see
“Java Stored Procedures and UDFs” on page 654.

class-name
The name of the class that contains the stored procedure method. If
the class is part of a package, you must include the complete package
name as a prefix.

method-name
The name of the stored procedure method.

For example, if you specify MyPackage.MyClass.myMethod, the database
manager uses the myMethod method in the MyClass class, within the MyPackage
package. DB2 recognizes that MyPackage refers to a package rather than a jar
file because it uses a period (.) delimiter instead of a colon (:) delimiter. DB2
searches the function directory for the MyPackage package.

Chapter 7. Stored Procedures 195

For more information on the function directory, see “Location” on page 194.

LANGUAGE: For C/C++, declare LANGUAGE C in your CREATE
PROCEDURE statement. For Java stored procedures, declare LANGUAGE
JAVA. For OLE stored procedures on Windows 32-bit operating systems,
declare LANGUAGE OLE. For COBOL stored procedures, declare
LANGUAGE COBOL. For Fortran or REXX stored procedures, you must write
the stored procedure as a DB2DARI stored procedure. For more information
on writing DB2DARI stored procedures, see “Appendix C. DB2DARI and
DB2GENERAL Stored Procedures and UDFs” on page 751.

LANGUAGE C
The database manager calls the stored procedure using ANSI C calling
and linkage conventions. Use this option for most C/C++ stored
procedures.

LANGUAGE JAVA
The database manager calls the stored procedure as a method in a
Java class. Use this option for any Java stored procedure.

LANGUAGE OLE
The database manager calls the stored procedure as a OLE function.
Use this option for any OLE stored procedure on Windows 32-bit
operating systems. Before issuing the CREATE PROCEDURE
statement, you must register the DLL that contains the OLE stored
procedure using the REGSVR32 command. OLE stored procedures
must run in FENCED mode. For more information on using OLE
stored procedures, refer to the Application Building Guide.

LANGUAGE COBOL
The database manager calls the stored procedure using COBOL calling
and linkage conventions. Use this option for COBOL stored
procedures.

Passing Parameters as Subroutines: C stored procedures of PROGRAM
TYPE SUB accept arguments as subroutines. Pass numeric data type
parameters as pointers. Pass character data types as arrays of the appropriate
length. For example, the following C stored procedure signature accepts
parameters of type INTEGER, SMALLINT, and CHAR(3):

int storproc (sqlint32 *arg1, short *arg2, char arg[4])

Java stored procedures can only accept arguments as subroutines. Pass IN
parameters as simple arguments. Pass OUT and INOUT parameters as arrays
with a single element. For example, the following Java stored procedure
signature accepts an IN parameter of type INTEGER, an OUT parameter of
type SMALLINT, and an INOUT parameter of type CHAR(3):

int storproc (int arg1, short arg2[], String arg[])

196 Application Development Guide

Passing Parameters as main Functions: To write a stored procedure that
accepts arguments like a main function in a C program, specify PROGRAM
TYPE MAIN in the CREATE PROCEDURE statement. You must write stored
procedures of PROGRAM TYPE MAIN to conform to the following
specifications:
v DB2 sets the value of the first element in the parameter array to the stored

procedure name
v the stored procedure accepts parameters through two arguments:

– a parameter counter variable; for example, argc

– an array containing the parameters; for example, argv[]

v the stored procedure must be built as a shared library

In PROGRAM TYPE MAIN stored procedures, DB2 sets the value of the first
element in the argv array, (argv[0]), to the name of the stored procedure. The
remaining elements of the argv array correspond to the parameters declared in
the CREATE PROCEDURE statement for the stored procedure. For example,
the following embedded C stored procedure passes in one IN parameter as
argv[1] and returns two OUT parameters as argv[2] and argv[3].

The CREATE PROCEDURE statement for the PROGRAM TYPE MAIN
example is as follows:

CREATE PROCEDURE MAIN_EXAMPLE (IN job CHAR(8),
OUT salary DOUBLE, OUT errorcode INTEGER)
DYNAMIC RESULT SETS 0
LANGUAGE C
PARAMETER STYLE GENERAL
NO DBINFO
FENCED
READS SQL DATA
PROGRAM TYPE MAIN
EXTERNAL NAME 'spserver!mainexample'

The following code for the stored procedure copies the value of argv[1] into
the CHAR(8) host variable injob, then copies the value of the DOUBLE host
variable outsalary into argv[2] and returns the SQLCODE as argv[3]:

EXEC SQL BEGIN DECLARE SECTION;
char injob[9];
double outsalary;

EXEC SQL END DECLARE SECTION;

SQL_API_RC SQL_API_FN main_example (int argc, char **argv)
{

EXEC SQL INCLUDE SQLCA;

/* argv[0] contains the procedure name, so parameters start at argv[1] */
strcpy (injob, (char *)argv[1]);

EXEC SQL SELECT AVG(salary)
INTO :outsalary

Chapter 7. Stored Procedures 197

FROM employee
WHERE job = :injob;

memcpy ((double *)argv[2], (double *)&outsalary, sizeof(double));

memcpy ((sqlint32 *)argv[3], (sqlint32 *)&SQLCODE, sizeof(sqlint32));

return (0);

} /* end main_example function */

PARAMETER STYLE: Table 9 summarizes the combinations of PARAMETER
STYLE (horizontal axis) and LANGUAGE (vertical axis) allowed in CREATE
PROCEDURE statements for DB2 Version 7.

Table 9. CREATE PROCEDURE: Valid Combinations of PARAMETER STYLE and LANGUAGE

GENERAL,
GENERAL

WITH NULLS

JAVA DB2SQL DB2DARI DB2GENERAL

LANGUAGE C Y N Y Y N

LANGUAGE
JAVA

N Y N N Y

LANGUAGE
OLE

N N Y N N

LANGUAGE
COBOL

Y N Y N N

GENERAL
The stored procedure receives parameters as host variables from the
CALL statement in the client application. The stored procedure does
not directly pass null indicators to the client application. You can only
use GENERAL when you also specify the LANGUAGE C or
LANGUAGE COBOL option.

DB2 Universal Database for OS/390 compatibility note: GENERAL is
the equivalent of SIMPLE.

PARAMETER STYLE GENERAL stored procedures accept parameters
in the manner indicated by the value of the PROGRAM TYPE clause.
The following example demonstrates a PARAMETER STYLE
GENERAL stored procedure that accepts two parameters using
PROGRAM TYPE SUBROUTINE:
SQL_API_RC SQL_API_FN one_result_set_to_client

(double *insalary, sqlint32 *out_sqlerror)
{

EXEC SQL INCLUDE SQLCA;

EXEC SQL WHENEVER SQLERROR GOTO return_error;

198 Application Development Guide

EXEC SQL BEGIN DECLARE SECTION;
double l_insalary;

EXEC SQL END DECLARE SECTION;

l_insalary = *insalary;
*out_sqlerror = 0;

EXEC SQL DECLARE c3 CURSOR FOR
SELECT name, job, CAST(salary AS INTEGER)
FROM staff
WHERE salary > :l_insalary
ORDER BY salary;

EXEC SQL OPEN c3;
/* Leave cursor open to return result set */

return (0);

/* Copy SQLCODE to OUT parameter if SQL error occurs */
return_error:
{

*out_sqlerror = SQLCODE;
EXEC SQL WHENEVER SQLERROR CONTINUE;
return (0);

}

} /* end one_result_set_to_client function */

GENERAL WITH NULLS
For each parameter declared by the user, DB2 allocates a
corresponding INOUT parameter null indicator. Like GENERAL,
parameters are passed as host variables. You can only use GENERAL
WITH NULLS when you also specify the LANGUAGE C or
LANGUAGE COBOL option.

DB2 Universal Database for OS/390 compatibility note: GENERAL
WITH NULLS is the equivalent of SIMPLE WITH NULLS.

PARAMETER STYLE GENERAL WITH NULLS stored procedures
accept parameters in the manner indicated by the value of the
PROGRAM TYPE clause, and allocate an array of null indicators with
one element per declared parameter. The following SQL registers a
PARAMETER STYLE GENERAL WITH NULLS stored procedure that
passes one INOUT parameter and two OUT parameters using
PROGRAM TYPE SUB:

CREATE PROCEDURE INOUT_PARAM (INOUT medianSalary DOUBLE,
OUT errorCode INTEGER, OUT errorLabel CHAR(32))
DYNAMIC RESULT SETS 0
LANGUAGE C
PARAMETER STYLE GENERAL WITH NULLS
NO DBINFO
FENCED

Chapter 7. Stored Procedures 199

MODIFIES SQL DATA
PROGRAM TYPE SUB
EXTERNAL NAME 'spserver!inout_param'

The following C code demonstrates how to declare and use the null
indicators required by a GENERAL WITH NULLS stored procedure:

SQL_API_RC SQL_API_FN inout_param (double *inoutMedian,
sqlint32 *out_sqlerror, char buffer[33], sqlint16 nullinds[3])

{
EXEC SQL INCLUDE SQLCA;

EXEC SQL WHENEVER SQLERROR GOTO return_error;

if (nullinds[0] < 0)
{

/* NULL value was received as input, so return NULL output */
nullinds[0] = -1;
nullinds[1] = -1;
nullinds[2] = -1;

}
else
{

int counter = 0;
*out_sqlerror = 0;
medianSalary = *inoutMedian;

strcpy(buffer, "DECLARE inout CURSOR");
EXEC SQL DECLARE inout CURSOR FOR

SELECT CAST(salary AS DOUBLE) FROM staff
WHERE salary > :medianSalary
ORDER BY salary;

nullinds[1] = 0;
nullinds[2] = 0;

strcpy(buffer, "SELECT COUNT INTO numRecords");
EXEC SQL SELECT COUNT(*) INTO :numRecords

FROM staff
WHERE salary > :medianSalary;

if (numRecords != 0)
/* At least one record was found */
{

strcpy(buffer, "OPEN inout");
EXEC SQL OPEN inout USING :medianSalary;

strcpy(buffer, "FETCH inout");
while (counter < (numRecords / 2 + 1)) {

EXEC SQL FETCH inout INTO :medianSalary;

*inoutMedian = medianSalary;
counter = counter + 1;

}

200 Application Development Guide

strcpy(buffer, "CLOSE inout");
EXEC SQL CLOSE inout;

}
else /* No records were found */
{

/* Return 100 to indicate NOT FOUND error */
*out_sqlerror = 100;

}
}

return (0);

/* Copy SQLCODE to OUT parameter if SQL error occurs */
return_error:
{

*out_sqlerror = SQLCODE;
EXEC SQL WHENEVER SQLERROR CONTINUE;
return (0);

}

} /* end inout_param function */

JAVA The stored procedure uses a parameter passing convention that
conforms to the SQLJ Routines specification. The stored procedure
receives IN parameters as host variables, and receives OUT and
INOUT parameters as single entry arrays. You can only use JAVA
when you also specify the LANGUAGE JAVA option.

DB2SQL
Your C function definition for a DB2SQL stored procedure must
append the following implicit parameters to the definition for the
parameters declared in the CREATE PROCEDURE statement:

sqlint16 nullinds[n], �1�
char sqlst[6], �2�
char qualname[28], �3�
char specname[19], �4�
char diagmsg[71], �5�

DB2 passes the following arguments to the stored procedure:
1. DB2 allocates an array of implicit SMALLINT INOUT parameters

as null indicators for the explicit parameters. The array is of size n,
where n represents the number of explicit parameters.

2. An implicit CHAR(5) OUT parameter for an SQLSTATE value.
3. An implicit CHAR(27) IN parameter for the qualified stored

procedure name.
4. An implicit CHAR(18) IN parameter for the specific name of the

stored procedure.
5. An implicit CHAR(70) OUT parameter for an SQL diagnostic

string.

Chapter 7. Stored Procedures 201

You can only specify DB2SQL when you also specify the LANGUAGE
C or LANGUAGE COBOL option. For example, the following
CREATE PROCEDURE statement registers a PARAMETER STYLE
DB2SQL stored procedure:

CREATE PROCEDURE DB2SQL_EXAMPLE (IN job CHAR(8), OUT salary DOUBLE)
DYNAMIC RESULT SETS 0
LANGUAGE C
PARAMETER STYLE DB2SQL
NO DBINFO
FENCED
READS SQL DATA
PROGRAM TYPE SUB
EXTERNAL NAME 'spserver!db2sqlexample'

Write the stored procedure using the following conventions:
v PARAMETER STYLE DB2SQL stored procedures pass an array of

null indicators with one element for each explicit parameter. A
negative value of the null indicator element for an IN or INOUT
parameter indicates that the client application passed in a null
value for that parameter. To indicate that an output parameter is
not NULL, set the value of the null indicator element for the OUT
or INOUT parameter to 0. To indicate that an output parameter is
NULL, set the value of the null indicator element for the OUT or
INOUT parameter to -1.

v Append the arguments in the stored procedure signature for the
DB2SQL parameters, as previously described.

v You can set the value of the DB2SQL SQLSTATE (CHAR(5) and
diagnostic message (null-terminated CHAR(70)) parameters to
return a customized value in the SQLCA to the client.

For example, the following embedded C stored procedure
demonstrates the coding style for PARAMETER STYLE DB2SQL
stored procedures:

SQL_API_RC SQL_API_FN db2sql_example (
char injob[9], /* Input - CHAR(8) */
double *salary, /* Output - DOUBLE */
sqlint16 nullinds[2],
char sqlst[6],
char qualname[28],
char specname[19],
char diagmsg[71]

)
{

EXEC SQL INCLUDE SQLCA;

if (nullinds[0] < 0)
{

/* NULL value was received as input, so return NULL output */
nullinds[1] = -1;

202 Application Development Guide

/* Set custom SQLSTATE to return to client. */
strcpy(sqlst, "38100");
/* Set custom message to return to client. */
strcpy(diagmsg, "Received null input on call to DB2SQL_EXAMPLE.");

}
else
{

EXEC SQL SELECT (CAST(AVG(salary) AS DOUBLE))
INTO :outsalary INDICATOR :outsalaryind
FROM employee
WHERE job = :injob;

*salary = outsalary;
nullinds[1] = outsalaryind;

}
return (0);

} /* end db2sql_example function */

The following embedded C client application demonstrates how to
issue a CALL statement that invokes the DB2SQL_EXAMPLE stored
procedure. Note that the example includes null indicators for each
parameter in the CALL statement. The example sets the null indicator
in_jobind to 0 to indicate that a non-NULL value is being passed to the
stored procedure for the IN parameter represented by the host
variable in_job. The null indicators for the OUT parameters are set to
-1 to indicate that no input is being passed to the stored procedure for
those parameters.
int db2sqlparm(char out_lang[9], char job_name[9])
{

int testlang;

EXEC SQL BEGIN DECLARE SECTION;
/* Declare host variables for passing data to DB2SQL_EXAMPLE */
char in_job[9];
sqlint16 in_jobind;
double out_salary = 0;
sqlint16 out_salaryind;

EXEC SQL END DECLARE SECTION;

/**\
* Call DB2SQL_EXAMPLE stored procedure *
**/

testlang = strncmp(out_lang, "C", 1);
if (testlang != 0) {

/* Only LANGUAGE C procedures can be PARAMETER STYLE DB2SQL,
so do not call the DB2SQL_EXAMPLE stored procedure */

printf("\nStored procedures are not implemented in C.\n"
"Skipping the call to DB2SQL_EXAMPLE.\n");

}
else {

strcpy(procname, "DB2SQL_EXAMPLE");

Chapter 7. Stored Procedures 203

printf("\nCALL stored procedure named %s\n", procname);

/* out_salary is an OUT parameter, so set the
null indicator to -1 to indicate no input value */

out_salaryind = -1;

strcpy(in_job, job_name);

/* in_job is an IN parameter, so check to
see if there is any input value */

if (strlen(in_job) == 0)
{

/* in_job is null, so set the null indicator
to -1 to indicate there is no input value */

in_jobind = -1;
printf("with NULL input, to return a custom

SQLSTATE and diagnostic message\n");
}
else
{

/* in_job is not null, so set the null indicator
to 0 to indicate there is an input value */

in_jobind = 0;
}

/* DB2SQL_EXAMPLE is PS DB2SQL, so pass
a null indicator for each parameter */

EXEC SQL CALL :procname (:in_job:in_jobind,
:out_salary:out_salaryind);

/* DB2SQL stored procedures can return a custom
SQLSTATE and diagnostic message, so instead of
using the EMB_SQL_CHECK macro to check the value
of the returned SQLCODE, check the SQLCA structure for
the value of the SQLSTATE and the diagnostic message */

/* Check value of returned SQLSTATE */
if (strncmp(sqlca.sqlstate, "00000", 5) == 0) {

printf("Stored procedure returned successfully.\n");
printf("Average salary for job %s = %9.2f\n",

in_job, out_salary);
}
else {

printf("Stored procedure failed with SQLSTATE %s.\n",
sqlca.sqlstate);

printf("Stored procedure returned the following
diagnostic message:\n");

printf(" \"%s\"\n", sqlca.sqlerrmc);
}

}

return 0;
}

204 Application Development Guide

DB2GENERAL
The stored procedure uses a parameter passing convention that is
only supported by DB2 Java stored procedures. You can only use
DB2GENERAL when you also specify the LANGUAGE JAVA option.

For increased portability, you should write Java stored procedures
using the PARAMETER STYLE JAVA conventions. See “Appendix C.
DB2DARI and DB2GENERAL Stored Procedures and UDFs” on
page 751 for more information on writing DB2GENERAL parameter
style stored procedures.

DB2DARI
The stored procedure uses a parameter passing convention that
conforms with C language calling and linkage conventions. This
option is only supported by DB2 Universal Database, and can only be
used when you also specify the LANGUAGE C option.

To increase portability across the DB2 family, you should write your
LANGUAGE C stored procedures using the GENERAL or GENERAL
WITH NULLS parameter styles. If you want to write DB2DARI
parameter style stored procedures, see “Appendix C. DB2DARI and
DB2GENERAL Stored Procedures and UDFs” on page 751.

Passing a DBINFO Structure: For LANGUAGE C stored procedures with a
PARAMETER TYPE of GENERAL, GENERAL WITH NULLS, or DB2SQL,
you have the option of writing your stored procedure to accept an additional
parameter. You can specify DBINFO in the CREATE PROCEDURE statement
to instruct the client application to pass a DBINFO structure containing
information about the DB2 client to the stored procedure, along with the call
parameters. The DBINFO structure contains the following values:

Database name
The name of the database to which the client is connected.

Application authorization ID
The application run-time authorization ID.

Code page
The code page of the database.

Schema name
Not applicable to stored procedures.

Table name
Not applicable to stored procedures.

Column name
Not applicable to stored procedures.

Chapter 7. Stored Procedures 205

Database version and release
The version, release, and modification level of the database server
invoking the stored procedure.

Platform
The platform of the database server.

Table function result column numbers
Not applicable to stored procedures.

For more information on the DBINFO structure, see “DBINFO Structure” on
page 396.

Variable Declaration and CREATE PROCEDURE Examples
The following examples demonstrate the stored procedure source code and
CREATE PROCEDURE statements you would use in hypothetical scenarios
with the SAMPLE database.

Using IN and OUT Parameters: Assume that you want to create a Java
stored procedure GET_LASTNAME that, given empno (SQL type VARCHAR),
returns lastname (SQL type CHAR) from the EMPLOYEE table in the SAMPLE
database. You will create the procedure as the getname method of the Java
class StoredProcedure, contained in the JAR installed as myJar. Finally, you
will call the stored procedure with a client application coded in C.
1. Declare two host variables in your stored procedure source code:

String empid;
String name;
...
#sql { SELECT lastname INTO :empid FROM employee WHERE empno=:empid }

2. Register the stored procedure with the following CREATE PROCEDURE
statement:

CREATE PROCEDURE GET_LASTNAME (IN EMPID CHAR(6), OUT NAME VARCHAR(15))
EXTERNAL NAME 'myJar:StoredProcedure.getname'
LANGUAGE JAVA PARAMETER STYLE JAVA FENCED
READS SQL DATA

3. Call the stored procedure from your client application written in C:
EXEC SQL BEGIN DECLARE SECTION;

struct name { short int; char[15] }
char[7] empid;

EXEC SQL END DECLARE SECTION;
...

EXEC SQL CALL GET_LASTNAME (:empid, :name);

Using INOUT Parameters: For the following example, assume that you want
to create a C stored procedure GET_MANAGER that, given deptnumb (SQL
type SMALLINT), returns manager (SQL type SMALLINT) from the ORG table
in the SAMPLE database.

206 Application Development Guide

1. Since deptnumb and manager are both of SQL data type SMALLINT, you
can declare a single variable onevar in your stored procedure that receives
a value from and returns a value to the client application:

EXEC SQL BEGIN DECLARE SECTION;
short onevar = 0;

EXEC SQL END DECLARE SECTION;

2. Register the stored procedure with the following CREATE PROCEDURE
statement:

CREATE PROCEDURE GET_MANAGER (INOUT onevar SMALLINT)
EXTERNAL NAME 'stplib!getman'
LANGUAGE C PARAMETER STYLE GENERAL FENCED
READS SQL DATA

3. Call the stored procedure from your client application written in Java:
short onevar = 0;

...
#SQL { CALL GET_MANAGER (:INOUT onevar) };

SQL Statements in Stored Procedures
Stored procedures can contain SQL statements. When you issue the CREATE
PROCEDURE statement, you should specify the type of SQL statements the
stored procedure contains, if any. If you do not specify a value when you
register the stored procedure, the database manager uses MODIFIES SQL
DATA. To restrict the type of SQL used in the stored procedure, you can use
one of the following four options:

NO SQL
Indicates that the stored procedure cannot execute any SQL
statements. If the stored procedure attempts to execute an SQL
statement, the statement returns SQLSTATE 38001.

CONTAINS SQL
Indicates that SQL statements that neither read nor modify SQL data
can be executed by the stored procedure. If the stored procedure
attempts to execute an SQL statement that reads or modifies SQL
data, the statement returns SQLSTATE 38004. Statements that are not
supported in any stored procedure return SQLSTATE 38003.

READS SQL DATA
Indicates that some SQL statements that do not modify SQL data can
be executed by the stored procedure. If the stored procedure attempts
to execute an SQL statement that modifies data, the statement returns
SQLSTATE 38002. Statements that are not supported in any stored
procedure return SQLSTATE 38003.

MODIFIES SQL DATA
Indicates that the stored procedure can execute any SQL statement
except statements that are not supported in stored procedures. If the

Chapter 7. Stored Procedures 207

stored procedure attempts to execute an SQL statement that is not
supported in a stored procedure, the statement returns SQLSTATE
38003.

For more information on the CREATE PROCEDURE statement, refer to the
SQL Reference.

Nested Stored Procedures
Nested stored procedures are stored procedures that call another stored
procedure. You can use this technique in your DB2 applications under the
following restrictions:
v the stored procedures must be cataloged as LANGUAGE C or LANGUAGE

SQL.
v the calling stored procedure can only call a stored procedure that is

cataloged using the same LANGUAGE clause. For nested calls only,
LANGUAGE C and LANGUAGE SQL are considered the same language.
For example, a LANGUAGE C stored procedure can call an SQL procedure.

v the calling stored procedure cannot call a stored procedure that is cataloged
with a higher SQL data access level. For example, a stored procedure
cataloged with CONTAINS SQL data access can call a stored procedure
cataloged with NO SQL or CONTAINS SQL data access, but cannot call a
stored procedure cataloged with READS SQL DATA or MODIFIES SQL
DATA.

v up to 16 levels of nested stored procedure calls are supported. For example,
a scenario where stored procedure PROC1 calls PROC2, and PROC2 calls
PROC3 represents three levels of nested stored procedures.

v the calling and called stored procedures at all levels of nesting cannot be
cataloged as NOT FENCED

Nested SQL procedures can return one or more result sets to the client
application or to the calling stored procedure. To return a result set from an
SQL procedure to the client application, issue the DECLARE CURSOR
statement using the WITH RETURN TO CLIENT clause. To return a result set
from an SQL procedure to the caller, where the caller is either a client
application or a calling stored procedure, issue the DECLARE CURSOR
statement using the WITH RETURN TO CALLER clause.

Nested embedded SQL stored procedures written in C and nested CLI stored
procedures cannot return result sets to the client application or calling stored
procedure. If a nested embedded SQL stored procedure or a nested CLI stored
procedure leaves cursors open when the stored procedure exits, DB2 closes
the cursors. For more information on returning result sets from stored
procedures, see “Returning Result Sets from Stored Procedures” on page 225.

208 Application Development Guide

Restrictions
When you create a stored procedure, you must observe the following
restrictions:
v Do not use the standard I/O streams, for example, calls to

System.out.println() in Java, printf() in C/C++, or display in COBOL.
Stored procedures run in the background, so you cannot write to the screen.
However, you can write to a file.

v Include only the SQL statements allowed by the CREATE PROCEDURE
statement with which you register the stored procedure. For information on
using the NO SQL, READS SQL DATA, CONTAINS SQL, or MODIFIES
SQL DATA clauses to catalog your stored procedure, see “SQL Statements
in Stored Procedures” on page 207.

v You cannot use COMMIT statements in stored procedures when either or
both of the following conditions is true:
– you catalog the stored procedure using the NO SQL clause
– the stored procedure is called from an application performing a multisite

update
v You cannot execute any connection-related statements or commands in

stored procedures, including:
– BACKUP
– CONNECT
– CONNECT TO
– CONNECT RESET
– CREATE DATABASE
– DROP DATABASE
– FORWARD RECOVERY
– RESTORE

v On UNIX-based systems, NOT FENCED stored procedures run under the
user ID of the DB2 Agent Process. FENCED stored procedures run under
the user ID of the db2dari executable, which is set to the owner of the
.fenced file in sqllib/adm. This user ID controls the system resources
available to the stored procedure. For information on the db2dari
executable, refer to the Quick Beginnings book for your platform.

v You cannot overload stored procedures that accept the same number of
parameters, even if the parameters are of different SQL data types.

v Stored procedures cannot contain commands that would terminate the
current process. A stored procedure should always return control to the
client without terminating the current process.

Writing OLE Automation Stored Procedures
OLE (Object Linking and Embedding) automation is part of the OLE 2.0
architecture from Microsoft Corporation. DB2 can invoke methods of OLE

Chapter 7. Stored Procedures 209

automation objects as external stored procedures. For an overview of OLE
automation, see “Writing OLE Automation UDFs” on page 416.

After you code an OLE automation object, you must register the methods of
the object as stored procedures using the CREATE PROCEDURE statement. To
register an OLE automation stored procedure, issue a CREATE PROCEDURE
statement with the LANGUAGE OLE clause. The external name consists of
the OLE progID identifying the OLE automation object and the method name
separated by ! (exclamation mark).

The following CREATE PROCEDURE statement registers an OLE automation
stored procedure called “median” for the “median” method of the OLE
automation object “db2smpl.salary”:

CREATE PROCEDURE median (INOUT sal DOUBLE)
EXTERNAL NAME 'db2smpl.salary!median'
LANGUAGE OLE
FENCED
PARAMETER STYLE DB2SQL

The calling conventions for OLE method implementations are identical to the
conventions for procedures written in C or C++.

DB2 automatically handles the type conversions between SQL types and OLE
automation types. For a list of the DB2 mappings between supported OLE
automation types and SQL types, see Table 16 on page 419. For a list of the
DB2 mappings between SQL types and the data types of the OLE
programming language, such as BASIC or C/C++, see Table 17 on page 420.

Data passed between DB2 and OLE automation stored procedures is passed as
call by reference. DB2 does not support SQL types such as DECIMAL or
LOCATORS, or OLE automation types such as boolean or CURRENCY, that
are not listed in the previously referenced tables. Character and graphic data
mapped to BSTR is converted from the database code page to UCS-2 (also
known as Unicode, IBM code page 13488) scheme. Upon return, the data is
converted back to the database code page. These conversions occur regardless
of the database code page. If code page conversion tables to convert from the
database code page to UCS-2 and from UCS-2 to the database code page are
not installed, you receive an SQLCODE -332 (SQLSTATE 57017).

Example OUT Parameter Stored Procedure
Following is a sample program demonstrating the use of an OUT host
variable. The client application invokes a stored procedure that determines the
median salary for employees in the SAMPLE database. (The definition of the
median is that half the values lie above it, and half below it.) The median
salary is then passed back to the client application using an OUT host
variable.

210 Application Development Guide

This sample program calculates the median salary of all employees in the
SAMPLE database. Since there is no existing SQL column function to calculate
medians, the median salary can be found iteratively by the following
algorithm:
1. Determine the number of records, n, in the table.
2. Order the records based upon salary.
3. Fetch records until the record in row position n ⁄ 2 + 1 is found.
4. Read the median salary from this record.

An application that uses neither the stored procedures technique, nor blocking
cursors, must FETCH each salary across the network as shown in Figure 5.

Since only the salary at row n ⁄ 2 + 1 is needed, the application discards all
the additional data, but only after it is transmitted across the network.

You can design an application using the stored procedures technique that
allows the stored procedure to process and discard the unnecessary data,
returning only the median salary to the client application. Figure 6 shows this
feature.

Client
Workstation

Database
Server

Send request to

SELECT SALARY

FROM STAFF

ORDER BY SALARY.

FETCH all of the data

back, one record at

a time.

Read the median

salary from the data

returned.

11508.60

12258.50

12508.20

12954.75

12954.75

Retrieve all the

salaries from the

table.

Return all of the

data to the client.

Figure 5. Median Sample Without a Stored Procedure

Chapter 7. Stored Procedures 211

“OUT Client Description” shows a sample OUT host variable client
application and stored procedure. The sample programs are available in Java
as:

Client application Outcli.java

Stored procedure Outsrv.sqlj

The sample programs are available in C as:

Client application spclient.sqc

Stored procedure spserver.sqc

OUT Client Description
1. Include Files. The C client applications include the following files:

SQL Defines the symbol SQL_TYP_FLOAT

SQLDA Defines the descriptor area

SQLCA Defines the communication area for error handling

The JDBC client application imports the following packages:

java.sql.* JDBC classes from the Java implementation on your client

java.math.BigDecimal
Provides Java support for the DB2 DECIMAL data type

Client
Workstation

Database
Server

Retrieve all the

salaries from the

table.

Determine the

median salary.

Return the median

salary to the client.

Call Server

Procedure stored

on the Database.

Read the median

salary from the data

item returned.
17654.50

Figure 6. OUT Parameter Sample Using a Stored Procedure

212 Application Development Guide

2. Connect to Database. The application must connect to the database before
calling the stored procedure.

3. Turn off Autocommit. The client application explicitly disables
autocommit before calling the stored procedure. Disabling autocommit
allows the client application to control whether the work performed by the
stored procedure control is rolled back or committed. The stored procedure
for this example returns an OUT parameter containing an SQLCODE value
so that client applications can easily use condition statements to commit or
roll back the work performed by the stored procedure.

4. Declare and Initialize the Host Variable. This step declares and initializes
the host variable. Java programs must register the data type of each
INOUT or OUT parameter and initialize the value of every parameter
before invoking the stored procedure.

5. Call the Stored Procedure. The client application calls the stored
procedure OUTPARAM for the database SAMPLE using a CALL statement
with three parameters.

6. Retrieve the Output Parameters. JDBC client applications must explicitly
retrieve the values of the output parameters returned by the stored
procedure. For C/C++ client applications, DB2 updates the value of the
host variables used in the CALL statement when the client application
executes the CALL statement.

7. Check the Value of the Returned SQLCODE. The client application
checks the value of the OUT parameter containing the SQLCODE to
determine whether to roll back or commit the transaction.

8. Disconnect from Database. To help DB2 free system resources held for
each connection, you should explicitly close the connection to the database
before exiting the client application.

The CHECKERR macro/function is an error checking utility which is external to
the program. The location of this error checking utility depends upon the
programming language used:

C For C programs that call DB2 APIs, the sqlInfoPrint function
in utilapi.c is redefined as API_SQL_CHECK in utilapi.h. For C
embedded SQL programs, the sqlInfoPrint function in
utilemb.sqc is redefined as EMB_SQL_CHECK in utilemb.h.

Java Any SQL error is thrown as an SQLException and handled in
the catch block of the application.

COBOL CHECKERR is an external program named checkerr.cbl.

See “Using GET ERROR MESSAGE in Example Programs” on page 118 for the
source code for this error checking utility.

Chapter 7. Stored Procedures 213

Example OUT Client Application: Java
import java.sql.*; // JDBC classes �1�
import java.math.BigDecimal; // BigDecimal support for packed decimal type

class Spclient
{

static String sql = "";
static String procName = "";
static String inLanguage = "";
static CallableStatement callStmt;
static int outErrorCode = 0;
static String outErrorLabel = "";
static double outMedian = 0;

static
{

try
{

System.out.println();
System.out.println("Java Stored Procedure Sample");
Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

}
catch (Exception e)
{

System.out.println("\nError loading DB2 Driver...\n");
e.printStackTrace();

}
}

public static void main(String argv[])
{

Connection con = null;
// URL is jdbc:db2:dbname
String url = "jdbc:db2:sample";

try
{

// connect to sample database
// connect with default id/password
con = DriverManager.getConnection(url); �2�

// turn off autocommit
con.setAutoCommit(false); �3�

outLanguage(con);
outParameter(con);
inParameters(con);
inoutParam(con, outMedian);
resultSet(con);
twoResultSets(con);
allDataTypes(con);

// rollback any changes to the database
con.rollback(); �8�
con.close();

214 Application Development Guide

}
catch (Exception e)
{

try { con.close(); } catch (Exception x) { }
e.printStackTrace ();

}
} // end main

public static void outParameter(Connection con)
throws SQLException

{
// prepare the CALL statement for OUT_PARAM
procName = "OUT_PARAM";
sql = "CALL " + procName + "(?, ?, ?)";
callStmt = con.prepareCall(sql);

// register the output parameter �4�
callStmt.registerOutParameter (1, Types.DOUBLE);
callStmt.registerOutParameter (2, Types.INTEGER);
callStmt.registerOutParameter (3, Types.CHAR);

// call the stored procedure �5�
System.out.println ("\nCall stored procedure named " + procName);
callStmt.execute();

// retrieve output parameters �6�
outMedian = callStmt.getDouble(1);
outErrorCode = callStmt.getInt(2);
outErrorLabel = callStmt.getString(3);

if (outErrorCode == 0) { �7�
System.out.println(procName + " completed successfully");
System.out.println ("Median salary returned from OUT_PARAM = "

+ outMedian);
}
else { // stored procedure failed

System.out.println(procName + " failed with SQLCODE "
+ outErrorCode);

System.out.println(procName + " failed at " + outErrorLabel);
}

}
}

Chapter 7. Stored Procedures 215

Example OUT Client Application: C
#include <stdio.h> �1�
#include <stdlib.h>
#include <sql.h>
#include <sqlda.h>
#include <sqlca.h>
#include <string.h>
#include "utilemb.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
/* Declare host variable for stored procedure name */
char procname[254];

/* Declare host variables for stored procedure error handling */
sqlint32 out_sqlcode; �4�
char out_buffer[33];

EXEC SQL END DECLARE SECTION;

int main(int argc, char *argv[]) {

EXEC SQL CONNECT TO sample; �2�
EMB_SQL_CHECK("CONNECT TO SAMPLE");

outparameter();

EXEC SQL ROLLBACK;
EMB_SQL_CHECK("ROLLBACK");
printf("\nStored procedure rolled back.\n\n");

/* Disconnect from Remote Database */
EXEC SQL CONNECT RESET; �8�
EMB_SQL_CHECK("CONNECT RESET");
return 0;

}

int outparameter() {
/**\
* Call OUT_PARAM stored procedure *
**/
EXEC SQL BEGIN DECLARE SECTION;

/* Declare host variables for passing data to OUT_PARAM */
double out_median;

EXEC SQL END DECLARE SECTION;

strcpy(procname, "OUT_PARAM");
printf("\nCALL stored procedure named %s\n", procname);

/* OUT_PARAM is PS GENERAL, so do not pass a null indicator */
EXEC SQL CALL :procname (:out_median, :out_sqlcode, :out_buffer); �5� �6�
EMB_SQL_CHECK("CALL OUT_PARAM");
/* Check that the stored procedure executed successfully */
if (out_sqlcode == 0) �7�
{

216 Application Development Guide

printf("Stored procedure returned successfully.\n");

/***\
* Display the median salary returned as an output parameter *
***/

printf("Median salary returned from OUT_PARAM = %8.2f\n", out_median);

}
else
{ /* print the error message, roll back the transaction */

printf("Stored procedure returned SQLCODE %d\n", out_sqlcode);
printf("from procedure section labelled \"%s\".\n", out_buffer);

}

return 0;
}

OUT Stored Procedure Description
1. Declare Signature. The procedure returns three parameters: a DOUBLE for

the median value; an INTEGER for the SQLCODE, and a CHAR for any
error message. You must specify the equivalent data types as arguments in
the stored procedure function definition using the DB2 type mappings
specified in the programming chapter for each language.

2. Declare a CURSOR Ordered by Salary. To work with multiple rows of
data, C stored procedures issue a DECLARE CURSOR statement and JDBC
stored procedures create a ResultSet object. The ORDER BY SALARY
clause enables the stored procedure to retrieve salaries in an ascending
order.

3. Determine Total Number of Employees. The stored procedure uses a
simple SELECT statement with the COUNT function to retrieve the
number of employees in the EMPLOYEE table.

4. FETCH Median Salary. The stored procedure issues successive FETCH
statements until it assigns the median salary to a variable.

5. Assign the Median Salary to the Output Variable. To return the value of
the median salary to the client application, assign the value to the
argument in the stored procedure function or method declaration that
corresponds to the OUT parameter.

6. Return to the Client Application. Only PARAMETER STYLE DB2DARI
stored procedures return values to the client. For more information on
DB2DARI stored procedures, see “Appendix C. DB2DARI and
DB2GENERAL Stored Procedures and UDFs” on page 751.

Chapter 7. Stored Procedures 217

Example OUT Parameter Stored Procedure: Java
import java.sql.*; // JDBC classes
import COM.ibm.db2.jdbc.app.*; // DB2 JDBC classes
import java.math.BigDecimal; // Packed Decimal class

public class Spserver
{

public static void outParameter (double[] medianSalary,
int[] errorCode, String[] errorLabel) throws SQLException �1�

{ try
{

int numRecords;
int counter = 0;
errorCode[0] = 0; // SQLCODE = 0 unless SQLException occurs

// Get caller's connection to the database
Connection con = DriverManager.getConnection("jdbc:default:connection");
errorLabel[0] = "GET CONNECTION";

String query = "SELECT COUNT(*) FROM staff";
errorLabel[0] = "PREPARE COUNT STATEMENT";
PreparedStatement stmt = con.prepareStatement(query);
errorLabel[0] = "GET COUNT RESULT SET";
ResultSet rs = stmt.executeQuery();

// move to first row of result set
rs.next();

// set value for the output parameter
errorLabel[0] = "GET NUMBER OF RECORDS";
numRecords = rs.getInt(1); �3�

// clean up first result set
rs.close();
stmt.close();

// get salary result set
query = "SELECT CAST(salary AS DOUBLE) FROM staff "

+ "ORDER BY salary";
errorLabel[0] = "PREPARE SALARY STATEMENT";
PreparedStatement stmt2 = con.prepareStatement(query);
errorLabel[0] = "GET SALARY RESULT SET";
ResultSet rs2 = stmt2.executeQuery(); �2�

while (counter < (numRecords / 2 + 1))
{

errorLabel[0] = "MOVE TO NEXT ROW";
rs2.next(); �4�
counter++;

}
errorLabel[0] = "GET MEDIAN SALARY";
medianSalary[0] = rs2.getDouble(1); �5�

// clean up resources
rs2.close();

218 Application Development Guide

stmt2.close();
con.close(); �6�

}
catch (SQLException sqle)
{

errorCode[0] = sqle.getErrorCode();
}

}
}

Chapter 7. Stored Procedures 219

Example OUT Parameter Stored Procedure: C
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlda.h>
#include <sqlca.h>
#include <sqludf.h>
#include <sql.h>
#include <memory.h>

/* Declare function prototypes for this stored procedure library */

SQL_API_RC SQL_API_FN out_param (double *, sqlint32 *, char *); �1�

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
/* Declare host variables for basic error-handling */

sqlint32 out_sqlcode;
char buffer[33];

/* Declare host variables used by multiple stored procedures */
sqlint16 numRecords;
double medianSalary;

EXEC SQL END DECLARE SECTION;

SQL_API_RC SQL_API_FN out_param (double *outMedianSalary,
sqlint32 *out_sqlerror, char buffer[33])

{
EXEC SQL INCLUDE SQLCA;

EXEC SQL WHENEVER SQLERROR GOTO return_error;

int counter = 0;
*out_sqlerror = 0;

strcpy(buffer, "DECLARE c1");
EXEC SQL DECLARE c1 CURSOR FOR �2�

SELECT CAST(salary AS DOUBLE) FROM staff
ORDER BY salary;

strcpy(buffer, "SELECT");
EXEC SQL SELECT COUNT(*) INTO :numRecords FROM staff; �3�

strcpy(buffer, "OPEN");
EXEC SQL OPEN c1;

strcpy(buffer, "FETCH");
while (counter < (numRecords / 2 + 1)) {

EXEC SQL FETCH c1 INTO :medianSalary; �4�

/* Set value of OUT parameter to host variable */
*outMedianSalary = medianSalary; �5�
counter = counter + 1;

}

220 Application Development Guide

strcpy(buffer, "CLOSE c1");
EXEC SQL CLOSE c1;

return (0); �6�

/* Copy SQLCODE to OUT parameter if SQL error occurs */
return_error:

{
*out_sqlerror = SQLCODE;
EXEC SQL WHENEVER SQLERROR CONTINUE;
return (0);

}

} /* end out_param function */

Chapter 7. Stored Procedures 221

Code Page Considerations
The code page considerations depend on the server.

When a client program (using, for example, code page A) calls a remote
stored procedure that accesses a database using a different code page (for
example, code page Z), the following events occur:
1. Input character string parameters (whether defined as host variables or in

an SQLDA in the client application) are converted from the application
code page (A) to the one associated with the database (Z). Conversion
does not occur for data defined in the SQLDA as FOR BIT DATA.

2. Once the input parameters are converted, the database manager does not
perform any more code page conversions.
Therefore, you must run the stored procedure using the same code page
as the database, in this example, code page Z. It is a good practice to
prep, compile, and bind the server procedure using the same code page as
the database.

3. When the stored procedure finishes, the database manager converts the
output character string parameters (whether defined as host variables or in
an SQLDA in the client application) and the SQLCA character fields from
the database code page (Z) back to the application code page (A).
Conversion does not occur for data defined in the SQLDA as FOR BIT
DATA.

Note: If the parameter of the stored procedure is defined as FOR BIT DATA
at the server, conversion does not occur for a CALL statement to DB2
Universal Database for OS/390 or DB2 Universal Database for AS/400,
regardless of whether it is explicitly specified in the SQLDA. (Refer to
the section on the SQLDA in the SQL Reference for details.)

For more information on this topic, see “Conversion Between Different Code
Pages” on page 504.

C++ Consideration
When writing a stored procedure in C++, you may want to consider declaring
the procedure name using extern “C”, as in the following example:

extern “C” SQL_API_RC SQL_API_FN proc_name(short *parm1, char *parm2)

The extern "C" prevents type decoration (or mangling) of the function name
by the C++ compiler. Without this declaration, you have to include all the
type decorations for the function name when you call the stored procedure.

Graphic Host Variable Considerations
Any stored procedure written in C or C++, that receives or returns graphic
data through its parameter input or output should generally be precompiled
with the WCHARTYPE NOCONVERT option. This is because graphic data

222 Application Development Guide

passed through these parameters is considered to be in DBCS format, rather
than the wchar_t process code format. Using NOCONVERT means that
graphic data manipulated in SQL statements in the stored procedure will also
be in DBCS format, matching the format of the parameter data.

With WCHARTYPE NOCONVERT, no character code conversion occurs
between the graphic host variable and the database manager. The data in a
graphic host variable is sent to, and received from, the database manager as
unaltered DBCS characters. Note that if you do not use WCHARTYPE
NOCONVERT, it is still possible for you to manipulate graphic data in
wchar_t format in a stored procedure; however, you must perform the input
and output conversions manually.

CONVERT can be used in FENCED stored procedures, and it will affect the
graphic data in SQL statements within the stored procedure, but not through
the stored procedure’s interface. NOT FENCED stored procedures must be
built using the NOCONVERT option.

In summary, graphic data passed to or returned from a stored procedure
through its input or output parameters is in DBCS format, regardless of how
it was precompiled with the WCHARTYPE option.

For important information on handling graphic data in C applications, see
“Handling Graphic Host Variables in C and C++” on page 609. For
information on EUC code sets and application guidelines, see “Japanese and
Traditional Chinese EUC and UCS-2 Code Set Considerations” on page 511,
and more specifically to “Considerations for Stored Procedures” on page 515.

Multisite Update Consideration
Stored procedures that applications call with CONNECT TYPE 2 cannot issue
a COMMIT or ROLLBACK, either dynamically or statically.

NOT FENCED Stored Procedures

Your stored procedure can run as either a FENCED or a NOT FENCED stored
procedure, depending on whether you register the stored procedure as
FENCED or NOT FENCED in the CREATE PROCEDURE statement.

A NOT FENCED stored procedure runs in the same address space as the
database manager (the DB2 Agent’s address space). Running your stored
procedure as NOT FENCED results in increased performance when compared
with running it as FENCED because FENCED stored procedures, by default,
run in a special DB2 process. The address space of this process is distinct from
the DB2 System Controller.

Chapter 7. Stored Procedures 223

Notes:

1. While you can expect performance improvements from running NOT
FENCED stored procedures, user code can accidentally or maliciously
damage the database control structures. You should only use NOT
FENCED stored procedures when you need to maximize the performance
benefits. Test all your stored procedures thoroughly prior to running them
as NOT FENCED.

2. If a severe error does occur while you are running a NOT FENCED stored
procedure, the database manager determines whether the error occurred in
the stored procedure code or the database code, and attempts an
appropriate recovery.

For debugging purposes, consider using local FENCED stored procedures. A
local FENCED procedure is a PARAMETER STYLE DB2DARI procedure. To
call a local FENCED procedure, issue CALL <library-name>!<entry-point>,
where library-name represents the name of the shared library, and entry-point
represents the entry point of the shared library for the stored procedure. If the
name of the shared library and the entry point are the same, you can issue
CALL <entry-point>.

NOT FENCED and regular FENCED stored procedures complicate your
debugging efforts by giving your debugger access to additional address space.
Local FENCED stored procedures run in the application’s address space and
allow your debugger to access both the application code and the stored
procedure code. To enable local FENCED stored procedures for debugging,
perform the following steps:
1. Register the stored procedure as a FENCED stored procedure.
2. Set the DB2_STPROC_ALLOW_LOCAL_FENCED registry variable to true. For

information on registry variables, refer to the Administration Guide:
Implementation.

3. Run the client application on the same machine as the DB2 server.

Note: While debugging a local FENCED stored procedure, be careful not to
introduce statements that violate the restrictions listed in “Restrictions”
on page 209. DB2 treats calls to local FENCED stored procedures as

calls to a subroutine of the client application. Therefore, local FENCED
stored procedures can contain statements that violate restrictions on
normal stored procedures, like performing CONNECT statements in the
procedure body.

When you write a NOT FENCED stored procedure, keep in mind that it may
run in a threaded environment, depending on the operating system. Thus, the
stored procedure must either be completely re-entrant, or manage its static
variables so that access to these variables is serialized.

224 Application Development Guide

Note: You should not use static data in stored procedures, because DB2
cannot guarantee that the static data in a stored procedure is or is not
reinitialized on subsequent invocations.

NOT FENCED stored procedures must be precompiled with the
WCHARTYPE NOCONVERT option. See “The WCHARTYPE Precompiler
Option in C and C++” on page 611 for more information.

DB2 does not support the use of any of the following features in NOT
FENCED stored procedures:
v 16-bit
v Multi-threading
v Nested calls: calling or being called by another stored procedure
v Result sets: returning result sets to a client application or caller
v REXX

The following DB2 APIs and any DB2 CLI API are not supported in a NOT
FENCED stored procedure:
v BIND
v EXPORT
v IMPORT
v PRECOMPILE PROGRAM
v ROLLFORWARD DATABASE

Returning Result Sets from Stored Procedures

You can code stored procedures to return one or more result sets to DB2 CLI,
ODBC, JDBC, or SQLJ client applications. Aspects of this support include:
v Only DB2 CLI, ODBC, JDBC, and SQLJ clients can accept result sets.
v DB2 clients that use embedded SQL can accept multiple result sets if the

stored procedure resides on a server that is accessible from a DataJoiner
Version 2 server. Stored procedures on host and AS/400 platforms can
return multiple result sets to DB2 Connect clients. Stored procedures on
DB2 Universal Database servers can return multiple result sets to host and
AS/400 clients. Consult the product documentation for DataJoiner or the
host or AS/400 platform for more information.

v The client application program can describe the result sets returned.
v Result sets must be processed in serial fashion by the application. A cursor

is automatically opened on the first result set and a special call
(SQLMoreResults for DB2 CLI, getMoreResults for JDBC, getNextResultSet
for SQLJ) is provided to both close the cursor on one result set and to open
it on the next.

v The stored procedure indicates that a result set is to be returned by
declaring a cursor on that result set, opening a cursor on that result set, and

Chapter 7. Stored Procedures 225

leaving the cursor open when exiting the procedure. If more than one
cursor is left open, the result sets are returned in the order in which their
cursors were opened

v Only unread or unfetched rows are passed back in the result set.
v Stored procedures which return result sets must be run in FENCED mode.
v A COMMIT or ROLLBACK will close all cursors except WITH HOLD

cursors.
v The RESULT_SETS column in the DB2CLI.PROCEDURES table indicates

whether or not a stored procedure returns result sets. When you declare the
stored procedure with the CREATE PROCEDURE statement, the DYNAMIC
RESULT SETS clause sets this value to indicate the number of result sets
returned by the stored procedure.

For additional details on handling result sets:
v in DB2 CLI, refer to the CLI Guide and Reference.
v in Java, refer to the DB2 Java Enablement web page at

http://www.ibm.com/software/data/db2/java/ for links to the JDBC and
SQLJ specifications.

Example: Returning a Result Set from a Stored Procedure
This sample stored procedure shows how to return a result set to the client
application in the following supported languages:

C spserver.sqc

Java Spserver.java

This sample stored procedure accepts one IN parameter and returns one OUT
parameter and one result set. The stored procedure uses the IN parameter to
create a result set containing the values of the NAME, JOB, and SALARY
columns for the STAFF table for rows where SALARY is greater than the IN
parameter.

�1� Register the stored procedure using the DYNAMIC RESULT SETS
clause of the CREATE PROCEDURE statement. For example, to
register the stored procedure written in embedded SQL for C, issue
the following statement:

CREATE PROCEDURE RESULT_SET_CLIENT
(IN salValue DOUBLE, OUT sqlCode INTEGER)
DYNAMIC RESULT SETS 1
LANGUAGE C
PARAMETER STYLE GENERAL
NO DBINFO
FENCED
READS SQL DATA
PROGRAM TYPE SUB
EXTERNAL NAME 'spserver!one_result_set_to_client'

226 Application Development Guide

http://www.ibm.com/software/data/db2/java/

�2� For embedded SQL in C stored procedures, use the DECLARE
CURSOR and OPEN CURSOR statements to create an open cursor.
For CLI stored procedures, use the SQLPrepare and SQLBindParameter
APIs to create a result set. For Java stored procedures written with
JDBC, use the prepareStatement and executeQuery methods to create
a result set.

�3� Close the connection to the database without closing the cursor or
result set. This step does not apply to embedded SQL in C stored
procedures.

�4� Java stored procedures: for each result set that a PARAMETER STYLE
JAVA stored procedure returns, you must include a corresponding
ResultSet[] argument in the stored procedure method signature.

Chapter 7. Stored Procedures 227

C Example: SPSERVER.SQC (one_result_set_to_client)
SQL_API_RC SQL_API_FN one_result_set_to_client

(double *insalary, sqlint32 *out_sqlerror)
{

EXEC SQL INCLUDE SQLCA;

EXEC SQL WHENEVER SQLERROR GOTO return_error;

l_insalary = *insalary;
*out_sqlerror = 0;

EXEC SQL DECLARE c3 CURSOR FOR �2�
SELECT name, job, CAST(salary AS INTEGER)
FROM staff
WHERE salary > :l_insalary
ORDER BY salary;

EXEC SQL OPEN c3; �2�
/* Leave cursor open to return result set */

return (0); �3�

/* Copy SQLCODE to OUT parameter if SQL error occurs */
return_error:

{
*out_sqlerror = SQLCODE;
EXEC SQL WHENEVER SQLERROR CONTINUE;
return (0);

}

} /* end one_result_set_to_client function */

228 Application Development Guide

Java Example: Spserver.java (resultSetToClient)
public static void resultSetToClient

(double inSalaryThreshold, // double input
int[] errorCode, // SQLCODE output
ResultSet[] rs) // ResultSet output �4�
throws SQLException

{
errorCode[0] = 0; // SQLCODE = 0 unless SQLException occurs

try {
// Get caller's connection to the database
Connection con =

DriverManager.getConnection("jdbc:default:connection");

// get salary result set using a parameter marker
String query = "SELECT name, job, CAST(salary AS DOUBLE) " +

"FROM staff " +
"WHERE salary > ? " +
"ORDER BY salary";

// prepare the SQL statement
PreparedStatement stmt = con.prepareStatement(query);

// set the value of the parameter marker (?)
stmt.setDouble(1, inSalaryThreshold);

// get the result set that will be returned to the client
rs[0] = stmt.executeQuery(); �2�

// to return a result set to the client, do not close ResultSet
con.close(); �3�

}

catch (SQLException sqle)
{

errorCode[0] = sqle.getErrorCode();
}

}

Chapter 7. Stored Procedures 229

Example: Accepting a Result Set from a Stored Procedure: This sample
client application shows how to accept a result set from a stored procedure in
the following supported languages:

C (using CLI) spclient.c

Java Spclient.java

This sample client application calls the RESULT_SET_CLIENT stored procedure
and accepts one result set. The client application then displays the contents of
the result set.

�1� Call the stored procedure with arguments that correspond to the
parameters you declared in the CREATE PROCEDURE statement.

�2� JDBC applications use the getNextResultSet method to accept the first
result set from the stored procedure.

�3� Fetch the rows from the result set. The sample CLI client uses a while
loop to fetch and display all rows from the result set. The sample
JDBC client calls a class method called fetchAll that fetches and
displays all rows from a result set.

230 Application Development Guide

CLI Example: SPCLIENT.C (one_result_set_to_client):
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlcli1.h>
#include <sqlca.h>
#include "utilcli.h" /* Header file for CLI sample code */

SQLCHAR stmt[50];
SQLINTEGER out_sqlcode;
char out_buffer[33];
SQLINTEGER indicator;
struct sqlca sqlca;
SQLRETURN rc,rc1 ;
char procname[254];
SQLHANDLE henv; /* environment handle */
SQLHANDLE hdbc; /* connection handle */
SQLHANDLE hstmt1; /* statement handle */
SQLHANDLE hstmt2; /* statement handle */
SQLRETURN sqlrc = SQL_SUCCESS;
double out_median;

int oneresultset1(SQLHANDLE);

int main(int argc, char *argv[])
{

SQLHANDLE hstmt; /* statement handle */
SQLHANDLE hstmt_oneresult; /* statement handle */

char dbAlias[SQL_MAX_DSN_LENGTH + 1] ;
char user[MAX_UID_LENGTH + 1] ;
char pswd[MAX_PWD_LENGTH + 1] ;

/* Declare variables for passing data to INOUT_PARAM */
double inout_median;

/* checks the command line arguments */
rc = CmdLineArgsCheck1(argc, argv, dbAlias, user, pswd);
if (rc != 0) return(1) ;

/* allocate an environment handle */
printf("\n Allocate an environment handle.\n");
sqlrc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv) ;
if (sqlrc != SQL_SUCCESS)
{ printf("\n--ERROR while allocating the environment handle.\n") ;

printf(" sqlrc = %d\n", sqlrc);
printf(" line = %d\n", __LINE__);
printf(" file = %s\n", __FILE__);
return(1) ;

}

/* allocate a database connection handle */
printf(" Allocate a database connection handle.\n");
sqlrc = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc) ;

Chapter 7. Stored Procedures 231

HANDLE_CHECK(SQL_HANDLE_ENV, henv, sqlrc, &henv, &hdbc) ;

/* connect to the database */
printf(" Connecting to the database %s ...\n", dbAlias) ;
sqlrc = SQLConnect(hdbc,

(SQLCHAR *)dbAlias, SQL_NTS,
(SQLCHAR *)user, SQL_NTS,
(SQLCHAR *)pswd, SQL_NTS

) ;
HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, sqlrc, &henv, &hdbc) ;
printf(" Connected to the database %s.\n", dbAlias) ;

/* set AUTOCOMMIT off */
sqlrc = SQLSetConnectAttr(hdbc,

SQL_ATTR_AUTOCOMMIT,
SQL_AUTOCOMMIT_OFF, SQL_NTS) ;

HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, sqlrc, &henv, &hdbc) ;

/* allocate one or more statement handles */
printf(" Allocate a statement handle.\n");
sqlrc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt) ;
HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, sqlrc, &henv, &hdbc) ;
sqlrc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt_oneresult) ;
HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, sqlrc, &henv, &hdbc) ;

/**\
* Call oneresultsettocaller stored procedure *
**/
rc = oneresultset1(hstmt_oneresult);
rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt_oneresult) ;
HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, rc, &henv, &hdbc) ;

/* ROLLBACK, free resources, and exit */

rc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT) ;
HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, rc, &henv, &hdbc) ;

printf("\nStored procedure rolled back.\n\n");

/* Disconnect from Remote Database */

rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt) ;
HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, rc, &henv, &hdbc) ;

printf("\n>Disconnecting\n") ;
rc = SQLDisconnect(hdbc) ;
HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, rc, &henv, &hdbc) ;

rc = SQLFreeHandle(SQL_HANDLE_DBC, hdbc) ;
HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, rc, &henv, &hdbc) ;

rc = SQLFreeHandle(SQL_HANDLE_ENV, henv) ;
if (rc != SQL_SUCCESS) return(SQL_ERROR) ;

232 Application Development Guide

return(SQL_SUCCESS) ;
}

int oneresultset1(hstmt)
SQLHANDLE hstmt; /* statement handle */

{
/**\
* Call one_result_set_to_client stored procedure *
**/

double insalary = 20000;
SQLINTEGER salary_int;
SQLSMALLINT num_cols;
char name[40];
char job[10];

strcpy(procname, "RESULT_SET_CALLER"); �1�

printf("\nCALL stored procedure: %s\n", procname);

strcpy((char*)stmt,"CALL RESULT_SET_CALLER (?,?)");
rc = SQLPrepare(hstmt, stmt, SQL_NTS);
STMT_HANDLE_CHECK(hstmt, rc);

/* Bind the parameter to application variables () */
rc = SQLBindParameter(hstmt, 1,

SQL_PARAM_INPUT, SQL_C_DOUBLE,
SQL_DOUBLE,0,
0, &insalary,
0, NULL);

rc = SQLBindParameter(hstmt, 2,
SQL_PARAM_OUTPUT, SQL_C_LONG,
SQL_INTEGER,0,
0, &out_sqlcode,
0, NULL);

STMT_HANDLE_CHECK(hstmt, rc);
rc = SQLExecute(hstmt);
rc1 = SQLGetSQLCA(henv, hdbc, hstmt, &sqlca);
STMT_HANDLE_CHECK(hstmt, rc);

rc = SQLNumResultCols(hstmt, &num_cols) ;
STMT_HANDLE_CHECK(hstmt, rc);
printf("Result set returned %d columns\n", num_cols);

/* bind columns to variables */
rc = SQLBindCol(hstmt, 1, SQL_C_CHAR, name, 40, &indicator);
STMT_HANDLE_CHECK(hstmt, rc);
rc = SQLBindCol(hstmt, 2, SQL_C_CHAR, job, 10, &indicator);
STMT_HANDLE_CHECK(hstmt, rc);
rc = SQLBindCol(hstmt, 3, SQL_C_LONG, &salary_int, 0, &indicator);
STMT_HANDLE_CHECK(hstmt, rc);

/* fetch result set returned from stored procedure */
rc = SQLFetch(hstmt); �2�

Chapter 7. Stored Procedures 233

rc1 = SQLGetSQLCA(henv, hdbc, hstmt, &sqlca);

STMT_HANDLE_CHECK(hstmt, rc);

printf("\n--------Name---------, --JOB--, ---Salary-- \n");
while (rc == SQL_SUCCESS && rc != SQL_NO_DATA_FOUND) �3�
{
printf("%20s,%10s, %d\n",name,job,salary_int);

rc = SQLFetch(hstmt);
}

STMT_HANDLE_CHECK(hstmt, rc);

/* Check that the stored procedure executed successfully */
if (rc == SQL_SUCCESS) {
printf("Stored procedure returned successfully.\n");
}
else {
printf("Stored procedure returned SQLCODE %d\n", out_sqlcode);
}
rc = SQLCloseCursor(hstmt);

return(rc);
}

234 Application Development Guide

Java Example: Spclient.java (resultSetToClient):
// prepare the CALL statement for RESULT_SET_CLIENT
procName = "RESULT_SET_CLIENT";
sql = "CALL " + procName + "(?, ?)"; �1�
callStmt = con.prepareCall(sql);

// set input parameter to median value passed back by OUT_PARAM
callStmt.setDouble (1, outMedian);

// register the output parameter
callStmt.registerOutParameter (2, Types.INTEGER);

// call the stored procedure
System.out.println ("\nCall stored procedure named " + procName);
callStmt.execute();

// retrieve output parameter
outErrorCode = callStmt.getInt(2);

if (outErrorCode == 0) {
System.out.println(procName + " completed successfully");
ResultSet rs = callStmt.getResultSet(); �2�
while (rs.next()) {

fetchAll(rs); �3�
}

// close ResultSet
rs.close();

}
else { // stored procedure failed

System.out.println(procName + " failed with SQLCODE "
+ outErrorCode);

}

Chapter 7. Stored Procedures 235

Resolving Problems
If a stored procedure application fails to execute properly, ensure that:
v The stored procedure is built using the correct calling sequence, compile

options, and so on.
v The application executes locally with both client application and stored

procedure on the same workstation.
v The stored procedure is stored in the proper location in accordance with the

instructions in the Application Building Guide.
For example, in an OS/2 environment, the dynamic link library for a
FENCED stored procedure is located in the instance_name\function
directory on the database server.

v The application, except if it is written in DB2 CLI and JDBC, is bound to
the database.

v The stored procedure accurately returns any SQLCA error information to
the client application.

v Stored procedure function names are case-sensitive, and must match exactly
on client and server.

v If you register the stored procedure with a CREATE PROCEDURE
statement, stored procedure function names must not match their library
name.
For example, the database manager will execute the stored procedure
myfunc contained in the Windows 32-bit operating system library
myfunc.dll as a DB2DARI function, disregarding the values specified in its
associated CREATE PROCEDURE statement.

Note: For more information on debugging Java stored procedures, see
“Debugging Stored Procedures in Java” on page 651.

You can use the debugger supplied with your compiler to debug a local
FENCED stored procedure as you would any other application. Consult your
compiler documentation for information on using the supplied debugger.

For example, to use the debugger supplied with Visual Studio™ on Windows
NT, perform the following steps:
Step 1. Set the DB2_STPROC_ALLOW_LOCAL_FENCED registry variable to true.
Step 2. Compile the source file for the stored procedure DLL with the -Zi

and -Od flags, and then link the DLL using the -DEBUG option.
Step 3. Copy the resulting DLL to the instance_name \function directory of

the server.
Step 4. Invoke the client application on the server with the Visual Studio

debugger. For the client application outcli.exe, enter the following
command:

236 Application Development Guide

msdev spclient.exe

Step 5. When the Visual Studio debugger window opens, select Project —>
Settings.

Step 6. Click the Debug tab.
Step 7. Click the Category arrow and select the Additional DLLs.
Step 8. Click the New button to create a new module.
Step 9. Click the Browse button to open the Browse window.
Step 10. Select the module spserver.dll and click OK to close the Settings

window.
Step 11. Open the source file for the stored procedure and set a breakpoint.
Step 12. Click the Go button. The Visual Studio debugger stops when the

stored procedure is invoked.
Step 13. At this point, you can debug the stored procedure using the Visual

Studio debugger.

Refer to the Visual Studio product documentation for further information on
using the Visual Studio debugger.

Chapter 7. Stored Procedures 237

238 Application Development Guide

Chapter 8. Writing SQL Procedures

Comparison of SQL Procedures and External
Procedures 239
Valid SQL Procedure Body Statements . . . 240
Issuing CREATE PROCEDURE Statements 242
Handling Conditions in SQL Procedures . . 243

Declaring Condition Handlers 243
SIGNAL and RESIGNAL Statements . . 245
SQLCODE and SQLSTATE Variables in
SQL Procedures 246

Using Dynamic SQL in SQL Procedures . . 246
Nested SQL Procedures 248

Passing Parameters Between Nested SQL
Procedures 248
Returning Result Sets From Nested SQL
Procedures 249

Restrictions on Nested SQL Procedures 249
Returning Result Sets From SQL Procedures 249

Returning Result Sets to Caller or Client 250
Returning Result Sets to the Client . . 250
Returning Result Sets to the Caller . . 251

Receiving Result Sets as a Caller 251
Debugging SQL Procedures 252

Displaying Error Messages for SQL
Procedures 252
Debugging SQL Procedures Using
Intermediate Files 255

Examples of SQL Procedures 255

An SQL procedure is a stored procedure in which the procedural logic is
contained in a CREATE PROCEDURE statement. The part of the CREATE
PROCEDURE statement that contains the code is called the procedure body.

To create an SQL procedure, simply issue the CREATE PROCEDURE
statement like any other DDL statement. You can also use the IBM DB2 Stored
Procedure Builder to help you define the stored procedure to DB2, specify the
source statements for the SQL procedure, and prepare the procedure for
execution. For more information on the IBM DB2 Stored Procedure Builder,
see “Chapter 9. IBM DB2 Stored Procedure Builder” on page 261.

This chapter discusses how to write a CREATE PROCEDURE statement that
includes a procedure body. For more information on the syntax of the
CREATE PROCEDURE statement and the procedure body, refer to the SQL
Reference. For more information on using the IBM DB2 Stored Procedure
Builder to create SQL procedures, see “Chapter 9. IBM DB2 Stored Procedure
Builder” on page 261.

Comparison of SQL Procedures and External Procedures

Like external stored procedure definitions, SQL procedure definitions provide
the following information:
v The procedure name.
v Parameter attributes.
v The language in which the procedure is written. For an SQL procedure, the

language is SQL.

© Copyright IBM Corp. 1993, 2000 239

v Other information about the procedure, such as the specific name of the
procedure and the number of result sets returned by the procedure.

Unlike a CREATE PROCEDURE statement for an external stored procedure,
the CREATE PROCEDURE statement for an SQL procedure does not specify
the EXTERNAL clause. Instead, an SQL procedure has a procedure body,
which contains the source statements for the stored procedure.

The following example shows a CREATE PROCEDURE statement for a simple
stored procedure. The procedure name, the list of parameters that are passed
to or from the procedure, and the LANGUAGE parameter are common to all
stored procedures. However, the LANGUAGE value of SQL and the
BEGIN...END block, which forms the procedure body, are particular to an
SQL procedure.

CREATE PROCEDURE UPDATE_SALARY_1 �1�
(IN EMPLOYEE_NUMBER CHAR(6), �2�
IN RATE INTEGER) �2�
LANGUAGE SQL �3�
BEGIN

UPDATE EMPLOYEE �4�
SET SALARY = SALARY * (1.0 * RATE / 100.0)
WHERE EMPNO = EMPLOYEE_NUMBER;

END

Notes for the previous example:

�1� The stored procedure name is UPDATE_SALARY_1.
�2� The two parameters have data types of CHAR(6) and INTEGER. Both are

input parameters.
�3� LANGUAGE SQL indicates that this is an SQL procedure, so a procedure

body follows the other parameters.
�4� The procedure body consists of a single SQL UPDATE statement, which

updates rows in the employee table.

Within the SQL procedure body, you cannot use OUT parameters as a value
in any expression. You can only assign values to OUT parameters using the
assignment statement, or as the target variable in the INTO clause of SELECT,
VALUES and FETCH statements. You cannot use IN parameters as the target
of assignment or INTO clauses.

Valid SQL Procedure Body Statements

A procedure body consists of a single SQL procedure statement. The types of
statements that you can use in a procedure body include:

Assignment statement
Assigns a value to an output parameter or to an SQL variable, which is a

240 Application Development Guide

variable that is defined and used only within a procedure body. You
cannot assign values to IN parameters.

CASE statement
Selects an execution path based on the evaluation of one or more
conditions. This statement is similar to the CASE expression described in
the SQL Reference.

FOR statement
Executes a statement or group of statements for each row of a table.

GET DIAGNOSTICS statement
The GET DIAGNOSTICS statement returns information about the
previous SQL statement.

GOTO statement
Transfers program control to a user-defined label within an SQL routine.

IF statement
Selects an execution path based on the evaluation of a condition.

ITERATE statement
Passes the flow of control to a labelled block or loop.

LEAVE statement
Transfers program control out of a loop or block of code.

LOOP statement
Executes a statement or group of statements multiple times.

REPEAT statement
Executes a statement or group of statements until a search condition is
true.

RESIGNAL statement
The RESIGNAL statement is used within a condition handler to resignal
an error or warning condition. It causes an error or warning to be
returned with the specified SQLSTATE, along with optional message text.

RETURN statement
Returns control from the SQL procedure to the caller. You can also return
an integer value to the caller.

SIGNAL statement
The SIGNAL statement is used to signal an error or warning condition. It
causes an error or warning to be returned with the specified SQLSTATE,
along with optional message text.

SQL statement
The SQL procedure body can contain any SQL statement listed in
“Appendix A. Supported SQL Statements” on page 723.

Chapter 8. Writing SQL Procedures 241

WHILE statement
Repeats the execution of a statement or group of statements while a
specified condition is true.

Compound statement
Can contain one or more of any of the other types of statements in this
list, as well as SQL variable declarations, condition handlers, or cursor
declarations.

For a complete list of the SQL statements allowed within an SQL procedure
body, see “Appendix A. Supported SQL Statements” on page 723. For detailed
descriptions and syntax of each of these statements, refer to the SQL Reference.

Issuing CREATE PROCEDURE Statements

To issue a CREATE PROCEDURE statement as a DB2 Command Line
Processor (DB2 CLP) script, you must use an alternate terminating character
for SQL statements in the script. The semicolon (';') character, the default for
DB2 CLP scripts, terminates SQL statements within the SQL procedure body.

To use an alternate terminating character in DB2 CLP scripts, select a
character that is not used in standard SQL statements. In the following
example, the at sign ('@') is used as the terminating character for a DB2 CLP
script named script.db2:

CREATE PROCEDURE UPDATE_SALARY_IF
(IN employee_number CHAR(6), IN rating SMALLINT)
LANGUAGE SQL
BEGIN

DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE EXIT HANDLER FOR not_found

SIGNAL SQLSTATE '20000' SET MESSAGE_TEXT = 'Employee not found';

IF (rating = 1)
THEN UPDATE employee

SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;

ELSEIF (rating = 2)
THEN UPDATE employee

SET salary = salary * 1.05, bonus = 500
WHERE empno = employee_number;

ELSE UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;

END IF;
END

@

To process the DB2 CLP script from the command line, use the following
syntax:

db2 -tdterm-char -vf script-name

242 Application Development Guide

where term-char represents the terminating character, and script-name
represents the name of the DB2 CLP script to process. To process the
preceding script, for example, issue the following command from the CLP:

db2 -td@ -vf script.db2

Handling Conditions in SQL Procedures

Condition handlers determine the behavior of your SQL procedure when a
condition occurs. You can declare one or more condition handlers in your SQL
procedure for general DB2 conditions, defined conditions for specific
SQLSTATE values, or specific SQLSTATE values. For more information on
general conditions and on defining your own conditions, see “Declaring
Condition Handlers”.

If a statement in your SQL procedure issues an SQLWARNING or NOT
FOUND condition, and you have declared a handler for the respective
condition, DB2 passes control to the corresponding handler. If you have not
declared a handler for that particular condition, DB2 sets the variables
SQLSTATE and SQLCODE with the corresponding values for the condition
and passes control to the next statement in the procedure body.

If a statement in your SQL procedure raises an SQLEXCEPTION condition,
and you declared a handler for the specific SQLSTATE or the
SQLEXCEPTION condition, DB2 passes control to that handler. If DB2
successfully executes the handler, the values of SQLSTATE and SQLCODE
return ‘00000’ and 0 respectively.

If a statement in your SQL procedure raises an SQLEXCEPTION condition,
and you have not declared a handler for the specific SQLSTATE or the
SQLEXCEPTION condition, DB2 terminates the SQL procedure and returns to
the client.

Declaring Condition Handlers
The general form of a handler declaration is:

DECLARE handler-type HANDLER FOR condition SQL-procedure-statement

When DB2 raises a condition that matches condition, DB2 passes control to the
condition handler. The condition handler performs the action indicated by
handler-type, and then executes SQL-procedure-statement.

handler-type

CONTINUE
Specifies that after SQL-procedure-statement completes, execution
continues with the statement after the statement that caused the
error.

Chapter 8. Writing SQL Procedures 243

EXIT Specifies that after SQL-procedure-statement completes, execution
continues at the end of the compound statement that contains the
handler.

UNDO
Specifies that before SQL-procedure-statement executes, DB2 rolls
back any SQL operations that have occurred in the compound
statement that contains the handler. After SQL-procedure-statement
completes, execution continues at the end of the compound
statement that contains the handler.

Note: You can only declare UNDO handlers in ATOMIC
compound statements.

condition
DB2 provides three general conditions:

NOT FOUND
Identifies any condition that results in an SQLCODE of +100 or an
SQLSTATE of ‘02000’.

SQLEXCEPTION
Identifies any condition that results in a negative SQLCODE.

SQLWARNING
Identifies any condition that results in a warning condition
(SQLWARN0 is ‘W’), or that results in a positive SQL return code
other than +100.

You can also use the DECLARE statement to define your own condition
for a specific SQLSTATE. For more information on defining your own
condition, refer to the SQL Reference.

SQL-procedure-statement
You can use a single SQL procedure statement to define the behavior of
the condition handler. DB2 accepts a compound statement delimited by a
BEGIN...END block as a single SQL procedure statement. If you use a
compound statement to define the behavior of a condition handler, and
you want the handler to retain the value of either the SQLSTATE or
SQLCODE variables, you must assign the value of the variable to a local
variable or parameter in the first statement of the compound block. If the
first statement of a compound block does not assign the value of
SQLSTATE or SQLCODE to a local variable or parameter, SQLSTATE and
SQLCODE cannot retain the value that caused DB2 to invoke the
condition handler.

Note: You cannot define another condition handler within the condition
handler.

244 Application Development Guide

The following examples demonstrate simple condition handlers:

Example: CONTINUE handler: This handler assigns the value of 1 to the local
variable at_end when DB2 raises a NOT FOUND condition. DB2 then passes
control to the statement following the one that raised the NOT FOUND
condition.

DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE CONTINUE HANDLER FOR not_found SET at_end=1;

Example: EXIT handler: The procedure declares NO_TABLE as the condition
name for SQLSTATE 42704 (name is an undefined name). The condition
handler for NO_TABLE places the string Table does not exist into output
parameter OUT_BUFFER. The handler then causes the SQL procedure to exit
the compound statement in which the handler is declared.

DECLARE NO_TABLE CONDITION FOR SQLSTATE '42704';
DECLARE EXIT HANDLER FOR NO_TABLE

BEGIN
SET OUT_BUFFER='Table does not exist';

END

Example: UNDO handler: The procedure declares an UNDO condition handler
for SQLSTATE 42704 without first defining a name for the SQLSTATE. The
handler causes the SQL procedure to roll back the current unit of work, place
the string Table does not exist into output parameter OUT_BUFFER, and
exit the compound statement in which the handler is declared.

DECLARE UNDO HANDLER FOR SQLSTATE '42704'
BEGIN

SET OUT_BUFFER='Table does not exist';
END;

Note: You can only declare UNDO handlers in ATOMIC compound
statements.

SIGNAL and RESIGNAL Statements
You can use the SIGNAL and RESIGNAL statements to explicitly raise a
specific SQLSTATE. Use the SET MESSAGE_TEXT clause of the SIGNAL and
RESIGNAL statements to define the text that DB2 displays for a
custom-defined SQLSTATE.

In the following example, the SQL procedure body declares a condition
handler for the custom SQLSTATE 72822. When the procedure executes the
SIGNAL statement that raises SQLSTATE 72822, DB2 invokes the condition
handler. The condition handler tests the value of the SQL variable var with an
IF statement. If var is OK, the handler redefines the SQLSTATE value as 72623
and assigns a string literal to the text associated with SQLSTATE 72623. If var
is not OK, the handler redefines the SQLSTATE value as 72319 and assigns the
value of var to the text associated with that SQLSTATE.

Chapter 8. Writing SQL Procedures 245

DECLARE EXIT CONDITION HANDLER FOR SQLSTATE '72822'
BEGIN

IF (var = 'OK')
RESIGNAL '72623' SET MESSAGE_TEXT = 'Got SQLSTATE 72822';

ELSE
RESIGNAL '72319' SET MESSAGE_TEXT = var;

END;

SIGNAL SQLSTATE '72822';

For more information on the SIGNAL and RESIGNAL statements, refer to the
SQL Reference.

SQLCODE and SQLSTATE Variables in SQL Procedures
To help debug your SQL procedures, you might find it useful to insert the
value of the SQLCODE and SQLSTATE into a table at various points in the
SQL procedure, or to return the SQLCODE and SQLSTATE values in a
diagnostic string as an OUT parameter. To use the SQLCODE and SQLSTATE
values, you must declare the following SQL variables in the SQL procedure
body:

DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE SQLSTATE CHAR(5) DEFAULT ‘00000’;

You can also use CONTINUE condition handlers to assign the value of the
SQLSTATE and SQLCODE variables to local variables in your SQL procedure
body. You can then use these local variables to control your procedural logic,
or pass the value back as an output parameter. In the following example, the
SQL procedure returns control to the statement following each SQL statement
with the SQLCODE set in a local variable called RETCODE.

DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE retcode INTEGER DEFAULT 0;

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION SET retcode = SQLCODE;
DECLARE CONTINUE HANDLER FOR SQLWARNING SET retcode = SQLCODE;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET retcode = SQLCODE;

Note: When you access the SQLCODE or SQLSTATE variables in an SQL
procedure, DB2 sets the value of SQLCODE to 0 and SQLSTATE to
‘00000’ for the subsequent statement.

Using Dynamic SQL in SQL Procedures

SQL procedures, like external stored procedures, can issue dynamic SQL
statements. If your dynamic SQL statement does not include parameter
markers and you plan to execute it only once, use the EXECUTE IMMEDIATE
statement.

246 Application Development Guide

If your dynamic SQL statement contains parameter markers, you must use the
PREPARE and EXECUTE statements. If you you plan to execute a dynamic
SQL statement multiple times, it might be more efficient to issue a single
PREPARE statement and to issue the EXECUTE statement multiple times
rather than issuing the EXECUTE IMMEDIATE statement each time. To use
the PREPARE and EXECUTE statements to issue dynamic SQL in your SQL
procedure, you must include the following statements in the SQL procedure
body:
Step 1. Declare a variable of type VARCHAR that is large enough to hold

your dynamic SQL statement using a DECLARE statement.
Step 2. Assign a statement string to the variable using a SET statement. You

cannot include variables directly in the statement string. Instead, you
must use the question mark ('?') symbol as a parameter marker for
any variables used in the statement.

Step 3. Create a prepared statement from the statement string using a
PREPARE statement.

Step 4. Execute the prepared statement using an EXECUTE statement. If the
statement string includes a parameter marker, use a USING clause to
replace it with the value of a variable.

Note: Statement names defined in PREPARE statements for SQL procedures
are treated as scoped variables. Once the SQL procedure exits the scope
in which you define the statement name, DB2 can no longer access the
statement name. Inside any compound statement, you cannot issue two
PREPARE statements that use the same statement name.

Example: Dynamic SQL statements: The following example shows an SQL
procedure that includes dynamic SQL statements.

The procedure receives a department number (deptNumber) as an input
parameter. In the procedure, three statement strings are built, prepared, and
executed. The first statement string executes a DROP statement to ensure that
the table to be created does not already exist. This table is named
DEPT_deptno_T, where deptno is the value of input parameter deptNumber. A
CONTINUE HANDLER ensures that the SQL procedure will continue if it
detects SQLSTATE 42704 (“undefined object name”), which DB2 returns from
the DROP statement if the table does not exist. The second statement string
issuees a CREATE statement to create DEPT_deptno_T. The third statement
string inserts rows for employees in department deptno into DEPT_deptno_T.
The third statement string contains a parameter marker that represents
deptNumber. When the prepared statement is executed, parameter deptNumber
is substituted for the parameter marker.

CREATE PROCEDURE create_dept_table
(IN deptNumber VARCHAR(3), OUT table_name VARCHAR(30))
LANGUAGE SQL

Chapter 8. Writing SQL Procedures 247

BEGIN
DECLARE stmt VARCHAR(1000);

-- continue if sqlstate 42704 ('undefined object name')
DECLARE CONTINUE HANDLER FOR SQLSTATE '42704'

SET stmt = '';
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION

SET table_name = 'PROCEDURE_FAILED';

SET table_name = 'DEPT_'||deptNumber||'_T';
SET stmt = 'DROP TABLE '||table_name;
PREPARE s1 FROM stmt;
EXECUTE s1;
SET stmt = 'CREATE TABLE '||table_name||
'(empno CHAR(6) NOT NULL, '||
'firstnme VARCHAR(12) NOT NULL, '||
'midinit CHAR(1) NOT NULL, '||
'lastname VARCHAR(15) NOT NULL, '||
'salary DECIMAL(9,2))';
PREPARE s2 FROM STMT;
EXECUTE s2;
SET stmt = 'INSERT INTO '||table_name || ' ' ||
'SELECT empno, firstnme, midinit, lastname, salary '||
'FROM employee '||
'WHERE workdept = ?';

PREPARE s3 FROM stmt;
EXECUTE s3 USING deptNumber;

END

Nested SQL Procedures

Your SQL procedures can contain CALL statements to call other SQL
procedures. This feature, called nested stored procedures, enables you to reuse
existing SQL procedures and design more complex applications.

Passing Parameters Between Nested SQL Procedures
To call a target SQL procedure from within a caller SQL procedure, simply
include a CALL statement with the appropriate number and types of
parameters in your caller. If the target returns OUT parameters, the caller can
use the returned values in its own statements.

For example, you can create an SQL procedure that calls a target SQL
procedure with the name “SALES_TARGET” and that accepts a single OUT
parameter of type INTEGER with the following SQL:

CREATE PROCEDURE NEST_SALES(OUT budget DECIMAL(11,2))
LANGUAGE SQL
BEGIN

DECLARE total INTEGER DEFAULT 0;
SET total = 6;
CALL SALES_TARGET(total);
SET budget = total * 10000;

END

248 Application Development Guide

Returning Result Sets From Nested SQL Procedures
If a target SQL procedure returns result sets, either the caller or the client
application receives the result sets, depending on the DECLARE CURSOR
statements issued by the target SQL procedure. For each DECLARE CURSOR
statement in the target that includes the WITH RETURN TO CLIENT clause,
the caller does not receive the result set. For WITH RETURN TO CLIENT
cursors, the result set is returned directly to the client application.

For more information on returning result sets from nested SQL procedures,
see “Returning Result Sets to Caller or Client” on page 250.

Restrictions on Nested SQL Procedures
Keep the following restrictions in mind when designing your application
architecture:

LANGUAGE
SQL procedures can only call stored procedures written in SQL or C.
You cannot call other host language stored procedures from within an
SQL procedure.

16 levels of nesting
You may only include a maximum of 16 levels of nested calls to SQL
procedures. A scenario where SQL procedure A calls SQL procedure B,
and SQL procedure B calls SQL procedure C, is an example of three
levels of nested calls.

Recursion
You can create an SQL procedure that calls itself recursively. Recursive
SQL procedures must comply with the previously described restriction
on the maximum levels of nesting.

Security
An SQL procedure cannot call a target SQL procedure that is
cataloged with a higher SQL data access level. For example, an SQL
procedure created with the CONTAINS SQL clause can call SQL
procedures created with either the CONTAINS SQL clause or the NO
SQL clause, and cannot call SQL procedures created with either the
READS SQL DATA clause or the MODIFIES SQL DATA clause.

An SQL procedure created with the NO SQL clause cannot issue a
CALL statement.

Returning Result Sets From SQL Procedures

Returning result sets from SQL procedures is similar to returning result sets
from external stored procedures. Client applications must use the CLI, JDBC,
or SQLJ application programming interfaces to accept result sets from an SQL
procedure. SQL procedures that call other SQL procedures also can accept

Chapter 8. Writing SQL Procedures 249

result sets from those procedures. To return a result set from an SQL
procedure, write your SQL procedure as follows:
1. Declare the number of result sets that the SQL procedure returns using the

DYNAMIC RESULT SETS clause of the CREATE PROCEDURE statement.
2. Declare a cursor using the DECLARE CURSOR statement.
3. Open the cursor using the OPEN CURSOR statement.
4. Exit from the SQL procedure without closing the cursor.

For example, you can write an SQL procedure that returns a single result set,
based on the value of the INOUT parameter threshold, as follows:

CREATE PROCEDURE RESULT_SET (INOUT threshold SMALLINT)
LANGUAGE SQL
DYNAMIC RESULT SETS 1
BEGIN

DECLARE cur1 CURSOR WITH RETURN TO CALLER FOR
SELECT name, job, years
FROM staff
WHERE years < threshold;

OPEN cur1;
END

Returning Result Sets to Caller or Client
If your application returns result sets from nested SQL procedures, you must
use the WITH RETURN clause of the DECLARE CURSOR statement to ensure
that DB2 returns the result sets to the appropriate location. If a target SQL
procedure returns result sets to a calling SQL procedure, the caller must use
the ALLOCATE CURSOR and ASSOCIATE RESULT SET LOCATOR
statements to access and use the result set.

Returning Result Sets to the Client
To always return a result set from an SQL procedure to a client application,
use the WITH RETURN TO CLIENT clause in the DECLARE CURSOR
statement associated with the result set. In the following example, the SQL
procedure “CLIENT_SET” uses the WITH RETURN TO CLIENT clause in the
DECLARE CURSOR statement to return a result set to the client application,
even if “CLIENT_SET” is the target of a nested SQL procedure CALL
statement:

CREATE PROCEDURE CLIENT_SET()
DYNAMIC RESULT SETS 1
LANGUAGE SQL
BEGIN

DECLARE clientcur CURSOR WITH RETURN TO CLIENT
FOR SELECT name, dept, job
FROM staff
WHERE salary > 20000;

OPEN clientcur;
END

250 Application Development Guide

Returning Result Sets to the Caller
To return a result set to the direct caller of an SQL procedure, whether the
caller is a client application or another SQL procedure, use the WITH
RETURN TO CALLER clause in the DECLARE CURSOR statement associated
with the result set. In the following example, the SQL procedure
“CALLER_SET” uses the WITH RETURN TO CALLER clause to return a
result set to the caller of CALLER_SET:

CREATE PROCEDURE CALLER_SET()
DYNAMIC RESULT SETS 1
LANGUAGE SQL
BEGIN

DECLARE clientcur CURSOR WITH RETURN TO CALLER
FOR SELECT name, dept, job
FROM staff
WHERE salary > 15000;

OPEN clientcur;
END

Receiving Result Sets as a Caller
When you expect your calling SQL procedure to receive a result set from a
target SQL procedure, you must use the ALLOCATE CURSOR and
ASSOCIATE RESULT SET LOCATOR statements to access and use the result
set.

ASSOCIATE RESULT SET LOCATOR
After a CALL statement to a target SQL procedure that returns one or
more result sets to the caller, your calling SQL procedure should issue
this statement to assign result set locator variables for each of the
returned result sets. For example, a calling SQL procedure that expects
to receive three result sets from a target SQL procedure could contain
the following SQL:

DECLARE result1 RESULT_SET_LOCATOR VARYING;
DECLARE result2 RESULT_SET_LOCATOR VARYING;
DECLARE result3 RESULT_SET_LOCATOR VARYING;

CALL targetProcedure();
ASSOCIATE RESULT SET LOCATORS(result1, result2, result3)

WITH PROCEDURE targetProcedure;

ALLOCATE CURSOR
Use the ALLOCATE CURSOR statement in a calling SQL procedure to
open a result set returned from a target SQL procedure. To use the
ALLOCATE CURSOR statement, the result set must already be
associated with a result set locator through the ASSOCIATE RESULT
SET LOCATORS statement. Once the SQL procedure issues an
ALLOCATE CURSOR statement, you can fetch rows from the result
set using the cursor name declared in the ALLOCATE CURSOR
statement. To extend the previously described ASSOCIATE
LOCATORS example, the SQL procedure could fetch rows from the
first of the returned result sets using the following SQL:

Chapter 8. Writing SQL Procedures 251

DECLARE result1 RESULT_SET_LOCATOR VARYING;
DECLARE result2 RESULT_SET_LOCATOR VARYING;
DECLARE result3 RESULT_SET_LOCATOR VARYING;
CALL targetProcedure();
ASSOCIATE RESULT SET LOCATORS(result1, result2, result3)

WITH PROCEDURE targetProcedure;
ALLOCATE rsCur CURSOR FOR result1;
WHILE (at_end = 0) DO

SET total1 = total1 + var1;
SET total2 = total2 + var2;
FETCH FROM rsCur INTO var1, var2;

END WHILE;

Debugging SQL Procedures

After writing your SQL procedure, you must issue the CREATE PROCEDURE
statement as described in “Issuing CREATE PROCEDURE Statements” on
page 242. In certain situations, DB2 may return an error in response to your
CREATE PROCEDURE statement. To retrieve more information on the error
returned by DB2, including an explanation and suggestions for correcting the
error, issue the following command at the CLP:

db2 “? error-code”

where error-code represents the SQLCODE or SQLSTATE returned by the error.
For example, if your CREATE PROCEDURE statement returns an error with
SQLCODE “SQL0469N” (“Parameter mode is not valid”), issue the following
command:

db2 “? SQL0469”

DB2 returns the following message:
Explanation: One of the following errors occurred:

o a parameter in an SQL procedure is declared as OUT and is
used as input in the procedure body

o a parameter in an SQL procedure is declared as IN and is
modified in the procedure body.

User Response: Change the attribute of the parameter to INOUT,
or change the use of the parameter within the procedure.

Once you display the message, try modifying your SQL procedure following
the suggestions in the “User Response” section.

Displaying Error Messages for SQL Procedures
When you issue a CREATE PROCEDURE statement for an SQL procedure,
DB2 may accept the syntax of the SQL procedure body but fail to create the
SQL procedure at the precompile or compile stage. In these situations, DB2

252 Application Development Guide

normally creates a log file that contains the error messages. This log file, and
other intermediate files, are described in “Debugging SQL Procedures Using
Intermediate Files” on page 255.

To retrieve the error messages generated by DB2 and the C compiler for an
SQL procedure, display the message log file in the following directory on
your database server:

UNIX $DB2PATH/function/routine/sqlproc/$DATABASE/$SCHEMA/tmp

where $DB2PATH represents the location of the instance directory,
$DATABASE represents the database name, and $SCHEMA represents
the schema name used to create the SQL procedure.

Windows NT
%DB2PATH%\function\routine\sqlproc\%DB%\%SCHEMA%\tmp

where %DB2PATH% represents the location of the instance directory,
%DB% represents the database name, and %SCHEMA% represents
the schema name used to create the SQL procedure.

You can also issue a CALL statement in an application to call the sample
stored procedure db2udp!get_error_messages using the following syntax:

CALL db2udp!get_error_messages(schema-name, file-name, message-text)

where schema-name is an input parameter representing the schema of the SQL
procedure, file-name is an input parameter representing the generated file
name for the SQL procedure, and message-text is an output parameter that
returns the message text in the message log file.

For example, you could use the following Java application to display the error
messages for an SQL procedure:

public static String getErrorMessages(Connection con,
String procschema, String filename) throws Exception

{
String filecontents = null;
// prepare the CALL statement
CallableStatement stmt = null;
try
{

String sql = "Call db2udp!get_error_messages(?, ?, ?) ";
stmt = con.prepareCall (sql);

// set all parameters (input and output)
stmt.registerOutParameter(3, java.sql.Types.LONGVARCHAR);
stmt.setString(1, procschema);
stmt.setString(2, filename);

// call the stored procedure
boolean isrs = stmt.execute();
filecontents = stmt.getString(3);

Chapter 8. Writing SQL Procedures 253

System.out.println("SQL Procedure - getErrorMessages "
+ filecontents);

return filecontents;
}
catch (Exception e) { throw e; }
finally
{

if (stmt != null) stmt.close();
}

}

You could use the following C application to display the error messages for
an SQL procedure:
int getErrors(char inputSchema[9], char inputFilename[9],

char outputFilecontents[32000])
{

EXEC SQL BEGIN DECLARE SECTION;
char procschema[100] = "";
char filename[100] = "";
char filecontents[32000] = "";

EXEC SQL END DECLARE SECTION;

strcpy (procschema, inputSchema);
strcpy (filename, inputFilename);

EXEC SQL CALL "db2udp!get_error_messages"
(:procschema, :filename, :filecontents);

if (sqlca.sqlcode != 0)
{

printf("Call failed. Code: %d\n", sqlca.sqlcode);
return 1;

}
else
{

printf("\nSQL Procedure - getErrors:\n%s\n", filecontents);
}
strcpy (outputFilecontents, filecontents);
return 0;

}

Note: Before you can display the error messages for an SQL procedure that
DB2 failed to create, you must know both the procedure name and the
generated file name of the SQL procedure. If the procedure schema
name is not issued as part of the CREATE PROCEDURE statement,
DB2 uses the value of the CURRENT SCHEMA special register. To
display the value of the CURRENT SCHEMA special register, issue the
following statement at the CLP:

VALUES CURRENT SCHEMA

254 Application Development Guide

Debugging SQL Procedures Using Intermediate Files
When you issue a CREATE PROCEDURE statement for an SQL procedure,
and DB2 accepts the syntax of the SQL procedure body, DB2 uses a number of
intermediate files to create the SQL procedure. After DB2 successfully creates
an SQL procedure, it normally removes the intermediate files to conserve
system resources. If DB2 accepts the CREATE PROCEDURE syntax, but fails
to create an SQL procedure, it retains a log file that tracks the precompile,
bind, and compile stages of the CREATE PROCEDURE process.

On UNIX systems, DB2 uses the following base directory to keep intermediate
files: instance/function/routine/sqlproc/dbAlias/schema, where instance
represents the path of the DB2 instance, dbAlias represents the database alias,
and schema represents the schema with which the CREATE PROCEDURE
statement was issued.

On OS/2 and Windows 32-bit operating systems, DB2 uses the following base
directory to keep intermediate files:
instance\function\routine\sqlproc\dbAlias\schema, where instance represents
the path of the DB2 instance, dbAlias represents the database alias, and schema
represents the schema with which the CREATE PROCEDURE statement was
issued.

If the SQL procedure was created successfully, but does not return the
expected results from your CALL statements, you may want to examine the
intermediate files. To prevent DB2 from removing the intermediate files, set
the DB2_SQLROUTINE_KEEP_FILES DB2 registry variable to “yes” using the
following command:

db2set DB2_SQLROUTINE_KEEP_FILES=“yes”

Before DB2 can use the new value of the registry variable, you must restart
the database.

Examples of SQL Procedures

This section contains examples of how to use each of the statements that can
appear in an SQL procedure body. For these and other example SQL
procedures, including client applications that call the SQL procedures, refer to
the following directories:

UNIX operating systems
$HOME/sqllib/samples/sqlproc, where $HOME represents the
location of your DB2 instance directory

Windows 32-bit operating systems
%DRIVE%\sqllib\samples\sqlproc, where %DRIVE% represents the
drive on which you installed DB2

Chapter 8. Writing SQL Procedures 255

Example 1: CASE statement: The following SQL procedure demonstrates how to
use a CASE statement. The procedure receives the ID number and rating of an
employee as input parameters. The CASE statement modifies the salary and
bonus for the employee, using a different UPDATE statement for each of the
possible ratings.

CREATE PROCEDURE UPDATE_SALARY
(IN employee_number CHAR(6), IN rating INT)
LANGUAGE SQL
BEGIN

DECLARE not_found CONDITION FOR SQLSTATE '02000';
DECLARE EXIT HANDLER FOR not_found

SIGNAL SQLSTATE '02444';

CASE rating
WHEN 1 THEN

UPDATE employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;

WHEN 2 THEN
UPDATE employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = employee_number;

ELSE
UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;

END CASE;
END

Example 2: Compound statement with nested IF and WHILE statements: The
following example shows a compound statement that includes nested IF
statements, a WHILE statement, and assignment statements. The example also
shows how to declare SQL variables, cursors, and handlers for classes of error
codes.

The procedure receives a department number as an input parameter. A
WHILE statement in the procedure body fetches the salary and bonus for each
employee in the department. An IF statement within the WHILE statement
updates salaries for each employee depending on number of years of service
and current salary. When all employee records in the department have been
processed, the FETCH statement that retrieves employee records receives
SQLSTATE 20000. A not_found condition handler makes the search condition
for the WHILE statement false, so execution of the WHILE statement ends.

CREATE PROCEDURE BUMP_SALARY_IF (IN deptnumber SMALLINT)
LANGUAGE SQL
BEGIN

DECLARE v_salary DOUBLE;
DECLARE v_years SMALLINT;
DECLARE v_id SMALLINT;
DECLARE at_end INT DEFAULT 0;

256 Application Development Guide

DECLARE not_found CONDITION FOR SQLSTATE '02000';

-- CAST salary as DOUBLE because SQL procedures do not support DECIMAL
DECLARE C1 CURSOR FOR

SELECT id, CAST(salary AS DOUBLE), years
FROM staff;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN C1;
FETCH C1 INTO v_id, v_salary, v_years;
WHILE at_end = 0 DO

IF (v_salary < 2000 * v_years)
THEN UPDATE staff

SET salary = 2150 * v_years
WHERE id = v_id;

ELSEIF (v_salary < 5000 * v_years)
THEN IF (v_salary < 3000 * v_years)

THEN UPDATE staff
SET salary = 3000 * v_years
WHERE id = v_id;

ELSE UPDATE staff
SET salary = v_salary * 1.10
WHERE id = v_id;

END IF;
ELSE UPDATE staff

SET job = 'PREZ'
WHERE id = v_id;

END IF;
FETCH C1 INTO v_id, v_salary, v_years;

END WHILE;
CLOSE C1;

END

Example 3: Using Nested SQL Procedures with Global Temporary Tables and Result
Sets:

The following example shows how to use the ASSOCIATE RESULT SET
LOCATOR and ALLOCATE CURSOR statements to return a result set from
the called SQL procedure, temp_table_insert, to the calling SQL procedure,
temp_table_create. The example also shows how a called SQL procedure can
use a global temporary table that is created by a calling SQL procedure.

In the example, a client application or another SQL procedure calls
temp_table_create, which creates the global temporary table SESSION.TTT
and in turn calls temp_table_insert.

To use the SESSION.TTT global temporary table, temp_table_insert contains
a DECLARE GLOBAL TEMPORARY TABLE statement identical to the
statement that temp_table_create issues to create SESSION.TTT. The
difference is that temp_table_insert contains the DECLARE GLOBAL

Chapter 8. Writing SQL Procedures 257

TEMPORARY TABLE statement within an IF statement that is always false.
The IF statement prevents DB2 from attempting to create the global temporary
table for a second time, but enables the SQL procedure to use the global
temporary table in subsequent statements.

To return a result set from a global temporary table that was created by a
different SQL procedure, temp_table_insert must issue the DECLARE
CURSOR statement within a new scope. temp_table_insert issues the
DECLARE CURSOR and OPEN CURSOR statements within a compound SQL
block, which satisfies the requirement for a new scope. The cursor is not
closed before the SQL procedure exits, so DB2 passes the result set back to the
caller, temp_table_create.

To accept the result set from the called SQL procedure, temp_table_create
issues an ASSOCIATE RESULT SET LOCATOR statement that identifies
temp_table_insert as the originator of the result set. temp_table_create then
issues an ALLOCATE CURSOR statement for the result set locator to open the
result set. If the ALLOCATE CURSOR statement succeeds, the SQL procedure
can work with the result set as usual. In this example, temp_table_create
fetches every row from the result set, adding the values of the columns to its
output parameters.

Note: Before issuing a CREATE PROCEDURE statement for an SQL
procedure that uses global temporary tables, you must create a user
temporary tablespace. To create a user temporary tablespace, issue the
following SQL statement:

CREATE USER TEMPORARY TABLESPACE ts1
MANAGED BY SYSTEM USING (‘ts1file’);

where ts1 represents the name of the user temporary tablespace, and
ts1file represents the name of the container used by the tablespace.

CREATE PROCEDURE temp_table_create(IN parm1 INTEGER, IN parm2 INTEGER,
OUT parm3 INTEGER, OUT parm4 INTEGER)
LANGUAGE SQL
BEGIN

DECLARE loc1 RESULT_SET_LOCATOR VARYING;
DECLARE total3,total4 INTEGER DEFAULT 0;
DECLARE rcolumn1, rcolumn2 INTEGER DEFAULT 0;
DECLARE result_set_end INTEGER DEFAULT 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND, SQLEXCEPTION, SQLWARNING
BEGIN

SET result_set_end = 1;
END;
--Create the temporary table that is used in both this SQL procedure
--and in the SQL procedure called by this SQL procedure.
DECLARE GLOBAL TEMPORARY TABLE ttt(column1 INT, column2 INT)

NOT LOGGED;
--Insert rows into the temporary table.
--The result set includes these rows.

258 Application Development Guide

INSERT INTO session.ttt(column1, column2) VALUES (parm1+1, parm2+1);
INSERT INTO session.ttt(column1, column2) VALUES (parm1+2, parm2+2);
--Make a nested call to the 'temp_table_insert' SQL procedure.
CALL temp_table_insert(parm1, parm2);
--Issue the ASSOCIATE RESULT SET LOCATOR statement to
--accept a single result set from 'temp_table_insert'.
--If 'temp_table_insert' returns multiple result sets,
--you must declare one locator variable (for example,
--ASSOCIATE RESULT SET LOCATOR(loc1, loc2, loc3) for each result set.
ASSOCIATE RESULT SET LOCATOR(loc1) WITH PROCEDURE temp_table_insert;
--The ALLOCATE statement is similar to the OPEN statement.
--It makes the result set available in this SQL procedure.
ALLOCATE cursor1 CURSOR FOR RESULT SET loc1;
--Insert rows into the temporary table.
--The result set does not include these rows.
INSERT INTO session.ttt(column1, column2) VALUES (parm1+5, parm2+5);
INSERT INTO session.ttt(column1, column2) VALUES (parm1+6, parm2+6);
SET result_set_end = 0;
--Fetch the columns from the first row of the result set.
FETCH FROM cursor1 INTO rcolumn1, rcolumn2;
WHILE (result_set_end = 0) DO

SET total3 = total3 + rcolumn1;
SET total4 = total4 + rcolumn2;
--Fetch columns from the result set for the
--next iteration of the WHILE loop.
FETCH FROM cursor1 INTO rcolumn1, rcolumn2;

END WHILE;
CLOSE cursor1;
SET parm3 = total3;
SET parm4 = total4;

END @

CREATE PROCEDURE temp_table_insert (IN parm1 INTEGER, IN parm2 INTEGER)
LANGUAGE SQL
BEGIN

DECLARE result_set_end INTEGER DEFAULT 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND BEGIN

SET result_set_end = 1;
END;
--To use a temporary table that is created by a different stored
--procedure, include a DECLARE GLOBAL TEMPORARY TABLE statement
--inside a condition statement that always evaluates to false.
IF (1 = 0) THEN

DECLARE GLOBAL TEMPORARY TABLE ttt(column1 INT, column2 INT)
NOT LOGGED;

END IF;
--Insert rows into the temporary table.
--The result set includes these rows.
INSERT INTO session.ttt(column1, column2) VALUES (parm1+3, parm2+3);
INSERT INTO session.ttt(column1, column2) VALUES (parm1+4, parm2+4);
--To return a result set from the temporary table, issue
--the DECLARE CURSOR statement inside a new scope, such as
--a compound SQL statement (BEGIN...END block).
--Issue the DECLARE CURSOR statement after the DECLARE
--GLOBAL TEMPORARY TABLE statement.

Chapter 8. Writing SQL Procedures 259

BEGIN
--The WITH RETURN TO CALLER clause causes the SQL procedure
--to return its result set to the calling procedure.
DECLARE cur1 CURSOR WITH RETURN TO CALLER

FOR SELECT * FROM session.ttt;
--To return a result set, open a cursor without closing the cursor.
OPEN cur1 ;

END;
END

260 Application Development Guide

Chapter 9. IBM DB2 Stored Procedure Builder

What is Stored Procedure Builder? 261
Advantages of Using Stored Procedure
Builder 262

Creating New Stored Procedures. . . . 262

Working with Existing Stored Procedures 263
Creating Stored Procedure Builder
Projects 263
Debugging Stored Procedures 263

What is Stored Procedure Builder?

Stored Procedure Builder is a graphical application that supports the rapid
development of DB2 stored procedures. Using Stored Procedure Builder, you
can perform the following tasks:
v Create new stored procedures
v Build stored procedures on local and remote DB2 servers
v Modify and rebuild existing stored procedures
v Test and debug the execution of installed stored procedures

To create an application which has a stored procedure, Stored Procedure
Builder provides a single development environment that supports the entire
DB2 Universal Database family, including the OS/2, OS/390, OS/400, AIX,
HP-UX, Linux, Solaris Operating Environment, and Windows 32-bit operating
systems.

Supported Platforms for Stored Procedure Builder:

The Stored Procedure Builder is an optional component of the DB2
Application Development Client on AIX, Solaris** Operating Environment**,
and the Windows 32-bit operating systems.

You can use Stored Procedure Builder on your client to build and deploy Java
stored procedures and SQL procedures on DB2 Universal Database servers for
the following platforms:

Stored Procedure Language Supported DB2 UDB Platforms

Java OS/2, OS/390, AIX, HP-UX, Linux, Solaris
Operating Environment, and Windows 32-bit
operating systems

SQL OS/2, OS/390, OS/400, AIX, HP-UX, Linux,
Solaris Operating Environment, and Windows
32-bit operating systems

You can export SQL stored procedures and create Java stored procedures from
existing Java class files. To provide a comfortable development environment,

© Copyright IBM Corp. 1993, 2000 261

the Stored Procedure Builder code editor enables you to use vi or emacs key
bindings, in addition to the default key bindings.

Launching Stored Procedure Builder:

On Windows 32-bit operating systems, you can launch Stored Procedure
Builder from the DB2 Universal Database program group, issuing the db2spb
command from the command line, or from any of the following development
applications:
v Microsoft Visual C++ 5.0 and 6.0
v Microsoft Visual Basic 5.0 and 6.0
v IBM VisualAge for Java

On AIX and Solaris Operating Environment clients, you can launch Stored
Procedure Builder by issuing the db2spb command from the command line.

Stored Procedure Builder is implemented with Java and all database
connections are managed with Java Database Connectivity (JDBC). Using a
JDBC driver, you can connect to any local DB2 alias or any other database for
which you can specify a host, port, and database name.

Note: To use Stored Procedure Builder, you must be connected to a DB2
database for development. For more information about using Stored
Procedure Builder, refer to the IBM DB2 Stored Procedure Builder
online help.

Advantages of Using Stored Procedure Builder

Stored Procedure Builder provides an easy-to-use development environment
for creating, installing, and testing stored procedures, helping you to focus on
creating your stored procedure logic rather than the details of registering,
building, and installing stored procedures on a DB2 server. Stored Procedure
Builder helps you develop cross-platform applications by enabling you to
build a stored procedure on server platforms that differ from the platform on
which you develop the stored procedure.

Creating New Stored Procedures
Using Stored Procedure Builder greatly simplifies the process of creating and
installing stored procedures on a DB2 database server. The stored procedure
wizards and the SQL Assistant facilitate the development of stored
procedures.

In Stored Procedure Builder you can create highly portable stored procedures
written in Java or SQL. Using the stored procedure wizards, you create your
basic SQL structure and then use the source code editor to modify the stored
procedure to contain sophisticated stored procedure logic.

262 Application Development Guide

When creating a stored procedure, you can choose to return a single result set,
multiple result sets, or output parameters only. You might choose not to
return a result set when your stored procedure creates or updates database
tables. You can use the stored procedure wizards to define input and output
parameters for a stored procedure so that it receives values for host variables
from the client application. Additionally, you can create multiple SQL
statements in a stored procedure, allowing the stored procedure to receive a
case value and then to select one of a number of queries.

To build a stored procedure on a target database, simply click Finish in the
stored procedure wizards. You do not have to manually register the stored
procedure with DB2 by using the CREATE PROCEDURE statement.

Working with Existing Stored Procedures
After you successfully build a stored procedure on a database server, you are
ready to modify, rebuild, run, and test the procedure. By modifying a stored
procedure, you can add methods to the code to include sophisticated stored
procedure logic. When you open a stored procedure in Stored Procedure
Builder, the source code is displayed in the editor. The editor is language
sensitive for stored procedures written in Java or SQL.

Running a stored procedure from within Stored Procedure Builder allows you
to test the procedure to make sure that it is correctly installed. When you run
a stored procedure, it can return result sets based on test input parameter
values that you enter, depending on how you set up the stored procedure.
Testing stored procedures makes programming the client application easier
because you know that the stored procedure is correctly installed on the DB2
database server. You can then focus on writing and debugging the client
application

From the Project window in Stored Procedure Builder, you can also easily
drop a stored procedure or copy it to another database connection.

Creating Stored Procedure Builder Projects
When you open a new or existing Stored Procedure Builder project, the
Project window shows all the stored procedures that reside on the DB2
database to which you are connected. You can choose to filter stored
procedures to view the procedures based on their name or schema. A Stored
Procedure Builder project saves only connection information and stored
procedure objects that have not been successfully built to the database.

Debugging Stored Procedures
Using Stored Procedure Builder and the IBM Distributed Debugger (available
separately), you can remotely debug a stored procedure installed on a DB2
server. To debug a stored procedure, you build the stored procedure in debug
mode, add a debug entry for your client IP address, and run the stored

Chapter 9. IBM DB2 Stored Procedure Builder 263

procedure. You are not required to debug the stored procedures from within
an application program. You can separate testing your stored procedure from
testing the calling application program.

Using Stored Procedure Builder, you can view all the stored procedures that
you have the authority to change, add, or remove debug entries for in the
stored procedures debug table. If you are a database administrator or the
creator of the selected stored procedure, you can grant authorization to other
users to debug the stored procedure.

264 Application Development Guide

Part 4. Object-Relational Programming

© Copyright IBM Corp. 1993, 2000 265

266 Application Development Guide

Chapter 10. Using the Object-Relational Capabilities

Why Use the DB2 Object Extensions? . . . 267
Object-Relational Features of DB2 . . . 267

User-defined Distinct Types 269

Defining Behavior for Objects:
User-defined Routines 270

Why Use the DB2 Object Extensions?

One of the most important recent developments in modern programming
language technology is object-orientation. Object-orientation is the notion that
entities in the application domain can be modeled as independent objects that
are related to one another by means of classification. The external behavior
and characteristics of objects are externalized whereas the internal
implementation details of the object remain hidden. Object-orientation lets you
capture the similarities and differences among objects in your application
domain and group those objects together into related types. Objects of the
same type behave in the same way because they share the same set of
type-specific behaviors, reflecting the behavior of your objects in the
application domain.

The object extensions of DB2 enable you to realize many of the benefits of
object technology while building on the strengths of relational technology. In a
relational system, data types are used to describe the data in columns of
tables where the instances (or objects) of these data types are stored.
Operations on these instances are supported by means of operators or
functions that can be invoked anywhere that expressions are allowed.

With the object extensions of DB2, you can incorporate object-oriented (OO)
concepts and methodologies into your relational database.

Object-Relational Features of DB2
Some object-relational features that help you model your data in an
object-oriented fashion include the following:

Data types for very large objects
The data you may need to model in your system may be very large
and complex, such as text, audio, engineering data, or video. The
VARCHAR or VARGRAPHIC data types may not be large enough for
objects of this size. DB2 provides three data types to store these data
objects as strings of up to 2 gigabytes (GB) in size. The three data
types are: Binary Large Objects (BLOBs), single-byte Character Large
Objects (CLOBs), and Double-Byte Character Large Objects
(DBCLOBs).

© Copyright IBM Corp. 1993, 2000 267

User-defined data types
User-defined types let you control the semantics of your objects. For
example, your application might require a type called “text” or a type
called “address”. These types do not exist as built-in types. However,
with the object-relational features in DB2, you can define these types
and use them in your database.

User-defined types can be further classified in the following ways:

Distinct types
Distinct types are based on existing DB2 built-in data types;
that is, internally they are the same as built-in types, but you
can define the semantics for those types. DB2 also has built-in
types for storing and manipulating very large objects. Your
distinct type could be based on one of these large object (LOB)
data types, which you might want to use for something like
an audio or video stream.

Structured types
Structured types are a way to gather together a collection of
object attributes under a single type.

User-defined behaviors
You can write your own routines in SQL or an external language to
enable DB2 to operate on your objects. There are two types of
user-defined routines:

User-defined functions (UDFs)
UDFs are functions that you can define which, like built-in
functions or operators, support the manipulation of objects in
SQL queries. UDFs can be used to manipulate column values
of any type, not just user-defined types.

User-defined methods
Like UDFs, methods define behavior for objects, but they are
tightly encapsulated with a particular user-defined structured
type.

Index extensions
Index extensions enable you to specify how DB2 indexes structured
types and distinct types. To create an index extension, you must issue
a CREATE INDEX EXTENSION statement. The CREATE INDEX
EXTENSION statement specifies external table functions that convert
values of a structured type or distinct type into index keys and define
how DB2 searches through those index keys to optimize its
performance.

For information on writing table functions, see “Chapter 15. Writing
User-Defined Functions (UDFs) and Methods” on page 385. For more
information on using index extensions to improve the performance of

268 Application Development Guide

your applications that use structured types and distinct types, refer to
the Administration Guide. For more information on the CREATE
INDEX EXTENSION statement, refer to the SQL Reference.

Constraints
Constraints are rules that you define that the database enforces. There
are four types of constraints:

Unique
Ensures the unique values of a key in a table. Any changes to
the columns that compose the unique key are checked for
uniqueness.

Referential integrity
Enforces referential constraints on insert, update, and delete
operations. It is the state of a database in which all values of
all foreign keys are valid.

Table check
Verify that changed data does not violate conditions specified
when a table was created or altered.

Triggers
Triggers consist of SQL statements that are associated with a
table and are automatically activated when data change
operations occur on that table. You can use triggers to support
general forms of integrity such as business rules.

For more information about unique constraints, referential integrity,
and table check constraints, refer to the Administration Guide. For more
information on triggers, refer to “Chapter 16. Using Triggers in an
Active DBMS” on page 473.

Using object-oriented features in traditional applications
There is an important synergy among the object-oriented features of
DB2. The use of the DB2 object-oriented mechanisms is not restricted
to the support of object-oriented applications. Just as C++, a popular
object-oriented programming language, is used to implement all sorts
of non-object-oriented applications, the object-oriented mechanisms
provided by DB2 are also very useful to support all kinds of
non-object-oriented applications. The object-relational features of DB2
are general-purpose mechanisms that can be used to model any
database application. For this reason, these DB2 object extensions offer
extensive support for both non-traditional, that is, object-oriented
applications, in addition to improving support for traditional ones.

User-defined Distinct Types
Distinct types are based on existing built-in types. For example, you might
have distinct types to represent various currencies, such as USDollar and

Chapter 10. Using the Object-Relational Capabilities 269

Canadian_Dollar. Both of these types are represented internally (and in your
host language program) as the built-in type that you defined these currencies
on. For example, if you define both currencies as DECIMAL, they are
represented as decimal data types in the system.

Strong typing
Although you can have different distinct types based on the same
built-in type, distinct types have the property of strong typing. With
this property of strong typing, you cannot directly compare instances
of such types with anything other than another instance of that type.
This prevents such semantically nonsensical operations such as
directly adding USDollar and Canadian_Dollar without first going
through a conversion process. You define which types of operations
can occur for instances of a distinct type.

Type behavior
How do you define what operations are allowed on instances of
USDollar or Canadian_Dollar? Use user-defined functions to define
the allowable behaviors for instances of a distinct type. You can do
something as simple as allowing instances of USDollar to be added
together by registering a function that is really just the built-in
addition operation that takes USDollar as input. You do not have to
code an application to define this kind of function.

However, you may want to create a more complex function that can
take the USDollar type as input and convert that to the
Canadian_Dollar type. For more information about user-defined
functions, refer to “Chapter 14. User-Defined Functions (UDFs) and
Methods” on page 365.

You can implement integrity rules by using constraints.

Large objects
The objects you might model with distinct types might be very large.
DB2 also has new built-in types for storing and manipulating very
large objects. Your distinct type could be based on one of these large
object (LOB) data types, which you might want to use for something
like audio or video.

Defining Behavior for Objects: User-defined Routines
To define the behavior for your objects, you can use user-defined functions
(UDFs) and methods:

User-defined functions
UDFs are functions that you can define which, like built-in functions
or operators, support the manipulation of objects in SQL queries.
(UDFs can be used to manipulate column values of any type, not just
user-defined types.) Thus, instances of user-defined types (distinct or
structured) are stored in columns or rows of tables and manipulated

270 Application Development Guide

by UDFs in SQL queries. For example, you might define a function
AREA that takes an instance of the distinct type LENGTH and an
instance of the distinct type WIDTH, computes the area, and returns it
to the query:
SELECT ID, area(length, width) AS area
FROM Property
WHERE area > 10000;

Methods
Methods, like UDFs, define behavior for objects, but they differ from
functions in the following ways:
v Methods are tightly associated with a particular user-defined

structured type and are stored in the same schema as the
user-defined type.

v Methods can be invoked on user-defined structured types that are
stored as values in columns, or, using the dereference operator (->),
on scoped references to structured types.

v Methods are invoked using a different SQL syntax from that used
to invoke functions.

v DB2 resolves unqualified references to methods starting with the
type on which the method was invoked. If the type on which the
method was invoked does not define the method, DB2 tries to
resolve the method by calling the method on the supertype of the
type on which the method was invoked.

To invoke a method on a structured type stored in a column, include
the name of the structured type (or an expression that resolves to a
structured type), followed by the method invocation operator (..),
followed by the name of the method. To invoke a method on a scoped
reference of a structured type, include the reference to the structured
type using the dereference operator (->), followed by the method
invocation operator, followed by the name of the method.

For more information about the object-relational features of DB2, refer to:
v “Chapter 12. Working with Complex Objects: User-Defined Structured

Types” on page 283
v “Chapter 11. User-defined Distinct Types” on page 273
v “Chapter 13. Using Large Objects (LOBs)” on page 341
v “Chapter 14. User-Defined Functions (UDFs) and Methods” on page 365
v “Chapter 15. Writing User-Defined Functions (UDFs) and Methods” on

page 385
v “Chapter 16. Using Triggers in an Active DBMS” on page 473

Chapter 10. Using the Object-Relational Capabilities 271

272 Application Development Guide

Chapter 11. User-defined Distinct Types

Why Use Distinct Types? 273
Defining a Distinct Type 274
Resolving Unqualified Distinct Types . . . 274
Examples of Using CREATE DISTINCT
TYPE 275

Example: Money 275
Example: Job Application 275

Defining Tables with Distinct Types 275
Example: Sales 275
Example: Application Forms 276

Manipulating Distinct Types 277
Examples of Manipulating Distinct Types 277

Example: Comparisons Between Distinct
Types and Constants 277

Example: Casting Between Distinct Types 278
Example: Comparisons Involving Distinct
Types 279
Example: Sourced UDFs Involving
Distinct Types 280
Example: Assignments Involving Distinct
Types 280
Example: Assignments in Dynamic SQL 280
Example: Assignments Involving Different
Distinct Types 281
Example: Use of Distinct Types in
UNION 282

Why Use Distinct Types?

You can use data types that you have created, called user-defined distinct types,
in your DB2 applications. There are several benefits associated with distinct
types:
1. Extensibility.

By defining new types, you can increase the set of types provided by DB2
to support your applications.

2. Flexibility.
You can specify any semantics and behavior for your new type by using
user-defined functions (UDFs) to augment the diversity of the types
available in the system. For more information on UDFs, see “Chapter 14.
User-Defined Functions (UDFs) and Methods” on page 365.

3. Consistent behavior.
Strong typing insures that your distinct types will behave appropriately. It
guarantees that only functions defined on your distinct type can be
applied to instances of the distinct type.

4. Encapsulation.
The set of functions and operators that you can apply to distinct types
defines the behavior of your distinct types. This provides flexibility in the
implementation since running applications do not depend on the internal
representation that you choose for your type.

5. Performance.
Distinct types are highly integrated into the database manager. Because
distinct types are internally represented the same way as built-in data

© Copyright IBM Corp. 1993, 2000 273

types, they share the same efficient code used to implement built-in
functions, comparison operators, indexes, etc. for built-in data types.

Defining a Distinct Type

Distinct types, like other objects such as tables, indexes, and UDFs, need to be
defined with a CREATE statement.

Use the CREATE DISTINCT TYPE statement to define your new distinct type.
Detailed explanations for the statement syntax and all its options are found in
the SQL Reference.

For the CREATE DISTINCT TYPE statement, note that:
1. The name of the new distinct type can be a qualified or an unqualified

name. If it is qualified by a schema different from the authorization ID of
the statement, you must have DBADM authority on the database.

2. The source type of the distinct type is the type used by DB2 to internally
represent the distinct type. For this reason, it must be a built-in data type.
Previously defined distinct types cannot be used as source types of other
distinct types.

3. The WITH COMPARISONS clause is used to tell DB2 that functions to
support the comparison operations on instances of the distinct type should
be generated by DB2. This clause is required if comparison operations are
supported on the source type (for example, INTEGER and DATE) and is
prohibited if comparison operations are not supported (for example,
LONG VARCHAR and BLOB).

Note: As part of a distinct type definition, DB2 always generates cast
functions to:

v Cast from the distinct type to the source type, using the standard name of
the source type. For example, if you create a distinct type based on FLOAT,
the cast function called DOUBLE is created.

v Cast from the source type to the distinct type. Refer to the SQL Reference for
a discussion of when additional casts to the distinct types are generated.

These functions are important for the manipulation of distinct types in
queries.

Resolving Unqualified Distinct Types

The function path is used to resolve any references to an unqualified type
name or function, except if the type name or function is
v Created
v Dropped
v Commented on.

274 Application Development Guide

For information on how unqualified function references are resolved, see
“Using Qualified Function Reference” on page 379.

Examples of Using CREATE DISTINCT TYPE

The following are examples of using CREATE DISTINCT TYPE:

Example: Money
Suppose you are writing applications that need to handle different currencies
and wish to ensure that DB2 does not allow these currencies to be compared
or manipulated directly with one another in queries. Remember that
conversions are necessary whenever you want to compare values of different
currencies. So you define as many distinct types as you need; one for each
currency that you may need to represent:

CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL (9,2) WITH COMPARISONS
CREATE DISTINCT TYPE CANADIAN_DOLLAR AS DECIMAL (9,2) WITH COMPARISONS
CREATE DISTINCT TYPE EURO AS DECIMAL (9,2) WITH COMPARISONS

Note that you have to specify WITH COMPARISONS since comparison
operators are supported on DECIMAL (9,2).

Example: Job Application
Suppose you would like to keep the form filled by applicants to your
company in a DB2 table and you are going to use functions to extract the
information from these forms. Because these functions cannot be applied to
regular character strings (because they are certainly not able to find the
information they are supposed to return), you define a distinct type to
represent the filled forms:

CREATE DISTINCT TYPE PERSONAL.APPLICATION_FORM AS CLOB(32K)

Because DB2 does not support comparisons on CLOBs, you do not specify the
clause WITH COMPARISONS. You have specified a schema name different
from your authorization ID since you have DBADM authority, and you would
like to keep all distinct types and UDFs dealing with applicant forms in the
same schema.

Defining Tables with Distinct Types

After you have defined several distinct types, you can start defining tables
with columns whose types are distinct types. Following are examples using
CREATE TABLE:

Example: Sales
Suppose you want to define tables to keep your company’s sales in different
countries as follows:

Chapter 11. User-defined Distinct Types 275

CREATE TABLE US_SALES
(PRODUCT_ITEM INTEGER,
MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),
YEAR INTEGER CHECK (YEAR > 1985),
TOTAL US_DOLLAR)

CREATE TABLE CANADIAN_SALES
(PRODUCT_ITEM INTEGER,
MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),
YEAR INTEGER CHECK (YEAR > 1985),
TOTAL CANADIAN_DOLLAR)

CREATE TABLE GERMAN_SALES
(PRODUCT_ITEM INTEGER,
MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),
YEAR INTEGER CHECK (YEAR > 1985),
TOTAL EURO)

The distinct types in the above examples are created using the same CREATE
DISTINCT TYPE statements in “Example: Money” on page 275. Note that the
above examples use check constraints. For information on check constraints
refer to the SQL Reference.

Example: Application Forms
Suppose you need to define a table where you keep the forms filled out by
applicants as follows:

CREATE TABLE APPLICATIONS
(ID SYSIBM.INTEGER,
NAME VARCHAR (30),
APPLICATION_DATE SYSIBM.DATE,
FORM PERSONAL.APPLICATION_FORM)

You have fully qualified the distinct type name because its qualifier is not the
same as your authorization ID and you have not changed the default function
path. Remember that whenever type and function names are not fully
qualified, DB2 searches through the schemas listed in the current function
path and looks for a type or function name matching the given unqualified
name. Because SYSIBM is always considered (if it has been omitted) in the
current function path, you can omit the qualification of built-in data types.
For example, you can execute SET CURRENT FUNCTION PATH = cheryl and the
value of the current function path special register will be "CHERYL", and does
not include "SYSIBM". Now, if CHERYL.INTEGER type is not defined, the
statement CREATE TABLE FOO(COL1 INTEGER) still succeeds because SYSIBM is
always considered as COL1 is of type SYSIBM.INTEGER.

You are, however, allowed to fully qualify the built-in data types if you wish
to do so. Details about the use of the current function path are discussed in
the SQL Reference.

276 Application Development Guide

Manipulating Distinct Types

One of the most important concepts associated with distinct types is strong
typing. Strong typing guarantees that only functions and operators defined on
the distinct type can be applied to its instances.

Strong typing is important to ensure that the instances of your distinct types
are correct. For example, if you have defined a function to convert US dollars
to Canadian dollars according to the current exchange rate, you do not want
this same function to be used to convert euros to Canadian dollars because it
will certainly return the wrong amount.

As a consequence of strong typing, DB2 does not allow you to write queries
that compare, for example, distinct type instances with instances of the source
type of the distinct type. For the same reason, DB2 will not let you apply
functions defined on other types to distinct types. If you want to compare
instances of distinct types with instances of another type, you have to cast the
instances of one or the other type. In the same sense, you have to cast the
distinct type instance to the type of the parameter of a function that is not
defined on a distinct type if you want to apply this function to a distinct type
instance.

Examples of Manipulating Distinct Types

The following are examples of manipulating distinct types:
v Example: Comparisons Between Distinct Types and Constants
v Example: Casting Between Distinct Types
v Example: Comparisons Involving Distinct Types
v Example: Sourced UDFs Involving Distinct Types
v Example: Assignments Involving Distinct Types
v Example: Assignments in Dynamic SQL
v Example: Assignments Involving Different Distinct Types
v Example: Use of Distinct Types in UNION

Example: Comparisons Between Distinct Types and Constants
Suppose you want to know which products sold more than US $100 000.00 in
the US in the month of July, 1999 (7/99).

SELECT PRODUCT_ITEM
FROM US_SALES
WHERE TOTAL > US_DOLLAR (100000)
AND month = 7
AND year = 1999

Because you cannot compare US dollars with instances of the source type of
US dollars (that is, DECIMAL) directly, you have used the cast function
provided by DB2 to cast from DECIMAL to US dollars. You can also use the
other cast function provided by DB2 (that is, the one to cast from US dollars

Chapter 11. User-defined Distinct Types 277

to DECIMAL) and cast the column total to DECIMAL. Either way you decide
to cast, from or to the distinct type, you can use the cast specification notation
to perform the casting, or the functional notation. That is, you could have
written the above query as:

SELECT PRODUCT_ITEM
FROM US_SALES
WHERE TOTAL > CAST (100000 AS us_dollar)
AND MONTH = 7
AND YEAR = 1999

Example: Casting Between Distinct Types
Suppose you want to define a UDF that converts Canadian dollars to U.S.
dollars. Suppose you can obtain the current exchange rate from a file
managed outside of DB2. You would then define a UDF that obtains a value
in Canadian dollars, accesses the exchange rate file, and returns the
corresponding amount in U.S. dollars.

At first glance, such a UDF may appear easy to write. However, C does not
support DECIMAL values. The distinct types representing different currencies
have been defined as DECIMAL. Your UDF will need to receive and return
DOUBLE values, since this is the only data type provided by C that allows
the representation of a DECIMAL value without losing the decimal precision.
Thus, your UDF should be defined as follows:

CREATE FUNCTION CDN_TO_US_DOUBLE(DOUBLE) RETURNS DOUBLE
EXTERNAL NAME '/u/finance/funcdir/currencies!cdn2us'
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
NOT DETERMINISTIC
NO EXTERNAL ACTION
FENCED

The exchange rate between Canadian and U.S. dollars may change between
two invocations of the UDF, so you declare it as NOT DETERMINISTIC.

The question now is, how do you pass Canadian dollars to this UDF and get
U.S. dollars from it? The Canadian dollars must be cast to DECIMAL values.
The DECIMAL values must be cast to DOUBLE. You also need to have the
returned DOUBLE value cast to DECIMAL and the DECIMAL value cast to
U.S. dollars.

Such casts are performed automatically by DB2 anytime you define sourced
UDFs, whose parameter and return type do not exactly match the parameter
and return type of the source function. Therefore, you need to define two
sourced UDFs. The first brings the DOUBLE values to a DECIMAL
representation. The second brings the DECIMAL values to the distinct type.
That is, you define the following:

278 Application Development Guide

CREATE FUNCTION CDN_TO_US_DEC (DECIMAL(9,2)) RETURNS DECIMAL(9,2)
SOURCE CDN_TO_US_DOUBLE (DOUBLE)

CREATE FUNCTION US_DOLLAR (CANADIAN_DOLLAR) RETURNS US_DOLLAR
SOURCE CDN_TO_US_DEC (DECIMAL())

Note that an invocation of the US_DOLLAR function as in US_DOLLAR(C1), where
C1 is a column whose type is Canadian dollars, has the same effect as
invoking:

US_DOLLAR (DECIMAL(CDN_TO_US_DOUBLE (DOUBLE (DECIMAL (C1)))))

That is, C1 (in Canadian dollars) is cast to decimal which in turn is cast to a
double value that is passed to the CDN_TO_US_DOUBLE function. This function
accesses the exchange rate file and returns a double value (representing the
amount in U.S. dollars) that is cast to decimal, and then to U.S. dollars.

A function to convert euros to U.S. dollars would be similar to the example
above:

CREATE FUNCTION EURO_TO_US_DOUBL(DOUBLE)
RETURNS DOUBLE
EXTERNAL NAME '/u/finance/funcdir/currencies!euro2us'
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
NOT DETERMINISTIC
NO EXTERNAL ACTION
FENCED

CREATE FUNCTION EURO_TO_US_DEC (DECIMAL(9,2))
RETURNS DECIMAL(9,2)
SOURCE EURO_TO_US_DOUBL (DOUBLE)

CREATE FUNCTION US_DOLLAR(EURO) RETURNS US_DOLLAR
SOURCE EURO_TO_US_DEC (DECIMAL())

Example: Comparisons Involving Distinct Types
Suppose you want to know which products sold more in the US than in
Canada and Germany for the month of July, 1999 (7/1999):

SELECT US.PRODUCT_ITEM, US.TOTAL
FROM US_SALES AS US, CANADIAN_SALES AS CDN, GERMAN_SALES AS GERMAN
WHERE US.PRODUCT_ITEM = CDN.PRODUCT_ITEM
AND US.PRODUCT_ITEM = GERMAN.PRODUCT_ITEM
AND US.TOTAL > US_DOLLAR (CDN.TOTAL)
AND US.TOTAL > US_DOLLAR (GERMAN.TOTAL)
AND US.MONTH = 7
AND US.YEAR = 1999
AND CDN.MONTH = 7
AND CDN.YEAR = 1999
AND GERMAN.MONTH = 7
AND GERMAN.YEAR = 1999

Chapter 11. User-defined Distinct Types 279

Because you cannot directly compare US dollars with Canadian dollars or
euros, you use the UDF to cast the amount in Canadian dollars to US dollars,
and the UDF to cast the amount in euros to US dollars. You cannot cast them
all to DECIMAL and compare the converted DECIMAL values because the
amounts are not monetarily comparable. That is, the amounts are not in the
same currency.

Example: Sourced UDFs Involving Distinct Types
Suppose you have defined a sourced UDF on the built-in SUM function to
support SUM on euros:

CREATE FUNCTION SUM (EUROS)
RETURNS EUROS
SOURCE SYSIBM.SUM (DECIMAL())

You want to know the total of sales in Germany for each product in the year
of 1994. You would like to obtain the total sales in US dollars:

SELECT PRODUCT_ITEM, US_DOLLAR (SUM (TOTAL))
FROM GERMAN_SALES
WHERE YEAR = 1994
GROUP BY PRODUCT_ITEM

You could not write SUM (us_dollar (total)), unless you had defined a SUM
function on US dollar in a manner similar to the above.

Example: Assignments Involving Distinct Types
Suppose you want to store the form filled by a new applicant into the
database. You have defined a host variable containing the character string
value used to represent the filled form:

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS CLOB(32K) hv_form;

EXEC SQL END DECLARE SECTION;

/* Code to fill hv_form */

INSERT INTO APPLICATIONS
VALUES (134523, 'Peter Holland', CURRENT DATE, :hv_form)

You do not explicitly invoke the cast function to convert the character string
to the distinct type personal.application_form because DB2 lets you assign
instances of the source type of a distinct type to targets having that distinct
type.

Example: Assignments in Dynamic SQL
If you want to use the same statement given in “Example: Assignments
Involving Distinct Types” in dynamic SQL, you can use parameter markers as
follows:

280 Application Development Guide

EXEC SQL BEGIN DECLARE SECTION;
long id;
char name[30];
SQL TYPE IS CLOB(32K) form;
char command[80];

EXEC SQL END DECLARE SECTION;

/* Code to fill host variables */

strcpy(command,"INSERT INTO APPLICATIONS VALUES");
strcat(command,"(?, ?, CURRENT DATE, CAST (? AS CLOB(32K)))");

EXEC SQL PREPARE APP_INSERT FROM :command;
EXEC SQL EXECUTE APP_INSERT USING :id, :name, :form;

You made use of DB2’s cast specification to tell DB2 that the type of the
parameter marker is CLOB(32K), a type that is assignable to the distinct type
column. Remember that you cannot declare a host variable of a distinct type
type, since host languages do not support distinct types. Therefore, you
cannot specify that the type of a parameter marker is a distinct type.

Example: Assignments Involving Different Distinct Types
Suppose you have defined two sourced UDFs on the built-in SUM function to
support SUM on US and Canadian dollars, similar to the UDF sourced on
euros in “Example: Sourced UDFs Involving Distinct Types” on page 280:

CREATE FUNCTION SUM (CANADIAN_DOLLAR)
RETURNS CANADIAN_DOLLAR
SOURCE SYSIBM.SUM (DECIMAL())

CREATE FUNCTION SUM (US_DOLLAR)
RETURNS US_DOLLAR
SOURCE SYSIBM.SUM (DECIMAL())

Now suppose your supervisor requests that you maintain the annual total
sales in US dollars of each product and in each country, in separate tables:

CREATE TABLE US_SALES_94
(PRODUCT_ITEM INTEGER,
TOTAL US_DOLLAR)

CREATE TABLE GERMAN_SALES_94
(PRODUCT_ITEM INTEGER,
TOTAL US_DOLLAR)

CREATE TABLE CANADIAN_SALES_94
(PRODUCT_ITEM INTEGER,
TOTAL US_DOLLAR)

INSERT INTO US_SALES_94
SELECT PRODUCT_ITEM, SUM (TOTAL)
FROM US_SALES

Chapter 11. User-defined Distinct Types 281

WHERE YEAR = 1994
GROUP BY PRODUCT_ITEM

INSERT INTO GERMAN_SALES_94
SELECT PRODUCT_ITEM, US_DOLLAR (SUM (TOTAL))
FROM GERMAN_SALES
WHERE YEAR = 1994
GROUP BY PRODUCT_ITEM

INSERT INTO CANADIAN_SALES_94
SELECT PRODUCT_ITEM, US_DOLLAR (SUM (TOTAL))
FROM CANADIAN_SALES
WHERE YEAR = 1994
GROUP BY PRODUCT_ITEM

You explicitly cast the amounts in Canadian dollars and euros to US dollars
since different distinct types are not directly assignable to each other. You
cannot use the cast specification syntax because distinct types can only be cast
to their own source type.

Example: Use of Distinct Types in UNION
Suppose you would like to provide your American users with a view
containing all the sales of every product of your company:

CREATE VIEW ALL_SALES AS
SELECT PRODUCT_ITEM, MONTH, YEAR, TOTAL
FROM US_SALES
UNION
SELECT PRODUCT_ITEM, MONTH, YEAR, US_DOLLAR (TOTAL)
FROM CANADIAN_SALES
UNION
SELECT PRODUCT_ITEM, MONTH, YEAR, US_DOLLAR (TOTAL)
FROM GERMAN_SALES

You cast Canadian dollars to US dollars and euros to US dollars because
distinct types are union compatible only with the same distinct type. Note
that you have to use the functional notation to cast between distinct types
since the cast specification only lets you cast between distinct types and their
source types.

282 Application Development Guide

Chapter 12. Working with Complex Objects: User-Defined
Structured Types

Structured Types Overview 284
Creating a Structured Type Hierarchy . . 285

Reference Types and Their
Representation Types 287
Casting and Comparing Reference
Types 288
Other System-Generated Routines . . 288
Defining Behavior for Types 290

Storing Objects in Typed Tables 291
Defining Relationships Between
Objects in Typed Tables 292

Storing Objects in Columns 293
Additional Properties of Structured Types 295

Using Structured Types in Typed Tables . . 296
Creating a Typed Table 296

Defining the Type of the Table . . . 296
Naming the Object Identifier 296
Specifying the Position in the Table
Hierarchy 297
Indicating that SELECT Privileges are
Inherited 297
Defining Column Options 298
Defining the Scope of a Reference
Column 298

Populating a Typed Table 298
Using Reference Types 300
Comparing Reference Types 300

Using References to Define Semantic
Relationships 301
Differences Between Referential
Integrity and Scoped References . . . 303

Creating a Typed View 303
Dropping a User-Defined Type (UDT) or
Type Mapping 305
Altering or Dropping a View 306
Querying a Typed Table. 306
Queries that Dereference References . . 307

DEREF Built-in Function 308
Other Type-related Built-in Functions 308

Additional Query Specification
Techniques 309

Returning Objects of a Particular Type
Using ONLY 309

Restricting Returned Types Using a
TYPE Predicate 309
Returning All Possible Attributes
Using OUTER 310

Additional Hints and Tips 311
Defining System-generated Object
Identifiers 311
Creating Constraints on Object
Identifier Columns 312

Creating and Using Structured Types as
Column Types 313

Inserting Structured Type Instances into a
Column 313
Defining Tables with Structured Type
Columns 314
Defining Types with Structured Type
Attributes 314
Inserting Rows that Contain Structured
Type Values 314
Retrieving and Modifying Structured
Type Values 316

Retrieving Attributes 316
Accessing the Attributes of Subtypes 316
Modifying Attributes. 317
Returning Information About the Type 318

Associating Transforms with a Type. . . 318
Recommendations for Naming
Transform Groups 319

Where Transform Groups Must Be
Specified 320

Specifying Transform Groups for
External Routines 320
Setting the Transform Group for
Dynamic SQL 321
Setting the Transform Group for Static
SQL 321

Creating the Mapping to the Host
Language Program: Transform Functions . 321

Exchanging Objects with External
Routines: Function Transforms . . . 322
Transform Function Summary. . . . 332
Retrieving Subtype Data from DB2
(Bind Out) 332

© Copyright IBM Corp. 1993, 2000 283

Returning Subtype Data to DB2 (Bind
In) 336

Working with Structured Type Host
Variables 340

Declaring Structured Type Host
Variables 340
Describing a Structured Type 340

Structured Types Overview

Structured types are useful for modelling objects that have a well-defined
structure consisting of attributes. Attributes are properties that describe an
instance of a type. A geometric shape, for example, might have as attributes
its list of Cartesian coordinates. A person might have attributes of name,
address, and so on. A department might have a name or some other kind of
ID.

To create a type, you must specify the name of the type, its attribute names
and their data types, and, optionally, how you want the reference type for this
type to be represented in the system. Here is the SQL to create the
BusinessUnit_t type:

CREATE TYPE BusinessUnit_t AS
(Name VARCHAR(20),
Headcount INT)
REF USING INT
MODE DB2SQL;

The AS clause provides the attribute definitions associated with the type.
BusinessUnit_t is a type with two attributes: Name and Headcount. To create a
structured type, you must include the MODE DB2SQL clause in the CREATE
TYPE statement. For more information on the REF USING clause, see
“Reference Types and Their Representation Types” on page 287.

Structured types offer two major extensions beyond traditional relational data
types: the property of inheritance, and the capability of storing instances of a
structured type either as rows in a table, or as values in a column. The
following section briefly describes these features:

Inheritance
It is certainly possible to model objects such as people using
traditional relational tables and columns. However, structured types
offer an additional property of inheritance. That is, a structured type
can have subtypes that reuse all of its attributes and contain additional
attributes specific to the subtype. For example, the structured type
Person_t might contain attributes for Name, Age, and Address. A
subtype of Person_t might be Employee_t, that contains all of the
attributes Name, Age, and Address and in addition contains attributes
for SerialNum, Salary, and BusinessUnit.

284 Application Development Guide

Storing instances of structured type
A structured type instance can be stored in the database in two ways:
v As a row in a table, in which each column of the table is an

attribute of the instance of the type. To store objects as rows in a
table, the table is defined with the structured type, rather than by
specifying individual columns in the table definition:

CREATE TABLE Person OF Person_t
...

Each column in the table derives its name and data type from one
of the attributes of the indicated structured type. Such tables are
known as typed tables.

v As a value in a column. To store objects in table columns, the
column is defined using the structured type as its type. The
following statement creates a Properties table that has a structured
type Address that is of the Address_t structured type:

CREATE TABLE Properties
(ParcelNum INT,
Photo BLOB(2K),
Address Address_t)
...

Creating a Structured Type Hierarchy
A structured type may be created under another structured type, in which case
the newly created type is a subtype of the original structured type. The
original type is the supertype. The subtype inherits all the attributes of the
supertype, and can optionally have additional attributes of its own.

For example, a data model may need to represent a special type of employee
called a manager. Managers have more attributes than employees who are not
managers. The Manager_t type inherits the attributes defined for an employee,
but also is defined with some additional attributes of its own, such as a
special bonus attribute that is only available to managers. The type hierarchies
used for examples in this book are shown in Figure 8 on page 286. The type

Employee_t (SerialNum, Salary, Dept)Name, Age, Address,

Person_t (Name, Age, Address)

Figure 7. Structured type Employee_t inherits from Person_t

Chapter 12. Working with Complex Objects: User-Defined Structured Types 285

hierarchy for Address_t is defined in “Inserting Structured Type Instances into
a Column” on page 313.

In Figure 8, the person type Person_t is the root type of the hierarchy. Person_t
is also the supertype of the types below it--in this case, the type named
Employee_t and the type named Student_t. The relationships among subtypes
and supertypes are transitive; in other words, the relationship between
subtype and supertype exists throughout the entire type hierarchy. So,
Person_t is also a supertype of types Manager_t and Architect_t.

Type BusinessUnit_t, defined in “Structured Types Overview” on page 284,
has no subtypes. Type Address_t, defined in “Inserting Structured Type
Instances into a Column” on page 313, has the following subtypes:
Germany_addr_t, Brazil_addr_t, and US_addr_t.

The CREATE TYPE statement for type Person_t declares that Person_t is
INSTANTIABLE. For more information on declaring structured types using
the INSTANTIABLE or NOT INSTANTIABLE clauses, see “Additional
Properties of Structured Types” on page 295.

The following SQL statements create the Person_t type hierarchy:
CREATE TYPE Person_t AS

(Name VARCHAR(20),
Age INT,
Address Address_t)
INSTANTIABLE
REF USING VARCHAR(13) FOR BIT DATA
MODE DB2SQL;

CREATE TYPE Employee_t UNDER Person_t AS
(SerialNum INT,
Salary DECIMAL (9,2),
Dept REF(BusinessUnit_t))
MODE DB2SQL;

Person_t

BusinessUnit_t

Employee_t

Manager_t

Student_t

Architect_t

Figure 8. Type hierarchies (BusinessUnit_t and Person_t)

286 Application Development Guide

CREATE TYPE Student_t UNDER Person_t AS
(SerialNum CHAR(6),
GPA DOUBLE)
MODE DB2SQL;

CREATE TYPE Manager_t UNDER Employee_t AS
(Bonus DECIMAL (7,2))
MODE DB2SQL;

CREATE TYPE Architect_t UNDER Employee_t AS
(StockOption INTEGER)
MODE DB2SQL;

Person_t has three attributes: Name, Age and Address. Its two subtypes,
Employee_t and Student_t, each inherit the attributes of Person_t and also
have several additional attributes that are specific to their particular types. For
example, although both employees and students have serial numbers, the
format used for student serial numbers is different from the format used for
employee serial numbers.

Note: A typed table created from the Person_t type includes the column
Address of structured type Address_t. As with any structured type
column, you must define transform functions for the structured type of
that column. For information on defining transform functions, see
“Creating the Mapping to the Host Language Program: Transform
Functions” on page 321.

Finally, Manager_t and Architect_t are both subtypes of Employee_t; they
inherit all the attributes of Employee_t and extend them further as appropriate
for their types. Thus, an instance of type Manager_t will have a total of seven
attributes: Name, Age, Address, SerialNum, Salary, Dept, and Bonus.

Reference Types and Their Representation Types
For every structured type you create, DB2 automatically creates a companion
type. The companion type is called a reference type and the structured type to
which it refers is called a referenced type. Typed tables can make special use of
the reference type, as described in “Using Structured Types in Typed Tables”
on page 296. You can also use reference types in SQL statements like other
user-defined types. To use a reference type in an SQL statement, use
REF(type-name), where type-name represents the referenced type.

DB2 uses the reference type as the type of the object identifier column in
typed tables. The object identifier uniquely identifies a row object in the typed
table hierarchy. DB2 also uses reference types to store references to rows in
typed tables. You can use reference types to refer to each row object in the
table. For more information about using references, see “Using Reference
Types” on page 300. For more information on typed tables, see “Storing
Objects in Typed Tables” on page 291.

Chapter 12. Working with Complex Objects: User-Defined Structured Types 287

References are strongly typed. Therefore, you must have a way to use the
type in expressions. When you create the root type of a type hierarchy, you
can specify the base type for a reference with the REF USING clause of the
CREATE TYPE statement. The base type for a reference is called the
representation type. If you do not specify the representation type with the REF
USING clause, DB2 uses the default data type of VARCHAR(16) FOR BIT
DATA. The representation type of the root type is inherited by all its subtypes.
The REF USING clause is only valid when you define the root type of a
hierarchy. In the examples used throughout this section, the representation
type for the BusinessUnit_t type is INTEGER, while the representation type
for Person_t is VARCHAR(13).

Casting and Comparing Reference Types
DB2 automatically creates functions that cast values between the reference
type and its representation type, in both directions. The CREATE TYPE
statement has an optional CAST WITH clause, described in the SQL Reference,
that allows you to choose the names of these two cast functions. By default,
the names of the cast functions are the same as the names of the structured
type and its reference representation type. For example, the CREATE TYPE
Person_t statement from “Creating a Structured Type Hierarchy” on page 285
automatically creates the following functions:

CREATE FUNCTION VARCHAR(REF(Person_t))
RETURNS VARCHAR

DB2 also creates the function that does the inverse operation:
CREATE FUNCTION Person_t(VARCHAR(13))

RETURNS REF(Person_t)

You will use these cast functions whenever you need to insert a new value
into the typed table or when you want to compare a reference value to
another value.

DB2 also creates functions that let you compare reference types using the
following comparison operators: =, <>, <, <=, >, and >=. For more information
on comparison operators for reference types, refer to the SQL Reference.

Other System-Generated Routines
Every structured type that you create causes DB2 to implicitly create a set of
functions and methods that you can use to construct, observe, or modify a
structured type value. This means, for instance, that for type Person_t, DB2
automatically creates the following functions and methods when you create
the type:

Constructor function
A function of the same name as the type is created. This function has
no parameters and returns an instance of the type with all of its

288 Application Development Guide

attributes set to null. The function that is created for Person_t, for
example, is as if the following statement were executed:

CREATE FUNCTION Person_t () RETURNS Person_t

For the subtype Manager_t, a constructor function is created as if the
following statement had been executed:

CREATE FUNCTION Manager_t () RETURNS Manager_t

To construct an instance of a type to insert into a column, use the
constructor function with the mutator methods. If the type is stored in
a table, rather than a column, you do not have to use the constructor
function with the mutator methods to insert an instance of a type. For
more information on inserting data into typed tables, see “Inserting
Rows that Contain Structured Type Values” on page 314.

Mutator methods
A mutator method exists for each attribute of an object. The instance
of a type on which a method is invoked is called the subject instance
of the method. When the mutator method invoked on a subject
instance receives a new value for an attribute, the method returns a
new instance with the attribute updated to the new value. So, for type
Person_t, DB2 creates mutator methods for each of the following
attributes: name, age, and address.

The mutator method DB2 creates for attribute age, for example, is as if
the following statement had been executed:

ALTER TYPE Person_t
ADD METHOD AGE(int)
RETURNS Person_t;

For more information on mutating objects, see “Retrieving and
Modifying Structured Type Values” on page 316.

Observer methods
An observer method exists for each attribute of an object. If the
method for an attribute receives an object of the expected type or
subtype, the method returns the value of the attribute for that object.

The observer method DB2 creates for the attribute age of the type
Person_t, for example, is as if DB2 issued the following statement:

ALTER TYPE Person_t
ADD METHOD AGE()
RETURNS INTEGER;

For more information about using observer methods, see “Retrieving
and Modifying Structured Type Values” on page 316.

Chapter 12. Working with Complex Objects: User-Defined Structured Types 289

To invoke a method on a structured type, use the method invocation operator:
‘..’. For more information about method invocation, refer to the SQL Reference.

Defining Behavior for Types
To define behaviors for structured types, you can create user-defined methods.
You cannot create methods for distinct types. Creating a method is similar to
creating a function, with the exception that methods are created specifically
for a type, so that the type and its behavior are tightly integrated.

The method specification must be associated with the type before you issue
the CREATE METHOD statement. The following statement adds the method
specification for a method called calc_bonus to the Employee_t type:

ALTER TYPE Employee_t
ADD METHOD calc_bonus (rate DOUBLE)
RETURNS DECIMAL(7,2)
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC;

Once you have associated the method specification with the type, you can
define the behavior for the type by creating the method as either an external
method or an SQL-bodied method, according to the method specification. For
example, the following statement registers an SQL method called calc_bonus
that resides in the same schema as the type Employee_t:

CREATE METHOD calc_bonus (rate DOUBLE)
FOR Employee_t
RETURN SELF..salary * rate;

You can create as many methods named calc_bonus as you like, as long as
they have different numbers or types of parameters, or are defined for types
in different type hierarchies. In other words, you cannot create another
method named calc_bonus for Architect_t that has the same parameter types
and same number of parameters.

Note: DB2 does not currently support dynamic dispatch. This means that you
cannot declare a method for a type, and then redefine the method for a
subtype using the same number of parameters. As a workaround, you
can use the TYPE predicate to determine the dynamic type and then
use the TREAT AS clause to call a different method for each dynamic
type. For an example of transform functions that handle subtypes, see
“Retrieving Subtype Data from DB2 (Bind Out)” on page 332.

For more information about registering, writing, and invoking methods, see
“Chapter 14. User-Defined Functions (UDFs) and Methods” on page 365 and
“Chapter 15. Writing User-Defined Functions (UDFs) and Methods” on
page 385.

290 Application Development Guide

Storing Objects in Typed Tables
You can store instances of structured types either as rows in typed tables, in
which each attribute of the type is stored in a separate column, or as objects
in columns, in which all of the attributes of the type are stored in a single
column. Typed tables have the attribute of identity; that is, another table can
use references to access attributes of instances. If you need to refer to your
instance from other tables, you must use typed tables. If your objects do not
need to be identified by other tables, consider storing the objects in columns.

When objects are stored as rows in a table, each column of the table contains
one attribute of the object. You could store an instance of a person, for
example, in a table that contains a column for name and a column for age.
Here is an example of a CREATE TABLE statement for storing instances of
Person.

CREATE TABLE Person OF Person_t
(REF IS Oid USER GENERATED)

To insert an instance of Person into the table, you could use the following
syntax:

INSERT INTO Person (Oid, Name, Age)
VALUES(Person_t('a'), 'Andrew', 29);

Table 10. Person typed table

Oid Name Age Address

a Andrew 29

Your program accesses attributes of the object by accessing the columns of the
typed table:

UPDATE Person SET Age=30 WHERE Name='Andrew';

After the previous UPDATE statement, the table looks like:

Table 11. Person typed table after update

Oid Name Age Address

a Andrew 30

Because there is a subtype of Person_t called Employee_t, instances of
Employee_t cannot be stored in the Person table, and need to be stored in
another table. This table is called a subtable. The following CREATE TABLE
statement creates the Employee subtable under the Person table:

Chapter 12. Working with Complex Objects: User-Defined Structured Types 291

CREATE TABLE Employee OF Employee_t UNDER Person
INHERIT SELECT PRIVILEGES
(SerialNum WITH OPTIONS NOT NULL,
Dept WITH OPTIONS SCOPE BusinessUnit);

And, again, an insert into the Employee table looks like this:
INSERT INTO Employee (Oid, Name, Age, SerialNum, Salary)

VALUES (Employee_t('s'), 'Susan', 39, 24001, 37000.48)

Table 12. Employer typed subtable

Oid Name Age Address SerialNum Salary Dept

s Susan 39 24001 37000.48

If you execute the following query, the information for Susan is returned:
SELECT *

FROM Employee
WHERE Name='Susan';

The interesting thing about these two tables is that you can access instances of
both employees and people just by executing your SQL statement on the
Person table. This feature is called substitutability, and is discussed in
“Additional Properties of Structured Types” on page 295. By executing a query
on the table that contains instances that are higher in the type hierarchy, you
automatically get instances of types that are lower in the hierarchy. In other
words, the Person table logically looks like this to SELECT, UPDATE, and
DELETE statements :

Table 13. Person table contains Person and Employee instances

Oid Name Age Address

a Andrew 30 (null)

s Susan 39 (null)

If you execute the following query, you get an object identifier and Person_t
information about both Andrew (a person) and Susan (an employee):

SELECT *
FROM Person;

For more information on substitutability, see “Additional Properties of
Structured Types” on page 295.

Defining Relationships Between Objects in Typed Tables
You can define relationships between objects in one typed table and objects in
another table. You can also define relationships between objects in the same
typed table. For example, assume that you have defined a typed table that

292 Application Development Guide

contains instances of departments. Instead of maintaining department
numbers in the Employee table, the Dept column of the Employee table can
contain a logical pointer to one of the departments in the BusinessUnit table.
These pointers are called references, and are illustrated in Figure 9.

Important: References do not perform the same function as referential
constraints. It is possible to have a reference to a department that does not
exist. If it is important to maintain integrity between department and
employees, you can define a referential constraint between those two tables.
The real power of references is that it gives you the ability to write queries
that navigate the relationship between the tables. What the query does is
dereference the relationship and instantiate the object that is being pointed to.
The operator that you use to perform this action is called the dereference
operator, which looks like this: ->.

For example, the following query on the Employee table uses the dereference
operator to tell DB2 to follow the path from the Dept column to the
BusinessUnit table. The dereference operator returns the value of the Name
column:

SELECT Name, Salary, Dept->Name
FROM Employee;

For more information on writing queries on typed tables, see “Querying a
Typed Table” on page 306.

Storing Objects in Columns
Storing objects in columns is useful when you need to model facts about your
business objects that cannot be adequately modelled with the DB2 built-in
data types. In other words, you may store your business objects (such as

Name

Employee_t Table BusinessUnit_t Table

Age Address SerialNum Salary Dept OID Name Headcount

(ref)

(ref)

(ref)

(ref)

(ref)

(ref)

(ref)

1 Toy

Shoe

Finance

Quality

2

3

4

...

...

...

Name

Employee_t Table

Age Address SerialNum Salary Dept OID Name Headcount

(ref)

(ref)

(ref)

(ref)

(ref)

(ref)

(ref)

1 Toy

Shoe

Finance

Quality

2

3

4

...

...

...

Figure 9. Structured type references from Employee_t to BusinessUnit_t

Chapter 12. Working with Complex Objects: User-Defined Structured Types 293

employees, departments, and so on) in typed tables, but those objects might
also have attributes that are best modelled using a structured type.

For example, assume that your application has the need to access certain parts
of an address. Rather than store the address as an unstructured character
string, you can store it as a structured object as shown in Figure 10.

Furthermore, you can define a type hierarchy of addresses to model different
formats of addresses that are used in different countries. For example, you
might want to include both a US address type, which contains a zip code, and
a Brazilian address type, for which the neighborhood attribute is required.
The Address_t type hierarchy is defined in “Inserting Structured Type
Instances into a Column” on page 313.

When objects are stored as column values, the attributes are not externally
represented as they are with objects stored in rows of tables. Instead, you
must use methods to manipulate their attributes. DB2 generates both observer
methods to return attributes, and mutator methods to change attributes. The
following examples uses one observer method and two mutator methods, one
for the Number attribute and one for the Street attribut, to change an address:

UPDATE Employee
SET Address=Address..Number('4869')..Street('Appletree')
WHERE Name='Franky'
AND Address..State='CA';

In the preceding example, the SET clause of the UPDATE statement invokes
the Number and Street mutator methods to update attributes of the instances
of type Address_t. The WHERE clause restricts the operation of the update
statement with two predicates: an equality comparison for the Name column,
and an equality comparison that invokes the State observer method of the
Address column.

Person

Address (Address_t)Age (INT)Name (VARCHAR)

Street Number City State

Figure 10. Address attribute as a structured type

294 Application Development Guide

Additional Properties of Structured Types

Substitutability
When a SELECT, UPDATE, or DELETE statement is applied to a
typed table, the operation applies to the named table and all of its
subtables. For example, if you create a typed table from Person_t and
select all rows from that table, your application can receive not just
instances of the Person type, but Person information about instances
of the Employee subtype and other subtypes. The property of
substitutability also applies to subtables created from subtypes. For
example, SELECT, UPDATE, and DELETE statements for the Employee
subtable apply to both the Employee_t type and its own subtypes.

Similarly, a column defined with Address_t type can contain instances
of a US address or a Brazilian address.

INSERT operations, in contrast, only apply to the table that is
specified in the INSERT statement. Inserting into the Employee table
creates an Employee_t object in the Person table hierarchy.

You can also substitute subtype instances when you pass structured
types as parameters to functions, or as the result from a function. If a
scalar function has a parameter of type Address_t, you can pass an
instance of one of its subtypes, such as US_addr_t, instead of an
instance of Address_t. Table functions cannot return structured type
columns.

Because a column or table is defined with one type but might contain
instances of other types, it is sometimes important to distinguish
between the type that was used for the definition and the type of the
instance that is actually returned at runtime. The definition of the
structured type in a column, row, or function parameter is called the
static type. The actual type of a structured type instance is called the
dynamic type.To retrieve information about the dynamic type, your
application can use the TYPE_NAME, TYPE_SCHEMA, and TYPE_ID
built-in functions that are described in “Other Type-related Built-in
Functions” on page 308.

Instantiability
Types can also be defined to be INSTANTIABLE or NOT
INSTANTIABLE. By default, types are instantiable, which means that
an instance of that object can be created. Noninstantiable types, on the
other hand, serve as models intended for further refinement in the
type hierarchy. For example, if you define Person_t using the NOT
INSTANTIABLE clause, then you cannot store any instances of a
person in the database, and you cannot create a table or view using
Person_t. Instead, you can only store instances of Employee_t or other
subtypes of Person_t that you define.

Chapter 12. Working with Complex Objects: User-Defined Structured Types 295

Using Structured Types in Typed Tables

Creating a Typed Table
Typed tables are used to actually store instances of objects whose
characteristics are defined with the CREATE TYPE statement. You can create a
typed table using a variant of the CREATE TABLE statement. You can also
create a hierarchy of typed tables that is based on a hierarchy of structured
types. To store instances of subtypes in database tables, you must create a
corresponding table hierarchy.

The following example illustrates creation of a table hierarchy based on the
type hierarchy shown in Figure 9 on page 293.

Here is the SQL to create the BusinessUnit typed table:
CREATE TABLE BusinessUnit OF BusinessUnit_t

(REF IS Oid USER GENERATED);

Here is the SQL to create the tables in the Person table hierarchy:
CREATE TABLE Person OF Person_t

(REF IS Oid USER GENERATED);

CREATE TABLE Employee OF Employee_t UNDER Person
INHERIT SELECT PRIVILEGES
(SerialNum WITH OPTIONS NOT NULL,
Dept WITH OPTIONS SCOPE BusinessUnit);

CREATE TABLE Student OF Student_t UNDER Person
INHERIT SELECT PRIVILEGES;

CREATE TABLE Manager OF Manager_t UNDER Employee
INHERIT SELECT PRIVILEGES;

CREATE TABLE Architect OF Architect_t UNDER Employee
INHERIT SELECT PRIVILEGES;

Defining the Type of the Table
The first typed table created in the previous example is BusinessUnit. This
table is defined to be OF type BusinessUnit_t, so it will hold instances of that
type. This means that it will have a column corresponding to each attribute of
the structured type BusinessUnit_t, and one additional column called the
object identifier column.

Naming the Object Identifier
Because typed tables contain objects that can be referenced by other objects,
every typed table has an object identifier column as its first column. In this
example, the type of the object identifier column is REF(BusinessUnit_t). You
can name the object identifier column using the REF IS ... USER GENERATED
clause. In this case, the column is named Oid. The USER GENERATED part of

296 Application Development Guide

the REF IS clause indicates that you must provide the initial value for the
object identifier column of each newly inserted row. After you insert the object
identifier, you cannot update the value of the object identifier. For information
on configuring DB2 to automatically generate object identifiers, see “Defining
System-generated Object Identifiers” on page 311.

Specifying the Position in the Table Hierarchy
The Person typed table is of type Person_t. To store instances of the subtypes
of employees and students, it is necessary to create the subtables of the Person
table, Employee and Student. The two additional subtypes of Employee_t also
require tables. Those subtables are named Manager and Architect. Just as a
subtype inherits the attributes of its supertype, a subtable inherits the columns
of its supertable, including the object identifier column.

Note: A subtable must reside in the same schema as its supertable.

Rows in the Employee subtable, therefore, will have a total of seven columns:
Oid, Name, Age, Address, SerialNum, Salary, and Dept.

A SELECT, UPDATE, or DELETE statement that operates on a supertable
automatically operates on all its subtables as well. For example, an UPDATE
statement on the Employee table might affect rows in the Employee, Manager,
and Architect tables, but an UPDATE statement on the Manager table can
only affect Manager rows.

If you want to restrict the actions of the SELECT, INSERT, or DELETE
statement to just the specified table, use the ONLY option, described in
“Returning Objects of a Particular Type Using ONLY” on page 309.

Indicating that SELECT Privileges are Inherited
The INHERIT SELECT PRIVILEGES clause of the CREATE TABLE statement
specifies that the resulting subtable, such as Employee, is initially accessible by
the same users and groups as the supertable, such as Person, from which it is
created using the UNDER clause. Any user or group currently holding
SELECT privileges on the supertable is granted SELECT privileges on the
newly created subtable. The creator of the subtable is the grantor of the
SELECT privileges. To specify privileges such as DELETE and UPDATE on
subtables, you must issue the same explicit GRANT or REVOKE statements
that you use to specify privileges on regular tables. For more information on
the INHERIT SELECT PRIVILEGES clause, refer to the SQL Reference.

Privileges may be granted and revoked independently at every level of a table
hierarchy. If you create a subtable, you can also revoke the inherited SELECT
privileges on that subtable. Revoking the inherited SELECT privileges from
the subtable prevents users with SELECT privileges on the supertable from
seeing any columns that appear only in the subtable. Revoking the inherited

Chapter 12. Working with Complex Objects: User-Defined Structured Types 297

SELECT privileges from the subtable limits users who only have SELECT
privileges on the supertable to seeing the supertable columns of the rows of
the subtable. Users can only operate directly on a subtable if they hold the
necessary privilege on that subtable. So, to prevent users from selecting the
bonuses of the managers in the subtable, revoke the SELECT privilege on that
table and grant it only to those users for whom this information is necessary.

Defining Column Options
The WITH OPTIONS clause lets you define options that apply to an
individual column in the typed table. The format of WITH OPTIONS is:

column-name WITH OPTIONS column-options

where column-name represents the name of the column in the CREATE TABLE
or ALTER TABLE statement, and column-options represents the options defined
for the column.

For example, to prevent users from inserting nulls into a SerialNum column,
specify the NOT NULL column option as follows:

(SerialNum WITH OPTIONS NOT NULL)

Defining the Scope of a Reference Column
Another use of WITH OPTIONS is to specify the SCOPE of a column. For
example, in the Employee table and its subtables, the clause:

Dept WITH OPTIONS SCOPE BusinessUnit

declares that the Dept column of this table and its subtables have a scope of
BusinessUnit. This means that the reference values in this column of the
Employee table are intended to refer to objects in the BusinessUnit table.

For example, the following query on the Employee table uses the dereference
operator to tell DB2 to follow the path from the Dept column to the
BusinessUnit table. The dereference operator returns the value of the Name
column:

SELECT Name, Salary, Dept->Name
FROM Employee;

For more information about references and scoping references, see “Using
Reference Types” on page 300.

Populating a Typed Table
After creating the structured types in the previous examples, and after
creating the corresponding tables and subtables, the structure of your database
looks like Figure 11 on page 299:

298 Application Development Guide

When the hierarchy is established, you can use the INSERT statement, as
usual, to populate the tables. The only difference is that you must remember
to populate the object identifier columns and, optionally, any additional
attributes of the objects in each table or subtable. Because the object identifier
column is a REF type, which is strongly typed, you must cast the
user-provided object identifier values, using the cast function that the system
generated for you when you created the structured type.

INSERT INTO BusinessUnit (Oid, Name, Headcount)
VALUES(BusinessUnit_t(1), 'Toy', 15);

INSERT INTO BusinessUnit (Oid, Name, Headcount)
VALUES(BusinessUnit_t(2), 'Shoe', 10);

INSERT INTO Person (Oid, Name, Age)
VALUES(Person_t('a'), 'Andrew', 20);

INSERT INTO Person (Oid, Name, Age)
VALUES(Person_t('b'), 'Bob', 30);

INSERT INTO Person (Oid, Name, Age)
VALUES(Person_t('c'), 'Cathy', 25);

INSERT INTO Employee (Oid, Name, Age, SerialNum, Salary, Dept)
VALUES(Employee_t('d'), 'Dennis', 26, 105, 30000, BusinessUnit_t(1));

INSERT INTO Employee (Oid, Name, Age, SerialNum, Salary, Dept)
VALUES(Employee_t('e'), 'Eva', 31, 83, 45000, BusinessUnit_t(2));

INSERT INTO Employee (Oid, Name, Age, SerialNum, Salary, Dept)
VALUES(Employee_t('f'), 'Franky', 28, 214, 39000, BusinessUnit_t(2));

INSERT INTO Student (Oid, Name, Age, SerialNum, GPA)
VALUES(Student_t('g'), 'Gordon', 19, ‘10245’, 4.7);

Person
(Oid, Name, Age, Address)

Student
(..., SerialNum, GPA)

Manager
(..., Bonus)

Architect
(..., StockOption)

BusinessUnit
(Oid, Name, Headcount)

Employee
(..., SerialNum, Salary, Dept)

Figure 11. Typed table hierarchy

Chapter 12. Working with Complex Objects: User-Defined Structured Types 299

INSERT INTO Student (Oid, Name, Age, SerialNum, GPA)
VALUES(Student_t('h'), 'Helen', 20, ‘10357’, 3.5);

INSERT INTO Manager (Oid, Name, Age, SerialNum, Salary, Dept, Bonus)
VALUES(Manager_t('i'), 'Iris', 35, 251, 55000, BusinessUnit_t(1), 12000);

INSERT INTO Manager (Oid, Name, Age, SerialNum, Salary, Dept,
Bonus)

VALUES(Manager_t('j'), 'Christina', 10, 317, 85000, BusinessUnit_t(1),
25000);

INSERT INTO Manager (Oid, Name, Age, SerialNum, Salary, Dept, Bonus)
VALUES(Manager_t('k'), 'Ken', 55, 482, 105000, BusinessUnit_t(2), 48000);

INSERT INTO Architect (Oid, Name, Age, SerialNum, Salary, Dept, StockOption)
VALUES(Architect_t('l'), 'Leo', 35, 661, 92000, BusinessUnit_t(2), 20000);

The previous example does not insert any addresses. For information about
how to insert structured type values into columns, see “Inserting Rows that
Contain Structured Type Values” on page 314.

When you insert rows into a typed table, the first value in each inserted row
must be the object identifier for the data being inserted into the tables. Also,
just as with non-typed tables, you must provide data for all columns that are
defined as NOT NULL. Finally, notice that any reference-valued expression of
the appropriate type can be used to initialize a reference attribute. In the
previous examples, the Dept reference of the employees is input as an
appropriately type-cast constant. However, you can also obtain the reference
using a subquery, as shown in the following example:

INSERT INTO Architect (Oid, Name, Age, SerialNum, Salary, Dept, StockOption)
VALUES(Architect_t('m'), 'Brian', 7, 882, 112000,
(SELECT Oid FROM BusinessUnit WHERE name = 'Toy'), 30000);

Using Reference Types
For each structured type, DB2 supports a corresponding reference type. For
example, when you create the Person_t type, DB2 automatically creates a type
of REF(Person_t). The representation type of the REF(Person_t) type (and the
REF types of all subtypes of Person_t) is, by default, VARCHAR (16) FOR BIT
DATA, but you can choose a different representation type using the REF
USING clause for the CREATE TYPE statement. That reference type is the
basis of the object identifier column of the typed table that you create to store
instances of the structured type. For example, if you create a root type
People_t using the default representation type for the reference type, the
object identifier column of the associated People table is based on
VARCHAR(16) FOR BIT DATA.

Comparing Reference Types
Reference types are strongly typed. To compare a reference to a constant, you
can cast the constant to the appropriate reference type, or you can cast the

300 Application Development Guide

reference type to the base type, and then perform the comparison. All
references in a given type hierarchy have the same reference representation
type. This enables REF(S) and REF(T) to be compared, provided that S and T
have a common supertype. Because uniqueness of the object identifier column
is enforced only within a table hierarchy, it is possible that a value of REF(T)
in one table hierarchy may be equal to a value of REF(T) in another table
hierarchy, even though they reference different rows.

Using References to Define Semantic Relationships
Using the WITH OPTIONS clause of CREATE TABLE, you can define that a
relationship exists between a column in one table and the objects in the same
or another table. For example, in the BusinessUnit and Person table
hierarchies, the department for each employee is actually a reference to an
object in the BusinessUnit table, as shown in Figure 12. To define the
destination objects of a given reference column, use the SCOPE keyword on
the WITH OPTIONS clause.

Self-Referencing Relationships: You can define scoped references to objects
in the same typed table as well. The statements in the following example

Employee (and subtables)

BusinessUnit

CREATE TABLE Employee OF Employee_t UNDER Person
INHERIT SELECT PRIVILEGES
(Dept WITH OPTIONS SCOPE BusinessUnit);

Dept column of
Employee table BusinessUnit table

Oid

Oid

Name

Name

Age

Age

Address

Headcount

SerialNum Salary Dept

Figure 12. Dept attribute refers to a BusinessUnit object

Chapter 12. Working with Complex Objects: User-Defined Structured Types 301

create one typed table for parts and one typed table for suppliers. To show
the reference type definitions, the sample also includes the statements used to
create the types:

CREATE TYPE Company_t AS
(name VARCHAR(30),
location VARCHAR(30))
MODE DB2SQL ;

CREATE TYPE Part_t AS
(Descript VARCHAR(20),
Supplied_by REF(Company_t),
Used_in REF(part_t))
MODE DB2SQL;

CREATE TABLE Suppliers OF Company_t
(REF IS suppno USER GENERATED);

CREATE TABLE Parts OF Part_t
(REF IS Partno USER GENERATED,
Supplied_by WITH OPTIONS SCOPE Suppliers,
Used_in WITH OPTIONS SCOPE Parts);

You can use scoped references to write queries that, without scoped
references, would have to be written as outer joins or correlated subqueries.
For more information, see “Queries that Dereference References” on page 307.

Parts table

Supplier table

Partno Descript Supplied_by Used_in

Part_t type

Company_t type

Suppno Name Location

Figure 13. Example of a self-referencing scope

302 Application Development Guide

Differences Between Referential Integrity and Scoped References
Although scoped references do define relationships among objects in tables,
they are different than referential integrity relationships. Scopes simply
provide information about a target table. That information is used when
dereferencing objects from that target table. Scoped references do not require
or enforce that a value exists at the other table. For example, the Dept column
in the Employee table can have a reference to a BusinessUnit object identifier
column that does not exist in the BusinessUnit table. To ensure that the
objects in these relationships exist, you must add a referential constraint
between the tables. For more information, see “Creating Constraints on Object
Identifier Columns” on page 312.

Creating a Typed View
You can create a typed view using the CREATE VIEW statement. For example,
to create a view of the typed BusinessUnit table, you can define a structured
type that has the desired attributes and then create a typed view using that
type:

CREATE TYPE VBusinessUnit_t AS (Name VARCHAR(20))
MODE DB2SQL;

CREATE VIEW VBusinessUnit OF VBusinessUnit_t MODE DB2SQL
(REF IS VObjectID USER GENERATED)
AS SELECT VBusinessUnit_t(VARCHAR(Oid)), Name FROM BusinessUnit;

The OF clause in the CREATE VIEW statement tells DB2 to base the columns
of the view on the attributes of the indicated structured type. In this case, DB2
bases the columns of the view on the VBusinessUnit_t structured type.

The VObjectID column of the view has a type of REF(VBusinessUnit_t). Since
you cannot cast from a type of REF(BusinessUnit_t) to REF(VBusinessUnit_t),
you must first cast the value of the Oid column from table BusinessUnit to
data type VARCHAR, and then cast from data type VARCHAR to data type
REF(VBusinessUnit_t).

The MODE DB2SQL clause specifies the mode of the typed view. This is the
only valid mode currently supported.

The REF IS... clause is identical to that of the typed CREATE TABLE
statement. It provides a name for the object identifier column of the view
(VObjectID in this case), which is the first column of the view. If you create a
typed view on a root type, you must specify an object identifier column for
the view. If you create a typed view on a subtype, your view can inherit the
object identifier column.

The USER GENERATED clause specifies that the initial value for the object
identifier column must be provided by the user when inserting a row. Once
inserted, the object identifier column cannot be updated.

Chapter 12. Working with Complex Objects: User-Defined Structured Types 303

The body of the view, which follows the keyword AS, is a SELECT statement
that determines the content of the view. The column-types returned by this
SELECT statement must be compatible with the column-types of the typed
view, including the initial object identifier column.

To illustrate the creation of a typed view hierarchy, the following example
defines a view hierarchy that omits some sensitive data and eliminates some
type distinctions from the Person table hierarchy created earlier under
“Creating a Typed Table” on page 296:

CREATE TYPE VPerson_t AS (Name VARCHAR(20))
MODE DB2SQL;

CREATE TYPE VEmployee_t UNDER VPerson_t
AS (Salary INT, Dept REF(VBusinessUnit_t))
MODE DB2SQL;

CREATE VIEW VPerson OF VPerson_t MODE DB2SQL
(REF IS VObjectID USER GENERATED)
AS SELECT VPerson_t (VARCHAR(Oid)), Name FROM ONLY(Person);

CREATE VIEW VEmployee OF VEmployee_t MODE DB2SQL
UNDER VPerson INHERIT SELECT PRIVILEGES
(Dept WITH OPTIONS SCOPE VBusinessUnit)
AS SELECT VEmployee_t(VARCHAR(Oid)), Name, Salary,

VBusinessUnit_t(VARCHAR(Dept))
FROM Employee;

The two CREATE TYPE statements create the structured types that are needed
to create the object view hierarchy for this example.

The first typed CREATE VIEW statement above creates the root view of the
hierarchy, VPerson, and is very similar to the VBusinessUnit view definition.
The difference is the use of ONLY(Person) to ensure that only the rows in the
Person table hierarchy that are in the Person table, and not in any subtable,
are included in the VPerson view. This ensures that the Oid values in VPerson
are unique compared with the Oid values in VEmployee. The second CREATE
VIEW statement creates a subview VEmployee under the view VPerson. As was
the case for the UNDER clause in the CREATE TABLE...UNDER statement,
the UNDER clause establishes the view hierarchy. You must create a subview
in the same schema as its superview. Like typed tables, subviews inherit
columns from their superview. Rows in the VEmployee view inherit the
columns VObjectID and Name from VPerson and have the additional columns
Salary and Dept associated with the type VEmployee_t.

The INHERIT SELECT PRIVILEGES clause has the same effect when you
issue a CREATE VIEW statement as when you issue a typed CREATE TABLE
statement. For more information on the INHERIT SELECT PRIVILEGES
clause, see “Indicating that SELECT Privileges are Inherited” on page 297. The

304 Application Development Guide

WITH OPTIONS clause in a typed view definition also has the same effect as
it does in a typed table definition. The WITH OPTIONS clause enables you to
specify column options such as SCOPE. The READ ONLY clause forces a
superview column to be marked as read-only, so that subsequent subview
definitions can specify an expression for the same column that is also
read-only.

If a view has a reference column, like the Dept column of the VEmployee view,
you must associate a scope with the column to use the column in SQL
dereference operations. If you do not specify a scope for the reference column
of the view and the underlying table or view column is scoped, then the
scope of the underlying column is passed on to the reference column of the
view. You can explicitly assign a scope to the reference column of the view by
using the WITH OPTIONS clause. In the previous example, the Dept column
of the VEmployee view receives the VBusinessUnit view as its scope. If the
underlying table or view column does not have a scope, and no scope is
explicitly assigned in the view definition, or no scope is assigned with an
ALTER VIEW statement, the reference column remains unscoped.

There are several important rules associated with restrictions on the queries
for typed views found in the SQL Reference that you should read carefully
before attempting to create and use a typed view.

Dropping a User-Defined Type (UDT) or Type Mapping
You can drop a user-defined type (UDT) or type mapping using the DROP
statement. For more information on type mappings, see “Working with Data
Type Mappings” on page 569. You cannot drop a UDT if it is used:
v In a column definition for an existing table or view.
v As the type of an existing typed table or typed view (structured type).
v As the supertype of another structured type.

You cannot drop a default type mapping; you can only override it by creating
another type mapping.

The database manager attempts to drop every user-defined function (UDF)
that is dependent on this UDT. A UDF cannot be dropped if a view, trigger,
table check constraint, or another UDF is dependent on it. If DB2 cannot drop
a dependent UDF, DB2 does not drop the UDT. Dropping a UDT invalidates
any packages or cached dynamic SQL statements that used it.

If you have created a transform for a UDT, and you plan to drop that UDT,
consider dropping the associated transform. To drop a transform, issue a
DROP TRANSFORM statement. For the complete syntax of the DROP
TRANSFORM statement, refer to the SQL Reference. Note that you can only
drop user-defined transforms. You cannot drop built-in transforms or their
associated group definitions.

Chapter 12. Working with Complex Objects: User-Defined Structured Types 305

Altering or Dropping a View
The ALTER VIEW statement modifies an existing view by altering a reference
type column to add a scope. Any other changes you make to a view require
that you drop and then re-create the view.

When altering the view, the scope must be added to an existing reference type
column that does not already have a scope defined. Further, the column must
not be inherited from a superview.

The data type of the column-name in the ALTER VIEW statement must be
REF (type of the typed table name or typed view name).

Refer to the SQL Reference for additional information on the ALTER VIEW
statement.

The following example shows how to drop the EMP_VIEW:
DROP VIEW EMP_VIEW;

Any views that are dependent on the dropped view become inoperative. For
more information on inoperative views, refer to the “Recovering Inoperative
Views” section of the Administration Guide.

Other database objects such as tables and indexes will not be affected
although packages and cached dynamic statements are marked invalid. For
more information, refer to the “Statement Dependencies” section of the
Administration Guide.

As in the case of a table hierarchy, it is possible to drop an entire view
hierarchy in one statement by naming the root view of the hierarchy, as in the
following example:

DROP VIEW HIERARCHY VPerson;

For more information on dropping and creating views, refer to the SQL
Reference.

Querying a Typed Table
If you have the required SELECT authority, you can query a typed table in the
same way that you query non-typed tables. The query returns the requested
columns from the qualifying rows from the target of the SELECT and all of its
subtables. For example, the following query on the data in the Person table
hierarchy returns the names and ages of all people; that is, all rows in the
Person table and its subtables. For information on writing a similar query if
one of the columns is a structured type column, see “Retrieving and
Modifying Structured Type Values” on page 316.

SELECT Name, Age
FROM Person;

306 Application Development Guide

The result of the query is as follows:
NAME AGE
-------------------- -----------
Andrew 29
Bob 30
Cathy 25
Dennis 26
Eva 31
Franky 28
Gordon 19
Helen 20
Iris 35
Christina 10
Ken 55
Leo 35
Brian 7
Susan 39

Queries that Dereference References
Whenever you have a scoped reference, you can use a dereference operation to
issue queries that would otherwise require outer joins or correlated
subqueries. Consider the Dept attribute of the Employee table, and subtables of
Employee, which is scoped to the BusinessUnit table. The following example
returns the names, salaries, and department names, or NULL values where
applicable, of all the employees in the database; that means the query returns
these values for every row in the Employee table and the Employee subtables.
You could write a similar query using a correlated subquery or an outer join.
However, it is easier to use the dereference operator (->) to traverse the path
from the reference column in the Employee table and subtables to the
BusinessUnit table, and to return the result from the Name column of the
BusinessUnit table.

The simple format of the dereference operation is as follows:
scoped-reference-expression -> column-in-target-typed-table

The following query uses the dereference operator to obtain the Name column
from the BusinessUnit table:

SELECT Name, Salary, Dept->Name
FROM Employee

The result of the query is as follows:
NAME SALARY NAME
-------------------- ----------- --------------------
Dennis 30000 Toy
Eva 45000 Shoe
Franky 39000 Shoe
Iris 55000 Toy
Christina 85000 Toy

Chapter 12. Working with Complex Objects: User-Defined Structured Types 307

Ken 105000 Shoe
Leo 92000 Shoe
Brian 112000 Toy
Susan 37000.48 ---

You can dereference self-referencing references as well. Consider the Parts
table defined in Figure 13 on page 302. The following query lists the parts
directly used in a wing with the locations of the suppliers of the parts:

SELECT P.Descript, P.Supplied_by ->Location
FROM Parts P
WHERE P.Used_in -> Descript='Wing';

DEREF Built-in Function
You can also dereference references to obtain entire structured objects as a
single value by using the DEREF built-in function. The simple form of DEREF
is as follows:

DEREF (scoped-reference-expression)

DEREF is usually used in the context of other built-in functions, such as
TYPE_NAME, or to obtain a whole structured object for the purposes of
binding out to an application.

Other Type-related Built-in Functions
The DEREF function is often invoked as part of the TYPE_NAME, TYPE_ID,
or TYPE_SCHEMA built-in functions. The purpose of these functions,
respectively, is to return the name, internal ID, and schema name of the
dynamic type of an expression. For example, the following example creates a
Project typed table with an attribute called Responsible:

CREATE TYPE Project_t
AS (Projid INT, Responsible REF(Employee_t))
MODE DB2SQL;

CREATE TABLE Project
OF Project_t (REF IS Oid USER GENERATED,
Responsible WITH OPTIONS SCOPE Employee);

The Responsible attribute is defined as a reference to the Employee table, so
that it can refer to instances of managers and architects as well as employees.
If your application needs to know the name of the dynamic type of every row,
you can use a query like the following:

SELECT Projid, Responsible->Name,
TYPE_NAME(DEREF(Responsible))
FROM PROJECT;

The preceding example uses the dereference operator to return the value of
Name from the Employee table, and invokes the DEREF function to return the
dynamic type for the instance of Employee_t.

308 Application Development Guide

For more information about the built-in functions described in this section,
refer to the SQL Reference.

Authorization requirement: To use the DEREF function, you must have SELECT
authority on every table and subtable in the referenced portion of the table
hierarchy. In the above query, for example, you need SELECT privileges on
the Employee, Manager, and Architect typed tables.

Additional Query Specification Techniques

Returning Objects of a Particular Type Using ONLY
To have a query return only objects of a particular type, and not of its
subtypes, use the ONLY keyword. For example, the following query returns
only the names of employees that are not architects or managers:

SELECT Name
FROM ONLY(Employee);

The previous query returns the following result:
NAME

Dennis
Eva
Franky
Susan

To protect the security of the data, the use of ONLY requires the SELECT
privilege on every subtable of Employee.

You can also use the ONLY clause to restrict the operation of an UPDATE or
DELETE statement to the named table. That is, the ONLY clause ensures that
the operation does not occur on any subtables of that named table.

Restricting Returned Types Using a TYPE Predicate
If you want a more general way to restrict what rows are returned or affected
by an SQL statement, you can use the type predicate. The type predicate
enables you to compare the dynamic type of an expression to one or more
named types. A simple version of the type predicate is:

<expression> IS OF (<type_name>[, ...])

where expression represents an SQL expression that returns an instance of a
structured type, and type_name represents one or more structured types with
which the instance is compared.

For example, the following query returns people who are greater than 35
years old, and who are either managers or architects:

Chapter 12. Working with Complex Objects: User-Defined Structured Types 309

SELECT Name
FROM Employee E
WHERE E.Age > 35 AND
DEREF(E.Oid) IS OF (Manager_t, Architect_t);

The previous query returns the following result:
NAME

Ken

Returning All Possible Attributes Using OUTER
When DB2 returns a structured type row value, the application does not
necessarily know which attributes that particular instance contains or can
contain. For example, when you return a person, that person might just have
the attributes of a person, or it might have attributes of an employee,
manager, or other subtype of person. If your application needs to obtain the
values of all possible attributes within one SQL query, you can use the
keyword OUTER in the table reference.

OUTER (table-name) and OUTER(view-name) return a virtual table that consists
of the columns of the table or view followed by the additional columns
introduced by each of its subtables, if any. The additional columns are added
on the right hand side of the table, traversing the subtable hierarchy in the
order of depth. Subtables that have a common parent are traversed in the
order in which their respective types were created. The rows include all the
rows of table-name and all of the additional rows of the subtables of table-name.
Null values are returned for columns that are not in the subtable for the row.

You might use OUTER, for example, when you want to see information about
people who tend to achieve above the norm. The following query returns
information from the Person table hierarchy that have either a high salary
Salary or a high grade point average GPA:

SELECT *
FROM OUTER(Person) P
WHERE P.Salary > 200000
OR P.GPA > 3.95 ;

Using OUTER(Person) enables you to refer to subtype attributes, which is not
otherwise possible in Person queries.

The use of OUTER requires the SELECT privilege on every subtable or view
of the referenced table because all of their information is exposed through its
usage.

Suppose that your application needs to see not just the attributes of these high
achievers, but what the most specific type is for each one. You can do this in a

310 Application Development Guide

single query by passing the object identifier of an object to the TYPE_NAME
built-in function and combining it with an OUTER query, as follows:

SELECT TYPE_NAME(DEREF(P.Oid)), P.*
FROM OUTER(Person) P
WHERE P.Salary > 200000 OR
P.GPA > 3.95 ;

Because the Address column of the Person typed table contains structured
types, you would have to define additional functions and issue additional
SQL to return the data from that column. For more information on returning
data from a structured type column, see “Retrieving and Modifying
Structured Type Values” on page 316. Assuming you perform these additional
steps, the preceding query returns the following output, where Additional
Attributes includes GPA and Salary:
1 OID NAME Additional Attributes
------------------ ------------- -------------------- ...
PERSON_T a Andrew ...
PERSON_T b Bob ...
PERSON_T c Cathy ...
EMPLOYEE_T d Dennis ...
EMPLOYEE_T e Eva ...
EMPLOYEE_T f Franky ...
MANAGER_T i Iris ...
ARCHITECT_T l Leo ...
EMPLOYEE_T s Susan ...

Additional Hints and Tips

Defining System-generated Object Identifiers
To have DB2 automatically generate unique object identifiers, you can use the
GENERATE_UNIQUE function. Because GENERATE_UNIQUE returns a
CHAR (13) FOR BIT DATA value, ensure that your REF USING clause on the
CREATE TYPE statement can accommodate a value of that type. The default
of VARCHAR (16) FOR BIT DATA is suitable for this purpose. For example,
assume that the BusinessUnit_t type is created with the default representation
type; that is, no REF USING clause is specified, as follows:

CREATE TYPE BusinessUnit_t AS
(Name VARCHAR(20),
Headcount INT)
MODE DB2SQL;

The typed table definition is as follows:
CREATE TABLE BusinessUnit OF BusinessUnit_t
(REF IS Oid USER GENERATED);

Note that you must always provide the clause USER GENERATED.

An INSERT statement to insert a row into the typed table, then, might look
like this:

Chapter 12. Working with Complex Objects: User-Defined Structured Types 311

INSERT INTO BusinessUnit (Oid, Name, Headcount)
VALUES(BusinessUnit_t(GENERATE_UNIQUE()), 'Toy' 15);

To insert an employee that belongs to the Toy department, you can use a
statement like the following, which issues a subselect to retrieve the value of
the object identifier column from the BusinessUnit table, casts the value to the
BusinessUnit_t type, and inserts that value into the Dept column:

INSERT INTO Employee (Oid, Name, Age, SerialNum, Salary, Dept)
VALUES(Employee_t('d'), 'Dennis', 26, 105, 30000,

BusinessUnit_t(SELECT Oid FROM BusinessUnit WHERE Name='Toy'));

Creating Constraints on Object Identifier Columns
If you want to use the object identifier column as a key column of the parent
table in a foreign key, you must first alter the typed table to add an explicit
unique or primary key constraint on the object identifier column. For
example, assume that you want to create a self-referencing relationship on
employees in which the manager of each employee must always exist as an
employee in the employee table, as shown in Figure 14.

To create a self-referencing relationship, perform the following steps:
Step 1. Create the type

CREATE TYPE Empl_t AS
(Name VARCHAR(10), Mgr REF(Empl_t))
MODE DB2SQL;

Step 2. Create the typed table
CREATE TABLE Empl OF Empl_t

(REF IS Oid USER GENERATED);

Step 3. Add the primary or unique constraint on the Oid column:
ALTER TABLE Empl ADD CONSTRAINT pk1 UNIQUE(Oid);

Step 4. Add the foreign key constraint.
ALTER TABLE Empl ADD CONSTRAINT fk1 FOREIGN KEY(Mgr)

REFERENCES Empl (Oid);

OID

Empl Table

Name Mgr (ref)

Figure 14. Self-referencing type example

312 Application Development Guide

Creating and Using Structured Types as Column Types

This section describes the major tasks involved in using a user-defined
structured type as the type of a column. Before reading this section, you
should be familiar with the material in “Structured Types Overview” on
page 284.

Inserting Structured Type Instances into a Column
Structured types can be used in the context of tables, views, or columns.
When you create a structured type, you can encapsulate both user-defined
type behavior and type attributes. To include behavior for a type, specify a
method signature with the CREATE TYPE or ALTER TYPE statement. For
more information on creating methods, see “Chapter 14. User-Defined
Functions (UDFs) and Methods” on page 365.

Figure 15 shows the type hierarchy used as an example in this section. The
root type is Address_t, which has three subtypes, each with an additional
attribute that reflects some aspect of how addresses are formed in that
country.

CREATE TYPE Address_t AS
(street VARCHAR(30),
number CHAR(15),
city VARCHAR(30),
state VARCHAR(10))
MODE DB2SQL;

CREATE TYPE Germany_addr_t UNDER Address_t AS
(family_name VARCHAR(30))
MODE DB2SQL;

CREATE TYPE Brazil_addr_t UNDER Address_t AS
(neighborhood VARCHAR(30))
MODE DB2SQL;

CREATE TYPE US_addr_t UNDER Address_t AS
(zip CHAR(10))
MODE DB2SQL;

Germany_addr_t
(Family_name)

Brazil_addr_t
(Neighborhood)

US_addr_t
(Zipcode)

Address_t
(Street, Number, City, State)

Figure 15. Structured type hierarchy for Address_t type

Chapter 12. Working with Complex Objects: User-Defined Structured Types 313

Defining Tables with Structured Type Columns
Unless you are concerned with how structured types are laid out in the data
record, there is no additional syntax for creating tables with columns of
structured types. For example, the following statement adds a column of
Address_t type to a Customer_List untyped table:

ALTER TABLE Customer_List
ADD COLUMN Address Address_t;

Now instances of Address_t or any of the subtypes of Address_t can be stored
in this table. For information on inserting structured types, see “Inserting
Rows that Contain Structured Type Values”.

If you are concerned with how structured types are laid out in the data
record, you can use the INLINE LENGTH clause in the CREATE TYPE
statement to indicate the maximum size of an instance of a structured type
column to store inline with the rest of the values in the row. For more
information on the INLINE LENGTH clause, refer to the CREATE TYPE
(Structured) statement in the SQL Reference.

Defining Types with Structured Type Attributes
A type can be created with a structured type attribute, or it can be altered
(before it is used) to add or drop such an attribute. For example, the following
CREATE TYPE statement contains an attribute of type Address_t:

CREATE TYPE Person_t AS
(Name VARCHAR(20),
Age INT,
Address Address_t)
REF USING VARCHAR(13)
MODE DB2SQL;

Person_t can be used as the type of a table, the type of a column in a regular
table, or as an attribute of another structured type.

Inserting Rows that Contain Structured Type Values
When you create a structured type, DB2 automatically generates a constructor
method for the type, and generates mutator and observer methods for the
attributes of the type. You can use these methods to create instances of
structured types, and insert these instances into a column of a table.

Assume that you want to add a new row to the Employee typed table, and
that you want that row to contain an address. Just as with built-in data types,
you can add this row using INSERT with the VALUES clause. However, when
you specify the value to insert into the address, you must invoke the
system-provided constructor function to create the value:

INSERT INTO Employee (Oid, Name, Age, SerialNum, Salary, Dept, Address)
VALUES(Employee_t('m'), 'Marie', 35, 005, 55000, BusinessUnit_t(2),
US_addr_t () �1�

314 Application Development Guide

..street('Bakely Avenue') �2�

..number('555') �3�

..city('San Jose') �4�

..state('CA') �5�

..zip('95141')); �6�

The previous statement creates an instance of the US_addr_t type by
performing the following tasks:
1. The call to US_addr_t() invokes the constructor function for the US_addr_t

type to create an instance of the type with all attributes set to null values.
2. The call to ..street('Bakely Avenue') invokes the mutator method for

the street attribute to set its value to ‘Bakely Avenue’.
3. The call to ..number('555') invokes the mutator method for the number

attribute to set its value to ‘555’.
4. The call to ..city('San Jose') invokes the mutator method for the city

attribute to set its value to 'San Jose'.
5. The call to ..state('CA') invokes the mutator method for the state

attribute to set its value to 'CA'.
6. The call to ..zip('95141') invokes the mutator method for the zip

attribute to set its value to '95141'.

Notice that although the type of the column Address in the Employee table is
defined with type Address_t, the property of substitutability means that you
can can populate it with an instance of US_addr_t because US_addr_t is a
subtype of Address_t.

To avoid having to explicitly call the mutator methods for each attribute of a
structured type every time you create an instance of the type, consider
defining your own SQL-bodied constructor function that initializes all of the
attributes. The following example contains the declaration for an SQL-bodied
constructor function for the US_addr_t type:

CREATE FUNCTION US_addr_t
(street Varchar(30),
number Char(15),
city Varchar(30),
state Varchar(20),
zip Char(10))

RETURNS US_addr_t
LANGUAGE SQL
RETURN Address_t()..street(street)..number(number)

..city(city)..state(state)..zip(zip);

The following example demonstrates how to create an instance of the
US_addr_t type by calling the SQL-bodied constructor function from the
previous example:

INSERT INTO Employee(Oid, Name, Age, SerialNum, Salary, Dept, Address)
VALUES(Employee_t('m'), 'Marie', 35, 005, 55000, BusinessUnit_t(2),

US_addr_t('Bakely Avenue', '555', 'San Jose', 'CA', '95141'));

Chapter 12. Working with Complex Objects: User-Defined Structured Types 315

Retrieving and Modifying Structured Type Values
There are several ways that applications and user-defined functions can access
data in structured type columns. If you want to treat an object as a single
value, you must first define transform functions, which are described in
“Creating the Mapping to the Host Language Program: Transform Functions”
on page 321. Once you define the correct transform functions, you can select
a structured object much as you can any other value:

SELECT Name, Dept, Address
FROM Employee
WHERE Salary > 20000;

In this section, however, we describe a way of explicitly accessing individual
attributes of an object by invoking the DB2 built-in observer and mutator
methods. The built-in methods do not require you to define a transform
function.

Retrieving Attributes
To explicitly access individual attributes of an object, invoke the DB2 built-in
observer methods on those attributes. Using the observer methods, you can
retrieve the attributes individually rather than treating the object as a single
value.

The following example accesses data in the Address column by invoking the
observer methods on Address_t, the defined static type for the Address
column:

SELECT Name, Dept, Address..street, Address..number, Address..city,
Address..state
FROM Employee
WHERE Salary > 20000;

Note: DB2 enables you to invoke methods that take no parameters using
either <type-name>..<method-name>() or <type-name>..<method-name>,
where type-name represents the name of the structured type, and
attribute-name represents the name of the method that takes no
parameters.

You can also use observer methods to select each attribute into a host variable,
as follows:

SELECT Name, Dept, Address..street, Address..number, Address..city,
Address..state
INTO :name, :dept, :street, :number, :city, :state
FROM Employee
WHERE Empno = ‘000250’;

Accessing the Attributes of Subtypes
In the Employee table, addresses can be of 4 different types: Address_t,
US_addr_t, Brazil_addr_t, and Germany_addr_t. The previous example

316 Application Development Guide

accesses only the attributes of the static type Address_t. To access attributes of
values from one of the subtypes of Address_t, you must use the TREAT
expression to indicate to DB2 that a particular object can be of the US_addr_t,
Germany_addr_t, or Brazil_addr_t types. The TREAT expression casts a
structured type expression into one of its subtypes, as shown in the following
query:

SELECT Name, Dept, Address..street, Address..number, Address..city,
Address..state,
CASE

WHEN Address IS OF (US_addr_t)
THEN TREAT(Address AS US_addr_t)..zip
WHEN Address IS OF (Germany_addr_t)
THEN TREAT (Address AS Germany_addr_t)..family_name
WHEN Address IS OF (Brazil_addr_t)
THEN TREAT (Address AS Brazil_addr_t)..neighborhood

ELSE NULL END
FROM Employee
WHERE Salary > 20000;

Note: You can only use the preceding approach to determine the subtype of a
structured type when the attributes of the subtype are all of the same
type, or can be cast to the same type. In the previous example, zip,
family_name, and neighborhood are all VARCHAR or CHAR types, and
can be cast to the same type.

For more information about the syntax of the TREAT expression or the TYPE
predicate, refer to the SQL Reference.

Modifying Attributes
To change an attribute of a structured column value, invoke the mutator
method for the attribute you want to change. For example, to change the
street attribute of an address, you can invoke the mutator method for street
with the value to which it will be changed. The returned value is an address
with the new value for street. The following example invokes a mutator
method for the attribute named street to update an address type in the
Employee table:

UPDATE Employee
SET Address = Address..street(‘Bailey’)
WHERE Address..street = ‘Bakely’;

The following example performs the same update as the previous example,
but instead of naming the structured column for the update, the SET clause
directly accesses the mutator method for the attribute named street:

UPDATE Employee
SET Address..street = ‘Bailey’
WHERE Address..street = ‘Bakely’;

Chapter 12. Working with Complex Objects: User-Defined Structured Types 317

Returning Information About the Type
As described in “Other Type-related Built-in Functions” on page 308, you can
use built-in functions to return the name, schema, or internal type ID of a
particular type. The following statement returns the exact type of the address
value associated with the employee named ‘Iris’:

SELECT TYPE_NAME(Address)
FROM Employee
WHERE Name='Iris';

Associating Transforms with a Type
Transform functions naturally occur in pairs: one FROM SQL transform
function, and one TO SQL transform function. The FROM SQL function
converts a structured type object into a type that can be exchanged with an
external program, and the TO SQL function constructs the object. When you
create transform functions, you put each logical pair of transform functions
into a group. The transform group name uniquely identifies a pair of these
functions for a given structured type.

Before you can use a transform function, you must use the CREATE
TRANSFORM statement to associate the transform function with a group
name and a type. The CREATE TRANSFORM statement identifies one or
more existing functions and causes them to be used as transform functions.
The following example names two pairs of functions to be used as transform
functions for the type Address_t. The statement creates two transform groups,
func_group and client_group, each of which consists of a FROM SQL
transform and a TO SQL transform.

CREATE TRANSFORM FOR Address_t
func_group (FROM SQL WITH FUNCTION addresstofunc,

TO SQL WITH FUNCTION functoaddress)
client_group (FROM SQL WITH FUNCTION stream_to_client,

TO SQL WITH FUNCTION stream_from_client) ;

You can associate additional functions with the Address_t type by adding
more groups on the CREATE TRANSFORM statement. To alter the transform
definition, you must reissue the CREATE TRANSFORM statement with the
additional functions. For example, you might want to customize your client
functions for different host language programs, such as having one for C and
one for Java. To optimize the performance of your application, you might
want your transforms to work only with a subset of the object attributes. Or
you might want one transform that uses VARCHAR as the client
representation for an object and one transform that uses BLOB.

Use the SQL statement DROP TRANSFORM to disassociate transform
functions from types. After you execute the DROP TRANSFORM statement,
the functions will still exist, but they will no longer be used as transform
functions for this type. The following example disassociates the specific group

318 Application Development Guide

of transform functions func_group for the Address_t type, and then
disassociates all transform functions for the Address_t type:

DROP TRANSFORMS func_group FOR Address_t;

DROP TRANSFORMS ALL FOR Address_t;

Recommendations for Naming Transform Groups
Transform group names are unqualified identifiers; that is, they are not
associated with any specific schema. Unless you are writing transforms to
handle subtype parameters, as described in “Retrieving Subtype Data from
DB2 (Bind Out)” on page 332, you should not assign a different transform
group name for every structured type. Because you might need to use several
different, unrelated types in the same program or in the same SQL statement,
you should name your transform groups according to the tasks performed by
the transform functions.

The names of your transform groups should generally reflect the function
they perform without relying on type names or in any way reflecting the logic
of the transform functions, which will likely be very different across the
different types. For example, you could use the name func_group or
object_functions for any group in which your TO and FROM SQL function
transforms are defined. You could use the name client_group or
program_group for a group that contains TO and FROM SQL client transforms.

In the following example, the Address_t and Polygon types use very different
transforms, but they use the same function group names

CREATE TRANSFORM FOR Address_t
func_group (TO SQL WITH FUNCTION functoaddress,
FROM SQL WITH FUNCTION addresstofunc);

CREATE TRANSFORM FOR Polygon
func_group (TO SQL WITH FUNCTION functopolygon,
FROM SQL WITH FUNCTION polygontofunc);

Once you set the transform group to func_group in the appropriate situation,
as described in “Where Transform Groups Must Be Specified” on page 320,
DB2 invokes the correct transform function whenever you bind in or bind out
an address or polygon.

Restriction: Do not begin a transform group with the string ’SYS’; this group
is reserved for use by DB2.

When you define an external function or method and you do not specify a
transform group name, DB2 attempts to use the name DB2_FUNCTION, and
assumes that that group name was specified for the given structured type. If
you do not specify a group name when you precompile a client program that

Chapter 12. Working with Complex Objects: User-Defined Structured Types 319

references a given structured type, DB2 attempts to use a group name called
DB2_PROGRAM, and again assumes that the group name was defined for
that type.

This default behavior is convenient in some cases, but in a more complex
database schema, you might want a slightly more extensive convention for
transform group names. For example, it may help you to use different group
names for different languages to which you might bind out the type.

Where Transform Groups Must Be Specified
Considering that there can be many transform groups defined for a given
structured type, you must specify which group of transforms to use for that
type in a program or specific SQL statement. There are three circumstances in
which you must specify transform groups:
v When an external function or method is defined, you must specify the

group that decomposes and constructs a referenced object. For more
information, see “Specifying Transform Groups for External Routines”.

v When precompiling or binding static SQL, you must specify the group of
transforms that perform client bind in and bind out for a referenced type.
For more information, see “Setting the Transform Group for Static SQL” on
page 321.

v When executing dynamic SQL, or when using the command line processor,
you must specify the group of transforms which perform client bind in and
bind out for a referenced type. For more information, see “Setting the
Transform Group for Dynamic SQL” on page 321.

Specifying Transform Groups for External Routines
The CREATE FUNCTION and CREATE METHOD statements enable you to
specify the TRANSFORM GROUP clause, which is only valid when the value
of the LANGUAGE clause is not SQL. SQL language functions do not require
transforms, while external functions do require transforms. The TRANSFORM
GROUP clause allows you to specify, for any given function or method, the
transform group that contains the TO SQL and FROM SQL transforms used
for structured type parameters and results. In the following example, the
CREATE FUNCTION and CREATE METHOD statements specify the
transform group func_group for the TO SQL and FROM SQL transforms:

CREATE FUNCTION stream_from_client (VARCHAR (150))
RETURNS Address_t
...
TRANSFORM GROUP func_group
EXTERNAL NAME 'addressudf!address_stream_from_client'
...

CREATE METHOD distance (point)

320 Application Development Guide

FOR polygon
RETURNS integer
:
TRANSFORM GROUP func_group ;

Setting the Transform Group for Dynamic SQL
If you use dynamic SQL, you can set the CURRENT DEFAULT TRANSFORM
GROUP special register. This special register is not used for static SQL
statements or for the exchange of parameters and results with external
functions or methods. Use the SET CURRENT DEFAULT TRANSFORM
GROUP statement to set the default transform group for your dynamic SQL
statements:

SET CURRENT DEFAULT TRANSFORM GROUP = client_group;

Setting the Transform Group for Static SQL
For static SQL, use the TRANSFORM GROUP option on the PRECOMPILE or
BIND command to specify the static transform group used by static SQL
statements to exchange values of various types with host programs. Static
transform groups do not apply to dynamic SQL statements, or to the exchange
of parameters and results with external functions or methods. To specify the
static transform group on the PRECOMPILE or BIND command, use the
TRANSFORM GROUP clause:

PRECOMPILE ...
TRANSFORM GROUP client_group
... ;

For more information on the PRECOMPILE and BIND commands, refer to the
Command Reference.

Creating the Mapping to the Host Language Program: Transform
Functions

An application cannot directly select an entire object, although, as described in
“Retrieving Attributes” on page 316, you can select individual attributes of an
object into an application. An application usually does not directly insert an
entire object, although it can insert the result of an invocation of the
constructor function:

INSERT INTO Employee(Address) VALUES (Address_t());

To exchange whole objects between the server and client applications, or
external functions, you must normally write transform functions.

A transform function defines how DB2 converts an object into a well-defined
format for accessing its contents, or binds out the object. A different transform
function defines how DB2 returns the object to be stored in the database, or
binds in the object. Transforms that bind out an object are called FROM SQL
transform functions, and transforms that bind in a column object are called
TO SQL transforms.

Chapter 12. Working with Complex Objects: User-Defined Structured Types 321

Most likely, there will be different transforms for passing objects to routines, or
external UDFs and methods, than those for passing objects to client
applications. This is because when you pass the object to an external routine,
you decompose the object and pass it to the routine as a list of parameters.
With client applications, you must turn the object into a single built-in type,
such as a BLOB. This process is called encoding the object. Often these two
types of transforms are used together.

Use the SQL statement CREATE TRANSFORM to associate transform
functions with a particular structured type. Within the CREATE TRANSFORM
statement, the functions are paired into what are called transform groups. This
makes it easier to identify which functions are used for a particular transform
purpose. Each transform group can contain not more than one FROM SQL
transform, and not more than one TO SQL transform, for a particular type.

Note: The following topics cover the simple case in which the application
always receives a known exact type, such as Address_t. These topics do
not describe the likely scenario in which an external routine or a client
program may receive Address_t, Brazil_addr_t, Germany_addr_t, or
US_addr_t. However, you must understand the basic process before
attempting to apply that basic process to the more complex case, in
which the external routine or client needs to handle dynamically any
type or its subtypes. For information about how to dynamically handle
subtype instances, see “Retrieving Subtype Data from DB2 (Bind Out)”
on page 332.

Exchanging Objects with External Routines: Function Transforms
This section describes a particular type of transforms called function transforms.
DB2 uses these TO SQL and FROM SQL function transforms to pass an object
to and from an external routine. There is no need to use transforms for
SQL-bodied routines. However, as “Exchanging Objects with a Program:
Client Transforms” on page 327 describes, DB2 often uses these functions as
part of the process of passing an object to and from a client program.

The following example issues an SQL statement that invokes an external UDF
called MYUDF that takes an address as an input parameter, modifies the address
(to reflect a change in street names, for example), and returns the modified
address:

SELECT MYUDF(Address)
FROM PERSON;

Figure 16 on page 323 shows how DB2 processes the address.

322 Application Development Guide

1. Your FROM SQL transform function decomposes the structured object into
an ordered set of its base attributes. This enables the routine to receive the
object as a simple list of parameters whose types are basic built-in data
types. For example, assume that you want to pass an address object to an
external routine. The attributes of Address_t are VARCHAR, CHAR,
VARCHAR, and VARCHAR, in that order. The FROM SQL transform for
passing this object to a routine must accept this object as an input and
return VARCHAR, CHAR, VARCHAR, and VARCHAR. These outputs are
then passed to the external routine as four separate parameters, with four

SELECT MYUDF(Address) FROM Person;

MYUDF (varchar, char, varchar, varchar)
input parameters

(varchar, char, varchar, varchar)
structured type output

1. FROM SQL function transform

3. TO SQL function transform

2. The external code which implements MYUDF operates on 4 parameters
...and returns 4 output parameters.

VARCHAR

VARCHAR

VARCHAR

VARCHAR

VARCHAR

VARCHAR

CHAR

CHAR

structured type input

structured type input

Figure 16. Exchanging a structured type parameter with an external routine

Chapter 12. Working with Complex Objects: User-Defined Structured Types 323

corresponding null indicator parameters, and a null indicator for the
structured type itself. The order of parameters in the FROM SQL function
does not matter, as long as all functions that return Address_t types use
the same order. For more information, see “Passing Structured Type
Parameters to External Routines” on page 325.

2. Your external routine accepts the decomposed address as its input
parameters, does its processing on those values, and then returns the
attributes as output parameters.

3. Your TO SQL transform function must turn the VARCHAR, CHAR,
VARCHAR, and VARCHAR parameters that are returned from MYUDF back
into an object of type Address_t. In other words, the TO SQL transform
function must take the four parameters, and all of the corresponding null
indicator parameters, as output values from the routine. The TO SQL
function constructs the structured object and then mutates the attributes
with the given values.

Note: If MYUDF also returns a structured type, another transform function must
transform the resultant structured type when the UDF is used in a
SELECT clause. To avoid creating another transform function, you can
use SELECT statements with observer methods, as in the following
example:

SELECT Name
FROM Employee
WHERE MYUDF(Address)..city LIKE ‘Tor%’;

Implementing Function Transforms Using SQL-Bodied Routines: To
decompose and construct objects when exchanging the object with an external
routine, you can use user-defined functions written in SQL, called SQL-bodied
routines. To create a SQL-bodied routine, issue a CREATE FUNCTION
statement with the LANGUAGE SQL clause.

In your SQL-bodied function, you can use constructors, observers, and
mutators to achieve the transformation. As shown in Figure 16 on page 323,
this SQL-bodied transform intervenes between the SQL statement and the
external function. The FROM SQL transform takes the object as an SQL
parameter and returns a row of values representing the attributes of the
structured type. The following example contains a possible FROM SQL
transform function for an address object using a SQL-bodied function:

CREATE FUNCTION addresstofunc (A Address_t) �1�
RETURNS ROW (Street VARCHAR(30), Number CHAR(15),

City VARCHAR(30), State (VARCHAR(10)) �2�

LANGUAGE SQL �3�
RETURN VALUES (A..Street, A..Number, A..City, A..State) �4�

324 Application Development Guide

The following list explains the syntax of the preceding CREATE FUNCTION
statement:
1. The signature of this function indicates that it accepts one parameter, an

object of type Address_t.
2. The RETURNS ROW clause indicates that the function returns a row

containing four columns: Street, Number, City, and State.
3. The LANGUAGE SQL clause indicates that this is an SQL-bodied function,

not an external function.
4. The RETURN clause marks the the beginning of the function body. The

body consists of a single VALUES clause that invokes the observer method
for each attribute of the Address_t object. The observer methods
decompose the object into a set of base types, which the function returns
as a row.

DB2 does not know that you intend to use this function as a transform
function. Until you create a transform group that uses this function, and then
specify that transform group in the appropriate situation, DB2 cannot use the
function as a transform function. For more information, see “Associating
Transforms with a Type” on page 318.

The TO SQL transform simply does the opposite of the FROM SQL function.
It takes as input the list of parameters from a routine and returns an instance
of the structured type. To construct the object, the following FROM SQL
function invokes the constructor function for the Address_t type:

CREATE FUNCTION functoaddress (street VARCHAR(30), number CHAR(15),
city VARCHAR(30), state VARCHAR(10)) �1�

RETURNS Address_t �2�
LANGUAGE SQL
CONTAINS SQL
RETURN

Address_t()..street(street)..number(number)
..city(city)..state(state) �3�

The following list explains the syntax of the previous statement:
1. The function takes a set of base type attributes.
2. The function returns an Address_t structured type.
3. The function constructs the object from the input types by invoking the

constructor for Address_t and the mutators for each of the attributes.

The order of parameters in the FROM SQL function does not matter, other
than that all functions that return addresses must use this same order.

Passing Structured Type Parameters to External Routines: When you pass
structured type parameters to an external routine, you should pass a
parameter for each attribute. You must pass a null indicator for each

Chapter 12. Working with Complex Objects: User-Defined Structured Types 325

parameter and a null indicator for the structured type itself. The following
example accepts the structured type Address_t and returns a base type:

CREATE FUNCTION stream_to_client (Address_t)
RETURNS VARCHAR(150) ...

The external routine must accept the null indicator for the instance of the
Address_t type (address_ind) and one null indicator for each of the attributes
of the Address_t type. There is also a null indicator for the VARCHAR output
parameter. The following code represents the C language function headers for
the functions which implement the UDFs:

void SQL_API_FN stream_to_client(
/*decomposed address*/

SQLUDF_VARCHAR *street,
SQLUDF_CHAR *number,
SQLUDF_VARCHAR *city,
SQLUDF_VARCHAR *state,
SQLUDF_VARCHAR *output,

/*null indicators for type attributes*/
SQLUDF_NULLIND *street_ind,
SQLUDF_NULLIND *number_ind,
SQLUDF_NULLIND *city_ind,
SQLUDF_NULLIND *state_ind,

/*null indicator for instance of the type*/
SQLUDF_NULLIND *address_ind,

/*null indicator for the VARCHAR output*/
SQLUDF_NULLIND *out_ind,
SQLUDF_TRAIL_ARGS)

Passing Structured Type Parameters to External Routines: Complex:
Suppose that the routine accepts two different structured type parameters, st1
and st2, and returns another structured type of st3:

CREATE FUNCTION myudf (int, st1, st2)
RETURNS st3

Table 14. Attributes of myudf parameters

ST1 ST2 ST3

st1_att1 VARCHAR st2_att1 VARCHAR st3_att1 INTEGER

st2_att2 INTEGER st2_att2 CHAR st3_att2 CLOB

st2_att3 INTEGER

The following code represents the C language headers for routines which
implement the UDFs. The arguments include variables and null indicators for
the attributes of the decomposed structured type and a null indicator for each
instance of a structured type, as follows:

void SQL_API_FN myudf(
SQLUDF_INTEGER *INT,

/* Decompose st1 input */

326 Application Development Guide

SQLUDF_VARCHAR *st1_att1,
SQLUDF_INTEGER *st1_att2,

/* Decompose st2 input */
SQLUDF_VARCHAR *st2_att1,
SQLUDF_CHAR *st2_att2,
SQLUDF_INTEGER *st2_att3,

/* Decompose st3 output */
SQLUDF_VARCHAR *st3_att1out,
SQLUDF_CLOB *st3_att2out,

/* Null indicator of integer*/
SQLUDF_NULLIND *INT_ind,

/* Null indicators of st1 attributes and type*/
SQLUDF_NULLIND *st1_att1_ind,
SQLUDF_NULLIND *st1_att2_ind,
SQLUDF_NULLIND *st1_ind,

/* Null indicators of st2 attributes and type*/
SQLUDF_NULLIND *st2_att1_ind,
SQLUDF_NULLIND *st2_att2_ind,
SQLUDF_NULLIND *st2_att3_ind,
SQLUDF_NULLIND *st2_ind,

/* Null indicators of st3_out attributes and type*/
SQLUDF_NULLIND *st3_att1_ind,
SQLUDF_NULLIND *st3_att2_ind,
SQLUDF_NULLIND *st3_ind,

/* trailing arguments */
SQLUDF_TRAIL_ARGS

)

Exchanging Objects with a Program: Client Transforms: This section
describes client transforms. Client transforms exchange structured types with
client application programs.

For example, assume that you want to execute the following SQL statement:
...
SQL TYPE IS Address_t AS VARCHAR(150) addhv;
...

EXEC SQL SELECT Address
FROM Person
INTO :addhv
WHERE AGE > 25

END EXEC;

Figure 17 on page 328 shows the process of binding out that address to the
client program.

Chapter 12. Working with Complex Objects: User-Defined Structured Types 327

1. The object must first be passed to the FROM SQL function transform to
decompose it into its base type attributes.

2. Your FROM SQL client transform must encode the value into a single
built-in type, such as a VARCHAR or BLOB. This enables the client
program to receive the entire value in a single host variable.
This encoding can be as simple as copying the attributes into a contiguous
area of storage (providing for required alignments as necessary). Because
the encoding and decoding of attributes cannot generally be achieved with
SQL, client transforms are usually written as external UDFs.
For information about processing data between platforms, see “Data
Conversion Considerations” on page 330.

3. The client program processes the value.

Figure 18 on page 329 shows the reverse process of passing the address back
to the database.

SELECT FROM Person INTO: WHERE...;Address addhv

flattened address attributes

1. FROM SQL transformfunction

2. FROM SQL transformclient

Server
Client

3. After retrieving the address as a VARCHAR,
the client can decode its attributes and
access them as desired.

VARCHAR

Figure 17. Binding out a structured type to a client application

328 Application Development Guide

1. The client application encodes the address into a format expected by the
TO SQL client transform.

2. The TO SQL client transform decomposes the single built-in type into a set
of its base type attributes, which is used as input to the TO SQL function
transform.

3. The TO SQL function transform constructs the address and returns it to
the database.

Implementing Client Transforms Using External UDFs: Register the client
transforms the same way as any other external UDF. For example, assume
that you have written external UDFs that do the appropriate encoding and
decoding for an address. Suppose that you have named the FROM SQL client
transform from_sql_to_client and the TO SQL client transform
to_sql_from_client. In both of these cases, the output of the functions are in
a format that can be used as input by the appropriate FROM SQL and TO
SQL function transforms.

CREATE FUNCTION from_sql_to_client (Address_t)
RETURNS VARCHAR (150)
LANGUAGE C

INSERT INTO Person (Address) VALUES (:addhv);

decomposed Address_t attributes

1. TO SQL transformfunction

2. TO SQL transformclient

Server

Client

3. Before sending the address as an instance of type
Address_t, the client invokes the TO SQL function
transform to decompose the host variable into
Address_t attributes, then invokes the TO SQL
client transform to construct an instance of
Address_t, which the server inserts into the table.

Address_t

Figure 18. Binding in a structured type from a client

Chapter 12. Working with Complex Objects: User-Defined Structured Types 329

TRANSFORM GROUP func_group
EXTERNAL NAME 'addressudf!address_from_sql_to_client'
NOT VARIANT
NO EXTERNAL ACTION
NOT FENCED
NO SQL
PARAMETER STYLE DB2SQL;

The DDL in the previous example makes it seem as if the from_sql_to_client
UDF accepts a parameter of type Address_t. What really happens is that, for
each row for which the from_sql_to_client UDF is invoked, the
Addresstofunc transform decomposes the Address into its various attributes.
The from_sql_to_client UDF produces a simple character string and formats
the address attributes for display, allowing you to use the following simple
SQL query to display the Name and Address attributes for each row of the
Person table:

SELECT Name, from_sql_to_client (Address)
FROM Person;

Client Transform for Binding in from a Client: The following DDL registers a
function that takes the VARCHAR-encoded object from the client, decomposes
it into its various base type attributes, and passes it to the TO SQL function
transform.

CREATE FUNCTION to_sql_from_client (VARCHAR (150))
RETURNS Address_t
LANGUAGE C
TRANSFORM GROUP func_group
EXTERNAL NAME 'addressudf!address_to_sql_from_client'
NOT VARIANT
NO EXTERNAL ACTION
NOT FENCED
NO SQL
PARAMETER STYLE DB2SQL;

Although it appears as if the to_sql_from_client returns the address directly,
what really happens is that to_sql_from_client converts the VARCHAR (150)
to a set of base type attributes. Then DB2 implicitly invokes the TO SQL
transform functoaddress to construct the address object that is returned to the
database.

How does DB2 know which function transform to invoke? Notice that the DDL in
both to_sql_from_client and from_sql_to_client include a clause called
TRANSFORM GROUP. This clause tells DB2 which set of transforms to use in
processing the address type in those functions. For more information, see
“Associating Transforms with a Type” on page 318.

Data Conversion Considerations: It is important to note that when data,
especially binary data, is exchanged between server and client, there are
several data conversion issues to consider. For example, when data is

330 Application Development Guide

transferred between platforms with different byte-ordering schemes, numeric
data must undergo a byte-reversal process to restore its correct numeric value.
Different operating systems also have certain alignment requirements for
referencing numeric data in memory; some operating systems will cause
program exceptions if these requirements are not observed. Character data
types are automatically converted by the database, except when character data
is embedded in a binary data type such as BLOB or a VARCHAR FOR BIT
DATA.

There are two ways to avoid data conversion problems:
v Always transform objects into printable character data types, including

numeric data.
This approach has the disadvantages of slowing performance, due to the
many potential conversions required, and increasing the complexity of code
accessing these objects, such as on the client or in the transform function
itself.

v Devise a platform-neutral format for an object transformed into a binary
data type, similar to the approach that is taken by Java implementations. Be
sure to:
– Take care when packing or unpacking these compacted objects to

properly encode or decode the individual data types and to avoid data
corruption or program faults.

– Include sufficient header information in the transformed type so that the
remainder of the encoded object can be correctly interpreted independent
of the client or server platform.

– Use the DBINFO option of CREATE FUNCTION to pass to the transform
function various characteristics related to the database server
environment. These characteristics can be included in the header in a
platform-neutral format. For more information about using DBINFO, see
“The Arguments Passed from DB2 to a UDF” on page 387.

For more information about data conversion, see “National Language
Support Considerations” on page 493.

Note: As much as possible, you should write transform functions so that they
correctly handle all of the complexities associated with the transfer of
data between server and client. When you design your application,
consider the specific requirements of your environment and evaluate
the tradeoffs between complete generality and simplicity. For example,
if you know that both the database server and all of its clients run in
an AIX environment and use the same code page, you could decide to
ignore the previously discussed considerations, because no conversions
are currently required. However, if your environment changes in the
future, you may have to exert considerable effort to revise your original
design to correctly handle data conversion.

Chapter 12. Working with Complex Objects: User-Defined Structured Types 331

Transform Function Summary
Table 15 is intended to help you determine what transform functions you
need, depending on whether you are binding out to an external routine or a
client application.

Table 15. Characteristics of transform functions

Characteristic Exchanging values with an
external routine

Exchanging values with a client
application

Transform
direction

FROM SQL TO SQL FROM SQL TO SQL

What is being
transformed

Routine
parameter

Routine result Output host
variable

Input host
variable

Behavior Decomposes Constructs Encodes Decodes

Transform
function
parameters

Structured type Row of built-in
types

Structured type One built-in
type

Transform
function result

Row of built-in
types (probably
attributes)

Structured type One built-in
type

Structured type

Dependent on
another
transform?

No No FROM SQL
UDF transform

TO SQL UDF
transform

When is the
transform
group
specified?

At the time the UDF is registered Static: precompile time
Dynamic: Special register

Are there data
conversion
considerations?

No Yes

Note: Although not generally the case, client type transforms can actually be
written in SQL if any of the following are true:
v The structured type contains only one attribute.
v The encoding and decoding of the attributes into a built-in type can

be achieved by some combination of SQL operators or functions.

In these cases, you do not have to depend on function transforms to
exchange the values of a structured type with a client application.

Retrieving Subtype Data from DB2 (Bind Out)
Most of the information in the previous sections assume that the application is
passing around a known exact type. If your data model takes advantage of
subtypes, a value in a column could be one of many different subtypes. This

332 Application Development Guide

section describes how you can dynamically choose the correct transform
functions based on the actual input type.

Suppose you want to issue the following SELECT statement:
SELECT Address

FROM Person
INTO :hvaddr;

The application has no way of knowing whether a instance of Address_t,
US_addr_t, or so on, will be returned. To keep the example from being too
complex, let us assume that only Address_t or US_addr_t can be returned. The
structures of these types are different, so the transforms that decompose the
attributes must be different. To ensure that the proper transforms are invoked,
perform the following steps:
Step 1. Create a FROM SQL function transform for each variation of address:

CREATE FUNCTION addresstofunc(A address_t)
RETURNS ROW
(Street VARCHAR(30), Number CHAR(15), City
VARCHAR(30), STATE VARCHAR (10))
LANGUAGE SQL
RETURN VALUES
(A..Street, A..Number, A..City, A..State)

CREATE FUNCTION US_addresstofunc(A US_addr_t)
RETURNS ROW
(Street VARCHAR(30), Number CHAR(15), City
VARCHAR(30), STATE VARCHAR (10), Zip
CHAR(10))
LANGUAGE SQL
RETURN VALUES
(A..Street, A..Number, A..City, A..State, A..Zip)

Step 2. Create transform groups, one for each type variation:
CREATE TRANSFORM FOR Address_t

funcgroup1 (FROM SQL WITH FUNCTION addresstofunc)

CREATE TRANSFORM FOR US_addr_t
funcgroup2 (FROM SQL WITH FUNCTION US_addresstofunc)

Step 3. Create external UDFs, one for each type variation.
Register the external UDF for the Address_t type:

CREATE FUNCTION address_to_client (A Address_t)
RETURNS VARCHAR(150)
LANGUAGE C
EXTERNAL NAME 'addressudf!address_to_client'
...
TRANSFORM GROUP funcgroup1

Write the address_to_client UDF:

Chapter 12. Working with Complex Objects: User-Defined Structured Types 333

void SQL_API_FN address_to_client(
SQLUDF_VARCHAR *street,
SQLUDF_CHAR *number,
SQLUDF_VARCHAR *city,
SQLUDF_VARCHAR *state,
SQLUDF_VARCHAR *output,

/* Null indicators for attributes */
SQLUDF_NULLIND *street_ind,
SQLUDF_NULLIND *number_ind,
SQLUDF_NULLIND *city_ind,
SQLUDF_NULLIND *state_ind,
/* Null indicator for instance */
SQLUDF_NULLIND *address_ind,
/* Null indicator for output */
SQLUDF_NULLIND *output_ind,
SQLUDF_TRAIL_ARGS)

{
sprintf (output, "[address_t] [Street:%s] [number:%s]
[city:%s] [state:%s]",
street, number, city, state);
*output_ind = 0;

}

Register the external UDF for the US_addr_t type:
CREATE FUNCTION address_to_client (A US_addr_t)

RETURNS VARCHAR(150)
LANGUAGE C
EXTERNAL NAME 'addressudf!US_addr_to_client'
...
TRANSFORM GROUP funcgroup2

Write the US_addr_to_client UDF:
void SQL_API_FN US_address_to_client(

SQLUDF_VARCHAR *street,
SQLUDF_CHAR *number,
SQLUDF_VARCHAR *city,
SQLUDF_VARCHAR *state,
SQLUDF_CHAR *zip,
SQLUDF_VARCHAR *output,

/* Null indicators */
SQLUDF_NULLIND *street_ind,
SQLUDF_NULLIND *number_ind,
SQLUDF_NULLIND *city_ind,
SQLUDF_NULLIND *state_ind,
SQLUDF_NULLIND *zip_ind,
SQLUDF_NULLIND *us_address_ind,
SQLUDF_NULLIND *output_ind,
SQLUDF_TRAIL_ARGS)

{
sprintf (output, "[US_addr_t] [Street:%s] [number:%s]

334 Application Development Guide

[city:%s] [state:%s] [zip:%s]",
street, number, city, state, zip);
*output_ind = 0;

}

Step 4. Create a SQL-bodied UDF that chooses the correct external UDF to
process the instance. The following UDF uses the TREAT specification
in SELECT statements combined by a UNION ALL clause to invoke
the correct FROM SQL client transform:

CREATE FUNCTION addr_stream (ab Address_t)
RETURNS VARCHAR(150)
LANGUAGE SQL
RETURN
WITH temp(addr) AS
(SELECT address_to_client(ta.a)

FROM TABLE (VALUES (ab)) AS ta(a)
WHERE ta.a IS OF (ONLY Address_t)
UNION ALL

SELECT address_to_client(TREAT (tb.a AS US_addr_t))
FROM TABLE (VALUES (ab)) AS tb(a)
WHERE tb.a IS OF (ONLY US_addr_t))

SELECT addr FROM temp;

At this point, applications can invoke the appropriate external UDF
by invoking the Addr_stream function:

SELECT Addr_stream(Address)
FROM Employee;

Step 5. Add the Addr_stream external UDF as a FROM SQL client transform
for Address_t:

CREATE TRANSFORM GROUP FOR Address_t
client_group (FROM SQL
WITH FUNCTION Addr_stream)

Note: If your application might use a type predicate to specify
particular address types in the query, add Addr_stream as a
FROM SQL to client transform for US_addr_t. This ensures that
Addr_stream can be invoked when a query specifically requests
instances of US_addr_t.

Step 6. Bind the application with the TRANSFORM GROUP option set to
client_group.

PREP myprogram TRANSFORM GROUP client_group

When DB2 binds the application that contains the
SELECT Address FROM Person INTO :hvar statement, DB2 looks for a FROM
SQL client transform. DB2 recognizes that a structured type is being bound
out, and looks in the transform group client_group because that is the
TRANSFORM GROUP specified at bind time in 6.

Chapter 12. Working with Complex Objects: User-Defined Structured Types 335

The transform group contains the transform function Addr_stream associated
with the root type Address_t in 5 on page 335. Addr_stream is a SQL-bodied
function, defined in 4 on page 335, so it has no dependency on any other
transform function. The Addr_stream function returns VARCHAR(150), the
data type required by the :hvaddr host variable.

The Addr_stream function takes an input value of type Address_t, which can
be substituted with US_addr_t in this example, and determines the dynamic
type of the input value. When Addr_stream determines the dynamic type, it
invokes the corresponding external UDF on the value: address_to_client if
the dynamic type is Address_t; or USaddr_to_client if the dynamic type is
US_addr_t. These two UDFs are defined in 3 on page 333. Each UDF
decomposes their respective structured type to VARCHAR(150), the type
required by the Addr_stream transform function.

To accept the structured types as input, each UDF needs a FROM SQL
transform function to decompose the input structured type instance into
individual attribute parameters. The CREATE FUNCTION statements in 3 on
page 333 name the TRANSFORM GROUP that contains these transforms.

The CREATE FUNCTION statements for the transform functions are issued in
1 on page 333. The CREATE TRANSFORM statements that associate the
transform functions with their transform groups are issued in 2 on page 333.

Returning Subtype Data to DB2 (Bind In)
Once the application described in “Retrieving Subtype Data from DB2 (Bind
Out)” on page 332 manipulates the address value, it may need to insert the
changed value back into the database. Suppose you want to insert a
structured type into a DB2 database from an application using the following
syntax:

INSERT INTO person (Oid, Name, Address)
VALUES (‘n’, ‘Norm’, :hvaddr);

To execute the INSERT statement for a structured type, your application must
perform the following steps:
Step 1. Create a TO SQL function transform for each variation of address.

The following example shows SQL-bodied UDFs that transform the
Address_t and US_addr_t types:

CREATE FUNCTION functoaddress
(str VARCHAR(30), num CHAR(15), cy VARCHAR(30), st VARCHAR (10))
RETURNS Address_t
LANGUAGE SQL
RETURN Address_t()..street(str)..number(num)..city(cy)..state(st);

CREATE FUNCTION functoaddress
(str VARCHAR(30), num CHAR(15), cy VARCHAR(30), st VARCHAR (10),
zp CHAR(10))

336 Application Development Guide

RETURNS US_addr_t
LANGUAGE SQL
RETURN US_addr_t()..street(str)..number(num)..city(cy)

..state(st)..zip(zp);

Step 2. Create transform groups, one for each type variation:
CREATE TRANSFORM FOR Address_t

funcgroup1 (TO SQL
WITH FUNCTION functoaddress);

CREATE TRANSFORM FOR US_addr_t
funcgroup2 (TO SQL
WITH FUNCTION functousaddr);

Step 3. Create external UDFs that return the encoded address types, one for
each type variation.
Register the external UDF for the Address_t type:

CREATE FUNCTION client_to_address (encoding VARCHAR(150))
RETURNS Address_t
LANGUAGE C
TRANSFORM GROUP funcgroup1
...
EXTERNAL NAME 'address!client_to_address';

Write the external UDF for the Address_t version of
client_to_address:

void SQL_API_FN client_to_address (
SQLUDF_VARCHAR *encoding,
SQLUDF_VARCHAR *street,
SQLUDF_CHAR *number,
SQLUDF_VARCHAR *city,
SQLUDF_VARCHAR *state,

/* Null indicators */
SQLUDF_NULLIND *encoding_ind,
SQLUDF_NULLIND *street_ind,
SQLUDF_NULLIND *number_ind,
SQLUDF_NULLIND *city_ind,
SQLUDF_NULLIND *state_ind,
SQLUDF_NULLIND *address_ind,
SQLUDF_TRAIL_ARGS)

{
char c[150];
char *pc;

strcpy(c, encoding);

pc = strtok (c, ":]");
pc = strtok (NULL, ":]");
pc = strtok (NULL, ":]");
strcpy (street, pc);
pc = strtok (NULL, ":]");
pc = strtok (NULL, ":]");
strcpy (number, pc);

Chapter 12. Working with Complex Objects: User-Defined Structured Types 337

pc = strtok (NULL, ":]");
pc = strtok (NULL, ":]");
strcpy (city, pc);
pc = strtok (NULL, ":]");
pc = strtok (NULL, ":]");
strcpy (state, pc);

*street_ind = *number_ind = *city_ind
= *state_ind = *address_ind = 0;

}

Register the external UDF for the US_addr_t type:
CREATE FUNCTION client_to_us_address (encoding VARCHAR(150))

RETURNS US_addr_t
LANGUAGE C
TRANSFORM GROUP funcgroup1
...
EXTERNAL NAME 'address!client_to_US_addr';

Write the external UDF for the US_addr_t version of
client_to_address:

void SQL_API_FN client_to_US_addr(
SQLUDF_VARCHAR *encoding,
SQLUDF_VARCHAR *street,
SQLUDF_CHAR *number,
SQLUDF_VARCHAR *city,
SQLUDF_VARCHAR *state,
SQLUDF_VARCHAR *zip,

/* Null indicators */
SQLUDF_NULLIND *encoding_ind,
SQLUDF_NULLIND *street_ind,
SQLUDF_NULLIND *number_ind,
SQLUDF_NULLIND *city_ind,
SQLUDF_NULLIND *state_ind,
SQLUDF_NULLIND *zip_ind,
SQLUDF_NULLIND *us_addr_ind,
SQLUDF_TRAIL_ARGS)

{
char c[150];
char *pc;

strcpy(c, encoding);

pc = strtok (c, ":]");
pc = strtok (NULL, ":]");
pc = strtok (NULL, ":]");
strcpy (street, pc);
pc = strtok (NULL, ":]");
pc = strtok (NULL, ":]");
strncpy (number, pc,14);
pc = strtok (NULL, ":]");

338 Application Development Guide

pc = strtok (NULL, ":]");
strcpy (city, pc);
pc = strtok (NULL, ":]");
pc = strtok (NULL, ":]");
strcpy (state, pc);
pc = strtok (NULL, ":]");
pc = strtok (NULL, ":]");
strncpy (zip, pc, 9);

*street_ind = *number_ind = *city_ind
= *state_ind = *zip_ind = *us_addr_ind = 0;

}

Step 4. Create a SQL-bodied UDF that chooses the correct external UDF for
processing that instance. The following UDF uses the TYPE predicate
to invoke the correct to client transform. The results are placed in a
temporary table:

CREATE FUNCTION stream_address (ENCODING VARCHAR(150))
RETURNS Address_t
LANGUAGE SQL
RETURN
(CASE(SUBSTR(ENCODING,2,POSSTR(ENCODING,‘]’)−2))
WHEN ‘address_t’

THEN client_to_address(ENCODING)
WHEN ‘us_addr_t’

THEN client_to_us_addr(ENCODING)
ELSE NULL
END);

Step 5. Add the stream_address UDF as a TO SQL client transform for
Address_t:

CREATE TRANSFORM FOR Address_t
client_group (TO SQL
WITH FUNCTION stream_address);

Step 6. Bind the application with the TRANSFORM GROUP option set to
client_group.

PREP myProgram2 TRANSFORM GROUP client_group

When the application containing the INSERT statement with a structured type
is bound, DB2 looks for a TO SQL client transform. DB2 looks for the
transform in the transform group client_group because that is the
TRANSFORM GROUP specified at bind time in 6. DB2 finds the transform
function it needs: stream_address, which is associated with the root type
Address_t in 5.

stream_address is a SQL-bodied function, defined in 4, so it has no stated
dependency on any additional transform function. For input parameters,
stream_address accepts VARCHAR(150), which corresponds to the application
host variable :hvaddr. stream_address returns a value that is both of the
correct root type, Address_t, and of the correct dynamic type.

Chapter 12. Working with Complex Objects: User-Defined Structured Types 339

stream_address parses the VARCHAR(150) input parameter for a substring
that names the dynamic type: in this case, either ‘Address_t’ or ‘US_addr_t’.
stream_address then invokes the corresponding external UDF to parse the
VARCHAR(150) and returns an object of the specified type. There are two
client_to_address() UDFs, one to return each possible type. These UDFs are
defined in 3 on page 337. Each UDF takes the input VARCHAR(150), and
internally constructs the attributes of the appropriate structured type, thus
returning the structured type.

To return the structured types, each UDF needs a TO SQL transform function
to construct the output attribute values into an instance of the structured type.
The CREATE FUNCTION statements in 3 on page 337 name the
TRANSFORM GROUP that contains the transforms.

The SQL-bodied transform functions from 1 on page 336, and the associations
with the transform groups from 2 on page 337, are named in the CREATE
FUNCTION statements of 3 on page 337.

Working with Structured Type Host Variables

Declaring Structured Type Host Variables
To retrieve or send structured type host variables in static SQL, you must
provide an SQL declaration that indicates the built-in type used to represent
the structured type. The format of the declaration is as follows:

EXEC SQL BEGIN DECLARE SECTION ;

SQL TYPE IS structured_type AS base_type host-variable-name ;

EXEC SQL END DECLARE SECTION;

For example, assume that the type Address_t is to be transformed to a
varying-length character type when passed to the client application. Use the
following declaration for the Address_t type host variable:

SQL TYPE IS Address_t AS VARCHAR(150) addrhv;

Describing a Structured Type
A DESCRIBE of a statement with a structured type variable causes DB2 to put
a description of the result type of the FROM SQL transform function in the
SQLTYPE field of the base SQLVAR of the SQLDA. However, if there is no
FROM SQL transform function defined, either because no TRANSFORM
GROUP was specified using the CURRENT DEFAULT TRANSFORM GROUP
special register or because the named group does not have a FROM SQL
transform function defined, DESCRIBE returns an error.

The actual name of the structured type is returned in SQLVAR2. For more
information about the structure of the SQLDA, refer to the SQL Reference.

340 Application Development Guide

Chapter 13. Using Large Objects (LOBs)

What are LOBs? 341
Understanding Large Object Data Types
(BLOB, CLOB, DBCLOB) 342
Understanding Large Object Locators . . . 343
Example: Using a Locator to Work With a
CLOB Value 345

How the Sample LOBLOC Program
Works. 345
C Sample: LOBLOC.SQC 346
COBOL Sample: LOBLOC.SQB 348

Example: Deferring the Evaluation of a LOB
Expression 351

How the Sample LOBEVAL Program
Works. 352

C Sample: LOBEVAL.SQC 353
COBOL Sample: LOBEVAL.SQB 355
Indicator Variables and LOB Locators . . 358

LOB File Reference Variables 358
Example: Extracting a Document To a File 360

How the Sample LOBFILE Program
Works. 360
C Sample: LOBFILE.SQC 361
COBOL Sample: LOBFILE.SQB 362

Example: Inserting Data Into a CLOB
Column 364

What are LOBs?

The LONG VARCHAR and LONG VARGRAPHIC data types have a limit of
32K bytes of storage. While this may be sufficient for small to medium size
text data, applications often need to store large text documents. They may also
need to store a wide variety of additional data types such as audio, video,
drawings, mixed text and graphics, and images. DB2 provides three data
types to store these data objects as strings of up to two (2) gigabytes (GB) in
size. The three data types are: Binary Large Objects (BLOBs), single-byte
Character Large Objects (CLOBs), and Double-Byte Character Large Objects
(DBCLOBs).

Along with storing large objects (LOBs), a way is also needed to refer to, and
to use and modify, each LOB in the database. Each DB2 table may have a
large amount of associated LOB data. Although any single LOB value may not
exceed 2 gigabytes, a single row may contain as much as 24 gigabytes of LOB
data, and a table may contain as much as 4 terabytes of LOB data. The
content of the LOB column of a particular row at any point in time has a large
object value.

You can refer to and manipulate LOBs using host variables just as you would
any other data type. However, host variables use the client memory buffer
which may not be large enough to hold LOB values. Other means are
necessary to manipulate these large values. Locators are useful to identify and
manipulate a large object value at the database server and for extracting
pieces of the LOB value. File reference variables are useful for physically
moving a large object value (or a large part of it) to and from the client.

© Copyright IBM Corp. 1993, 2000 341

Note: DB2 offers LOB support for JDBC and SQLJ applications. For more
information on using LOBs in Java applications, see “JDBC 2.0” on
page 634.

The subsections that follow discuss in more detail those topics introduced
above.

Understanding Large Object Data Types (BLOB, CLOB, DBCLOB)

Large object data types store data ranging in size from zero bytes to two
gigabytes - 1.

The three large object data types have the following definitions:
v Character Large Objects (CLOBs) — A character string made up of

single-byte characters with an associated code page. This data type is best
for holding text-oriented information where the amount of information
could grow beyond the limits of a regular VARCHAR data type (upper
limit of 4K bytes). Code page conversion of the information is supported as
well as compatibility with the other character types.

v Double-Byte Character Large Objects (DBCLOBs) — A character string
made up of double-byte characters with an associated code page. This data
type is best for holding text-oriented information where double-byte
character sets are used. Again, code page conversion of the information is
supported as well as compatibility with the other character types.

v Binary Large Objects (BLOBs) — A binary string made up of bytes with no
associated code page. This data type may be the most useful because it can
store binary data, making it a perfect source type for use by User-defined
Distinct Types (UDTs). UDTs using BLOBs as the source type are created to
store image, voice, graphical, and other types of business or application
specific data. For more information on UDTs, see “Chapter 11. User-defined
Distinct Types” on page 273.

A separate database location stores all large object values outside their records
in the table. There is a large object descriptor for each large object in each row
in a table. The large object descriptor contains control information used to
access the large object data stored elsewhere on disk. It is the storing of large
object data outside their records that allows LOBs to be 2 GB in size.
Accessing the large object descriptor causes a small amount of overhead when
manipulating LOBs. (For storage and performance reasons you would likely
not want to put small data items into LOBs.)

The maximum size for each large object column is part of the declaration of
the large object type in the CREATE TABLE statement. The maximum size of
a large object column determines the maximum size of any LOB descriptor in
that column. As a result, it also determines how many columns of all data

342 Application Development Guide

types can fit in a single row. The space used by the LOB descriptor in the row
ranges from approximately 60 to 300 bytes, depending on the maximum size
of the corresponding column. For specific sizes of the LOB descriptor, refer to
the CREATE TABLE statement in the SQL Reference.

The lob-options-clause on CREATE TABLE gives you the choice to log (or
not) the changes made to the LOB column(s). This clause also allows for a
compact representation for the LOB descriptor (or not). This means you can
allocate only enough space to store the LOB or you can allocate extra space
for future append operations to the LOB. The tablespace-options-clause
allows you to identify a LONG table space to store the column values of long
field or LOB data types. For more information on the CREATE TABLE and
ALTER TABLE statements, refer to the SQL Reference.

With their potentially very large size, LOBs can slow down the performance
of your database system significantly when moved into or out of a database.
Even though DB2 does not allow logging of a LOB value greater than 1 GB,
LOB values with sizes near several hundred megabytes can quickly push the
database log to near capacity. An error, SQLCODE -355 (SQLSTATE 42993),
results from attempting to log a LOB greater than 1 GB in size. The
lob-options-clause in the CREATE TABLE and ALTER TABLE statements allows
users to turn off logging for a particular LOB column. Although setting the
option to NOT LOGGED improves performance, changes to the LOB values after
the most recent backup are lost during roll-forward recovery. For more
information on these topics, refer to the Administration Guide.

Understanding Large Object Locators

Conceptually, LOB locators represent a simple idea that has been around for a
while; use a small, easily managed value to refer to a much larger value.
Specifically, a LOB locator is a 4-byte value stored in a host variable that a
program can use to refer to a LOB value (or LOB expression) held in the
database system. Using a LOB locator, a program can manipulate the LOB
value as if the LOB value was stored in a regular host variable. The difference
in using the LOB locator is that there is no need to transport the LOB value
from the server to the application (and possibly back again).

The LOB locator is associated with a LOB value or LOB expression, not a row
or physical storage location in the database. Therefore, after selecting a LOB
value into a locator, there is no operation that you could perform on the
original row(s) or tables(s) that would have any effect on the value referenced
by the locator. The value associated with the locator is valid until the unit of
work ends, or the locator is explicitly freed, whichever comes first. The
FREE LOCATOR statement releases a locator from its associated value. In a
similar way, a commit or roll-back operation frees all LOB locators associated
with the transaction.

Chapter 13. Using Large Objects (LOBs) 343

LOB locators can also be passed between DB2 and UDFs. There are special
APIs available for UDFs to manipulate the LOB values using LOB locators.
For more information on these APIs see “Using LOB Locators as UDF
Parameters or Results” on page 434.

When selecting a LOB value, you have three options:
v Select the entire LOB value into a host variable. The entire LOB value is

copied from the server to the client.
v Select just a LOB locator into a host variable. The LOB value remains on the

server; the LOB locator moves to the client.
v Select the entire LOB value into a file reference variable. The LOB value is

moved to a file at the client without going through the application’s
memory.

The use of the LOB value within the program can help the programmer
determine which method is best. If the LOB value is very large and is needed
only as an input value for one or more subsequent SQL statements, then it is
best to keep the value in a locator. The use of a locator eliminates any
client/server communication traffic needed to transfer the LOB value to the
host variable and back to the server.

If the program needs the entire LOB value regardless of the size, then there is
no choice but to transfer the LOB. Even in this case, there are still three
options available to you. You can select the entire value into a regular or file
host variable, but it may also work out better to select the LOB value into a
locator and read it piecemeal from the locator into a regular host variable, as
suggested in the following example.

344 Application Development Guide

Example: Using a Locator to Work With a CLOB Value

In this example, the application program retrieves a locator for a LOB value;
then it uses the locator to extract the data from the LOB value. Using this
method, the program allocates only enough storage for one piece of LOB data
(the size is determined by the program) and it needs to issue only one fetch
call using the cursor.

How the Sample LOBLOC Program Works
1. Declare host variables. The BEGIN DECLARE SECTION and END

DECLARE SECTION statements delimit the host variable declarations.
Host variables are prefixed with a colon (:) when referenced in an SQL
statement. CLOB LOCATOR host variables are declared.

2. Fetch the LOB value into the host variable LOCATOR. A CURSOR and
FETCH routine is used to obtain the location of a LOB field in the
database to a host variable locator.

3. Free the LOB LOCATORS. The LOB LOCATORS used in this example are
freed, releasing the locators from their previously associated values.

The CHECKERR macro/function is an error checking utility which is external to
the program. The location of this error checking utility depends upon the
programming language used:

C For C programs that call DB2 APIs, the sqlInfoPrint function
in utilapi.c is redefined as API_SQL_CHECK in utilapi.h. For C
embedded SQL programs, the sqlInfoPrint function in
utilemb.sqc is redefined as EMB_SQL_CHECK in utilemb.h.

COBOL CHECKERR is an external program named checkerr.cbl.

FORTRAN CHECKERR is a subroutine located in the util.f file.

See “Using GET ERROR MESSAGE in Example Programs” on page 118 for the
source code for this error checking utility.

Chapter 13. Using Large Objects (LOBs) 345

C Sample: LOBLOC.SQC
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "utilemb.h"

EXEC SQL INCLUDE SQLCA;

int main(int argc, char *argv[]) {

EXEC SQL BEGIN DECLARE SECTION; �1�
char number[7];
sqlint32 deptInfoBeginLoc;
sqlint32 deptInfoEndLoc;
SQL TYPE IS CLOB_LOCATOR resume;
SQL TYPE IS CLOB_LOCATOR deptBuffer;
short lobind;
char buffer[1000]="";
char userid[9];
char passwd[19];

EXEC SQL END DECLARE SECTION;

printf("Sample C program: LOBLOC\n");

if (argc == 1) {
EXEC SQL CONNECT TO sample;

EMB_SQL_CHECK("CONNECT TO SAMPLE");
}
else if (argc == 3) {

strcpy (userid, argv[1]);
strcpy (passwd, argv[2]);
EXEC SQL CONNECT TO sample USER :userid USING :passwd;
EMB_SQL_CHECK("CONNECT TO SAMPLE");

}
else {

printf ("\nUSAGE: lobloc [userid passwd]\n\n");
return 1;

} /* endif */

/* Employee A10030 is not included in the following select, because
the lobeval program manipulates the record for A10030 so that it is
not compatible with lobloc */

EXEC SQL DECLARE c1 CURSOR FOR
SELECT empno, resume FROM emp_resume WHERE resume_format='ascii'
AND empno <> 'A00130';

EXEC SQL OPEN c1;
EMB_SQL_CHECK("OPEN CURSOR");

do {
EXEC SQL FETCH c1 INTO :number, :resume :lobind; �2�
if (SQLCODE != 0) break;
if (lobind < 0) {

printf ("NULL LOB indicated\n");

346 Application Development Guide

} else {
/* EVALUATE the LOB LOCATOR */
/* Locate the beginning of "Department Information" section */
EXEC SQL VALUES (POSSTR(:resume, 'Department Information'))

INTO :deptInfoBeginLoc;
EMB_SQL_CHECK("VALUES1");

/* Locate the beginning of "Education" section (end of "Dept.Info" */
EXEC SQL VALUES (POSSTR(:resume, 'Education'))

INTO :deptInfoEndLoc;
EMB_SQL_CHECK("VALUES2");

/* Obtain ONLY the "Department Information" section by using SUBSTR */
EXEC SQL VALUES(SUBSTR(:resume, :deptInfoBeginLoc,

:deptInfoEndLoc - :deptInfoBeginLoc)) INTO :deptBuffer;
EMB_SQL_CHECK("VALUES3");

/* Append the "Department Information" section to the :buffer var. */
EXEC SQL VALUES(:buffer || :deptBuffer) INTO :buffer;
EMB_SQL_CHECK("VALUES4");

} /* endif */
} while (1);

printf ("%s\n",buffer);

EXEC SQL FREE LOCATOR :resume, :deptBuffer; �3�
EMB_SQL_CHECK("FREE LOCATOR");

EXEC SQL CLOSE c1;
EMB_SQL_CHECK("CLOSE CURSOR");

EXEC SQL CONNECT RESET;
EMB_SQL_CHECK("CONNECT RESET");
return 0;

}
/* end of program : LOBLOC.SQC */

Chapter 13. Using Large Objects (LOBs) 347

COBOL Sample: LOBLOC.SQB
Identification Division.
Program-ID. "lobloc".

Data Division.
Working-Storage Section.

copy "sqlenv.cbl".
copy "sql.cbl".
copy "sqlca.cbl".

EXEC SQL BEGIN DECLARE SECTION END-EXEC. �1�
01 userid pic x(8).
01 passwd.

49 passwd-length pic s9(4) comp-5 value 0.
49 passwd-name pic x(18).

01 empnum pic x(6).
01 di-begin-loc pic s9(9) comp-5.
01 di-end-loc pic s9(9) comp-5.
01 resume USAGE IS SQL TYPE IS CLOB-LOCATOR.
01 di-buffer USAGE IS SQL TYPE IS CLOB-LOCATOR.
01 lobind pic s9(4) comp-5.
01 buffer USAGE IS SQL TYPE IS CLOB(1K).

EXEC SQL END DECLARE SECTION END-EXEC.

77 errloc pic x(80).

Procedure Division.
Main Section.

display "Sample COBOL program: LOBLOC".

* Get database connection information.
display "Enter your user id (default none): "

with no advancing.
accept userid.

if userid = spaces
EXEC SQL CONNECT TO sample END-EXEC

else
display "Enter your password : " with no advancing
accept passwd-name.

* Passwords in a CONNECT statement must be entered in a VARCHAR
* format with the length of the input string.

inspect passwd-name tallying passwd-length for characters
before initial " ".

EXEC SQL CONNECT TO sample USER :userid USING :passwd
END-EXEC.

move "CONNECT TO" to errloc.
call "checkerr" using SQLCA errloc.

* Employee A10030 is not included in the following select, because
* the lobeval program manipulates the record for A10030 so that it is
* not compatible with lobloc

348 Application Development Guide

EXEC SQL DECLARE c1 CURSOR FOR
SELECT empno, resume FROM emp_resume
WHERE resume_format = 'ascii'
AND empno <> 'A00130' END-EXEC.

EXEC SQL OPEN c1 END-EXEC.
move "OPEN CURSOR" to errloc.
call "checkerr" using SQLCA errloc.

Move 0 to buffer-length.

perform Fetch-Loop thru End-Fetch-Loop
until SQLCODE not equal 0.

* display contents of the buffer.
display buffer-data(1:buffer-length).

EXEC SQL FREE LOCATOR :resume, :di-buffer END-EXEC. �3�
move "FREE LOCATOR" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL CLOSE c1 END-EXEC.
move "CLOSE CURSOR" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL CONNECT RESET END-EXEC.
move "CONNECT RESET" to errloc.
call "checkerr" using SQLCA errloc.

End-Main.
go to End-Prog.

Fetch-Loop Section.
EXEC SQL FETCH c1 INTO :empnum, :resume :lobind �2�

END-EXEC.

if SQLCODE not equal 0
go to End-Fetch-Loop.

* check to see if the host variable indicator returns NULL.
if lobind less than 0 go to NULL-lob-indicated.

* Value exists. Evaluate the LOB locator.
* Locate the beginning of "Department Information" section.

EXEC SQL VALUES (POSSTR(:resume, 'Department Information'))
INTO :di-begin-loc END-EXEC.

move "VALUES1" to errloc.
call "checkerr" using SQLCA errloc.

* Locate the beginning of "Education" section (end of Dept.Info)
EXEC SQL VALUES (POSSTR(:resume, 'Education'))

INTO :di-end-loc END-EXEC.
move "VALUES2" to errloc.
call "checkerr" using SQLCA errloc.

Chapter 13. Using Large Objects (LOBs) 349

subtract di-begin-loc from di-end-loc.

* Obtain ONLY the "Department Information" section by using SUBSTR
EXEC SQL VALUES (SUBSTR(:resume, :di-begin-loc,

:di-end-loc))
INTO :di-buffer END-EXEC.

move "VALUES3" to errloc.
call "checkerr" using SQLCA errloc.

* Append the "Department Information" section to the :buffer var
EXEC SQL VALUES (:buffer || :di-buffer) INTO :buffer

END-EXEC.
move "VALUES4" to errloc.
call "checkerr" using SQLCA errloc.

go to End-Fetch-Loop.

NULL-lob-indicated.
display "NULL LOB indicated".

End-Fetch-Loop. exit.

End-Prog.
stop run.

350 Application Development Guide

Example: Deferring the Evaluation of a LOB Expression

There is no movement of the bytes of a LOB value until the assignment of a
LOB expression to a target destination. This means that a LOB value locator
used with string functions and operators can create an expression where the
evaluation is postponed until the time of assignment. This is called deferring
evaluation of a LOB expression.

In this example, a particular resume (empno = '000130') is sought within a
table of resumes EMP_RESUME. The Department Information section of the
resume is copied, cut, and then appended to the end of the resume. This new
resume will then be inserted into the EMP_RESUME table. The original resume in
this table remains unchanged.

Locators permit the assembly and examination of the new resume without
actually moving or copying any bytes from the original resume. The
movement of bytes does not happen until the final assignment; that is, the
INSERT statement — and then only at the server.

Deferring evaluation gives DB2 an opportunity to increase LOB I/O
performance. This occurs because the LOB function optimizer attempts to
transform the LOB expressions into alternative expressions. These alternative
expressions produce equivalent results but may also require fewer disk I/Os.

In summary, LOB locators are ideally suited for a number of programming
scenarios:
1. When moving only a small part of a much larger LOB to a client program.
2. When the entire LOB cannot fit in the application’s memory.
3. When the program needs a temporary LOB value from a LOB expression

but does not need to save the result.
4. When performance is important (by deferring evaluation of LOB

expressions).

Chapter 13. Using Large Objects (LOBs) 351

How the Sample LOBEVAL Program Works
1. Declare host variables. The BEGIN DECLARE SECTION and END

DECLARE SECTION statements delimit the host variable declarations.
Host variables are prefixed with a colon (:) when referenced in an SQL
statement. CLOB LOCATOR host variables are declared.

2. Fetch the LOB value into the host variable LOCATOR. A CURSOR and
FETCH routine is used to obtain the location of a LOB field in the
database to a host variable locator.

3. LOB data is manipulated through the use of LOCATORS. The next five
SQL statements manipulate the LOB data without moving the actual data
contained in the LOB field. This is done through the use of the LOB
LOCATORS.

4. LOB data is moved to the target destination. The evaluation of the LOB
assigned to the target destination is postponed until this SQL statement.
The evaluation of this LOB statement has been deferred.

5. Free the LOB LOCATORS. The LOB LOCATORS used in this example are
freed, releasing the locators from their previously associated values.

The CHECKERR macro/function is an error checking utility which is external to
the program. The location of this error checking utility depends upon the
programming language used:

C For C programs that call DB2 APIs, the sqlInfoPrint function
in utilapi.c is redefined as API_SQL_CHECK in utilapi.h. For C
embedded SQL programs, the sqlInfoPrint function in
utilemb.sqc is redefined as EMB_SQL_CHECK in utilemb.h.

COBOL CHECKERR is an external program named checkerr.cbl.

See “Using GET ERROR MESSAGE in Example Programs” on page 118 for the
source code for this error checking utility.

352 Application Development Guide

C Sample: LOBEVAL.SQC
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "utilemb.h"

EXEC SQL INCLUDE SQLCA;

int main(int argc, char *argv[]) {

EXEC SQL BEGIN DECLARE SECTION; �1�
char userid[9];
char passwd[19];
sqlint32 hv_start_deptinfo;
sqlint32 hv_start_educ;
sqlint32 hv_return_code;
SQL TYPE IS CLOB(5K) hv_new_section_buffer;
SQL TYPE IS CLOB_LOCATOR hv_doc_locator1;
SQL TYPE IS CLOB_LOCATOR hv_doc_locator2;
SQL TYPE IS CLOB_LOCATOR hv_doc_locator3;

EXEC SQL END DECLARE SECTION;

printf("Sample C program: LOBEVAL\n");

if (argc == 1) {
EXEC SQL CONNECT TO sample;

EMB_SQL_CHECK("CONNECT TO SAMPLE");
}
else if (argc == 3) {

strcpy (userid, argv[1]);
strcpy (passwd, argv[2]);
EXEC SQL CONNECT TO sample USER :userid USING :passwd;
EMB_SQL_CHECK("CONNECT TO SAMPLE");

}
else {

printf ("\nUSAGE: lobeval [userid passwd]\n\n");
return 1;

} /* endif */

/* delete any instance of "A00130" from
previous executions of this sample */

EXEC SQL DELETE FROM emp_resume WHERE empno = 'A00130';

/* Use a single row select to get the document */
EXEC SQL SELECT resume INTO :hv_doc_locator1 FROM emp_resume

WHERE empno = '000130' AND resume_format = 'ascii'; �2�
EMB_SQL_CHECK("SELECT");

/* Use the POSSTR function to locate the start of
sections "Department Information" & "Education" */

EXEC SQL VALUES (POSSTR(:hv_doc_locator1, 'Department Information'))
INTO :hv_start_deptinfo; �3�

EMB_SQL_CHECK("VALUES1");

EXEC SQL VALUES (POSSTR(:hv_doc_locator1, 'Education'))

Chapter 13. Using Large Objects (LOBs) 353

INTO :hv_start_educ;
EMB_SQL_CHECK("VALUES2");

/* Replace Department Information Section with nothing */
EXEC SQL VALUES (SUBSTR(:hv_doc_locator1, 1, :hv_start_deptinfo -1)

|| SUBSTR (:hv_doc_locator1, :hv_start_educ))
INTO :hv_doc_locator2;

EMB_SQL_CHECK("VALUES3");

/* Move Department Information Section into the hv_new_section_buffer */
EXEC SQL VALUES (SUBSTR(:hv_doc_locator1, :hv_start_deptinfo,

:hv_start_educ -:hv_start_deptinfo)) INTO :hv_new_section_buffer;
EMB_SQL_CHECK("VALUES4");

/* Append our new section to the end (assume it has been filled in)
Effectively, this just moves the Department Information to the bottom
of the resume. */

EXEC SQL VALUES (:hv_doc_locator2 || :hv_new_section_buffer) INTO
:hv_doc_locator3;

EMB_SQL_CHECK("VALUES5");

/* Store this resume section in the table. This is where the LOB value
bytes really move */

EXEC SQL INSERT INTO emp_resume VALUES ('A00130', 'ascii',
:hv_doc_locator3); �4�

EMB_SQL_CHECK("INSERT");

printf ("LOBEVAL completed\n");

/* free the locators */ �5�
EXEC SQL FREE LOCATOR :hv_doc_locator1, :hv_doc_locator2, : hv_doc_locator3;
EMB_SQL_CHECK("FREE LOCATOR");

EXEC SQL CONNECT RESET;
EMB_SQL_CHECK("CONNECT RESET");
return 0;

}
/* end of program : LOBEVAL.SQC */

354 Application Development Guide

COBOL Sample: LOBEVAL.SQB
Identification Division.
Program-ID. "lobeval".

Data Division.
Working-Storage Section.

copy "sqlenv.cbl".
copy "sql.cbl".
copy "sqlca.cbl".

EXEC SQL BEGIN DECLARE SECTION END-EXEC. �1�
01 userid pic x(8).
01 passwd.

49 passwd-length pic s9(4) comp-5 value 0.
49 passwd-name pic x(18).

01 hv-start-deptinfo pic s9(9) comp-5.
01 hv-start-educ pic s9(9) comp-5.
01 hv-return-code pic s9(9) comp-5.
01 hv-new-section-buffer USAGE IS SQL TYPE IS CLOB(5K).
01 hv-doc-locator1 USAGE IS SQL TYPE IS CLOB-LOCATOR.
01 hv-doc-locator2 USAGE IS SQL TYPE IS CLOB-LOCATOR.
01 hv-doc-locator3 USAGE IS SQL TYPE IS CLOB-LOCATOR.

EXEC SQL END DECLARE SECTION END-EXEC.

77 errloc pic x(80).

Procedure Division.
Main Section.

display "Sample COBOL program: LOBEVAL".

* Get database connection information.
display "Enter your user id (default none): "

with no advancing.
accept userid.

if userid = spaces
EXEC SQL CONNECT TO sample END-EXEC

else
display "Enter your password : " with no advancing
accept passwd-name.

* Passwords in a CONNECT statement must be entered in a VARCHAR
* format with the length of the input string.

inspect passwd-name tallying passwd-length for characters
before initial " ".

EXEC SQL CONNECT TO sample USER :userid USING :passwd
END-EXEC.

move "CONNECT TO" to errloc.
call "checkerr" using SQLCA errloc.

* Delete any instance of "A00130" from previous executions
EXEC SQL DELETE FROM emp_resume

WHERE empno = 'A00130' END-EXEC.

Chapter 13. Using Large Objects (LOBs) 355

* use a single row select to get the document
EXEC SQL SELECT resume INTO :hv-doc-locator1 �2�

FROM emp_resume
WHERE empno = '000130'
AND resume_format = 'ascii' END-EXEC.

move "SELECT" to errloc.
call "checkerr" using SQLCA errloc.

* use the POSSTR function to locate the start of sections
* "Department Information" & "Education"

EXEC SQL VALUES (POSSTR(:hv-doc-locator1,
'Department Information'))
INTO :hv-start-deptinfo END-EXEC. �3�

move "VALUES1" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL VALUES (POSSTR(:hv-doc-locator1,
'Education')) INTO :hv-start-educ END-EXEC.

move "VALUES2" to errloc.
call "checkerr" using SQLCA errloc.

* replace Department Information section with nothing
EXEC SQL VALUES (SUBSTR(:hv-doc-locator1, 1,

:hv-start-deptinfo - 1) ||
SUBSTR(:hv-doc-locator1, :hv-start-educ))
INTO :hv-doc-locator2 END-EXEC.

move "VALUES3" to errloc.
call "checkerr" using SQLCA errloc.

* move Department Information section into hv-new-section-buffer
EXEC SQL VALUES (SUBSTR(:hv-doc-locator1,

:hv-start-deptinfo,
:hv-start-educ - :hv-start-deptinfo))
INTO :hv-new-section-buffer END-EXEC.

move "VALUES4" to errloc.
call "checkerr" using SQLCA errloc.

* Append the new section to the end (assume it has been filled)
* Effectively, this just moves the Dept Info to the bottom of
* the resume.

EXEC SQL VALUES (:hv-doc-locator2 ||
:hv-new-section-buffer)
INTO :hv-doc-locator3 END-EXEC.

move "VALUES5" to errloc.
call "checkerr" using SQLCA errloc.

* Store this resume in the table.
* This is where the LOB value bytes really move.

EXEC SQL INSERT INTO emp_resume �4�
VALUES ('A00130', 'ascii', :hv-doc-locator3)
END-EXEC.

move "INSERT" to errloc.
call "checkerr" using SQLCA errloc.

356 Application Development Guide

display "LOBEVAL completed".

EXEC SQL FREE LOCATOR :hv-doc-locator1, :hv-doc-locator2, �5�
:hv-doc-locator3 END-EXEC.

move "FREE LOCATOR" to errloc.
call "checkerr" using SQLCA errloc.

EXEC SQL CONNECT RESET END-EXEC.
move "CONNECT RESET" to errloc.
call "checkerr" using SQLCA errloc.

End-Prog.
stop run.

Chapter 13. Using Large Objects (LOBs) 357

Indicator Variables and LOB Locators
For normal host variables in an application program, when selecting a NULL
value into a host variable, a negative value is assigned to the indicator
variable signifying that the value is NULL. In the case of LOB locators,
however, the meaning of indicator variables is slightly different. Since a
locator host variable itself can never be NULL, a negative indicator variable
value indicates that the LOB value represented by the LOB locator is NULL.
The NULL information is kept local to the client using the indicator variable
value. The server does not track NULL values with valid locators.

LOB File Reference Variables

File reference variables are similar to host variables except they are used to
transfer data to and from client files, and not to and from memory buffers. A
file reference variable represents (rather than contains) the file, just as a LOB
locator represents (rather than contains) the LOB value. Database queries,
updates, and inserts may use file reference variables to store, or to retrieve,
single LOB values.

For very large objects, files are natural containers. In fact, it is likely that most
LOBs begin as data stored in files on the client before they are moved to the
database on the server. The use of file reference variables assists in moving
LOB data. Programs use file reference variables to transfer LOB data from the
client file directly to the database engine. The client application does not have
to write utility routines to read and write files using host variables (which
have size restrictions) to carry out the movement of LOB data.

Note: The file referenced by the file reference variable must be accessible from
(but not necessarily resident on) the system on which the program
runs. For a stored procedure, this would be the server.

A file reference variable has a data type of BLOB, CLOB, or DBCLOB. It is
used either as the source of data (input) or as the target of data (output). The
file reference variable may have a relative file name or a complete path name
of the file (the latter is advised). The file name length is specified within the
application program. The data length portion of the file reference variable is
unused during input. During output, the data length is set by the application
requester code to the length of the new data written to the file.

When using file reference variables there are different options on both input
and output. You must choose an action for the file by setting the file_option
field in the file reference variable structure. Choices for assignment to the field
covering both input and output values are shown below.

Values (shown for C) and options when using input file reference variables
are as follows:

358 Application Development Guide

v SQL_FILE_READ (Regular file) — This is a file that can be open, read, and
closed. DB2 determines the length of the data in the file (in bytes) when
opening the file. DB2 then returns the length through the data_length field
of the file reference variable structure. (The value for COBOL is
SQL-FILE-READ, and for FORTRAN is sql_file_read.)

Values and options when using output file reference variables are as follows:
v SQL_FILE_CREATE (New file) — This option creates a new file. Should the

file already exist, an error message is returned. (The value for COBOL is
SQL-FILE-CREATE, and for FORTRAN is sql_file_create.)

v SQL_FILE_OVERWRITE (Overwrite file) — This option creates a new file
if none already exists. If the file already exists, the new data overwrites the
data in the file. (The value for COBOL is SQL-FILE-OVERWRITE, and for
FORTRAN is sql_file_overwrite.)

v SQL_FILE_APPEND (Append file) — This option has the output appended
to the file, if it exists. Otherwise, it creates a new file. (The value for
COBOL is SQL-FILE-APPEND, and for FORTRAN is sql_file_append.)

Notes:

1. In an Extended UNIX Code (EUC) environment, the files to which
DBCLOB file reference variables point are assumed to contain valid EUC
characters appropriate for storage in a graphic column, and to never
contain UCS-2 characters. For more information on DBCLOB files in an
EUC environment, see “Considerations for DBCLOB Files” on page 515.

2. If a LOB file reference variable is used in an OPEN statement, the file
associated with the LOB file reference variable must not be deleted until
the cursor is closed.

For more information on file reference variables, refer to the SQL Reference.

Chapter 13. Using Large Objects (LOBs) 359

Example: Extracting a Document To a File

This program example shows how CLOB elements can be retrieved from a
table into an external file.

How the Sample LOBFILE Program Works
1. Declare host variables. The BEGIN DECLARE SECTION and END

DECLARE SECTION statements delimit the host variable declarations.
Host variables are prefixed with a colon (:) when referenced in an SQL
statement. A CLOB FILE REFERENCE host variable is declared.

2. CLOB FILE REFERENCE host variable is set up. The attributes of the
FILE REFERENCE is set up. A file name without a fully declared path is,
by default, placed in the current working directory.

3. Select in to the CLOB FILE REFERENCE host variable. The data from
the resume field is selected into the filename referenced by the host
variable.

The CHECKERR macro/function is an error checking utility which is external to
the program. The location of this error checking utility depends upon the
programming language used:

C For C programs that call DB2 APIs, the sqlInfoPrint function
in utilapi.c is redefined as API_SQL_CHECK in utilapi.h. For C
embedded SQL programs, the sqlInfoPrint function in
utilemb.sqc is redefined as EMB_SQL_CHECK in utilemb.h.

COBOL CHECKERR is an external program named checkerr.cbl

See “Using GET ERROR MESSAGE in Example Programs” on page 118 for the
source code for this error checking utility.

360 Application Development Guide

C Sample: LOBFILE.SQC
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sql.h>
#include "utilemb.h"

EXEC SQL INCLUDE SQLCA;

int main(int argc, char *argv[]) {

EXEC SQL BEGIN DECLARE SECTION; �1�
SQL TYPE IS CLOB_FILE resume;
short lobind;
char userid[9];
char passwd[19];

EXEC SQL END DECLARE SECTION;

printf("Sample C program: LOBFILE\n");

if (argc == 1) {
EXEC SQL CONNECT TO sample;

EMB_SQL_CHECK("CONNECT TO SAMPLE");
}
else if (argc == 3) {

strcpy (userid, argv[1]);
strcpy (passwd, argv[2]);
EXEC SQL CONNECT TO sample USER :userid USING :passwd;
EMB_SQL_CHECK("CONNECT TO SAMPLE");

}
else {

printf ("\nUSAGE: lobfile [userid passwd]\n\n");
return 1;

} /* endif */

strcpy (resume.name, "RESUME.TXT"); �2�
resume.name_length = strlen("RESUME.TXT");
resume.file_options = SQL_FILE_OVERWRITE;

EXEC SQL SELECT resume INTO :resume :lobind FROM emp_resume �3�
WHERE resume_format='ascii' AND empno='000130';

if (lobind < 0) {
printf ("NULL LOB indicated \n");

} else {
printf ("Resume for EMPNO 000130 is in file : RESUME.TXT\n");

} /* endif */

EXEC SQL CONNECT RESET;
EMB_SQL_CHECK("CONNECT RESET");
return 0;

}
/* end of program : LOBFILE.SQC */

Chapter 13. Using Large Objects (LOBs) 361

COBOL Sample: LOBFILE.SQB
Identification Division.
Program-ID. "lobfile".

Data Division.
Working-Storage Section.

copy "sqlenv.cbl".
copy "sql.cbl".
copy "sqlca.cbl".

EXEC SQL BEGIN DECLARE SECTION END-EXEC. �1�
01 userid pic x(8).
01 passwd.

49 passwd-length pic s9(4) comp-5 value 0.
49 passwd-name pic x(18).

01 resume USAGE IS SQL TYPE IS CLOB-FILE.
01 lobind pic s9(4) comp-5.

EXEC SQL END DECLARE SECTION END-EXEC.

77 errloc pic x(80).

Procedure Division.
Main Section.

display "Sample COBOL program: LOBFILE".

* Get database connection information.
display "Enter your user id (default none): "

with no advancing.
accept userid.

if userid = spaces
EXEC SQL CONNECT TO sample END-EXEC

else
display "Enter your password : " with no advancing
accept passwd-name.

* Passwords in a CONNECT statement must be entered in a VARCHAR
* format with the length of the input string.

inspect passwd-name tallying passwd-length for characters
before initial " ".

EXEC SQL CONNECT TO sample USER :userid USING :passwd
END-EXEC.

move "CONNECT TO" to errloc.
call "checkerr" using SQLCA errloc.

move "RESUME.TXT" to resume-NAME. �2�
move 10 to resume-NAME-LENGTH.
move SQL-FILE-OVERWRITE to resume-FILE-OPTIONS.

EXEC SQL SELECT resume INTO :resume :lobind �3�
FROM emp_resume
WHERE resume_format = 'ascii'
AND empno = '000130' END-EXEC.

362 Application Development Guide

if lobind less than 0 go to NULL-LOB-indicated.

display "Resume for EMPNO 000130 is in file : RESUME.TXT".
go to End-Main.

NULL-LOB-indicated.
display "NULL LOB indicated".

End-Main.
EXEC SQL CONNECT RESET END-EXEC.
move "CONNECT RESET" to errloc.
call "checkerr" using SQLCA errloc.

End-Prog.
stop run.

Chapter 13. Using Large Objects (LOBs) 363

Example: Inserting Data Into a CLOB Column

In the path description of the following C program segment:
v userid represents the directory for one of your users.
v dirname represents a subdirectory name of “userid”.
v filnam.1 can become the name of one of your documents that you wish to

insert into the table.
v clobtab is the name of the table with the CLOB data type.

The following example shows how to insert data from a regular file
referenced by :hv_text_file into a CLOB column (note that the path names
used in the example are for UNIX-based systems):

strcpy(hv_text_file.name, "/u/userid/dirname/filnam.1");
hv_text_file.name_length = strlen("/u/userid/dirname/filnam.1");
hv_text_file.file_options = SQL_FILE_READ; /* this is a 'regular' file */

EXEC SQL INSERT INTO CLOBTAB
VALUES(:hv_text_file);

364 Application Development Guide

Chapter 14. User-Defined Functions (UDFs) and Methods

What are Functions and Methods? 365
Why Use Functions and Methods? 366
UDF And Method Concepts 369
Implementing Functions and Methods . . . 370
Writing Functions and Methods 371
Registering Functions and Methods 371
Examples of Registering UDFs and Methods 371

Example: Exponentiation 372
Example: String Search 372
Example: BLOB String Search 373
Example: String Search over UDT . . . 373
Example: External Function with UDT
Parameter 374

Example: AVG over a UDT 375
Example: Counting 375
Example: Counting with an OLE
Automation Object 376
Example: Table Function Returning
Document IDs 376

Using Functions and Methods 377
Referring to Functions 377
Examples of Function Invocations . . . 378
Using Parameter Markers in Functions 379
Using Qualified Function Reference . . . 379
Using Unqualified Function Reference 380
Summary of Function References . . . 380

What are Functions and Methods?

A user-defined function is a mechanism with which you can write your own
extensions to SQL. The built-in functions supplied with DB2 are a useful set
of functions, but they may not satisfy all of your requirements. For a complete
list of the functions supplied with DB2, refer to the “Supported Functions”
table in the SQL Reference.

Methods, like UDFs, enable you to write your own extensions to SQL by
defining the behavior of SQL objects. However, unlike UDFs, you can only
associate a method with a structured type stored as a column in a table.

You may need to extend SQL for the following reasons:
v Customization.

The function specific to your application does not exist in DB2. Whether the
function is a simple transformation, a trivial calculation, or a complicated
multivariate analysis, you can probably use a UDF to do the job.

v Flexibility.
The DB2 built-in function does not quite permit the variations that you
wish to include in your application.

v Standardization.
Many of the programs at your site implement the same basic set of
functions, but there are minor differences in all the implementations. Thus,
you are unsure about the consistency of the results you receive. If you
correctly implement these functions once, in a UDF, then all these programs
can use the same implementation directly in SQL and provide consistent
results.

© Copyright IBM Corp. 1993, 2000 365

v Object-relational support.
As discussed in “Chapter 11. User-defined Distinct Types” on page 273 and
“Chapter 12. Working with Complex Objects: User-Defined Structured
Types” on page 283, distinct types and structured types can be very useful
in extending the capability and increasing the safety of DB2. You can create
methods that define the behavior for structured types stored in columns.
You can also create functions that act on distinct types.

Why Use Functions and Methods?

In writing DB2 applications, you have a choice when implementing desired
actions or operations:
v As a UDF
v As a method
v As a subroutine in your application.

Although it may seem easier to implement new operations as subroutines in
your application, there are good reasons why you should consider using
UDFs and methods:
v Re-use.

If the new operation is something of which other users or programs at your
site can take advantage, then UDFs and methods can help to reuse it. In
addition, the operation can be invoked directly in SQL wherever an
expression can be used by any user of the database. For UDFs, the database
will take care of many data type promotions of the function arguments
automatically, for example DECIMAL to DOUBLE, allowing your operation
to be applied to different, but compatible data types.
It may seem easier to implement your new operation as a subroutine and
then make it available to others for use in their programs, thereby avoiding
the need to define the function to DB2. This requires that you inform all
other interested application developers, and package the subroutine
effectively for their use. However, it ignores the interactive users like those
who normally use the Command Line Processor (CLP) to access the
database. CLP users cannot use your function unless it is a UDF or method
in the database. This also applies to any other tools that use SQL (such as
Lotus Approach), that can not be recompiled.

v Performance.
Invoking the UDF or method directly from the database engine instead of
from your application can have a considerable performance advantage,
particularly when the operation qualifies data for further processing.
Consider a simple scenario where you want to process some data, provided
you can meet some selection criteria which can be expressed as a function
SELECTION_CRITERIA(). Your application could issue the following select
statement:

366 Application Development Guide

SELECT A,B,C FROM T

When it receives each row, it runs SELECTION_CRITERIA against the data to
decide if it is interested in processing the data further. Here, every row of
table T must be passed back to the application. But if SELECTION_CRITERIA()
is implemented as a UDF, your application can issue the following
statement:

SELECT A,B,C FROM T WHERE SELECTION_CRITERIA(A,B) = 1

In this case, only the rows of interest are passed across the interface
between the application and the database. For large tables, or for cases
where SELECTION_CRITERIA supplies significant filtering, the performance
improvement can be very significant.

Another case where a UDF can offer a performance benefit is when dealing
with Large Objects (LOB). If you have a function whose purpose is to
extract some information from a value of one of the LOB types, you can
perform this extraction right on the database server and pass only the
extracted value back to the application. This is more efficient than passing
the entire LOB value back to the application and then performing the
extraction. The performance value of packaging this function as a UDF
could be enormous, depending on the particular situation. (Note that you
can also extract a portion of a LOB by using a LOB locator. See “Example:
Deferring the Evaluation of a LOB Expression” on page 351 for an example
of a similar scenario.)

In addition, you can use the RETURNS TABLE clause of the CREATE
FUNCTION statement to define UDFs called table functions. Table functions
enable you to very efficiently use relational operations and the power of
SQL on data that resides outside a DB2 database (including non-relational
data stores). A table function takes individual scalar values of different
types and meanings as its arguments, and returns a table to the SQL
statement that invokes it. You can write table functions that generate only
the data in which you are interested, eliminating any unwanted rows or
columns. For more information on table functions, including rules on where
you can use them, refer to the SQL Reference.

You cannot create a method that returns a table.
v Behavior of Distinct Types.

You can implement the behavior of a user-defined distinct type (UDT), also
called distinct type, using a UDF. For more information on UDTs, see
“Chapter 11. User-defined Distinct Types” on page 273. For additional
details on UDTs and the important concept of castability discussed therein,
refer to the SQL Reference. When you create a distinct type, you are
automatically provided cast functions between the distinct type and its

Chapter 14. User-Defined Functions (UDFs) and Methods 367

source type, and you may be provided comparison operators such as =, >, <,
and so on, depending on the source type. You have to provide any
additional behavior yourself. Because it is clearly desirable to keep the
behavior of a distinct type in the database where all of the users of the
distinct type can easily access it, UDFs can be used as the implementation
mechanism.
For example, suppose you have a BOAT distinct type, defined over a one
megabyte BLOB. The BLOB contains the various nautical specifications, and
some drawings. You may wish to compare sizes of boats, and with a
distinct type defined over a BLOB source type, you do not get the
comparison operations automatically generated for you. You can implement
a BOAT_COMPARE function which decides if one boat is bigger than
another based on a measure that you choose. These could be: displacement,
length over all, metric tonnage, or another calculation based on the BOAT
object. You create the BOAT_COMPARE function as follows:

CREATE FUNCTION BOAT_COMPARE (BOAT, BOAT) RETURNS INTEGER ...

If your function returns 1 if the first BOAT is bigger, 2 if the second is
bigger, and 0 if they are equal, you could use this function in your SQL
code to compare boats. Suppose you create the following tables:

CREATE TABLE BOATS_INVENTORY (
BOAT_ID CHAR(5),
BOAT_TYPE VARCHAR(25),
DESIGNER VARCHAR(40),
OWNER VARCHAR(40),
DESIGN_DATE DATE,
SPEC BOAT,
...)

CREATE TABLE MY_BOATS (
BOAT_ID CHAR(5),
BOAT_TYPE VARCHAR(25),
DESIGNER VARCHAR(40),
DESIGN_DATE DATE,
ACQUIRE_DATE DATE,
ACQUIRE_PRICE CANADIAN_DOLLAR,
CURR_APPRAISL CANADIAN_DOLLAR,
SPEC BOAT,
...)

You can execute the following SQL SELECT statement:
SELECT INV.BOAT_ID, INV.BOAT_TYPE, INV.DESIGNER,

INV.OWNER, INV.DESIGN_DATE
FROM BOATS_INVENTORY INV, MY_BOATS MY
WHERE MY.BOAT_ID = '19GCC'
AND BOAT_COMPARE(INV.SPEC, MY.SPEC) = 1

This simple example returns all the boats from BOATS_INVENTORY that
are bigger than a particular boat in MY_BOATS. Note that the example only

368 Application Development Guide

passes the rows of interest back to the application because the comparison
occurs in the database server. In fact, it completely avoids passing any
values of data type BOAT. This is a significant improvement in storage and
performance as BOAT is based on a one megabyte BLOB data type.

UDF And Method Concepts

The following is a discussion of the important concepts you need to know
prior to coding UDFs and methods:
v Full name of a function

The full name of a function is <schema-name>.<function-name>. You can use
this full name anywhere you refer to a function. For example:

SLICKO.BOAT_COMPARE SMITH.FOO SYSIBM.SUBSTR SYSFUN.FLOOR

However, you may also omit the <schema-name>., in which case, DB2 must
identify the function to which you are referring. For example:

BOAT_COMPARE FOO SUBSTR FLOOR

v Function Path
The concept of function path is central to DB2’s resolution of unqualified
references that occur when you do not use the schema-name. For the use of
function path in DDL statements that refer to functions, refer to the SQL
Reference. The function path is an ordered list of schema names. It provides
a set of schemas for resolving unqualified function references to UDFs and
methods as well as UDTs. In cases where a function reference matches
functions in more than one schema in the path, the order of the schemas in
the path is used to resolve this match. The function path is established by
means of the FUNCPATH option on the precompile and bind commands
for static SQL. The function path is set by the SET CURRENT FUNCTION
PATH statement for dynamic SQL. The function path has the following
default value:

"SYSIBM","SYSFUN","<ID>"

This applies to both static and dynamic SQL, where <ID> represents the
current statement authorization ID.

v Overloaded function names
Function names can be overloaded, which means that multiple functions,
even in the same schema, can have the same name. Two functions cannot,
however, have the same signature, which can be defined to be the qualified
function name concatenated with the defined data types of all the function
parameters in the order in which they are defined. For an example of an
overloaded function, see “Example: BLOB String Search” on page 373.

v Function selection algorithm

Chapter 14. User-Defined Functions (UDFs) and Methods 369

It is the function selection algorithm that takes into account the facts of
overloading and function path to choose the best fit for every function
reference, whether it is a qualified or an unqualified reference. Even
references to the built-in functions and the functions (also IBM-supplied) in
the SYSFUN schema are processed through the function selection algorithm.

v Types of function
Each user-defined function is classified as a scalar, column or table function.
A scalar function returns a single value answer each time it is called. For
example, the built-in function SUBSTR() is a scalar function. Scalar UDFs
and methods can either be external (coded in a programming language
such as C), or sourced (using the implementation of an existing function).
A column function receives a set of like values (a column of data) and
returns a single value answer from this set of values. These are also called
aggregating functions in DB2. An example of a column function is the built-in
function AVG(). An external column UDF cannot be defined to DB2, but a
column UDF that is sourced on one of the built-in column functions can be
defined. This is useful for distinct types. For example, if a distinct type
SHOESIZE exists that is defined with base type INTEGER, you could define a
UDF, AVG(SHOESIZE), as a column function sourced on the existing built-in
column function, AVG(INTEGER).
A table function returns a table to the SQL statement that references it. A
table function can only be referenced in the FROM clause of a SELECT
statement. Such a function can be used to apply the SQL language to
non-DB2 data, or to capture such data and put it into a DB2 table. For
example, it could dynamically convert a file consisting of non-DB2 data into
a table, or it could retrieve data from the World Wide Web or an operating
system and and return the data as a table. A table function can only be an
external function.

The concept of function path, the SET CURRENT FUNCTION PATH
statement, and the function selection algorithm are discussed in detail in the
SQL Reference. The FUNCPATH precompile and bind options are discussed in
detail in the Command Reference.

For information about the concept of mapping UDFs and methods and
built-in functions to data source functions in a federated system, refer to the
SQL Reference. For guidelines on creating such mappings, refer to “Invoking
Data Source Functions” on page 574.

Implementing Functions and Methods

The process of implementing an external UDF or method requires the
following steps:
1. Writing the UDF or method
2. Compiling the UDF or method

370 Application Development Guide

3. Linking the UDF or method
4. Debugging the UDF or method
5. Registering the UDF or method with DB2

After these steps are successfully completed, your UDF or method is ready for
use in DML or DDL statements such as CREATE VIEW. The steps of writing
and defining UDFs and methods are discussed in the following sections,
followed by a discussion on using UDFs and methods. For information on
compiling and linking UDFs and methods, refer to the Application Building
Guide. For information on debugging your UDF or method, see “Debugging
your UDF” on page 470.

Writing Functions and Methods

You can find the details of how you write UDFs and methods in “Chapter 15.
Writing User-Defined Functions (UDFs) and Methods” on page 385. This
includes the details on the interface between DB2 and a UDF or method,
coding considerations, coding examples, and debugging information. For
information on the related tasks of compiling and linking your UDFs and
methods, refer to the Application Building Guide.

Registering Functions and Methods

You should register the UDF or method to DB2 after you have written and
completely tested the actual code. Note that it is possible to define the UDF or
method prior to actually writing it. However, to avoid any problems with
running your UDF or method, you are encouraged to write and test it
extensively before registering it. For information on testing your UDFs and
methods, see “Debugging your UDF” on page 470.

Use the CREATE FUNCTION statement to define (or register) your UDF to
DB2. To register a method with DB2, use the CREATE TYPE or ALTER TYPE
statement to define a method for a structured type, then use the CREATE
METHOD statement to associate the method body with the method
specification. You can find detailed explanations for these statements and their
syntax in the SQL Reference.

Examples of Registering UDFs and Methods

The examples which follow illustrate a variety of typical situations where
UDFs and methods can be registered.

Note that in these examples:
v The keyword or keyword/value specifications are always shown in the

same order, for consistency of presentation and ease of understanding. In
actually writing one of these CREATE FUNCTION or CREATE METHOD

Chapter 14. User-Defined Functions (UDFs) and Methods 371

statements, after the function name and the list of parameter data types, the
specifications can appear in any order.

v The specifications in the EXTERNAL NAME clause are always shown for
DB2 for UNIX platforms. You may need to make changes if you run these
examples on non-UNIX platforms. For example, by converting all the slash
(/) characters to back slash characters (\) and adding a drive letter such as
C:, you have examples that are valid in OS/2 or Windows environments.
Refer to the SQL Reference for a complete discussion of the EXTERNAL
NAME clause.

Example: Exponentiation
Suppose you have written an external UDF to perform exponentiation of
floating point values, and wish to register it in the MATH schema. Assume
that you have DBADM authority. As you have tested the function extensively,
and know that it does not represent any integrity exposure, you define it as
NOT FENCED. By virtue of having DBADM authority, you possess the
database authority, CREATE_NOT_FENCED, which is required to define the
function as NOT FENCED.

CREATE FUNCTION MATH.EXPON (DOUBLE, DOUBLE)
RETURNS DOUBLE
EXTERNAL NAME '/common/math/exponent'
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
NOT FENCED

In this example, the system uses the NOT NULL CALL default value. This is
desirable since you want the result to be NULL if either argument is NULL.
Since you do not require a scratchpad and no final call is necessary, the NO
SCRATCHPAD and NO FINAL CALL default values are used. As there is no
reason why EXPON cannot be parallel, the ALLOW PARALLELISM default
value is used.

Example: String Search
Your associate, Willie, has written a UDF to look for the existence of a given
short string, passed as an argument, within a given CLOB value, which is also
passed as an argument. The UDF returns the position of the string within the
CLOB if it finds the string, or zero if it does not. Because you are concerned
with database integrity for this function as you suspect the UDF is not fully
tested, you define the function as FENCED.

Additionally, Willie has written the function to return a FLOAT result.
Suppose you know that when it is used in SQL, it should always return an
INTEGER. You can create the following function:

372 Application Development Guide

CREATE FUNCTION FINDSTRING (CLOB(500K), VARCHAR(200))
RETURNS INTEGER
CAST FROM FLOAT
SPECIFIC "willie_find_feb95"
EXTERNAL NAME '/u/willie/testfunc/testmod!findstr'
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
FENCED

Note that a CAST FROM clause is used to specify that the UDF body really
returns a FLOAT value but you want to cast this to INTEGER before returning
the value to the statement which used the UDF. As discussed in the SQL
Reference, the INTEGER built-in function can perform this cast for you. Also,
you wish to provide your own specific name for the function and later
reference it in DDL (see “Example: String Search over UDT”). Because the
UDF was not written to handle NULL values, you use the NOT NULL CALL
default value. And because there is no scratchpad, you use the NO
SCRATCHPAD and NO FINAL CALL default values. As there is no reason
why FINDSTRING cannot be parallel, the ALLOW PARALLELISM default
value is used.

Example: BLOB String Search
Because you want this function to work on BLOBs as well as on CLOBs, you
define another FINDSTRING taking BLOB as the first parameter:

CREATE FUNCTION FINDSTRING (BLOB(500K), VARCHAR(200))
RETURNS INTEGER
CAST FROM FLOAT
SPECIFIC "willie_fblob_feb95"
EXTERNAL NAME '/u/willie/testfunc/testmod!findstr'
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
FENCED

This example illustrates overloading of the UDF name, and shows that
multiple UDFs and methods can share the same body. Note that although a
BLOB cannot be assigned to a CLOB, the same source code can be used. There
is no programming problem in the above example as the programming
interface for BLOB and CLOB between DB2 and UDF is the same; length
followed by data. DB2 does not check if the UDF using a particular function
body is in any way consistent with any other UDF using the same body.

Example: String Search over UDT
This example is a continuation of the previous example. Say you are satisfied
with the FINDSTRING functions from “Example: BLOB String Search”, but

Chapter 14. User-Defined Functions (UDFs) and Methods 373

now you have defined a distinct type BOAT with source type BLOB. You also
want FINDSTRING to operate on values having data type BOAT, so you
create another FINDSTRING function. This function is sourced on the
FINDSTRING which operates on BLOB values in “Example: BLOB String
Search” on page 373. Note the further overloading of FINDSTRING in this
example:

CREATE FUNCTION FINDSTRING (BOAT, VARCHAR(200))
RETURNS INT
SPECIFIC "slick_fboat_mar95"
SOURCE SPECIFIC "willie_fblob_feb95"

Note that this FINDSTRING function has a different signature from the
FINDSTRING functions in “Example: BLOB String Search” on page 373, so
there is no problem overloading the name. You wish to provide our own
specific name for possible later reference in DDL. Because you are using the
SOURCE clause, you cannot use the EXTERNAL NAME clause or any of the
related keywords specifying function attributes. These attributes are taken
from the source function. Finally, observe that in identifying the source
function you are using the specific function name explicitly provided in
“Example: BLOB String Search” on page 373. Because this is an unqualified
reference, the schema in which this source function resides must be in the
function path, or the reference will not be resolved.

Example: External Function with UDT Parameter
You have written another UDF to take a BOAT and examine its design
attributes and generate a cost for the boat in Canadian dollars. Even though
internally, the labor cost may be priced in euros, or Japanese yen, or US
dollars, this function needs to generate the cost to build the boat in the
required currency, Canadian dollars. This means it has to get current exchange
rate information from an exchange rate web page, and the answer depends on
the contents of the web page. This makes the function NOT DETERMINISTIC
(or VARIANT).

CREATE FUNCTION BOAT_COST (BOAT)
RETURNS INTEGER
EXTERNAL NAME '/u/marine/funcdir/costs!boatcost'
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
NOT DETERMINISTIC
NO EXTERNAL ACTION
FENCED

Observe that CAST FROM and SPECIFIC are not specified, but that NOT
DETERMINISTIC is specified. Here again, FENCED is chosen for safety
reasons.

374 Application Development Guide

Example: AVG over a UDT
This example implements the AVG column function over the
CANADIAN_DOLLAR distinct type. See “Example: Money” on page 275 for
the definition of CANADIAN_DOLLAR. Strong typing prevents you from
using the built-in AVG function on a distinct type. It turns out that the source
type for CANADIAN_DOLLAR was DECIMAL, and so you implement the
AVG by sourcing it on the AVG(DECIMAL) built-in function. The ability to do
this depends on being able to cast from DECIMAL to CANADIAN_DOLLAR
and vice versa, but since DECIMAL is the source type for
CANADIAN_DOLLAR you know these casts will work.

CREATE FUNCTION AVG (CANADIAN_DOLLAR)
RETURNS CANADIAN_DOLLAR
SOURCE "SYSIBM".AVG(DECIMAL(9,2))

Note that in the SOURCE clause you have qualified the function name, just in
case there might be some other AVG function lurking in your function path.

Example: Counting
Your simple counting function returns a 1 the first time and increments the
result by one each time it is called. This function takes no SQL arguments,
and by definition it is a NOT DETERMINISTIC function since its answer
varies from call to call. It uses the scratchpad to save the last value returned,
and each time it is invoked it increments this value and returns it. You have
rigorously tested this function, and possess DBADM authority on the
database, so you will define it as NOT FENCED. (DBADM implies
CREATE_NOT_FENCED.)

CREATE FUNCTION COUNTER ()
RETURNS INT
EXTERNAL NAME '/u/roberto/myfuncs/util!ctr'
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
NOT DETERMINISTIC
NOT FENCED
SCRATCHPAD
DISALLOW PARALLEL

Note that no parameter definitions are provided, just empty parentheses. The
above function specifies SCRATCHPAD, and uses the default specification of
NO FINAL CALL. In this case, as the default size of the scratchpad (100
bytes) is sufficient, no storage has to be freed by means of a final call, and so
NO FINAL CALL is specified. Since the COUNTER function requires that a
single scratchpad be used to operate properly, DISALLOW PARALLEL is
added to prevent DB2 from operating it in parallel. To see an implementation
of this COUNTER function, refer to “Example: Counter” on page 451.

Chapter 14. User-Defined Functions (UDFs) and Methods 375

Example: Counting with an OLE Automation Object
This example implements the previous counting example as an OLE (Object
Linking and Embedding) automation object, counter, with an instance
variable, nbrOfInvoke, to keep track of the number of invocations. Every time
the UDF gets invoked, the increment method of the object increments the
nbrOfInvoke instance variable and returns its current state. The automation
object is registered in the Windows registry with the OLE programmatic
identifier (progID) bert.bcounter.

CREATE FUNCTION bcounter ()
RETURNS integer
EXTERNAL NAME 'bert.bcounter!increment'
LANGUAGE OLE
PARAMETER STYLE DB2SQL
SCRATCHPAD
NOT DETERMINISTIC
FENCED
NULL CALL
NO SQL
NO EXTERNAL ACTION
DISALLOW PARALLEL;

The implementation of the class counter is shown in “Example: Counter OLE
Automation UDF in BASIC” on page 464 and in “Example: Counter OLE
Automation UDF in C++” on page 466. For details of OLE support with DB2,
see “Writing OLE Automation UDFs” on page 416.

Example: Table Function Returning Document IDs
You have written a table function which returns a row consisting of a single
document identifier column for each known document in your text
management system which matches a given subject area (the first parameter)
and contains the given string (second parameter). This UDF uses the functions
of the text management system to quickly identify the documents:

CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))
RETURNS TABLE (DOC_ID CHAR(16))
EXTERNAL NAME '/common/docfuncs/rajiv/udfmatch'
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
NOT FENCED
SCRATCHPAD
NO FINAL CALL
DISALLOW PARALLEL
CARDINALITY 20

Within the context of a single session it will always return the same table, and
therefore it is defined as DETERMINISTIC. Note the RETURNS clause which
defines the output from DOCMATCH, including the column name DOC_ID.

376 Application Development Guide

FINAL CALL does not need to be specified for each table function. In
addition, the DISALLOW PARALLEL keyword is added as table functions
cannot operate in parallel. Although the size of the output from DOCMATCH
is highly variable, CARDINALITY 20 is a representative value, and is
specified to help the DB2 optimizer to make good decisions.

Typically this table function would be used in a join with the table containing
the document text, as follows:

SELECT T.AUTHOR, T.DOCTEXT
FROM DOCS as T, TABLE(DOCMATCH('MATHEMATICS', 'ZORN''S LEMMA')) as F
WHERE T.DOCID = F.DOC_ID

Note the special syntax (TABLE keyword) for specifying a table function in a
FROM clause. In this invocation, the docmatch() table function returns a row
containing the single column DOC_ID for each mathematics document
referencing Zorn's Lemma. These DOC_ID values are joined to the master
document table, retrieving the author’s name and document text.

Using Functions and Methods

Scalar and column UDFs and methods can be invoked within an SQL
statement wherever an expression is valid (there are additional rules for all
column functions that limit validity). Table UDFs can only be referenced in
the FROM clause of a SELECT. The SQL Reference discusses all these contexts
in detail. The discussion and examples used in this section focus on relatively
simple SELECT statement contexts, but note that their use is not restricted to
these contexts.

See “UDF And Method Concepts” on page 369 for a summary of the use and
importance of the function path and the function selection algorithm. You can
find the details for both of these concepts in the SQL Reference. The resolution
of any Data Manipulation Language (DML) reference to a function uses the
function selection algorithm, so it is important to understand how it works.

Referring to Functions
Each reference to a function, whether it is a UDF, or a built-in function,
contains the following syntax:

WW

X

function_name ()
,

expression

WY

In the above, function_name can be either an unqualified or a qualified
function name, and the arguments can number from 0 to 90, and are
expressions which may contain:

Chapter 14. User-Defined Functions (UDFs) and Methods 377

v A column name, qualified or unqualified
v A constant
v A host variable
v A special register
v A parameter marker. (For information on the limitations of parameter

marker use, refer to the section in the SQL Reference that describes the rules
for parameter markers.)

The position of the arguments is important and must conform to the function
definition for the semantics to be correct. Both the position of the arguments
and the function definition must conform to the function body itself. DB2
does not attempt to shuffle arguments to better match a function definition,
and DB2 does not understand the semantics of the individual function
parameters.

Use of column names in UDF argument expressions requires that the table
references which contain the column have proper scope. For table functions
referenced in a join, this means that for any argument which involves columns
from another table or table function, that other table or table function must
appear before the table function containing the reference, in the FROM clause.
For a complete discussion of the rules for using columns in the arguments of
table functions, refer to the SQL Reference.

Examples of Function Invocations
Some valid examples of function invocations are:

AVG(FLOAT_COLUMN)
BLOOP(COLUMN1)
BLOOP(FLOAT_COLUMN + CAST(? AS INTEGER))
BLOOP(:hostvar :indicvar)
BRIAN.PARSE(CHAR_COLUMN CONCAT USER, 1, 0, 0, 1)
CTR()
FLOOR(FLOAT_COLUMN)
PABLO.BLOOP(A+B)
PABLO.BLOOP(:hostvar)
"search_schema"(CURRENT FUNCTION PATH, 'GENE')
SUBSTR(COLUMN2,8,3)
SYSFUN.FLOOR(AVG(EMP.SALARY))
SYSFUN.AVG(SYSFUN.FLOOR(EMP.SALARY))
SYSIBM.SUBSTR(COLUMN2,11,LENGTH(COLUMN3))
SQRT(SELECT SUM(length*length)

FROM triangles
WHERE id= 'J522'
AND legtype <> 'HYP')

Note that if any of the above functions are table functions, the syntax to
reference them is slightly different than presented above. For example, if
PABLO.BLOOP is a table function, to properly reference it, use:

TABLE(PABLO.BLOOP(A+B)) AS Q

378 Application Development Guide

Using Parameter Markers in Functions
An important restriction involves parameter markers; you cannot simply code
the following:

BLOOP(?)

As the function selection logic does not know what data type the argument
may turn out to be, it cannot resolve the reference. You can use the CAST
specification to provide a type for the parameter marker, for example
INTEGER, and then the function selection logic can proceed:

BLOOP(CAST(? AS INTEGER))

Using Qualified Function Reference
If you use a qualified function reference, you restrict DB2’s search for a
matching function to that schema. For example, you have the following
statement:

SELECT PABLO.BLOOP(COLUMN1) FROM T

Only the BLOOP functions in schema PABLO are considered. It does not
matter that user SERGE has defined a BLOOP function, or whether or not
there is a built-in BLOOP function. Now suppose that user PABLO has
defined two BLOOP functions in his schema:

CREATE FUNCTION BLOOP (INTEGER) RETURNS ...
CREATE FUNCTION BLOOP (DOUBLE) RETURNS ...

BLOOP is thus overloaded within the PABLO schema, and the function
selection algorithm would choose the best BLOOP, depending on the data
type of the argument, column1. In this case, both of the PABLO.BLOOPs take
numeric arguments, and if column1 is not one of the numeric types, the
statement will fail. On the other hand if column1 is either SMALLINT or
INTEGER, function selection will resolve to the first BLOOP, while if column1
is DECIMAL, DOUBLE, REAL, or BIGINT, the second BLOOP will be chosen.

Several points about this example:
1. It illustrates argument promotion. The first BLOOP is defined with an

INTEGER parameter, yet you can pass it a SMALLINT argument. The
function selection algorithm supports promotions among the built-in data
types (for details, refer to the SQL Reference) and DB2 performs the
appropriate data value conversions.

2. If for some reason you want to invoke the second BLOOP with a
SMALLINT or INTEGER argument, you have to take an explicit action in
your statement as follows:

SELECT PABLO.BLOOP(DOUBLE(COLUMN1)) FROM T

3. Alternatively, if you want to invoke the first BLOOP with a DECIMAL or
DOUBLE argument, you have your choice of explicit actions, depending
on your exact intent:

Chapter 14. User-Defined Functions (UDFs) and Methods 379

SELECT PABLO.BLOOP(INTEGER(COLUMN1)) FROM T
SELECT PABLO.BLOOP(FLOOR(COLUMN1)) FROM T
SELECT PABLO.BLOOP(CEILING(COLUMN1)) FROM T
SELECT PABLO.BLOOP(INTEGER(ROUND(COLUMN1,0))) FROM T

You should investigate these other functions in the SQL Reference. The
INTEGER function is a built-in function in the SYSIBM schema. The
FLOOR, CEILING, and ROUND functions are UDFs shipped with DB2,
which you can find in the SYSFUN schema along with many other useful
functions.

Using Unqualified Function Reference
If, instead of a qualified function reference, you use an unqualified function
reference, DB2’s search for a matching function normally uses the function
path to qualify the reference. In the case of the DROP FUNCTION or
COMMENT ON FUNCTION functions, the reference is qualified using the
current authorization ID, if they are unqualified. Thus, it is important that you
know what your function path is, and what, if any, conflicting functions exist in the
schemas of your current function path. For example, suppose you are PABLO and
your static SQL statement is as follows, where COLUMN1 is data type INTEGER:

SELECT BLOOP(COLUMN1) FROM T

You have created the two BLOOP functions cited in “Using Qualified Function
Reference” on page 379, and you want and expect one of them to be chosen. If
the following default function path is used, the first BLOOP is chosen (since
column1 is INTEGER), if there is no conflicting BLOOP in SYSIBM or
SYSFUN:

"SYSIBM","SYSFUN","PABLO"

However, suppose you have forgotten that you are using a script for
precompiling and binding which you previously wrote for another purpose.
In this script, you explicitly coded your FUNCPATH parameter to specify the
following function path for another reason that does not apply to your current
work:

"KATHY","SYSIBM","SYSFUN","PABLO"

If Kathy has written a BLOOP function for her own purposes, the function
selection could very well resolve to Kathy’s function, and your statement
would execute without error. You are not notified because DB2 assumes that
you know what you are doing. It becomes your responsibility to identify the
incorrect output from your statement and make the required correction.

Summary of Function References
For both qualified and unqualified function references, the function selection
algorithm looks at all the applicable functions, both built-in and user-defined,
that have:
v The given name

380 Application Development Guide

v The same number of defined parameters as arguments in the function
reference

v Each parameter identical to or promotable from the type of the
corresponding argument.

(Applicable functions means functions in the named schema for a qualified
reference, or functions in the schemas of the function path for an unqualified
reference.) The algorithm looks for an exact match, or failing that, a best
match among these functions. The current function path is used, in the case of
an unqualified reference only, as the deciding factor if two identically good
matches are found in different schemas. The details of the algorithm can be
found in the SQL Reference.

An interesting feature, illustrated by the examples at the end of “Using
Qualified Function Reference” on page 379, is the fact that function references can
be nested, even references to the same function. This is generally true for
built-in functions as well as UDFs; however, there are some limitations when
column functions are involved.

Refining an earlier example:
CREATE FUNCTION BLOOP (INTEGER) RETURNS INTEGER ...
CREATE FUNCTION BLOOP (DOUBLE) RETURNS INTEGER ...

Now consider the following DML statement:
SELECT BLOOP(BLOOP(COLUMN1)) FROM T

If column1 is a DECIMAL or DOUBLE column, the inner BLOOP reference
resolves to the second BLOOP defined above. Because this BLOOP returns an
INTEGER, the outer BLOOP resolves to the first BLOOP.

Alternatively, if column1 is a SMALLINT or INTEGER column, the inner
bloop reference resolves to the first BLOOP defined above. Because this
BLOOP returns an INTEGER, the outer BLOOP also resolves to the first
BLOOP. In this case, you are seeing nested references to the same function.

A few additional points important for function references are:
v By defining a function with the name of one of the SQL operators, you can

actually invoke a UDF using infix notation. For example, suppose you can
attach some meaning to the "+" operator for values which have distinct
type BOAT. You can define the following UDF:

CREATE FUNCTION "+" (BOAT, BOAT) RETURNS ...

Then you can write the following valid SQL statement:
SELECT BOAT_COL1 + BOAT_COL2
FROM BIG_BOATS
WHERE BOAT_OWNER = 'Nelson Mattos'

Chapter 14. User-Defined Functions (UDFs) and Methods 381

But you can also write the equally valid statement:
SELECT "+"(BOAT_COL1, BOAT_COL2)
FROM BIG_BOATS
WHERE BOAT_OWNER = 'Nelson Mattos'

Note that you are not permitted to overload the built-in conditional
operators such as >, =, LIKE, IN, and so on, in this way. See “Example:
Integer Divide Operator” on page 443 for an example of a UDF which
overloads the divide (/) operator.

v The function selection algorithm does not consider the context of the
reference in resolving to a particular function. Look at these BLOOP
functions, modified a bit from before:

CREATE FUNCTION BLOOP (INTEGER) RETURNS INTEGER ...
CREATE FUNCTION BLOOP (DOUBLE) RETURNS CHAR(10)...

Now suppose you write the following SELECT statement:
SELECT 'ABCDEFG' CONCAT BLOOP(SMALLINT_COL) FROM T

Because the best match, resolved using the SMALLINT argument, is the
first BLOOP defined above, the second operand of the CONCAT resolves to
data type INTEGER. The statement fails because CONCAT demands string
arguments. If the first BLOOP was not present, the other BLOOP would be
chosen and the statement execution would be successful.

Another type of contextual inconsistency that causes a statement to fail is if
a given function reference resolves to a table function in a context that
requires a scalar or column function. The reverse could also occur. A
reference could resolve to a scalar or column function when a table function
is necessary.

v UDFs and methods can be defined with parameters or results having any of
the LOB types: BLOB, CLOB, or DBCLOB. DB2 will materialize the entire
LOB value in storage before invoking such a function, even if the source of
the value is a LOB locator host variable. For example, consider the following
fragment of a C language application:

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS CLOB(150K) clob150K ; /* LOB host var */
SQL TYPE IS CLOB_LOCATOR clob_locator1; /* LOB locator host var */
char string[40]; /* string host var */

EXEC SQL END DECLARE SECTION;

Either host variable :clob150K or :clob_locator1 is valid as an argument
for a function whose corresponding parameter is defined as CLOB(500K).
Thus, referring to the FINDSTRING defined in “Example: String Search” on
page 372, both of the following are valid in the program:

... SELECT FINDSTRING (:clob150K, :string) FROM ...

... SELECT FINDSTRING (:clob_locator1, :string) FROM ...

382 Application Development Guide

v UDF parameters or results which have one of the LOB types can be created
with the AS LOCATOR modifier. In this case, the entire LOB value is not
materialized prior to invocation. Instead, a LOB LOCATOR is passed to the
UDF, which can then use the special UDF APIs to manipulate the actual
bytes of the LOB value (see “Using LOB Locators as UDF Parameters or
Results” on page 434 for details).
You can also use this capability on UDF parameters or results which have a
distinct type that is based on a LOB. This capability is limited to UDFs
defined as not-fenced. Note that the argument to such a function can be
any LOB value of the defined type; it does not have to be a host variable
defined as one of the LOCATOR types. The use of host variable locators as
arguments is completely orthogonal to the use of AS LOCATOR in UDF
parameters and result definitions.

v UDFs and methods can be defined with distinct types as parameters or as
the result. (Earlier examples have illustrated this.) DB2 will pass the value
to the UDF in the format of the source data type of the distinct type.
Distinct type values which originate in a host variable and which are used
as arguments to a UDF which has its corresponding parameter defined as a
distinct type, must be explicitly cast to the distinct type by the user. There
is no host language type for distinct types. DB2’s strong typing necessitates
this. Otherwise your results may be ambiguous. So, consider the BOAT
distinct type which is defined over a BLOB, and consider the BOAT_COST
UDF from “Example: External Function with UDT Parameter” on page 374,
which takes an object of type BOAT as its argument. In the following
fragment of a C language application, the host variable :ship holds the
BLOB value that is to passed to the BOAT_COST function:

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS BLOB(150K) ship;

EXEC SQL END DECLARE SECTION;

Both of the following statements correctly resolve to the BOAT_COST
function, because both cast the :ship host variable to type BOAT:

... SELECT BOAT_COST (BOAT(:ship)) FROM ...

... SELECT BOAT_COST (CAST(:ship AS BOAT)) FROM ...

If there are multiple BOAT distinct types in the database, or BOAT UDFs in
other schema, you must exercise care with your function path. Otherwise
your results may be ambiguous.

Chapter 14. User-Defined Functions (UDFs) and Methods 383

384 Application Development Guide

Chapter 15. Writing User-Defined Functions (UDFs) and
Methods

Description 385
Interface between DB2 and a UDF 387

The Arguments Passed from DB2 to a
UDF 387
Summary of UDF Argument Use . . . 400
How the SQL Data Types are Passed to a
UDF 402
Writing Scratchpads on 32-bit and 64-bit
Platforms 410
The UDF Include File: sqludf.h 411

Creating and Using Java User-Defined
Functions 412

Coding a Java UDF 412
Changing How a Java UDF Runs . . . 414
Table Function Execution Model for Java 415

Writing OLE Automation UDFs 416
Creating and Registering OLE
Automation UDFs 417
Object Instance and Scratchpad
Considerations 418
How the SQL Data Types are Passed to
an OLE Automation UDF 418
Implementing OLE Automation UDFs in
BASIC and C++ 420

OLE Automation UDFs in BASIC . . 420
OLE Automation UDFs in C++ . . . 421

OLE DB Table Functions 423
Creating an OLE DB Table Function . . 424

Fully Qualified Rowset Names 426
Defining a Server Name for an OLE DB
Provider 427
Defining a User Mapping 427
Supported OLE DB Data Types 428

Scratchpad Considerations 430
Table Function Considerations 432
Table Function Error Processing 433
Scalar Function Error Processing 433
Using LOB Locators as UDF Parameters or
Results 434

Scenarios for Using LOB Locators . . . 438
Other Coding Considerations 438

Hints and Tips 439
UDF Restrictions and Caveats. 441

Examples of UDF Code 443
Example: Integer Divide Operator . . . 443
Example: Fold the CLOB, Find the Vowel 447
Example: Counter. 451
Example: Weather Table Function . . . 453
Example: Function using LOB locators 461
Example: Counter OLE Automation UDF
in BASIC. 464
Example: Counter OLE Automation UDF
in C++ 466

Example: Mail OLE Automation Table
Function in BASIC 468

Debugging your UDF 470

Description

This section describes how to write UDFs and methods. The coding
conventions for UDFs and methods are the same, with the following
differences:
v Since DB2 associates each method with a specific structured type, the first

argument passed from DB2 to your method is always the instance of the
structured type on which you invoked the method.

v Methods, unlike UDFs, cannot return tables. You cannot invoke a method
as the argument for a FROM clause.

© Copyright IBM Corp. 1993, 2000 385

As the guidelines for writing UDFs and methods are the same, with the
exception of the previously described difference, the remainder of the
discussion on writing UDFs and methods refers to both UDFs and methods
simply as UDFs.

For small UDFs such as UDFs that contain only a simple expression, consider
using a SQL-bodied UDF. To create a SQL-bodied UDF, issue a CREATE
FUNCTION or CREATE METHOD statement that includes a method body
written using SQL, rather than pointing to an external UDF. SQL-bodied
UDFs enable you to declare and define the UDF in a single step, without
using an external language or compiler. SQL-bodied UDFs also offer the
possibility of increased performance, because the method body is written
using SQL accessible to the DB2 optimizer.

The following example demonstrates a simple CREATE FUNCTION statement
that creates a SQL-bodied UDF:

CREATE FUNCTION tan(double x)
RETURNS double
NO EXTERNAL ACTION
DETERMINISTIC
LANGUAGE SQL
CONTAINS SQL
RETURN sin(x) / cos(x);

For further information on SQL-bodied functions, refer to the SQL Reference.

After a preliminary discussion on the interface between DB2 and a UDF, the
remaining discussion concerns how you implement UDFs. The information on
writing the UDF emphasizes the presence or absence of a scratchpad as one of
the primary considerations.

Some general considerations in using this section are:
v Important material on defining and using UDFs is presented in

“Chapter 14. User-Defined Functions (UDFs) and Methods” on page 365,
and is not repeated here. This discussion concentrates on how you
implement a UDF.

v To implement an external UDF written in C, C++ or Java, you must perform
the following steps:
– Write the UDF
– Compile the UDF
– Link the UDF
– Register the UDF with a CREATE FUNCTION statement
– Test and debug the UDF

You can find information on compiling and linking UDFs in the Application
Building Guide.

386 Application Development Guide

v You can invoke your UDF using OLE (Object Linking and Embedding) as
described in “Writing OLE Automation UDFs” on page 416.

v You can define an OLE DB table function, which is a function that returns a
table from an OLE DB data source, with just a CREATE FUNCTION
statement. For more information on OLE DB table functions, see “OLE DB
Table Functions” on page 423.

Note that a sourced UDF, which is different from an external UDF, does not
require an implementation in the form of a separate piece of code. Such a
UDF uses the same implementation as its source function, along with many of
its other attributes.

Interface between DB2 and a UDF

This section discusses some of the details of the interface between DB2 and a
UDF, and discusses the sqludf.h include file which makes the interface
manageable. This include file only applies to C and C++ UDFs. For
information on coding UDFs in Java, see “Coding a Java UDF” on page 412.

The Arguments Passed from DB2 to a UDF
In addition to the SQL arguments which are specified in the DML reference to
the function, DB2 passes additional arguments to the external UDF. For C and
C++, all of these arguments are passed in the order shown in “Passing
Arguments to a UDF” on page 388. Java UDFs take only the SQL-argument
and SQL-result arguments, but can call extra methods to access the other
information. Java UDFs have the same restrictions on the resulting SQL-state
and diagnostic-message arguments documented below. For information on
coding UDFs in Java, see “Coding a Java UDF” on page 412.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 387

Syntax for Passing Arguments to a UDF

WW

X SQL-argument

X SQL-result

X SQL-argument-ind

W

W X SQL-result-ind SQL-state function-name specific-name diagnostic-message W

W
scratchpad call-type dbinfo

WY

Note: Each of the above arguments passed to the external function is a
pointer to the value, and not the actual value.

The arguments are described as follows:

SQL-argument
This argument is set by DB2 before calling the UDF. This value
repeats n times, where n is the number of arguments specified in the
function reference. The value of each of these arguments is taken from
the expression specified in the function invocation. It is expressed in
the data type of the corresponding parameter definition in the
CREATE FUNCTION statement. How these data types map to C
language constructs is described in “How the SQL Data Types are
Passed to a UDF” on page 402.

DB2 aligns the data for the SQL-argument according to the data type
and the server platform.

SQL-result
This argument is set by the UDF before returning to DB2. For scalar
functions there is exactly one SQL-result. For table functions there is
one SQL-result for each result column of the function defined in the
RETURNS TABLE clause of the CREATE FUNCTION statement. They
correspond by position to the columns defined in the RETURNS
TABLE clause. That is, the first SQL-result argument corresponds to
the first column defined in the RETURNS TABLE clause, and so on.

For both scalar functions and table functions, DB2 allocates the buffer
and passes its address to the UDF. The UDF puts each result value
into the buffer. Enough buffer space is allocated by DB2 to contain the
value expressed in the data type. For scalar functions, this data type is
defined in the CAST FROM clause, if it is present, or in the RETURNS
clause, if no CAST FROM clause is present. For table functions, the

388 Application Development Guide

data types are defined in the RETURNS TABLE(...) clause. For
information on how these types map to C language constructs, see
“How the SQL Data Types are Passed to a UDF” on page 402.

Note that for table functions, DB2 defines a performance optimization
where every defined column does not have to be returned to DB2. If
you write your UDF to take advantage of this feature, it returns only
the columns required by the statement referencing the table function.

For example, consider a CREATE FUNCTION statement for a table
function defined with 100 result columns. If a given statement
referencing the function is only interested in two of them, this
optimization enables the UDF to return only those two columns for
each row and not spend time on the other 98 columns. See the dbinfo
argument below for more information on this optimization.

For each value returned, (that is, a single value for a scalar function,
and in general, multiple values for a table function), the UDF code
should not return more bytes than is required for the data type and
length of the result. DB2 will attempt to determine if the UDF body
has written beyond the end of the result buffer by a few bytes,
returning SQLCODE -450 (SQLSTATE 39501). However, a major
overwrite by the UDF that DB2 does not detect can cause
unpredictable results or an abnormal termination.

DB2 aligns the data for SQL-result according to the data type and the
server platform.

SQL-argument-ind
This argument is set by DB2 before calling the UDF. It can be used by
the UDF to determine if the corresponding SQL-argument is null or
not. The nth SQL-argument-ind corresponds to the nth SQL-argument
(described above). It contains one of the following values:

0 The argument is present and not null.

-1 The argument is present and its value is null.

If the function is defined with NOT NULL CALL, the UDF body does
not need to check for a null value. However, if it is defined with
NULL CALL, any argument can be NULL and the UDF should check
it.

The indicator takes the form of a SMALLINT value, and this can be
defined in your UDF as described in “How the SQL Data Types are
Passed to a UDF” on page 402. DB2 aligns the data for
SQL-argument-ind according to the data type and the server platform.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 389

SQL-result-ind
This argument is set by the UDF before returning to DB2. There is one
of these for each SQL-result argument.

This argument is used by the UDF to signal if the particular result
value is null:
0 or positive

The result is not null
negative

The result is the null value. For more information, see
“Interpreting Negative SQL-result-ind Values”.

Interpreting Negative SQL-result-ind Values:

DB2 treats the function result as null (-2) if the following is true:
v The database configuration parameter DFT_SQLMATHWARN is

’YES’
v One of the input arguments is a null because of an arithmetic error
v The SQL-result-ind is negative.

This is also true if you define the function with the NOT NULL CALL
option.

Even if the function is defined with NOT NULL CALL, the UDF body
must set the indicator of the result. For example, a divide function
could set the result to null when the denominator is zero.

The indicator takes the form of a SMALLINT value, and this can be
defined in your UDF as described in “How the SQL Data Types are
Passed to a UDF” on page 402.

If the UDF takes advantage of table function optimization using the
RESULT column list, then only the indicators corresponding to the
required columns need be set.

DB2 aligns the data for SQL-result-ind according to the data type and
the server platform.

SQL-state
This argument is set by the UDF before returning to DB2. It takes the
form of a CHAR(5) value. Ensure that the argument definition in the
UDF is appropriate for a CHAR(5) as described in “How the SQL
Data Types are Passed to a UDF” on page 402, and can be used by the
UDF to signal warning or error conditions. It contains the value
'00000', when the function is called. The UDF can set the value to the
following:

390 Application Development Guide

00000 The function code did not detect any warning or error
situations.

01Hxx The function code detected a warning situation. This results in
a SQL warning, SQLCODE +462 (SQLSTATE 01Hxx). Here
'xx' is any string.

02000 Only valid for the FETCH call to table functions, it means that
there are no more rows in the table.

38502 A special value for the case where the UDF body attempted to
issue an SQL call and received an error, SQLCODE -487
(SQLSTATE 38502). because SQL is not allowed in UDFs), and
chose to pass this same error back through to DB2.

Any other 38xxx
The function code detected an error situation. It results in a
SQL error, SQLCODE -443 (SQLSTATE 38xxx). Here 'xxx' is
any string. Do not use 380xx through 384xx because those
values are reserved by the draft extensions to the SQL92
international standard, or 385xx because those values are
reserved by IBM.

Any other value is treated as an error situation resulting in SQLCODE
-463 (SQLSTATE 39001).

function-name
This argument is set by DB2 before calling the UDF. It is the qualified
function name, passed from DB2 to the UDF code. This variable takes
the form of a VARCHAR(27) value. Ensure that the argument
definition in the UDF is appropriate for a VARCHAR(27). See “How
the SQL Data Types are Passed to a UDF” on page 402 for more
information.

The form of the function name that is passed is:
<schema-name>.<function-name>

The parts are separated by a period. Two examples are:

PABLO.BLOOP WILLIE.FINDSTRING

This form enables you to use the same UDF body for multiple
external functions, and still differentiate between the functions when it
is invoked.

Note: Although it is possible to include the period in object names
and schema names, it is not recommended. For example, if a

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 391

function, rotate is in a schema, obj.op, the function name that
is returned is obj.op.rotate, and it is not obvious if the schema
name is obj or obj.op.

specific-name
This argument is set by DB2 before calling the UDF. It is the specific
name of the function passed from DB2 to the UDF code. This variable
takes the form of a VARCHAR(18) value. Ensure that the argument
definition in the UDF is appropriate for a VARCHAR(18). See “How
the SQL Data Types are Passed to a UDF” on page 402 for more
information. Two examples are:

willie_find_feb99 SQL9904281052440430

This first value is provided by the user in his CREATE FUNCTION
statement. The second value is generated by DB2 from the current
timestamp if the user does not specify a value.

As with the function-name argument, the reason for passing this value
is to give the UDF the means of distinguishing exactly which specific
function is invoking it.

diagnostic-message
This argument is set by the UDF before returning to DB2. The UDF
can use this argument to insert a message text in a DB2 message. It
takes the form of a VARCHAR(70) value. Ensure that the argument
definition in the UDF is appropriate for a VARCHAR(70). See “How
the SQL Data Types are Passed to a UDF” on page 402 for more
information.

When the UDF returns either an error or a warning, using the
SQL-state argument described above, it can include descriptive
information here. DB2 includes this information as a token in its
message.

DB2 sets the first character to null before calling the UDF. Upon
return, it treats the string as a C null-terminated string. This string
will be included in the SQLCA as a token for the error condition. At
least the first part of this string will appear in the SQLCA or DB2 CLP
message. However, the actual number of characters which will appear
depends on the lengths of the other tokens, because DB2 may truncate
the tokens to conform to the restrictive limit on total token length
imposed by the SQLCA. Avoid using X'FF' in the text since this
character is used to delimit tokens in the SQLCA.

The UDF code should not return more text than will fit in the
VARCHAR(70) buffer which is passed to it. DB2 will attempt to
determine if the UDF body has written beyond the end of this buffer

392 Application Development Guide

by a few characters, SQLCODE -450 (SQLSTATE 39501). However, an
overwrite by the UDF can cause unpredictable results or an abend, as
it may not be detected by DB2.

DB2 assumes that any message tokens returned from the UDF to DB2
are in the same code page as the database. Your UDF should ensure
that If this is the case. If you use the 7-bit invariant ASCII subset, your
UDF can return the message tokens in any code page.

scratchpad
This argument is set by DB2 before calling the UDF. It is only present
if the CREATE FUNCTION statement for the UDF specified the
SCRATCHPAD keyword. This argument is a structure, exactly like the
structure used to pass a value of any of the LOB data types, with the
following elements:
v An INTEGER containing the length of the scratchpad. Changing the

length of the scratchpad will result in SQLCODE -450 (SQLSTATE
39501)

v The actual scratchpad initialized to all binary 0’s as follows:
For scalar functions it is initialized before the first call, and not
generally looked at or modified by DB2 thereafter.
For table functions, the scratchpad is initialized as above prior to
the FIRST call to the UDF if FINAL CALL is specified on the
CREATE FUNCTION. After this call, the scratchpad content is
totally under control of the table function.
If NO FINAL CALL was specified or defaulted for a table function,
then the scratchpad is initialized as above for each OPEN call, and
the scratchpad content is completely under control of the table
function between OPEN calls. (This can be very important for a
table function used in a join or subquery. If it is necessary to
maintain the content of the scratchpad across OPEN calls, then
FINAL CALL must be specified in your CREATE FUNCTION
statement. With FINAL CALL specified, in addition to the normal
OPEN, FETCH and CLOSE calls, the table function will also receive
FIRST and FINAL calls, for the purpose of scratchpad maintenance
and resource release.)

The scratchpad can be mapped in your UDF using the same type as
either a CLOB or a BLOB, since the argument passed has the same
structure. See “How the SQL Data Types are Passed to a UDF” on
page 402 for more information.

Ensure your UDF code does not make changes outside of the
scratchpad buffer. DB2 attempts to determine if the UDF body has
written beyond the end of this buffer by a few characters, SQLCODE

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 393

-450 (SQLSTATE 39501), but a major overwrite by the UDF can cause
unpredictable results, or an abend, and may not result in a graceful
failure by DB2.

If a scalar UDF which uses a scratchpad is referenced in a subquery,
DB2 may decide to refresh the scratchpad between invocations of the
subquery. This refresh occurs after a final-call is made, if FINAL CALL
is specified for the UDF.

DB2 initializes the scratchpad so that the data field is aligned for the
storage of any data type. This may result in the entire scratchpad
structure, including the length field, not being properly aligned. For
more information on declaring and accessing scratchpads, see
“Writing Scratchpads on 32-bit and 64-bit Platforms” on page 410.

call-type
This argument, if present, is set by DB2 before calling the UDF. For
scalar functions this argument is only present if FINAL CALL is
specified in the CREATE FUNCTION statement, but for table
functions it is ALWAYS present. It follows the scratchpad argument; or
the diagnostic-message argument if the scratchpad argument is not
present. This argument takes the form of an INTEGER value. Ensure
that this argument definition in the UDF is appropriate for INTEGER.
See “How the SQL Data Types are Passed to a UDF” on page 402 for
more information.

Note that even though all the current possible values are listed below,
your UDF should contain a switch or case statement which explicitly
tests for all the expected values, rather than containing ″if A do AA,
else if B do BB, else it must be C so do CC″ type logic. This is because
it is possible that additional call types may be added in the future,
and if you don’t explicitly test for condition C you will have trouble
when new possibilities are added.

Notes:

1. For all the call-types, it may be appropriate for the UDF to set a
SQL-state and diagnostic-message return value. This information will
not be repeated in the following descriptions of each call-type. For
all calls DB2 will take the indicated action as described previously
for these arguments.

2. The include file sqludf.h is intended for use with UDFs and is
described in “The UDF Include File: sqludf.h” on page 411. The file
contains symbolic defines for the following call-type values, which
are spelled out as constants.

For scalar functions call-type contains:

394 Application Development Guide

-1 This is the FIRST call to the UDF for this statement. The
scratchpad (if any) is set to binary zeros when the UDF is
called. All argument values are passed, and the UDF should
do whatever one-time initialization actions are required. In
addition, a FIRST call to a scalar UDF is like a NORMAL call,
in that it is expected to develop and return an answer.

Note that if SCRATCHPAD is specified but FINAL CALL is
not, then the UDF will not have this call-type argument to
identify the very first call. Instead it will have to rely on the
all-zero state of the scratchpad.

0 This is a NORMAL call. All the SQL input values are passed,
and the UDF is expected to develop and return the result. The
UDF may also return SQL-state and diagnostic-message
information.

1 This is a FINAL call, that is no SQL-argument or
SQL-argument-ind values are passed, and attempts to examine
these values may cause unpredictable results. If a scratchpad
is also passed, it is untouched from the previous call. The
UDF is expected to release resources at this point.

Releasing resources.

A scalar UDF is expected to release resources it has required, for
example, memory. If FINAL CALL is specified for the UDF, then that
FINAL call is a natural place to release resources, provided that
SCRATCHPAD is also specified and is used to track the resource. If
FINAL CALL is not specified, then any resource acquired should be
released on the same call.

For table functions call-type contains:

-2 This is the FIRST call, which only occurs if the FINAL CALL
keyword was specified for the UDF. The scratchpad is set to
binary zeros before this call. Argument values are passed to
the table function, and it may choose to acquire memory or
perform other one-time only resource initialization. Note that
this is not an OPEN call, that call follows this one. On a FIRST
call the table function should not return any data to DB2 as
DB2 ignores the data.

-1 This is the OPEN call. The scratchpad will be initialized if NO
FINAL CALL is specified, but not necessarily otherwise. All
SQL argument values are passed to the table function on
OPEN. The table function should not return any data to DB2
on the OPEN call.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 395

0 This is a FETCH call, and DB2 expects the table function to
return either a row comprising the set of return values, or an
end-of-table condition indicated by SQLSTATE value ’02000’.
If a scratchpad is passed to the UDF, then on entry it is
untouched from the previous call.

1 This is a CLOSE call to the table function. It balances the
OPEN call, and can be used to perform any external CLOSE
processing (for example, closing a source file), and resource
release (particularly for the NO FINAL CALL case).

In cases involving a join or a subquery, the
OPEN/FETCH.../CLOSE call sequences can repeat within the
execution of a statement, but there is only one FIRST call and
only one FINAL call. The FIRST and FINAL call only occur if
FINAL CALL is specified for the table function.

2 This is a FINAL call, which only occurs if FINAL CALL was
specified for the table function. It balances the FIRST call, and
occurs only once per execution of the statement. It is intended
for the purpose of releasing resources.

Releasing resources.

Write UDFs to release any resources that they acquire. For table
functions, there are two natural places for this release: the CLOSE call
and the FINAL call. The CLOSE call balances each OPEN call and can
occur multiple times in the execution of a statement. The FINAL call
only occurs if FINAL CALL is specified for the UDF, and occurs only
once per statement.

If you can apply a resource across all OPEN/FETCH/CLOSE
sequences of the UDF, write the UDF to acquire the resource on the
FIRST call and free it on the FINAL call. The scratchpad is a natural
place to track this resource. For table functions, if FINAL CALL is
specified, the scratchpad is initialized only before the FIRST call. If
FINAL CALL is not specified, then it is reinitialized before each OPEN
call.

If a resource is specific to each OPEN/FETCH/CLOSE sequence,
write the UDF to free the resource on the CLOSE call. (Note that
when a table function is in a subquery or join, it is very possible that
there will be multiple occurrences of the OPEN/FETCH/CLOSE
sequence, depending on how the DB2 Optimizer chooses to organize
the execution of the statement.)

dbinfo This argument is set by DB2 before calling the UDF. It is only present
if the CREATE FUNCTION statement for the UDF specifies the

396 Application Development Guide

DBINFO keyword. The argument is the sqludf_dbinfo structure
defined in the header file sqludf.h, which is discussed in “The UDF
Include File: sqludf.h” on page 411. The variables in this structure that
contain names and identifiers may be longer than the longest value
possible in this release of DB2, but are defined this way for
compatibility with future releases. You can use the length variable that
complements each name and identifier variable to read or extract the
portion of the variable that is actually used. The dbinfo structure
contains the following elements:
1. Data base name length (dbnamelen)

The length of data base name below. This field is an unsigned
short integer.

2. Data base name (dbname)
The name of the currently connected database. This field is a long
identifier of 128 characters. The data base name length field
described above identifies the actual length of this field. It does
not contain a null terminator or any padding.

3. Application Authorization ID Length (authidlen)
The length of application authorization ID below. This field is an
unsigned short integer.

4. Application authorization ID (authid)
The application run time authorization ID. This field is a long
identifier of 128 characters. It does not contain a null terminator
or any padding. The application authorization ID length field
described above identifies the actual length of this field.

5. Database code page (codepg)
This is a union of two 48-byte long structures; one is used by
DB2 Universal Database, the other is reserved for future use. The
structure used by DB2 Universal Database contains the following
fields:
a. SBCS. Single byte code page, an unsigned long integer.
b. DBCS. Double byte code page, an unsigned long integer.
c. COMP. Composite code page, an unsigned long integer.

6. Schema name length (tbschemalen)
The length of schema name below. Contains 0 (zero) if a table name
is not passed. This field is an unsigned short integer.

7. Schema name (tbschema)
Schema for the table name below. This field is a long identifier of
128 characters. It does not contain a null terminator or any
padding. The schema name length field described above identifies
the actual length of this field.

8. Table name length (tbnamelen)

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 397

The length of the table name below. Contains 0 (zero) if a table
name is not passed. This field is an unsigned short integer.

9. Table name (tbname)
This is the name of the table being updated or inserted. This field
is set only if the UDF reference is the right-hand side of a SET
clause in an UPDATE statement, or an item in the VALUES list of
an INSERT statement. This field is a long identifier of 128
characters. It does not contain a null terminator or any padding.
The table name length field described above, identifies the actual
length of this field. The schema name field above, together with this
field form the fully qualified table name.

10. Column name length (colnamelen)
Length of column name below. It contains a 0 (zero) if a column
name is not passed. This field is an unsigned short integer.

11. Column name (colname)
Under the exact same conditions as for table name, this field
contains the name of the column being updated or inserted;
otherwise not predictable. This field is a long identifier of 128
characters. It does not contain a null terminator or any padding.
The column name length field described above, identifies the actual
length of this field.

12. Version/Release number (ver_rel)
An 8 character field that identifies the product and its version,
release, and modification level with the format pppvvrrm where:
v ppp identifies the product as follows:

DSN DB2 for MVS/ESA or OS/390
ARI SQL/DS
QSQ DB2 Universal Database for AS/400
SQL DB2 Universal Database

v vv is a two digit version identifier.
v rr is a two digit release identifier.
v m is a one digit modification level identifier.

13. Platform (platform)
The operating platform for the application server, as follows:
SQLUDF_PLATFORM_AIX AIX
SQLUDF_PLATFORM_HP HP-UX
SQLUDF_PLATFORM_MVS OS/390
SQLUDF_PLATFORM_NT Windows NT
SQLUDF_PLATFORM_OS2 OS/2
SQLUDF_PLATFORM_SUN Solaris Operating Environment
SQLUDF_PLATFORM_WINDOWS

Windows 95 and Windows 98

398 Application Development Guide

SQLUDF_PLATFORM_UNKNOWN
Unknown platform

For additional platforms that are not contained in the above list,
see the contents of the sqludf.h file.

14. Number of table function column list entries (numtfcol)
The number of non-zero entries in the table function column list
specified in the table function column list field below.

15. Reserved field (resd1)
This field is for future use. It is defined as 24 characters long.

16. Table function column list (tfcolumn)
If this is a table function, this field is a pointer to an array of
short integers which is dynamically allocated by DB2. If this is a
scalar function, this pointer is null.
This field is used only for table functions. Only the first n entries,
where n is specified in the number of table function column list
entries field, numtfcol, are of interest. n may be equal to 0, and is
less than or equal to the number of result columns defined for
the function in the RETURNS TABLE(...) clause of the CREATE
FUNCTION statement. The values correspond to the ordinal
numbers of the columns which this statement needs from the
table function. A value of ‘1’ means the first defined result
column, ‘2’ means the second defined result column, and so on,
and the values may be in any order. Note that n could be equal
to zero, that is, the variable numtfcol might be zero, for a
statement similar to
SELECT COUNT(*) FROM TABLE(TF(...)) AS QQ, where no actual
column values are needed by the query.
This array represents an opportunity for optimization. The UDF
need not return all values for all the result columns of the table
function, only those needed in the particular context, and these
are the columns identified (by number) in the array. Since this
optimization may complicate the UDF logic in order to gain the
performance benefit, the UDF can choose to return every defined
column.

17. Unique application identifier (appl_id)
This field is a pointer to a C null-terminated string which
uniquely identifies the application’s connection to DB2. It is
regenerated at each database connect.
The string has a maximum length of 32 characters, and its exact
format depends on the type of connection established between
the client and DB2. Generally it takes the form

<x>.<y>.<ts>

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 399

where the <x> and <y> vary by connection type, but the <ts> is a
12 character time stamp of the form YYMMDDHHMMSS, which
is potentially adjusted by DB2 to ensure uniqueness.

Example: *LOCAL.db2inst.980707130144

18. Reserved field (resd2)
This field is for future use. It is defined as 20 characters long.

Summary of UDF Argument Use
The following is a summary of the arguments described above, and how you
use them in the interface between DB2 and an external UDF.

For scalar functions, the arguments are:
v SQL-argument.

This argument passes the values identified in the function reference from
DB2 to the UDF. There is one of these arguments for each SQL argument.

v SQL-result.
This argument passes the result value generated by the UDF back to DB2
and to the SQL statement where the function reference occurred.

v SQL-argument-ind.
This argument corresponds positionally to SQL-argument, and tells the UDF
whether or not a particular argument is null. There is one of these for each
SQL-argument.

v SQL-result-ind.
This argument is used by the UDF to report back to DB2 whether the
function result in SQL-result contains nulls.

v SQL-state and diagnostic-message.
These arguments are used by the UDF to signal exception information back
to DB2.

v function-name and specific-name.
These arguments are used by DB2 to pass the identity of the referenced
function to the UDF.

v scratchpad and call-type.
These arguments are used by DB2 to manage the saving of UDF state
between calls. The scratchpad is created and initialized by DB2 and
thereafter managed by the UDF. DB2 signals the type of call to the UDF
using the call-type argument.

v dbinfo.
A structure passed by DB2 to the UDF containing additional information.

A table function logically returns a table to the SQL statement that references
it, but the physical interface between DB2 and the table function is row by
row. For table functions, the arguments are:

400 Application Development Guide

v SQL-argument.
This argument passes the values identified in the function reference from
DB2 to the UDF. The argument has the same value for FETCH calls as it
did for the OPEN and FIRST calls. There is one of these for each SQL
argument.

v SQL-result.
This argument is used to pass back the individual column values for the
row being returned by the UDF. There is one of these arguments for each
result column value defined in the RETURNS TABLE (...) clause of the
CREATE FUNCTION statement.

v SQL-argument-ind.
This argument corresponds positionally to SQL-argument values, and tells
the UDF whether the particular argument is null. There is one of these for
each SQL argument.

v SQL-result-ind.
This argument is used by the UDF to report back to DB2 whether the
individual column values returned in the table function output row is null.
It corresponds positionally to the SQL-result argument.

v SQL-state and diagnostic-message.
These arguments are used by the UDF to signal exception information and
the end-of-table condition back to DB2.

v function-name and specific-name.
These arguments are used by DB2 to pass the identity of the referenced
function to the UDF.

v scratchpad and call-type.
These arguments are used by DB2 to manage the saving of UDF state
between calls. The scratchpad is created and initialized by DB2 and
thereafter managed by the UDF. DB2 signals the type of call to the UDF
using the call-type argument. For table functions these call types are OPEN,
FETCH, CLOSE, and optionally FIRST and FINAL.

v dbinfo.
This is a structure passed by DB2 to the UDF containing additional
information.

Observe that the normal value outputs of the UDF, as well as the SQL-result,
SQL-result-ind, and SQL-state, are returned to DB2 using arguments passed
from DB2 to the UDF. Indeed, the UDF is written not to return anything in
the functional sense (that is, the function’s return type is void). See the void
definition and the return statement in the following example:

#include ...
void SQL_API_FN divid(

... arguments ...)

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 401

{
... UDF body ...
return;

}

In the above example, SQL_API_FN is a macro that specifies the calling
convention for a function that may vary across supported operating systems.
This macro is required when you write stored procedures or UDFs.

For programming examples of UDFs, see “Examples of UDF Code” on
page 443.

How the SQL Data Types are Passed to a UDF
This section identifies the valid types, for both UDF parameters and result,
and specifies for each how the corresponding argument should be defined in
your C or C++ language UDF. For type definitions in Java UDFs, see
“Supported SQL Data Types in Java” on page 625. Note that if you use the
sqludf.h include file and the types defined there, you can automatically
generate language variables and structures that are correct for the different
data types and compilers. For example, for BIGINT you can use the
SQLUDF_BIGINT data type to hide differences in the name of the 64 bit
integer type between different compilers. This include file is discussed in “The
UDF Include File: sqludf.h” on page 411.

It is the data type for each function parameter defined in the CREATE FUNCTION
statement that governs the format for argument values. Promotions from the
argument data type may be needed to get the value in that format. Such
promotions are performed automatically by DB2 on the argument values;
argument promotion is discussed in the SQL Reference.

For the function result, it is the data type specified in the CAST FROM clause
of the CREATE FUNCTION statement that defines the format. If no CAST
FROM clause is present, then the data type specified in the RETURNS clause
defines the format.

In the following example, the presence of the CAST FROM clause means that
the UDF body returns a SMALLINT and that DB2 casts the value to INTEGER
before passing it along to the statement where the function reference occurs:

... RETURNS INTEGER CAST FROM SMALLINT ...

In this case the UDF must be written to generate a SMALLINT, as defined
below. Note that the CAST FROM data type must be castable to the RETURNS
data type, so one cannot just arbitrarily choose another data type. Casting
between data types is discussed in the SQL Reference.

402 Application Development Guide

The following is a list of the SQL types and their C language representations.
For a list of SQL type representations for Java, see “Supported SQL Data
Types in Java” on page 625. It includes information on whether each type is
valid as a parameter or a result. Also included are examples of how the types
could appear as an argument definition in your C or C++ language UDF:
v SMALLINT

Valid. Represent in C as short.
When defining integer UDF parameters, consider using INTEGER rather
than SMALLINT as DB2 does not promote SMALLINT arguments to
INTEGER. For example, suppose you define a UDF as follows:

CREATE FUNCTION SIMPLE(SMALLINT)...

Example:

short *arg1; /* example for SMALLINT */
short *arg1_null_ind; /* example for any null indicator */

If you invoke the SIMPLE function using INTEGER data,
(... SIMPLE(1)...), you will receive an SQLCODE -440 (SQLSTATE 42884)
error indicating that the function was not found, and end-users of this
function may not perceive the reason for the message. In the above
example, 1 is an INTEGER, so you can either cast it to SMALLINT or
define the parameter as INTEGER.

v INTEGER or INT
Valid. Represent in C as sqlint32. The DB2 include file sqlsystm.h defines
this type as the appropriate 32-bit integer for your platform.
Example:

sqlint32 *arg2; /* example for INTEGER */

v BIGINT
Valid. Represent in C as sqlint64.
Example:

sqlint64 *arg3; /* example for INTEGER */

DB2 defines the sqlint64 C language type to overcome differences between
definitions of the 64 bit signed integer in compilers and operating systems.
You must #include sqludf.h to pick up the definition.

v DECIMAL(p,s) or NUMERIC(p,s)
Not valid, because there is no C language representation. If you want to
pass a decimal value, you must define the parameter to be of a data type
castable from DECIMAL (for example CHAR or DOUBLE), and explicitly

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 403

cast the argument to this type. In the case of DOUBLE, you do not need to
explicitly cast a decimal argument to a DOUBLE parameter, as DB2
promotes it automatically.
Suppose you have two columns, WAGE as DECIMAL(5,2) and HOURS as
DECIMAL(4,1), and you wish to write a UDF to calculate weekly pay based
on wage, number of hours worked and some other factors. The UDF could
be as follows:

CREATE FUNCTION WEEKLY_PAY (DOUBLE, DOUBLE, ...)
RETURNS DECIMAL(7,2) CAST FROM DOUBLE
...;

For the above UDF, the first two parameters correspond to the wage and
number of hours. You invoke the UDF WEEKLY_PAY in your SQL select
statement as follows:

SELECT WEEKLY_PAY (WAGE, HOURS, ...) ...;

Note that no explicit casting is required because the DECIMAL arguments
are castable to DOUBLE.

Alternatively, you could define WEEKLY_PAY with CHAR arguments as
follows:

CREATE FUNCTION WEEKLY_PAY (VARCHAR(6), VARCHAR(5), ...)
RETURNS DECIMAL (7,2) CAST FROM VARCHAR(10)
...;

You would invoke it as follows:
SELECT WEEKLY_PAY (CHAR(WAGE), CHAR(HOURS), ...) ...;

Observe the explicit casting that is required because DECIMAL arguments
are not promotable to VARCHAR.

An advantage of using floating point parameters is that it is easier to
perform arithmetic on the values in the UDF; an advantage of using
character parameters is that it is always possible to exactly represent the
decimal value. This is not always possible with floating point.

v REAL
Valid. Represent in C as float.
Example:

float *result; /* example for REAL */

v DOUBLE or DOUBLE PRECISION or FLOAT
Valid. Represent in C as double.
Example:

404 Application Development Guide

double *result; /* example for DOUBLE */

v CHAR(n) or CHARACTER(n) with or without the FOR BIT DATA modifier.
Valid. Represent in C as char...[n+1] (this is a C null-terminated string,
the last character is a null, that is X'00').
Example:

char arg1[14]; /* example for CHAR(13) */
char *arg1; /* also perfectly acceptable */

For a CHAR(n) parameter, DB2 always moves n bytes of data to the buffer
and sets the n+1 byte to null. For a RETURNS CHAR(n) value, DB2 always
takes the n bytes and ignores the n+1 byte. For this RETURNS CHAR(n)
case, you are warned against the inadvertent inclusion of a null-character in
the first n characters. DB2 will not recognize this as anything but a normal
part of the data, and it might later on cause seemingly anomalous results if
it was not intended.

If FOR BIT DATA is specified, exercise caution about using the normal C
string handling functions in the UDF. Many of these functions look for a
null to delimit the string, and the null-character (X'00') could be a legitimate
character in the middle of the data value.

When defining character UDF parameters, consider using VARCHAR rather
than CHAR as DB2 does not promote VARCHAR arguments to CHAR. For
example, suppose you define a UDF as follows:

CREATE FUNCTION SIMPLE(INT,CHAR(1))...

If you invoke the SIMPLE function using VARCHAR data,
(... SIMPLE(1,'A')...), you will receive an SQLCODE -440 (SQLSTATE
42884) error indicating that the function was not found, and end-users of
this function may not perceive the reason for the message. In the above
example, 'A' is VARCHAR, so you can either cast it to CHAR or define the
parameter as VARCHAR.

v VARCHAR(n) FOR BIT DATA or LONG VARCHAR with or without the
FOR BIT DATA modifier.
Valid. Represent in C as a structure similar to:

struct sqludf_vc_fbd
{

unsigned short length; /* length of data */
char data[1]; /* first char of data */

};

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 405

The [1] is merely to indicate an array to the compiler. It does not mean that
only one character is passed; because the address of the structure is passed,
and not the actual structure, it just provides a way to use array logic.

These values are not represented as C null-terminated strings because the
null-character could legitimately be part of the data value. The length is
explicitly passed to the UDF for parameters using the structure variable
length. For the RETURNS clause, the length that is passed to the UDF is
the length of the buffer. What the UDF body must pass back, using the
structure variable length, is the actual length of the data value.

Example:
struct sqludf_vc_fbd *arg1; /* example for VARCHAR(n) FOR BIT DATA */
struct sqludf_vc_fbd *result; /* also for LONG VARCHAR FOR BIT DATA */

v VARCHAR(n) without FOR BIT DATA.
Valid. Represent in C as char...[n+1]. (This is a C null-terminated string.)
For a VARCHAR(n) parameter, DB2 will put a null in the (k+1) position,
where k is the length of the particular occurrence. The C string-handling
functions are thus well suited for manipulation of these values. For a
RETURNS VARCHAR(n) value, the UDF body must delimit the actual
value with a null, because DB2 will determine the result length from this
null character.
Example:

char arg2[51]; /* example for VARCHAR(50) */
char *result; /* also perfectly acceptable */

v GRAPHIC(n)
Valid. Represent in C as sqldbchar[n+1]. (This is a null-terminated graphic
string). Note that you can use wchar_t[n+1] on platforms where wchar_t is
defined to be 2 bytes in length; however, sqldbchar is recommended. See
“Selecting the wchar_t or sqldbchar Data Type in C and C++” on page 610
for more information on these two data types.
For a GRAPHIC(n) parameter, DB2 moves n double-byte characters to the
buffer and sets the following two bytes to null. Data passed from DB2 to a
UDF is in DBCS format, and the result passed back is expected to be in
DBCS format. This behavior is the same as using the WCHARTYPE
NOCONVERT precompiler option described in “The WCHARTYPE
Precompiler Option in C and C++” on page 611. For a RETURNS
GRAPHIC(n) value, DB2 always takes the n double-byte characters and
ignores the following bytes.
When defining graphic UDF parameters, consider using VARGRAPHIC
rather than GRAPHIC as DB2 does not promote VARGRAPHIC arguments
to GRAPHIC. For example, suppose you define a UDF as follows:

CREATE FUNCTION SIMPLE(GRAPHIC)...

406 Application Development Guide

If you invoke the SIMPLE function using VARGRAPHIC data,
(... SIMPLE('graphic_literal')...), you will receive an SQLCODE -440
(SQLSTATE 42884) error indicating that the function was not found, and
end-users of this function may not understand the reason for this message.
In the above example, graphic_literal is a literal DBCS string that is
interpreted as VARGRAPHIC data, so you can either cast it to GRAPHIC or
define the parameter as VARGRAPHIC.

Example:
sqldbchar arg1[14]; /* example for GRAPHIC(13) */
sqldbchar *arg1; /* also perfectly acceptable */

v VARGRAPHIC(n)
Valid. Represent in C as sqldbchar[n+1]. (This is a null-terminated graphic
string). Note that you can use wchar_t[n+1] on platforms where wchar_t is
defined to be 2 bytes in length; however, sqldbchar is recommended. See
“Selecting the wchar_t or sqldbchar Data Type in C and C++” on page 610
for more information on these two data types.
For a VARGRAPHIC(n) parameter, DB2 will put a graphic null in the (k+1)
position, where k is the length of the particular occurrence. A graphic null
refers to the situation where all the bytes of the last character of the graphic
string contain binary zeros ('\0's). Data passed from DB2 to a UDF is in
DBCS format, and the result passed back is expected to be in DBCS format.
This behavior is the same as using the WCHARTYPE NOCONVERT
precompiler option described in “The WCHARTYPE Precompiler Option in
C and C++” on page 611. For a RETURNS VARGRAPHIC(n) value, the UDF
body must delimit the actual value with a graphic null, because DB2 will
determine the result length from this graphic null character.
Example:

sqldbchar args[51], /* example for VARGRAPHIC(50) */
sqldbchar *result, /* also perfectly acceptable */

v LONG VARGRAPHIC
Valid. Represent in C as a structure:

struct sqludf_vg
{

unsigned short length; /* length of data */
sqldbchar data[1]; /* first char of data */

};

Note that in the above structure, you can use wchar_t in place of sqldbchar
on platforms where wchar_t is defined to be 2 bytes in length, however, the
use of sqldbchar is recommended. See “Selecting the wchar_t or sqldbchar
Data Type in C and C++” on page 610 for more information on these two
data types.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 407

The [1] merely indicates an array to the compiler. It does not mean that
only one graphic character is passed. Because the address of the structure is
passed, and not the actual structure, it just provides a way to use array
logic.

These are not represented as null-terminated graphic strings. The length, in
double-byte characters, is explicitly passed to the UDF for parameters using
the structure variable length. Data passed from DB2 to a UDF is in DBCS
format, and the result passed back is expected to be in DBCS format. This
behavior is the same as using the WCHARTYPE NOCONVERT precompiler
option described in “The WCHARTYPE Precompiler Option in C and C++”
on page 611. For the RETURNS clause, the length that is passed to the UDF
is the length of the buffer. What the UDF body must pass back, using the
structure variable length, is the actual length of the data value, in double
byte characters.

Example:
struct sqludf_vg *arg1; /* example for VARGRAPHIC(n) */
struct sqludf_vg *result; /* also for LONG VARGRAPHIC */

v DATE
Valid. Represent in C same as CHAR(10), that is as char...[11]. The date
value is always passed to the UDF in ISO format: yyyy-mm-dd.
Example:

char arg1[11]; /* example for DATE */
char *result; /* also perfectly acceptable */

v TIME
Valid. Represent in C same as CHAR(8), that is, as char...[9]. The time
value is always passed to the UDF in ISO format: hh.mm.ss.
Example:

char *arg; /* example for DATE */
char result[9]; /* also perfectly acceptable */

v TIMESTAMP
Valid. Represent in C same as CHAR(26), that is. as char...[27]. The
timestamp value is always passed with format: yyyy-mm-dd-
hh.mm.ss.nnnnnn.
Example:

char arg1[27]; /* example for TIMESTAMP */
char *result; /* also perfectly acceptable */

v BLOB(n) and CLOB(n)
Valid. Represent in C as a structure:

408 Application Development Guide

struct sqludf_lob
{

sqluint32 length; /* length in bytes */
char data[1]; /* first byte of lob */

};

The [1] merely indicates an array to the compiler. It does not mean that
only one character is passed; because the address of the structure is passed,
and not the actual structure, it just provides a way to use array logic.

These are not represented as C null-terminated strings. The length is
explicitly passed to the UDF for parameters using the structure variable
length. For the RETURNS clause, the length that is passed back to the UDF,
is the length of the buffer. What the UDF body must pass back, using the
structure variable length, is the actual length of the data value.

Example:
struct sqludf_lob *arg1; /* example for BLOB(n), CLOB(n) */
struct sqludf_lob *result;

v DBCLOB(n)
Valid. Represent in C as a structure:

struct sqludf_lob
{

sqluint32 length; /* length in graphic characters */
sqldbchar data[1]; /* first byte of lob */

};

Note that in the above structure, you can use wchar_t in place of sqldbchar
on platforms where wchar_t is defined to be 2 bytes in length, however, the
use of sqldbchar is recommended. See “Selecting the wchar_t or sqldbchar
Data Type in C and C++” on page 610 for more information on these two
data types.

The [1] merely indicates an array to the compiler. It does not mean that
only one graphic character is passed; because the address of the structure is
passed, and not the actual structure, it just provides a way to use array
logic.

These are not represented as null-terminated graphic strings. The length is
explicitly passed to the UDF for parameters using the structure variable
length. Data passed from DB2 to a UDF is in DBCS format, and the result
passed back is expected to be in DBCS format. This behavior is the same as
using the WCHARTYPE NOCONVERT precompiler option described in
“The WCHARTYPE Precompiler Option in C and C++” on page 611. For the
RETURNS clause, the length that is passed to the UDF is the length of the

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 409

buffer. What the UDF body must pass back, using the structure variable
length, is the actual length of the data value, with all of these lengths
expressed in double byte characters.

Example:

struct sqludf_lob *arg1; /* example for DBCLOB(n) */
struct sqludf_lob *result;

v Distinct Types
Valid or invalid depending on the base type. Distinct types will be passed
to the UDF in the format of the base type of the UDT, so may be specified
if and only if the base type is valid.
Example:

struct sqludf_lob *arg1; /* for distinct type based on BLOB(n) */
double *arg2; /* for distinct type based on DOUBLE */
char res[5]; /* for distinct type based on CHAR(4) */

v Distinct Types AS LOCATOR, or any LOB type AS LOCATOR
The AS LOCATOR type modifier is valid only in UDF parameter and result
definitions. It may only be used to modify the LOB types or any distinct
type that is based on a LOB type. If you specify the type modifier, a four
byte locator is passed to the UDF rather the entire LOB value.
Example:

sqludf_locator *arg1; /* locator argument */
sqludf_locator *result; /* locator result */

The type udf_locator is defined in the header file sqludf.h, which is discussed
in “The UDF Include File: sqludf.h” on page 411. The use of these locators is
discussed in “Using LOB Locators as UDF Parameters or Results” on
page 434.

Writing Scratchpads on 32-bit and 64-bit Platforms
To make your UDF code portable between 32-bit and 64-bit platforms, you
must change the way in which you create and use scratchpads that contain
64-bit values. Do not declare an explicit length variable for a scratchpad
structure that contains one or more 64-bit values, such as 64-bit pointers or
sqlint64 BIGINT variables. For example, the following example might result
in a data alignment exception on a 64-bit platform because the structure
declaration includes an explicit length variable:

struct scratch1
{

sqlint32 length;
char chars[4];
sqlint64 bigint_var;

};

410 Application Development Guide

To declare the scratchpad structure from the previous example so that it is
portable between 32-bit and 64-bit platforms, remove the declaration of the
explicit length variable for the structure. The following example declares the
scratchpad structure without declaring an explicit length variable:

struct scratch1
{

sqlint64 bigint_var;
char chars[4];

};

To access a scratchpad structure that does not declare an explicit length
variable in your UDF, you can refer to the scratchpad using the following
format:

struct scratchpad_data * data =
(struct scratchpad_data*)scratch_pointer->data;

where scratch_pointer represents the sqludf_scratchpad pointer of the UDF and
data represents the contents of the scratchpad.

The UDF Include File: sqludf.h
This include file contains structures, definitions and values which are useful
when writing your UDF. Its use is optional, however, and in the sample UDFs
shown in “Examples of UDF Code” on page 443, some examples use the
include file. When compiling your UDF, you need to reference the directory
which contains this file. This directory is sqllib/include.

The sqludf.h include file is self-describing. Following is a brief summary of
its content:
1. Structure definitions for the passed arguments which are structures:

v VARCHAR FOR BIT DATA arguments and result
v LONG VARCHAR (with or without FOR BIT DATA) arguments and

result
v LONG VARGRAPHIC arguments and result
v All the LOB types, SQL arguments and result
v The scratchpad
v The dbinfo structure.

2. C language type definitions for all the SQL data types, for use in the
definition of UDF arguments corresponding to SQL arguments and result
having the data types. These are the definitions with names SQLUDF_x
and SQLUDF_x_FBD where x is a SQL data type name, and FBD
represents For Bit Data.
Also included is a C language type for an argument or result which is
defined with the AS LOCATOR appendage.

3. Definition of C language types for the scratchpad and call-type arguments,
with an enum type definition of the call-type argument.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 411

4. Macros for defining the standard trailing arguments, both with and
without the inclusion of scratchpad and call-type arguments. This
corresponds to the presence and absence of SCRATCHPAD and FINAL
CALL keywords in the function definition. These are the SQL-state,
function-name, specific-name, diagnostic-message, scratchpad and call-type UDF
invocation arguments defined in “The Arguments Passed from DB2 to a
UDF” on page 387. Also included are definitions for referencing these
constructs, and the various valid SQLSTATE values.

5. Macros for testing whether the SQL arguments are null.
6. Function prototypes for the APIs which can be used to manipulate LOB

values by means of LOB locators passed to the UDF.

Some of the UDF examples in the next section illustrate the inclusion and use
of sqludf.h.

Creating and Using Java User-Defined Functions

You can create and use UDFs in Java just as you would in other languages,
with only a few minor differences. After you code the UDF, you register it
with the database using the CREATE FUNCTION statement. Refer to the SQL
Reference for information on registering a Java UDF using this statement. You
can then refer to it in the SQL of your application. The UDF can be FENCED
or NOT FENCED, and you can also use options to modify how the UDF is
run. See “Changing How a Java UDF Runs” on page 414.

Some sample Java UDF method bodies are provided in the UDFsrv.java
sample. You can find the associated CREATE FUNCTION statements and
examples of calling those UDFs in the UDFcli.java and UDFclie.sqlj samples.
See the sqllib/samples/java directory for the samples and README
instructions for compiling and running the samples.

Coding a Java UDF
In general, if you declare a UDF taking arguments of SQL types t1, t2, and t3,
returning type t4, it will be called as a Java method with the expected Java
signature:

public void name (T1 a, T2 b, T3 c, T4 d) {}

Where:
v name is the method name
v T1 through T4 are the Java types that correspond to SQL types t1 through

t4.
v a, b, and c are arbitrary variable names for the input arguments.
v d is an arbitrary variable name that represents the UDF result being

computed.

412 Application Development Guide

For example, given a UDF called sample!test3 that returns INTEGER and
takes arguments of type CHAR(5), BLOB(10K), and DATE, DB2 expects the
Java implementation of the UDF to have the following signature:

import COM.ibm.db2.app.*;
public class sample extends UDF {

public void test3(String arg1, Blob arg2, String arg3,
int result) { ... }

}

Java UDFs that implement table functions require more arguments. Beside the
variables representing the input, an additional variable appears for each
column in the resulting row. For example, a table function may be declared as:

public void test4(String arg1, int result1,
Blob result2, String result3);

SQL NULL values are represented by Java variables that are not initialized.
These variables have a value of zero if they are primitive types, and Java null
if they are object types, in accordance with Java rules. To tell an SQL NULL
apart from an ordinary zero, you can call the function isNull for any input
argument:

{
if (isNull(1)) { /* argument #1 was a SQL NULL */ }
else { /* not NULL */ }

}

In the above example, the argument numbers start at one. The isNull()
function, like the other functions that follow, are inherited from the
COM.ibm.db2.app.UDF class.

To return a result from a scalar or table UDF, use the set() method in the
UDF, as follows:

{
set(2, value);

}

Where ’2’ is the index of an output argument, and value is a literal or variable
of a compatible type. The argument number is the index in the argument list
of the selected output. In the first example in this section, the int result
variable has an index of 4; in the second, result1 through result3 have
indices of 2 through 4. An output argument that is not set before the UDF
returns will have a NULL value.

Like C modules used in UDFs and stored procedures, you cannot use the Java
standard I/O streams (System.in, System.out, and System.err) in Java
UDFs. For an example of a Java UDF, see the file DB2Udf.java in the
sqllib/samples/java directory.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 413

Remember that all Java class files that you use to implement a UDF must
reside in the sqllib/function directory or an appropriate subdirectory. See
“Where to Put Java Classes” on page 650.

Changing How a Java UDF Runs
Typically, DB2 calls a UDF many times, once for each row of an input or
result set in a query. If SCRATCHPAD is specified in the CREATE
FUNCTION statement of the UDF, DB2 recognizes that some ″continuity″ is
needed between successive invocations of the UDF, and therefore the
implementing Java class is not instantiated for each call, but generally
speaking once per UDF reference per statement. Generally it is instantiated
before the first call and used thereafter, but may for table functions be
instantiated more often. For more information, see the NO FINAL CALL
execution model in the subsection which follows this one.

If, however, NO SCRATCHPAD is specified for a UDF, either a scalar or table
function, then a clean instance is instantiated for each call to the UDF.

A scratchpad may be useful for saving information across calls to a UDF.
While Java and OLE UDFs can either use instance variables or set the
scratchpad to achieve continuity between calls, C and C++ UDFs must use the
scratchpad. Java UDFs access the scratchpad with the getScratchPad() and
setScratchPad() methods available in COM.ibm.db2.app.UDF.

For Java table functions that use a scratchpad, control when you get a new
scratchpad instance by using the FINAL CALL or NO FINAL CALL option on
the CREATE FUNCTION statement, as indicated by the execution models in
“Table Function Execution Model for Java” on page 415.

The ability to achieve continuity between calls to a UDF by means of a
scratchpad is controlled by the SCRATCHPAD and NO SCRATCHPAD option
of CREATE FUNCTION, regardless of whether the DB2 scratchpad or instance
variables are used.

For scalar functions, you use the same instance for the entire statement.

Please note that every reference to a Java UDF in a query is treated
independently, even if the same UDF is referenced multiple times. This is the
same as what happens for OLE, C and C++ UDFs as well. At the end of a
query, if you specify the FINAL CALL option for a scalar function then the
object’s close() method is called. For table functions the close() method will
always be invoked as indicated in the subsection which follows this one. If
you do not define a close() method for your UDF class, then a stub function
takes over and the event is ignored.

414 Application Development Guide

If you specify the ALLOW PARALLEL clause for a Java UDF in the CREATE
FUNCTION statement, DB2 may elect to evaluate the UDF in parallel. If this
occurs, several distinct Java objects may be created on different partitions.
Each object receives a subset of the rows.

As with other UDFs, Java UDFs can be FENCED or NOT FENCED. NOT
FENCED UDFs run inside the address space of the database engine; FENCED
UDFs run in a separate process. Although Java UDFs cannot inadvertently
corrupt the address space of their embedding process, they can terminate or
slow down the process. Therefore, when you debug UDFs written in Java, you
should run them as FENCED UDFs.

See “COM.ibm.db2.app.UDF” on page 759 for a description of the
COM.ibm.db2.app.UDF interface. This interface describes other useful calls that
you can make within a UDF, such as setSQLstate and getDBinfo.

Table Function Execution Model for Java
For table functions written in Java, it is important to understand what
happens at each point in DB2’s processing of a given statement which is
significant to the table function. The table which follows details this
information. The bottom part of each box hints what the code might be
written to do for a typical table function which pulls some information in
from the Web. Covered are both the NO FINAL CALL and the FINAL CALL
cases, assuming SCRATCHPAD in both cases.

Point in scan time NO FINAL CALL
LANGUAGE JAVA
SCRATCHPAD

FINAL CALL
LANGUAGE JAVA
SCRATCHPAD

Before the first OPEN for the
table function

No calls. v Class constructor is called
(means new scratchpad). UDF
method is called with FIRST
call.

v Constructor initializes class
and scratchpad variables.
Method connects to Web
server.

At each OPEN of the table
function

v Class constructor is called
(means new scratchpad). UDF
method is called with OPEN
call.

v Constructor initializes class
and scratchpad variables.
Method connect to Web server,
and opens the scan for Web
data.

v UDF method is opened with
OPEN call.

v Method opens the scan for
whatever Web data it wants.
(Might be able to avoid reopen
after a CLOSE reposition,
depending on what is saved in
the scratchpad.)

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 415

Point in scan time NO FINAL CALL
LANGUAGE JAVA
SCRATCHPAD

FINAL CALL
LANGUAGE JAVA
SCRATCHPAD

At each FETCH for a new row of
table function data

v UDF method is called with
FETCH call.

v Method fetches and returns
next row of data, or EOT.

v UDF method is called with
FETCH call.

v Method fetches and returns
new row of data, or EOT.

At each CLOSE of the table
function

v UDF method is called with
CLOSE call. close() method if
it exists for class.

v Method closes its Web scan
and disconnects from the Web
server. close() does not need
to do anything.

v UDF method is called with
CLOSE call.

v Method might reposition to
the top of the scan, or close
the scan. It can save any state
in the scratchpad, which will
persist.

After the last CLOSE of the table
function

No calls. v UDF method is called with
FINAL call. close() method is
called if it exists for class.

v Method disconnects from the
Web server. close() method
does not need to do anything.

Notes:

1. By ″UDF method″ we mean the Java class method which implements the
UDF. This is the method identified in the EXTERNAL NAME clause of the
CREATE FUNCTION statement.

2. For table functions with NO SCRATCHPAD specified, the calls to the UDF
method are as indicated in this table, but because the user is not asking for
any continuity via a scratchpad, DB2 will cause a new object to be
instantiated before each call, by calling the class constructor. It is not clear
that table functions with NO SCRATCHPAD (and thus no continuity) can
do very useful things, but they are supported.

3. These models are TOTALLY COMPATIBLE with what happens with the
other UDF languages: C/C++ and OLE.

Writing OLE Automation UDFs

OLE (Object Linking and Embedding) automation is part of the OLE 2.0
architecture from Microsoft Corporation. With OLE automation, your
applications, regardless of the language in which they are written, can expose
their properties and methods in OLE automation objects. Other applications,
such as Lotus Notes or Microsoft Exchange

®

, can then integrate these objects
by taking advantage of these properties and methods through OLE
automation.

416 Application Development Guide

The applications exposing the properties and methods are called OLE
automation servers or objects, and the applications that access those properties
and methods are called OLE automation controllers. OLE automation servers
are COM components (objects) that implement the OLE IDispatch interface.
An OLE automation controller is a COM client that communicates with the
automation server through its IDispatch interface. COM (Component Object
Model) is the foundation of OLE. For OLE automation UDFs, DB2 acts as an
OLE automation controller. Through this mechanism, DB2 can invoke
methods of OLE automation objects as external UDFs.

Note that this section assumes that you are familiar with OLE automation
terms and concepts. This book does not present any introductory OLE
material. For an overview of OLE automation, refer to Microsoft Corporation:
The Component Object Model Specification, October 1995. For details on OLE
automation, refer to OLE Automation Programmer’s Reference, Microsoft Press,
1996, ISBN 1-55615-851-3.

For a list of sample applications included with the DB2 Application
Development Client that demonstrate OLE automation UDFs, see Table 49 on
page 747.

Creating and Registering OLE Automation UDFs
OLE automation UDFs are implemented as public methods of OLE
automation objects. The OLE automation objects must be externally creatable
by an OLE automation controller, in this case DB2, and support late binding
(also called IDispatch-based binding). OLE automation objects must be
registered in the Windows registration database (registry) with a class
identifier (CLSID), and optionally, an OLE programmatic ID (progID) to
identify the automation object. The progID can identify an in-process (.DLL)
or local (.EXE) OLE automation server, or a remote server through DCOM
(Distributed COM). OLE automation UDFs can be scalar functions or table
functions.

After you code an OLE automation object, you need to register the methods
of the object as UDFs using the SQL CREATE FUNCTION statement.
Registering an OLE automation UDF is very similar to registering any
external C or C++ UDF, but you must use the following options:
v LANGUAGE OLE
v FENCED, since OLE automation UDFs must run in FENCED mode

The external name consists of the OLE progID identifying the OLE
automation object and the method name separated by ! (exclamation mark):

CREATE FUNCTION bcounter () RETURNS INTEGER
EXTERNAL NAME 'bert.bcounter!increment'
LANGUAGE OLE
FENCED
SCRATCHPAD

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 417

FINAL CALL
NOT DETERMINISTIC
NULL CALL
PARAMETER STYLE DB2SQL
NO SQL
NO EXTERNAL ACTION
DISALLOW PARALLEL;

The calling conventions for OLE method implementations are identical to the
conventions for functions written in C or C++. An implementation of the
above method in the BASIC language looks like the following (notice that in
BASIC the parameters are by default defined as call by reference):

Public Sub increment(output As Long, _
indicator As Integer, _
sqlstate As String, _
fname As String, _
fspecname As String, _
sqlmsg As String, _
scratchpad() As Byte, _
calltype As Long)

Object Instance and Scratchpad Considerations
OLE automation UDFs (methods of OLE automation objects) are applied on
instances of OLE automation objects. DB2 creates an object instance for each
UDF reference in an SQL statement. An object instance can be reused for
subsequent method invocations of the UDF reference in an SQL statement, or
the instance can be released after the method invocation and a new instance is
created for each subsequent method invocation. The proper behavior can be
specified with the SCRATCHPAD option in the SQL CREATE FUNCTION
statement. For the LANGUAGE OLE clause, the SCRATCHPAD option has
the additional semantic compared to C or C++, that a single object instance is
created and reused for the entire query, whereas if NO SCRATCHPAD is
specified, a new object instance may be created each time a method is
invoked. Separate instances are created for each UDF reference in an SQL
statement.

Using the scratchpad allows a method to maintain state information in
instance variables of the object, across function invocations. It also increases
performance as an object instance is only created once and then reused for
subsequent invocations.

How the SQL Data Types are Passed to an OLE Automation UDF
DB2 handles the type conversions between SQL types and OLE automation
types. The following table summarizes the supported data types and how
they are mapped. The mapping of OLE automation types to data types of the
implementing programming language, such as BASIC or C/C++, is described
in Table 17 on page 420.

418 Application Development Guide

Table 16. Mapping of SQL and OLE Automation Datatypes

SQL Type OLE Automation Type OLE Automation Type
Description

SMALLINT short 16-bit signed integer

INTEGER long 32-bit signed integer

REAL float 32-bit IEEE floating-point
number

FLOAT or DOUBLE double 64-bit IEEE floating-point
number

DATE DATE 64-bit floating-point fractional
number of days since December
30, 1899

TIME DATE

TIMESTAMP DATE

CHAR(n) BSTR Length-prefixed string as
described in the OLE
Automation Programmer’s
Reference.

VARCHAR(n) BSTR

LONG VARCHAR BSTR

CLOB(n) BSTR

GRAPHIC(n) BSTR Length-prefixed string as
described in the OLE
Automation Programmer’s
Reference.

VARGRAPHIC(n) BSTR

LONG GRAPHIC BSTR

DBCLOB(n) BSTR

CHAR(n)1 SAFEARRAY[unsigned char] 1-dim Byte() array of 8-bit
unsigned data items.
(SAFEARRAYs are described in
the OLE Automation
Programmer’s Reference.)

VARCHAR(n)1 SAFEARRAY[unsigned char]

LONG VARCHAR1 SAFEARRAY[unsigned char]

BLOB(n) SAFEARRAY[unsigned char]

Note:
1. With FOR BIT DATA specified

Data passed between DB2 and OLE automation UDFs is passed as call by
reference. SQL types such as BIGINT, DECIMAL, or LOCATORS, or OLE
automation types such as Boolean or CURRENCY that are not listed in the
table are not supported. Character and graphic data mapped to BSTR is
converted from the database code page to the UCS-2 (also known as Unicode,
IBM code page 13488) scheme. Upon return, the data is converted back to the
database code page. These conversions occur regardless of the database code
page. If code page conversion tables to convert from the database code page
to UCS-2 and from UCS-2 to the database code page are not installed, you
receive an SQLCODE -332 (SQLSTATE 57017).

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 419

Implementing OLE Automation UDFs in BASIC and C++
You can implement OLE automation UDFs in any language. This section
shows you how to implement OLE automation UDFs using BASIC or C++ as
two sample languages.

Table 17 shows the mapping of the various SQL data types to the intermediate
OLE automation data types, and the data types in the language of interest
(BASIC or C++). OLE data types are language independent, (that is, Table 16
on page 419 holds true for all languages).

Table 17. Mapping of SQL and OLE Data Types to BASIC and C++ Data Types

SQL Type OLE Automation Type UDF Language

BASIC
Type

C++ Type

SMALLINT short Integer short

INTEGER long Long long

REAL float Single float

FLOAT or DOUBLE double Double double

DATE, TIME, TIMESTAMP DATE Date DATE

CHAR(n), VARCHAR(n), LONG
VARCHAR, CLOB(n)

BSTR String BSTR

GRAPHIC(n), VARGRAPHIC(n),
LONG GRAPHIC, DBCLOB(n)

BSTR String BSTR

CHAR(n)1, VARCHAR(n)1,
LONG VARCHAR1, BLOB(n)

SAFEARRAY[unsigned char] Byte() SAFEARRAY

Note:
1. With FOR BIT DATA specified

OLE Automation UDFs in BASIC
To implement OLE automation UDFs in BASIC you need to use the BASIC
data types corresponding to the SQL data types mapped to OLE automation
types.

The BASIC declaration of the bcounter OLE automation UDF in “Creating
and Registering OLE Automation UDFs” on page 417 looks like the following:

Public Sub increment(output As Long, _
indicator As Integer, _
sqlstate As String, _
fname As String, _
fspecname As String, _
sqlmsg As String, _
scratchpad() As Byte, _
calltype As Long)

420 Application Development Guide

You can find an example of an OLE table automation in “Example: Mail OLE
Automation Table Function in BASIC” on page 468.

OLE Automation UDFs in C++
Table 17 on page 420 shows the C++ data types that correspond to the SQL
data types and how they map to OLE automation types.

The C++ declaration of the increment OLE automation UDF is as follows:
STDMETHODIMP Ccounter::increment (long *output,

short *indicator,
BSTR *sqlstate,
BSTR *fname,
BSTR *fspecname,
BSTR *sqlmsg,
SAFEARRAY **scratchpad,
long *calltype);

OLE supports type libraries that describe the properties and methods of OLE
automation objects. Exposed objects, properties, and methods are described in
the Object Description Language (ODL). The ODL description of the above
C++ method is as follows:

HRESULT increment ([out] long *output,
[out] short *indicator,
[out] BSTR *sqlstate,
[in] BSTR *fname,
[in] BSTR *fspecname,
[out] BSTR *sqlmsg,
[in,out] SAFEARRAY (unsigned char) *scratchpad,
[in] long *calltype);

The ODL description allows the specification whether a parameter is an input
(in), output (out) or input/output (in,out) parameter. For an OLE automation
UDF, the UDF input parameters and its input indicators are specified as [in]
parameters, and UDF output parameters and its output indicators as [out]
parameters. For the UDF trailing arguments, sqlstate is an [out] parameter,
function name and function specific name are [in] parameters, scratchpad is
an [in,out] parameter, and call type is an [in] parameter.

Scalar functions contain one output parameter and output indicator, whereas
table functions contain multiple output parameters and output indicators
corresponding to the RETURN columns of the CREATE FUNCTION
statement.

OLE automation defines the BSTR data type to handle strings. BSTR is
defined as a pointer to OLECHAR: typedef OLECHAR *BSTR. For allocating
and freeing BSTRs, OLE imposes the rule, that the callee frees a BSTR passed
in as a by-reference parameter before assigning the parameter a new value.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 421

This rule means the following for DB2 and OLE automation UDFs. The same
rule applies for one-dimensional byte arrays which are received by the callee
as SAFEARRAY**:
v [in] parameters: DB2 allocates and frees [in] parameters.
v [out] parameters: DB2 passes in a pointer to NULL. The [out] parameter

must be allocated by the callee and is freed by DB2.
v [in,out] parameters: DB2 initially allocates [in,out] parameters. They can be

freed and re-allocated by the callee. As is true for [out] parameters, DB2
frees the final returned parameter.

All other parameters are passed as pointers. DB2 allocates and manages the
referenced memory.

OLE automation provides a set of data manipulation functions for dealing
with BSTRs and SAFEARRAYs. The data manipulation functions are described
in the OLE Automation Programmer’s Reference.

The following C++ UDF returns the first 5 characters of a CLOB input
parameter:

// UDF DDL: CREATE FUNCTION crunch (clob(5k)) RETURNS char(5)

STDMETHODIMP Cobj::crunch (BSTR *in, // CLOB(5K)
BSTR *out, // CHAR(5)
short *indicator1, // input indicator
short *indicator2, // output indicator
BSTR *sqlstate, // pointer to NULL
BSTR *fname, // pointer to function name
BSTR *fspecname, // pointer to specific name
BSTR *msgtext) // pointer to NULL

{
// Allocate BSTR of 5 characters
// and copy 5 characters of input parameter

// out is an [out] parameter of type BSTR, that is,
// it is a pointer to NULL and the memory does not have to be freed.
// DB2 will free the allocated BSTR.

*out = SysAllocStringLen (*in, 5);
return NOERROR;

};

An OLE automation server can be implemented as creatable single-use or
creatable multi-use. With creatable single-use, each client (that is, a DB2
FENCED process) connecting with CoGetClassObject to an OLE automation
object will use its own instance of a class factory, and run a new copy of the
OLE automation server if necessary. With creatable multi-use, many clients
connect to the same class factory. That is, each instantiation of a class factory
is supplied by an already running copy of the OLE server, if any. If there are
no copies of the OLE server running, a copy is automatically started to supply

422 Application Development Guide

the class object. The choice between single-use and multi-use OLE automation
servers is yours, when you implement your automation server. A single-use
server is recommended for better performance.

OLE DB Table Functions

Microsoft OLE DB is a set of OLE/COM interfaces that provide applications
with uniform access to data stored in diverse information sources. The OLE
DB component DBMS architecture defines OLE DB consumers and OLE DB
providers. An OLE DB consumer is any system or application that consumes
OLE DB interfaces; an OLE DB provider is a component that exposes OLE DB
interfaces. There are two classes of OLE DB providers: OLE DB data providers,
which own data and expose their data in tabular format as a rowset; and OLE
DB service providers, which do not own their own data, but encapsulate some
services by producing and consuming data through OLE DB interfaces.

DB2 Universal Database simplifies the creation of OLE DB applications by
enabling you to define table functions that access an OLE DB data source.
DB2 is an OLE DB consumer that can access any OLE DB data or service
provider. You can perform operations including GROUP BY, JOIN, and
UNION on data sources that expose their data through OLE DB interfaces.
For example, you can define an OLE DB table function to return a table from
a Microsoft Access database or a Microsoft Exchange address book, then
create a report that seamlessly combines data from this OLE DB table function
with data in your DB2 database.

Using OLE DB table functions reduces your application development effort by
providing built-in access to any OLE DB provider. For C, Java, and OLE
automation table functions, the developer needs to implement the table
function, whereas in the case of OLE DB table functions, a generic built-in
OLE DB consumer interfaces with any OLE DB provider to retrieve data. You
only need to register a table function of language type OLEDB, and refer to
the OLE DB provider and the relevant rowset as a data source. You do not
have to do any UDF programming to take advantage of OLE DB table
functions.

To use OLE DB table functions with DB2 Universal Database, you must install
OLE DB 2.0 or later, available from Microsoft at http://www.microsoft.com. If
you attempt to invoke an OLE DB table function without first installing OLE
DB, DB2 issues SQLCODE 465, SQLSTATE 58032,reason code 35. For the
system requirements and OLE DB providers available for your data sources,
refer to your data source documentation. For a list of samples that define and
use OLE DB table functions, see “Appendix B. Sample Programs” on page 729.
For the OLE DB specification, see the Microsoft OLE DB 2.0 Programmer’s
Reference and Data Access SDK, Microsoft Press, 1998.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 423

Creating an OLE DB Table Function
To define an OLE DB table function with a single CREATE FUNCTION
statement, you must:
v define the table that the OLE DB provider returns
v specify LANGUAGE OLEDB
v identify the OLE DB rowset and provide an OLE DB provider connection

string in the EXTERNAL NAME clause

OLE DB data sources expose their data in tabular form, called rowset. A
rowset is a set of rows, each having a set of columns. The RETURNS TABLE
clause includes only the columns relevant to the user. The binding of table
function columns to columns of a rowset at an OLE DB data source is based
on column names. If the OLE DB provider is case sensitive, place the column
names in quotation marks; for example, "UPPERcase". For information on
rowset names which can be fully qualified names, see “Fully Qualified Rowset
Names” on page 426. For the mapping of OLE DB data types to DB2 data
types, see “Supported OLE DB Data Types” on page 428. For the complete
syntax of the CREATE FUNCTION statement and the rules for the
EXTERNAL NAME clause, refer to the SQL Reference.

The EXTERNAL NAME clause can take either of the following forms:
'server!rowset'

or
'!rowset!connectstring'

where:

server identifies a server registered with CREATE SERVER statement

rowset
identifies a rowset, or table, exposed by the OLE DB provider; this
value should be empty if the table has an input parameter to pass
through command text to the OLE DB provider.

connectstring
contains initialization properties needed to connect to an OLE DB
provider. For the complete syntax and semantics of the connection
string, see the ″Data Link API of the OLE DB Core Components″ in
the Microsoft OLE DB 2.0 Programmer’s Reference and Data Access SDK,
Microsoft Press, 1998.

You can use a connection string in the EXTERNAL NAME clause of a CREATE
FUNCTION statement, or specify the CONNECTSTRING option in a CREATE
SERVER statement.

424 Application Development Guide

For example, you can define an OLE DB table function and return a table
from a Microsoft Access database with the following CREATE FUNCTION
and SELECT statements:

CREATE FUNCTION orders ()
RETURNS TABLE (orderid INTEGER, ...)
LANGUAGE OLEDB
EXTERNAL NAME '!orders!Provider=Microsoft.Jet.OLEDB.3.51;

Data Source=c:\msdasdk\bin\oledb\nwind.mdb';

SELECT orderid, DATE(orderdate) AS orderdate,
DATE(shippeddate) AS shippeddate

FROM TABLE(orders()) AS t
WHERE orderid = 10248;

Instead of putting the connection string in the EXTERNAL NAME clause, you
can create and use a server name. For example, assuming you have defined
the server Nwind as described in “Defining a Server Name for an OLE DB
Provider” on page 427, you could use the following CREATE FUNCTION
statement:

CREATE FUNCTION orders ()
RETURNS TABLE (orderid INTEGER, ...)
LANGUAGE OLEDB
EXTERNAL NAME 'Nwind!orders';

OLE DB table functions also allow you to specify one input parameter of any
character string data type. Use the input parameter to pass command text
directly to the OLE DB provider. If you define an input parameter, do not
provide a rowset name in the EXTERNAL NAME clause. DB2 passes the
command text to the OLE DB provider for execution and the OLE DB
provider returns a rowset to DB2. Column names and data types of the
resulting rowset need to be compatible with the RETURNS TABLE definition
in the CREATE FUNCTION statement. Since binding to the column names of
the rowset is based on matching column names, you must ensure that you
name the columns properly.

The following example registers an OLE DB table function, which retrieves
store information from a Microsoft SQL Server 7.0™ database. The connection
string is provided in the EXTERNAL NAME clause. Since the table function
has an input parameter to pass through command text to the OLE DB
provider, the rowset name is not specified in the EXTERNAL NAME clause.
The query example passes in a SQL command text which retrieves
information about the top three stores from a SQL Server database.

CREATE FUNCTION favorites (varchar(600))
RETURNS TABLE (store_id char (4), name varchar (41), sales integer)
SPECIFIC favorites
LANGUAGE OLEDB
EXTERNAL NAME '!!Provider=SQLOLEDB.1;Persist Security Info=False;
User ID=sa;Initial Catalog=pubs;Data Source=WALTZ;

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 425

Locale Identifier=1033;Use Procedure for Prepare=1;
Auto Translate=False;Packet Size=4096;Workstation ID=WALTZ;
OLE DB Services=CLIENTCURSOR;';

SELECT *
FROM TABLE (favorites (' select top 3 sales.stor_id as store_id, ' ||

' stores.stor_name as name, ' ||
' sum(sales. qty) as sales ' ||
' from sales, stores ' ||
' where sales.stor_id = stores.stor_id ' ||
' group by sales.stor_id, stores.stor_name ' ||
' order by sum(sales.qty) desc')) as f;

Fully Qualified Rowset Names
Some rowsets need to be identified in the EXTERNAL NAME clause through
a fully qualified name. A fully qualified name incorporates either or both of the
following:
v the associated catalog name, which requires the following information:

– whether the provider supports catalog names
– where to put the catalog name in the fully qualified name
– which catalog name separator to use

v the associated schema name, which requires the following information:
– whether the provider supports schema names
– which schema name separator to use

For information on the support offered by your OLE DB provider for catalog
and schema names, refer to the documentation of the literal information of
your OLE DB provider.

If DBLITERAL_CATALOG_NAME is not NULL in the literal information of your
provider, use a catalog name and the value of DBLITERAL_CATALOG_SEPARATOR
as a separator. To determine whether the catalog name goes at the beginning
or the end of the fully qualified name, refer to the value of
DBPROP_CATALOGLOCATION in the property set DBPROPSET_DATASOURCEINFO of
your OLE DB provider.

If DBLITERAL_SCHEMA_NAME is not NULL in the literal information of your
provider, use a schema name and the value of DBLITERAL_SCHEMA_SEPARATOR as
a separator.

If the names contain special characters or match keywords, enclose the names
in the quote characters specified for your OLE DB provider. The quote
characters are defined in the literal information of your OLE DB provider as
DBLITERAL_QUOTE_PREFIX and DBLITERAL_QUOTE_SUFFIX. For example, in the
following EXTERNAL NAME the specified rowset includes catalog name pubs
and schema name dbo for a rowset called authors, with the quote character "
used to enclose the names.

426 Application Development Guide

EXTERNAL NAME '!"pubs"."dbo"."authors"!Provider=SQLOLEDB.1;...';

For more information on constructing fully qualified names, refer to Microsoft
OLE DB 2.0 Programmer’s Reference and Data Access SDK, Microsoft Press, 1998,
and the documentation for your OLE DB provider.

Defining a Server Name for an OLE DB Provider
Before you can define a server name for an OLE DB provider, you must
register the OLE DB wrapper once per database using the CREATE
WRAPPER OLEDB statement. For more information on CREATE WRAPPER
OLEDB, refer to the Installation and Configuration Supplement.

To provide a server name for an OLE DB data source that you can use for
many CREATE FUNCTION statements, use the CREATE SERVER statement
as follows:
v provide a name that identifies the OLE DB provider within DB2
v specify WRAPPER OLEDB
v provide connection information in the CONNECTSTRING option

For example, you can define the server name Nwind for the Microsoft Access
OLE DB provider with the following CREATE SERVER statement:

CREATE SERVER Nwind
WRAPPER OLEDB
OPTIONS (CONNECTSTRING 'Provider=Microsoft.Jet.OLEDB.3.51;

Data Source=c:\msdasdk\bin\oledb\nwind.mdb');

You can then use the server name Nwind to identify the OLE DB provider in a
CREATE FUNCTION statement, for example:

CREATE FUNCTION orders ()
RETURNS TABLE (orderid INTEGER, ...)
LANGUAGE OLEDB
EXTERNAL NAME 'Nwind!orders';

For the complete syntax of the CREATE SERVER statement, refer to the SQL
Reference. For information on user mappings for OLE DB providers, see
“Defining a User Mapping”.

Defining a User Mapping
You can provide user mappings for your DB2 users to provide access to OLE
DB data sources with an alternate username and password. To map
usernames for specific users, you can define user mappings with the CREATE
USER MAPPING statement. To provide a user mapping shared by all users,
add the username and password to the connection string of your CREATE
FUNCTION or CREATE SERVER statement. For example, to create a specific
user mapping for the DB2 user JOHN on the OLE DB server Nwind, use the
following CREATE USER MAPPING statement:

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 427

CREATE USER MAPPING FOR john
SERVER Nwind
OPTIONS (REMOTE_AUTHID 'dave', REMOTE_PASSWORD 'mypwd');

To provide the equivalent access to all of the DB2 users that call the OLE DB
table function orders, use the following CONNECTSTRING either in a
CREATE FUNCTION or CREATE SERVER statement:

CREATE FUNCTION orders ()
RETURNS TABLE (orderid INTEGER, ...)
LANGUAGE OLEDB
EXTERNAL NAME '!orders!Provider=Microsoft.Jet.OLEDB.3.51;User ID=dave;

Password=mypwd;Data Source=c:\msdasdk\bin\oledb\nwind.mdb';

DB2 applies the following user mapping rules:
v If a user mapping is defined, DB2 uses the mapped authorization

information to connect to the OLE DB provider, potentially overwriting an
existing user ID and password in the CONNECTSTRING.

v If no user mapping is defined, DB2 uses the authorization information from
the CONNECTSTRING, if the information is provided.

v If no user mapping is defined and no authorization information is provided
in the CONNECTSTRING, DB2 uses the current DB2 authorization
information if the provider supports authorization.

For the complete syntax of the CREATE USER MAPPING statement, refer to
the SQL Reference.

Supported OLE DB Data Types
The following table shows how DB2 data types map to the OLE DB data
types described in Microsoft OLE DB 2.0 Programmer’s Reference and Data Access
SDK, Microsoft Press, 1998. Use the mapping table to define the appropriate
RETURNS TABLE columns in your OLE DB table functions. For example, if
you define an OLE DB table function with a column of data type INTEGER,
DB2 requests the data from the OLE DB provider as DBTYPE_I4.

For mappings of OLE DB provider source data types to OLE DB data types,
refer to the OLE DB provider documentation. For examples of how the ANSI
SQL, Microsoft Access, and Microsoft SQL Server providers might map their
respective data types to OLE DB data types, refer to the Microsoft OLE DB 2.0
Programmer’s Reference and Data Access SDK, Microsoft Press, 1998.

428 Application Development Guide

Table 18. Mapping DB2 Data Types to OLE DB

DB2 Data Type OLE DB Data Type

SMALLINT DBTYPE_I2

INTEGER DBTYPE_I4

BIGINT DBTYPE_I8

REAL DBTYPE_R4

FLOAT/DOUBLE DBTYPE_R8

DEC (p, s) DBTYPE_NUMERIC (p, s)

DATE DBTYPE_DBDATE

TIME DBTYPE_DBTIME

TIMESTAMP DBTYPE_DBTIMESTAMP

CHAR(N) DBTYPE_STR

VARCHAR(N) DBTYPE_STR

LONG VARCHAR DBTYPE_STR

CLOB(N) DBTYPE_STR

CHAR(N) FOR BIT DATA DBTYPE_BYTES

VARCHAR(N) FOR BIT DATA DBTYPE_BYTES

LONG VARCHAR FOR BIT DATA DBTYPE_BYTES

BLOB(N) DBTYPE_BYTES

GRAPHIC(N) DBTYPE_WSTR

VARGRAPHIC(N) DBTYPE_WSTR

LONG GRAPHIC DBTYPE_WSTR

DBCLOB(N) DBTYPE_WSTR

Note: OLE DB data type conversion rules are defined in the Microsoft OLE DB
2.0 Programmer’s Reference and Data Access SDK, Microsoft Press, 1998.
For example:
v To retrieve the OLE DB data type DBTYPE_CY, the data may get

converted to OLE DB data type DBTYPE_NUMERIC(19,4) which
maps to DB2 data type DEC(19,4).

v To retrieve the OLE DB data type DBTYPE_I1, the data may get
converted to OLE DB data type DBTYPE_I2 which maps to DB2 data
type SMALLINT.

v To retrieve the OLE DB data type DBTYPE_GUID, the data may get
converted to OLE DB data type DBTYPE_BYTES which maps to DB2
data type CHAR(12) FOR BIT DATA.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 429

Scratchpad Considerations

The factors influencing whether your UDF should use a scratchpad or not are
important enough to warrant this special section. Other coding considerations
are discussed in “Other Coding Considerations” on page 438.

It is important that you code UDFs to be re-entrant. This is primarily due to
the fact that many references to the UDF may use the same copy of the
function body. In fact, these many references may even be in different
statements or applications. However, note that functions may need or want to
save state from one invocation to the next. Two categories of these functions
are:
1. Functions that, to be correct, depend on saving state.

An example of such a function is a simple counter function which returns a
'1' the first time it is called, and increments the result by one each
successive call. Such a function could be used to number the rows of a
SELECT result:

SELECT counter(), a, b+c, ...
FROM tablex
WHERE ...

This type of function is NOT DETERMINISTIC (or VARIANT). Its output
does not depend solely on the values of its SQL arguments. This counter
function is shown in “Example: Counter” on page 451.

2. Functions where the performance can be improved by the ability to
perform some initialization actions one time only.
An example of such a function, which may be a part of a document
application, is a match function, which returns 'Y' if a given document
contains a given string, and 'N' otherwise:

SELECT docid, doctitle, docauthor
FROM docs
WHERE match('myocardial infarction', docid) = 'Y'

This statement returns all the documents containing the particular text
string value represented by the first argument. What match would like to
do is:
v First time only.

Retrieve a list of all the document IDs which contain the string
myocardial infarction from the document application which is
maintained outside of DB2. This retrieval is a costly process, so the
function would like to do it only one time, and save the list somewhere
handy for subsequent calls.

v On each call.

430 Application Development Guide

Use the list of document IDs saved during this first call to see if the
document ID which is passed as the second argument is contained in
the list.

This particular match function is DETERMINISTIC (or NOT VARIANT). Its
answer only depends on its input argument values. What is shown here is
a function whose performance, not correctness, depends on the ability to
save information from one call to the next.

Both of these needs are met by the ability to specify a SCRATCHPAD in the
CREATE FUNCTION statement:

CREATE FUNCTION counter()
RETURNS int ... SCRATCHPAD;

CREATE FUNCTION match(varchar(200), char(15))
RETURNS char(1) ... SCRATCHPAD;

This SCRATCHPAD keyword tells DB2 to allocate and maintain a scratchpad
for the function. DB2 initializes the scratchpad to binary zeros. If the table
function is specified with NO FINAL CALL (the default), DB2 refreshes the
scratchpad before each OPEN call. If you specify the table function option
FINAL CALL, DB2 does not examine or change the content of the scratchpad
thereafter. The scratchpad is passed to the function on each invocation. The
function can be re-entrant, and DB2 preserves its state information in the
scratchpad.

So for the counter example, the last value returned could be kept in the
scratchpad. And the match example could keep the list of documents in the
scratchpad if the scratchpad is big enough, or otherwise could allocate
memory for the list and keep the address of the acquired memory in the
scratchpad.

Because it is recognized that a UDF may want to acquire system resources, the
UDF can be defined with the FINAL CALL keyword. This keyword tells DB2
to call the UDF at end-of-statement processing so that the UDF can release its
system resources. In particular, since the scratchpad is of fixed size, the UDF
may want to allocate memory for itself and thus uses the final call to free the
memory. For example the match function above cannot predict how many
documents will match the given text string. So a better definition for match is:

CREATE FUNCTION match(varchar(200), char(15))
RETURNS char(1) ... SCRATCHPAD FINAL CALL;

Note that for UDFs that use a scratchpad and are referenced in a subquery,
DB2 may decide to make a final call (if the UDF is so specified) and refresh
the scratchpad between invocations of the subquery. You can protect yourself

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 431

against this possibility, if your UDFs are ever used in subqueries, by defining
the UDF with FINAL CALL and using the call-type argument, or by always
checking for the binary zero condition.

If you do specify FINAL CALL, please note that your UDF receives a call of
type FIRST. This could be used to acquire and initialize some persistent
resource.

Table Function Considerations

An external table function is a UDF which delivers a table to the SQL in
which it is referenced. A table function reference is only valid in a FROM
clause of a SELECT. When using table functions, observe the following:
v Even though a table function delivers a table, the physical interface between

DB2 and the UDF is one-row-at-a-time. There are five types of call made to
a table function: OPEN, FETCH, CLOSE, FIRST, and FINAL. The existence
of FIRST and FINAL calls depends on how you define the UDF. The same
call-type mechanism that can be used for scalar functions is used to
distinguish these calls.

v The standard interface used between DB2 and user-defined scalar functions
is extended to accommodate table functions. The SQL-result argument
repeats for table functions, each instance corresponding to a column to be
returned as defined in the RETURNS TABLE clause of the CREATE
FUNCTION statement. The SQL-result-ind argument likewise repeats, each
instance related to the corresponding SQL-result instance.

v Not every result column defined in the RETURNS clause of the CREATE
FUNCTION statement for the table function has to be returned. The
DBINFO keyword of CREATE FUNCTION, and corresponding dbinfo
argument enable the optimization that only those columns needed for a
particular table function reference need be returned.

v The individual column values returned conform in format to the values
returned by scalar functions.

v The CREATE FUNCTION statement for a table function has a
CARDINALITY n specification. This specification enables the definer to
inform the DB2 optimizer of the approximate size of the result so that the
optimizer can make better decisions when the function is referenced.
Regardless of what has been specified as the CARDINALITY of a table
function, exercise caution against writing a function with infinite cardinality,
that is, a function that always returns a row on a FETCH call. There are
many situations where DB2 expects the end-of-table condition, as a catalyst
within its query processing. Using GROUP BY or ORDER BY are examples
where this is the case. DB2 cannot form the groups for aggregation until
end-of-table is reached, and it cannot sort until it has all the data. So a table

432 Application Development Guide

function that never returns the end-of-table condition (SQL-state value
’02000’) can cause an infinite processing loop if you use it with a GROUP
BY or ORDER BY clause.

Table Function Error Processing

The error processing model for table function calls is as follows:
1. If FIRST call fails, no further calls are made.
2. If FIRST call succeeds, the nested OPEN, FETCH, and CLOSE calls are

made, and the FINAL call is always made.
3. If OPEN call fails, no FETCH or CLOSE call is made.
4. If OPEN call succeeds, then FETCH and CLOSE calls are made.
5. If a FETCH call fails, no further FETCH calls are made, but the CLOSE call

is made.

Note: This model describes the ordinary error processing for scalar UDFs. In
the event of a system failure or communication problem, a call
indicated by the error processing model may not be made. For
example, for a FENCED UDF, if the db2udf fenced process is somehow
prematurely terminated, DB2 cannot make the indicated calls.

Scalar Function Error Processing

The error processing model for scalar UDFs which are defined with the
FINAL CALL specification is as follows:
v If FIRST call fails, no further calls are made.
v If FIRST call succeeds, then further NORMAL calls are made as warranted

by the processing of the statement, and a FINAL call is always made.
v If NORMAL call fails, no further NORMAL calls are made, but the FINAL

call is made (if you have specified FINAL CALL).

This means that if an error is returned on a FIRST call, the UDF must clean
up before returning, because no FINAL call will be made.

The error processing model for table functions is defined in “Table Function
Considerations” on page 432 section of this chapter.

Note: This model describes the ordinary error processing for scalar UDFs. In
the event of a system failure or communication problem, a call
indicated by the error processing model may not be made. For
example, for a FENCED UDF, if the db2udf fenced process is somehow
prematurely terminated, DB2 cannot make the indicated calls.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 433

Using LOB Locators as UDF Parameters or Results

You can append AS LOCATOR to any of the LOB data types, or any distinct
types based on LOB types in a CREATE FUNCTION statement. This applies
both to the parameters that are passed and the results that are returned. When
this happens, DB2 does the following:
v For parameters, DB2 passes a four byte locator instead of the entire LOB

value. This locator can be used in a number of ways, involving a set of
special APIs (described below), to retrieve and manipulate the actual bytes.
The savings are clear for the case where the UDF only needs a few bytes of
the value:
Storage Memory for the entire LOB need not be allocated.
Performance Materializing the entire value can take a significant amount

of I/O time and byte moving instructions.
v For results, returns a four-byte locator instead of the entire LOB value.

Again there can be storage and performance benefits.

Do not modify the locator values as this makes them unusable, and the APIs
will return errors.

These special APIs can only be used in UDFs which are defined as NOT
FENCED. This implies that these UDFs in test phase should not be used on a
production database, because of the possibility that a UDF with bugs could
cause the system harm. When operating on a test database, no lasting harm
can result from the UDF if it should have bugs. When the UDF is known to
be free of errors it can then be applied to the production database.

The APIs which follow are defined using the function prototypes contained in
the sqludf.h UDF include file.

extern int sqludf_length(
sqludf_locator* udfloc_p, /* in: User-supplied LOB locator value */
sqlint32* Return_len_p /* out: Return the length of the LOB value */

);
extern int sqludf_substr(

sqludf_locator* udfloc_p, /* in: User-supplied LOB locator value */
sqlint32 start, /* in: Substring start value (starts at 1) */
sqlint32 length, /* in: Get this many bytes */
unsigned char* buffer_p, /* in: Read into this buffer */
sqlint32* Return_len_p /* out: Return the length of the LOB value */

);
extern int sqludf_append(

sqludf_locator* udfloc_p, /* in: User-supplied LOB locator value */
unsigned char* buffer_p, /* in: User's data buffer */
sqlint32 length, /* in: Length of data to be appended */
sqlint32* Return_len_p /* out: Return the length of the LOB value */

);
extern int sqludf_create_locator(

int loc_type, /* in: BLOB, CLOB or DBCLOB? */
sqludf_locator** Loc_p /* out: Return a ptr to a new locator */

);
extern int sqludf_free_locator(

sqludf_locator* loc_p /* in: User-supplied LOB locator value */
);

434 Application Development Guide

The following is a discussion of how these APIs operate. Note that all lengths
are in bytes, regardless of the data type, and not in single or double-byte
characters.

Return codes. Interpret the return code passed back to the UDF by DB2 for
each API as follows:
0 Success.
-1 Locator passed to the API was freed by sqludf_free_locator() prior

to making the call.
-2 Call was attempted in FENCED mode UDF.
-3 Bad input value was provided to the API. For examples of bad input

values specific to each API, see its description below.
other Invalid locator or other error (for example, memory error). The value

that is returned for these cases is the SQLCODE corresponding to the
error condition. For example, -423 means invalid locator. Please note
that before returning to the UDF with one of these ″other″ codes, DB2
makes a judgment as to the severity of the error. For severe errors,
DB2 remembers that the error occurred, and when the UDF returns to
DB2, regardless of whether the UDF returns an error SQLSTATE to
DB2, DB2 takes action appropriate for the error condition. For
non-severe errors, DB2 forgets that the error has occurred, and leaves
it up to the UDF to decide whether it can take corrective action, or
return an error SQLSTATE to DB2.

v sqludf_length().
Given a LOB locator, it returns the length of the LOB value represented by
the locator. The locator in question is generally a locator passed to the UDF
by DB2, but could be a locator representing a result value being built (using
sqludf_append()) by the UDF.
Typically, a UDF uses this API when it wants to find out the length of a
LOB value when it receives a locator.
A return code of 3 may indicate:
– udfloc_p (address of locator) is zero
– return_len_p (address of where to put length) is zero

v sqludf_substr()

Given a LOB locator, a beginning position within the LOB, a desired length,
and a pointer to a buffer, this API places the bytes into the buffer and
returns the number of bytes it was able to move. (Obviously the UDF must
provide a buffer large enough for the desired length.) The number of bytes
moved could be shorter than the desired length, for example if you request
50 bytes beginning at position 101 and the LOB value is only 120 bytes
long, the API will move only 20 bytes.
Typically, this is the API that a UDF uses when it wants to see the bytes of
the LOB value, when it receives a locator.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 435

A return code of 3 may indicate:
– udfloc_p (address of locator) is zero
– start is less than 1
– length is negative
– buffer_p (buffer address) is zero
– return_len_p (address of where to put length) is zero

v sqludf_append()

Given a LOB locator, a pointer to a data buffer which has data in it, and a
length of data to append, this API appends the data to the end of the LOB
value, and returns the length of the bytes appended. (Note that the length
appended is always equal to the length given to append. If the entire length
cannot be appended, the call to sqludf_append() fails with the return code
of other.)
Typically, this is the API that a UDF uses when the result is defined with
AS LOCATOR, and the UDF is building the result value one append at a
time after creating the locator using sqludf_create_locator(). After
finishing the build process in this case, the UDF moves the locator to where
the result argument points.
Note that you can also append to your input locators using this API, which
might be useful from the standpoint of maximum flexibility to manipulate
your values within the UDF, but this will not have any effect on any LOB
values in the SQL statement, or stored in the database.
This API can be used to build very large LOB values in a piecemeal
manner. In cases where a large number of appends is used to build a result,
the performance of this task can be improved by:
– allocating a large application control heap (APP_CTL_HEAP_SZ is the

database manager configuration parameter)
– doing fewer appends of larger buffers; for example, instead of doing 20

appends of 50 bytes each, doing a single 1000 byte append

SQL applications which build many large LOB values via the
sqludf_append() API may encounter errors caused by limitations on the
amount of disk space available. The chance of these errors happening can
be reduced by:
– using larger buffers for the individual appends
– doing frequent COMMITs between statements
– in cases where each row of a SELECT statement is building a LOB value

via this API, using a CURSOR WITH HOLD and doing COMMITs
between rows

A return code of 3 may indicate:
– udfloc_p (address of locator) is zero

436 Application Development Guide

– length is negative
– buffer_p (buffer address) is zero

v sqludf_create_locator()

Given a data type, for example SQL_TYP_CLOB, it creates a locator. (The data
type values are defined in the external application header file sql.h.)
Typically, a UDF uses this API when the UDF result is defined with AS
LOCATOR, and the UDF wants to build the result value using
sqludf_append(). Another use is to internally manipulate LOB values.
A return code of 3 may indicate:
– udfloc_p (address of locator) is zero
– loc_type is not one of the three valid values
– loc_p (address of where to put locator) is zero

v sqludf_free_locator()

Frees the passed locator.
Use this API to free any locators that were created with the
sqludf_create_locator() API, and which were used only for internal
manipulation. It is NOT NECESSARY to free locators passed into the UDF.
It is NOT NECESSARY to free any locator created by the UDF via
sqludf_create_locator() if that locator is passed out of the UDF as an output.
A return code of 3 may indicate:
– udfloc_p (address of locator) is zero

The following notes apply to the use of these APIs:

Notes:

1. A UDF which is defined to return a LOB locator has several possibilities
available to it. It can return:
v an input locator passed to it
v an input locator passed to it which has been appended to via

sqludf_append()
v a locator created to via sqludf_create_locator(), and appended to via

sqludf_append()
2. A table function can be defined as returning one or more LOB locators.

Each of them can be any of the possibilities discussed in the preceding
item. It is also valid for such a table function to return the same locator as
an output for several table function columns.

3. A LOB locator passed to a table function as an input argument remains
alive for the entire duration of the row generation process. In fact, the
table function can append to a LOB using such a LOB locator while
generating one row, and see the appended bytes on a subsequent row.

4. The internal control mechanisms used to represent a LOB which originated
in DB2 as a LOB locator output from a UDF (table or scalar function), take

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 437

1950 bytes. For this reason, and because there are limitations on the size of
a row which is input to a sort, a query which attempts to sort multiple
such LOBs which originated as UDF LOB locators will be limited to (at
most) two such values per row, depending on the sizes of the other
columns involved. The same limitation applies to rows being inserted into
a table.

Scenarios for Using LOB Locators
This is a brief summary of possible scenarios that show the usefulness of LOB
locators. These four scenarios outline the use of locators, and show how you
can reduce space requirements and increase efficiency.
v Varying access to parts of an input LOB.

A UDF looks at the first part of a LOB value using sqludf_substr(), and
based on a size variable it finds there, it may want to read just a few bytes
from anywhere in the 100 million byte LOB value, again using
sqludf_substr().

v Process most of an input LOB one part at a time.
This UDF is looking for something in the LOB value. Most often it will find
it near the front, but sometimes it may have to scan the entire 100 million
byte value. The UDF uses sqludf_length() to find the size of this particular
value, and steps through the value 1 000 bytes at a time by placing a call to
sqludf_substr() in a loop. It uses a variable as the starting position,
increasing the variable by 1 000 each time through the loop. It proceeds in
this manner until it finds what it is looking for.

v Return one of the two input LOBs
This UDF has two LOB locators as inputs, and returns a LOB locator as an
output. It examines and compares the two inputs, reading the bytes
received using sqludf_substr() and then determines which of the two to
select based on some algorithm. When it determines this, it copies the
locator of the selected input to the buffer indicated by the UDF result
argument, and exits.

v Cut and paste an input LOB, and return the result.
The UDF is passed a LOB value and maybe some other arguments which
presumably tell it how to proceed. It creates a locator for its output, and
proceeds to build the output value sequentially, taking most of the result
value from different parts of the input LOB which it reads using
sqludf_substr(), based on the instructions contained in the other input
arguments. Finally when it is done it copies the result locator to the buffer
to which the UDF result argument points, and then exits.

Other Coding Considerations

This section documents additional considerations for implementing a UDF,
items to keep in mind, and items to avoid.

438 Application Development Guide

Hints and Tips
The following are recommendations to consider to successfully implement
your UDF:
v UDF bodies need to be protected. The executable function bodies are not

captured or protected in any way by DB2. The CREATE FUNCTION
statement merely points to the body. To preserve the integrity of the
function and the database applications which depend on the function, you
must, by managing access to the directory containing the function and by
protecting the body itself, prevent the function body from being
inadvertently or intentionally deleted or replaced.

v DB2 passes pointers to all of the buffers in the interface between DB2 and
SQL (that is, all the SQL arguments and the function return value). Be sure
you define your UDF arguments as pointers.

v All SQL argument values are buffered. This means that a copy of the value
is made and presented to the UDF. If a UDF changes its input parameters,
the changes have no effect on SQL values or processing, but may cause DB2
to malfunction.

v For OLE automation, do not change the input parameters, otherwise
memory resources may not be freed and you may encounter a memory
leak.
In case of a major OLE library version mismatch or a failure in initializing
the OLE library, the database manager returns SQLCODE -465 (SQLSTATE
58032) with reason code 34, (Failure to initialize OLE library).

v Re-entrancy is strongly recommended for UDFs on all operating platforms,
so that one copy of it can be used for multiple concurrent statements and
applications.
Note that the SCRATCHPAD facility can be used to circumvent many of the
limitations imposed by re-entrancy.

v If the body of a function currently being used is modified (for example,
recompiled and relinked), DB2 will not change functions in mid-transaction.
However, the copy used in a subsequent transaction may be different if this
kind of dynamic modification is taking place. Your operating system may
also prevent you from changing a UDF body that is in use. This practice is
not recommended.

v If you allocate dynamic memory in the UDF, it should be freed before
returning to DB2. This is especially important for the NOT FENCED case.
The SCRATCHPAD facility can be used, however, to anchor dynamic
memory needed by the UDF across invocations. If you use the scratchpad
in this manner, specify the FINAL CALL attribute on the CREATE
FUNCTION for the UDF so that it can free the allocated memory at
end-of-statement processing. The reason for this is that the system could
run out of memory over time, with repeated use of the UDF.
This reasoning holds as well for other system resources used by the UDF.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 439

v Use the NOT NULL CALL option if it makes sense to do so. With this
CREATE FUNCTION option, you do not have to check whether each SQL
argument is null, and it performs better when you do have NULL values.

v Use the NOT DETERMINISTIC option if the result from your UDF depends
on anything other than the input SQL arguments. This option prevents the
SQL compiler from performing certain optimizations which can cause
inconsistent results.

v Use the EXTERNAL ACTION option if your UDF has any side effects
which need to be reliably performed. EXTERNAL ACTION prevents the
SQL compiler from performing certain optimizations which can prevent
invocation of your UDF in certain circumstances.

v Regarding the choice between FENCED and UNFENCED:

FENCED UDF
A FENCED UDF runs in its own process and thus cannot access
most DB2 internal control and data areas, whether inadvertently or
deliberately. This makes a FENCED UDF a safer choice for the
database. However, it is still possible for a FENCED UDF that
contains programming errors to bring down DB2, though not as
easy as for a NOT FENCED UDF. A UDF that performs a massive
overwrite of a return variable, for example, can cause DB2 to abend.

UNFENCED UDF
A NOT FENCED UDF performs better than a FENCED UDF,
because a NOT FENCED UDF is loaded and executed directly in
the DB2 engine process. NOT FENCED UDFs avoid the
performance expense of process communication overhead.
However, a NOT FENCED UDF could conceivably access or alter
DB2 internal control or data areas. It is easier for an improperly
written NOT FENCED UDF to bring down DB2 than a FENCED
UDF.

Obviously, with both FENCED and NOT FENCED UDFs, you should:
– ensure the UDF is robustly written
– subject the UDF to a rigorous design and code review
– test the UDF in an environment where no harm can be done if it is not

correctly written; for example, a test database.

Most abends caused by a UDF are caught by DB2, which returns a -430
SQLCODE and prevents the database from being corrupted. However,
certain types of UDF misbehavior, including a massive overwrite of a return
value buffer, can cause DB2 to fail as well as the UDF. Pay attention
particularly to any UDF which returns variable-length data, or which
calculates how many bytes it must move to the return value buffer.

v For considerations on using UDFs with EUC code sets, see “Considerations
for UDFs” on page 515.

440 Application Development Guide

v For an application running NOT FENCED UDFs, the first time such a UDF
is invoked, a block of memory of the size indicated by the UDF_MEM_SZ
configuration parameter is created. Thereafter, on a statement by statement
basis, memory for interfacing between DB2 and NOT FENCED UDFs is
allocated and deallocated from this block of memory as needed.
For FENCED UDFs, a different block of memory is used in the same way. It
is different because the memory is shared between processes. In fact, if an
application uses both NOT FENCED and FENCED UDFs, two separate
blocks of memory, each of the size indicated by the UDF_MEM_SZ parameter
are used. Refer to the Administration Guide for more information about this
configuration parameter.

v Use the DISALLOW PARALLELISM option in the following situations:
– On scalar UDFs, if your UDF absolutely depends on running the same

copy. Generally, this will be the case for NOT DETERMINISTIC
SCRATCHPAD UDFs. (For an example, see the counter UDF specified in
“Scratchpad Considerations” on page 430.)

– If you do not want the UDF to run on multiple partitions at once for a
single reference.

– If you are specifying a table function.

Otherwise, ALLOW PARALLELISM (the default) should be specified.

UDF Restrictions and Caveats
This section discusses items to be avoided in your UDF:
1. In general DB2 does not restrict the use of operating system functions. A

few exceptions are:
a. Registering of signal or exception handlers may interfere with DB2’s

use of these same handlers and may result in unexpected failure.
b. System calls that terminate a process may abnormally terminate one of

DB2’s processes and result in system or application failure.
Other system calls may also cause problems if they interfere with the
normal operation of DB2; for example, a UDF that attempts to unload
a library containing a UDF from memory could cause severe problems.
Be careful in coding and testing any UDFs containing system calls.

2. The values of all environment variables beginning with 'DB2' are captured
at the time the database manager is started with db2start, and are
available in all UDFs whether or not they are FENCED. The only
exception is the DB2CKPTR environment variable. Note that the environment
variables are captured; any changes to the environment variables after
db2start is issued are not available to the UDFs.

3. With respect to LOBs passed to an external UDF, you are limited to the
maximum size specified by the UDF Shared Memory Size DB2 system
configuration parameter. The maximum that you can specify for this
parameter is 256M. The default setting on DB2 is 1M. For more
information on this parameter, refer to the Administration Guide.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 441

4. Input to, and output from, the screen and keyboard is not recommended.
In the process model of DB2, UDFs run in the background, so you cannot
write to the screen. However, you can write to a file.

Note: DB2 does not attempt to synchronize any external input/output
performed by a UDF with DB2’s own transactions. So for example,
if a UDF writes to a file during a transaction, and that transaction is
later backed out for some reason, no attempt is made to discover or
undo the writes to the file.

5. On UNIX-based systems, your UDF runs under the user ID of the DB2
Agent Process (NOT FENCED), or the user ID which owns the db2udf
executable (FENCED). This user ID controls the system resources available
to the UDF. For information on the db2udf executable, refer to the Quick
Beginnings for your platform.

6. When using protected resources, (that is, resources that only allow one
process access at a time) inside UDFs, you should try to avoid deadlocks
between UDFs. If two or more UDFs deadlock, DB2 will not be able to
detect the condition.

7. Character data is passed to external functions in the code page of the
database. Likewise, a character string that is output from the function is
assumed by the database to use the database’s code page. In the case
where the application code page differs from the database code page, the
code page conversions occur as they would for other values in the SQL
statement. You can prevent this conversion, by coding FOR BIT DATA as
an attribute of the character parameter or result in your CREATE
FUNCTION statement. If the character parameter is not defined with the
FOR BIT DATA attribute, your UDF code will receive arguments in the
database code page.
Note that, using the DBINFO option on CREATE FUNCTION, the
database code page is passed to the UDF. Using this information, a UDF
which is sensitive to the code page can be written to operate in many
different code pages.

8. When writing a UDF using C++, you may want to consider declaring the
function name as:

extern "C" void SQL_API_FN udf(...arguments...)

The extern "C" prevents type decoration (or ‘mangling’) of the function
name by the C++ compiler. Without this declaration, you have to include
all the type decoration for the function name when you issue the CREATE
FUNCTION statement.

442 Application Development Guide

Examples of UDF Code

The following UDF code examples are supplied with DB2.
Example: Integer Divide Operator
Example: Fold the CLOB, Find the Vowel
Example: Counter

For information on where to find all the examples supplied, and how to
invoke them, see “Appendix B. Sample Programs” on page 729.

For information on compiling and linking UDFs, refer to the Application
Building Guide.

Each of the example UDFs is accompanied by the corresponding CREATE
FUNCTION statement, and a small scenario showing its use. These scenarios
all use the following table TEST, which has been carefully crafted to illustrate
certain points being made in the scenarios. Here is the table definition:

CREATE TABLE TEST (INT1 INTEGER,
INT2 INTEGER,
PART CHAR(5),
DESCR CLOB(33K))

After populating the table, issue the following statement using CLP to display
its contents:

SELECT INT1, INT2, PART, SUBSTR(DESCR,1,50) FROM TEST

Note the use of the SUBSTR function on the CLOB column to make the
output more readable. You receive the following CLP output:
INT1 INT2 PART 4
----------- ----------- ----- --

16 1 brain The only part of the body capable of forgetting.
8 2 heart The seat of the emotions?
4 4 elbow That bendy place in mid-arm.
2 0 - -
97 16 xxxxx Unknown.

5 record(s) selected.

Refer to the previous information on table TEST as you read the examples and
scenarios which follow.

Example: Integer Divide Operator
Suppose you are unhappy with the way integer divide works in DB2 because
it returns an error, SQLCODE -802 (SQLSTATE 22003), and terminates the
statement when the divisor is zero. (Note that if you enable friendly arithmetic
with the DFT_SQLMATHWARN configuration parameter, DB2 returns a
NULL instead of an error in this situation.) Instead, you want the integer
divide to return a NULL, so you code this UDF:

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 443

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sqludf.h>
#include <sqlca.h>
#include <sqlda.h>

/***
* function divid: performs integer divid, but unlike the / operator
* shipped with the product, gives NULL when the
* denominator is zero.
*
* This function does not use the constructs defined in the
* "sqludf.h" header file.
*
* inputs: INTEGER num numerator
* INTEGER denom denominator
* output: INTEGER out answer
**/
#ifdef __cplusplus
extern "C"
#endif
void SQL_API_FN divid (

sqlint32 *num, /* numerator */
sqlint32 *denom, /* denominator */
sqlint32 *out, /* output result */
short *in1null, /* input 1 NULL indicator */
short *in2null, /* input 2 NULL indicator */
short *outnull, /* output NULL indicator */
char *sqlstate, /* SQL STATE */
char *funcname, /* function name */
char *specname, /* specific function name */
char *mesgtext) { /* message text insert */

if (*denom == 0) { /* if denominator is zero, return null result */
*outnull = -1;

} else { /* else, compute the answer */
*out = *num / *denom;
*outnull = 0;

} /* endif */
}
/* end of UDF : divid */

For this UDF, notice that:
v It does not include sqludf.h.
v It has two input arguments defined, and one output argument.
v It is defined to return void. Remember that the normal UDF outputs will be

returned using the input arguments.
v The inclusion of SQL_API_FN in the function definition is designed to

assure portability of function source across platforms. It requires the
inclusion of the following statement in your UDF source files.

#include <sqlsystm.h>

444 Application Development Guide

v It does not check for null input arguments, because the NOT NULL CALL
parameter is specified by default in the CREATE FUNCTION statement
shown below.

Here is the CREATE FUNCTION statement for this UDF:
CREATE FUNCTION MATH."/"(INT,INT)

RETURNS INT
NOT FENCED
DETERMINISTIC
NO SQL
NO EXTERNAL ACTION
LANGUAGE C
PARAMETER STYLE DB2SQL
EXTERNAL NAME '/u/slick/udfx/div' ;

(This statement is for an AIX version of this UDF. For other platforms, you
may need to modify the value specified in the EXTERNAL NAME clause.)

For this statement, observe that:
v It is defined to be in the MATH schema. In order to define a UDF in a

schema that is not equal to your user-ID, you need DBADM authority on
the database.

v The function name is defined to be "/", the same name as the SQL divide
operator. In fact, this UDF can be invoked the same as the built-in /
operator, using either infix notation, for example, A / B, or functional
notation, for example, "/"(A,B). See below.

v You have chosen to define it as NOT FENCED because you are absolutely
sure that the program has no errors.

v You have used the default NOT NULL CALL, by which DB2 provides a
NULL result if either argument is NULL, without invoking the body of the
function.

Now if you run the following pair of statements (CLP input is shown):

SET CURRENT FUNCTION PATH = SYSIBM, SYSFUN, SLICK
SELECT INT1, INT2, INT1/INT2, "/"(INT1,INT2) FROM TEST

You get this output from CLP (if you do not enable friendly arithmetic with the
database configuration parameter DFT_SQLMATHWARN):

INT1 INT2 3 4
----------- ----------- ----------- -----------

16 1 16 16

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 445

8 2 4 4
4 4 1 1

SQL0802N Arithmetic overflow or other arithmetic exception occurred.
SQLSTATE=22003

The SQL0802N error message occurs because you have set your CURRENT
FUNCTION PATH special register to a concatenation of schemas which does
not include MATH, the schema in which the "/" UDF is defined. And
therefore you are executing DB2’s built-in divide operator, whose defined
behavior is to give the error when a ″divide by zero″ condition occurs. The
fourth row in the TEST table provides this condition.

However, if you change the function path, putting MATH in front of SYSIBM
in the path, and rerun the SELECT statement:

SET CURRENT FUNCTION PATH = MATH, SYSIBM, SYSFUN, SLICK
SELECT INT1, INT2, INT1/INT2, "/"(INT1,INT2) FROM TEST

You then get the desired behavior, as shown by the following CLP output:

INT1 INT2 3 4
----------- ----------- ----------- -----------

16 1 16 16
8 2 4 4
4 4 1 1
2 0 - -
97 16 6 6

5 record(s) selected.

For the above example, observe that:
v The SET CURRENT FUNCTION PATH statement changes the current

function path used in the following statement as this is dynamic SQL,
placing the MATH schema ahead of SYSIBM.

v The fourth row produces a NULL result from the divides, and the
statement continues.

v Both syntaxes (infix syntax, and prefix syntax) can be used to invoke this
particular UDF, because its name is the same as a built-in operator, and
both are used in the above example, with identical results.

v As a practical note, because of the way the built-in functions and operators
are defined to DB2, this "/" is not used for operations on SMALLINTs. The
DB2 function selection algorithm chooses the exact match built-in "/"
operator in preference to this user-defined "/", which is a match but not an
exact match. There are different ways around this seeming inconsistency.
You can explicitly cast SMALLINT arguments to INTEGER before invoking
"/", for example, INT1 / INTEGER(SMINT1) (where the column SMINT1 is
assumed to be SMALLINT). Or, better than that, you could register

446 Application Development Guide

additional UDFs, further overloading the "/" operator, which define first
and second parameters that are SMALLINT. These additional UDFs can be
sourced on MATH."/".
In this case, for a fully general set of functions you have to CREATE the
following three additional functions to completely handle integer divide:

CREATE FUNCTION MATH."/"(SMALLINT,SMALLINT)
RETURNS INT
SOURCE MATH."/"(INT,INT)

CREATE FUNCTION MATH."/"(SMALLINT,INT)
RETURNS INT
SOURCE MATH."/"(INT,INT)

CREATE FUNCTION MATH."/"(INT,SMALLINT)
RETURNS INT
SOURCE MATH."/"(INT,INT)

Even though three UDFs are added, additional code does not have to be
written as they are sourced on MATH."/".

And now, with the definition of these four "/" functions, any users who
want to take advantage of the new behavior on integer divide need only
place MATH ahead of SYSIBM in their function path, and can write their
SQL as usual.

While the preceding example does not consider the BIGINT data type, you
can easily extend the example to include BIGINT.

Example: Fold the CLOB, Find the Vowel
Suppose you have coded up two UDFs to help you with your text handling
application. The first UDF folds your text string after the nth byte. In this
example, fold means to put the part that was originally after the n byte before
the part that was originally in front of the n+1 byte. In other words, the UDF
moves the first n bytes from the beginning of the string to the end of the
string. The second function returns the position of the first vowel in the text
string. Both of these functions are coded in the udf.c example file:
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sqludf.h>
#include <sqlca.h>
#include <sqlda.h>
#include "util.h"

/***
* function fold: input string is folded at the point indicated by the
* second argument.
*

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 447

* input: CLOB in1 input string
* INTEGER in2 position to fold on
* CLOB out folded string
**/
#ifdef __cplusplus
extern "C"
#endif
void SQL_API_FN fold (

SQLUDF_CLOB *in1, /* input CLOB to fold */
SQLUDF_INTEGER *in2, /* position to fold on */
SQLUDF_CLOB *out, /* output CLOB, folded */
SQLUDF_NULLIND *in1null, /* input 1 NULL indicator */
SQLUDF_NULLIND *in2null, /* input 2 NULL indicator */
SQLUDF_NULLIND *outnull, /* output NULL indicator */
SQLUDF_TRAIL_ARGS) { /* trailing arguments */

SQLUDF_INTEGER len1;

if (SQLUDF_NULL(in1null) || SQLUDF_NULL(in2null)) {
/* one of the arguments is NULL. The result is then "INVALID INPUT" */
strcpy((char *) out->data, "INVALID INPUT") ;
out->length = strlen("INVALID INPUT");

} else {
len1 = in1->length; /* length of the CLOB */

/* build the output by folding at position "in2" */
strncpy((char *) out->data, &in1->data[*in2], len1 - *in2) ;
strncpy((char *) &out->data[len1 - *in2], in1->data, *in2) ;
out->length = in1->length;

} /* endif */
outnull = 0; / result is always non-NULL */

}
/* end of UDF : fold */

/***
* function findvwl: returns the position of the first vowel.
* returns an error if no vowel is found
* when the function is created, must be defined as
* NOT NULL CALL.
* inputs: VARCHAR(500) in
* output: INTEGER out
**/
#ifdef __cplusplus
extern "C"
#endif
void SQL_API_FN findvwl (

SQLUDF_VARCHAR *in, /* input character string */
SQLUDF_SMALLINT *out, /* output location of vowel */
SQLUDF_NULLIND *innull, /* input NULL indicator */
SQLUDF_NULLIND *outnull, /* output NULL indicator */
SQLUDF_TRAIL_ARGS) { /* trailing arguments */

short i; /* local indexing variable */

for (i=0; (i < (short)strlen(in) && /* find the first vowel */

448 Application Development Guide

in[i] != 'a' && in[i] != 'e' && in[i] != 'i' &&
in[i] != 'o' && in[i] != 'u' && in[i] != 'y' &&
in[i] != 'A' && in[i] != 'E' && in[i] != 'I' &&
in[i] != 'O' && in[i] != 'U' && in[i] != 'Y'); i++);

if (i == strlen((char *) in)) { /* no vowels found */
/* error state */

strcpy((char *) sqludf_sqlstate, "38999") ;
/* message insert */

strcpy((char *) sqludf_msgtext, "findvwl: No Vowel") ;
} else { /* a vowel was found at "i" */

*out = i + 1;
*outnull = 0;

} /* endif */
}
/* end of UDF : findvwl */

For the above UDFs, notice:
v They include sqludf.h, and use the argument definitions and macros

contained in that file.
v The fold() function is invoked even with NULL arguments, and returns

the string INVALID INPUT in this case. The findvwl() function on the other
hand, is not invoked with null arguments. The use of the SQLUDF_NULL()
macro, defined in sqludf.h checks for null arguments in fold().

v The findvwl() function sets the error SQLSTATE and the message token.
v The fold() function returns a CLOB value in addition to having the CLOB

data type as its text input argument. The findvwl() has a VARCHAR input
argument.

Here are the CREATE FUNCTION statements for these UDFs:
CREATE FUNCTION FOLD(CLOB(100K),INT)

RETURNS CLOB(100K)
FENCED
DETERMINISTIC
NO SQL
NO EXTERNAL ACTION
LANGUAGE C
NULL CALL
PARAMETER STYLE DB2SQL
EXTERNAL NAME 'udf!fold' ;

CREATE FUNCTION FINDV(VARCHAR(500))
RETURNS INTEGER
NOT FENCED
DETERMINISTIC
NO SQL
NO EXTERNAL ACTION
LANGUAGE C
NOT NULL CALL
PARAMETER STYLE DB2SQL
EXTERNAL NAME 'udf!findvwl' ;

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 449

The above CREATE FUNCTION statements are for UNIX-based platforms. On
other platforms, you may need to modify the value specified in the
EXTERNAL NAME clause in the above statements. You can find the above
CREATE FUNCTION statements in the calludf.sqc example program
shipped with DB2.

Referring to these CREATE statements, observe that:
v The schema names of the functions will default to the statement

authorization-ID.
v You have chosen to define FOLD as FENCED because you are not absolutely

sure that it is error-free, but FINDV is NOT FENCED.
v You have coded NULL CALL for FOLD, which means that fold() will be

called even if either input argument is null, which agrees with the way the
function is coded. FINDV is coded to be NOT NULL CALL, which also
agrees with the code.

v Both will default to ALLOW PARALLELISM.

Now you can successfully run the following statement:

SELECT SUBSTR(DESCR,1,30), SUBSTR(FOLD(DESCR,6),1,30) FROM TEST

The output from the CLP for this statement is:
1 2
------------------------------ ------------------------------
The only part of the body capa ly part of the body capable of
The seat of the emotions? at of the emotions?The se
That bendy place in mid-arm. endy place in mid-arm.That b
- INVALID INPUT
Unknown. n.Unknow

5 record(s) selected.

Note the use of the SUBSTR built-in function to make the selected CLOB
values display more nicely. It shows how the output is folded (best seen in
the second, third and fifth rows, which have a shorter CLOB value than the
first row, and thus the folding is more evident even with the use of SUBSTR).
And it shows (fourth row) how the INVALID INPUT string is returned by the
FOLD UDF when its input text string (column DESCR) is null. This SELECT
also shows simple nesting of function references; the reference to FOLD is
within an argument of the SUBSTR function reference.

Then if you run the following statement:
SELECT PART, FINDV(PART) FROM TEST

The CLP output is as follows:

450 Application Development Guide

PART 2
----- -----------
brain 3
heart 2
elbow 1
- -
SQL0443N User defined function "SLICK.FINDV" (specific name
"SQL950424135144750") has returned an error SQLSTATE with diagnostic
text "findvwl: No Vowel". SQLSTATE=38999

This example shows how the 38999 SQLSTATE value and error message token
returned by findvwl() are handled: message SQL0443N returns this
information to the user. The PART column in the fifth row contains no vowel,
and this is the condition which triggers the error in the UDF.

Observe the argument promotion in this example. The PART column is
CHAR(5), and is promoted to VARCHAR to be passed to FINDV.

And finally note how DB2 has generated a null output from FINDV for the
fourth row, as a result of the NOT NULL CALL specification in the CREATE
statement for FINDV.

The following statement:
SELECT SUBSTR(DESCR,1,25), FINDV(CAST (DESCR AS VARCHAR(60)))
FROM TEST

Produces this output when executed in the CLP:
1 2
------------------------- -----------
The only part of the body 3
The seat of the emotions? 3
That bendy place in mid-a 3
- -
Unknown. 1

5 record(s) selected.

This SELECT statement shows FINDV working on a VARCHAR input
argument. Observe how we cast column DESCR to VARCHAR to make this
happen. Without the cast we would not be able to use FINDV on a CLOB
argument, because CLOB is not promotable to VARCHAR. Again, the built-in
SUBSTR function is used to make the DESCR column value display better.

And here again note that the fourth row produces a null result from FINDV
because of the NOT NULL CALL.

Example: Counter
Suppose you want to simply number the rows in your SELECT statement. So
you write a UDF which increments and returns a counter. This UDF uses a
scratchpad:

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 451

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sqludf.h>
#include <sqlca.h>
#include <sqlda.h>

/* structure scr defines the passed scratchpad for the function "ctr" */
struct scr {

sqlint32 len;
sqlint32 countr;
char not_used[96];

} ;

/***
* function ctr: increments and reports the value from the scratchpad.
*
* This function does not use the constructs defined in the
* "sqludf.h" header file.
*
* input: NONE
* output: INTEGER out the value from the scratchpad
**/
#ifdef __cplusplus
extern "C"
#endif
void SQL_API_FN ctr (

sqlint32 *out, /* output answer (counter) */
short *outnull, /* output NULL indicator */
char *sqlstate, /* SQL STATE */
char *funcname, /* function name */
char *specname, /* specific function name */
char *mesgtext, /* message text insert */
struct scr *scratchptr) { /* scratch pad */

out = ++scratchptr->countr; / increment counter & copy out */
*outnull = 0;

}
/* end of UDF : ctr */

For this UDF, observe that:
v It does not include sqludf.h. But it does include sqlsystm.h for the

definition of SQL_API_FN.
v It has no input SQL arguments defined, but returns a value.
v It appends the scratchpad input argument after the four standard trailing

arguments, namely SQL-state, function-name, specific-name, and message-text.
v It includes a structure definition to map the scratchpad which is passed.

Following is the CREATE FUNCTION statement for this UDF:
CREATE FUNCTION COUNTER()

RETURNS INT
SCRATCHPAD

452 Application Development Guide

NOT FENCED
NOT DETERMINISTIC
NO SQL
NO EXTERNAL ACTION
LANGUAGE C
PARAMETER STYLE DB2SQL
EXTERNAL NAME 'udf!ctr'
DISALLOW PARALLELISM;

(This statement is for an AIX version of this UDF. For other platforms, you
may need to modify the value specified in the EXTERNAL NAME clause.)

Referring to this statement, observe that:
v No input parameters are defined. This agrees with the code.
v SCRATCHPAD is coded, causing DB2 to allocate, properly initialize and

pass the scratchpad argument.
v You have chosen to define it as NOT FENCED because you are absolutely

sure that it is error free.
v You have specified it to be NOT DETERMINISTIC, because it depends on

more than the SQL input arguments, (none in this case).
v You have correctly specified DISALLOW PARALLELISM, because correct

functioning of the UDF depends on a single scratchpad.

Now you can successfully run the following statement:

SELECT INT1, COUNTER(), INT1/COUNTER() FROM TEST

When run through the CLP, it produces this output:

INT1 2 3
----------- ----------- -----------

16 1 16
8 2 4
4 3 1
2 4 0
97 5 19

5 record(s) selected.

Observe that the second column shows the straight COUNTER() output. The
third column shows that the two separate references to COUNTER() in the
SELECT statement each get their own scratchpad; had they not each gotten
their own, the output in the second column would have been 1 3 5 7 9,
instead of the nice orderly 1 2 3 4 5.

Example: Weather Table Function
The following is an example table function, tfweather_u, (supplied by DB2 in
the programming example tblsrv.c), that returns weather information for

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 453

various cities in the United States. The weather data for these cities is
included in the example program, but could be read in from an external file,
as indicated in the comments contained in the example program. The data
includes the name of a city followed by its weather information. This pattern
is repeated for the other cities. Note that there is a client application
(tblcli.sqc) supplied with DB2 that calls this table function and prints out
the weather data retrieved using the tfweather_u table function.
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sql.h>
#include <sqludf.h> /* for use in compiling User Defined Function */

#define SQL_NOTNULL 0 /* Nulls Allowed - Value is not Null */
#define SQL_ISNULL -1 /* Nulls Allowed - Value is Null */

/* Short and long city name structure */
typedef struct {

char * city_short ;
char * city_long ;

} city_area ;

/* Scratchpad data */
/* Preserve information from one function call to the next call */
typedef struct {

/* FILE * file_ptr; if you use weather data text file */
int file_pos ; /* if you use a weather data buffer */

} scratch_area ;

/* Field descriptor structure */
typedef struct {

char fld_field[31] ; /* Field data */
int fld_ind ; /* Field null indicator data */
int fld_type ; /* Field type */
int fld_length ; /* Field length in the weather data */
int fld_offset ; /* Field offset in the weather data */

} fld_desc ;

/* Short and long city name data */
city_area cities[] = {

{ "alb", "Albany, NY" },
{ "atl", "Atlanta, GA" },
.
.
.
{ "wbc", "Washington DC, DC" },
/* You may want to add more cities here */

/* Do not forget a null termination */
{ (char *) 0, (char *) 0 }

} ;

/* Field descriptor data */

454 Application Development Guide

fld_desc fields[] = {
{ "", SQL_ISNULL, SQL_TYP_VARCHAR, 30, 0 }, /* city */
{ "", SQL_ISNULL, SQL_TYP_INTEGER, 3, 2 }, /* temp_in_f */
{ "", SQL_ISNULL, SQL_TYP_INTEGER, 3, 7 }, /* humidity */
{ "", SQL_ISNULL, SQL_TYP_VARCHAR, 5, 13 }, /* wind */
{ "", SQL_ISNULL, SQL_TYP_INTEGER, 3, 19 }, /* wind_velocity */
{ "", SQL_ISNULL, SQL_TYP_FLOAT, 5, 24 }, /* barometer */
{ "", SQL_ISNULL, SQL_TYP_VARCHAR, 25, 30 }, /* forecast */
/* You may want to add more fields here */

/* Do not forget a null termination */
{ (char) 0, 0, 0, 0, 0 }

} ;

/* Following is the weather data buffer for this example. You */
/* may want to keep the weather data in a separate text file. */
/* Uncomment the following fopen() statement. Note that you */
/* have to specify the full path name for this file. */
char * weather_data[] = {

"alb.forecast",
" 34 28% wnw 3 30.53 clear",
"atl.forecast",
" 46 89% east 11 30.03 fog",
.
.
.
"wbc.forecast",
" 38 96% ene 16 30.31 light rain",
/* You may want to add more weather data here */

/* Do not forget a null termination */
(char *) 0

} ;

#ifdef __cplusplus
extern "C"
#endif
/* This is a subroutine. */
/* Find a full city name using a short name */
int get_name(char * short_name, char * long_name) {

int name_pos = 0 ;

while (cities[name_pos].city_short != (char *) 0) {
if (strcmp(short_name, cities[name_pos].city_short) == 0) {

strcpy(long_name, cities[name_pos].city_long) ;
/* A full city name found */
return(0) ;

}
name_pos++ ;

}
/* Could not find such city in the city data */
strcpy(long_name, "Unknown City") ;
return(-1) ;

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 455

}

#ifdef __cplusplus
extern "C"
#endif
/* This is a subroutine. */
/* Clean all field data and field null indicator data */
int clean_fields(int field_pos) {

while (fields[field_pos].fld_length != 0) {
memset(fields[field_pos].fld_field, '\0', 31) ;
fields[field_pos].fld_ind = SQL_ISNULL ;
field_pos++ ;

}
return(0) ;

}

#ifdef __cplusplus
extern "C"
#endif
/* This is a subroutine. */
/* Fills all field data and field null indicator data ... */
/* ... from text weather data */
int get_value(char * value, int field_pos) {

fld_desc * field ;
char field_buf[31] ;
double * double_ptr ;
int * int_ptr, buf_pos ;

while (fields[field_pos].fld_length != 0) {
field = &fields[field_pos] ;
memset(field_buf, '\0', 31) ;
memcpy(field_buf,

(value + field->fld_offset),
field->fld_length) ;

buf_pos = field->fld_length ;
while ((buf_pos > 0) &&

(field_buf[buf_pos] == ' '))
field_buf[buf_pos--] = '\0' ;

buf_pos = 0 ;
while ((buf_pos < field->fld_length) &&

(field_buf[buf_pos] == ' '))
buf_pos++ ;

if (strlen((char *) (field_buf + buf_pos)) > 0 ||
strcmp((char *) (field_buf + buf_pos), "n/a") != 0) {

field->fld_ind = SQL_NOTNULL ;

/* Text to SQL type conversion */
switch(field->fld_type) {

case SQL_TYP_VARCHAR:
strcpy(field->fld_field,

(char *) (field_buf + buf_pos)) ;
break ;

456 Application Development Guide

case SQL_TYP_INTEGER:
int_ptr = (int *) field->fld_field ;
*int_ptr = atoi((char *) (field_buf + buf_pos)) ;
break ;

case SQL_TYP_FLOAT:
double_ptr = (double *) field->fld_field ;
*double_ptr = atof((char *) (field_buf + buf_pos)) ;
break ;

/* You may want to add more text to SQL type conversion here */
}

}
field_pos++ ;

}
return(0) ;

}

#ifdef __cplusplus
extern "C"
#endif
void SQL_API_FN weather(/* Return row fields */

SQLUDF_VARCHAR * city,
SQLUDF_INTEGER * temp_in_f,
SQLUDF_INTEGER * humidity,
SQLUDF_VARCHAR * wind,
SQLUDF_INTEGER * wind_velocity,
SQLUDF_DOUBLE * barometer,
SQLUDF_VARCHAR * forecast,
/* You may want to add more fields here */

/* Return row field null indicators */
SQLUDF_NULLIND * city_ind,
SQLUDF_NULLIND * temp_in_f_ind,
SQLUDF_NULLIND * humidity_ind,
SQLUDF_NULLIND * wind_ind,
SQLUDF_NULLIND * wind_velocity_ind,
SQLUDF_NULLIND * barometer_ind,
SQLUDF_NULLIND * forecast_ind,
/* You may want to add more field indicators here */

/* UDF always-present (trailing) input arguments */
SQLUDF_TRAIL_ARGS_ALL

) {

scratch_area * save_area ;
char line_buf[81] ;
int line_buf_pos ;

/* SQLUDF_SCRAT is part of SQLUDF_TRAIL_ARGS_ALL */
/* Preserve information from one function call to the next call */
save_area = (scratch_area *) (SQLUDF_SCRAT->data) ;

/* SQLUDF_CALLT is part of SQLUDF_TRAIL_ARGS_ALL */
switch(SQLUDF_CALLT) {

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 457

/* First call UDF: Open table and fetch first row */
case SQL_TF_OPEN:

/* If you use a weather data text file specify full path */
/* save_area->file_ptr = fopen("/sqllib/samples/c/tblsrv.dat",

"r"); */
save_area->file_pos = 0 ;
break ;

/* Normal call UDF: Fetch next row */
case SQL_TF_FETCH:

/* If you use a weather data text file */
/* memset(line_buf, '\0', 81); */
/* if (fgets(line_buf, 80, save_area->file_ptr) == NULL) { */
if (weather_data[save_area->file_pos] == (char *) 0) {

/* SQLUDF_STATE is part of SQLUDF_TRAIL_ARGS_ALL */
strcpy(SQLUDF_STATE, "02000") ;

break ;
}
memset(line_buf, '\0', 81) ;
strcpy(line_buf, weather_data[save_area->file_pos]) ;
line_buf[3] = '\0' ;

/* Clean all field data and field null indicator data */
clean_fields(0) ;

/* Fills city field null indicator data */
fields[0].fld_ind = SQL_NOTNULL ;

/* Find a full city name using a short name */
/* Fills city field data */
if (get_name(line_buf, fields[0].fld_field) == 0) {

save_area->file_pos++ ;
/* If you use a weather data text file */
/* memset(line_buf, '\0', 81); */
/* if (fgets(line_buf, 80, save_area->file_ptr) == NULL) { */
if (weather_data[save_area->file_pos] == (char *) 0) {

/* SQLUDF_STATE is part of SQLUDF_TRAIL_ARGS_ALL */
strcpy(SQLUDF_STATE, "02000") ;
break ;

}
memset(line_buf, '\0', 81) ;
strcpy(line_buf, weather_data[save_area->file_pos]) ;
line_buf_pos = strlen(line_buf) ;
while (line_buf_pos > 0) {

if (line_buf[line_buf_pos] >= ' ')
line_buf_pos = 0 ;

else {
line_buf[line_buf_pos] = '\0' ;
line_buf_pos-- ;

}
}

}

458 Application Development Guide

/* Fills field data and field null indicator data ... */
/* ... for selected city from text weather data */
get_value(line_buf, 1) ; /* Skips city field */

/* Builds return row fields */
strcpy(city, fields[0].fld_field) ;
memcpy((void *) temp_in_f,

fields[1].fld_field,
sizeof(SQLUDF_INTEGER)) ;

memcpy((void *) humidity,
fields[2].fld_field,
sizeof(SQLUDF_INTEGER)) ;

strcpy(wind, fields[3].fld_field) ;
memcpy((void *) wind_velocity,

fields[4].fld_field,
sizeof(SQLUDF_INTEGER)) ;

memcpy((void *) barometer,
fields[5].fld_field,
sizeof(SQLUDF_DOUBLE)) ;

strcpy(forecast, fields[6].fld_field) ;

/* Builds return row field null indicators */
memcpy((void *) city_ind,

&(fields[0].fld_ind),
sizeof(SQLUDF_NULLIND)) ;

memcpy((void *) temp_in_f_ind,
&(fields[1].fld_ind),
sizeof(SQLUDF_NULLIND)) ;

memcpy((void *) humidity_ind,
&(fields[2].fld_ind),
sizeof(SQLUDF_NULLIND)) ;

memcpy((void *) wind_ind,
&(fields[3].fld_ind),
sizeof(SQLUDF_NULLIND)) ;

memcpy((void *) wind_velocity_ind,
&(fields[4].fld_ind),
sizeof(SQLUDF_NULLIND)) ;

memcpy((void *) barometer_ind,
&(fields[5].fld_ind),
sizeof(SQLUDF_NULLIND)) ;

memcpy((void *) forecast_ind,
&(fields[6].fld_ind),
sizeof(SQLUDF_NULLIND)) ;

/* Next city weather data */
save_area->file_pos++ ;

break ;

/* Special last call UDF for cleanup (no real args!): Close table */
case SQL_TF_CLOSE:

/* If you use a weather data text file */
/* fclose(save_area->file_ptr); */
/* save_area->file_ptr = NULL; */

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 459

save_area->file_pos = 0 ;
break ;

}

}

Referring to this UDF code, observe that:
v The scratchpad is defined. The row variable is initialized on the OPEN call,

and the iptr array and nbr_rows variable are filled in by the mystery
function at OPEN time.

v FETCH traverses the iptr array, using row as an index, and moves the
values of interest from the current element of iptr to the location pointed
to by out_c1, out_c2, and out_c3 result value pointers.

v Finally CLOSE frees the storage acquired by OPEN and anchored in the
scratchpad.

Following is the CREATE FUNCTION statement for this UDF:
CREATE FUNCTION tfweather_u()

RETURNS TABLE (CITY VARCHAR(25),
TEMP_IN_F INTEGER,
HUMIDITY INTEGER,
WIND VARCHAR(5),
WIND_VELOCITY INTEGER,
BAROMETER FLOAT,
FORECAST VARCHAR(25))

SPECIFIC tfweather_u
DISALLOW PARALLELISM
NOT FENCED
DETERMINISTIC
NO SQL
NO EXTERNAL ACTION
SCRATCHPAD
NO FINAL CALL
LANGUAGE C
PARAMETER STYLE DB2SQL
EXTERNAL NAME 'tf_dml!weather';

The above CREATE FUNCTION statement is for a UNIX version of this UDF.
For other platforms, you may need to modify the value specified in the
EXTERNAL NAME clause.

Referring to this statement, observe that:
v It does not take any input, and returns 7 output columns.
v SCRATCHPAD is specified, so DB2 allocates, properly initializes and passes

the scratchpad argument.
v NO FINAL CALL is specified.

460 Application Development Guide

v The function is specified as NOT DETERMINISTIC, because it depends on
more than the SQL input arguments. That is, it depends on the mystery
function and we assume that the content can vary from execution to
execution.

v DISALLOW PARALLELISM is required for table functions.
v CARDINALITY 100 is an estimate of the expected number of rows

returned, provided to the DB2 optimizer.
v DBINFO is not used, and the optimization to only return the columns

needed by the particular statement referencing the function is not
implemented.

v NOT NULL CALL is specified, so the UDF will not be called if any of its
input SQL arguments are NULL, and does not have to check for this
condition.

Example: Function using LOB locators
This UDF takes a locator for an input LOB, and returns a locator for another
LOB which is a subset of the input LOB. There are some criteria passed as a
second input value, which tell the UDF how exactly to break up the input
LOB.
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sql.h>
#include <sqlca.h>
#include <sqlda.h>
#include <sqludf.h>
#include "util.h"

void SQL_API_FN lob_subsetter(
udf_locator * lob_input, /* locator of LOB value to carve up */
char * criteria, /* criteria for carving */
udf_locator * lob_output, /* locator of result LOB value */
sqlint16 * inp_nul,
sqlint16 * cri_nul,
sqlint16 * out_nul,
char * sqlstate,
char * funcname,
char * specname,
char * msgtext) {

/* local vars */
short j; /* local indexing var */
int rc; /* return code variable for API calls */
sqlint32 input_len; /* receiver for input LOB length */
sqlint32 input_pos; /* current position for scanning input LOB */
char lob_buf[100]; /* data buffer */
sqlint32 input_rec; /* number of bytes read by sqludf_substr */
sqlint32 output_rec; /* number of bytes written by sqludf_append */

/*---

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 461

* UDF Program Logic Starts Here
*---
* What we do is create an output handle, and then
* loop over the input, 100 bytes at a time.
* Depending on the "criteria" passed in, we may decide
* to append the 100 byte input lob segment to the output, or not.
*---
* Create the output locator, right in the return buffer.
*/

rc = sqludf_create_locator(SQL_TYP_CLOB, &lob_output);
/* Error and exit if unable to create locator */
if (rc) {

memcpy (sqlstate, "38901", 5);
/* special sqlstate for this condition */
goto exit;

}
/* Find out the size of the input LOB value */
rc = sqludf_length(lob_input, &input_len) ;
/* Error and exit if unable to find out length */
if (rc) {

memcpy (sqlstate, "38902", 5);
/* special sqlstate for this condition */
goto exit;

}
/* Loop to read next 100 bytes, and append to result if it meets
* the criteria.
*/
for (input_pos = 0; (input_pos < input_len); input_pos += 100) {

/* Read the next 100 (or less) bytes of the input LOB value */
rc = sqludf_substr(lob_input, input_pos, 100,

(unsigned char *) lob_buf, &input_rec) ;
/* Error and exit if unable to read the segment */
if (rc) {

memcpy (sqlstate, "38903", 5);
/* special sqlstate for this condition */
goto exit;

}
/* apply the criteria for appending this segment to result
* if (...predicate involving buffer and criteria...) {
* The condition for retaining the segment is TRUE...
* Write that buffer segment which was last read in
*/
rc = sqludf_append(lob_output,

(unsigned char *) lob_buf, input_rec, &output_rec) ;
/* Error and exit if unable to read the 100 byte segment */
if (rc) {

memcpy (sqlstate, "38904", 5);
/* special sqlstate for this condition */
goto exit;

}
/* } end if criteria for inclusion met */

} /* end of for loop, processing 100-byte chunks of input LOB
* if we fall out of for loop, we are successful, and done.

*/

462 Application Development Guide

*out_nul = 0;
exit: /* used for errors, which will override null-ness of output. */

return;
}

Referring to this UDF code, observe that:
v There are includes for sql.h, where the type SQL_TYP_CLOB used in the

sqludf_create_locator() call is defined, and sqludf.h, where the type
udf_locator is defined.

v The first input argument, and the third input argument (which represents
the function output) are defined as pointers to sqludf_locator, that is, they
represent CREATE FUNCTION specifications of AS LOCATOR.

v The UDF does not test whether either input argument is null, as NOT
NULL CALL is specified in the CREATE FUNCTION statement.

v In the event of error, the UDF exits with sqlstate set to 38xxx. This is
sufficient to stop the execution of the statement referencing the UDF. The
actual 38xxx SQLSTATE values you choose are not important to DB2, but
can serve to differentiate the exception conditions which your UDF may
encounter.

v The inclusion criteria are left unspecified, but in this case would
presumably somehow determine if this particular buffer content passes the
test, and presumably would account for the possibility that the last buffer
might be a partial buffer.

v By using the input_rec variable as the length of the data appended, the
UDF takes care of any partial buffer condition.

Following is the CREATE FUNCTION statement for this UDF:
CREATE FUNCTION carve(CLOB(50M), VARCHAR(255))

RETURNS CLOB(50M)
NOT NULL CALL
NOT FENCED
DETERMINISTIC
NO SQL
NO EXTERNAL ACTION
LANGUAGE C
PARAMETER STYLE DB2SQL
EXTERNAL NAME '/u/wilfred/udfs/lobudfs!lob_subsetter' ;

(This statement is for an AIX version of this UDF. For other platforms, you
may need to modify the value specified in the EXTERNAL NAME clause.)

Referring to this statement, observe that:
v NOT NULL CALL is specified, so the UDF will not be called if any of its

input SQL arguments are NULL, and does not have to check for this
condition.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 463

v The function is defined to be NOT FENCED; recall that the APIs only work
in NOT FENCED. NOT FENCED means that the definer will have to have
the CREATE_NOT_FENCED authority on the database (which is also
implied by DBADM authority).

v The function is specified as DETERMINISTIC, meaning that with a given
input CLOB value and a given set of criteria, the result will be the same
every time.

Now you can successfully run the following statement:

UPDATE tablex
SET col_a = 99,

col_b = carve (:hv_clob, '...criteria...')
WHERE tablex_key = :hv_key;

The UDF is used to subset the CLOB value represented by the host variable
:hv_clob and update the row represented by key value in host variable
:hv_key.

In this update example by the way, it may be that :hv_clob is defined in the
application as a CLOB_LOCATOR. It is not this same locator which will be
passed to the ″carve″ UDF! When :hv_clob is ″bound in″ to the DB2 engine
agent running the statement, it is known only as a CLOB. When it is then
passed to the UDF, DB2 generates a new locator for the value. This conversion
back and forth between CLOB and locator is not expensive, by the way; it
does not involve any extra memory copies or I/O.

Example: Counter OLE Automation UDF in BASIC
The following example implements a counter class using Microsoft Visual
BASIC. The class has an instance variable, nbrOfInvoke, that tracks the
number of invocations. The constructor of the class initializes the number to 0.
The increment method increments nbrOfInvoke by 1 and returns the current
state.

Description="Example in SQL Reference"
Name="bert"
Class=bcounter; bcounter.cls
ExeName32="bert_app.exe"

VERSION 1.0 CLASS
BEGIN

SingleUse = -1 'True
END
Attribute VB_Name = "bcounter"
Attribute VB_Creatable = True
Attribute VB_Exposed = True
Option Explicit
Dim nbrOfInvoke As Long

464 Application Development Guide

Public Sub increment(output As Long, _
output_ind As Integer, _
sqlstate As String, _
fname As String, _
fspecname As String, _
msg As String, _
scratchpad() As Byte, _
calltype As Long)

nbrOfInvoke = nbrOfInvoke + 1

End Sub

Private Sub Class_Initialize()
nbrOfInvoke = 0

End Sub

Private Sub Class_Terminate()

End Sub

The bcounter class is implemented as an OLE automation object and
registered under the progId bert.bcounter. You can compile the automation
server either as an in-process or local server; this is transparent to DB2. The
following CREATE FUNCTION statement registers a UDF bcounter with the
increment method as an external implementation:

CREATE FUNCTION bcounter () RETURNS integer
EXTERNAL NAME 'bert.bcounter!increment'
LANGUAGE OLE
FENCED
SCRATCHPAD
FINAL CALL
NOT DETERMINISTIC
NULL CALL
PARAMETER STYLE DB2SQL
NO SQL
NO EXTERNAL ACTION
DISALLOW PARALLEL;

For the following query:
SELECT INT1, BCOUNTER() AS COUNT, INT1/BCOUNTER() AS DIV FROM TEST

The results are exactly the same as in the previous example:
INT1 COUNT DIV
----------- ----------- -----------

16 1 16
8 2 4
4 3 1
2 4 0

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 465

97 5 19

5 record(s) selected.

Example: Counter OLE Automation UDF in C++
The following example implements the previous BASIC counter class in C++.
Only fragments of the code are shown here, a listing of the entire sample can
be found in the /sqllib/samples/ole directory.

The increment method is described in the Object Description Language as part
of the counter interface description:

interface ICounter : IDispatch
{

...
HRESULT increment([out] long *out,

[out] short *outnull,
[out] BSTR *sqlstate,
[in] BSTR *fname,
[in] BSTR *fspecname,
[out] BSTR *msgtext,
[in,out] SAFEARRAY (unsigned char) *spad,
[in] long *calltype);

...
}

The COM CCounter class definition in C++ includes the declaration of the
increment method as well as nbrOfInvoke:

class FAR CCounter : public ICounter
{

...
STDMETHODIMP CCounter::increment(long *out,

short *outnull,
BSTR *sqlstate,
BSTR *fname,
BSTR *fspecname,
BSTR *msgtext,
SAFEARRAY **spad,
long *calltype);

long nbrOfInvoke;
...

};

The C++ implementation of the method is similar to the BASIC code:
STDMETHODIMP CCounter::increment(long *out,

short *outnull,
BSTR *sqlstate,
BSTR *fname,
BSTR *fspecname,
BSTR *msgtext,
SAFEARRAY **spad,
long *calltype)

{

466 Application Development Guide

nbrOfInvoke = nbrOfInvoke + 1;
*out = nbrOfInvoke;

return NOERROR;
};

In the above example, sqlstate and msgtext are [out] parameters of type
BSTR*, that is, DB2 passes a pointer to NULL to the UDF. To return values for
these parameters, the UDF allocates a string and returns it to DB2 (for
example, *sqlstate = SysAllocString (L"01H00")), and DB2 frees the
memory. The parameters fname and fspecname are [in] parameters. DB2
allocates the memory and passes in values which are read by the UDF, and
then DB2 frees the memory.

The class factory of the CCounter class creates counter objects. You can
register the class factory as a single-use or multi-use object (not shown in this
example).

STDMETHODIMP CCounterCF::CreateInstance(IUnknown FAR* punkOuter,
REFIID riid,
void FAR* FAR* ppv)

{

CCounter *pObj;
...

// create a new counter object
pObj = new CCounter;

...
};

The CCounter class is implemented as a local server, and it is registered under
the progId bert.ccounter. The following CREATE FUNCTION statement
registers a UDF ccounter with the increment method as an external
implementation:

CREATE FUNCTION ccounter () RETURNS integer
EXTERNAL NAME 'bert.ccounter!increment'
LANGUAGE OLE
FENCED
SCRATCHPAD
FINAL CALL
NOT DETERMINISTIC
NULL CALL
PARAMETER STYLE DB2SQL
NO SQL
NO EXTERNAL ACTION
DISALLOW PARALLEL;

While processing the following query, DB2 creates two different instances of
class CCounter. An instance is created for each UDF reference in the query.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 467

The two instances are reused for the entire query as the scratchpad option is
specified in the ccounter UDF registration.

SELECT INT1, CCOUNTER() AS COUNT, INT1/CCOUNTER() AS DIV FROM TEST

The results are exactly the same as in the previous example:
INT1 COUNT DIV
----------- ----------- -----------

16 1 16
8 2 4
4 3 1
2 4 0
97 5 19

5 record(s) selected.

Example: Mail OLE Automation Table Function in BASIC
The following example implements a class using Microsoft Visual BASIC that
exposes a public method list to retrieve message header information and the
partial message text of messages in Microsoft Exchange. The method
implementation employs OLE Messaging which provides an OLE automation
interface to MAPI (Messaging API).

Description="Mail OLE Automation Table Function"
Module=MainModule; MainModule.bas
Class=Header; Header.cls
ExeName32="tfmapi.dll"
Name="TFMAIL"

VERSION 1.0 CLASS
BEGIN

MultiUse = -1 'True
END
Attribute VB_Name = "Header"
Attribute VB_Creatable = True
Attribute VB_Exposed = True
Option Explicit

Dim MySession As Object
Dim MyMsgColl As Object
Dim MyMsg As Object
Dim CurrentSender As Object
Dim name As Variant
Const SQL_TF_OPEN = -1
Const SQL_TF_CLOSE = 1
Const SQL_TF_FETCH = 0

Public Sub List(timereceived As Date, subject As String, size As Long, _
text As String, ind1 As Integer, ind2 As Integer, _
ind3 As Integer, ind4 As Integer, sqlstate As String, _
fname As String, fspecname As String, msg As String, _
scratchpad() As Byte, calltype As Long)

468 Application Development Guide

If (calltype = SQL_TF_OPEN) Then

Set MySession = CreateObject("MAPI.Session")

MySession.Logon ProfileName:="Profile1"
Set MyMsgColl = MySession.Inbox.Messages

Set MyMsg = MyMsgColl.GetFirst

ElseIf (calltype = SQL_TF_CLOSE) Then

MySession.Logoff
Set MySession = Nothing

Else

If (MyMsg Is Nothing) Then

sqlstate = "02000"

Else

timereceived = MyMsg.timereceived
subject = Left(MyMsg.subject, 15)
size = MyMsg.size
text = Left(MyMsg.text, 30)

Set MyMsg = MyMsgColl.GetNext

End If
End If

End Sub

On the table function OPEN call, the CreateObject statement creates a mail
session, and the logon method logs on to the mail system (user name and
password issues are neglected). The message collection of the mail inbox is
used to retrieve the first message. On the FETCH calls, the message header
information and the first 30 characters of the current message are assigned to
the table function output parameters. If no messages are left, SQLSTATE 02000
is returned. On the CLOSE call, the example logs off and sets the session
object to nothing, which releases all the system and memory resources
associated with the previously referenced object when no other variable refers
to it.

Following is the CREATE FUNCTION statement for this UDF:
CREATE FUNCTION MAIL()

RETURNS TABLE (TIMERECIEVED DATE,
SUBJECT VARCHAR(15),
SIZE INTEGER,
TEXT VARCHAR(30))

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 469

EXTERNAL NAME 'tfmail.header!list'
LANGUAGE OLE
PARAMETER STYLE DB2SQL
NOT DETERMINISTIC
FENCED
NULL CALL
SCRATCHPAD
FINAL CALL
NO SQL
EXTERNAL ACTION
DISALLOW PARALLEL;

Following is a sample query:
SELECT * FROM TABLE (MAIL()) AS M

TIMERECEIVED SUBJECT SIZE TEXT
------------ --------------- ----------- ------------------------------
01/18/1997 Welcome! 3277 Welcome to Windows Messaging!
01/18/1997 Invoice 1382 Please process this invoice. T
01/19/1997 Congratulations 1394 Congratulations to the purchas

3 record(s) selected.

Debugging your UDF

It is important to debug your UDF in an environment where you cannot harm
the database. You should do your testing on a test database instance until you
are absolutely sure your UDF is correct. This is true for both FENCED and
NOT FENCED UDFs, as both types can cause DB2 to malfunction if they are
incorrectly written. Defining a UDF as FENCED offers more protection against
integrity and security exposures than NOT FENCED, but there is no
guarantee. Good coding practices, including reviews and testing, should
prevail in either case.

DB2 does check for certain types of limited actions that erroneously modify
storage (for example, if the UDF moves a few too many characters to a
scratchpad or to the result buffer). In that case, DB2 returns an error,
SQLCODE -450 (SQLSTATE 39501), if it detects such a malfunction. DB2 is
also designed to fail gracefully in the event of an abnormal termination of a
UDF with SQLCODE -430 (SQLSTATE 38503), or a user interrupt of the UDF
with SQLCODE -431 (SQLSTATE 38504).

A massive overwrite of a return value buffer, even in a FENCED UDF, can
cause both the UDF and DB2 to abnormally terminate. Pay special attention
when designing, coding, and reviewing any UDF that moves bytes to return
value buffers. Be careful with any UDF which, for example, calculates how
many bytes to move before moving the bytes. In C, memcpy is often used for
this function. Closely examine the boundary cases (extra short and long
values) for UDFs that move bytes to a return value buffer.

470 Application Development Guide

For security and database integrity reasons, it is important to protect the body
of your UDF, once it is debugged and defined to DB2. This is particularly true
if your UDF is defined as NOT FENCED. If either by accident or with
malicious intent, anyone (including yourself) overwrites an operational UDF
with code that is not debugged, the UDF could conceivably destroy the
database if it is NOT FENCED, or compromise security.

Unfortunately, there is no easy way to run a source-level debugger on a UDF.
There are several reasons for this:
v The timing makes it difficult to start the debugger at a time when the UDF

is in storage and available
v The UDF runs in a database process with a special user ID and the user is

not permitted to attach to this process.

Note that valuable debugging tools such as printf() do not normally work as
debugging aids for your UDF, because the UDF normally runs in a
background process where stdout has no meaning. As an alternative to using
printf(), it may be possible for you to instrument your UDF with file output
logic, and for debugging purposes write indicative data and control
information to a file.

Another technique to debug your UDF is to write a driver program for
invoking the UDF outside the database environment. With this technique, you
can invoke the UDF with all kinds of marginal or erroneous input arguments
to attempt to provoke it into misbehaving. In this environment, it is not a
problem to use printf() or a source level debugger.

Chapter 15. Writing User-Defined Functions (UDFs) and Methods 471

472 Application Development Guide

Chapter 16. Using Triggers in an Active DBMS

Why Use Triggers? 473
Benefits of Triggers 474

Overview of a Trigger 475
Trigger Event 476
Set of Affected Rows 477
Trigger Granularity 477
Trigger Activation Time 478
Transition Variables 479
Transition Tables 480
Triggered Action 482

Triggered Action Condition 482
Triggered SQL Statements 483

Functions Within SQL Triggered
Statement 483

Trigger Cascading. 484
Interactions with Referential Constraints . . 485
Ordering of Multiple Triggers 485
Synergy Between Triggers, Constraints,
UDTs, UDFs, and LOBs 486

Extracting Information 486
Preventing Operations on Tables 487
Defining Business Rules. 487
Defining Actions 488

Why Use Triggers?

In order to change your database manager from a passive system to an active
one, use the capabilities embodied in a trigger function. A trigger defines a set
of actions that are activated or triggered by an update operation on a specified
base table. These actions may cause other changes to the database, perform
operations outside DB2 (for example, send an e-mail or write a record in a
file), raise an exception to prevent the update operation from taking place,
and so on.

You can use triggers to support general forms of integrity such as business
rules. For example, your business may wish to refuse orders that exceed its
customers’ credit limit. A trigger can be used to enforce this constraint. In
general, triggers are powerful mechanisms to capture transitional business
rules. Transitional business rules are rules that involve different states of the
data.

For example, suppose a salary cannot be increased by more than 10 per cent.
To check this rule, the value of the salary before and after the increase must
be compared. For rules that do not involve more than one state of the data,
check and referential integrity constraints may be more appropriate (refer to
the SQL Reference for more information). Because of the declarative semantics
of check and referential constraints, their use is recommended for constraints
that are not transitional.

You can also use triggers for tasks such as automatically updating summary
data. By keeping these actions as a part of the database and ensuring that
they occur automatically, triggers enhance database integrity. For example,
suppose you want to automatically track the number of employees managed
by a company:

© Copyright IBM Corp. 1993, 2000 473

Tables: EMPLOYEE (as in Sample Tables)
COMPANY_STATS (NBEMP, NBPRODUCT, REVENUE)

You can define two triggers:
v A trigger that increments the number of employees each time a new person

is hired, that is, each time a new row is inserted into the table EMPLOYEE:
CREATE TRIGGER NEW_HIRED

AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

v A trigger that decrements the number of employees each time an employee
leaves the company, that is, each time a row is deleted from the table
EMPLOYEE:

CREATE TRIGGER FORMER_EMP
AFTER DELETE ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1

Specifically, you can use triggers to:
v Validate input data using the SIGNAL SQLSTATE SQL statement, the

built-in RAISE_ERROR function, or invoke a UDF to return an SQLSTATE
indicating that an error has occurred, if invalid data is discovered. Note
that validation of non-transitional data is usually better handled by check
and referential constraints. By contrast, triggers are appropriate for
validation of transitional data, that is, validations which require
comparisons between the value before and after an update operation.

v Automatically generate values for newly inserted rows (this is known as a
surrogate function). That is, to implement user-defined default values,
possibly based on other values in the row or values in other tables.

v Read from other tables for cross-referencing purposes.
v Write to other tables for audit-trail purposes.
v Support alerts (for example, through electronic mail messages).

Benefits of Triggers
Using triggers in your database manager can result in:
v Faster application development.

Because triggers are stored in the relational database, the actions performed
by triggers do not have to be coded in each application.

v Global enforcement of business rules

A trigger only has to be defined once, and then it can be used for any
application that changes the table.

v Easier maintenance

If a business policy changes, only the corresponding trigger needs to
change instead of each application program.

474 Application Development Guide

Overview of a Trigger

When you create a trigger, you associate it with a table. This table is called the
subject table of the trigger. The term update operation refers to any change in the
state of the subject table. An update operation is initiated by:
v an INSERT statement
v an UPDATE statement, or a referential constraint which performs an

UPDATE
v a DELETE statement, or a referential constraint which performs a DELETE

You must associate each trigger with one of these three types of update
operations. The association is called the trigger event for that particular trigger.

You must also define the action, called the triggered action, that the trigger
performs when its trigger event occurs. The triggered action consists of one or
more SQL statements which can execute either before or after the database
manager performs the trigger event. Once a trigger event occurs, the database
manager determines the set of rows in the subject table that the update
operation affects and executes the trigger.

When you create a trigger, you declare the following attributes and behavior:
v The name of the trigger.
v The name of the subject table.
v The trigger activation time (BEFORE or AFTER the update operation

executes).
v The trigger event (INSERT, DELETE, or UPDATE).
v The old values transition variable, if any.
v The new values transition variable, if any.
v The old values transition table, if any.
v The new values transition table, if any.
v The granularity (FOR EACH STATEMENT or FOR EACH ROW).
v The triggered action of the trigger (including a triggered action condition

and triggered SQL statement(s)).
v If the trigger event is UPDATE, then the trigger column list for the trigger

event of the trigger, as well as an indication of whether the trigger column
list was explicit or implicit.

v The trigger creation timestamp.
v The current function path.

For more information on the CREATE TRIGGER statement, refer to the SQL
Reference.

Chapter 16. Using Triggers in an Active DBMS 475

Trigger Event

Every trigger is associated with an event. Triggers are activated when their
corresponding event occurs in the database. This trigger event occurs when
the specified action, either an UPDATE, INSERT, or DELETE (including those
caused by actions of referential constraints), is performed on the subject table.
For example:

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

The above statement defines the trigger new_hire, which activates when you
perform an insert operation on table employee.

You associate every trigger event, and consequently every trigger, with exactly
one subject table and exactly one update operation. The update operations
are:

Insert operation
An insert operation can only be caused by an INSERT statement.
Therefore, triggers are not activated when data is loaded using
utilities that do not use INSERT, such as the LOAD command.

Update operation
An update operation can be caused by an UPDATE statement or as a
result of a referential constraint rule of ON DELETE SET NULL.

Delete operation
A delete operation can be caused by a DELETE statement or as a
result of a referential constraint rule of ON DELETE CASCADE.

If the trigger event is an update operation, the event can be associated with
specific columns of the subject table. In this case, the trigger is only activated
if the update operation attempts to update any of the specified columns. This
provides a further refinement of the event that activates the trigger. For
example, the following trigger, REORDER, activates only if you perform an
update operation on the columns ON_HAND or MAX_STOCKED, of the table PARTS.

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW MODE DB2SQL
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)
BEGIN ATOMIC
VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -

N_ROW.ON_HAND,
N_ROW.PARTNO));

END

476 Application Development Guide

Set of Affected Rows

A trigger event defines a set of rows in the subject table that is affected by
that SQL operation. For example, suppose you run the following UPDATE
statement on the parts table:

UPDATE PARTS
SET ON_HAND = ON_HAND + 100
WHERE PART_NO > 15000

The set of affected rows for the associated trigger contains all the rows in the
parts table whose part_no is greater than 15 000.

Trigger Granularity

When a trigger is activated, it runs according to its granularity as follows:

FOR EACH ROW
It runs as many times as the number of rows in the set of affected
rows.

FOR EACH STATEMENT
It runs once for the entire trigger event.

If the set of affected rows is empty (that is, in the case of a searched UPDATE
or DELETE in which the WHERE clause did not qualify any rows), a FOR
EACH ROW trigger does not run. But a FOR EACH STATEMENT trigger still
runs once.

For example, keeping a count of number of employees can be done using FOR
EACH ROW.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

You can achieve the same affect with one update by using a granularity of
FOR EACH STATEMENT.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
REFERENCING NEW_TABLE AS NEWEMPS
FOR EACH STATEMENT MODE DB2SQL
UPDATE COMPANY_STATS
SET NBEMP = NBEMP + (SELECT COUNT(*) FROM NEWEMPS)

Note: A granularity of FOR EACH STATEMENT is not supported for
BEFORE triggers (discussed in “Trigger Activation Time” on page 478).

Chapter 16. Using Triggers in an Active DBMS 477

Trigger Activation Time

The trigger activation time specifies when the trigger should be activated. That
is, either BEFORE or AFTER the trigger event executes. For example, the
activation time of the following trigger is AFTER the INSERT operation on
employee.

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

If the activation time is BEFORE, the triggered actions are activated for each
row in the set of affected rows before the trigger event executes. Note that
BEFORE triggers must have a granularity of FOR EACH ROW.

If the activation time is AFTER, the triggered actions are activated for each
row in the set of affected rows or for the statement, depending on the trigger
granularity. This occurs after the trigger event executes, and after the database
manager checks all constraints that the trigger event may affect, including
actions of referential constraints. Note that AFTER triggers can have a
granularity of either FOR EACH ROW or FOR EACH STATEMENT.

The different activation times of triggers reflect different purposes of triggers.
Basically, BEFORE triggers are an extension to the constraint subsystem of the
database management system. Therefore, you generally use them to:
v Perform validation of input data,
v Automatically generate values for newly inserted rows
v Read from other tables for cross-referencing purposes.

BEFORE triggers are not used for further modifying the database because they
are activated before the trigger event is applied to the database. Consequently,
they are activated before integrity constraints are checked and may be
violated by the trigger event.

Conversely, you can view AFTER triggers as a module of application logic
that runs in the database every time a specific event occurs. As a part of an
application, AFTER triggers always see the database in a consistent state. Note
that they are run after the integrity constraints that may be violated by the
triggering SQL operation have been checked. Consequently, you can use them
mostly to perform operations that an application can also perform. For
example:
v Perform follow on update operations in the database
v Perform actions outside the database, for example, to support alerts. Note

that actions performed outside the database are not rolled back if the
trigger is rolled back.

478 Application Development Guide

Because of the different nature of BEFORE and AFTER triggers, a different set
of SQL operations can be used to define the triggered actions of BEFORE and
AFTER triggers. For example, update operations are not allowed in BEFORE
triggers because there is no guarantee that integrity constraints will not be
violated by the triggered action. The set of SQL operations you can specify in
BEFORE and AFTER triggers are described in “Triggered Action” on page 482.
Similarly, different trigger granularities are supported in BEFORE and AFTER
triggers. For example, FOR EACH STATEMENT is not allowed in BEFORE
triggers because there is no guarantee that constraints will not be violated by
the triggered action, which would, in turn, result in failure of the operation.

Transition Variables

When you carry out a FOR EACH ROW trigger, it may be necessary to refer
to the value of columns of the row in the set of affected rows, for which the
trigger is currently executing. Note that to refer to columns in tables in the
database (including the subject table), you can use regular SELECT statements.
A FOR EACH ROW trigger may refer to the columns of the row for which it
is currently executing by using two transition variables that you can specify in
the REFERENCING clause of a CREATE TRIGGER statement. There are two
kinds of transition variables, which are specified as OLD and NEW, together
with a correlation-name. They have the following semantics:

OLD correlation-name
Specifies a correlation name which captures the original state of the
row, that is, before the triggered action is applied to the database.

NEW correlation-name
Specifies a correlation name which captures the value that is, or was,
used to update the row in the database when the triggered action is
applied to the database.

Consider the following example:
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW MODE DB2SQL
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED
AND N_ROW.ORDER_PENDING = 'N')
BEGIN ATOMIC

VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -
N_ROW.ON_HAND,
N_ROW.PARTNO));

UPDATE PARTS SET PARTS.ORDER_PENDING = 'Y'
WHERE PARTS.PARTNO = N_ROW.PARTNO;

END

Chapter 16. Using Triggers in an Active DBMS 479

Based on the definition of the OLD and NEW transition variables given
above, it is clear that not every transition variable can be defined for every
trigger. Transition variables can be defined depending on the kind of trigger
event:

UPDATE
An UPDATE trigger can refer to both OLD and NEW transition
variables.

INSERT
An INSERT trigger can only refer to a NEW transition variable
because before the activation of the INSERT operation, the affected
row does not exist in the database. That is, there is no original state of
the row that would define old values before the triggered action is
applied to the database.

DELETE
A DELETE trigger can only refer to an OLD transition variable
because there are no new values specified in the delete operation.

Note: Transition variables can only be specified for FOR EACH ROW triggers.
In a FOR EACH STATEMENT trigger, a reference to a transition
variable is not sufficient to specify to which of the several rows in the
set of affected rows the transition variable is referring.

Transition Tables

In both FOR EACH ROW and FOR EACH STATEMENT triggers, it may be
necessary to refer to the whole set of affected rows. This is necessary, for
example, if the trigger body needs to apply aggregations over the set of
affected rows (for example, MAX, MIN, or AVG of some column values). A
trigger may refer to the set of affected rows by using two transition tables that
can be specified in the REFERENCING clause of a CREATE TRIGGER
statement. Just like the transition variables, there are two kinds of transition
tables, which are specified as OLD_TABLE and NEW_TABLE together with a
table-name, with the following semantics:

OLD_TABLE table-name
Specifies the name of the table which captures the original state of the
set of affected rows (that is, before the triggering SQL operation is
applied to the database).

NEW_TABLE table-name
Specifies the name of the table which captures the value that is used
to update the rows in the database when the triggered action is
applied to the database.

For example:

480 Application Development Guide

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW_TABLE AS N_TABLE
NEW AS N_ROW
FOR EACH ROW MODE DB2SQL
WHEN ((SELECT AVG (ON_HAND) FROM N_TABLE) > 35)
BEGIN ATOMIC

VALUES(INFORM_SUPERVISOR(N_ROW.PARTNO,
N_ROW.MAX_STOCKED,
N_ROW.ON_HAND));

END

Note that NEW_TABLE always has the full set of updated rows, even on a
FOR EACH ROW trigger. When a trigger acts on the table on which the
trigger is defined, NEW_TABLE contains the changed rows from the
statement that activated the trigger. However, NEW_TABLE does not contain
the changed rows that were caused by statements within the trigger, as that
would cause a separate activation of the trigger.

The transition tables are read-only. The same rules that define the kinds of
transition variables that can be defined for which trigger event, apply for
transition tables:

UPDATE
An UPDATE trigger can refer to both OLD_TABLE and NEW_TABLE
transition tables.

INSERT
An INSERT trigger can only refer to a NEW_TABLE transition table
because before the activation of the INSERT operation the affected
rows do not exist in the database. That is, there is no original state of
the rows that defines old values before the triggered action is applied
to the database.

DELETE
A DELETE trigger can only refer to an OLD transition table because
there are no new values specified in the delete operation.

Note: It is important to observe that transition tables can be specified for both
granularities of AFTER triggers: FOR EACH ROW and FOR EACH
STATEMENT.

The scope of the OLD_TABLE and NEW_TABLE table-name is the trigger body. In
this scope, this name takes precedence over the name of any other table with
the same unqualified table-name that may exist in the schema. Therefore, if the
OLD_TABLE or NEW_TABLE table-name is for example, X, a reference to X (that is,
an unqualified X) in the FROM clause of a SELECT statement will always
refer to the transition table even if there is a table named X in the in the

Chapter 16. Using Triggers in an Active DBMS 481

schema of the trigger creator. In this case, the user has to make use of the
fully qualified name in order to refer to the table X in the schema.

Triggered Action

The activation of a trigger results in the running of its associated triggered
action. Every trigger has exactly one triggered action which, in turn, has two
components:
v An optional triggered action condition or WHEN clause
v A set of triggered SQL statement(s).

The triggered action condition defines whether or not the set of triggered
statements are performed for the row or for the statement for which the
triggered action is executing. The set of triggered statements define the set of
actions performed by the trigger in the database as a consequence of its event
having occurred.

For example, the following trigger action specifies that the set of triggered
SQL statements should only be activated for rows in which the value of the
on_hand column is less than ten per cent of the value of the max_stocked
column. In this case, the set of triggered SQL statements is the invocation of
the issue_ship_request function.

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW MODE DB2SQL

WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)
BEGIN ATOMIC

VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -
N_ROW.ON_HAND,
N_ROW.PARTNO));

END

Triggered Action Condition
As explained in “Triggered Action”, the triggered action condition is an optional
clause of the triggered action which specifies a search condition that must
evaluate to true to run SQL statements within the triggered action. If the
WHEN clause is omitted, then the SQL statements within the triggered action
are always executed.

The triggered action condition is evaluated once for each row if the trigger is
a FOR EACH ROW trigger, and once for the statement if the trigger is a FOR
EACH STATEMENT trigger.

This clause provides further control that you can use to fine tune the actions
activated on behalf of a trigger. An example of the usefulness of the WHEN

482 Application Development Guide

clause is to enforce a data dependent rule in which a triggered action is
activated only if the incoming value falls inside or outside of a certain range.

Triggered SQL Statements
The set of triggered SQL statements carries out the real actions caused by
activating a trigger. As described previously, not every SQL operation is
meaningful in every trigger. Depending on whether the trigger activation time
is BEFORE or AFTER, different kinds of operations may be appropriate as a
triggered SQL statement.

For a list of triggered SQL statements, and additional information on BEFORE
and AFTER triggers, refer to the SQL Reference.

In most cases, if any triggered SQL statement returns a negative return code,
the triggering SQL statement together with all trigger and referential
constraint actions are rolled back, and an error is returned: SQLCODE -723
(SQLSTATE 09000). The trigger name, SQLCODE, SQLSTATE and many of the
tokens from the failing triggered SQL statement are returned. Error conditions
occurring when triggers are running that are critical or roll back the entire
unit of work are not returned using SQLCODE -723 (SQLSTATE 09000).

Functions Within SQL Triggered Statement
Functions, including user-defined functions (UDFs), may be invoked within a
triggered SQL statement. Consider the following example:,

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW MODE DB2SQL
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)
BEGIN ATOMIC

VALUES (ISSUE_SHIP_REQUEST (N_ROW.MAX_STOCKED - N_ROW.ON_HAND,
N_ROW.PARTNO));

END

When a triggered SQL statement contains a function invocation with an
unqualified function name, the function invocation is resolved based on the
function path at the time of creation of the trigger. For details on the
resolution of functions, refer to the SQL Reference.

UDFs are written in either the C or C++ programming language. This enables
control of logic flows, error handling and recovery, and access to system and
library functions. (See “Chapter 15. Writing User-Defined Functions (UDFs)
and Methods” on page 385 for a description of UDFs.) This capability allows a
triggered action to perform non-SQL types of operations when a trigger is
activated. For example, such a UDF could send an electronic mail message
and thereby act as an alert mechanism. External actions, such as messages, are
not under commit control and will be run regardless of success or failure of
the rest of the triggered actions.

Chapter 16. Using Triggers in an Active DBMS 483

Also, the function can return an SQLSTATE that indicates an error has
occurred which results in the failure of the triggering SQL statement. This is
one method of implementing user-defined constraints. (Using a SIGNAL
SQLSTATE statement is the other.) In order to use a trigger as a means to
check complex user-defined constraints, you can use the RAISE_ERROR built-in
function in a triggered SQL statement. This function can be used to return a
user-defined SQLSTATE (SQLCODE -438) to applications. For details on
invocation and use of this function, refer to the SQL Reference.

For example, consider some rules related to the HIREDATE column of the
EMPLOYEE table, where HIREDATE is the date that the employee starts
working.
v HIREDATE must be date of insert or a future date
v HIREDATE cannot be more than 1 year from date of insert.
v If HIREDATE is between 6 and 12 months from date of insert, notify

personnel manager using a UDF called send_note.

The following trigger handles all of these rules on INSERT:
CREATE TRIGGER CHECK_HIREDATE

NO CASCADE BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AS NEW_EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
VALUES CASE

WHEN NEW_EMP.HIREDATE < CURRENT DATE
THEN RAISE_ERROR('85001', 'HIREDATE has passed')

WHEN NEW_EMP.HIREDATE - CURRENT DATE > 10000.
THEN RAISE_ERROR('85002', 'HIREDATE too far out')

WHEN NEW_EMP.HIREDATE - CURRENT DATE > 600.
THEN SEND_MOTE('persmgr',NEW_EMP.EMPNO,'late.txt')

END;
END

Trigger Cascading

When you run a triggered SQL statement, it may cause the event of another,
or even the same, trigger to occur, which in turn, causes the other, (or a
second instance of the same) trigger to be activated. Therefore, activating a
trigger can cascade the activation of one or more other triggers.

The run-time depth level of trigger cascading supported is 16. If a trigger at
level 17 is activated, SQLCODE -724 (SQLSTATE 54038) will be returned and
the triggering statement will be rolled back.

484 Application Development Guide

Interactions with Referential Constraints

As described above, the trigger event can be the result of changes due to
referential constraint enforcement. For example, given two tables DEPT and
EMP, if deleting or updating DEPT causes propagated deletes or updates to
EMP by means of referential integrity constraints, then delete or update
triggers defined on EMP become activated as a result of the referential
constraint defined on DEPT. The triggers on EMP are run either BEFORE or
AFTER the deletion (in the case of ON DELETE CASCADE) or update of
rows in EMP (in the case of ON DELETE SET NULL), depending on their
activation time.

Ordering of Multiple Triggers

When triggers are defined using the CREATE TRIGGER statement, their
creation time is registered in the database in form of a timestamp. The value
of this timestamp is subsequently used to order the activation of triggers
when there is more than one trigger that should be run at the same time. For
example, the timestamp is used when there is more than one trigger on the
same subject table with the same event and the same activation time. The
timestamp is also used when there is one or more AFTER triggers that are
activated by the trigger event and referential constraint actions caused directly
or indirectly (that is, recursively by other referential constraints) by the
triggered action. Consider the following two triggers:

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS
SET NBEMP = NBEMP + 1;

END;

CREATE TRIGGER NEW_HIRED_DEPT
AFTER INSERT ON EMPLOYEE
REFERENCING NEW AS EMP
FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC
UPDATE DEPTS
SET NBEMP = NBEMP + 1
WHERE DEPT_ID = EMP.DEPT_ID;

END;

The above triggers are activated when you run an INSERT operation on the
employee table. In this case, the timestamp of their creation defines which of
the above two triggers is activated first.

The activation of the triggers is conducted in ascending order of the
timestamp value. Thus, a trigger that is newly added to a database runs after
all the other triggers that are previously defined.

Chapter 16. Using Triggers in an Active DBMS 485

Old triggers are activated before new triggers to ensure that new triggers can
be used as incremental additions to the changes that affect the database. For
example, if a triggered SQL statement of trigger T1 inserts a new row into a
table T, a triggered SQL statement of trigger T2 that is run after T1 can be
used to update the same row in T with specific values. By activating triggers
in ascending order of creation, you can ensure that the actions of new triggers
run on a database that reflects the result of the activation of all old triggers.

Synergy Between Triggers, Constraints, UDTs, UDFs, and LOBs

The following section describes how to exploit triggers and constraints to
model application structures that use UDTs, UDFs, and LOBs. With triggers,
you can:
v Extract information from these structures to keep them explicitly in

columns of tables (instead of hidden within the structure)
v Define the integrity rules that govern these structures in the application

domain
v Express important actions that need to be taken under certain values of the

structures.

Extracting Information
You could write an application that stores complete electronic mail messages
as a LOB value within the column MESSAGE of the ELECTRONIC_MAIL
table. To manipulate the electronic mail, you could use UDFs to extract
information from the message column every time such information was
required within an SQL statement.

Notice that the queries do not extract information once and store it explicitly
as columns of tables. If this was done, it would increase the performance of
the queries, not only because the UDFs are not invoked repeatedly, but also
because you can then define indexes on the extracted information.

Using triggers, you can extract this information whenever new electronic mail
is stored in the database. To achieve this, add new columns to the
ELECTRONIC_MAIL table and define a BEFORE trigger to extract the
corresponding information as follows:

ALTER TABLE ELECTRONIC_MAIL
ADD COLUMN SENDER VARCHAR (200)
ADD COLUMN RECEIVER VARCHAR (200)
ADD COLUMN SENT_ON DATE
ADD COLUMN SUBJECT VARCHAR (200)

CREATE TRIGGER EXTRACT_INFO
NO CASCADE BEFORE INSERT ON ELECTRONIC_MAIL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

486 Application Development Guide

SET N.SENDER = SENDER(N.MESSAGE);
SET N.RECEIVER = RECEIVER(N.MESSAGE);
SET N.SENT_ON = SENDING_DATE(N.MESSAGE);
SET N.SUBJECT = SUBJECT(N.MESSAGE);

END

Now, whenever new electronic mail is inserted into the message column, its
sender, its receiver, the date on which it was sent, and its subject are extracted
from the message and stored in separate columns.

Preventing Operations on Tables
Suppose you want to prevent mail you sent, which was undelivered and
returned to you (perhaps because the e-mail address was incorrect), from
being stored in the e-mail’s table.

To do so, you need to prevent the execution of certain SQL INSERT
statements. There are two ways to do this:
v Define a BEFORE trigger that raises an error whenever the subject of an

e-mail is undelivered mail:
CREATE TRIGGER BLOCK_INSERT

NO CASCADE BEFORE INSERT ON ELECTRONIC_MAIL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (SUBJECT(N.MESSAGE) = 'undelivered mail')
BEGIN ATOMIC

SIGNAL SQLSTATE '85101' ('Attempt to insert undelivered mail');
END

v Define a check constraint forcing values of the new column subject to be
different from undelivered mail:

ALTER TABLE ELECTRONIC_MAIL
ADD CONSTRAINT NO_UNDELIVERED
CHECK (SUBJECT <> 'undelivered mail')

Because of the advantages of the declarative nature of constraints, the
constraint should generally be defined instead of the trigger.

Defining Business Rules
Suppose your company has the policy that all e-mail dealing with customer
complaints must have Mr. Nelson, the marketing manager, in the carbon copy
(CC) list. Because this is a rule, you might want to express it as a constraint
such as one of the following (assuming the existence of a CC_LIST UDF to
check it):

ALTER TABLE ELECTRONIC_MAIL ADD
CHECK (SUBJECT <> 'Customer complaint' OR

CONTAINS (CC_LIST(MESSAGE), 'nelson@vnet.ibm.com') = 1)

However, such a constraint prevents the insertion of e-mail dealing with
customer complaints that do not have the marketing manager in the cc list.

Chapter 16. Using Triggers in an Active DBMS 487

This is certainly not the intent of your company’s business rule. The intent is
to forward to the marketing manager any e-mail dealing with customer
complaints that were not copied to the marketing manager. Such a business
rule can only be expressed with a trigger because it requires taking actions
that cannot be expressed with declarative constraints. The trigger assumes the
existence of a SEND_NOTE function with parameters of type E_MAIL and
character string.

CREATE TRIGGER INFORM_MANAGER
AFTER INSERT ON ELECTRONIC_MAIL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (N.SUBJECT = 'Customer complaint' AND

CONTAINS (CC_LIST(MESSAGE), 'nelson@vnet.ibm.com') = 0)
BEGIN ATOMIC

VALUES(SEND_NOTE(N.MESSAGE, 'nelson@vnet.ibm.com'));
END

Defining Actions
Now assume that your general manager wants to keep the names of
customers who have sent three or more complaints in the last 72 hours in a
separate table. The general manager also wants to be informed whenever a
customer name is inserted in this table more than once.

To define such actions, you define:
v An UNHAPPY_CUSTOMERS table:

CREATE TABLE UNHAPPY_CUSTOMERS (
NAME VARCHAR (30),
EMAIL_ADDRESS VARCHAR (200),
INSERTION_DATE DATE)

v A trigger to automatically insert a row in UNHAPPY_CUSTOMERS if 3 or
more messages were received in the last 3 days (assumes the existence of a
CUSTOMERS table that includes a NAME column and an
E_MAIL_ADDRESS column):

CREATE TRIGGER STORE_UNHAPPY_CUST
AFTER INSERT ON ELECTRONIC_MAIL
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (3 <= (SELECT COUNT(*)

FROM ELECTRONIC_MAIL
WHERE SENDER = N.SENDER

AND SENDING_DATE(MESSAGE) > CURRENT DATE - 3 DAYS)
)

BEGIN ATOMIC
INSERT INTO UNHAPPY_CUSTOMERS
VALUES ((SELECT NAME
FROM CUSTOMERS
WHERE E_MAIL_ADDRESS = N.SENDER), N.SENDER, CURRENT DATE);

END

488 Application Development Guide

v A trigger to send a note to the general manager if the same customer is
inserted in UNHAPPY_CUSTOMERS more than once (assumes the
existence of a SEND_NOTE function that takes 2 character strings as input):

CREATE TRIGGER INFORM_GEN_MGR
AFTER INSERT ON UNHAPPY_CUSTOMERS
REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
WHEN (1 <(SELECT COUNT(*)

FROM UNHAPPY_CUSTOMERS
WHERE EMAIL_ADDRESS = N.EMAIL_ADDRESS)

)
BEGIN ATOMIC

VALUES(SEND_NOTE('Check customer:' CONCAT N.NAME,
'bigboss@vnet.ibm.com'));

END

Chapter 16. Using Triggers in an Active DBMS 489

490 Application Development Guide

Part 5. DB2 Programming Considerations

© Copyright IBM Corp. 1993, 2000 491

492 Application Development Guide

Chapter 17. Programming in Complex Environments

National Language Support Considerations 493
Collating Sequence Overview 494

Collating Sequences 494
Collating Sequence Sort Order:
EBCDIC and ASCII Example 497
Specifying a Collating Sequence . . . 498

Deriving Code Page Values 499
Deriving Locales in Application Programs 500

How DB2 Derives Locales 500
National Language Support Application
Development 501

Coding SQL Statements 501
Coding Remote Stored Procedures and
UDFs 503
Package Name Considerations in
Mixed Code Page Environments . . . 503
Precompiling and Binding 504
Executing an Application 504
A Note of Caution 504
Conversion Between Different Code
Pages 504

DBCS Character Sets 508
Extended UNIX Code (EUC) Character
Sets 509
Running CLI/ODBC/JDBC/SQLJ
Programs in a DBCS Environment . . . 510
Japanese and Traditional Chinese EUC
and UCS-2 Code Set Considerations. . . 511

Mixed EUC and Double-Byte Client
and Database Considerations 513
Considerations for Traditional Chinese
Users 513
Developing Japanese or Traditional
Chinese EUC Applications 514
Developing for Mixed Code Set
Environments 515

Applications Connected to a Unicode
(UCS-2) Database 524

Considerations for Multisite Updates . . . 525
Remote Unit of Work 525
Multisite Update 525

When to Use Multisite Update . . . 526
Coding SQL for a Multisite Update
Application 526
Precompiling a Multisite Update
Application 528
Specifying Configuration Parameters
for a Multisite Update Application . . 530
Multisite Update Restrictions 531

Accessing Host or AS/400 Servers 532
Multiple Thread Database Access 533

Recommendations for Using Multiple
Threads 534
Multithreaded UNIX Applications
Working with Code Page and Country
Code 534
Potential Pitfalls when Using Multiple
Threads 535

Preventing Deadlocks for Multiple
Contexts 536

Concurrent Transactions 537
Potential Pitfalls when Using Concurrent
Transactions 537

Preventing Deadlocks for Concurrent
Transactions 538

X/Open XA Interface Programming
Considerations 539

Application Linkage 542
Working with Large Volumes of Data Across
a Network 542

National Language Support Considerations

This section describes National Language Support (NLS) support issues that
you must consider for your applications. The major topics discussed are:
v Collating Sequences
v Conversion Between Different Code Pages
v Deriving Code Page Values
v Deriving Locales in Application Programs

© Copyright IBM Corp. 1993, 2000 493

v National Language Support Application Development

Collating Sequence Overview

Collating Sequences
The database manager compares character data using a collating sequence. This
is an ordering for a set of characters that determines whether a particular
character sorts higher, lower, or the same as another.

Note: Character string data defined with the FOR BIT DATA attribute, and
BLOB data, is sorted using the binary sort sequence.

For example, a collating sequence can be used to indicate that lowercase and
uppercase versions of a particular character are to be sorted equally.

The database manager allows databases to be created with custom collating
sequences. The following sections help you determine and implement a
particular collating sequence for a database.

Each single-byte character in a database is represented internally as a unique
number between 0 and 255 (in hexadecimal notation, between X'00' and X'FF').
This number is referred to as the code point of the character; the assignment of
numbers to characters in a set is collectively called a code page. A collating
sequence is a mapping between the code point and the desired position of
each character in a sorted sequence. The numeric value of the position is
called the weight of the character in the collating sequence. In the simplest
collating sequence, the weights are identical to the code points. This is called
the identity sequence.

For example, consider the characters B (X'42') and b (X'62'). If (according to the
collating sequence table) they both have a sort weight of X'42' (B), they collate
the same. If the sort weight for B is X'9E', and the sort weight for b is X'9D', b
will be sorted before B. Actual weights depend on the collating sequence table
used, which in turn depends on the code set and locale. Note that a collating
sequence table is not the same as a code page table, which defines code
points.

Consider the following example. The ASCII characters A through Z are
represented by X'41' through X'5A'. To describe a collating sequence in which
these characters are sorted consecutively (no intervening characters), you can
write: X'41', X'42', ... X'59', X'5A'.

The hexadecimal value of a multi-byte character is also used as the weight.
For example, X'8260' and X'8261' are the code points for double byte
characters A and B. In this case, the collation weights for X'82', X'60', and X'61'
are used to sort these two characters according to their code points.

494 Application Development Guide

The weights in a collating sequence need not be unique. For example, you
could give uppercase letters and their lowercase equivalents the same weight.

Specifying a collating sequence can be simplified if the collating sequence
provides weights for all 256 code points. The weight of each character can be
determined using the code point of the character. This is the method used to
specify a collating sequence for the database manager: a string of 256 bytes,
where the nth byte (starting with 0) contains the weight of code point n.

In all cases, DB2 uses the collation table that was specified at database
creation time. If you want the multi-byte characters to be sorted the way that
they appear in their code point table, you must specify IDENTITY as the
collation sequence when you create the database.

Note: For DBCS characters in GRAPHIC fields, the sort sequence is always
IDENTITY.

Character Comparisons: Once a collating sequence is established, character
comparison is performed by comparing the weights of two characters, instead
of directly comparing their code point values.

If weights that are not unique are used, characters that are not identical may
compare equally. Because of this, string comparison must be a two-phase
process:
1. Compare the characters in each string based on their weights.
2. If step 1 yields equality, compare the characters of each string based on

their code point values.

If the collating sequence contains 256 unique weights, only the first step is
performed. If the collating sequence is the identity sequence, only the second
step is performed. In either case, there is a performance benefit.

For more information about character comparisons, refer to the SQL Reference.

Case Independent Comparisons: To perform character comparisons that are
independent of case, you can use the TRANSLATE function to select and
compare mixed case column data by translating it to uppercase (for purposes
of comparison only). Consider the following data:

Abel
abels
ABEL
abel
ab
Ab

The following SELECT statement:

Chapter 17. Programming in Complex Environments 495

SELECT c1 FROM T1 WHERE TRANSLATE(c1) LIKE 'AB%'

returns
ab
Ab
abel
Abel
ABEL
abels

You could also specify the following SELECT statement when creating view
″v1″, make all comparisons against the view in uppercase, and request table
INSERTs in mixed case:

CREATE VIEW v1 AS SELECT TRANSLATE(c1) FROM T1

At the database level, you can set the collating sequence as part of the
sqlecrea - Create Database API. This allows you to decide if ″a″ is processed
before ″A″, or if ″A″ is processed after ″a″, or if they are processed with equal
weighting. This will make them equal when collating or sorting using the
ORDER BY clause. ″A″ will always come before ″a″, because they are equal in
every sense. The only basis upon which to sort is the hexadecimal value.

Thus
SELECT c1 FROM T1 WHERE c1 LIKE 'ab%'

returns
ab
abel
abels

and
SELECT c1 FROM T1 WHERE c1 LIKE 'A%'

returns
Abel
Ab
ABEL

The following statement
SELECT c1 FROM T1 ORDER BY c1

returns

496 Application Development Guide

ab
Ab
abel
Abel
ABEL
abels

Thus, you may want to consider using the scalar function TRANSLATE(), as
well as sqlecrea. Note that you can only specify a collating sequence using
sqlecrea. You cannot specify a collating sequence from the command line
processor (CLP). For information about the TRANSLATE() function, refer to
the SQL Reference. For information about sqlecrea, refer to the Administrative
API Reference.

You can also use the UCASE function as follows, but note that DB2 performs
a table scan instead of using an index for the select:

SELECT * FROM EMP WHERE UCASE(JOB) = 'NURSE'

Collating Sequence Sort Order: EBCDIC and ASCII Example
The order in which data in a database is sorted depends on the collating
sequence defined for the database. For example, suppose that database A uses
the EBCDIC code page’s default collating sequence and that database B uses
the ASCII code page’s default collating sequence. Sort orders at these two
databases would differ, as shown in Figure 19.

Similarly, character comparisons in a database depend on the collating
sequence defined for that database. So if database A uses the EBCDIC code
page’s default collating sequence and database B uses the ASCII code page’s
default collating sequence, the results of character comparisons at the two
databases would differ. Figure 20 on page 498 illustrates the difference.

SELECT.....
ORDER BY COL2

EBCDIC-Based Sort ASCII-Based Sort

COL2 COL2
---- ----
V1G 7AB
Y2W V1G
7AB Y2W

Figure 19. Example of How a Sort Order in an EBCDIC-Based Sequence Differs from a Sort Order
in an ASCII-Based Sequence

Chapter 17. Programming in Complex Environments 497

If you are creating a federated database, consider specifying that your
collating sequence matches the collating sequence at a data source. This
approach will maximize “pushdown” opportunities and possibly increase
query performance. For more information on the relationship between
pushdown analysis, collating sequences, and query performance, refer to the
Administration Guide: Implementation.

Specifying a Collating Sequence
The collating sequence for a database is specified at database creation time.
Once the database has been created, the collating sequence cannot be changed.

The CREATE DATABASE API accepts a data structure called the Database
Descriptor Block (SQLEDBDESC). You can define your own collating sequence
within this structure.

To specify a collating sequence for a database:
v Pass the desired SQLEDBDESC structure, or
v Pass a NULL pointer. The collating sequence of the operating system (based

on current country code and code page) is used. This is the same as
specifying SQLDBCSS equal to SQL_CS_SYSTEM (0).

The SQLEDBDESC structure contains:

SQLDBCSS
A 4-byte integer indicating the source of the database collating
sequence. Valid values are:

SQL_CS_SYSTEM
The collating sequence of the operating system (based on
current country code and code page) is used.

SQL_CS_USER
The collating sequence is specified by the value in the
SQLDBUDC field.

SELECT.....
WHERE COL2 > 'TT3'

EBCDIC-Based Results ASCII-Based Results

COL2 COL2
---- ----
TW4 TW4
X72 X72
39G

Figure 20. Example of How a Comparison of Characters in an EBCDIC-Based Sequence Differs
from a Comparison of Characters in an ASCII-Based Sequence

498 Application Development Guide

SQL_CS_NONE
The collating sequence is the identity sequence. Strings are
compared byte for byte, starting with the first byte, using a
simple code point comparison.

Note: These constants are defined in the SQLENV include file.

SQLDBUDC
A 256-byte field. The nth byte contains the sort weight of the nth
character in the code page of the database. If SQLDBCSS is not equal
to SQL_CS_USER, this field is ignored.

Sample Collating Sequences: Several sample collating sequences are
provided (as include files) to facilitate database creation using the EBCDIC
collating sequences instead of the default workstation collating sequence.

The collating sequences in these include files can be specified in the
SQLDBUDC field of the SQLEDBDESC structure. They can also be used as
models for the construction of other collating sequences.

For information on the include files that contain collating sequences, see the
following sections:
v For C/C++, “Include Files for C and C++” on page 583
v For COBOL, “Include Files for COBOL” on page 665
v For FORTRAN, “Include Files for FORTRAN” on page 688.

Deriving Code Page Values
The application code page is derived from the active environment when the
database connection is made. If the DB2CODEPAGE registry variable is set, its
value is taken as the application code page. However, it is not necessary to set
the DB2CODEPAGE registry variable because DB2 will determine the
appropriate code page value from the operating system. Setting the
DB2CODEPAGE registry variable to incorrect values may cause unpredictable
results.

The database code page is derived from the value specified (explicitly or by
default) at the time the database is created. For example, the following defines
how the active environment is determined in different operating environments:

UNIX On UNIX based operating systems, the active
environment is determined from the locale
setting, which includes information about
language, territory and code set.

OS/2 On OS/2, primary and secondary code pages
are specified in the CONFIG.SYS file. You can

Chapter 17. Programming in Complex Environments 499

use the chcp command to display and
dynamically change code pages within a given
session.

Windows 32-bit operating systems
For all Windows 32-bit operating systems, if
the DB2CODEPAGE environment variable is
not set, the code page is derived from the
ANSI code page setting in the Registry.

For a complete list of environment mappings for code page values, refer to
the Administration Guide.

Deriving Locales in Application Programs
Locales are implemented one way on Windows and another way on UNIX
based systems. There are two locales on UNIX based systems:
v The environment locale allows you to specify the language, currency

symbol, and so on, that you want to use.
v The program locale contains the current language, currency symbol, and so

on, of a program that is running.

On Windows, cultural preferences can be set through Regional Settings on the
Control Panel. However, there is no environment locale like the one on UNIX
based systems.

When your program is started, it gets a default C locale. It does not get a copy
of the environment locale. If you set the program locale to any locale other
than ″C″, DB2 Universal Database uses your current program locale to
determine the code page and territory settings for your application
environment. Otherwise, these values are obtained from the operating system
environment. Note that setlocale() is not thread-safe, and if you issue
setlocale() from within your application, the new locale is set for the entire
process.

How DB2 Derives Locales
On UNIX based systems, the active locale used by DB2 is determined from
the LC_CTYPE portion of the locale. For details, see the NLS documentation
for your operating system.
v If LC_CTYPE of the program locale has a value other than ″C″, DB2 will

use this value to determine the application code page by mapping it to its
corresponding code page.

v If LC_CTYPE has a value of ″C″ (the ″C″ locale), DB2 will set the program
locale according to the environment locale, using the setlocale() function.

v If LC_CTYPE still has a value of ″C″, DB2 will assume the default of the US
English environment, and code page 819 (ISO 8859-1).

500 Application Development Guide

v If LC_CTYPE no longer has a value of ″C″, its new value will be used to
map to a corresponding code page. For information about the default locale
for a particular platform, refer to the Administration Guide. For additional
information on building applications on a particular platform, refer to the
Application Building Guide.

National Language Support Application Development
Constant character strings in static SQL statements are converted at bind time,
from the application code page to the database code page, and will be used at
execution time in this database code page representation. To avoid such
conversions if they are not desired, you can use host variables in place of
string constants.

If your program contains constant character strings, it is strongly
recommended that you precompile, bind, compile, and execute the application
using the same code page. For a Unicode database, you should use host
variables instead of using string constants. This is because data conversions
by the server can occur in both the bind and the execution phases. This could
be a concern if constant character strings are used within the program. These
embedded strings are converted at bind time based on the code page which is
in effect during the bind phase. Seven-bit ASCII characters are common to all
the code pages supported by DB2 Universal Database and will not cause a
problem. For non-ASCII characters, users should ensure that the same
conversion tables are used by binding and executing with the same active
code page. For a discussion of how applications determine the active code
page, see “Deriving Code Page Values” on page 499.

Any external data obtained by the application will be assumed to be in the
application code page. This includes data obtained from a file or from user
input. Make sure that data from sources outside the application uses the same
code page as the application.

If you use host variables that use graphic data in your C or C++ applications,
there are special precompiler, application performance, and application design
issues you need to consider. For a detailed discussion of these considerations,
see “Handling Graphic Host Variables in C and C++” on page 609. If you deal
with EUC code sets in your applications, refer to “Japanese and Traditional
Chinese EUC and UCS-2 Code Set Considerations” on page 511 for guidelines
that you should consider.

Coding SQL Statements
The coding of SQL statements is not language dependent. The SQL keywords
must be typed as shown in this book, although they may be typed in
uppercase, lowercase, or mixed case. The names of database objects, host
variables and program labels that occur in an SQL statement cannot contain

Chapter 17. Programming in Complex Environments 501

characters outside the extended character set supported by your code page.
For more information about extended character sets, refer to the SQL Reference.

The server does not convert file names. To code a file name, either use the
ASCII invariant set, or provide the path in the hexadecimal values that are
physically stored in the file system.

In a multi-byte environment, there are four characters which are considered
special that do not belong to the invariant character set. These characters are:
v The double-byte percentage and double-byte underscore characters used in

LIKE processing. For further details concerning LIKE, refer to the SQL
Reference.

v The double-byte space character, used for, among other things, blank
padding in graphic strings.

v The double-byte substitution character, used as a replacement during
character conversion when no mapping exists between a source code page
and a target code page.

The code points for each of these characters, by code page, is as follows:

Table 19. Code Points for Special Double-byte Characters

Code Page Double-Byte
Percentage

Double-Byte
Underscore

Double-byte
Space

Double-Byte
Substitution
Character

932 X'8193' X'8151' X'8140' X'FCFC'

938 X'8193' X'8151' X'8140' X'FCFC'

942 X'8193' X'8151' X'8140' X'FCFC'

943 X'8193' X'8151' X'8140' X'FCFC'

948 X'8193' X'8151' X'8140' X'FCFC'

949 X'A3A5' X'A3DF' X'A1A1' X'AFFE'

950 X'A248' X'A1C4' X'A140' X'C8FE'

954 X'A1F3' X'A1B2' X'A1A1' X'F4FE'

964 X'A2E8' X'A2A5' X'A1A1' X'FDFE'

970 X'A3A5' X'A3DF' X'A1A1' X'AFFE'

1381 X'A3A5' X'A3DF' X'A1A1' X'FEFE'

1383 X'A3A5' X'A3DF' X'A1A1' X'A1A1'

13488 X'FF05' X'FF3F' X'3000' X'FFFD'

UCS-2 Considerations: For a UCS-2 database, the GRAPHIC space is X'0020'
which is different from the “Double-byte Space” of X'3000' used for CCSID

502 Application Development Guide

13488. This difference should be taken into consideration when comparing
data from a EUC database to data from a UCS-2 database. Note that in a
UCS-2 database, Unicode representations of ASCII percent and an ASCII
underscore are used for pattern matching. DBCS percent and DBCS
underscore have no special meaning for a UCS-2 database. The DBCS
substitution character is used to replace any EUC non-SBCS character as
required. There is no concept of a three or four byte substitution character.

Coding Remote Stored Procedures and UDFs
When coding stored procedures that will be running remotely, the following
considerations apply:
v Data in a stored procedure must be in the database code page.
v Data passed to or from a stored procedure using an SQLDA with a

character data type must really contain character data. Numeric data and
data structures must never be passed with a character type if the client
application code page is different from the database code page. This is
because the server will convert all character data in an SQLDA. To avoid
character conversion, you can pass data by defining it in binary string
format by using a data type of BLOB or by defining the character data as
FOR BIT DATA.

By default, when you invoke DB2 DARI stored procedures and UDFs, they
run under a default national language environment which may not match the
database’s national language environment. Consequently, using country or
code page specific operations, such as the C wchar_t graphic host variables
and functions, may not work as you expect. You need to ensure that, if
applicable, the correct environment is initialized when you invoke the stored
procedure or UDF.

Package Name Considerations in Mixed Code Page Environments
Package names are determined when you invoke the PRECOMPILE
PROGRAM command or API. By default, they are generated based on the
first 8-bytes of the application program source file (without the file extension)
and are folded to upper case. Optionally, a name can be explicitly defined.
Regardless of the origin of a package name, if you are running in an unequal
code page environment, the characters for your package names should be in
the invariant character set. Otherwise you may experience problems related to
the modification of your package name. The database manager will not be
able to find the package for the application or a client-side tool will not
display the right name for your package.

A package name modification due to character conversion will occur if any of
the characters in the package name, are not directly mapped to a valid
character in the database code page. In such cases, a substitution character
replaces the character that is not converted. After such a modification, the
package name, when converted back to the application code page, may not

Chapter 17. Programming in Complex Environments 503

match the original package name. An example of a case where this behavior is
undesirable is when you use the DB2 Database Director to list and work with
packages. Package names displayed may not match the expected names.

To avoid conversion problems with package names, ensure that only
characters are used which are valid under both the application and database
code pages.

Precompiling and Binding
At precompile/bind time, the precompiler is the executing application. The
active code page when the database connection was made prior to the
precompile request is used for precompiled statements, and any character
data returned in the SQLCA.

Executing an Application
At execution time, the active code page of the user application when a
database connection is made is in effect for the duration of the connection. All
data is interpreted based on this code page; this includes dynamic SQL
statements, user input data, user output data, and character fields in the
SQLCA.

A Note of Caution
Failure to follow these guidelines may produce unpredictable results. These
conditions cannot be detected by the database manager, so no error or
warning message will result. For example, a C application contains the
following SQL statements operating against a table T1 with one column
defined as C1 CHAR(20):

(0) EXEC SQL CONNECT TO GLOBALDB;
(1) EXEC SQL INSERT INTO T1 VALUES ('a-constant');

strcpy(sqlstmt, "SELECT C1 FROM T1 WHERE C1='a-constant');
(2) EXEC SQL PREPARE S1 FROM :sqlstmt;

Where:
application code page at bind time = x
application code page at execution time = y
database code page = z

At bind time, 'a-constant' in statement (1) is converted from code page x to
code page z. This conversion can be noted as (x→z).

At execution time, 'a-constant' (x→z) is inserted into the table when statement
(1) is executed. However, the WHERE clause of statement (2) will be executed
with 'a-constant' (y→z). If the code points in the constant are such that the two
conversions (x→z and y→z) yield different results, the SELECT in statement (2)
will fail to retrieve the data inserted by statement (1).

Conversion Between Different Code Pages
Ideally, for optimal performance, your applications should always use the
same code page as your database. However, this is not always practical or

504 Application Development Guide

possible. The DB2 products provide support for character conversion that
allows your application and database to use different code pages. Characters
from one code page must be mapped to the other code page in order to
maintain meaning of the data.

When Does Character Conversion Occur?: Character conversion can occur
in the following situations:
v When a client or application accessing a database is running in a code page

that is different from the code page of the database.
This database conversion will occur on the database server machine for
both conversions from the application code page to the database code page
and from the database code page to the application code page.
You can minimize or eliminate client/server character conversion in some
situations. For example, you could:
– Create a Windows NT database using code page 850 to match an OS/2

and Windows client application environment that predominately uses
code page 850,
If a Windows ODBC application is used with the IBM DB2 ODBC driver
in Windows database client, this problem may be alleviated by the use of
the TRANSLATEDLL and TRANSLATEOPTION keywords in the
odbc.ini or db2cli.ini file.

– Create a DB2 for AIX database using code page 850 to match an OS/2
and DOS client application environment that predominately uses code
page 850.

Note: The DB2 for OS/2 Version 1.0 or Version 1.2 database server does not
support character conversion between different code pages. Ensure
that the code pages on server and client are compatible. For a list of
supported code page conversions, refer to the Administration Guide.

v When a client or application importing a PC/IXF file runs in a code page
that is different from the file being imported.
This data conversion will occur on the database client machine before the
client accesses the database server. Additional data conversion may take
place if the application is running in a code page that is different from the
code page of the database (as stated in the previous point).
Data conversion, if any, also depends on how the import utility was called.
See the Administration Guide for more information.

v When DB2 Connect is used to access data on a host or AS/400 server. In
this case the data receiver converts the character data. For example, data
that is sent to DB2 for MVS/ESA is converted to the appropriate MVS
coded character set identifier (CCSID) by DB2 for MVS/ESA. The data sent
back to the DB2 Connect machine from DB2 for MVS/ESA is converted by
DB2 Connect. For more information, see the DB2 Connect User’s Guide.

Chapter 17. Programming in Complex Environments 505

Character conversion will not occur for:
v File names. You should either use the ASCII invariant set for file names or

provide the file name in the hexadecimal values that are physically stored
in the file system. Note that if you include a file name as part of a SQL
statement, it gets converted as part of the statement conversion.

v Data that is targeted for or comes from a column assigned the FOR BIT
DATA attribute, or data used in an SQL operation whose result is FOR BIT
or BLOB data. In these cases, the data is treated as a byte stream and no
conversion occurs.1 See the SQL Reference for unequal code page rules for
assigning, comparing, and combining strings.

v A DB2 product or platform that does not support, or that does not have
support installed, for the desired combination of code pages. In this case, an
SQLCODE -332 (SQLSTATE 57017) is returned when you try to run your
application.

Character Substitutions During Conversions: When your application
converts from one code page to another, it is possible that one or more
characters are not represented in the target code page. If this occurs, DB2
inserts a substitution character into the target string in place of the character
that has no representation. The replacement character is then considered a
valid part of the string. In situations where a substitution occurs, the
SQLWARN10 indicator in the SQLCA is set to ‘W’.

Note: Any character conversions resulting from using the WCHARTYPE
CONVERT precompiler option will not flag a warning if any
substitutions take place.

Supported Character Conversions: When data conversion occurs, conversion
will take place from a source code page to a target code page.

The source code page is determined from the source of the data; data from the
application has a source code page equal to the application code page, and
data from the database has a source code page equal to the database code
page.

The determination of target code page is more involved; where the data is to
be placed, including rules for intermediate operations, is considered:
v If the data is moved directly from an application into a database, with no

intervening operations, the target code page is the database code page.
v If the data is being imported into a database from a PC/IXF file, there are

two character conversion steps:

1. However, a literal inserted into a column defined as FOR BIT DATA could be converted if that literal was part of
an SQL statement which was converted.

506 Application Development Guide

1. From the PC/IXF file code page (source code page) to the application
code page (target code page)

2. From the application code page (source code page) to the database code
page (target code page).

Exercise caution in situations where two conversion steps might occur. To
avoid a possible loss of character data, ensure you follow the supported
character conversions listed in the Administration Guide. Additionally, within
each group, only characters which exist in both the source and target code
page have meaningful conversions. Other characters are used as
“substitutions” and are only useful for converting from the target code page
back to the source code page (and may not necessarily provide meaningless
conversions in the two-step conversion process mentioned above). Such
problems are avoided if the application code page is the same as the
database code page.

v If the data is derived from operations performed on character data, where
the source may be any of the application code page, the database code
page, FOR BIT DATA, or for BLOB data, data conversion is based on a set
of rules. Some or all of the data items may have to be converted to an
intermediate result, before the final target code page can be determined. For
a summary of these rules, and for specific application with individual
operators and predicates, refer to the SQL Reference.

For a list of the code pages supported by DB2 Universal Database, refer to the
Administration Guide. The values under the heading “Group” can be used to
determine where conversions are supported. Any code page can be converted
to any other code page that is listed in the same IBM-defined language group.
For example, code page 437 can be converted to 37, 819, 850, 1051, 1252, or
1275.

Note: Character string conversions between multi-byte code pages, for
example DBCS and EUC, may result in either an increase or a decrease
in the length of the string.

Character Conversion Expansion Factor: When your application successfully
completes an attempt to connect to a DB2 database server, you should
consider the following fields in the returned SQLCA:
v The second token in the SQLERRMC field (tokens are separated by X'FF')

indicates the code page of the database. The ninth token in the SQLERRMC
field indicates the code page of the application. Querying the application’s
code page and comparing it to the database’s code page informs the
application whether it has established a connection which will undergo
character conversions.

v The first and second entries in the SQLERRD array. SQLERRD(1) contains
an integer value equal to the maximum expected expansion or contraction

Chapter 17. Programming in Complex Environments 507

factor for the length of mixed character data (CHAR data types) when
converted to the database code page from the application code page.
SQLERRD(2) contains an integer value equal to the maximum expected
expansion or contraction factor for the length of mixed character data
(CHAR data types) when converted to the application code page from the
database code page. A value of 0 or 1 indicates no expansion; a value
greater than 1 indicates a possible expansion in length; a negative value
indicates a possible contraction. Refer to the SQL Reference for details on
using the CONNECT statement.

The considerations for graphic string data should not be a factor in unequal
code page situations. Each string always has the same number of characters,
regardless of whether the data is in the application or the database code page.

See “Unequal Code Page Situations” on page 516 for information on dealing
with unequal code page situations.

DBCS Character Sets
Each combined single-byte character set (SBCS) or double-byte character set
(DBCS) code page allows for both single- and double-byte character code
points. This is usually accomplished by reserving a subset of the 256 available
code points of a mixed code table for single-byte characters, with the
remainder of the code points either undefined, or allocated to the first byte of
double-byte code points. These code points are shown in the following table.

Table 20. Mixed Character Set Code Points

Country Supported Mixed
Code Page

Code Points for
Single-byte
Characters

Code Points for
First Byte of
Double-byte
Characters

Japan 932, 943 x00-7F, xA1-DF x81-9F, xE0-FC

Japan 942 x00-80, xA0-DF,
xFD-FF

x81-9F, xE0-FC

Taiwan 938 (*) x00-7E x81-FC

Taiwan 948 (*) x00-80, FD, FE x81-FC

Korea 949 x00-7F x8F-FE

Taiwan 950 x00-7E x81-FE

China 1381 x00-7F x8C-FE

Korea 1363 x00-7F x81-FE

China 1386 x00 x81-FE

Note: (*) This is an old code page that is no longer recommended.

508 Application Development Guide

Code points not assigned to either of these categories are not defined, and are
processed as single-byte undefined code points.

Within each implied DBCS code table, there are 256 code points available as
the second byte for each valid first byte. Second byte values can have any
value from 0x40 to 0x7E, and from 0x80 to 0xFE. Note that in DBCS
environments, DB2 does not perform validity checking on individual
double-byte characters.

Extended UNIX Code (EUC) Character Sets
Each EUC code page allows for both single-byte character code points, and up
to three different sets of multi-byte character code points. This is
accomplished by reserving a subset of the 256 available code points of each
implied SBCS code page identifier for single-byte characters. The remainder of
the code points is undefined, allocated as an element of a multi-byte character,
or allocated as a single-shift introducer of a multi-byte character. These code
points are shown in the following tables.

Table 21. Japanese EUC Code Points

Group 1st Byte 2nd Byte 3rd Byte 4th Byte

G0 x20-7E n/a n/a n/a

G1 xA1-FE xA1-FE n/a n/a

G2 x8E xA1-FE n/a n/a

G3 x8E xA1-FE xA1-FE n/a

Table 22. Korean EUC Code Points

Group 1st Byte 2nd Byte 3rd Byte 4th Byte

G0 x20-7E n/a n/a n/a

G1 xA1-FE xA1-FE n/a n/a

G2 n/a n/a n/a n/a

G3 n/a n/a n/a n/a

Table 23. Traditional Chinese EUC Code Points

Group 1st Byte 2nd Byte 3rd Byte 4th Byte

G0 x20-7E n/a n/a n/a

G1 xA1-FE xA1-FE n/a n/a

G2 x8E xA1-FE xA1-FE xA1-FE

G3 n/a n/a n/a n/a

Chapter 17. Programming in Complex Environments 509

Table 24. Simplified Chinese EUC Code Points

Group 1st Byte 2nd Byte 3rd Byte 4th Byte

G0 x20-7E n/a n/a n/a

G1 xA1-FE xA1-FE n/a n/a

G2 n/a n/a n/a n/a

G3 n/a n/a n/a n/a

Code points not assigned to any of these categories are not defined, and are
processed as single-byte undefined code points.

Running CLI/ODBC/JDBC/SQLJ Programs in a DBCS Environment
For details on running Java programs that access DB2 Universal Database in a
double-byte character set (DBCS) environment, refer to DB2 Java - DBCS
Support online (http://www.ibm.com/software/data/db2/java/dbcsjava.html).
This web page currently contains the following information:

JDBC and SQLJ programs access DB2 using the DB2 CLI/ODBC driver and
therefore use the same configuration file (db2cli.ini). The following entries
must be added to this configuration file if you run Java programs that access
DB2 Universal Database in a DBCS environment:

PATCH1 = 65536
This forces the driver to manually insert a ″G″ in front of character
literals which are in fact graphic literals. This PATCH1 value should
always be set when working in a double byte environment.

PATCH1 = 64
This forces the driver to NULL terminate graphic output strings. This
is needed by Microsoft Access in a double byte environment. If you
need to use this PATCH1 value as well then you would add the two
values together (64+65536 = 65600) and set PATCH1=65600. See Note
#2 below for more information about specifying multiple PATCH1
values.

PATCH2 = 7
This forces the driver to map all graphic column data types to char
column data type. This is needed in a double byte environment.

PATCH2 = 10
This setting should only be used in an EUC (Extended Unix Code)
environment. It ensures that the CLI driver provides data for character
variables (CHAR, VARCHAR, etc...) in the proper format for the JDBC
driver. The data in these character types will not be usable in JDBC
without this setting.

Note:

510 Application Development Guide

http://www.ibm.com/software/data/db2/java/dbcsjava.html
http://www.ibm.com/software/data/db2/java/dbcsjava.html

1. Each of these keywords is set in each database specific stanza of the
db2cli.ini file. If you want to set them for multiple databases then
you need to repeat them for each database stanza in db2cli.ini.

2. To set multiple PATCH1 values you add the individual values and
use the sum. To set PATCH1 to both 64 and 65536 you would set
PATCH1=65600 (64+65536). If you already have other PATCH1
values set then replace the existing number with the sum of the
existing number and the new PATCH1 values you want to add.

3. To set multiple PATCH2 values you specify them in a comma
delimited string (unlike the PATCH1 option). To set PATCH2 values
1 and 7 you would set PATCH2=″1,7″

For more information about setting these keywords refer to the
Installation and Configuration Supplement.

Japanese and Traditional Chinese EUC and UCS-2 Code Set
Considerations

Extended UNIX Code (EUC) denotes a set of general encoding rules that can
support from one to four character sets in UNIX-based operating
environments. The encoding rules are based on the ISO 2022 definition for
encoding 7-bit and 8-bit data in which control characters are used to separate
some of the character sets. EUC is a means of specifying a collection of code
sets rather than a code set encoding scheme. A code set based on EUC
conforms to the EUC encoding rules but also identifies the specific character
sets associated with the specific instances. For example, the IBM-eucJP code
set for Japanese refers to the encoding of the Japanese Industrial Standard
characters according to the EUC encoding rules. For a list of code pages
which are supported, refer to your platform’s Quick Beginnings book.

Database and client application support for graphic (pure double-byte
character) data, while running under EUC code pages with character encoding
that is greater than two bytes in length is limited. The DB2 Universal
Database products implement strict rules for graphic data that require all
characters to be exactly two bytes wide. These rules do not allow many
characters from both the Japanese and Traditional Chinese EUC code pages.
To overcome this situation, support is provided at both the application level
and the database level to represent Japanese and Traditional Chinese EUC
graphic data using another encoding scheme.

A database created under either Japanese or Traditional Chinese EUC code
pages will actually store and manipulate graphic data using the ISO 10646
UCS-2 code set, a double-byte encoding scheme which is a proper subset of
the full ISO 10646 standard. Similarly, an application running under those
code pages will send graphic data to the database server as UCS-2 encoded
data. With this support, applications running under EUC code pages can
access the same types of data as those running under DBCS code pages. For

Chapter 17. Programming in Complex Environments 511

additional information regarding EUC environments, refer to the SQL
Reference. The IBM-defined code page identifier associated with UCS-2 is 1200,
and the CCSID number for the same code page is 13488. Graphic data in an
eucJP or eucTW database uses the CCSID number 13488. In a UCS-2 database,
use the code page number 1200 for GRAPHIC data.

The ISO 10646 standard specifies the encoding of a number of combining
characters that are necessary in several scripts, such as Indic, Thai, Arabic and
Hebrew. These characters can also be used for a productive generation of
characters in Latin, Cyrillic, and Greek scripts. However their presence creates
a possibility of an alternative coding for the same text. Although the coding is
unambiguous and data integrity is preserved, a processing of text that
contains combining characters is more complex. To provide for conformance
of applications that choose not to deal with the combining characters, ISO
10646 defines three implementation levels:

Level 1.
Does not allow combining characters.

Level 2.
Only a subset of combining characters are allowed.

Level 3.
All combining characters are allowed.

DB2 Universal Database supports the entire set of UCS-2 characters, including
all the combining characters, but does not perform any composition or
decomposition of characters. For more information on the Unicode standard,
refer to the Unicode Standard Version 2.0 from Addison-Wesley. For more
information about UCS-2, refer to ISO/IEC 10646-1 from the International
Standard Organization.

If you are working with applications or databases using these character sets
you may need to consider dealing with UCS-2 encoded data. When
converting UCS-2 graphic data to the application’s EUC code page, there is
the possibility of an increase in the length of data. For details of data
expansion, see “Character Conversion Expansion Factor” on page 507. When
large amounts of data are being displayed, it may be necessary to allocate
buffers, convert, and display the data in a series of fragments.

The following sections discuss how to handle data in this environment. For
these sections, the term EUC is used to refer only to Japanese and Traditional
Chinese EUC character sets. Note that the discussions do not apply to DB2
Korean or Simplified-Chinese EUC support since graphic data in these
character sets is represented using the EUC encoding.

512 Application Development Guide

Mixed EUC and Double-Byte Client and Database Considerations
The administration of database objects in mixed EUC and double-byte code
page environments is complicated by the possible expansion or contraction in
the length of object names as a result of conversions between the client and
database code page. In particular, many administrative commands and
utilities have documented limits to the lengths of character strings which they
may take as input or output parameters. These limits are typically enforced at
the client, unless documented otherwise. For example, the limit for a table
name is 128 bytes. It is possible that a character string which is 128 bytes
under a double-byte code page is larger, say 135 bytes, under an EUC code
page. This hypothetical 135-byte table name would be considered invalid by
such commands as REORGANIZE TABLE if used as an input parameter
despite being valid in the target double-byte database. Similarly, the
maximum permitted length of output parameters may be exceeded, after
conversion, from the database code page to the application code page. This
may cause either a conversion error or output data truncation to occur.

If you expect to use administrative commands and utilities extensively in a
mixed EUC and double-byte environment, you should define database objects
and their associated data with the possibility of length expansion past the
supported limits. Administering an EUC database from a double-byte client
imposes fewer restrictions then administering a double-byte database from an
EUC client. Double-byte character strings will always be equal in length or
shorter then the corresponding EUC character string. This will generally lead
to less problems caused by enforcing the character string length limits.

Note: In the case of SQL statements, validation of input parameters is not
conducted until the entire statement has been converted to the database
code page. Thus you can use character strings which may be
technically longer then allowed when they represented in the client
code page, but which meet length requirements when represented in
the database code page.

Considerations for Traditional Chinese Users
Due to the standards definition for Traditional Chinese, there is a side effect
that you may encounter when you convert some characters between
double-byte or EUC code pages and UCS-2. There are 189 characters
(consisting of 187 radicals and 2 numbers) that share the same UCS-2 code
point, when converted, as another character in the code set. When these
characters are converted back to double-byte or EUC, they are converted to
the code point of the same character’s ideograph, with which it shares the
same UCS-2 code point, rather then back to the original code point. When
displayed, the character appears the same, but has a different code point.
Depending on your application’s design, you may have to take this behavior
into account.

Chapter 17. Programming in Complex Environments 513

As an example, consider what happens to code point A7A1 in EUC code page
964, when it is converted to UCS-2 and then converted back to the original
code page, EUC 946:

EUC 946 UCS-2 EUC 946

A7A1

C4A1
UCS-2 C4A1

Thus, the original code points A7A1 and C4A1 end up as code point C4A1 after
conversion.

If you require the code page conversion tables for EUC code pages 946
(Traditional Chinese EUC) or 950 (Traditional Chinese Big-5) and UCS-2, see
the online Product and Service Technical Library
(http://www.ibm.com/software/data/db2/library/).

Developing Japanese or Traditional Chinese EUC Applications
When developing EUC applications, you need to consider the following items:
v Graphic Data Handling
v Developing for Mixed Code Set Environments

For additional considerations for stored procedures, see “Considerations for
Stored Procedures” on page 515. Additional language-specific application
development issues are discussed in:
v “Japanese or Traditional Chinese EUC, and UCS-2 Considerations in C and

C++” on page 614 (for C and C++).
v “Japanese or Traditional Chinese EUC, and UCS-2 Considerations for

COBOL” on page 685 (for COBOL).
v “Japanese or Traditional Chinese EUC, and UCS-2 Considerations for

FORTRAN” on page 701 (for FORTRAN).
v “Japanese or Traditional Chinese EUC Considerations for REXX” on

page 720 (for REXX).

Graphic Data Handling: This section discusses EUC application
development considerations in order to handle graphic data. This includes
handling graphic constants, and handling graphic data in UDFs, stored
procedures, DBCLOB files, as well as collation.

Graphic Constants: Graphic constants, or literals, are actually classified as
mixed character data as they are part of an SQL statement. Any graphic
constants in an SQL statement from a Japanese or Traditional Chinese EUC
client are implicitly converted to the graphic encoding by the database server.
You can use graphic literals that are composed of EUC encoded characters in
your SQL applications. An EUC database server will convert these literals to
the graphic database code set which will be UCS-2. Graphic constants from

514 Application Development Guide

http://www.ibm.com/software/data/db2/udb/library.html

EUC clients should never contain single-width characters such as CS0 7-bit
ASCII characters or Japanese EUC CS2 (Katakana) characters.

For additional information on graphic constants, refer to the SQL Reference.

Considerations for UDFs: UDFs are invoked at the database server and are
meant to deal with data encoded in the same code set as the database. In the
case of databases running under the Japanese or Traditional Chinese code set,
mixed character data is encoded using the EUC code set under which the
database is created. Graphic data is encoded using UCS-2. This means that
UDFs need to recognize and handle graphic data which will be encoded with
UCS-2.

For example, you create a UDF called VARCHAR which converts a graphic
string to a mixed character string. The VARCHAR function has to convert a
graphic string encoded as UCS-2 to an EUC representation if the database is
created under the EUC code sets.

Considerations for Stored Procedures: A stored procedure, running under either
a Japanese or Traditional Chinese EUC code set, must be prepared to
recognize and handle graphic data encoded using UCS-2. When running these
code sets, graphic data received or returned through the stored procedure’s
input/output SQLDA is encoded using UCS-2.

Considerations for DBCLOB Files: There are two important considerations
for DBCLOB files:
v The DBCLOB file data is assumed to be in the EUC code page of the

application. For EUC DBCLOB files, data is converted to UCS-2 at the client
on read, and from UCS-2 at the client on write.

v The number of bytes read or written at the server, is returned in the data
length field of the file reference variable based on the number of UCS-2
encoded characters read from or written to the file. The number of bytes
actually read from or written to the file may be larger.

Collation: Graphic data is sorted in binary sequence. Mixed data is sorted in
the collating sequence of the database applied on each byte. For a discussion
on sorting sequences, refer to the SQL Reference. Due to the possible difference
in the ordering of characters in an EUC code set and a DBCS code set for the
same country, different results may be obtained when the same data is sorted
in an EUC database and in a DBCS database.

Developing for Mixed Code Set Environments
This section deals with the following considerations related to the increase or
decrease in the length of data under certain circumstances, when developing
applications in a mixed EUC and DBCS environment:
v Unequal Code Page Situations

Chapter 17. Programming in Complex Environments 515

v Client-Based Parameter Validation
v Using the DESCRIBE Statement
v Using Fixed or Variable Length Data Types
v Character Conversion String Length Overflow
v Applications Connected to a Unicode (UCS-2) Database
v Rules for String Conversions
v Character Conversions Past Data Type Limits
v Character Conversions in Stored Procedures

Unequal Code Page Situations: Depending on the character encoding
schemes used by the application code page and the database code page, there
may or may not be a change in the length of a string as it is converted from
the source code page to the target code page. A change in length is usually
associated with conversions between multi-byte code pages with different
encoding schemes, for example DBCS and EUC.

A possible increase in length is usually more serious than a possible decrease
in length since an over-allocation of memory is less problematic than an
under-allocation. Application considerations for sending or retrieving data
depending on where the possible expansion may occur need to be dealt with
separately. It is also important to note the differences between a best-case and
worst-case situation when an expansion or contraction in length is indicated.
Positive values, indicating a possible expansion, will give the worst-case
multiplying factor. For example, a value of 2 for the SQLERRD(1) or
SQLERRD(2) field means that a maximum of twice the string length of storage
will be required to handle the data after conversion. This is a worst-case
indicator. In this example best-case would be that after conversion, the length
remains the same.

Negative values for SQLERRD(1) or SQLERRD(2), indicating a possible
contraction, also provide the worst-case expansion factor. For example, a value
of -1 means that the maximum storage required is equal to the string length
prior to conversion. It is indeed possible that less storage may be required,
but practically this is of little use unless the receiving application knows in
advance how the source data is structured.

To ensure that you always have sufficient storage allocated to cover the
maximum possible expansion after character conversion, you should allocate
storage equal to the value max_target_length obtained from the following
calculation:
1. Determine the expansion factor for the data.

For data transfer from the application to the database:
expansion_factor = ABS[SQLERRD(1)]
if expansion_factor = 0

expansion_factor = 1

516 Application Development Guide

For data transfer from the database to the application:
expansion_factor = ABS[SQLERRD(2)]
if expansion_factor = 0

expansion_factor = 1

In the above calculations, ABS refers to the absolute value.

The check for expansion_factor = 0 is necessary because some DB2
Universal Database products return 0 in SQLERRD(1) and SQLERRD(2).
These servers do not support code page conversions that result in the
expansion or shrinkage of data; this is represented by an expansion factor
of 1.

2. Intermediate length calculation.
temp_target_length = actual_source_length * expansion_factor

3. Determine the maximum length for target data type.

Target data type Maximum length of type
(type_maximum_length)

CHAR 254

VARCHAR 32 672

LONG VARCHAR 32 700

CLOB 2 147 483 647
4. Determine the maximum target length.

�1� if temp_target_length < actual_source_length
max_target_length = type_maximum_length

else
�2� if temp_target_length > type_maximum_length

max_target_length = type_maximum_length
else

�3� max_target_length = temp_target_length

All the above checks are required to allow for overflow which may occur
during the length calculation. The specific checks are:

�1� Numeric overflow occurs during the calculation of
temp_target_length in step 2.

If the result of multiplying two positive values together is greater
than the maximum value for the data type, the result wraps around
and is returned as a value less than the larger of the two values.

For example, the maximum value of a 2-byte signed integer
(which is used for the length of non-CLOB data types) is 32 767. If
the actual_source_length is 25 000 and the expansion factor is 2,

Chapter 17. Programming in Complex Environments 517

then temp_target_length is theoretically 50 000. This value is too
large for the 2-byte signed integer so it gets wrapped around and
is returned as -15 536.

For the CLOB data type, a 4-byte signed integer is used for the
length. The maximum value of a 4-byte signed integer is
2 147 483 647.

�2� temp_target_length is too large for the data type.

The length of a data type cannot exceed the values listed in step 3.

If the conversion requires more space than is available in the data
type, it may be possible to use a larger data type to hold the
result. For example, if a CHAR(250) value requires 500 bytes to
hold the converted string, it will not fit into a CHAR value
because the maximum length is 254 bytes. However, it may be
possible to use a VARCHAR(500) to hold the result after
conversion. See “Character Conversions Past Data Type Limits” on
page 523 for more information.

�3� temp_target_length is the correct length for the result.

Using the SQLERRD(1) and SQLERRD(2) values returned when connecting to
the database and the above calculations, you can determine whether the
length of a string will possibly increase or decrease as a result of character
conversion. In general, a value of 0 or 1 indicates no expansion; a value
greater than 1 indicates a possible expansion in length; a negative value
indicates a possible contraction. (Note that values of ‘0’ will only come from
down-level DB2 Universal Database products. Also, these values are
undefined for other database server products. Table 25 lists values to expect
for various application code page and database code page combinations when
using DB2 Universal Database.

Table 25. SQLCA.SQLERRD Settings on CONNECT

Application Code
Page

Database Code
Page

SQLERRD(1) SQLERRD(2)

SBCS SBCS +1 +1

DBCS DBCS +1 +1

eucJP eucJP +1 +1

eucJP DBCS -1 +2

DBCS eucJP +2 -1

eucTW eucTW +1 +1

eucTW DBCS -1 +2

DBCS eucTW +2 -1

518 Application Development Guide

Table 25. SQLCA.SQLERRD Settings on CONNECT (continued)

Application Code
Page

Database Code
Page

SQLERRD(1) SQLERRD(2)

eucKR eucKR +1 +1

eucKR DBCS +1 +1

DBCS eucKR +1 +1

eucCN eucCN +1 +1

eucCN DBCS +1 +1

DBCS eucCN +1 +1

Expansion at the Database Server: If the SQLERRD(1) entry indicates an
expansion at the database server, your application must consider the
possibility that length-dependent character data which is valid at the client
will not be valid at the database server once it is converted. For example, DB2
products require that column names be no more than 128 bytes in length. It is
possible that a character string which is 128 bytes in length encoded under a
DBCS code page expands past the 128 byte limit when it is converted to an
EUC code page. This means that there may be activities which are valid when
the application code page and the database code page are equal, which are
invalid when they are different. Exercise caution when you design EUC and
DBCS databases for unequal code page situations.

Expansion at the Application: If the SQLERRD(2) entry indicates an expansion
at the client application, your application must consider the possibility that
length-dependent character data will expand in length after being converted.
For example, a row with a CHAR(128) column is retrieved. Under
circumstances where the database and application code pages are equal, the
length of the data returned is 128 bytes. However, in an unequal code page
situation 128 bytes of data encoded under a DBCS code page may expand
past 128 bytes when converted to an EUC code page. Thus, additional storage
may have to allocated in order to retrieve the complete string.

Client-Based Parameter Validation: An important side effect of potential
character data expansion or contraction between the client and server involves
the validation of data passed between the client application and the database
server. In an unequal code page situation, it is possible that data determined
to be valid at the client is actually invalid at the database server after
character conversion. Conversely, data that is invalid at the client, may be
valid at the database server after conversion.

Any end-user application or API library has the potential of not being able to
handle all possibilities in an unequal code page situation. In addition, while
some parameter validation such as string length is performed at the client for

Chapter 17. Programming in Complex Environments 519

commands and APIs, the tokens within SQL statements are not verified until
they have been converted to the database’s code page. This can lead to
situations where it is possible to use an SQL statement in an unequal code
page environment to access a database object, such as a table, but it will not
be possible to access the same object using a particular command or API.

Consider an application that returns data contained in a table provided by an
end-user, and checks that the table name is not greater than 128 bytes long.
Now consider the following scenarios for this application:
1. A DBCS database is created. From a DBCS client, a table (t1) is created

with a table name which is 128 bytes long. The table name includes
several characters which would be greater than two bytes in length if the
string is converted to EUC, resulting in the EUC representation of the table
name being a total of 131 bytes in length. Since there is no expansion for
DBCS to DBCS connections, the table name is 128 bytes in the database
environment, and the CREATE TABLE is successful.

2. An EUC client connects to the DBCS database. It creates a table (t2) with a
table name which is 120 bytes long when encoded as EUC and 100 bytes
long when converted to DBCS. The table name in the DBCS database is
100 bytes. The CREATE TABLE is successful.

3. The EUC client creates a table (t3) with a table name that is 64 EUC
characters in length (131 bytes). When this name is converted to DBCS its
length shrinks to the 128 byte limit. The CREATE TABLE is successful.

4. The EUC client invokes the application against the each of the tables (t1,
t2, and t3) in the DBCS database, which results in:

Table Result
t1 The application considers the table name invalid because it

is 131 bytes long.
t2 Displays correct results
t3 The application considers the table name invalid because it

is 131 bytes long.
5. The EUC client is used to query the DBCS database from the CLP.

Although the table name is 131 bytes long on the client, the queries are
successful because the table name is 128 bytes long at the server.

Using the DESCRIBE Statement: A DESCRIBE performed against an EUC
database will return information about mixed character and GRAPHIC
columns based on the definition of these columns in the database. This
information is based on code page of the server, before it is converted to the
client’s code page.

When you perform a DESCRIBE against a select list item which is resolved in
the application context (for example VALUES SUBSTR(?,1,2)); then for any
character or graphic data involved, you should evaluate the returned SQLLEN

520 Application Development Guide

value along with the returned code page. If the returned code page is the
same as the application code page, there is no expansion. If the returned code
page is the same as the database code page, expansion is possible. Select list
items which are FOR BIT DATA (code page 0), or in the application code page
are not converted when returned to the application, therefore there is no
expansion or contraction of the reported length.

EUC Application with DBCS Database: If your application’s code page is an
EUC code page, and it issues a DESCRIBE against a database with a DBCS
code page, the information returned for CHAR and GRAPHIC columns is
returned in the database context. For example, a CHAR(5) column returned as
part of a DESCRIBE has a value of five for the SQLLEN field. In the case of
non-EUC data, you allocate five bytes of storage when you fetch the data
from this column. With EUC data, this may not be the case. When the code
page conversion from DBCS to EUC takes place, there may be an increase in
the length of the data due to the different encoding used for characters for
CHAR columns. For example, with the Traditional Chinese character set, the
maximum increase is double. That is, the maximum character length in the
DBCS encoding is two bytes which may increase to a maximum character
length of four bytes in EUC. For the Japanese code set, the maximum increase
is also double. Note, however, that while the maximum character length in
Japanese DBCS is two bytes, it may increase to a maximum character length
in Japanese EUC of three bytes. Although this increase appears to be only by
a factor of 1.5, the single-byte Katakana characters in Japanese DBCS are only
one byte in length, while they are two bytes in length in Japanese EUC. See
“Character Conversion Expansion Factor” on page 507 for more information
on determining the maximum size.

Possible changes in data length as a result of character conversions apply only
to mixed character data. Graphic character data encoding is always the same
length, two bytes, regardless of the encoding scheme. To avoid losing the
data, you need to evaluate whether an unequal code page situation exists, and
whether or not it is between a EUC application and a DBCS database. You can
determine the database code page and the application code page from tokens
in the SQLCA returned from a CONNECT statement. For more information,
see “Deriving Code Page Values” on page 499, or refer to the SQL Reference. If
such a situation exists, your application needs to allocate additional storage
for mixed character data, based on the maximum expansion factor for that
encoding scheme.

DBCS Application with EUC Database: If your application code page is a DBCS
code page and issues a DESCRIBE against an EUC database, a situation
similar to that in “EUC Application with DBCS Database” occurs. However, in
this case, your application may require less storage than indicated by the
value of the SQLLEN field. The worst case in this situation is that all of the
data is single-byte or double-byte under EUC, meaning that exactly SQLLEN

Chapter 17. Programming in Complex Environments 521

bytes are required under the DBCS encoding scheme. In any other situation,
less than SQLLEN bytes are required because a maximum of two bytes are
required to store any EUC character.

Using Fixed or Variable Length Data Types: Due to the possible change in
length of strings when conversions occur between DBCS and EUC code pages,
you should consider not using fixed length data types. Depending on whether
you require blank padding, you should consider changing the SQLTYPE from
a fixed length character string, to a varying length character string after
performing the DESCRIBE. For example, if an EUC to DBCS connection is
informed of a maximum expansion factor of two, the application should
allocate ten bytes (based on the CHAR(5) example in “EUC Application with
DBCS Database” on page 521).

If the SQLTYPE is fixed-length, the EUC application will receive the column
as an EUC data stream converted from the DBCS data (which itself may have
up to five bytes of trailing blank pads) with further blank padding if the code
page conversion does not cause the data element to grow to its maximum
size. If the SQLTYPE is varying-length, the original meaning of the content of
the CHAR(5) column is preserved, however, the source five bytes may have a
target of between five and ten bytes. Similarly, in the case of possible data
shrinkage (DBCS application and EUC database), you should consider
working with varying-length data types.

An alternative to either allocating extra space or promoting the data type is to
select the data in fragments. For example, to select the same VARCHAR(3000)
which may be up to 6000 bytes in length after the conversion you could
perform two selects, of SUBSTR(VC3000, 1, LENGTH(VC3000)/2) and
SUBSTR(VC3000, (LENGTH(VC3000)/2)+1) separately into 2 VARCHAR(3000)
application areas. This method is the only possible solution when the data
type is no longer promotable. For example, a CLOB encoded in the Japanese
DBCS code page with the maximum length of 2 gigabytes is possibly up to
twice that size when encoded in the Japanese EUC code page. This means that
the data will have to be broken up into fragments since there is no support
for a data type in excess of 2 gigabytes in length.

Character Conversion String Length Overflow: In EUC and DBCS unequal
code page environments, situations may occur after conversion takes place,
when there is not enough space allocated in a column to accommodate the
entire string. In this case, the maximum expansion will be twice the length of
the string in bytes. In cases where expansion does exceed the capacity of the
column, SQLCODE -334 (SQLSTATE 22524) is returned.

This leads to situations that may not be immediately obvious or previously
considered as follows:

522 Application Development Guide

v An SQL statement may be no longer than 32 765 bytes in length. If the
statement is complex enough or uses enough constants or database object
names that may be subject to expansion upon conversion, this limit may be
reached earlier than expected.

v SQL identifiers are allowed to expand on conversion up to their maximum
lengths which is eight bytes for short identifiers and 128 bytes for long
identifiers.

v Host language identifiers are allowed to expand on conversion up to their
maximum length which is 255 bytes.

v When the character fields in the SQLCA structure are converted, they are
allowed to expand to no more than their maximum defined lengths.

Rules for String Conversions: If you are designing applications for mixed code
page environments, refer to the SQL Reference for any of the following
situations:
v Corresponding string columns in full selects with set operations (UNION,

INTERSECT and EXCEPT)
v Operands of concatenation
v Operands of predicates (with the exception of LIKE)
v Result expressions of a CASE statement
v Arguments of the scalar function COALESCE (and VALUE)
v Expression values of the IN list of an IN predicate
v Corresponding expressions of a multiple row VALUES clause.

In these situations, conversions may take place to the application code page
instead of the database code page.

Character Conversions Past Data Type Limits: In EUC and DBCS unequal code
page environments, situations may occur after conversion takes place, when
the length of the mixed character or graphic string exceeds the maximum
length allowed for that data type. If the length of the string, after expansion,
exceeds the limit of the data type, then type promotion does not occur.
Instead, an error message is returned indicating that the maximum allowed
expansion length has been exceeded. This situation is more likely to occur
while evaluating predicates than with inserts. With inserts, the column width
is more readily known by the application, and the maximum expansion factor
can be readily taken into account. In many cases, this side effect of character
conversion can be avoided by casting the value to an associated data type
with a longer maximum length. For example, the maximum length of a
CHAR value is 254 bytes while the maximum length of a VARCHAR is 32672
bytes. In cases where expansion does exceed the maximum length of the data
type, an SQLCODE -334 (SQLSTATE 22524) is returned.

Character Conversions in Stored Procedures: Mixed character or graphic data
specified in host variables and SQLDAs in sqleproc() or SQL CALL
invocations are converted in situations where the application and database

Chapter 17. Programming in Complex Environments 523

code pages are different. In cases where string length expansion occurs as a
result of conversion, you receive an SQLCODE -334 (SQLSTATE 22524) if
there is not enough space allocated to handle the expansion. Thus you must
be sure to provide enough space for potentially expanding strings when
developing stored procedures. You should use varying length data types with
enough space allocated to allow for expansion.

Applications Connected to a Unicode (UCS-2) Database
Note that the information contained in the previous section, “Developing for
Mixed Code Set Environments” on page 515, is also applicable to a UCS-2
database.

Applications from any code page environment can connect to a Unicode
database. For applications that connect to a Unicode database, the database
manager converts character string data between the application code page and
the database code page (UTF-8). For a UCS-2 database, GRAPHIC data is
always in UCS-2. However, when you use the command line processor to
retrieve graphic data, the graphic characters are also converted to the client
code page. This conversion allows the command line processor to display
graphic characters in the current font. Data loss may occur whenever the
database manager converts UCS-2 characters to a client code page. Characters
that the database manager cannot convert to a valid character in the client
code page are replaced with the default substitution character in that code
page.

When DB2 converts characters from a code page to UTF-8, the total number
of bytes that represent the characters may expand or shrink, depending on the
code page and the code points of the characters. 7-bit ASCII remains invariant
in UTF-8, and each ASCII character requires one byte. Non-ASCII UCS-2
characters become two or three bytes each. For more information about UTF-8
conversions, refer to the Administration Guide, or refer to the Unicode standard
documents.

For applications that connect to a Unicode database, GRAPHIC data is already
in Unicode. For applications that connect to DBCS databases, GRAPHIC data
is converted between the application DBCS code page and the database DBCS
code page. Unicode applications should perform the necessary conversions to
and from Unicode themselves, or should set WCHARTYPE CONVERT option
and use wchar_t for graphic data. For more details about this option, please
see “Handling Graphic Host Variables in C and C++” on page 609.

524 Application Development Guide

Considerations for Multisite Updates

This section describes how your applications can work with remote databases
and how they can work with more than one database at a time. Included in
the discussion are:
v Remote Unit of Work
v Multisite Update

With DB2, you can run remote server functions such as BACKUP, RESTORE,
DROP DATABASE, CREATE DATABASE and so on as if they were local
applications. For more information on using these functions remotely, refer to
the Administration Guide.

Remote Unit of Work
A unit of work is a single logical transaction. It consists of a sequence of SQL
statements in which either all of the operations are successfully performed or
the sequence as a whole is considered unsuccessful.

A remote unit of work lets a user or application program read or update data
at one location per unit of work. It supports access to one database within a
unit of work. While an application program can access several remote
databases, it can only access one database within a unit of work.

A remote unit of work has the following characteristics:
v Multiple requests per unit of work are supported.
v Multiple cursors per unit of work are supported.
v Each unit of work can access only one database.
v The application program either commits or rolls back the unit of work. In

certain error circumstances, the server may roll back the unit of work.

Multisite Update
Multisite update, also known as Distributed Unit of Work (DUOW) and
Two-Phase commit, is a function that enables your applications to update data
in multiple remote database servers with guaranteed integrity. A good
example of a multisite update is a banking transaction that involves transfer
of money from one account to another in a different database server. In such a
transaction it is critical that updates that implement debit operation on one
account do not get committed unless updates required to process credit to the
other account are committed as well. The multisite update considerations
apply when data representing these accounts is managed by two different
database servers.

You can use multisite update to read and update multiple DB2 Universal
Database databases within a unit of work. If you have installed DB2 Connect
or use the DB2 Connect capability provided with DB2 Universal Database
Enterprise Edition you can also use multisite update with host or AS/400
database servers, such as DB2 Universal Database for OS/390 and DB2

Chapter 17. Programming in Complex Environments 525

Universal Database for AS/400. Certain restrictions apply when you use
multisite update with other database servers, as described in “Multisite
Update with DB2 Connect” on page 785.

A transaction manager coordinates the commit among multiple databases. If
you use a transaction processing (TP) monitor environment such as TxSeries
CICS, the TP monitor uses its own transaction manager. Otherwise, the
transaction manager supplied with DB2 is used. DB2 Universal Database for
OS/2, UNIX, and Windows 32-bit operating systems is an XA (extended
architecture) compliant resource manager. Host and AS/400 database servers
that you access with DB2 Connect are XA compliant resource managers. Also
note that the DB2 Universal Database transaction manager is not an XA
compliant transaction manager, meaning the transaction manager can only
coordinate DB2 databases.

For detailed information about multisite update, refer to the Administration
Guide.

When to Use Multisite Update
Multisite Update is most useful when you want to work with two or more
databases and maintain data integrity. For example, if each branch of a bank
has its own database, a money transfer application could do the following:
v Connect to the sender’s database
v Read the sender’s account balance and verify that enough money is present.
v Reduce the sender’s account balance by the transfer amount.
v Connect to the recipient’s database
v Increase the recipient’s account balance by the transfer amount.
v Commit the databases.

By doing this within one unit of work, you ensure that either both databases
are updated or neither database is updated.

Coding SQL for a Multisite Update Application
Table 26 on page 527 illustrates how you code SQL statements for multisite
update. The left column shows SQL statements that do not use multisite
update; the right column shows similar statements with multisite update.

526 Application Development Guide

Table 26. RUOW and Multisite Update SQL Statements

RUOW Statements Multisite Update Statements

CONNECT TO D1
SELECT
UPDATE
COMMIT

CONNECT TO D2
INSERT
COMMIT

CONNECT TO D1
SELECT
COMMIT

CONNECT RESET

CONNECT TO D1
SELECT
UPDATE

CONNECT TO D2
INSERT
RELEASE CURRENT

SET CONNECTION D1
SELECT
RELEASE D1
COMMIT

The SQL statements in the left column access only one database for each unit
of work. This is a remote unit of work (RUOW) application.

The SQL statements in the right column access more than one database within
a unit of work. This is a multisite update application.

Some SQL statements are coded and interpreted differently in a multisite
update application:
v The current unit of work does not need to be committed or rolled back

before you connect to another database.
v When you connect to another database, the current connection is not

disconnected. Instead, it is put into a dormant state. If the CONNECT
statement fails, the current connection is not affected.

v You cannot connect with the USER/USING clause if a current or dormant
connection to the database already exists.

v You can use the SET CONNECTION statement to change a dormant
connection to the current connection.
You can also accomplish the same thing by issuing a CONNECT statement
to the dormant database. This is not allowed if you set SQLRULES to STD.
You can set the value of SQLRULES using a precompiler option or the SET
CLIENT command or API. The default value of SQLRULES (DB2) allows
you to switch connections using the CONNECT statement.

v In a select, the cursor position is not affected if you switch to another
database and then back to the original database.

v The CONNECT RESET statement does not disconnect the current
connection and does not implicitly commit the current unit of work.

Chapter 17. Programming in Complex Environments 527

Instead, it is equivalent to explicitly connecting to the default database (if
one has been defined). If an implicit connection is not defined, SQLCODE
-1024 (SQLSTATE 08003) is returned.

v You can use the RELEASE statement to mark a connection for disconnection
at the next COMMIT. The RELEASE CURRENT statement applies to the
current connection, the RELEASE connection applies to the named
connection, and the RELEASE ALL statement applies to all connections.
A connection that is marked for release can still be used until it is dropped
at the next COMMIT statement. A rollback does not drop the connection;
this allows a retry with the connections still in place. Use the
DISCONNECT statement (or precompiler option) to drop connections after
a commit or rollback.

v The COMMIT statement commits all databases in the unit of work (current
or dormant).

v The ROLLBACK statement rolls back all databases in the unit of work, and
closes held cursors for all databases whether or not they are accessed in the
unit of work.

v All connections (including dormant connections and connections marked
for release) are disconnected when the application process terminates.

v Upon any successful connection (including a CONNECT statement with no
options, which only queries the current connection) a number will be
returned in the SQLERRD(3) and SQLERRD(4) fields of the SQLCA.
The SQLERRD(3) field returns information on whether the database
connected is currently updatable in a unit of work. Its possible values are:
1 Updatable.
2 Read-only.

The SQLERRD(4) field returns the following information on the current
characteristics of the connection:
0 Not applicable. This state is only possible if running from a down

level client which uses one phase commit and is an updater.
1 One-phase commit.
2 One-phase commit (read-only). This state is only applicable to host

or AS/400 database servers that you access with DB2 Connect
without starting the DB2 Connect sync point manager.

3 Two-phase commit.

If you are writing tools or utilities, you may want to issue a message to
your users if the connection is read-only.

Precompiling a Multisite Update Application
When you precompile a multisite update application, you should set the CLP
connection to a type 1 connection, otherwise you will receive an SQLCODE
30090 (SQLSTATE 25000) when you attempt to precompile your application.

528 Application Development Guide

For more information on setting the connection type, refer to the Command
Reference. The following precompiler options are used when you precompile
an application which uses multisite updates:

CONNECT (1 | 2)
Specify CONNECT 2 to indicate that this application uses the SQL
syntax for multisite update applications, as described in “Coding SQL
for a Multisite Update Application” on page 526. The default,
CONNECT 1, means that the normal (RUOW) rules for SQL syntax
apply to the application.

SYNCPOINT (ONEPHASE | TWOPHASE | NONE)
If you specify SYNCPOINT TWOPHASE and DB2 coordinates the
transaction, DB2 requires a database to maintain the transaction state
information. When you deploy your application, you must define this
database by configuring the database manager configuration
parameter TM_DATABASE. For more information on the
TM_DATABASE database manager configuration parameter, refer to
the Administration Guide. For information on how these SYNCPOINT
options impact the way your program operates, refer to the concepts
section of the SQL Reference.

SQLRULES (DB2 | STD)
Specifies whether DB2 rules or standard (STD) rules based on
ISO/ANSI SQL92 should be used in multisite update applications.
DB2 rules allow you to issue a CONNECT statement to a dormant
database; STD rules do not allow this.

DISCONNECT (EXPLICIT | CONDITIONAL | AUTOMATIC)
Specifies which database connections are disconnected at COMMIT:
only databases that are marked for release with a RELEASE statement
(EXPLICIT), all databases that have no open WITH HOLD cursors
(CONDITIONAL), or all connections (AUTOMATIC).

For a more detailed description of these precompiler options, refer to the
Command Reference.

Multisite update precompiler options become effective when the first database
connection is made. You can use the SET CLIENT API to supersede
connection settings when there are no existing connections (before any
connection is established or after all connections are disconnected). You can
use the QUERY CLIENT API to query the current connection settings of the
application process.

The binder fails if an object referenced in your application program does not
exist. There are three possible ways to deal with multisite update applications:

Chapter 17. Programming in Complex Environments 529

v You can split the application into several files, each of which accesses only
one database. You then prep and bind each file against the one database
that it accesses.

v You can ensure that each table exists in each database. For example, the
branches of a bank might have databases whose tables are identical (except
for the data).

v You can use only dynamic SQL.

Specifying Configuration Parameters for a Multisite Update Application
For information on performing multisite updates coordinated by an XA
transaction manager with connections to a host or AS/400 database, refer to
the DB2 Connect User’s Guide.

The following configuration parameters affect applications which perform
multisite updates. With the exception of LOCKTIMEOUT, the configuration
parameters are database manager configuration parameters. LOCKTIMEOUT
is a database configuration parameter.

TM_DATABASE
Specifies which database will act as a transaction manager for
two-phase commit transactions.

RESYNC_INTERVAL
Specifies the number of seconds that the system waits between
attempts to try to resynchronize an indoubt transaction. (An indoubt
transaction is a transaction that successfully completes the first phase
of a two-phase commit but fails during the second phase.)

LOCKTIMEOUT
Specifies the number of seconds before a lock wait will time-out and
roll back the current transaction for a given database. The application
must issue an explicit ROLLBACK to roll back all databases that
participate in the multisite update. LOCKTIMEOUT is a database
configuration parameter.

TP_MON_NAME
Specifies the name of the TP monitor, if any.

SPM_RESYNC_AGENT_LIMIT
Specifies the number of simultaneous agents that can perform resync
operations with the host or AS/400 server using SNA.

SPM_NAME

v If SPM is being used with a TCP/IP 2PC connection then the
SPM_NAME must be an unique identifier within the network.
When you create a DB2 instance, DB2 derives the default value of
SPM_NAME from the TCP/IP hostname. You may modify this
value if it is not acceptable in your environment. For TCP/IP

530 Application Development Guide

connectivity with host database servers, the default value should be
acceptable. For SNA connections to host or AS/400 database
servers, this value must match an SNA LU profile defined within
your SNA product.

v If SPM is being used with an SNA 2PC connection, the SPM name
must be set to the LU_NAME that is used for 2PC.

v If SPM is being used for both TCP/IP and SNA then the
LU_NAME that is used for 2PC must be used.

Note: Multisite updates in an environment with host or AS/400
database servers may require SPM. For more information, refer
to the DB2 Connect User’s Guide.

SPM_LOG_SIZE
The number of 4 kilobyte pages of each primary and secondary log
file used by the SPM to record information on connections, status of
current connections, and so on.

For a more detailed description of these configuration parameters, refer to the
Administration Guide.

Multisite Update Restrictions
The following restrictions apply to multisite update in DB2:
v In a transaction processing (TP) Monitor environment such as TxSeries

CICS, the DISCONNECT statement is not supported. If you use
DISCONNECT with a TP monitor, you will receive SQLCODE -30090
(SQLSTATE 25000). Instead of DISCONNECT, use RELEASE followed by
COMMIT.

v Dynamic COMMIT and ROLLBACK are not supported in a connect type 2
environment. If you use a COMMIT in this environment, it is rejected with
SQLCODE -925 (SQLSTATE 2D521). If you use a ROLLBACK in this
environment, it is rejected with SQLCODE -926 (SQLSTATE 2D521).

v The precompiler option DISCONNECT CONDITIONAL cannot be used for
connections to Version 1 databases. Connections to Version 1 databases are
disconnected on COMMIT even if held-cursors are open.

v Although cursors declared WITH HOLD are supported with multisite
update, in order for DISCONNECT to succeed, all cursors declared WITH
HOLD must be closed and a COMMIT issued before the DISCONNECT
request.

v When the services of TP Monitor Environments are used for transaction
management, the multisite update options are implicitly CONNECT Type 2,
SYNCPOINT TWOPHASE, SQLRULES DB2, DISCONNECT EXPLICIT.
Changing these options with precompilation or the SET CLIENT API is not
necessary and will be ignored.

Chapter 17. Programming in Complex Environments 531

v Your application receives an SQLCODE -30090 (SQLSTATE 25000) if it uses
the following APIs in a multisite update (CONNECT Type 2), as these APIs
are not supported in a multisite update:

BACKUP DATABASE
BIND
EXPORT
IMPORT
LOAD
MIGRATE DATABASE
PRECOMPILE PROGRAM
RESTART DATABASE
RESTORE DATABASE
REORGANIZE TABLE
ROLLFORWARD DATABASE

v Stored procedures are supported within a multisite update. However, a
stored procedure that issues a COMMIT and ROLLBACK statement in a
multisite update (CONNECT Type 2) receives an SQLCODE -30090
(SQLSTATE 25000) as these statements are not supported in a multisite
update.

Accessing Host or AS/400 Servers

If you want to develop applications that can access (or update) different
database systems, you should:
1. Use SQL statements and precompile/bind options that are supported on

all of the database systems that your applications will access. For example,
stored procedures are not supported on all platforms.
For IBM products, refer to the SQL Reference before you start coding.

2. Where possible, have your applications check the SQLSTATE rather than
the SQLCODE.
If your applications will use DB2 Connect and you want to use
SQLCODEs, consider using the mapping facility provided by DB2 Connect
to map SQLCODE conversions between unlike databases.

3. Test your application with the host or AS/400 databases (such as DB2
Universal Database for OS/390, OS/400, or DB2 for VSE & VM) that you
intend to support. For more information, refer to the DB2 Connect User’s
Guide.

For more information on accessing host or AS/400 database systems, see
“Appendix D. Programming in a Host or AS/400 Environment” on page 773.

532 Application Development Guide

Multiple Thread Database Access

One feature of some operating systems is the ability to run several threads of
execution within a single process. This allows an application to handle
asynchronous events, and makes it easier to create event-driven applications
without resorting to polling schemes. This section discusses how the database
manager works with multiple threads, and lists some design guidelines that
you should keep in mind. To determine if your platform supports the
multithreading feature, refer to the Application Building Guide.

This section assumes that you are familiar with the terms relating to the
development of multithreaded applications (such as critical section and
semaphore). If you are not familiar with these terms, consult the
programming documentation for your operating system.

A DB2 application can execute SQL statements from multiple threads using
contexts. A context is the environment from which an application runs all SQL
statements and API calls. All connections, units of work, and other database
resources are associated with a specific context. Each context is associated
with one or more threads within an application.

For each executable SQL statement in a context, the first run-time services call
always tries to obtain a latch. If it is successful, it continues processing. If not
(because an SQL statement in another thread of the same context already has
the latch), the call is blocked on a signaling semaphore until that semaphore is
posted, at which point the call gets the latch and continues processing. The
latch is held until the SQL statement has completed processing, at which time
it is released by the last run-time services call that was generated for that
particular SQL statement.

The net result is that each SQL statement within a context is executed as an
atomic unit, even though other threads may also be trying to execute SQL
statements at the same time. This action ensures that internal data structures
are not altered by different threads at the same time. APIs also use the latch
used by run-time services; therefore, APIs have the same restrictions as
run-time services routines within each context.

By default, all applications have a single context that is used for all database
access. While this is perfect for a single threaded application, the serialization
of SQL statements makes a single context inadequate for a multithreaded
application. By using the following DB2 APIs, your application can attach a
separate context to each thread and allow contexts to be passed between
threads:
v sqleSetTypeCtx()
v sqleBeginCtx()
v sqleEndCtx()

Chapter 17. Programming in Complex Environments 533

v sqleAttachToCtx()
v sqleDetachFromCtx()
v sqleGetCurrentCtx()
v sqleInterruptCtx()

Contexts may be exchanged between threads in a process, but not exchanged
between processes. One use of multiple contexts is to provide support for
concurrent transactions. For the details of how to use these context APIs, refer
to the Administrative API Reference and “Concurrent Transactions” on page 537.

Recommendations for Using Multiple Threads
Follow these guidelines when accessing a database from multiple thread
applications:
v Serialize alteration of data structures.

Applications must ensure that user-defined data structures used by SQL
statements and database manager routines are not altered by one thread
while an SQL statement or database manager routine is being processed in
another thread. For example, do not allow a thread to reallocate an SQLDA
while it was being used by an SQL statement in another thread.

v Consider using separate data structures.

It may be easier to give each thread its own user-defined data structures to
avoid having to serialize their usage. This is especially true for the SQLCA,
which is used not only by every executable SQL statement, but also by all
of the database manager routines. There are three alternatives for avoiding
this problem with the SQLCA:
1. Use EXEC SQL INCLUDE SQLCA, but add struct sqlca sqlca at the

beginning of any routine which is used by any thread other than the
first thread.

2. Place EXEC SQL INCLUDE SQLCA inside each routine that contains
SQL, instead of in the global scope.

3. Replace EXEC SQL INCLUDE SQLCA with #include "sqlca.h" and
then add "struct sqlca sqlca" at the beginning of any routine that
uses SQL.

Multithreaded UNIX Applications Working with Code Page and Country
Code

On AIX, Solaris Operating Environment, HP-UX, and Silicon Graphics IRIX,
changes have been made to the functions that are used for run time querying
of the code page and country code to be used for a database connection. They
are now thread safe but can create some lock contention (and resulting
performance degradation) in a multithreaded application which uses a large
number of concurrent database connections.

A new environment variable has been created (DB2_FORCE_NLS_CACHE) to
eliminate the chance of lock contention in multithreaded applications. When

534 Application Development Guide

DB2_FORCE_NLS_CACHE is set to TRUE the code page and country code
information is saved the first time a thread accesses it. From that point on the
cached information will be used for any other thread that requests this
information. By saving this information, lock contention is eliminated and in
certain situations a performance benefit will be realized.

DB2_FORCE_NLS_CACHE should not be set to true if the application
changes locale settings between connections. If this is done then the original
locale information will be returned even after the locale settings have been
changed. In general, multithreaded applications will not change locale
settings. This ensures that the application remains thread safe.

Potential Pitfalls when Using Multiple Threads
An application that uses multiple threads is, understandably, more complex
than a single-threaded application. This extra complexity can potentially lead
to some unexpected problems. When writing a multithreaded application,
exercise caution with the following:
v Database dependencies between two or more contexts.

Each context in an application has its own set of database resources,
including locks on database objects. This makes it possible for two contexts,
if they are accessing the same database object, to deadlock. The database
manager will detect the deadlock and one of the contexts will receive
SQLCODE -911 and its unit of work will be rolled back.

v Application dependencies between two or more contexts.

Be careful with any programming techniques that establish inter-context
dependencies. Latches, semaphores, and critical sections are examples of
programming techniques that can establish such dependencies. If an
application has two contexts that have both application and database
dependencies between the contexts, it is possible for the application to
become deadlocked. If some of the dependencies are outside of the
database manager, the deadlock is not detected, thus the application gets
suspended or hung.
As an example of this sort of problem, consider an application that has two
contexts, both of which access a common data structure. To avoid problems
where both contexts change the data structure simultaneously, the data
structure is protected by a semaphore. The contexts look like this:

context 1
SELECT * FROM TAB1 FOR UPDATE....
UPDATE TAB1 SET....
get semaphore
access data structure
release semaphore
COMMIT

context 2
get semaphore

Chapter 17. Programming in Complex Environments 535

access data structure
SELECT * FROM TAB1...
release semaphore
COMMIT

Suppose the first context successfully executes the SELECT and the
UPDATE statements while the second context gets the semaphore and
accesses the data structure. The first context now tries to get the semaphore,
but it cannot because the second context is holding the semaphore. The
second context now attempts to read a row from table TAB1, but it stops on
a database lock held by the first context. The application is now in a state
where context 1 cannot finish before context 2 is done and context 2 is
waiting for context 1 to finish. The application is deadlocked, but because
the database manager does not know about the semaphore dependency
neither context will be rolled back. This leaves the application suspended.

Preventing Deadlocks for Multiple Contexts
Because the database manager cannot detect deadlocks between threads,
design and code your application in a way that will prevent deadlocks (or at
least allow them to be avoided). In the above example, you can avoid the
deadlock in several ways:
v Release all locks held before obtaining the semaphore.

Change the code for context 1 to perform a commit before it gets the
semaphore.

v Do not code SQL statements inside a section protected by semaphores.
Change the code for context 2 to release the semaphore before doing the
SELECT.

v Code all SQL statements within semaphores.
Change the code for context 1 to obtain the semaphore before running the
SELECT statement. While this technique will work, it is not highly
recommended because the semaphores will serialize access to the database
manager, which potentially negates the benefits of using multiple threads.

v Set the LOCKTIMEOUT database configuration parameter to a value other
than -1.
While this will not prevent the deadlock, it will allow execution to resume.
Context 2 is eventually rolled back because it is unable to obtain the
requested lock. When handling the roll back error, context 2 should release
the semaphore. Once the semaphore has been released, context 1 can
continue and context 2 is free to retry its work.

The techniques for avoiding deadlocks are shown in terms of the above
example, but you can apply them to all multithreaded applications. In general,
treat the database manager as you would treat any protected resource and
you should not run into problems with multithreaded applications.

536 Application Development Guide

Concurrent Transactions

Sometimes it is useful for an application to have multiple independent
connections called concurrent transactions. Using concurrent transactions, an
application can connect to several databases at the same time, and can
establish several distinct connections to the same database.

The context APIs described in “Multiple Thread Database Access” on page 533
allow an application to use concurrent transactions. Each context created in an
application is independent from the other contexts. This means you create a
context, connect to a database using the context, and run SQL statements
against the database without being affected by the activities such as running
COMMIT or ROLLBACK statements of other contexts.

For example, suppose you are creating an application that allows a user to
run SQL statements against one database, and keeps a log of the activities
performed in a second database. Since the log must be kept up to date, it is
necessary to issue a COMMIT statement after each update of the log, but you
do not want the user’s SQL statements affected by commits for the log. This is
a perfect situation for concurrent transactions. In your application, create two
contexts: one connects to the user’s database and is used for all the user’s
SQL; the other connects to the log database and is used for updating the log.
With this design, when you commit a change to the log database, you do not
affect the user’s current unit of work.

Another benefit of concurrent transactions is that if the work on the cursors in
one connection is rolled back, it has no affect on the cursors in other
connections. After the rollback in the one connection, both the work done and
the cursor positions are still maintained in the other connections.

Potential Pitfalls when Using Concurrent Transactions
An application that uses concurrent transactions can encounter some problems
that cannot arise when writing an application that uses a single connection.
When writing an application with concurrent transactions, exercise caution
with the following:
v Database dependencies between two or more contexts.

Each context in an application has its own set of database resources,
including locks on database objects. This makes it possible for two contexts,
if they are accessing the same database object, to become deadlocked. The
database manager will detect the deadlock and one of the contexts will
receive an SQLCODE -911 and its unit of work will be rolled back.

v Application dependencies between two or more contexts.
Switching contexts within a single thread creates dependencies between the
contexts. If the contexts also have database dependencies, it is possible for a

Chapter 17. Programming in Complex Environments 537

deadlock to develop. Since some of the dependencies are outside of the
database manager, the deadlock will not be detected and the application
will be suspended.
As an example of this sort of problem, consider the following application:

context 1
UPDATE TAB1 SET COL = :new_val

context 2
SELECT * FROM TAB1
COMMIT

context 1
COMMIT

Suppose the first context successfully executes the UPDATE statement. The
update establishes locks on all the rows of TAB1. Now context 2 tries to
select all the rows from TAB1. Since the two contexts are independent,
context 2 waits on the locks held by context 1. Context 1, however, cannot
release its locks until context 2 finishes executing. The application is now
deadlocked, but the database manager does not know that context 1 is
waiting on context 2 so it will not force one of the contexts to be rolled
back. This leaves the application suspended.

Preventing Deadlocks for Concurrent Transactions
Because the database manager cannot detect deadlocks between contexts, you
must design and code your application in a way that will prevent deadlocks
(or at least avoids deadlocks). In the above example, you can avoid the
deadlock in several ways:
v Release all locks held before switching contexts.

Change the code so that context 1 performs its commit before switching to
context 2.

v Do not access a given object from more than one context at a time.
Change the code so that both the update and the select are done from the
same context.

v Set the LOCKTIMEOUT database configuration parameter to a value other
than -1.
While this will not prevent the deadlock, it will allow execution to resume.
Context 2 is eventually rolled back because it is unable to obtain the
requested lock. Once context 2 is rolled back, context 1 can continue
executing (which releases the locks) and context 2 can retry its work.

The techniques for avoiding deadlocks are shown in terms of the above
example, but you can apply them to all applications which use concurrent
transactions.

538 Application Development Guide

X/Open XA Interface Programming Considerations

The X/Open® XA Interface is an open standard for coordinating changes to
multiple resources, while ensuring the integrity of these changes. Software
products known as transaction processing monitors typically use the XA
interface, and since DB2 supports this interface, one or more DB2 databases
may be concurrently accessed as resources in such an environment. For
information about the concepts and implementation of the XA interface
support provided by the database manager, refer to the Administration Guide:
Planning. To determine if your platform supports the X/Open XA Interface,
refer to the Application Building Guide.

Special consideration is required by DB2 when operating in a Distributed
Transaction Processing (DTP) environment which uses the XA interface
because a different model is used for transaction processing as compared to
applications running independent of a TP monitor. The characteristics of this
transaction processing model are:
1. Multiple types of recoverable resources (such as DB2 databases) can be

modified within a transaction.
2. Resources are updated using two-phase commit to ensure the integrity of

the transactions being executed.
3. Application programs send requests to commit or rollback a transaction to

the TP monitor product rather than to the managers of the resources. For
example, in a CICS environment an application would issue
EXEC CICS SYNCPOINT to commit a transaction, and issuing
EXEC SQL COMMIT to DB2 would be invalid and unnecessary.

4. Authorization to run transactions is screened by the TP monitor and
related software, so resource managers such as DB2 treat the TP monitor
as the single authorized user. For example, any use of a CICS transaction
must be authenticated by CICS and the access privilege to the database
must be granted to CICS and not to the end user who invokes the CICS
application.

5. Multiple programs (transactions) are typically queued and executed on a
database server (which appears to DB2 to be a single, long-running
application program).

Due to the unique nature of this environment, DB2 has special behavior and
requirements for applications coded to run in it:
v Multiple databases can be connected to and updated within a unit of work

without consideration of distributed unit of work precompiler options or
client settings.

v The DISCONNECT statement is disallowed, and will be rejected with
SQLCODE -30090 (SQLSTATE 25000) if attempted.

Chapter 17. Programming in Complex Environments 539

v The RELEASE statement can be used to specify databases connections to
release when a transaction is committed, but this is not recommended. If a
connection has been released, subsequent transactions should use the SET
CONNECTION statement to connect to the database without requiring
authorization.

v COMMIT and ROLLBACK statements are not allowed within stored
procedures accessed by a TP monitor transaction.

v When two-phase commit flows are explicitly disabled for a transaction
(these are called LOCAL transactions in XA Interface terminology) only one
database can be accessed within that transaction. This database cannot be a
host or AS/400 database that is accessed using SNA connectivity. Local
transactions to DB2 for OS/390 Version 5 using TCP/IP connectivity are
supported.

v LOCAL transactions should issue SQL COMMIT or SQL ROLLBACK at the
end of each transaction, otherwise the transaction will be considered part of
the next transaction which is processed.

v Switching between current database connections is done through the use of
either SQL CONNECT or SQL SET CONNECTION. The authorization used
for a connection cannot be changed by specifying a user ID or password on
the CONNECT statement.

v If a database object such as a table, view, or index is not fully qualified in a
dynamic SQL statement, it will be implicitly qualified with the single
authentication ID that the TP monitor is executing under, rather than user’s
ID.

v Any use of DB2 COMMIT or ROLLBACK statements for transactions that
are not LOCAL will be rejected. The following codes will be returned:
– SQLCODE -925 (SQLSTATE 2D521) for static COMMIT
– SQLCODE -926 (SQLSTATE 2D521) for static ROLLBACK
– SQLCODE -426 (SQLSTATE 2D528) for dynamic COMMIT
– SQLCODE -427 (SQLSTATE 2D529) for dynamic ROLLBACK

v CLI requests to COMMIT or ROLLBACK are also rejected.
v Handling database-initiated rollback:

In a DTP environment, if an RM has initiated a rollback (for instance, due
to a system error or deadlock) to terminate its own branch of a global
transaction, it must not process any more requests from the same
application process until a transaction manager-initiated sync point request
occurs. This includes deadlocks that occur within a stored procedure. For
the database manager, this means rejecting all subsequent SQL requests
with SQLCODE -918 (SQLSTATE 51021) to inform you that you must roll
back the global transaction with the transaction manager’s sync point
service such as using the CICS SYNCPOINT ROLLBACK command in a
CICS environment. If for some reason you request the TM to commit the
transaction instead, the RM will inform the TM about the rollback and
cause the TM to roll back other RMs anyway.

540 Application Development Guide

v Cursors declared WITH HOLD:
Cursors declared WITH HOLD are supported in XA/DTP environments for
CICS transaction processing monitors.
In cases where cursors declared WITH HOLD are not supported, the OPEN
statement will be rejected with SQLCODE -30090 (SQLSTATE 25000), reason
code 03.
It is the responsibility of the transactions to ensure that cursors specified to
be WITH HOLD are explicitly closed when they are no longer required;
otherwise they might be inherited by other transactions, causing conflict or
unnecessary use of resources.

v Statements which update or change a database are not allowed against
databases which do not support two-phase commit request flows. For
example, accessing host or AS/400 database servers in environments in
which level 2 of DRDA protocol (DRDA2) is not supportable (see “Multisite
Update with DB2 Connect” on page 785).

v Whether a database supports updates in an XA environment can be
determined at run-time by issuing a CONNECT statement. The third
SQLERRD token will have the value 1 if the database is updatable, and
otherwise will have the value 2.

v When updates are restricted, only the following SQL statements will be
allowed:

CONNECT
DECLARE
DESCRIBE
EXECUTE IMMEDIATE (where the first token or keyword is SET but

not SET CONSTRAINTS)
OPEN CURSOR
FETCH CURSOR
CLOSE CURSOR
PREPARE (where the first token or keyword that is not blank or

left parenthesis is SET (other than SET CONSTRAINTS),
SELECT, WITH, or VALUES)

SELECT...INTO
VALUES...INTO

Any other attempts will be rejected with SQLCODE -30090 (SQLSTATE
25000).

The PREPARE statement will only be usable to prepare SELECT statements.
The EXECUTE IMMEDIATE statement is also allowed to execute SQL SET
statements that do not return any output value, such as the SET SQLID
statement from DB2 Universal Database for OS/390.

v API Restrictions:
APIs which internally issue a commit in the database and bypass the
two-phase commit process will be rejected with SQLCODE -30090

Chapter 17. Programming in Complex Environments 541

(SQLSTATE 25000). For a list of these APIs, see “Multisite Update
Restrictions” on page 531. These APIs are not supported in a multisite
update (Connect Type 2).

v Applications should be single-threaded.
If you intend to develop a multithreaded application, you should ensure
that only one thread uses SQL, or use a multiprocess design instead to
avoid interleaving of SQL statements from different threads within the same
unit of work. If a transaction manager supports multiple processes or
multithreading, you should configure it to serialize the threads so that one
thread will execute to a sync point before another one begins. An example
is the XASerialize option of all_operation in AIX/CICS. For more details
about the AIX/CICS XAD file which contains this information, refer to the
Administration Guide: Planning.

Note that the above restrictions apply to applications running in TP monitor
environment which uses the XA interface. If DB2 databases are not defined for
use with the XA interface, these restrictions do not apply, however it is still
necessary to ensure that transactions are coded in a way that will not leave
DB2 in a state which will adversely affect the next transaction to be run.

Application Linkage
To produce an executable application, you need to link in the application
objects with the language libraries, the operating system libraries, the normal
database manager libraries, and the libraries of the TP monitor and
transaction manager products.

Working with Large Volumes of Data Across a Network

You can combine the techniques of stored procedures, described in “Chapter 7.
Stored Procedures” on page 187, and row blocking, described in the
Administration Guide: Implementation, to significantly improve the performance
of applications which need to pass large amounts of data across a network.

Applications that pass arrays, large amounts of data, or packages of data
across the network can pass the data in blocks using the SQLDA data
structure or host variables as the transport mechanism. This technique is
extremely powerful in host languages that support structures.

Either a client application or a server procedure can pass the data across the
network. It can be passed using one of the following data types:
v VARCHAR
v LONG VARCHAR
v CLOB
v BLOB

It can also be passed using one of the following graphic types:

542 Application Development Guide

v VARGRAPHIC
v LONG VARGRAPHIC
v DBCLOB

See “Data Types” on page 77 for more information about this topic.

Note: Be sure to consider the possibility of character conversion when using
this technique. If you are passing data with one of the character string
data types such as VARCHAR, LONG VARCHAR, or CLOB, or graphic
data types such as VARGRAPHIC, LONG VARGRAPHIC, OR
DBCLOB, and the application code page is not the same as the
database code page, any non-character data will be converted as if it
were character data. To avoid character conversion, you should pass
data in a variable with a data type of BLOB.

See “Conversion Between Different Code Pages” on page 504 for more
information about how and when data conversion occurs.

Chapter 17. Programming in Complex Environments 543

544 Application Development Guide

Chapter 18. Programming Considerations in a Partitioned
Environment

Improving Performance 545
Using FOR READ ONLY Cursors . . . 545
Using Directed DSS and Local Bypass . . 545

Directed DSS 545
Using Local Bypass 546

Using Buffered Inserts 547
Considerations for Using Buffered
Inserts 550
Restrictions on Using Buffered Inserts 552

Example: Extracting Large Volume of
Data (largevol.c) 552

Creating a Test Environment 558
Error-Handling Considerations 558

Severe Errors 559
Merged Multiple SQLCA Structures. . . 559
Identifying the Partition that Returned
the Error 560

Debugging 560
Diagnosing a Looping or Suspended
application 560

Improving Performance

To take advantage of the performance benefits that partitioned environments
offer, you should consider using special programming techniques. For
example, if your application accesses DB2 data from more than one database
manager partition, you need to consider the information contained herein. For
an overview of partitioned environments, refer to the Administration Guide and
the SQL Reference.

Using FOR READ ONLY Cursors
If you declare a cursor from which you intend only to read, include FOR
READ ONLY or FOR FETCH only in the OPEN CURSOR declaration. (FOR
READ ONLY and FOR FETCH ONLY are equivalent statements.) FOR READ
ONLY cursors allow the coordinator partition to retrieve multiple rows at a
time, dramatically improving the performance of subsequent FETCH
statements. When you do not explicitly declare cursors FOR READ ONLY, the
coordinator partition treats them as updatable cursors. Updatable cursors
incur considerable expense because they require the coordinator partition to
retrieve only a single row per FETCH.

Using Directed DSS and Local Bypass
To optimize Online Transaction Processing (OLTP) applications, you may want
to avoid simple SQL statements that require processing on all data partitions.
You should design the application so that SQL statements can retrieve data
from single partitions. These techniques avoid the expense the coordinator
partition incurs communicating with one or all of the associated partitions.

Directed DSS
A distributed subsection (DSS) is the action of sending subsections to the
database partition that needs to do some work for a parallel query. It also

© Copyright IBM Corp. 1993, 2000 545

describes the initiation of subsections with invocation specific values, such as
values of variables in an OLTP environment. A directed DSS uses the table
partition key to direct a query to a single partition. Use this type of query in
your application to avoid the coordinator partition overhead required for a
query broadcast to all nodes.

An example SELECT statement fragment that can take advantage of directed
DSS follows:

SELECT ... FROM t1
WHERE PARTKEY=:hostvar

When the coordinator partition receives the query, it determines which
partition holds the subset of data for :hostvar and directs the query specifically
to that partition.

To optimize your application using directed DSS, divide complex queries into
multiple simple queries. For example, in the following query the coordinator
partition matches the partition key with multiple values. Because the data that
satisfies the query lies on multiple partitions, the coordinator partition
broadcasts the query to all partitions:

SELECT ... FROM t1
WHERE PARTKEY IN (:hostvar1, :hostvar2)

Instead, break the query into multiple SELECT statements (each with a single
host variable) or use a single SELECT statement with a UNION to achieve the
same result. The coordinator partition can take advantage of simpler SELECT
statements to use directed DSS to communicate only to the necessary
partitions. The optimized query looks like:

SELECT ... AS res1 FROM t1
WHERE PARTKEY=:hostvar1
UNION

SELECT ... AS res2 FROM t1
WHERE PARTKEY=:hostvar2

Note that the above technique will only improve performance if the number
of selects in the UNION is significantly smaller than the number of partitions.

Using Local Bypass
A specialized form of the directed DSS query accesses data stored only on the
coordinator partition. This is called a local bypass because the coordinator
partition completes the query without having to communicate with another
partition.

Local bypass is enabled automatically whenever possible, but you can increase
its use by routing transactions to the partition containing the data for that
transactions. One technique for doing this is to have a remote client maintain
connections to each partition. A transaction can then use the correct

546 Application Development Guide

connection based on the input partition key. Another technique is to group
transaction by partition and have separate application server for each
partition.

In order to determine the number of the partition on which transaction data
resides, you can use the sqlugrpn API (Get Row Partitioning Number). This
API allows an application to efficiently calculate the partition number of a
row, given the partitioning key. For more information on the sqlugrpn API,
refer to the Administrative API Reference.

Another alternative is to use the db2atld utility to divide input data by
partition number and run a copy of the application against each partition. For
more information on the db2atld utility, refer to the Command Reference.

Using Buffered Inserts
A buffered insert is an insert statement that takes advantage of table queues to
buffer the rows being inserted, thereby gaining a significant performance
improvement. To use a buffered insert, an application must be prepared or
bound with the INSERT BUF option.

Buffered inserts can result in substantial performance improvement in
applications that perform inserts. Typically, you can use a buffered insert in
applications where a single insert statement (and no other database
modification statement) is used within a loop to insert many rows and where
the source of the data is a VALUES clause in the INSERT statement. Typically
the INSERT statement is referencing one or more host variables which change
their values during successive executions of the loop. The VALUES clause can
specify a single row or multiple rows.

Typical decision support applications require the loading and periodic
insertion of new data. This data could be hundreds of thousands of rows. You
can prepare and bind applications to use buffered inserts when loading tables.

To cause an application to use buffered inserts, use the PREP command to
process the application program source file, or use the BIND command on the
resulting bind file. In both situations, you must specify the INSERT BUF
option. For more information about binding an application, see “Binding” on
page 53. For more information about preparing an application, see “Creating
and Preparing the Source Files” on page 47.

Note: Buffered inserts cause the following steps to occur:
1. The database manager opens one 4 KB buffer for each node on

which the table resides.
2. The INSERT statement with the VALUES clause issued by the

application causes the row (or rows) to be placed into the
appropriate buffer (or buffers).

Chapter 18. Programming Considerations in a Partitioned Environment 547

3. The database manager returns control to the application.
4. The rows in the buffer are sent to the partition when the buffer

becomes full, or an event occurs that causes the rows in a partially
filled buffer to be sent. A partially filled buffer is flushed when one
of the following occurs:
v The application issues a COMMIT (implicitly or explicitly

through application termination) or ROLLBACK.
v The application issues another statement that causes a savepoint

to be taken. OPEN, FETCH, and CLOSE cursor statements do not
cause a savepoint to be taken, nor do they close an open buffered
insert.
The following SQL statements will close an open buffered insert:
– BEGIN COMPOUND SQL
– COMMIT
– DDL
– DELETE
– END COMPOUND SQL
– EXECUTE IMMEDIATE
– GRANT
– INSERT to a different table
– PREPARE of the same dynamic statement (by name) doing

buffered inserts
– REDISTRIBUTE NODEGROUP
– RELEASE SAVEPOINT
– REORG
– REVOKE
– ROLLBACK
– ROLLBACK TO SAVEPOINT
– RUNSTATS
– SAVEPOINT
– SELECT INTO
– UPDATE
– Execution of any other statement, but not another (looping)

execution of the buffered INSERT
– End of application

The following APIs will close an open buffered insert:
– BIND (API)
– REBIND (API)
– RUNSTATS (API)
– REORG (API)
– REDISTRIBUTE (API)

In any of these situations where another statement closes the
buffered insert, the coordinator node waits until every node receives

548 Application Development Guide

the buffers and the rows are inserted. It then executes the other
statement (the one closing the buffered insert), provided all the
rows were successfully inserted. See “Considerations for Using
Buffered Inserts” on page 550 for additional details.

The standard interface in a partitioned environment, (without a buffered
insert) loads one row at a time doing the following steps (assuming that the
application is running locally on one of the partitions):
1. The coordinator node passes the row to the database manager that is on

the same node.
2. The database manager uses indirect hashing to determine the partition

where the row should be placed:
v The target partition receives the row.
v The target partition inserts the row locally.
v The target partition sends a response to the coordinator node.

3. The coordinator node receives the response from the target partition.
4. The coordinator node gives the response to the application

The insertion is not committed until the application issues a COMMIT.
5. Any INSERT statement containing the VALUES clause is a candidate for

Buffered Insert, regardless of the number of rows or the type of elements
in the rows. That is, the elements can be constants, special registers, host
variables, expressions, functions and so on.

For a given INSERT statement with the VALUES clause, the DB2 SQL
compiler may not buffer the insert based on semantic, performance, or
implementation considerations. If you prepare or bind your application with
the INSERT BUF option, ensure that it is not dependent on a buffered insert.
This means:
v Errors may be reported asynchronously for buffered inserts, or

synchronously for regular inserts. If reported asynchronously, an insert
error may be reported on a subsequent insert within the buffer, or on the
other statement which closes the buffer. The statement that reports the error
is not executed. For example, consider using a COMMIT statement to close
a buffered insert loop. The commit reports an SQLCODE -803 (SQLSTATE
23505) due to a duplicate key from an earlier insert. In this scenario, the
commit is not executed. If you want your application to really commit, for
example, some updates that are performed before it enters the buffered
insert loop, you must reissue the COMMIT statement.

v Rows inserted may be immediately visible through a SELECT statement
using a cursor without a buffered insert. With a buffered insert, the rows
will not be immediately visible. Do not write your application to depend on
these cursor-selected rows if you precompile or bind it with the INSERT
BUF option.

Chapter 18. Programming Considerations in a Partitioned Environment 549

Buffered inserts result in the following performance advantages:
v Only one message is sent from the target partition to the coordinator node

for each buffer received by the target partition.
v A buffer can contain a large number of rows, especially if the rows are

small.
v Parallel processing occurs as insertions are being done across partitions

while the coordinator node is receiving new rows.

An application that is bound with INSERT BUF should be written so that the
same INSERT statement with VALUES clause is iterated repeatedly before any
statement or API that closes a buffered insert is issued.

Note: You should do periodic commits to prevent the buffered inserts from
filling the transaction log.

Considerations for Using Buffered Inserts
Buffered inserts exhibit behaviors that can affect an application program. This
behavior is caused by the asynchronous nature of the buffered inserts. Based
on the values of the row’s partitioning key, each inserted row is placed in a
buffer destined for the correct partition. These buffers are sent to their
destination partitions as they become full, or an event causes them to be
flushed. You must be aware of the following, and account for them when
designing and coding the application:
v Certain error conditions for inserted rows are not reported when the

INSERT statement is executed. They are reported later, when the first
statement other than the INSERT (or INSERT to a different table) is
executed, such as DELETE, UPDATE, COMMIT, or ROLLBACK. Any
statement or API that closes the buffered insert statement can see the error
report. Also, any invocation of the insert itself may see an error of a
previously inserted row. Moreover, if a buffered insert error is reported by
another statement, such as UPDATE or COMMIT, DB2 will not attempt to
execute that statement.

v An error detected during the insertion of a group of rows causes all the rows
of that group to be backed out. A group of rows is defined as all the rows
inserted through executions of a buffered insert statement:
– From the beginning of the unit of work,
– Since the statement was prepared (if it is dynamic), or
– Since the previous execution of another updating statement. For a list of

statements that close (or flush) a buffered insert, see “Using Buffered
Inserts” on page 547.

v An inserted row may not be immediately visible to SELECT statements
issued after the INSERT by the same application program, if the SELECT is
executed using a cursor.

550 Application Development Guide

A buffered INSERT statement is either open or closed. The first invocation of
the statement opens the buffered INSERT, the row is added to the appropriate
buffer, and control is returned to the application. Subsequent invocations add
rows to the buffer, leaving the statement open. While the statement is open,
buffers may be sent to their destination partitions, where the rows are inserted
into the target table’s partition. If any statement or API that closes a buffered
insert is invoked while a buffered INSERT statement is open (including
invocation of a different buffered INSERT statement), or if a PREPARE
statement is issued against an open buffered INSERT statement, the open
statement is closed before the new request is processed. If the buffered
INSERT statement is closed, the remaining buffers are flushed. The rows are
then sent to the target partitions and inserted. Only after all the buffers are
sent and all the rows are inserted does the new request begin processing.

If errors are detected during the closing of the INSERT statement, the SQLCA
for the new request will be filled in describing the error, and the new request
is not done. Also, the entire group of rows that were inserted through the
buffered INSERT statement since it was opened are removed from the database.
The state of the application will be as defined for the particular error detected.
For example:
v If the error is a deadlock, the transaction is rolled back (including any

changes made before the buffered insert section was opened).
v If the error is a unique key violation, the state of the database is the same

as before the statement was opened. The transaction remains active, and
any changes made before the statement was opened are not affected.

For example, consider the following application that is bound with the
buffered insert option:

EXEC SQL UPDATE t1 SET COMMENT='about to start inserts';
DO UNTIL EOF OR SQLCODE < 0;

READ VALUE OF hv1 FROM A FILE;
EXEC SQL INSERT INTO t2 VALUES (:hv1);
IF 1000 INSERTS DONE, THEN DO

EXEC SQL INSERT INTO t3 VALUES ('another 1000 done');
RESET COUNTER;

END;
END;
EXEC SQL COMMIT;

Suppose the file contains 8 000 values, but value 3 258 is not legal (for
example, a unique key violation). Each 1 000 inserts results in the execution of
another SQL statement, which then closes the INSERT INTO t2 statement.
During the fourth group of 1 000 inserts, the error for value 3 258 will be
detected. It may be detected after the insertion of more values (not necessarily
the next one). In this situation, an error code is returned for the
INSERT INTO t2 statement.

Chapter 18. Programming Considerations in a Partitioned Environment 551

The error may also be detected when an insertion is attempted on table t3,
which closes the INSERT INTO t2 statement. In this situation, the error code is
returned for the INSERT INTO t3 statement, even though the error applies to
table t2.

Suppose, instead, that you have 3 900 rows to insert. Before being told of the
error on row number 3 258, the application may exit the loop and attempt to
issue a COMMIT. The unique-key-violation return code will be issued for the
COMMIT statement, and the COMMIT will not be performed. If the
application wants to COMMIT the 3000 rows which are in the database thus
far (the last execution of EXEC SQL INSERT INTO t3 ... ends the savepoint for
those 3000 rows), then the COMMIT has to be REISSUED! Similar
considerations apply to ROLLBACK as well.

Note: When using buffered inserts, you should carefully monitor the
SQLCODES returned to avoid having the table in an indeterminate
state. For example, if you remove the SQLCODE < 0 clause from the
THEN DO statement in the above example, the table could end up
containing an indeterminate number of rows.

Restrictions on Using Buffered Inserts
The following restrictions apply:
v For an application to take advantage of the buffered inserts, one of the

following must be true:
– The application must either be prepared through PREP or bound with

the BIND command and the INSERT BUF option is specified.
– The application must be bound using the BIND or the PREP API with

the SQL_INSERT_BUF option.
v If the INSERT statement with VALUES clause includes long fields or LOBS

in the explicit or implicit column list, the INSERT BUF option is ignored for
that statement and a normal insert section is done, not a buffered insert.
This is not an error condition, and no error or warning message is issued.

v INSERT with fullselect is not affected by INSERT BUF. A buffered INSERT
does not improve the performance of this type of INSERT.

v Buffered inserts can be used only in applications, and not through
CLP-issued inserts, as these are done through the EXECUTE IMMEDIATE
statement.

The application can then be run from any supported client platform.

Example: Extracting Large Volume of Data (largevol.c)
Although DB2 Universal Database provides excellent features for parallel
query processing, the single point of connection of an application or an
EXPORT command can become a bottleneck if you are extracting large
volumes of data. This occurs because the passing of data from the database

552 Application Development Guide

manager to the application is a CPU-intensive process that executes on a
single node (typically a single processor as well).

DB2 Universal Database provides several methods to overcome the bottleneck,
so that the volume of extracted data scales linearly per unit of time with an
increasing number of processors. The following example describes the basic
idea behind these methods.

Assume that you have a table called EMPLOYEE which is stored on 20 nodes,
and you generate a mailing list (FIRSTNME, LASTNAME, JOB) of all
employees who are in a legitimate department (that is, WORKDEPT is not
NULL).

The following query is run on each node in parallel, and then generates the
entire answer set at a single node (the coordinator node):

SELECT FIRSTNME, LASTNAME, JOB FROM EMPLOYEE WHERE WORKDEPT IS NOT NULL

But, the following query could be run on each partition in the database (that
is, if there are five partitions, five separate queries are required, one at each
partition). Each query generates the set of all the employee names whose
record is on the particular partition where the query runs. Each local result set
can be redirected to a file. The result sets then need to be merged into a single
result set.

On AIX, you can use a property of Network File System (NFS) files to
automate the merge. If all the partitions direct their answer sets to the same
file on an NFS mount, the results are merged. Note that using NFS without
blocking the answer into large buffers results in very poor performance.

SELECT FIRSTNME, LASTNAME, JOB FROM EMPLOYEE WHERE WORKDEPT IS NOT NULL
AND NODENUMBER(NAME) = CURRENT NODE

The result can either be stored in a local file (meaning that the final result
would be 20 files, each containing a portion of the complete answer set), or in
a single NFS-mounted file.

The following example uses the second method, so that the result is in a
single file that is NFS mounted across the 20 nodes. The NFS locking
mechanism ensures serialization of writes into the result file from the different
partitions. Note that this example, as presented, runs on the AIX platform
with an NFS file system installed.
#define _POSIX_SOURCE
#define INCL_32

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>

Chapter 18. Programming Considerations in a Partitioned Environment 553

#include <sqlenv.h>
#include <errno.h>
#include <sys/access.h>
#include <sys/flock.h>
#include <unistd.h>

#define BUF_SIZE 1500000 /* Local buffer to store the fetched records */
#define MAX_RECORD_SIZE 80 /* >= size of one written record */

int main(int argc, char *argv[]) {

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

char dbname[10]; /* Database name (argument of the program) */
char userid[9];
char passwd[19];
char first_name[21];
char last_name[21];
char job_code[11];

EXEC SQL END DECLARE SECTION;

struct flock unlock ; /* structures and variables for handling */
struct flock lock ; /* the NFS locking mechanism */
int lock_command ;
int lock_rc ;
int iFileHandle ; /* output file */
int iOpenOptions = 0 ;
int iPermissions ;
char * file_buf ; /* pointer to the buffer where the fetched

records are accumulated */
char * write_ptr ; /* position where the next record is written */
int buffer_len = 0 ; /* length of used portion of the buffer */

/* Initialization */

lock.l_type = F_WRLCK; /* An exclusive write lock request */
lock.l_start = 0; /* To lock the entire file */
lock.l_whence = SEEK_SET;
lock.l_len = 0;
unlock.l_type = F_UNLCK; /* An release lock request */
unlock.l_start = 0; /* To unlock the entire file */
unlock.l_whence = SEEK_SET;
unlock.l_len = 0;
lock_command = F_SETLKW; /* Set the lock */
iOpenOptions = O_CREAT; /* Create the file if not exist */
iOpenOptions |= O_WRONLY; /* Open for writing only */

/* Connect to the database */

if (argc == 3) {
strcpy(dbname, argv[2]); /* get database name from the argument */
EXEC SQL CONNECT TO :dbname IN SHARE MODE ;
if (SQLCODE != 0) {

printf("Error: CONNECT TO the database failed. SQLCODE = %ld\n",
SQLCODE);

554 Application Development Guide

exit(1);
}

}
else if (argc == 5) {

strcpy(dbname, argv[2]); /* get database name from the argument */
strcpy (userid, argv[3]);
strcpy (passwd, argv[4]);
EXEC SQL CONNECT TO :dbname IN SHARE MODE USER :userid USING :passwd;
if (SQLCODE != 0) {

printf("Error: CONNECT TO the database failed. SQLCODE = %ld\n",
SQLCODE);

exit(1);
}

}
else {

printf ("\nUSAGE: largevol txt_file database [userid passwd]\n\n");
exit(1) ;

} /* endif */

/* Open the input file with the specified access permissions */

if ((iFileHandle = open(argv[1], iOpenOptions, 0666)) == -1) {
printf("Error: Could not open %s.\n", argv[2]) ;
exit(2) ;

}

/* Set up error and end of table escapes */

EXEC SQL WHENEVER SQLERROR GO TO ext ;
EXEC SQL WHENEVER NOT FOUND GO TO cls ;

/* Declare and open the cursor */

EXEC SQL DECLARE c1 CURSOR FOR
SELECT firstnme, lastname, job FROM employee
WHERE workdept IS NOT NULL
AND NODENUMBER(lastname) = CURRENT NODE;

EXEC SQL OPEN c1 ;

/* Set up the temporary buffer for storing the fetched result */

if ((file_buf = (char *) malloc(BUF_SIZE)) == NULL) {
printf("Error: Allocation of buffer failed.\n") ;
exit(3) ;

}
memset(file_buf, 0, BUF_SIZE) ; /* reset the buffer */
buffer_len = 0 ; /* reset the buffer length */
write_ptr = file_buf ; /* reset the write pointer */
/* For each fetched record perform the following */
/* - insert it into the buffer following the */
/* previously stored record */
/* - check if there is still enough space in the */
/* buffer for the next record and lock/write/ */
/* unlock the file and initialize the buffer */
/* if not */

Chapter 18. Programming Considerations in a Partitioned Environment 555

do {
EXEC SQL FETCH c1 INTO :first_name, :last_name, :job_code;
buffer_len += sprintf(write_ptr, "%s %s %s\n",

first_name, last_name, job_code);
buffer_len = strlen(file_buf) ;
/* Write the content of the buffer to the file if */
/* the buffer reaches the limit */
if (buffer_len >= (BUF_SIZE - MAX_RECORD_SIZE)) {
/* get excl. write lock */
lock_rc = fcntl(iFileHandle, lock_command, &lock);

if (lock_rc != 0) goto file_lock_err;
/* position at the end of file */
lock_rc = lseek(iFileHandle, 0, SEEK_END);
if (lock_rc < 0) goto file_seek_err;
/* write the buffer */
lock_rc = write(iFileHandle,

(void *) file_buf, buffer_len);
if (lock_rc < 0) goto file_write_err;

/* release the lock */
lock_rc = fcntl(iFileHandle, lock_command, &unlock);
if (lock_rc != 0) goto file_unlock_err;
file_buf[0] = '\0' ; /* reset the buffer */
buffer_len = 0 ; /* reset the buffer length */
write_ptr = file_buf ; /* reset the write pointer */

}
else {

write_ptr = file_buf + buffer_len ; /* next write position */
}

} while (1) ;

cls:
/* Write the last piece of data out to the file */
if (buffer_len > 0) {

lock_rc = fcntl(iFileHandle, lock_command, &lock);
if (lock_rc != 0) goto file_lock_err;
lock_rc = lseek(iFileHandle, 0, SEEK_END);
if (lock_rc < 0) goto file_seek_err;
lock_rc = write(iFileHandle, (void *)file_buf, buffer_len);
if (lock_rc < 0) goto file_write_err;
lock_rc = fcntl(iFileHandle, lock_command, &unlock);
if (lock_rc != 0) goto file_unlock_err;

}
free(file_buf);

close(iFileHandle);
EXEC SQL CLOSE c1;
exit (0);

ext:
if (SQLCODE != 0)

printf("Error: SQLCODE = %ld.\n", SQLCODE);
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL CONNECT RESET;
if (SQLCODE != 0) {

printf("CONNECT RESET Error: SQLCODE = %ld\n", SQLCODE);
exit(4);

556 Application Development Guide

}
exit (5);

file_lock_err:
printf("Error: file lock error = %ld.\n",lock_rc);

/* unconditional unlock of the file */
fcntl(iFileHandle, lock_command, &unlock);
exit(6);

file_seek_err:
printf("Error: file seek error = %ld.\n",lock_rc);

/* unconditional unlock of the file */
fcntl(iFileHandle, lock_command, &unlock);
exit(7);

file_write_err:
printf("Error: file write error = %ld.\n",lock_rc);

/* unconditional unlock of the file */
fcntl(iFileHandle, lock_command, &unlock);
exit(8);

file_unlock_err:
printf("Error: file unlock error = %ld.\n",lock_rc);

/* unconditional unlock of the file */
fcntl(iFileHandle, lock_command, &unlock);
exit(9);

}

This method is applicable not only to a select from a single table, but also for
more complex queries. If, however, the query requires noncollocated
operations (that is, the Explain shows more than one subsection besides the
Coordinator subsection), this can result in too many processes on some
partitions if the query is run in parallel on all partitions. In this situation, you
can store the query result in a temporary table TEMP on as many partitions as
required, then do the final extract in parallel from TEMP.

If you want to extract all employees, but only for selected job classifications,
you can define the TEMP table with the column names, FIRSTNME,
LASTNAME, and JOB, as follows:

INSERT INTO TEMP
SELECT FIRSTNME, LASTNAME, JOB FROM EMPLOYEE WHERE WORKDEPT IS NOT NULL

AND EMPNO NOT IN (SELECT EMPNO FROM EMP_ACT WHERE
EMPNO<200)

Then you would perform the parallel extract on TEMP.

When defining the TEMP table, consider the following:
v If the query specifies an aggregation GROUP BY, you should define the

partitioning key of TEMP as a subset of the GROUP BY columns.
v The partitioning key of the TEMP table should have enough cardinality

(that is, number of distinct values in the answer set) to ensure that the table
is equally distributed across the partitions on which it is defined.

Chapter 18. Programming Considerations in a Partitioned Environment 557

v Create the TEMP table with the NOT LOGGED INITIALLY attribute, then
COMMIT the unit of work that created the table to release any acquired
catalog locks.

v When you use the TEMP table, you should issue the following statements
in a single unit of work:
1. ALTER TABLE TEMP ACTIVATE NOT LOGGED INITIALLY WITH

EMPTY TABLE (to empty the TEMP table and turn logging off)
2. INSERT INTO TEMP SELECT FIRSTNAME...
3. COMMIT

This technique allows you to insert a large answer set into a table without
logging and without catalog contention. Note that any error in the unit of
work that activated the NOT LOGGED state results in an unusable TEMP
table. If this occurs, you will have to drop and recreate the TEMP table. For
this reason, you should not use this technique to add data to a table that
you could not easily recreate.

If you require the final answer set (which is the merged partial answer set
from all nodes) to be sorted, you can:
v Specify the SORT BY clause on the final SELECT
v Do an extract into a separate file on each partition
v Merge the separate files into one output set using, for example, the sort -m

AIX command.

Creating a Test Environment

You can create a test environment for your partitioned environment
applications with DB2 Enterprise Edition, because DB2 Enterprise Edition
enforces partitioning key restrictions like DB2 Enterprise - Extended Edition.
1. Create a model of your database design with DB2 Enterprise Edition.
2. Create sample tables with the PARTITIONING KEY clause that you will

use to distribute your data across partitions in the production
environment.

3. Develop and run your applications against the test database.

DB2 Enterprise Edition enforces the partitioning key constraints consistent
with DB2 Enterprise - Extended Edition and provides a useful test
environment for your applications.

Error-Handling Considerations

In a partitioned environment, DB2 breaks up SQL statements into subsections,
each of which are processed on the partition that contains the relevant data.
As a result, an error may occur on a partition that does not have access to the
application. This does not occur in a single-partition environment.

558 Application Development Guide

You should consider the following:
v Non-CURSOR (EXECUTE) non-severe errors
v CURSOR non-severe errors
v Severe errors
v Merged multiple SQLCA structures
v How to identify the partition that returned the error

If an application ends abnormally because of a severe error, indoubt
transactions may be left in the database. (An indoubt transaction pertains to
global transactions when one phase completes successfully, but the system
fails before the a subsequent can complete, leaving the database in an
inconsistent state.) For information on handling them, see the Administration
Guide.

Severe Errors
If a severe error occurs in DB2 Universal Database, one of the following will
occur:
v The database manager on the node where the error occurs shuts down.

Active units of work are not rolled back.
In this situation, you must recover the node and any databases that were
active on the node when the shutdown occurred.

v All agents are forced off the database at the node where the error occurred.
All units of work on that database are rolled back.
In this situation, the database at the node where the error occurred is
marked as inconsistent. Any attempt to access it results in either SQLCODE
-1034 (SQLSTATE 58031) or SQLCODE -1015 (SQLSTATE 55025) being
returned. Before you or any other application on another node can access
the database at this node, you must run the RESTART DATABASE
command against the database. Refer to the Command Reference for
information on this command.

The severe error SQLCODE -1224 (SQLSTATE 55032) can occur for a variety of
reasons. If you receive this message, check the SQLCA, which will indicate
which node failed. Then check the db2diag.log file shared between the nodes
for details. See “Identifying the Partition that Returned the Error” on page 560
for additional information.

Merged Multiple SQLCA Structures
One SQL statement may be executed by a number of agents on different
nodes, and each agent may return a different SQLCA for different errors or
warnings. The coordinating agent also has its own SQLCA. In addition, the
SQLCA also has fields that indicate global numbers (such as the sqlerrd fields
that indicate row counts). To provide a consistent view for applications, all the
SQLCA values are merged into one structure. This structure is described in
SQL Reference.

Chapter 18. Programming Considerations in a Partitioned Environment 559

Error reporting is as follows:
v Severe error conditions are always reported. As soon as a severe error is

reported, no additions beyond the severe error are added to the SQLCA.
v If no severe error occurs, a deadlock error takes precedence over other

errors.
v For all other errors, the SQLCA for the first negative SQLCODE is returned

to the application.
v If no negative SQLCODEs are detected, the SQLCA for the first warning

(that is, positive SQLCODE) is returned to the application. The exception to
this occurs if a data manipulation operation is issued on a table that is
empty on one partition, but has data on other partitions. The SQLCODE
+100 is only returned to the application if agents from all partitions return
SQL0100W, either because the table is empty on all partitions or there are
no rows that satisfy the WHERE clause in an UPDATE statement.

v For all errors and warnings, the sqlwarn field contains the warning flags
received from all agents.

v The values in the sqlerrd fields that indicate row counts are accumulations
from all agents.

An application may receive a subsequent error or warning after the problem
that caused the first error or warning is corrected. Errors are reported to the
SQLCA to ensure that the first error detected is given priority over others.
This ensures that an error caused by an earlier error cannot overwrite the
original error. Severe errors and deadlock errors are given higher priority
because they require immediate action by the coordinating agent.

Identifying the Partition that Returned the Error
If a partition returns an error or warning, its number is in the SQLERRD(6)
field of the SQLCA. The number in this field is the same as that specified for
the partition in the db2nodes.cfg file.

If an SQL statement or API call is successful, the partition number in this field
is not significant.

For information about the SQLCA, see the SQL Reference.

Debugging

You can use the tools described in the following sections for use in debugging
your applications. For more information, refer to the Troubleshooting Guide.

Diagnosing a Looping or Suspended application
It is possible that, after you start a query or application, you suspect that it is
suspended (it does not show any activity) or that it is looping (it shows
activity, but no results are returned to the application). Ensure that you have

560 Application Development Guide

turned lock timeouts on. In some situations, however, no error is returned. In
these situations, you may find the tools described in the Troubleshooting Guide,
as well as the Database system monitor snapshot helpful.

One of the functions of the database system monitor that is useful for
debugging applications is to display the status of all active agents. To obtain
the greatest use from a snapshot, ensure that statement collection is being
done before you run the application (preferably immediately after you run
DB2START) as follows:

db2_all "db2 UPDATE MONITOR SWITCHES USING STATEMENT ON"

When you suspect that your application or query is either stalled or looping,
issue the following command:

db2_all "db2 GET SNAPSHOT FOR AGENTS ON database

Refer to the System Monitor Guide and Reference for information on how read
the information collected from the snapshot, and for the details of using the
database system monitor.

Chapter 18. Programming Considerations in a Partitioned Environment 561

562 Application Development Guide

Chapter 19. Writing Programs for DB2 Federated Systems

Introduction to DB2 Federated Systems . . 563
Accessing Data Source Tables and Views . . 564

Working with Nicknames 564
Cataloging Information about Data
Source Tables and Views 564
Considerations and Restrictions . . . 565
Defining Column Options 566
Using Nicknames with Views 567

Using Isolation Levels to Maintain Data
Integrity 568

Working with Data Type Mappings 569
How DB2 Determines What Data Types
to Define Locally 569
Default Data Type Mappings 569
How You Can Override Default Type
Mappings and Create New Ones. . . . 570

Defining a Type Mapping That Applies
to One or More Data Sources 570
Changing a Type Mapping for a
Specific Table 570

Using Distributed Requests to Query Data
Sources 571

Coding Distributed Requests 571

A Request with a Subquery 571
A Request with Set Operators 572
A Request for a Join 572

Using Server Options to Facilitate
Optimization 572

Invoking Data Source Functions 574
Enabling DB2 to Invoke Data Source
Functions 574
Reducing the Overhead of Invoking a
Function 574
Specifying Function Names in the
CREATE FUNCTION MAPPING
Statement 576
Discontinuing Function Mappings . . . 576

Using Pass-Through to Query Data Sources
Directly 576

SQL Processing in Pass-Through Sessions 576
Considerations and Restrictions 577

Using Pass-Through with All Data
Sources 577
Using Pass-Through with Oracle Data
Sources 578

Introduction to DB2 Federated Systems

A DB2 federated system is a distributed computing system that consists of:
v A DB2 server, called a federated server.
v Multiple semi-autonomous data sources that the federated server sends

queries to. Each data source consists of an instance of a relational database
management system, plus the database or databases that the instance
supports. The data sources in a DB2 federated system can include Oracle
instances and instances of the members of the DB2 family.

To client applications, the data sources appear as a single collective database.
However, the applications actually interface with a database, called the
federated database, that is within the federated server. To obtain data from data
sources, they submit queries in DB2 SQL to the federated database. DB2 then
distributes the queries to the appropriate data sources, collects the requested
data, and returns this data to the applications.

Applications can use DB2 SQL to request values of any data types that DB2
can recognize, except for LOB data types. To write to a data source—for

© Copyright IBM Corp. 1993, 2000 563

example, to update a data source table—an application must use the data
source’s own SQL in a special mode called pass-through.

The federated database’s system catalog contains information not only about
the objects in the database, but also about the data sources and certain tables,
views, and functions in them. The catalog, then, contains information about
the entire federated system; accordingly, it is called a global catalog.

For a high-level overview of DB2 federated systems, see the Administration
Guide: Planning. For an extended overview, see the SQL Reference. For
examples of DB2 SQL queries that an application can submit, see “Using
Distributed Requests to Query Data Sources” on page 571. For information
about Pass-Through, see “Using Pass-Through to Query Data Sources
Directly” on page 576.

Accessing Data Source Tables and Views

This section provides information to help you access and use data source
tables and views. The topics covered are:
v Nicknames that you assign to the tables and views, so that the federated

server can reference them.
v Isolation levels that help you to maintain data integrity at the data source

when you access the tables and views

Working with Nicknames
A nickname is an identifier by which an application can reference a data source
table or view. This section:
v Explains how the global catalog can be supplied with information about

tables that you create nicknames for
v Lists considerations and restrictions to remember when you work with

nicknames
v Describes parameters that you can set to optimize queries
v Discusses ways to use views referenced by nicknames

Cataloging Information about Data Source Tables and Views
When a nickname is created for a data source table or view, DB2 updates the
global catalog with information that the optimizer can use in planning how to
retrieve data from the table or view. This information includes, for example,
the name of the table or view and the names and attributes of the table’s or
view’s columns.

In the case of a table, the information also includes:
v Statistics (for example, the number of rows and the number of pages on

which the rows exist). To ensure that DB2 obtains the latest statistics, it is

564 Application Development Guide

advisable to run the data source’s equivalent of the RUNSTATS command
against the table before you create the nickname.

v Descriptions of any indexes that the table has. If the table has no indexes,
you can nonetheless supply the catalog with metadata that an index
definition typically contains—for example, which column or columns in the
table have unique values, and whether any rows are unique. You can
generate this metadata, which is collectively called an index specification, by
running the CREATE INDEX statement against the table’s nickname. Be
aware that in this case the statement produces only the index specification;
it does not create an actual index. For documentation on this statement, see
the SQL Reference.

To find out what information about a data source table is stored in the global
catalog, query the SYSCAT.TABLES and SYSCAT.COLUMNS catalog view. To
find out what information about a table’s index is stored in the catalog, or
what a particular index specification contains, query the SYSCAT.INDEXES
catalog view. For descriptions of these views, see the SQL Reference. For
further discussion about updating the global catalog with information about
tables and indexes, see the Administration Guide: Implementation.

Considerations and Restrictions
There are several considerations and restrictions to bear in mind when you:
v Define, change, and drop nicknames
v Reference tables and views by their nicknames
v Perform operations on tables and views that are referenced by nicknames

Defining, Changing, and Dropping Nicknames:

v To define a nickname for a table or view, use the CREATE NICKNAME
statement. In this statement:
– You reference an Oracle table or view by its name.
– You can reference a DB2 family table or view by its name, or, if it has an

alias, by this alias.
v You can define more than one nickname for the same table or view. You can

also define an alias for a nickname with the CREATE ALIAS statement.
v To change a nickname, you must drop it and then replace it. To drop it, use

the DROP NICKNAME statement; to replace it, use the CREATE
NICKNAME statement.

v Dropping a nickname causes any views defined using the nickname to be
inoperative and invalidates any plans that are dependent upon it.

For documentation on the CREATE NICKNAME, CREATE ALIAS, and DROP
NICKNAME statements, see the SQL Reference.

Referencing Tables and Views by Nickname:

Chapter 19. Writing Programs for DB2 Federated Systems 565

v After a data source table or view has been given a nickname, you can
reference the table or view by that nickname only (except in a pass-through
session). For example, if you define the nickname DEPT to represent a table
called DB2MVS1.PERSON.DEPT, the statement SELECT * FROM DEPT is
allowed, but SELECT * FROM DB2MVS1.PERSON.DEPT is not allowed. In
a pass-through session, however, you must access a table or view by its
data source name.

v You cannot reference a nickname in the CREATE TRIGGER statement.
v If you reference a nickname in the summary-table-definition clause of the

CREATE TABLE statement, you must also specify the DEFINITION ONLY
keywords in this clause.

Performing Operations on Tables and Views That Have Nicknames:

v The COMMENT ON statement is valid against a nickname and columns
that are defined on a nickname. This statement updates the global catalog;
it does not update data source catalogs.

v GRANT and REVOKE statements are valid against a nickname for certain
privileges and for all users and groups. However, DB2 does not issue a
corresponding GRANT or REVOKE against the table or view that the
nickname references. For more information about nickname privileges, see
the Administration Guide: Planning.

v Data sources are read-only. Therefore:
– INSERT, UPDATE, and DELETE statements are not valid against

nicknames.
– A view that contains a UNION ALL clause for a nickname cannot be

updated.
v You cannot run the DB2 utilities (RUNSTATS, IMPORT, EXPORT and so on)

against nicknames.

Defining Column Options
When you define a nickname for a table or view, you can provide the global
catalog with information about particular columns in the table or view. You
specify this information in the form of values that you assign to parameters
called column options. You can specify any of these values in either upper- or
lowercase. Table 27 on page 567 describes the column options and their values.

566 Application Development Guide

Table 27. Column Options and Their Settings

Option Valid Settings Default
Setting

numeric_string
‘y’ Yes, this column contains only strings of numeric data.

IMPORTANT: If this column contains only numeric
strings followed by trailing blanks, it is inadvisable to
specify ‘y’.

‘n’ No, this column is not limited to strings of numeric
data.

By setting numeric_string to ‘y’ for a column, you are informing
the optimizer that this column contains no blanks that could
interfere with sorting of the column’s data.

‘n’

varchar_no_trailing_blanks Indicates whether trailing blanks are absent from a specific
VARCHAR column:

‘y’ Yes, trailing blanks are absent from this VARCHAR
column.

‘n’ No, trailing blanks are not absent from this VARCHAR
column.

If data source VARCHAR columns contain no padded blanks,
then the optimizer’s strategy for accessing them depends in part
on whether they contain trailing blanks. By default, the
optimizer “assumes” that they actually do contain trailing
blanks. On this assumption, it develops an access strategy that
involves modifying queries so that the values returned from
these columns are the ones that the user expects. If, however, a
VARCHAR column has no trailing blanks, and you let the
optimizer know this, it can develop a more efficient access
strategy. To tell the optimizer that a specific column has no
trailing blanks, specify that column in the ALTER NICKNAME
statement (for guidelines, see the SQL Reference).

‘n‘

You set column options in the ALTER NICKNAME statement. For information
about this statement, see the SQL Reference.

Using Nicknames with Views
You can use nicknames with views in two main ways:
v You can create nicknames for data source views. The federated server treats

the nickname of a data source view the same way it treats the nickname of
a data source table.

v You can create federated database views of data source tables and views
that have nicknames. For example, because the federated server can
accommodate a join of base tables at different locations, you can easily

Chapter 19. Writing Programs for DB2 Federated Systems 567

define federated database views of base tables that reside at different data
sources. Such multi-location views offer a high degree of data independence
for a globally integrated database, just as views defined on multiple local
tables do for centralized relational database managers. This global view
mechanism is one way in which the federated server offers a high degree of
data independence.
The action of creating a federated database view of data source data is
sometimes called “creating a view on a nickname”. This phrase reflects the
fact that for the view to be created, the CREATE VIEW statement’s fullselect
must reference the nickname of each table and view that the view is to
contain.

Views do not have statistics or indexes of their own because they are not
actual tables located in a database. This statement is true even when a view is
identical in structure and content to a single base table. For more information
about statistics and indexes, see Administration Guide: Implementation.

Using Isolation Levels to Maintain Data Integrity
You can maintain data integrity for a data source table by requesting that the
table’s rows be locked at a specific isolation level. For example, to ensure that
you have sole access to a row, you would specify the repeatable read (RR)
isolation level for that row.

The federated server maps the isolation level you request to a corresponding
one at the data source. To illustrate this, Table 28 lists:
v The isolation levels that you can request. They are:

CS Cursor stability

RR Repeatable read

RS Read stability

UR Uncommitted read
v The Oracle isolation levels that the requested levels map to.

Table 28. Comparable Isolation Levels between the Federated Server and Oracle Data
Sources.

Federated
Server
(DB2)

CS RR RS UR

Oracle Default Transaction read-only Transaction read-only Same as
cursor
stability

568 Application Development Guide

Working with Data Type Mappings

When you create a nickname for a data source table, DB2 populates the global
catalog with information about the table. This information includes, but is not
limited to, the nickname, the table’s name, all column names and, for each
column:
v The data type that was defined for the column at the data source. (This

section calls this type a remote type.)
v A corresponding data type that is supported by DB2 and registered to the

federated database. (This section calls this type a local type.)

This section explains how DB2 uses data type mappings to determine what
DB2-supported data type should be defined for the column of a data source
table. The section then discusses data type mappings (sometimes called “type
mappings”, for short) in two subsections. The first describes default
mappings; the second shows how you can override default mappings and
create new mappings.

How DB2 Determines What Data Types to Define Locally
How does DB2 determine what local type to use for a remote column? It
consults a mapping between the column’s type at the data source and a
comparable local type, and chooses the latter. For example, in a default
mapping supplied by DB2, the DB2 for VSE & VM data type CHAR, which
supports up to 254 bytes, points to the DB2 data type CHAR. So if you create
a nickname for a DB2 for VSE & VM table, and column C1 of the table has a
data type of CHAR with a maximum length of 200, then, unless you override
the default, the DB2 type CHAR is defined locally for C1.

Default Data Type Mappings
Because of differences between RDBMSs, a default mapping between a data
source data type and a federated server data type is not always one-to-one.
However, the mapping is close enough to ensure that all requested values are
returned.

For example, there is a default type mapping between:
v The Oracle type NUMBER(9,0) (where 9 is the maximum precision and 0

the maximum scale)
v The DB2 type INTEGER, with a maximum length of 4 bytes

Suppose that you create a nickname for an Oracle table that has a column C2
with a type of NUMBER(9,0). If you do not change the default mapping, the
type for C2 will be locally defined as INTEGER. And because the 4 bytes of
INTEGER support a maximum precision of 10, you can be sure that all values
of C2 will be returned when C2 is queried from the federated server.

For listings of the default data type mappings, see the SQL Reference.

Chapter 19. Writing Programs for DB2 Federated Systems 569

How You Can Override Default Type Mappings and Create New Ones
As the preceding example indicates, the local type and remote type in a
default mapping are similar enough to ensure that when you query remote
columns for which the remote type is defined, all values that conform to both
types will be returned. But sometimes, you might require an alternative
mapping. Consider these scenarios:

Defining a Type Mapping That Applies to One or More Data Sources
Certain columns in three tables in an Oracle data source have a data type
DATE for time stamps. In a default mapping, this type points to the local DB2
type TIMESTAMP. So if you were to create nicknames for the three tables
without changing the default, TIMESTAMP would be defined locally for these
columns, and DB2 queries of the columns would yield time stamps. But
suppose that you want such queries to yield times only. You could then map
Oracle DATE to the DB2 type TIME, overriding the default. That way, when
you create the nicknames, TIME, not TIMESTAMP, would be defined locally
for the columns. As a result, when you query them, only the time portion of
the time stamps would be returned. To override the default type mapping,
you would use the CREATE TYPE MAPPING statement.

In the CREATE TYPE MAPPING statement, you can indicate whether the new
mapping that you want is to apply to a specific data source (for example, a
data source that a department in your organization uses) or to all data sources
of a specific type (for example, all Oracle data sources), or to all data sources
of a specific version of a type (for example, all Oracle 8.0.3 data sources).

Changing a Type Mapping for a Specific Table
You can change the local type in a type mapping for a specific table. For
example, Oracle data type NUMBER(32,3) maps by default to the DB2 data
type DOUBLE, a floating decimal data type. Suppose that in an Oracle table
for employee information, a column BONUS was defined with a data type of
NUMBER(32,3). Because of the mapping, a query of BONUS could return
values that look like this:
5.0000000000000E+002
1.0000000000000E+003

where +002 signifies that the decimal point should be moved two places to
the right, and +003 signifies that the decimal point should be moved three
places to the right.

So that queries of BONUS can return values that look like dollar amounts,
you could, for this particular table, remap NUMBER(32,3) to a DB2 DECIMAL
type with a precision and scale that reflect the format of actual bonuses. For
example, if you knew that the dollar portion of the bonuses would not exceed

570 Application Development Guide

six figures, you could remap NUMBER(32,3) to DECIMAL(8,2). Under the
constraint of this new mapping, a query of BONUS would return values like
this:
500.00
1000.00

To change the type mapping for a column of a specific table, use the ALTER
NICKNAME statement. With this statement, you can change the type defined
locally for a column of a table for which a nickname has been defined.

Using Distributed Requests to Query Data Sources

Queries submitted to the federated database can request results that are
yielded by a single data source; but typically they request results that are
yielded by multiple data sources. Because a typical query is distributed to
multiple data sources, it is called a distributed request.

This section:
v Illustrates ways to code distributed requests
v Introduces you to a way to abet optimization of certain distributed requests

Coding Distributed Requests
In general, a distributed request uses one or more of three SQL conventions to
specify where data is to be retrieved from: subqueries, set operators, and join
subselects. This section provides examples within the context of the following
scenario: A federated server is configured to access a DB2 Universal Database
for OS/390 data source, a DB2 Universal Database for AS/400 data source,
and an Oracle data source. Stored in each data source is a table that contains
employee information. The federated server references these tables by
nicknames that point to where the tables reside: UDB390_EMPLOYEES,
AS400_EMPLOYEES, and ORA_EMPLOYEES. (Nicknames do not have to
reference data sources; the ones in this scenario do so only to underline the
point that the tables reside in different RDBMSs.) In addition to
ORA_EMPLOYEES, the Oracle data source has a table, nicknamed
ORA_COUNTRIES, that contains information about the countries that the
employees live in.

A Request with a Subquery
Table AS400_EMPLOYEES contains the phone numbers of employees who live
in Asia. It also contains the country codes associated with these phone
numbers, but it does not list the countries that the codes represent. Table
ORA_COUNTRIES, however, does list both codes and countries. The
following query uses a subquery to find out the country code for China; and
it uses SELECT and WHERE clauses to list those employees in
AS400_EMPLOYEES whose phone numbers require this particular code.

Chapter 19. Writing Programs for DB2 Federated Systems 571

SELECT name, telephone
FROM djadmin.as400_employees
WHERE country_code IN

(SELECT country_code
FROM djadmin.ora_countries
WHERE country_name = 'CHINA')

A Request with Set Operators
The federated server supports three set operators:
v UNION

Use this set operator to combine the rows that satisfy any of two or more
SELECT statements.

v EXCEPT
Use this set operator to retrieve those rows that satisfy the first SELECT
statement but not the second.

v INTERSECT
Use this set operator to retrieve those rows that satisfy both SELECT
statements.

All three set operators might have the ALL operand to indicate that duplicate
rows are not be removed from the result, thus eliminating the need for an
extra sort.

The following query retrieves all employee names and country codes that are
present in both the AS400_EMPLOYEES and UDB390_EMPLOYEES tables,
even though each table resides in a different data source.

SELECT name, country_code
FROM as400_employees

INTERSECT
SELECT name, country_code

FROM udb390_employees

A Request for a Join
A relational join produces a result set that contains a combination of columns
retrieved from two or more tables. Be aware that you should specify
conditions to limit the size of the result set’s rows.

The query below combines employee names and their corresponding country
names by comparing the country codes listed in two tables. Each table resides
in a different data source.

SELECT t1.name, t2.country_name
FROM djadmin.as400_employees t1, djadmin.ora_countries t2
WHERE t1.country_code = t2.country_code

Using Server Options to Facilitate Optimization
Federated system users can use parameters called server options to supply the
global catalog with information that applies to a data source as a whole, or to

572 Application Development Guide

control interaction between DB2 and a data source. For example, to catalog
the identifier of the instance that serves as the basis of a data source, the
database administrator assigns that identifier as a value to the server option
“node”.

Several server options address a major area of interaction between DB2 and
data sources: optimization of queries. For example, just as you can use the
column option “varchar_no_trailing_blanks” to inform the DB2 optimizer of
specific data source VARCHAR columns that have no trailing blanks, so can
you use a server option—also called “varchar_no_trailing_blanks”—to inform
the optimizer of data sources whose VARCHAR columns are all free of
trailing blanks. For a summary of how such information helps the optimizer
to create an access strategy, see Table 27 on page 567.

In addition, you can set the server option “plan_hints” to a value that enables
DB2 to provide Oracle data sources with statement fragments, called plan
hints, that help Oracle optimizers do their job. Specifically, plan hints can help
an optimizer to decide matters such as which index to use in accessing a
table, and which table join sequence to use in retrieving data for a result set.

Typically, the database administrator sets server options for a federated
system. However, a programmer can make good use of those options that
help to optimize queries. For example, suppose that for data sources
ORACLE1 and ORACLE2, the plan_hints server option is set to its default, ‘n’
(no, do not furnish this data source with plan hints). Also suppose that you
write a distributed request for data from ORACLE1 and ORACLE2, and that
you expect that plan hints would help the optimizers at these data sources
improve their strategies for accessing this data. You could override the default
with a setting of ‘y’ (yes, furnish the plan hints) while your application is
connected to the federated database. When the connection is completed, the
setting would automatically revert to ‘n’.

To enforce a server option setting for the duration of a connection to the
federated database, use the SET SERVER OPTION statement. To ensure that
the setting takes effect, you must specify the statement right after the
CONNECT statement. In addition, it is advisable to prepare the statement
dynamically.

For documentation of the SET SERVER OPTION statement, see the SQL
Reference. For descriptions of all server options and their settings, see the
Administration Guide: Implementation.

Chapter 19. Writing Programs for DB2 Federated Systems 573

Invoking Data Source Functions

This section explains how you can:
v Enable DB2 to invoke a data source function that it does not recognize
v Help to reduce the overhead consumed when DB2 invokes a function
v Specify names of functions that you want to map to one another
v Discontinue the use of a mapping between functions

Enabling DB2 to Invoke Data Source Functions
At times you might want DB2 to invoke a data source function that it does
not recognize. Such a function might be a user-defined function or a new
built-in function that is unknown to DB2.

Before DB2 can access a data source function that it does not recognize, you
must create a mapping between this function and a counterpart that is stored
in the federated database. To create the mapping, select the counterpart and
submit the DDL statement for creating the mapping. This statement is called
CREATE FUNCTION MAPPING.

The counterpart can be an existing function or function template, or a
function or function template that you create. (A function template is a partial
function that has no executable code.) You can create a function or function
template with the CREATE FUNCTION statement.

The data source function and its federated database counterpart should
correspond in the following ways:
v Both should have the same number of input parameters.
v The data types of the input parameters of the data source function should

be compatible with the data types of the input parameters of the federated
database counterpart.

For documentation on the CREATE FUNCTION MAPPING and CREATE
FUNCTION statements, see the SQL Reference.

Reducing the Overhead of Invoking a Function
The DDL for mapping a federated server function to a data source
function—the CREATE FUNCTION MAPPING statement—can include
estimated statistics on the overhead that would be consumed when the data
source function is invoked. For example, the statement can specify the
estimated number of instructions that would be required to invoke the data
source function, and the estimated number of I/Os that would be expended
for each byte of the argument set that is passed to this function. These
estimates are stored in the global catalog; you can see them in the
SYSCAT.FUNCMAPOPTIONS view. In addition, if a DB2 function (rather than
a function template) participates in the mapping, the catalog contains

574 Application Development Guide

estimates of overhead that would be consumed when this function is invoked.
You can see these latter estimates in the SYSCAT.FUNCTIONS view.

After the mapping is created, you can submit distributed requests that
reference the DB2 function. For example, if you mapped a DB2 user-defined
function called DOLLAR to an Oracle user-defined function called
US_DOLLAR, your request would specify DOLLAR rather than US_DOLLAR.
When the request is processed, the optimizer evaluates multiple access
strategies. Some of them reflect the estimated overhead of invoking the DB2
function; others reflect the estimated overhead of invoking the data source
function. The strategy that is expected to cost the least amount of overhead is
the one that is used.

If any estimates of consumed overhead change, you can record the change in
the global catalog. To record new estimates for the data source function, first
drop or disable the function mapping (for information about how to do this,
see “Discontinuing Function Mappings” on page 576). Then recreate the
mapping with the CREATE FUNCTION MAPPING statement, specifying the
new estimates in the statement. When you run the statement, the new
estimates will be added to the SYSCAT.FUNCTIONS catalog view. To record
changed estimates for the DB2 function, update the SYSSTAT.FUNCTIONS
catalog view directly.

You specify estimated statistics in the CREATE FUNCTION MAPPING
statement by assigning them as values to parameters called function mapping
options. Table 29 describes these options and their values.

Table 29. Function Mapping Options and Their Settings

Option Valid Settings Default
Setting

ios_per_invoc Estimated number of I/Os per invocation of a data source
function.

‘0’

insts_per_invoc Estimated number of instructions processed per invocation of
the data source function.

‘450’

ios_per_argbyte Estimated number of I/Os expended for each byte of the
argument set that is passed to the data source function.

‘0’

insts_per_argbyte Estimated number of instructions processed for each byte of the
argument set that is passed to the data source function.

‘0’

percent_argbytes Estimated average percent of input argument bytes that the
data source function will actually read.

‘100’

initial_ios Estimated number of I/Os performed the first and last time
that the data source function is invoked.

‘0’

initial_insts Estimated number of instructions processed the first and last
time that the data source function is invoked.

‘0’

Chapter 19. Writing Programs for DB2 Federated Systems 575

For more information about the DROP FUNCTION MAPPING statement, the
SYSCAT.FUNCTIONS and SYSSTAT.FUNCTIONS views, and the
SYSCAT.FUNCMAPOPTIONS view, see the SQL Reference.

Specifying Function Names in the CREATE FUNCTION MAPPING
Statement

How you code the CREATE FUNCTION MAPPING statement depends on
part on whether the names of the objects that you are mapping together are
the same or different. If you are creating a mapping between two functions
(or a function template and a function) that have the same name, you must
assign this name to the function-name parameter.

But if the names differ, then:
v Assign the name of the federated database function or function template to

the function-name parameter.
v Specify a function mapping option called “remote_name” and assign the

name of the data source function to this option. The name must have fewer
than 255 characters.

Discontinuing Function Mappings
If you want to discontinue using a function mapping, follow these guidelines:
v If the mapping is listed in the SYSCAT.FUNCMAPPINGS catalog view,

delete the mapping. You do this with the DROP FUNCTION MAPPING
statement.

v To discontinue a default mapping that is not listed in the
SYSCAT.FUNCMAPPINGS view, you disable the mapping. You do this in
the CREATE FUNCTION MAPPING statement by setting a function
mapping option called “disable” to ‘y’ (yes, disable this function mapping).
The default is ‘n’.

Using Pass-Through to Query Data Sources Directly

You can use a facility called pass-through to query a data source in the SQL
that is native to that data source. This section:
v States what kind of SQL statements a federated server and its associated

data sources process in pass-through sessions.
v Lists considerations and restrictions to be aware of when you use

pass-through.

SQL Processing in Pass-Through Sessions
The following rules specify whether an SQL statement is processed by DB2 or
by a data source:

576 Application Development Guide

v If a static statement is submitted in a pass-through session, it is sent to the
federated server for processing.

v If, in a pass-through session, you want to submit an SQL statement to a
data source for processing, you must prepare it dynamically in the session
and have it executed while the session is still open.
– If you are submitting a SELECT statement, prepare it with the PREPARE

statement, and then use the OPEN, FETCH, and CLOSE statements to
access the results of your query.

– For a supported statement other than SELECT, you have two options:
- Use the PREPARE statement to prepare the supported statement, and

use the EXECUTE statement to execute it.
- Use the EXECUTE IMMEDIATE statement to prepare and execute the

statement.
v If you issue the COMMIT or ROLLBACK command during a pass-through

session, this command will complete the current unit of work (UOW).

Considerations and Restrictions
There are a number of considerations and restrictions to bear in mind when
you use pass-through. Some of them are of a general nature; others apply to
Oracle data sources only.

Using Pass-Through with All Data Sources
The following information applies to all data sources:
v Statements prepared within a pass-through session must be executed within

the same pass-through session. Statements prepared within a pass-through
session, but executed outside of the same pass-through session, will fail
(SQLSTATE 56098).

v You can use pass-through to write to data sources; for example, to insert,
update, and delete table rows. But note that you cannot use WHERE
CURRENT OF conditions in UPDATE and DELETE statements within a
pass-through session.

v An application can have several SET PASSTHRU statements in effect at the
same time to different data sources. Although the application might have
issued multiple SET PASSTHRU statements, the pass-through sessions are
not truly nested. The federated server will not pass through one data source
to access another. Rather, the server accesses each data source directly.

v If multiple pass-through sessions are open at the same time, be sure to issue
a COMMIT each time you want to conclude a unit of work in each session.
Then, when you need to terminate the sessions, you can do so with a single
SET PASSTHRU RESET statement.

v Host variables defined in SQL statements within a pass-through session
must take the form :Hn where H is uppercase and n is a unique whole
number. The values of n must be numbered consecutively beginning with
zero.

Chapter 19. Writing Programs for DB2 Federated Systems 577

v You cannot pass through to more than one data source at a time.
v Pass-through does not support stored procedure calls.
v Pass-through does not support the SELECT INTO statement.

Using Pass-Through with Oracle Data Sources
The following information applies to Oracle data sources:
v The following restriction applies when a remote client issues a SELECT

statement from a command line processor (CLP) in pass-through mode: If
the client code is a DB2 Application Development Client prior to DB2
Universal Database Version 5, the SELECT will elicit an SQLCODE -30090
with reason code 11. To avoid this error, remote clients must use a DB2
Application Development Client that is at Version 5 or greater.

v Any DDL statement issued against an Oracle server is performed at parse
time and is not subject to transaction semantics. The operation, when
complete, is automatically committed by Oracle. If a rollback occurs, the
DDL is not rolled back.

v When you issue a SELECT statement from raw data types, use the
RAWTOHEX function to receive the hexadecimal values. When you
perform an INSERT into raw data types, provide the hexadecimal
representation.

578 Application Development Guide

Part 6. Language Considerations

© Copyright IBM Corp. 1993, 2000 579

580 Application Development Guide

Chapter 20. Programming in C and C++

Programming Considerations for C and C++ 581
Language Restrictions for C and C++ . . . 581

Trigraph Sequences for C and C++ . . . 581
C++ Type Decoration Consideration . . 582

Input and Output Files for C and C++ . . . 582
Include Files for C and C++ 583

Including Files in C and C++ 585
Embedding SQL Statements in C and C++ 586
Host Variables in C and C++ 588

Naming Host Variables in C and C++ . . 588
Declaring Host Variables in C and C++ 589
Indicator Variables in C and C++ . . . 593
Graphic Host Variable Declarations in C
or C++ 593
LOB Data Declarations in C or C++. . . 596
LOB Locator Declarations in C or C++ 598
File Reference Declarations in C or C++ 599
Initializing Host Variables in C and C++ 600
C Macro Expansion 600
Host Structure Support in C and C++ . . 602
Indicator Tables in C and C++ 603

Null-terminated Strings in C and C++ 604
Pointer Data Types in C and C++ . . . 606
Using Class Data Members as Host
Variables in C and C++ 607
Using Qualification and Member
Operators in C and C++ 608
Handling Graphic Host Variables in C
and C++ 609

Multi-byte Character Encoding in C
and C++ 609
Selecting the wchar_t or sqldbchar
Data Type in C and C++ 610
The WCHARTYPE Precompiler Option
in C and C++ 611

Japanese or Traditional Chinese EUC, and
UCS-2 Considerations in C and C++ . . 614

Supported SQL Data Types in C and C++ 615
FOR BIT DATA in C and C++. 620

SQLSTATE and SQLCODE Variables in C
and C++ 620

Programming Considerations for C and C++

Special host language programming considerations are discussed in the
following sections. Included is information on language restrictions,
host-language-specific include files, embedding SQL statements, host
variables, and supported data types for host variables.

Language Restrictions for C and C++

The following sections describe the C/C++ language restrictions.

Trigraph Sequences for C and C++
Some characters from the C or C++ character set are not available on all
keyboards. These characters can be entered into a C or C++ source program
using a sequence of three characters called a trigraph. Trigraphs are not
recognized in SQL statements. The precompiler recognizes the following
trigraphs within host variable declarations:

Trigraph Definition

??(Left bracket '['

??) Right bracket ']'

© Copyright IBM Corp. 1993, 2000 581

??< Left brace '{'

??> Right brace '}'

The remaining trigraphs listed below may occur elsewhere in a C or C++
source program:

Trigraph Definition

??= Hash mark '#'

??/ Back slash '\'

??’ Caret '|'

??! Vertical Bar '|'

??– Tilde '˜'

C++ Type Decoration Consideration
When writing a stored procedure or a UDF using C++, you may want to
consider declaring the procedure or UDF as:

extern "C" ...procedure or function declaration...

The extern "C" prevents type decoration of the function name by the C++
compiler. Without this declaration, you have to include all the type decoration
for the function name when you call the stored procedure, or issue the
CREATE FUNCTION statement.

Input and Output Files for C and C++

By default, the input file can have the following extensions:

.sqc For C files on all supported platforms

.sqC For C++ files on UNIX platforms

.sqx For C++ files on OS/2 and Windows 32-bit operating systems

By default, the corresponding precompiler output files have the following
extensions:

.c For C files on all supported platforms

.C For C++ files on UNIX platforms

.cxx For C++ files on OS/2 and Windows 32-bit operating systems

You can use the OUTPUT precompile option to override the name and path of
the output modified source file. If you use the TARGET C or TARGET
CPLUSPLUS precompile option, the input file does not need a particular
extension.

582 Application Development Guide

Include Files for C and C++

The host-language-specific include files (header files) for C and C++ have the
file extension .h. The include files that are intended to be used in your
applications, are described below.

SQL (sql.h)
This file includes language-specific prototypes for the binder,
precompiler, and error message retrieval APIs. It also defines system
constants.

SQLADEF (sqladef.h)
This file contains function prototypes used by precompiled C and C++
applications.

SQLAPREP (sqlaprep.h)
This file contains definitions required to write your own precompiler.

SQLCA (sqlca.h)
This file defines the SQL Communication Area (SQLCA) structure.
The SQLCA contains variables that are used by the database manager
to provide an application with error information about the execution
of SQL statements and API calls.

SQLCLI (sqlcli.h)
This file contains the function prototypes and constants needed to
write a Call Level Interface (DB2 CLI) application. The functions in
this file are common to both X/Open Call Level Interface and ODBC
Core Level.

SQLCLI1 (sqlcli1.h)
This file contains the function prototypes and constants needed to
write a Call Level Interface (DB2 CLI) that makes use of the more
advanced features in DB2 CLI. Many of the functions in this file are
common to both X/Open Call Level Interface and ODBC Level 1. In
addition, this file also includes X/Open-only functions and
DB2-specific functions.

This file includes both sqlcli.h and sqlext.h (which contains ODBC
Level2 API definitions).

SQLCODES (sqlcodes.h)
This file defines constants for the SQLCODE field of the SQLCA
structure.

SQLDA (sqlda.h)
This file defines the SQL Descriptor Area (SQLDA) structure. The
SQLDA is used to pass data between an application and the database
manager.

Chapter 20. Programming in C and C++ 583

SQLEAU (sqleau.h)
This file contains constant and structure definitions required for the
DB2 security audit APIs. If you use these APIs, you need to include
this file in your program. This file also contains constant and keyword
value definitions for fields in the audit trail record. These definitions
can be used by external or vendor audit trail extract programs.

SQLENV (sqlenv.h)
This file defines language-specific calls for the database environment
APIs, and the structures, constants, and return codes for those
interfaces.

SQLEXT (sqlext.h)
This file contains the function prototypes and constants of those
ODBC Level 1 and Level 2 APIs that are not part of the X/Open Call
Level Interface specification and is therefore used with the permission
of Microsoft Corporation.

SQLE819A (sqle819a.h)
If the code page of the database is 819 (ISO Latin-1), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 500 (EBCDIC International) binary collation. This file is
used by the CREATE DATABASE API.

SQLE819B (sqle819b.h)
If the code page of the database is 819 (ISO Latin-1), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 037 (EBCDIC US English) binary collation. This file is
used by the CREATE DATABASE API.

SQLE850A (sqle850a.h)
If the code page of the database is 850 (ASCII Latin-1), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 500 (EBCDIC International) binary collation. This file is
used by the CREATE DATABASE API.

SQLE850B (sqle850b.h)
If the code page of the database is 850 (ASCII Latin-1), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 037 (EBCDIC US English) binary collation. This file is
used by the CREATE DATABASE API.

SQLE932A (sqle932a.h)
If the code page of the database is 932 (ASCII Japanese), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 5035 (EBCDIC Japanese) binary collation. This file is used
by the CREATE DATABASE API.

SQLE932B (sqle932b.h)
If the code page of the database is 932 (ASCII Japanese), this sequence

584 Application Development Guide

sorts character strings that are not FOR BIT DATA according to the
host CCSID 5026 (EBCDIC Japanese) binary collation. This file is used
by the CREATE DATABASE API.

SQLJACB (sqljacb.h)
This file defines constants, structures and control blocks for the DB2
Connect interface.

SQLMON (sqlmon.h)
This file defines language-specific calls for the database system
monitor APIs, and the structures, constants, and return codes for those
interfaces.

SQLSTATE (sqlstate.h)
This file defines constants for the SQLSTATE field of the SQLCA
structure.

SQLSYSTM (sqlsystm.h)
This file contains the platform-specific definitions used by the
database manager APIs and data structures.

SQLUDF (sqludf.h)
This file defines constants and interface structures for writing User
Defined Functions (UDFs). For more information on this file, see “The
UDF Include File: sqludf.h” on page 411.

SQLUTIL (sqlutil.h)
This file defines the language-specific calls for the utility APIs, and the
structures, constants, and codes required for those interfaces.

SQLUV (sqluv.h)
This file defines structures, constants, and prototypes for the
asynchronous Read Log API, and APIs used by the table load and
unload vendors.

SQLUVEND (sqluvend.h)
This file defines structures, constants and prototypes for the APIs to
be used by the storage management vendors.

SQLXA (sqlxa.h)
This file contains function prototypes and constants used by
applications that use the X/Open XA Interface.

Including Files in C and C++
There are two methods for including files: the EXEC SQL INCLUDE statement
and the #include macro. The precompiler will ignore the #include, and only
process files included with the EXEC SQL INCLUDE statement.

To locate files included using EXEC SQL INCLUDE, the DB2 C precompiler
searches the current directory first, then the directories specified by the
DB2INCLUDE environment variable. Consider the following examples:

Chapter 20. Programming in C and C++ 585

v EXEC SQL INCLUDE payroll;

If the file specified in the INCLUDE statement is not enclosed in quotation
marks, as above, the C precompiler searches for payroll.sqc, then
payroll.h, in each directory in which it looks. On UNIX operating systems,
the C++ precompiler searches for payroll.sqC, then payroll.sqx, then
payroll.hpp, then payroll.h in each directory in which it looks. On OS/2
or Windows-32 bit operating systems, the C++ precompiler searches for
payroll.sqx, then payroll.hpp, then payroll.h in each directory in which it
looks.

v EXEC SQL INCLUDE 'pay/payroll.h';

If the file name is enclosed in quotation marks, as above, no extension is
added to the name.
If the file name in quotation marks does not contain an absolute path, then
the contents of DB2INCLUDE are used to search for the file, prepended to
whatever path is specified in the INCLUDE file name. For example, on
UNIX based systems, if DB2INCLUDE is set to ‘/disk2:myfiles/c’, the
C/C++ precompiler searches for ‘./pay/payroll.h’, then
‘/disk2/pay/payroll.h’, and finally ‘./myfiles/c/pay/payroll.h’. The path
where the file is actually found is displayed in the precompiler messages.
On OS/2 and Windows-based operating systems, substitute back slashes (\)
for the forward slashes in the above example.

Note: The setting of DB2INCLUDE is cached by the DB2 Command Line
Processor. To change the setting of DB2INCLUDE after any CLP
commands have been issued, enter the TERMINATE command, then
reconnect to the database and precompile as usual.

To help relate compiler errors back to the original source the precompiler
generates ANSI #line macros in the output file. This allows the compiler to
report errors using the file name and line number of the source or included
source file, rather than the precompiler output.

However, if you specify the PREPROCESSOR option, all the #line macros
generated by the precompiler reference the preprocessed file from the external
C preprocessor. For more information about the PREPROCESSOR option, see
“C Macro Expansion” on page 600.

Some debuggers and other tools that relate source code to object code do not
always work well with the #line macro. If the tool you wish to use behaves
unexpectedly, use the NOLINEMACRO option (used with DB2 PREP) when
precompiling. This will prevent the #line macros from being generated.

Embedding SQL Statements in C and C++

Embedded SQL statements consist of the following three elements:

586 Application Development Guide

Element Correct Syntax

Statement initializer EXEC SQL

Statement string Any valid SQL statement

Statement terminator semicolon (;)

For example:
EXEC SQL SELECT col INTO :hostvar FROM table;

The following rules apply to embedded SQL statements:
v You can begin the SQL statement string on the same line as the keyword

pair or a separate line. The statement string can be several lines long. Do
not split the EXEC SQL keyword pair between lines.

v You must use the SQL statement terminator. If you do not use it, the
precompiler will continue to the next terminator in the application. This
may cause indeterminate errors.
C/C++ comments can be placed before the statement initializer or after the
statement terminator.

v Multiple SQL statements and C/C++ statements may be placed on the same
line. For example:

EXEC SQL OPEN c1; if (SQLCODE >= 0) EXEC SQL FETCH c1 INTO :hv;

v The SQL precompiler leaves CR/LFs and TABs in a quoted string as is.
v SQL comments are allowed on any line that is part of an embedded SQL

statement. These comments are not allowed in dynamically executed
statements. The format for an SQL comment is a double dash (--) followed
by a string of zero or more characters and terminated by a line end. Do not
place SQL comments after the SQL statement terminator as they will cause
compilation errors because they would appear to be part of the C/C++
language.
You can use comments in a static statement string wherever blanks are
allowed. Use the C/C++ comment delimiters /* */, or the SQL comment
symbol (--). //-style C++ comments are not permitted within static SQL
statements, but they may be used elsewhere in your program. The
precompiler removes comments before processing the SQL statement. You
cannot use the C and C++ comment delimiters /* */ or // in a dynamic
SQL statement. However, you can use them elsewhere in your program.

v You can continue SQL string literals and delimited identifiers over line
breaks in C and C++ applications. To do this, use a back slash (\) at the
end of the line where the break is desired. For example:

EXEC SQL SELECT "NA\
ME" INTO :n FROM staff WHERE name='Sa\
nders';

Chapter 20. Programming in C and C++ 587

Any new line characters (such as carriage return and line feed) are not
included in the string or delimited identifier.

v Substitution of white space characters such as end-of-line and TAB
characters occur as follows:
– When they occur outside quotation marks (but inside SQL statements),

end-of-lines and TABs are substituted by a single space.
– When they occur inside quotation marks, the end-of-line characters

disappear, provided the string is continued properly for a C program.
TABs are not modified.

Note that the actual characters used for end-of-line and TAB vary from
platform to platform. For example, OS/2 uses Carriage Return/Line Feed
for end-of-line, whereas UNIX-based systems use just a Line Feed.

Host Variables in C and C++

Host variables are C or C++ language variables that are referenced within
SQL statements. They allow an application to pass input data to and receive
output data from the database manager. After the application is precompiled,
host variables are used by the compiler as any other C/C++ variable. Follow
the rules described in the following sections when naming, declaring, and
using host variables.

Naming Host Variables in C and C++
The SQL precompiler identifies host variables by their declared name. The
following rules apply:
v Specify variable names up to 255 characters in length.
v Begin host variable names with prefixes other than SQL, sql, DB2, and db2,

which are reserved for system use. For example:
EXEC SQL BEGIN DECLARE SECTION;

char varsql; /* allowed */
char sqlvar; /* not allowed */
char SQL_VAR; /* not allowed */

EXEC SQL END DECLARE SECTION;

v The precompiler considers host variable names as global to a module. This
does not mean, however, that host variables have to be declared as global
variables; it is perfectly acceptable to declare host variables as local
variables within functions. For example, the following code will work
correctly:

void f1(int i)
{
EXEC SQL BEGIN DECLARE SECTION;

short host_var_1;
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT COL1 INTO :host_var_1 from TBL1;
}
void f2(int i)

588 Application Development Guide

{
EXEC SQL BEGIN DECLARE SECTION;

short host_var_2;
EXEC SQL END DECLARE SECTION;
EXEC SQL INSERT INTO TBL1 VALUES (:host_var_2);
}

It is also possible to have several local host variables with the same name
as long as they all have the same type and size. To do this, declare the first
occurrence of the host variable to the precompiler between BEGIN
DECLARE SECTION and END DECLARE SECTION statements, and leave
subsequent declarations of the variable out of declare sections. The
following code shows an example of this:

void f3(int i)
{
EXEC SQL BEGIN DECLARE SECTION;

char host_var_3[25];
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT COL2 INTO :host_var_3 FROM TBL2;
}
void f4(int i)
{
char host_var_3[25];
EXEC SQL INSERT INTO TBL2 VALUES (:host_var_3);
}

Since f3 and f4 are in the same module, and since host_var_3 has the same
type and length in both functions, a single declaration to the precompiler is
sufficient to use it in both places.

Declaring Host Variables in C and C++
An SQL declare section must be used to identify host variable declarations.
This alerts the precompiler to any host variables that can be referenced in
subsequent SQL statements.

The C/C++ precompiler only recognizes a subset of valid C or C++
declarations as valid host variable declarations. These declarations define
either numeric or character variables. Typedefs for host variable types are not
allowed. Host variables can be grouped into a single host structure. For more
information on host structures, see “Host Structure Support in C and C++” on
page 602. You can declare C++ class data members as host variables. For more
information on classes, see “Using Class Data Members as Host Variables in C
and C++” on page 607.

A numeric host variable can be used as an input or output variable for any
numeric SQL input or output value. A character host variable can be used as
an input or output variable for any character, date, time or timestamp SQL
input or output value. The application must ensure that output variables are
long enough to contain the values that they receive.

Chapter 20. Programming in C and C++ 589

For information on declaring host variables for structured types, see
“Declaring Structured Type Host Variables” on page 340.

“Syntax for Numeric Host Variables in C or C++” shows the syntax for
declaring numeric host variables in C or C++.

Syntax for Numeric Host Variables in C or C++

WW
auto
extern
static
register

const
volatile

(1)
float

(2)
double

(3)
short

int

sqlint32
(4)

long
int

sqlint64
__int64
long long

int
(5)

long
int

W

W X

X

,

varname
= value

*
& const

volatile

; WY

Notes:

1 REAL (SQLTYPE 480), length 4

2 DOUBLE (SQLTYPE 480), length 8

3 SMALLINT (SQLTYPE 500)

4 For maximum application portability, use sqlint32 and sqlint64 for
INTEGER and BIGINT host variables, respectively. By default, the use of
long host variables results in precompile error SQL0402 on platforms
where long is a 64 bit quantity, such as 64 BIT UNIX. Use the PREP

590 Application Development Guide

option LONGERROR NO to force DB2 to accept long variables as
acceptable host variable types and treat them as BIGINT variables.

5 For maximum application portability, use sqlint32 and sqlint64 for
INTEGER and BIGINT host variables, respectively. To use the BIGINT
data type, your platform must support 64 bit integer values. By default,
the use of long host variables results in precompile error SQL0402 on
platforms where long is a 64 bit quantity, such as 64 BIT UNIX. Use the
PREP option LONGERROR NO to force DB2 to accept long variables as
acceptable host variable types and treat them as BIGINT variables.

“Form 1: Syntax for Fixed and Null-terminated Character Host Variables in
C/C++” shows the syntax for declaring fixed and null-terminated character
host variables in C or C++.

Form 1: Syntax for Fixed and Null-terminated Character Host Variables in C/C++

WW
auto
extern
static
register

const
volatile

char
unsigned

W

W X

,

CHAR
C String = value

; WY

CHAR

X

(1)
varname

*
& const

volatile

Chapter 20. Programming in C and C++ 591

C String

X

(2)
varname [length]
(varname)

*
& const

volatile

Notes:

1 CHAR (SQLTYPE 452), length 1

2 Null-terminated C string (SQLTYPE 460); length can be any valid
constant expression

“Form 2: Syntax for Variable Length Character Host Variables in C/C++”
shows the syntax for declaring variable length character host variables in C or
C++.

Form 2: Syntax for Variable Length Character Host Variables in C/C++

WW
auto
extern
static
register

const
volatile

struct
tag

W

W
(1)

{ short var1 ; char var2 [length] ; }
int unsigned

W

W X

X

,

varname Values

*
& const

volatile

; WY

Values

= { value-1 , value-2 }

592 Application Development Guide

Notes:

1 In form 2, length can be any valid constant expression. Its value after
evaluation determines if the host variable is VARCHAR (SQLTYPE 448)
or LONG VARCHAR (SQLTYPE 456).

Variable Length Character Host Variable Considerations:

1. Although the database manager converts character data to either form 1 or
form 2 whenever possible, form 1 corresponds to column types CHAR or
VARCHAR while form 2 corresponds to column types VARCHAR and
LONG VARCHAR.

2. If form 1 is used with a length specifier [n], the value for the length
specifier after evaluation must be no greater than 32672, and the string
contained by the variable should be null-terminated.

3. If form 2 is used, the value for the length specifier after evaluation must
be no greater than 32 700.

4. In form 2, var1 and var2 must be simple variable references (no operators),
and cannot be used as host variables (varname is the host variable).

5. varname can be a simple variable name or it can include operators, such as
*varname. See “Pointer Data Types in C and C++” on page 606 for more
information.

6. The precompiler determines the SQLTYPE and SQLLEN of all host
variables. If a host variable appears in an SQL statement with an indicator
variable, the SQLTYPE is assigned to be the base SQLTYPE plus one, for
the duration of that statement.

7. The precompiler permits some declarations which are not syntactically
valid in C or C++. Refer to your compiler documentation if in doubt of a
particular declaration syntax.

Indicator Variables in C and C++
Indicator variables should be declared as a short data type.

Graphic Host Variable Declarations in C or C++
Graphic host variable declarations can take one of three forms:
v Single-graphic form
v null-terminated graphic form
v VARGRAPHIC structured form

For details on using graphic host variables, see “Handling Graphic Host
Variables in C and C++” on page 609.

“Syntax for Graphic Declaration (Single-Graphic Form and Null-Terminated
Graphic Form)” shows the syntax for declaring a graphic host variable using
the single-graphic form and the null-terminated graphic form.

Chapter 20. Programming in C and C++ 593

Syntax for Graphic Declaration (Single-Graphic Form and Null-Terminated Graphic
Form)

WW
auto
extern
static
register

const
volatile

(1)

sqldbchar
wchar_t

W

W X

,

CHAR
C String = value

; WY

CHAR

X

(2)
varname

*
& const

volatile

C String

X

(3)
varname [length]
(varname)

*
& const

volatile

Notes:

1 To determine which of the two graphic types should be used, see
“Selecting the wchar_t or sqldbchar Data Type in C and C++” on
page 610.

2 GRAPHIC (SQLTYPE 468), length 1

3 Null-terminated graphic string (SQLTYPE 400)

Graphic Host Variable Considerations:

1. The single-graphic form declares a fixed-length graphic string host
variable of length 1 with SQLTYPE of 468 or 469.

594 Application Development Guide

2. value is an initializer. A wide-character string literal (L-literal) should be
used if WCHARTYPE CONVERT precompiler option is used.

3. length can be any valid constant expression, and its value after evaluation
must be greater than or equal to 1 and not greater than the maximum
length of VARGRAPHIC, which is 16 336.

4. Null-terminated graphic strings are handled differently depending on the
value of the standards level precompile option setting. See
“Null-terminated Strings in C and C++” on page 604 for details.

“Syntax for Graphic Declaration (VARGRAPHIC Structured Form)” shows the
syntax for declaring a graphic host variable using the VARGRAPHIC
structured form.

Syntax for Graphic Declaration (VARGRAPHIC Structured Form)

WW
auto
extern
static
register

const
volatile

struct
tag

W

W
(1) (2)

{ short var-1 ; var-2 [length] ; }
int sqldbchar

wchar_t

W

W X

X

,

Variable ;

*
& const

volatile

WY

Variable:

variable-name
= { value-1 , value-2 }

Notes:

1 To determine which of the two graphic types should be used, see
“Selecting the wchar_t or sqldbchar Data Type in C and C++” on
page 610.

2 length can be any valid constant expression. Its value after evaluation

Chapter 20. Programming in C and C++ 595

determines if the host variable is VARGRAPHIC (SQLTYPE 464) or
LONG VARGRAPHIC (SQLTYPE 472). The value of length must be
greater than or equal to 1 and not greater than the maximum length of
LONG VARGRAPHIC which is 16350.

Graphic Declaration (VARGRAPHIC Structured Form) Considerations:

1. var-1 and var-2 must be simple variable references (no operators) and
cannot be used as host variables.

2. value-1 and value-2 are initializers for var-1 and var-2. value-1 must be an
integer and value-2 should be a wide-character string literal (L-literal) if
WCHARTYPE CONVERT precompiler option is used.

3. The struct tag can be used to define other data areas, but itself cannot be
used as a host variable.

LOB Data Declarations in C or C++
“Syntax for Large Object (LOB) Host Variables in C/C++” shows the syntax
for declaring large object (LOB) host variables in C or C++.

Syntax for Large Object (LOB) Host Variables in C/C++

WW
auto
extern
static
register

const
volatile

SQL TYPE IS BLOB
CLOB
DBCLOB

(1)
(length) W

W X

X

,

variable-name LOB Data

*
& const

volatile

W

W ; WY

LOB Data

={init-len,″init-data″}
=SQL_BLOB_INIT(″init-data″)
=SQL_CLOB_INIT(″init-data″)
=SQL_DBCLOB_INIT(″init-data″)

Notes:

1 length can be any valid constant expression, in which the constant K, M,
or G can be used. The value of length after evaluation for BLOB and

596 Application Development Guide

CLOB must be 1 <= length <= 2 147 483 647. The value of length after
evaluation for DBCLOB must 1 <= length <= 1 073 741 823.

LOB Host Variable Considerations:

1. The SQL TYPE IS clause is needed in order to distinguish the three
LOB-types from each other so that type-checking and function resolution
can be carried out for LOB-type host variables that are passed to functions.

2. SQL TYPE IS, BLOB, CLOB, DBCLOB, K, M, G may be in mixed case.
3. The maximum length allowed for the initialization string, ″init-data″, is

32702 bytes including string delimiters (the same as the existing limit on
C/C++ strings within the precompiler).

4. The initialization length, init-len, must be a numeric constant (i.e. it cannot
include K, M, or G).

5. A length for the LOB must be specified; that is, the following declaration
is not permitted:

SQL TYPE IS BLOB my_blob;

6. If the LOB is not initialized within the declaration, then no initialization
will be done within the precompiler generated code.

7. If a DBCLOB is initialized, it is the user’s responsibility to prefix the string
with an ’L’ (indicating a wide-character string).

Note: Wide character literals, for example, L"Hello", should only be used
in a precompiled program if the WCHARTYPE CONVERT
precompile option is selected.

8. The precompiler generates a structure tag which can be used to cast to the
host variable’s type.

BLOB Example:

Declaration:
static Sql Type is Blob(2M) my_blob=SQL_BLOB_INIT("mydata");

Results in the generation of the following structure:
static struct my_blob_t {

sqluint32 length;
char data[2097152];

} my_blob=SQL_BLOB_INIT("mydata");

CLOB Example:

Declaration:
volatile sql type is clob(125m) *var1, var2 = {10, "data5data5"};

Results in the generation of the following structure:

Chapter 20. Programming in C and C++ 597

volatile struct var1_t {
sqluint32 length;
char data[131072000];

} * var1, var2 = {10, "data5data5"};

DBCLOB Example:

Declaration:
SQL TYPE IS DBCLOB(30000) my_dbclob1;

Precompiled with the WCHARTYPE NOCONVERT option, results in the
generation of the following structure:

struct my_dbclob1_t {
sqluint32 length;
sqldbchar data[30000];

} my_dbclob1;

Declaration:
SQL TYPE IS DBCLOB(30000) my_dbclob2 = SQL_DBCLOB_INIT(L"mydbdata");

Precompiled with the WCHARTYPE CONVERT option, results in the
generation of the following structure:

struct my_dbclob2_t {
sqluint32 length;
wchar_t data[30000];

} my_dbclob2 = SQL_DBCLOB_INIT(L"mydbdata");

LOB Locator Declarations in C or C++
“Syntax for Large Object (LOB) Locator Host Variables in C/C++” shows the
syntax for declaring large object (LOB) locator host variables in C or C++.

Syntax for Large Object (LOB) Locator Host Variables in C/C++

WW
auto
extern
static
register

const
volatile

SQL TYPE IS BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR

W

W X

,

Variable ; WY

Variable

598 Application Development Guide

X * variable-name
& const = init-value

volatile

LOB Locator Host Variable Considerations:

1. SQL TYPE IS, BLOB_LOCATOR, CLOB_LOCATOR, DBCLOB_LOCATOR
may be in mixed case.

2. init-value permits the initialization of pointer and reference locator
variables. Other types of initialization will have no meaning.

CLOB Locator Example (other LOB locator type declarations are similar):

Declaration:
SQL TYPE IS CLOB_LOCATOR my_locator;

Results in the generation of the following declaration:
sqlint32 my_locator;

File Reference Declarations in C or C++
“Syntax for File Reference Host Variables in C/C++” shows the syntax for
declaring file reference host variables in C or C++.

Syntax for File Reference Host Variables in C/C++

WW
auto
extern
static
register

const
volatile

SQL TYPE IS BLOB_FILE
CLOB_FILE
DBCLOB_FILE

X

,

Variable W

W ; WY

Variable

X * variable-name
& const = init-value

volatile

Note:

Chapter 20. Programming in C and C++ 599

v SQL TYPE IS, BLOB_FILE, CLOB_FILE, DBCLOB_FILE may be in mixed
case.

CLOB File Reference Example (other LOB file reference type declarations are
similar):

Declaration:
static volatile SQL TYPE IS BLOB_FILE my_file;

Results in the generation of the following structure:
static volatile struct {

sqluint32 name_length;
sqluint32 data_length;
sqluint32 file_options;

char name[255];
} my_file;

Initializing Host Variables in C and C++
In C++ declare sections, you cannot initialize host variables using parentheses.
The following example shows the correct and incorrect methods of
initialization in a declare section:

EXEC SQL BEGIN DECLARE SECTION;
short my_short_2 = 5; /* correct */
short my_short_1(5); /* incorrect */

EXEC SQL END DECLARE SECTION;

C Macro Expansion
The C/C++ precompiler cannot directly process any C macro used in a
declaration within a declare section. Instead, you must first preprocess the
source file with an external C preprocessor. To do this, specify the exact
command for invoking a C preprocessor to the precompiler through the
PREPROCESSOR option.

When you specify the PREPROCESSOR option, the precompiler first processes
all the SQL INCLUDE statements by incorporating the contents of all the files
referred to in the SQL INCLUDE statement into the source file. The
precompiler then invokes the external C preprocessor using the command you
specify with the modified source file as input. The preprocessed file, which
the precompiler always expects to have an extension of ″.i″, is used as the
new source file for the rest of the precompiling process.

Any #line macro generated by the precompiler no longer references the
original source file, but instead references the preprocessed file. In order to
relate any compiler errors back to the original source file, retain comments in
the preprocessed file. This helps you to locate various sections of the original
source files, including the header files. The option to retain comments is
commonly available in C preprocessors, and you can include the option in the

600 Application Development Guide

command you specify through the PREPROCESSOR option. You should not
have the C preprocessor output any #line macros itself, as they may be
incorrectly mixed with ones generated by the precompiler.

Notes on Using Macro Expansion:

1. The command you specify through the PREPROCESSOR option should
include all the desired options but not the name of the input file. For
example, for IBM C on AIX you can use the option:

xlC -P -DMYMACRO=1

2. The precompiler expects the command to generate a preprocessed file with
a .i extension. However, you cannot use redirection to generate the
preprocessed file. For example, you cannot use the following option to
generate a preprocessed file:

xlC -E > x.i

3. Any errors the external C preprocessor encounters are reported in a file
with a name corresponding to the original source file but with a .err
extension.

For example, you can use macro expansion in your source code as follows:
#define SIZE 3

EXEC SQL BEGIN DECLARE SECTION;
char a[SIZE+1];
char b[(SIZE+1)*3];
struct
{

short length;
char data[SIZE*6];

} m;
SQL TYPE IS BLOB(SIZE+1) x;
SQL TYPE IS CLOB((SIZE+2)*3) y;
SQL TYPE IS DBCLOB(SIZE*2K) z;

EXEC SQL END DECLARE SECTION;

The previous declarations resolve to the following after you use the
PREPROCESSOR option:
EXEC SQL BEGIN DECLARE SECTION;

char a[4];
char b[12];
struct
{

short length;
char data[18];

} m;
SQL TYPE IS BLOB(4) x;
SQL TYPE IS CLOB(15) y;
SQL TYPE IS DBCLOB(6144) z;

EXEC SQL END DECLARE SECTION;

Chapter 20. Programming in C and C++ 601

Host Structure Support in C and C++
With host structure support, the C/C++ precompiler allows host variables to
be grouped into a single host structure. This provides a shorthand for
referencing that same set of host variables in an SQL statement. For example,
the following host structure can be used to access some of the columns in the
STAFF table of the SAMPLE database:

struct tag
{

short id;
struct
{

short length;
char data[10];

} name;
struct
{

short years;
double salary;

} info;
} staff_record;

The fields of a host structure can be any of the valid host variable types.
These include all numeric, character, and large object types. Nested host
structures are also supported up to 25 levels. In the example above, the field
info is a sub-structure, whereas the field name is not, as it represents a
VARCHAR field. The same principle applies to LONG VARCHAR,
VARGRAPHIC and LONG VARGRAPHIC. Pointer to host structure is also
supported.

There are two ways to reference the host variables grouped in a host structure
in an SQL statement:
1. The host structure name can be referenced in an SQL statement.

EXEC SQL SELECT id, name, years, salary
INTO :staff_record
FROM staff
WHERE id = 10;

The precompiler converts the reference to staff_record into a list,
separated by commas, of all the fields declared within the host structure.
Each field is qualified with the host structure names of all levels to
prevent naming conflicts with other host variables or fields. This is
equivalent to the following method.

2. Fully qualified host variable names can be referenced in an SQL statement.
EXEC SQL SELECT id, name, years, salary

INTO :staff_record.id, :staff_record.name,
:staff_record.info.years, :staff_record.info.salary

FROM staff
WHERE id = 10;

602 Application Development Guide

References to field names must be fully qualified even if there are no other
host variables with the same name. Qualified sub-structures can also be
referenced. In the example above, :staff_record.info can be used to
replace :staff_record.info.years, :staff_record.info.salary.

Since a reference to a host structure (first example) is equivalent to a
comma-separated list of its fields, there are instances where this type of
reference may lead to an error. For example:

EXEC SQL DELETE FROM :staff_record;

Here, the DELETE statement expects a single character-based host variable. By
giving a host structure instead, the statement results in a precompile-time
error:

SQL0087N Host variable "staff_record" is a structure used where structure
references are not permitted.

Other uses of host structures, which may cause an SQL0087N error to occur,
include PREPARE, EXECUTE IMMEDIATE, CALL, indicator variables and
SQLDA references. Host structures with exactly one field are permitted in
such situations, as are references to individual fields (second example).

Indicator Tables in C and C++
An indicator table is a collection of indicator variables to be used with a host
structure. It must be declared as an array of short integers. For example:

short ind_tab[10];

The example above declares an indicator table with 10 elements. The
following shows the way it can be used in an SQL statement:

EXEC SQL SELECT id, name, years, salary
INTO :staff_record INDICATOR :ind_tab
FROM staff
WHERE id = 10;

The following lists each host structure field with its corresponding indicator
variable in the table:

staff_record.id ind_tab[0]

staff_record.name ind_tab[1]

staff_record.info.years ind_tab[2]

staff_record.info.salary ind_tab[3]

Note: An indicator table element, for example ind_tab[1], cannot be
referenced individually in an SQL statement. The keyword INDICATOR

Chapter 20. Programming in C and C++ 603

is optional. The number of structure fields and indicators do not have
to match; any extra indicators are unused, and any extra fields do not
have indicators assigned to them.

A scalar indicator variable can also be used in the place of an indicator table
to provide an indicator for the first field of the host structure. This is
equivalent to having an indicator table with only 1 element. For example:

short scalar_ind;

EXEC SQL SELECT id, name, years, salary
INTO :staff_record INDICATOR :scalar_ind
FROM staff
WHERE id = 10;

If an indicator table is specified along with a host variable instead of a host
structure, only the first element of the indicator table, for example ind_tab[0],
will be used:

EXEC SQL SELECT id
INTO :staff_record.id INDICATOR :ind_tab
FROM staff
WHERE id = 10;

If an array of short integers is declared within a host structure:
struct tag
{

short i[2];
} test_record;

The array will be expanded into its elements when test_record is referenced
in an SQL statement making :test_record equivalent to
:test_record.i[0], :test_record.i[1].

Null-terminated Strings in C and C++
C/C++ null-terminated strings have their own SQLTYPE (460/461 for
character and 468/469 for graphic).

C/C++ null-terminated strings are handled differently depending on the value
of the LANGLEVEL precompiler option. If a host variable of one of these
SQLTYPEs and declared length n is specified within an SQL statement, and
the number of bytes (for character types) or double-byte characters (for
graphic types) of data is k, then:
v If the LANGLEVEL option on the PREP command is SAA1 (the default):

For Output:

If... Then...

k > n n characters are moved to the target host
variable, SQLWARN1 is set to 'W',

604 Application Development Guide

SQLCODE 0 (SQLSTATE 01004). No
null-terminator is placed in the string. If an
indicator variable was specified with the
host variable, the value of the indicator
variable is set to k.

k = n k characters are moved to the target host
variable and SQLWARN1 is set to 'N', and
SQLCODE 0 (SQLSTATE 01004). No
null-terminator is placed in the string. If an
indicator variable was specified with the
host variable, the value of the indicator
variable is set to 0.

k < n k characters are moved to the target host
variable and a null character is placed in
character k + 1. If an indicator variable was
specified with the host variable, the value of
the indicator variable is set to 0.

For Input: When the database manager encounters an input host
variable of one of these SQLTYPEs that does not end with a
null-terminator, it will assume that character n+1 will
contain the null-terminator character.

v If the LANGLEVEL option on the PREP command is MIA:

For Output:

If... Then...

k >= n n - 1 characters are moved to the target host
variable, SQLWARN1 is set to 'W', and
SQLCODE 0 (SQLSTATE 01501). The nth
character is set to the null-terminator. If an
indicator variable was specified with the
host variable, the value of the indicator
variable is set to k.

k + 1 = n k characters are moved to the target host
variable, and the null-terminator is placed
in character n. If an indicator variable was
specified with the host variable, the value of
the indicator variable is set to 0.

k + 1 < n k characters are moved to the target host
variable, n - k -1 blanks are appended on
the right starting at character k + 1, then the
null-terminator is placed in character n. If

Chapter 20. Programming in C and C++ 605

an indicator variable was specified with the
host variable, the value of the indicator
variable is set to 0.

For Input: When the database manager encounters an input host
variable of one of these SQLTYPEs that does not end with a
null character, SQLCODE -302 (SQLSTATE 22501) are
returned

When specified in any other SQL context, a host variable of SQLTYPE 460
with length n is treated as a VARCHAR data type with length n as defined
above. When specified in any other SQL context, a host variable of SQLTYPE
468 with length n is treated as a VARGRAPHIC data type with length n as
defined above.

Pointer Data Types in C and C++
Host variables may be declared as pointers to specific data types with the
following restrictions:
v If a host variable is declared as a pointer, then no other host variable may

be declared with that same name within the same source file. The following
example is not allowed:

char mystring[20];
char (*mystring)[20];

v Use parentheses when declaring a pointer to a null-terminated character
array. In all other cases, parentheses are not allowed. For example:

EXEC SQL BEGIN DECLARE SECTION;
char (*arr)[10]; /* correct */
char *(arr); /* incorrect */
char *arr[10]; /* incorrect */

EXEC SQL END DECLARE SECTION;

The first declaration is a pointer to a 10-byte character array. This is a valid
host variable. The second is an invalid declaration. The parentheses are not
allowed in a pointer to a character. The third declaration is an array of
pointers. This is not a supported data type.

The host variable declaration:
char *ptr

is accepted, but it does not mean null-terminated character string of
undetermined length. Instead, it means a pointer to a fixed-length, single
character host variable. This may not be what is intended. To define a pointer
host variable that can indicate different character strings, use the first
declaration form above.

606 Application Development Guide

v When pointer host variables are used in SQL statements, they should be
prefixed by the same number of asterisks as they were declared with, as in
the following example:

EXEC SQL BEGIN DECLARE SECTION;
char (*mychar)[20]; /* Pointer to character array of 20 bytes */

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT column INTO :*mychar FROM table; /* Correct */

v Only the asterisk may be used as an operator over a host variable name.
v The maximum length of a host variable name is not affected by the number

of asterisks specified, because asterisks are not considered part of the name.
v Whenever using a pointer variable in an SQL statement, you should leave

the optimization level precompile option (OPTLEVEL) at the default setting
of 0 (no optimization). This means that no SQLDA optimization will be
done by the database manager.

Using Class Data Members as Host Variables in C and C++
You can declare class data members as host variables (but not classes or
objects themselves). The following example illustrates the method to use:

class STAFF
{

private:
EXEC SQL BEGIN DECLARE SECTION;

char staff_name[20];
short int staff_id;
double staff_salary;

EXEC SQL END DECLARE SECTION;
short staff_in_db;

.

.
};

Data members are only directly accessible in SQL statements through the
implicit this pointer provided by the C++ compiler in class member functions.
You cannot explicitly qualify an object instance (such as
SELECT name INTO :my_obj.staff_name ...) in an SQL statement.

If you directly refer to class data members in SQL statements, the database
manager resolves the reference using the this pointer. For this reason, you
should leave the optimization level precompile option (OPTLEVEL) at the
default setting of 0 (no optimization). This means that no SQLDA
optimization will be done by the database manager. (This is true whenever
pointer host variables are involved in SQL statements.)

The following example shows how you might directly use class data members
which you have declared as host variables in an SQL statement.

Chapter 20. Programming in C and C++ 607

class STAFF
{

...

public:

...

short int hire(void)
{

EXEC SQL INSERT INTO staff (name,id,salary)
VALUES (:staff_name, :staff_id, :staff_salary);

staff_in_db = (sqlca.sqlcode == 0);
return sqlca.sqlcode;

}
};

In this example, class data members staff_name, staff_id, and staff_salary,
are used directly in the INSERT statement. Because they have been declared
as host variables (see the example in
“Example of Declaring Class Data Members as Host Variables” on
page 607), they are implicitly qualified to the current object with the this
pointer. In SQL statements, you can also refer to data members that are not
accessible through the this pointer. You do this by referring to them indirectly
using pointer or reference host variables.

The following example shows a new method, asWellPaidAs that takes a second
object, otherGuy. This method references its members indirectly through a local
pointer or reference host variable, as you cannot reference its members
directly within the SQL statement.

short int STAFF::asWellPaidAs(STAFF otherGuy)
{

EXEC SQL BEGIN DECLARE SECTION;
short &otherID = otherGuy.staff_id
double otherSalary;

EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT SALARY INTO :otherSalary

FROM STAFF WHERE id = :otherID;
if(sqlca.sqlcode == 0)

return staff_salary >= otherSalary;
else

return 0;
}

Using Qualification and Member Operators in C and C++
You cannot use the C++ scope resolution operator '::', nor the C/C++ member
operators '.' or '->' in embedded SQL statements. You can easily accomplish
the same thing through use of local pointer or reference variables, which are

608 Application Development Guide

set outside the SQL statement to point to the desired scoped variable, and
then used inside the SQL statement to refer to it. The following example
shows the correct method to use:

EXEC SQL BEGIN DECLARE SECTION;
char (& localName)[20] = ::name;

EXEC SQL END DECLARE SECTION;
EXEC SQL

SELECT name INTO :localName FROM STAFF
WHERE name = 'Sanders';

Handling Graphic Host Variables in C and C++
To handle graphic data in C or C++ applications, use host variables based on
either the wchar_t C/C++ data type or the sqldbchar data type provided by
DB2. You can assign these types of host variables to columns of a table that
are GRAPHIC, VARGRAPHIC, or DBCLOB. For example, you can update or
select DBCS data from GRAPHIC or VARGRAPHIC columns of a table.

There are three valid forms for a graphic host variable:
v Single-graphic form.

Single-graphic host variables have an SQLTYPE of 468/469 that is
equivalent to GRAPHIC(1) SQL data type. (See “Syntax for Graphic
Declaration (Single-Graphic Form and Null-Terminated Graphic Form)” on
page 593.)

v Null-terminated graphic form.
Null-terminated refers to the situation where all the bytes of the last
character of the graphic string contain binary zeros ('\0's). They have an
SQLTYPE of 400/401. (See “Syntax for Graphic Declaration (Single-Graphic
Form and Null-Terminated Graphic Form)” on page 593.)

v VARGRAPHIC structured form.
VARGRAPHIC structured host variables have an SQLTYPE of 464/465 if
their length is between 1 and 16 336 bytes. They have an SQLTYPE of
472/473 if their length is between 2000 and 16 350 bytes. (See “Syntax for
Graphic Declaration (VARGRAPHIC Structured Form)” on page 595.)

Multi-byte Character Encoding in C and C++
Some character encoding schemes, particularly those from east Asian countries
require multiple bytes to represent a character. This external representation of
data is called the multi-byte character code representation of a character and
includes double-byte characters (characters represented by two bytes). Graphic
data in DB2 consists of double-byte characters.

To manipulate character strings with double-byte characters, it may be
convenient for an application to use an internal representation of data. This
internal representation is called the wide-character code representation of the
double-byte characters and is the format customarily used in the wchar_t
C/C++ data type. Subroutines that conform to ANSI C and X/OPEN

Chapter 20. Programming in C and C++ 609

Portability Guide 4 (XPG4) are available to process wide-character data and to
convert data in wide-character format to and from multi-byte format.

Note that although an application can process character data in either
multi-byte format or wide-character format, interaction with the database
manager is done with DBCS (multi-byte) character codes only. That is, data is
stored in and retrieved from GRAPHIC columns in DBCS format. The
WCHARTYPE precompiler option is provided to allow application data in
wide-character format to be converted to/from multi-byte format when it is
exchanged with the database engine.

Selecting the wchar_t or sqldbchar Data Type in C and C++
While the size and encoding of DB2 graphic data is constant from one
platform to another for a particular code page, the size and internal format of
the ANSI C or C++ wchar_t data type depends on which compiler you use
and which platform you are on. The sqldbchar data type, however, is defined
by DB2 to be two bytes in size, and is intended to be a portable way of
manipulating DBCS and UCS-2 data in the same format in which it is stored
in the database. For more information on UCS-2 data, see “Japanese and
Traditional Chinese EUC and UCS-2 Code Set Considerations” on page 511
and refer to the Administration Guide.

You can define all DB2 C graphic host variable types using either wchar_t or
sqldbchar. You must use wchar_t if you build your application using the
WCHARTYPE CONVERT precompile option (as described in “The
WCHARTYPE Precompiler Option in C and C++” on page 611).

Note: When specifying the WCHARTYPE CONVERT option on a Windows
platform, you should note that wchar_t on Windows platforms is
Unicode. Therefore, if your C/C++ compiler’s wchar_t is not Unicode,
the wcstombs() function call may fail with SQLCODE -1421
(SQLSTATE=22504). If this happens, you can specify the WCHARTYPE
NOCONVERT option, and explicitly call the wcstombs() and
mbstowcs() functions from within your program.

If you build your application with the WCHARTYPE NOCONVERT
precompile option, you should use sqldbchar for maximum portability
between different DB2 client and server platforms. You may use wchar_t with
WCHARTYPE NOCONVERT, but only on platforms where wchar_t is defined
as two bytes in length.

If you incorrectly use either wchar_t or sqldbchar in host variable
declarations, you will receive an SQLCODE 15 (no SQLSTATE) at precompile
time.

610 Application Development Guide

The WCHARTYPE Precompiler Option in C and C++
Using the WCHARTYPE precompiler option, you can specify which graphic
character format you want to use in your C/C++ application. This option
provides you with the flexibility to choose between having your graphic data
in multi-byte format or in wide-character format. There are two possible
values for the WCHARTYPE option:

CONVERT
If you select the WCHARTYPE CONVERT option, character codes are
converted between the graphic host variable and the database
manager. For graphic input host variables, the character code
conversion from wide-character format to multi-byte DBCS character
format is performed before the data is sent to the database manager,
using the ANSI C function wcstombs(). For graphic output host
variables, the character code conversion from multi-byte DBCS
character format to wide-character format is performed before the
data received from the database manager is stored in the host
variable, using the ANSI C function mbstowcs().

The advantage to using WCHARTYPE CONVERT is that it allows
your application to fully exploit the ANSI C mechanisms for dealing
with wide-character strings (L-literals, ’wc’ string functions, etc.)
without having to explicitly convert the data to multi-byte format
before communicating with the database manager. The disadvantage
is that the implicit conversions may have an impact on the
performance of your application at run time, and may increase
memory requirements.

If you select WCHARTYPE CONVERT, declare all graphic host
variables using wchar_t instead of sqldbchar.

If you want WCHARTYPE CONVERT behavior, but your application
does not need to be precompiled (for example, a CLI application),
then define the C preprocessor macro SQL_WCHART_CONVERT at compile
time. This ensures that certain definitions in the DB2 header files use
the data type wchar_t instead of sqldbchar.

Note: The WCHARTYPE CONVERT precompile option is not
currently supported in programs running on the DB2 Windows
3.1 client. For those programs, use the default (WCHARTYPE
NOCONVERT).

NOCONVERT (default)
If you choose the WCHARTYPE NOCONVERT option, or do not
specify any WCHARTYPE option, no implicit character code
conversion occurs between the application and the database manager.
Data in a graphic host variable is sent to and received from the
database manager as unaltered DBCS characters. This has the
advantage of improved performance, but the disadvantage that your

Chapter 20. Programming in C and C++ 611

application must either refrain from using wide-character data in
wchar_t host variables, or must explicitly call the wcstombs() and
mbstowcs() functions to convert the data to and from multi-byte
format when interfacing with the database manager.

If you select WCHARTYPE NOCONVERT, declare all graphic host
variables using the sqldbchar type for maximum portability to other
DB2 client/server platforms.

Refer to the Command Reference for more information.

Other guidelines you need to observe are:
v Since wchar_t or sqldbchar support is used to handle DBCS data, its use

requires DBCS or EUC capable hardware and software. This support is only
available in the DBCS environment of DB2 Universal Database, or for
dealing with GRAPHIC data in any application (including single-byte
applications) connected to a UCS-2 database.

v Non-DBCS characters, and wide-characters which can be converted to
non-DBCS characters, should not be used in graphic strings. Non-DBCS
characters refers to single-byte characters, and non-double byte characters.
Graphic strings are not validated to ensure that their values contain only
double-byte character code points. Graphic host variables must contain only
DBCS data, or, if WCHARTYPE CONVERT is in effect, wide-character data
which converts to DBCS data. You should store mixed double-byte and
single-byte data in character host variables. Note that mixed data host
variables are unaffected by the setting of the WCHARTYPE option.

v In applications where the WCHARTYPE NOCONVERT precompile option
is used, L-literals should not be used in conjunction with graphic host
variables, since L-literals are in wide-character format. An L-literal is a C
wide-character string literal prefixed by the letter L which has the data type
"array of wchar_t". For example, L"dbcs-string" is an L-literal.

v In applications where the WCHARTYPE CONVERT precompile option is
used, L-literals can be used to initialize wchar_t host variables, but cannot
be used in SQL statements. Instead of using L-literals, SQL statements
should use graphic string constants, which are independent of the
WCHARTYPE setting.

v The setting of the WCHARTYPE option affects graphic data passed to and
from the database manager using the SQLDA structure as well as host
variables. If WCHARTYPE CONVERT is in effect, graphic data received
from the application through an SQLDA will be presumed to be in
wide-character format, and will be converted to DBCS format via an
implicit call to wcstombs(). Similarly, graphic output data received by an
application will have been converted to wide-character format before being
placed in application storage.

612 Application Development Guide

v Not-fenced stored procedures must be precompiled with the WCHARTYPE
NOCONVERT option. Ordinary fenced stored procedures may be
precompiled with either the CONVERT or NOCONVERT options, which
will affect the format of graphic data manipulated by SQL statements
contained in the stored procedure. In either case, however, any graphic data
passed into the stored procedure through the SQLDA will be in DBCS
format. Likewise, data passed out of the stored procedure through the
SQLDA must be in DBCS format.

v If an application calls a stored procedure through the Database Application
Remote Interface (DARI) interface (the sqleproc() API), any graphic data in
the input SQLDA must be in DBCS format, or in UCS-2 if connected to a
UCS-2 database, regardless of the state of the calling application’s
WCHARTYPE setting. Likewise, any graphic data in the output SQLDA
will be returned in DBCS format, or in UCS-2 if connected to a UCS-2
database, regardless of the WCHARTYPE setting.

v If an application calls a stored procedure through the SQL CALL statement,
graphic data conversion will occur on the SQLDA, depending on the calling
application’s WCHARTYPE setting.

v Graphic data passed to user-defined functions (UDFs) will always be in
DBCS format. Likewise, any graphic data returned from a UDF will be
assumed to be in DBCS format for DBCS databases, and UCS-2 format for
EUC and UCS-2 databases.

v Data stored in DBCLOB files through the use of DBCLOB file reference
variables is stored in either DBCS format, or, in the case of UCS-2
databases, in UCS-2 format. Likewise, input data from DBCLOB files is
retrieved either in DBCS format, or, in the case of UCS-2 databases, in
UCS-2 format.

Notes:

1. If you precompile C applications using the WCHARTYPE CONVERT
option, DB2 validates the applications’ graphic data on both input and
output as the data is passed through the conversion functions. If you do
not use the CONVERT option, no conversion of graphic data, and hence
no validation occurs. In a mixed CONVERT/NOCONVERT environment,
this may cause problems if invalid graphic data is inserted by a
NOCONVERT application and then fetched by a CONVERT application.
This data fails the conversion with an SQLCODE -1421 (SQLSTATE 22504)
on a FETCH in the CONVERT application.

2. The WCHARTYPE CONVERT precompile option is not currently
supported for programs running on the DB2 Windows 3.1 client. In this
case, use the default WCHARTYPE NOCONVERT option.

Chapter 20. Programming in C and C++ 613

Japanese or Traditional Chinese EUC, and UCS-2 Considerations in C and
C++

If your application code page is Japanese or Traditional Chinese EUC, or if
your application connects to a UCS-2 database, you can access GRAPHIC
columns at a database server by using either the CONVERT or the
NOCONVERT option, and wchar_t or sqldbchar graphic host variables, or
input/output SQLDAs. In this section, DBCS format refers to the UCS-2
encoding scheme for EUC data. Consider the following cases:
v CONVERT option used.

The DB2 client converts graphic data from the wide character format to
your application code page, then to UCS-2 before sending the input SQLDA
to the database server. Any graphic data is sent to the database server
tagged with the UCS-2 code page identifier. Mixed character data is tagged
with the application code page identifier. When graphic data is retrieved
from a database by a client, it is tagged with the UCS-2 code page
identifier. The DB2 client converts the data from UCS-2 to the client
application code page, then to the wide character format. If an input
SQLDA is used instead of a host variable, then you are required to ensure
that graphic data is encoded using the wide character format. This data will
be converted to UCS-2 and then sent to the database server. These
conversions will impact performance.

v NOCONVERT option used.
The graphic data is assumed by DB2 to be encoded using UCS-2 and is
tagged with the UCS-2 code page, and no conversions are done. DB2
assumes that the graphic host variable is being used simply as a bucket.
When the NOCONVERT option is chosen, graphic data retrieved from the
database server is passed to the application encoded using UCS-2. Any
conversions from the application code page to UCS-2 and from UCS-2 to
the application code page are your responsibility. Data tagged as UCS-2 is
sent to the database server without any conversions or alterations.

To minimize conversions you can either use the NOCONVERT option and
handle the conversions in your application, or not use GRAPHIC columns.
For the client environments where wchar_t encoding is in two-byte Unicode,
for example Windows NT or AIX version 4.3 and higher, you can use the
NOCONVERT option and work directly with UCS-2. In such cases, your
application should handle the difference between big-endian and little-endian
architectures. With NOCONVERT option, DB2 Universal Database uses
sqldbchar which is always two-byte big-endian.

Do not assign IBM-eucJP/IBM-eucTW CS0 (7-bit ASCII) and IBM-eucJP CS2
(Katakana) data to graphic host variables either after conversion to UCS-2 (if
NOCONVERT is specified) or by conversion to the wide character format (if
CONVERT is specified). This is because characters in both of these EUC code
sets become single-byte when converted from UCS-2 to PC DBCS.

614 Application Development Guide

In general, although eucJP and eucTW store GRAPHIC data as UCS-2, the
GRAPHIC data in these database is still non-ASCII eucJP or eucTW data.
Specifically, any space padded to such GRAPHIC data is DBCS space (also
known as ideographic space in UCS-2, U+3000). For a UCS-2 database,
however, GRAPHIC data can contain any UCS-2 character, and space padding
is done with UCS-2 space, U+0020. Keep this difference in mind when you
code applications to retrieve UCS-2 data from a UCS-2 database versus UCS-2
data from eucJP and eucTW databases.

For general EUC application development guidelines, see “Japanese and
Traditional Chinese EUC and UCS-2 Code Set Considerations” on page 511.

Supported SQL Data Types in C and C++

Certain predefined C and C++ data types correspond to the database manager
column types. Only these C/C++ data types can be declared as host variables.

Table 30 shows the C/C++ equivalent of each column type. When the
precompiler finds a host variable declaration, it determines the appropriate
SQL type value. The database manager uses this value to convert the data
exchanged between the application and itself.

Note: There is no host variable support for the DATALINK data type in any
of the DB2 host languages.

Table 30. SQL Data Types Mapped to C/C++ Declarations

SQL Column Type1 C/C++ Data Type SQL Column Type Description

SMALLINT
(500 or 501)

short
short int
sqlint16

16-bit signed integer

INTEGER
(496 or 497)

long
long int
sqlint322

32-bit signed integer

BIGINT
(492 or 493)

long long
long
__int64
sqlint643

64-bit signed integer

REAL4

(480 or 481)
float Single-precision floating point

DOUBLE5

(480 or 481)
double Double-precision floating point

DECIMAL(p,s)
(484 or 485)

No exact equivalent; use double Packed decimal

(Consider using the CHAR and DECIMAL
functions to manipulate packed decimal
fields as character data.)

Chapter 20. Programming in C and C++ 615

Table 30. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type1 C/C++ Data Type SQL Column Type Description

CHAR(1)
(452 or 453)

char Single character

CHAR(n)
(452 or 453)

No exact equivalent; use
char[n+1] where n is large enough
to hold the data
1<=n<=254

Fixed-length character string

VARCHAR(n)
(448 or 449)

struct tag {
short int;
char[n]
}

1<=n<=32 672

Non null-terminated varying character string
with 2-byte string length indicator

Alternately use char[n+1] where n
is large enough to hold the data
1<=n<=32 672

null-terminated variable-length character
string
Note: Assigned an SQL type of 460/461.

LONG VARCHAR
(456 or 457)

struct tag {
short int;
char[n]
}

32 673<=n<=32 700

Non null-terminated varying character string
with 2-byte string length indicator

CLOB(n)
(408 or 409)

sql type is
clob(n)

1<=n<=2 147 483 647

Non null-terminated varying character string
with 4-byte string length indicator

CLOB locator variable6

(964 or 965)
sql type is

clob_locator
Identifies CLOB entities residing on the
server

CLOB file reference variable6

(920 or 921)
sql type is

clob_file
Descriptor for file containing CLOB data

BLOB(n)
(404 or 405)

sql type is
blob(n)

1<=n<=2 147 483 647

Non null-terminated varying binary string
with 4-byte string length indicator

BLOB locator variable6

(960 or 961)
sql type is

blob_locator
Identifies BLOB entities on the server

BLOB file reference variable6

(916 or 917)
sql type is

blob_file
Descriptor for the file containing BLOB data

DATE
(384 or 385)

null-terminated character form Allow at least 11 characters to accommodate
the null-terminator.

VARCHAR structured form Allow at least 10 characters.

TIME
(388 or 389)

null-terminated character form Allow at least 9 characters to accommodate
the null-terminator.

VARCHAR structured form Allow at least 8 characters.

616 Application Development Guide

Table 30. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type1 C/C++ Data Type SQL Column Type Description

TIMESTAMP
(392 or 393)

null-terminated character form Allow at least 27 characters to accommodate
the null-terminator.

VARCHAR structured form Allow at least 26 characters.

Note: The following data types are only available in the DBCS or EUC environment when precompiled with the
WCHARTYPE NOCONVERT option.

GRAPHIC(1)
(468 or 469)

sqldbchar Single double-byte character

GRAPHIC(n)
(468 or 469)

No exact equivalent; use
sqldbchar[n+1] where n is large
enough to hold the data
1<=n<=127

Fixed-length double-byte character string

VARGRAPHIC(n)
(464 or 465)

struct tag {
short int;
sqldbchar[n]
}

1<=n<=16 336

Non null-terminated varying double-byte
character string with 2-byte string length
indicator

Alternately use sqldbchar[n+1]
where n is large enough to hold
the data
1<=n<=16 336

null-terminated variable-length double-byte
character string
Note: Assigned an SQL type of 400/401.

LONG VARGRAPHIC
(472 or 473)

struct tag {
short int;
sqldbchar[n]
}

16 337<=n<=16 350

Non null-terminated varying double-byte
character string with 2-byte string length
indicator

Note: The following data types are only available in the DBCS or EUC environment when precompiled with the
WCHARTYPE CONVERT option.

GRAPHIC(1)
(468 or 469)

wchar_t v Single wide character (for C-type)
v Single double-byte character (for column

type)

GRAPHIC(n)
(468 or 469)

No exact equivalent; use wchar_t
[n+1] where n is large enough to
hold the data
1<=n<=127

Fixed-length double-byte character string

VARGRAPHIC(n)
(464 or 465)

struct tag {
short int;
wchar_t [n]
}

1<=n<=16 336

Non null-terminated varying double-byte
character string with 2-byte string length
indicator

Alternately use char[n+1] where n
is large enough to hold the data
1<=n<=16 336

null-terminated variable-length double-byte
character string
Note: Assigned an SQL type of 400/401.

Chapter 20. Programming in C and C++ 617

Table 30. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type1 C/C++ Data Type SQL Column Type Description

LONG VARGRAPHIC
(472 or 473)

struct tag {
short int;
wchar_t [n]
}

16 337<=n<=16 350

Non null-terminated varying double-byte
character string with 2-byte string length
indicator

Note: The following data types are only available in the DBCS or EUC environment.

DBCLOB(n)
(412 or 413)

sql type is
dbclob(n)

1<=n<=1 073 741 823

Non null-terminated varying double-byte
character string with 4-byte string length
indicator

DBCLOB locator variable6

(968 or 969)
sql type is

dbclob_locator
Identifies DBCLOB entities residing on the
server

DBCLOB file reference
variable6

(924 or 925)

sql type is
dbclob_file

Descriptor for file containing DBCLOB data

Notes:

1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the second
number indicates that an indicator variable is provided. An indicator variable is needed to indicate NULL values,
or to hold the length of a truncated string. These are the values that would appear in the SQLTYPE field of the
SQLDA for these data types.

2. For platform compatibility, use sqlint32. On 64-bit UNIX platforms, ″long″ is a 64 bit integer. On 64-bit Windows
operating systems and 32-bit UNIX platforms ″long″ is a 32 bit integer.

3. For platform compatibility, use sqlint64. The DB2 Universal Database sqlsystm.h header file will type define
sqlint64 as ″__int64″ on the Windows NT platform when using the Microsoft compiler, ″long long″ on 32-bit UNIX
platforms, and ″long″ on 64 bit UNIX platforms.

4. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA is
the length value (4 or 8).

5. The following SQL types are synonyms for DOUBLE:
v FLOAT
v FLOAT(n) where 24 < n < 54 is
v DOUBLE PRECISION

6. This is not a column type but a host variable type.

The following is a sample SQL declare section with host variables declared for
supported SQL data types.

EXEC SQL BEGIN DECLARE SECTION;

...

short age = 26; /* SQL type 500 */
short year; /* SQL type 500 */
sqlint32 salary; /* SQL type 496 */
sqlint32 deptno; /* SQL type 496 */
float bonus; /* SQL type 480 */
double wage; /* SQL type 480 */

618 Application Development Guide

char mi; /* SQL type 452 */
char name[6]; /* SQL type 460 */
struct {

short len;
char data[24];
} address; /* SQL type 448 */

struct {
short len;
char data[32695];
} voice; /* SQL type 456 */

sql type is clob(1m)
chapter; /* SQL type 408 */

sql type is clob_locator
chapter_locator; /* SQL type 964 */

sql type is clob_file
chapter_file_ref; /* SQL type 920 */

sql type is blob(1m)
video; /* SQL type 404 */

sql type is blob_locator
video_locator; /* SQL type 960 */

sql type is blob_file
video_file_ref; /* SQL type 916 */

sql type is dbclob(1m)
tokyo_phone_dir; /* SQL type 412 */

sql type is dbclob_locator
tokyo_phone_dir_lctr; /* SQL type 968 */

sql type is dbclob_file
tokyo_phone_dir_flref; /* SQL type 924 */

struct {
short len;
sqldbchar data[100];
} vargraphic1; /* SQL type 464 */

/* Precompiled with
WCHARTYPE NOCONVERT option */

struct {
short len;
wchar_t data[100];
} vargraphic2; /* SQL type 464 */

/* Precompiled with
WCHARTYPE CONVERT option */

struct {
short len;
sqldbchar data[10000];
} long_vargraphic1; /* SQL type 472 */

/* Precompiled with
WCHARTYPE NOCONVERT option */

struct {
short len;
wchar_t data[10000];
} long_vargraphic2; /* SQL type 472 */

/* Precompiled with
WCHARTYPE CONVERT option */

sqldbchar graphic1[100]; /* SQL type 468 */
/* Precompiled with
WCHARTYPE NOCONVERT option */

Chapter 20. Programming in C and C++ 619

wchar_t graphic2[100]; /* SQL type 468 */
/* Precompiled with
WCHARTYPE CONVERT option */

char date[11]; /* SQL type 384 */
char time[9]; /* SQL type 388 */
char timestamp[27]; /* SQL type 392 */
short wage_ind; /* Null indicator */

...

EXEC SQL END DECLARE SECTION;

The following are additional rules for supported C/C++ data types:
v The data type char can be declared as char or unsigned char.
v The database manager processes null-terminated variable-length character

string data type char[n] (data type 460), as VARCHAR(m).
– If LANGLEVEL is SAA1, the host variable length m equals the character

string length n in char[n] or the number of bytes preceding the first
null-terminator (\0), whichever is smaller.

– If LANGLEVEL is MIA, the host variable length m equals the number of
bytes preceding the first null-terminator (\0).

v The database manager processes null-terminated, variable-length graphic
string data type, wchar_t[n] or sqldbchar[n] (data type 400), as
VARGRAPHIC(m).
– If LANGLEVEL is SAA1, the host variable length m equals the character

string length n in wchar_t[n] or sqldbchar[n], or the number of
characters preceding the first graphic null-terminator, whichever is
smaller.

– If LANGLEVEL is MIA, the host variable length m equals the number of
characters preceding the first graphic null-terminator.

v Unsigned numeric data types are not supported.
v The C/C++ data type int is not allowed since its internal representation is

machine dependent.

FOR BIT DATA in C and C++
The standard C or C++ string type 460 should not be used for columns
designated FOR BIT DATA. The database manager truncates this data type
when a null character is encountered. Use either the VARCHAR (SQL type
448) or CLOB (SQL type 408) structures.

SQLSTATE and SQLCODE Variables in C and C++

When using the LANGLEVEL precompile option with a value of SQL92E, the
following two declarations may be included as host variables:

620 Application Development Guide

EXEC SQL BEGIN DECLARE SECTION;
char SQLSTATE[6]
sqlint32 SQLCODE;

...

EXEC SQL END DECLARE SECTION;

If neither of these is specified, the SQLCODE declaration is assumed during
the precompile step. Note that when using this option, the INCLUDE SQLCA
statement should not be specified.

In an application that is made up of multiple source files, the SQLCODE and
SQLSTATE variables may be defined in the first source file as above.
Subsequent source files should modify the definitions as follows:

extern sqlint32 SQLCODE;
extern char SQLSTATE[6];

Chapter 20. Programming in C and C++ 621

622 Application Development Guide

Chapter 21. Programming in Java

Programming Considerations for Java . . . 623
Comparison of SQLJ to JDBC 623
Advantages of Java over Other
Languages 624
SQL Security in Java 624
Source and Output Files for Java. . . . 624
Java Class Libraries 625
Java Packages 625
Supported SQL Data Types in Java . . . 625
SQLSTATE and SQLCODE Values in Java 627
Trace Facilities in Java 627
Creating Java Applications and Applets 628

How Does It Work? 628
JDBC Programming 630

How the DB2Appl Program Works . . . 630
JDBC Example: DB2Appl.java. . . . 632

Distributing a JDBC Application 633
Distributing and Running a JDBC Applet 633
JDBC 2.0 634

JDBC 2.0 Core API Support 634
JDBC 2.0 Optional Package API
Support 635
JDBC 2.0 Compatibility 636

SQLJ Programming 637
DB2 SQLJ Support 637

DB2 SQLJ Restrictions 638
Embedding SQL Statements in Java . . . 639

Declaring Iterator Behavior in SQLJ 640
SQLJ Example: App.sqlj 642

Host Variables in Java 646
Calls to Stored Procedures and Functions
in SQLJ 646
Compiling and Running SQLJ Programs 646
SQLJ Translator Options 648

Stored Procedures and UDFs in Java . . . 649
Where to Put Java Classes 650
Updating Java Classes for Routines . . . 651
Debugging Stored Procedures in Java . . 651

Preparing to Debug 651
Populating the Debug Table 652
Invoking the Debugger 654

Java Stored Procedures and UDFs . . . 654
Installing, Replacing, and Removing
JAR Files. 655
Function Definitions in Java 656

Using LOBs and Graphical Objects With
JDBC 1.22 657
JDBC and SQLJ Interoperability 658

Session Sharing 659
Connection Resource Management in Java 659

Programming Considerations for Java

DB2 Universal Database implements two standards-based Java programming
APIs: Java Database Connectivity (JDBC) and embedded SQL for Java (SQLJ).
This chapter provides an overview of JDBC and SQLJ programming, but
focuses on the aspects specific to DB2. See the DB2 Universal Database Java
Web site at http://www.ibm.com/software/data/db2/java/ for links to the
JDBC and SQLJ specifications.

Comparison of SQLJ to JDBC
The JDBC API allows you to write Java programs that make dynamic SQL
calls to databases. SQLJ applications use JDBC as a foundation for such tasks
as connecting to databases and handling SQL errors, but can also contain
embedded static SQL statements in the SQLJ source files. You must translate a
SQLJ source file with the SQLJ translator before you can compile the resulting
Java source code.

© Copyright IBM Corp. 1993, 2000 623

http://www.ibm.com/software/data/db2/java/
http://www.ibm.com/software/data/db2/java/

For information on building JDBC and SQLJ applications, refer to the
Application Building Guide.

Advantages of Java over Other Languages
Programming languages containing embedded SQL are called host languages.
Java differs from the traditional host languages C, COBOL, and FORTRAN, in
ways that significantly affect how it embeds SQL:
v SQLJ and JDBC are open standards, enabling you to easily port SQLJ or

JDBC applications from other standards-compliant database systems to DB2
Universal Database.

v All Java types representing composite data, and data of varying sizes, have
a distinguished value, null, which can be used to represent the SQL NULL
state, giving Java programs an alternative to NULL indicators that are a
fixture of other host languages.

v Java is designed to support programs that are automatically
heterogeneously portable (also called ″super portable″ or simply
″downloadable″). Along with Java’s type system of classes and interfaces,
this feature enables component software. In particular, an SQLJ translator
written in Java can call components that are specialized by database
vendors in order to leverage existing database functions such as
authorization, schema checking, type checking, transactional, and recovery
capabilities, and to generate code optimized for specific databases.

v Java is designed for binary portability in heterogeneous networks, which
promises to enable binary portability for database applications that use
static SQL.

SQL Security in Java
By default, a JDBC program executes SQL statements with the privileges
assigned to the person who runs the program. In contrast, an SQLJ program
executes SQL statements with the privileges assigned to the person who
created the database package.

Source and Output Files for Java
Source files have the following extensions:
.java Java source files, which require no precompiling. You can compile

these files with the javac Java compiler included with your Java
development environment.

.sqlj SQLJ source files, which require translation with the sqlj translator.
The translator creates:
v one or more .class bytecode files
v one .ser profile file per connection context

The corresponding output files have the following extensions:
.class JDBC and SQLJ bytecode compiled files.

624 Application Development Guide

.ser SQLJ serialized profile files. You create packages in the database for
each profile file with the db2profc utility.

For an example of how to compile and run an SQLJ program, see “Compiling
and Running SQLJ Programs” on page 646.

Java Class Libraries
DB2 Universal Database provides class libraries for JDBC and SQLJ support,
which you must provide in your CLASSPATH or include with your applets as
follows:

db2java.zip
Provides the JDBC driver and JDBC and SQLJ support classes,
including stored procedure and UDF support.

sqlj.zip
Provides the SQLJ translator class files.

runtime.zip
Provides Java run-time support for SQLJ applications and applets.

Java Packages
To use the class libraries included with DB2 in your own applications, you
must include the appropriate import package statements at the top of your
source files. You can use the following packages in your Java applications:

java.sql.*
The JDBC API included in your JDK. You must import this package in
every JDBC and SQLJ program.

sqlj.runtime.*
SQLJ support included with every DB2 client. You must import this
package in every SQLJ program.

sqlj.runtime.ref.*
SQLJ support included with every DB2 client. You must import this
package in every SQLJ program.

Supported SQL Data Types in Java
Table 31 on page 626 shows the Java equivalent of each SQL data type, based
on the JDBC specification for data type mappings. Note that some mappings
depend on whether you use the JDBC version 1.22 or 2.0 driver. The JDBC
driver converts the data exchanged between the application and the database
using the following mapping schema. Use these mappings in your Java
applications and your PARAMETER STYLE JAVA stored procedures and
UDFs. For information on data type mappings for PARAMETER STYLE
DB2GENERAL stored procedures and UDFs, see “Supported SQL Data Types”
on page 756.

Chapter 21. Programming in Java 625

Note: There is no host variable support for the DATALINK data type in any
of the programming languages supported by DB2.

Table 31. SQL Data Types Mapped to Java Declarations

SQL Column Type Java Data Type SQL Column Type Description

SMALLINT
(500 or 501)

short 16-bit, signed integer

INTEGER
(496 or 497)

int 32-bit, signed integer

BIGINT
(492 or 493)

long 64-bit, signed integer

REAL
(480 or 481)

float Single precision floating point

DOUBLE
(480 or 481)

double Double precision floating point

DECIMAL(p,s)
(484 or 485)

java.math.BigDecimal Packed decimal

CHAR(n)
(452 or 453)

String Fixed-length character string of length n
where n is from 1 to 254

VARCHAR(n)
(448 or 449)

String Variable-length character string

LONG VARCHAR
(456 or 457)

String Long variable-length character string

CHAR(n)
FOR BIT DATA

byte[] Fixed-length character string of length n
where n is from 1 to 254

VARCHAR(n)
FOR BIT DATA

byte[] Variable-length character string

LONG VARCHAR
FOR BIT DATA

byte[] Long variable-length character string

BLOB(n)
(404 or 405)

JDBC 1.22: byte[]
JDBC 2.0: java.sql.Blob

Large object variable-length binary string

CLOB(n)
(408 or 409)

JDBC 1.22: String
JDBC 2.0: java.sql.Clob

Large object variable-length character string

DBCLOB(n)
(412 or 413)

JDBC 1.22: String
JDBC 2.0: java.sql.Clob

Large object variable-length double-byte
character string

DATE
(384 or 385)

java.sql.Date 10-byte character string

TIME
(388 or 389)

java.sql.Time 8-byte character string

TIMESTAMP
(392 or 393)

java.sql.Timestamp 26-byte character string

626 Application Development Guide

SQLSTATE and SQLCODE Values in Java
If an SQL error occurs, JDBC and SQLJ programs throw an SQLException. To
retrieve the SQLSTATE, SQLCODE, or SQLMSG values for an instance of an
SQLException, invoke the corresponding instance method as follows:

SQL return code SQLException method

SQLCODE SQLException.getErrorCode()

SQLMSG SQLException.getMessage()

SQLSTATE SQLException.getSQLState()

For example:
int sqlCode=0; // Variable to hold SQLCODE
String sqlState=“00000”; // Variable to hold SQLSTATE

try
{

// JDBC statements may throw SQLExceptions
stmt.executeQuery("Your JDBC statement here");

// SQLJ statements may also throw SQLExeptions
#sql {..... your SQLJ statement here};

}

/* Here's how you can check for SQLCODEs and SQLSTATE */

catch (SQLException e)
{

sqlCode = e.getErrorCode() // Get SQLCODE
sqlState = e.getSQLState() // Get SQLSTATE

if (sqlCode == -190 || sqlState.equals("42837"))
{

// Your code here to handle SQLCODE -190 or SQLSTATE 42837
}
else
{

// Your code here to handle other errors
}
System.err.println(e.getMessage()) ; // Print the exception
System.exit(1); // Exit

}

Trace Facilities in Java
Both the CLI/ODBC/JDBC trace facility and the DB2 trace facility, db2trc, can
be used to diagnose problems related to JDBC or SQLJ programs. Details on
how to take the above traces are explained in the Troubleshooting Guide.

Chapter 21. Programming in Java 627

You can also install run-time call tracing capability into SQLJ programs. The
utility operates on the profiles associated with a program. Suppose a program
uses a profile called App_SJProfile0. To install call tracing into the program,
use the command:

profdb App_SJProfile0.ser

The profdb utility uses the Java Virtual Machine to run the main() method of
class sqlj.runtime.profile.util.AuditorInstaller. For more details on
usage and options for the AuditorInstaller class, visit the DB2 Java Web site
at http://www.ibm.com/software/data/db2/java.

Creating Java Applications and Applets
Whether your application or applet uses JDBC or SQLJ, you need to
familiarize yourself with the JDBC specification, which is available from Sun
Microsystems. See the DB2 Java Web site at
http://www.ibm.com/software/data/db2/java/ for links to JDBC and SQLJ
resources. This specification describes how to call JDBC APIs to access a
database and manipulate data in that database.

You should also read through this section to learn about DB2’s extensions to
JDBC and its few limitations (see “JDBC 2.0” on page 634). If you plan to
create UDFs or stored procedures in Java, see “Creating and Using Java
User-Defined Functions” on page 412 and “Java Stored Procedures and UDFs”
on page 654, as there are considerations that are different for Java than for
other languages.

To build and run JDBC and SQLJ applications and applets, you must set up
your operating system environment according to the instructions in the
Application Building Guide.

How Does It Work?
DB2’s Java enablement has three independent components:
v Support for client applications and applets written in Java using JDBC to

access DB2 (see “JDBC Programming” on page 630)
v Precompile and binding support for client applications and applets written

in Java using SQLJ to access DB2 (see “SQLJ Programming” on page 637)
v Support for Java UDFs and stored procedures on the server (see “Stored

Procedures and UDFs in Java” on page 649)

Application Support in Java: Figure 21 on page 629 illustrates how a DB2
JDBC application works. You can think of a DB2 JDBC application as a DB2
CLI application, only you write it using the Java language. Calls to JDBC are
translated to calls to DB2 CLI through Java native methods. JDBC requests
flow from the DB2 client through DB2 CLI to the DB2 server.

628 Application Development Guide

http://www.ibm.com/software/data/db2/java/
http://www.ibm.com/software/data/db2/java/

SQLJ applications use this JDBC support, and in addition require the SQLJ
run-time classes to authenticate and execute any SQL packages that were
bound to the database at the precompiling and binding stage.

Applet Support in Java: Figure 22 on page 630 illustrates how the JDBC
applet driver, also known as the net driver, works. The driver consists of a
JDBC client and a JDBC server, db2jd. The JDBC client driver is loaded on the
Web browser along with the applet. When the applet requests a connection to
a DB2 database, the client opens a TCP/IP socket to the JDBC server on the
machine where the Web server is running. After a connection is set up, the
client sends each of the subsequent database access requests from the applet
to the JDBC server though the TCP/IP connection. The JDBC server then
makes corresponding CLI (ODBC) calls to perform the task. Upon completion,
the JDBC server sends the results back to the client through the connection.

SQLJ applets add the SQLJ client driver on top of the JDBC client driver, but
otherwise work the same as JDBC applets.

For information on starting the DB2 JDBC server, refer to the db2jstrt
command in the Command Reference.

SQLJ
Application

SQLJ
Run-Time Classes

Java
Application JDBC DB2 Client

Remote
Database

Figure 21. DB2’s Java Application Implementation

Chapter 21. Programming in Java 629

JDBC Programming

Both applications and applets typically perform the following tasks:
1. Import the appropriate Java packages and classes (java.sql.*)
2. Load the appropriate JDBC driver (COM.ibm.db2.jdbc.app.DB2Driver for

applications; COM.ibm.db2.jdbc.net.DB2Driver for applets)
3. Connect to the database, specifying the location with a URL as defined in

the JDBC specification and using the db2 subprotocol. Applets require you
to provide the user ID, password, host name, and the port number for the
applet server. Applications implicitly use the default value for user ID and
password from the DB2 client catalog, unless you explicitly specify
alternate values.

4. Pass SQL statements to the database
5. Receive the results
6. Close the connection

After coding your program, compile it as you would any other Java program.
You don’t need to perform any special precompile or bind steps.

How the DB2Appl Program Works
The following sample program, DB2Appl.java, demonstrates how to code a
JDBC program for DB2.

SQLJ Applet

Remote DB2
Database

Web Browser Web Server Host

SQLJ Run-Time
Classes

Java/
JDBC
Applet

JDBC
Client

HTTPd

JDBC Server

CLI

Local DB2
Database

TCP/IP
Socket

HTTP

Figure 22. DB2 Java Applet Implementation

630 Application Development Guide

1. Import the JDBC package. Every JDBC and SQLJ program must import
the JDBC package.

2. Declare a Connection object. The Connection object establishes and
manages the database connection.

3. Set database URL variable. The DB2 application driver accepts URLs that
take the form of jdbc:db2:>database-name<.

4. Connect to database. The DriverManager.getConnection() method is most
often used with the following parameters:

getConnection(String url)
Establish a connection to the database specified by url with the
default user ID and password.

getConnection(String url, String userid, String password)
Establish a connection to the database specified by url with the
values for user ID and password specified by userid and passwd
respectively.

5. Create a Statement object. Statement objects send SQL statements to the
database.

6. Execute an SQL SELECT statement. Use the executeQuery() method for
SQL statements, like SELECT statements, that return a single result set.
Assign the result to a ResultSet object.

7. Retrieve rows from the ResultSet. The ResultSet object allows you to treat
a result set like a cursor in host language embedded SQL. The
ResultSet.next() method moves the cursor to the next row and returns a
boolean false if the final row of the result set has been reached.
Restrictions on result set processing depend on the level of the JDBC API
that is enabled through the database manager configuration parameters.
v The JDBC 2.0 API allows you to scroll backwards and forwards through

a result set.
v The JDBC 1.22 API restricts you to scrolling forward through a result set

with the ResultSet.next() method.
8. Return the value of a column. The ResultSet.getString(n) returns the

value of the nth column as a String object.
9. Execute an SQL UPDATE statement. Use the executeUpdate() method for

SQL UPDATE statements. The method returns the number of rows
updated as an int value.

Chapter 21. Programming in Java 631

JDBC Example: DB2Appl.java
import java.sql.*; �1�

class DB2Appl {

static {
try {

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();
} catch (Exception e) {

System.out.println(e);
}

}

public static void main(String argv[]) {
Connection con = null; �2�

// URL is jdbc:db2:dbname
String url = "jdbc:db2:sample"; �3�

try {
if (argv.length == 0) {

// connect with default id/password
con = DriverManager.getConnection(url);
}

else if (argv.length == 2) {
String userid = argv[0];
String passwd = argv[1];

// connect with user-provided username and password
con = DriverManager.getConnection(url, userid, passwd); �4�
}

else {
System.out.println("Usage: java DB2Appl [username password]");
System.exit(0);

}

// retrieve data from the database
System.out.println("Retrieve some data from the database...");
Statement stmt = con.createStatement(); �5�
ResultSet rs = stmt.executeQuery("SELECT * from employee"); �6�

System.out.println("Received results:");

// display the result set
// rs.next() returns false when there are no more rows
while (rs.next()) { �7�

String a = rs.getString(1); �8�
String str = rs.getString(2);

System.out.print(" empno= " + a);
System.out.print(" firstname= " + str);
System.out.print("");

}

rs.close();

632 Application Development Guide

stmt.close();

// update the database
System.out.println("Update the database... ");
stmt = con.createStatement();
int rowsUpdated = stmt.executeUpdate("UPDATE employee
SET firstnme = 'SHILI' where empno = '000010'");�9�

System.out.print("Changed "+rowsUpdated);

if (1 == rowsUpdated)
System.out.println(" row.");

else
System.out.println(" rows.");

stmt.close();
con.close();

} catch(Exception e) {
System.out.println(e);

}
}

}

Distributing a JDBC Application
Distribute your JDBC application as you would any other Java application. As
the application uses the DB2 client to communicate with the DB2 server, you
have no special security concerns; authority verification is performed by the
DB2 client.

To run your application on a client machine, you must install on that
machine:
v A Java Virtual Machine (JVM), which you need to run any Java code
v A DB2 client, which also includes the DB2 JDBC driver

To build your application, you must also install the JDK for your operating
system. For information on setting up your Java environment, building DB2
Java applications, and running DB2 Java applications, refer to the Application
Building Guide.

Distributing and Running a JDBC Applet
Like other Java applets, you distribute your JDBC applet over the network
(intranet or Internet). Typically you would embed the applet in a hypertext
markup language (HTML) page. For example, to call the sample applet
DB2Applt.java, (provided in sqllib/samples/java) you might use the
following <APPLET> tag:

<applet code="DB2Applt.class" width=325 height=275 archive="db2java.zip">
<param name="server" value="webhost">
<param name="port" value="6789">

</applet>

Chapter 21. Programming in Java 633

To run your applet, you need only a Java-enabled Web browser on the client
machine. When you load your HTML page, the applet tag instructs your
browser to download the Java applet and the db2java.zip class library, which
includes the DB2 JDBC driver implemented by the COM.ibm.db2.jdbc.net
class. When your applet calls the JDBC API to connect to DB2, the JDBC
driver establishes separate communications with the DB2 database through
the JDBC applet server running on the Web server.

Note: To ensure that the Web browser downloads db2java.zip from the server,
ensure that the CLASSPATH environment variable on the client does
not include db2java.zip. Your applet may not function correctly if the
client uses a local version of db2java.zip.

For information on building and distributing Java applets, refer to the
Application Building Guide.

JDBC 2.0
JDBC 2.0 is the latest version of JDBC from Sun. This version of JDBC has two
defined parts: the core API, and the Optional Package API. For information
on the JDBC specification, see the DB2 Universal Database Java Web site at
http://www.ibm.com/software/data/db2/java/.

For information on installing the JDBC 2.0 drivers for your operating system,
refer to the Application Building Guide.

JDBC 2.0 Core API Support
The DB2 JDBC 2.0 driver supports the JDBC 2.0 core API, however, it does not
support all of the features defined in the specification. The DB2 JDBC 2.0
driver supports the following features of the JDBC 2.0 core API:
v Scrollable ResultSet
v Batch updates for java.sql.Statement, java.sql.PreparedStatement, and

java.sql.CallableStatement

v java.sql.Blob support
v java.sql.Clob support

Note: DB2 does not support the use of java.sql.Blob or java.sql.Clob in
stored procedures, UDFs, or methods.

The DB2 JDBC 2.0 driver does not support the following features:
v Updatable Scrollable ResultSet
v New SQL types (Array, Ref, Distinct, Java Object)
v Customized SQL type mapping

634 Application Development Guide

http://www.ibm.com/software/data/db2/java/

JDBC 2.0 Optional Package API Support
The DB2 JDBC 2.0 driver supports the following features of the JDBC 2.0
Optional Package API:

Java Naming and Directory Interface (JNDI) for Naming Databases: DB2
provides the following support for the Javing Naming and Directory Interface
(JNDI) for naming databases:

javax.naming.Context
This interface is implemented by COM.ibm.db2.jndi.DB2Context, which
handles the storage and retrieval of DataSource objects. In order to
support persistent associations of logical data source names to
physical database information, such as database names, these
associations are saved in a file named .db2.jndi. For an application,
the file resides (or is created if none exists) in the directory specified
by the USER.HOME environment variable. For an applet, you must
create this file in the root directory of the web server to facilitate the
lookup() operation. Applets do not support the bind(), rebind(),
unbind() and rename() methods of this class. Only applications can
bind DataSource objects to JNDI.

javax.sql.Datasource
This interface is implemented by COM.ibm.db2.jdbc.DB2DataSource.
You can save an object of this class in any implementation of
javax.naming.Context. This class also makes use of connection
pooling support.

javax.naming.InitialContextFactory
This interface is implemented by
COM.ibm.db2.jndi.DB2InitialContextFactory, which creates an
instance of DB2Context. Applications automatically set the value of the
JAVA.NAMING.FACTORY.INITIAL environment variable to
COM.ibm.db2.jndi.DB2InitialContextFactory To use this class in an
applet, call InitialContext() using the following syntax:

Hashtable env = new Hashtable(5);
env.put("java.naming.factory.initial",

"COM.ibm.db2.jndi.DB2InitialContextFactory");
Context ctx = new InitialContext(env);

Connection Pooling: DB2ConnectionPoolDataSource and
DB2PooledConnection provide the hooks necessary for you to implement your
own connection pooling module, as follows:

javax.sql.ConnectionPoolDataSource
This interface is implemented by
COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource, and is a factory of
COM.ibm.db2.jdbc.DB2PooledConnection objects.

Chapter 21. Programming in Java 635

javax.sql.PooledConnection
This interface is implemented by
COM.ibm.db2.jdbc.DB2PooledConnection.

Java Transaction APIs (JTA): DB2 supports the Java Transaction APIs (JTA)
through the DB2 JDBC application driver. DB2 does not provide JTA support
with the DB2 JDBC net driver.

javax.sql.XAConnection
This interface is implemented by COM.ibm.db2.jdbc.DB2XAConnection.

javax.sql.XADataSource
This interface is implemented by COM.ibm.db2.jdbc.DB2XADataSource,
and is a factory of COM.ibm.db2.jdbc.DB2PooledConnection objects.

javax.transactions.xa.XAResource
This interface is implemented by COM.ibm.db2.jdbc.app.DBXAResource.

javax.transactions.xa.Xid
This interface is implemented by COM.ibm.db2.jdbc.DB2Xid.

JDBC 2.0 Compatibility
This version of the specification is backward compatible with the previous
version (1.22). However, the DB2 JDBC 1.22 driver supports LOB types as an
extension of the JDBC 1.22 specification, and this extension is not part of the
new specification’s backward compatibility. This means that existing JDBC
applications that rely on the LOB support of the JDBC 1.22 driver may not
work with the new driver. For information on the DB2 JDBC 1.22 driver
support for LOBs and graphic types, see “Using LOBs and Graphical Objects
With JDBC 1.22” on page 657. To fix the problem, consider modifying the
application to take advantage of the LOB support offered by the JDBC 2.0
driver.

Note: You cannot use the DB2 JDBC 2.0 driver support for LOB and graphic
types in stored procedures or UDFs. To use LOB or graphic types in
stored procedures or UDFs, you must use the JDBC 1.22 driver support.

However, this solution may not be practical for every situation. As a
workaround, you can set the keyword JDBCVERSION to ″122″ to tell the
JDBC 2.0 driver to use the 1.22 version of LOB support. The default is ″200″ to
tell the JDBC 2.0 driver to use the 2.0 version of LOB support. You can set this
keyword in db2cli.ini, or as a connection attribute in the getConnection
property argument.

Note: If you use the JDBC 1.22 driver, the JDBCVERSION keyword does not
affect LOB support for JDBC.

636 Application Development Guide

SQLJ Programming

DB2 SQLJ support is based on the SQLJ ANSI standard. Refer to the DB2 Java
Web site at http://www.ibm.com/software/data/db2/java for a pointer to the
ANSI Web site and other SQLJ resources. This chapter contains an overview
of SQLJ programming and information that is specific to DB2 SQLJ support.

The following kinds of SQL constructs may appear in SQLJ programs:
v Queries; for example, SELECT statements and expressions.
v SQL Data Change Statements (DML); for example, INSERT, UPDATE,

DELETE.
v Data Statements; for example, FETCH, SELECT..INTO.
v Transaction Control; for example, COMMIT, ROLLBACK, etc.
v Data Definition Language (DDL, also known as Schema Manipulation

Language); for example, CREATE, DROP, ALTER.
v Calls to stored procedures; for example, CALL MYPROC(:x, :y, :z)
v Invocations of functions; for example, VALUES(MYFUN(:x))

DB2 SQLJ Support
DB2 SQLJ support is provided by the DB2 Application Development Client.
Along with the JDBC support provided by the DB2 client, DB2 SQLJ support
allows you to create, build, and run embedded SQL for Java applications,
applets, stored procedures and user-defined functions (UDFs). These contain
static SQL and use embedded SQL statements that are bound to a DB2
database.

The SQLJ support provided by the DB2 Application Development Client
includes:
v The SQLJ translator, SQLJ, which replaces embedded SQL statements in the

SQLJ program with Java source statements and generates a serialized
profile containing information about the SQL operations found in the SQLJ
program. The SQLJ translator uses the sqllib/java/sqlj.zip file.

v The SQLJ run-time classes, available in sqllib/java/runtime.zip.
v The DB2 SQLJ profile customizer, db2profc, which precompiles the SQL

statements stored in the generated profile and generates a package in the
DB2 database.

v The DB2 SQLJ profile printer, db2profp, which prints the contents of a DB2
customized profile in plain text.

v The SQLJ profile auditor installer, profdb, which installs (or uninstalls)
debugging class-auditors into an existing set of binary profiles. Once
installed, all RTStatement and RTResultSet calls made during application
run time are logged to a file (or standard output), which can then be

Chapter 21. Programming in Java 637

http://www.ibm.com/software/data/db2/java/
http://www.ibm.com/software/data/db2/java/

inspected to verify expected behavior and trace errors. Note that only those
calls made to the underlying RTStatement and RTResultSet call interface at
run time are audited.

v The SQLJ profile conversion tool, profconv, which converts a serialized
profile instance to class bytecode format. Some browsers do not yet have
support for loading a serialized object from a resource file associated with
the applet. As a work-around, you need to run this utility to perform the
conversion.

For more information on the db2profc and db2profp commands, refer to the
Command Reference. For more information on the SQLJ run-time classes, refer
to the DB2 Java Web site at http://www.ibm.com/software/data/db2/java.

DB2 SQLJ Restrictions
When you create DB2 applications with SQLJ, you should be aware of the
following restrictions:
v DB2 SQLJ support adheres to standard DB2 Universal Database restrictions

on issuing SQL statements.
v A positioned UPDATE and DELETE statement is not a valid sub-statement

in a Compound SQL statement.
v The precompile option ″DATETIME″ is not supported. Only the date and

time formats of the International Standards Organization are supported.
v The precompile option ″PACKAGE USING package-name″ specifies the

name of the package that is to be generated by the translator. If a name is
not entered, the name of the profile (minus extension and folded to
uppercase) is used. Maximum length is 8 characters. Since the SQLJ profile
name has the suffix _SJProfileN, where N is the profile key number, the
profile name will always be longer than 8 characters. The default package
name will be constructed by concatenating the first (8 - pfKeyNumLen)
characters of the profile number and the profile key number, where
pfKeyNumLen is the length of the profile key number in the profile name. If
the length of the profile key number is longer than 7, the last 7 digits will
be used without any warnings. For example:

profile name default package name
--------------------- --------------------
App_SJProfile1 App_SJP1
App_SJProfile123 App_S123
App_SJProfile1234567 A1234567
App_SJProfile12345678 A2345678

v When a java.math.BigDecimal host variable is used, the precision and scale
of the host variable is not available during the translation of the
application. If the precision and scale of the decimal host variable is not
obvious from the context of the statement in which it is used, the precision
and scale can be specified using a CAST.

v A Java variable with type java.math.BigInteger cannot be used as a host
variable in an SQL statement.

638 Application Development Guide

http://www.ibm.com/software/data/db2/java/

Some browsers do not yet have support for loading a serialized object from a
resource file associated with the applet. You will get the following error
message when trying to load the applet Applt in those browsers:

java.lang.ClassNotFoundException: Applt_SJProfile0

As a work-around, there is a utility which converts a serialized profile into a
profile stored in Java class format. The utility is a Java class called
sqlj.runtime.profile.util.SerProfileToClass. It takes a serialized profile
resource file as input and produces a Java class containing the profile as
output. Your profile can be converted using the following command:

profconv Applt_SJProfile0.ser

or

java sqlj.runtime.profile.util.SerProfileToClass Applt_SJProfile0.ser

The class Applt_SJProfile0.class is created as a result. Replace all profiles in
.ser format used by the applet with profiles in .class format.

For an SQLJ applet, you need both db2java.zip and runtime.zip files. If you
choose not to package all your applet classes, classes in db2java.zip and
runtime.zip into a single Jar file, put both db2java.zip and runtime.zip
(separated by a comma) into the archive parameter in the ″applet″ tag. For
those browsers that do not support multiple zip files in the archive tag,
specify db2java.zip in the archive tag, and unzip runtime.zip with your
applet classes in a working directory that is accessible to your web browser.

Embedding SQL Statements in Java
Static SQL statements in SQLJ appear in SQLJ clauses. SQLJ clauses are the
mechanism by which SQL statements in Java programs are communicated to
the database.

The SQLJ translator recognizes SQLJ clauses and SQL statements because of
their structure, as follows:
v SQLJ clauses begin with the token #sql

v SQLJ clauses end with a semicolon

The simplest SQLJ clauses are executable clauses and consist of the token #sql
followed by an SQL statement enclosed in braces. For example, the following
SQLJ clause may appear wherever a Java statement may legally appear. Its
purpose is to delete all rows in the table named TAB:

#sql { DELETE FROM TAB };

In an SQLJ executable clause, the tokens that appear inside the braces are SQL
tokens, except for the host variables. All host variables are distinguished by
the colon character so the translator can identify them. SQL tokens never

Chapter 21. Programming in Java 639

occur outside the braces of an SQLJ executable clause. For example, the
following Java method inserts its arguments into an SQL table. The method
body consists of an SQLJ executable clause containing the host variables x, y,
and z:

void m (int x, String y, float z) throws SQLException
{

#sql { INSERT INTO TAB1 VALUES (:x, :y, :z) };
}

In general, SQL tokens are case insensitive (except for identifiers delimited by
double quotation marks), and can be written in upper, lower, or mixed case.
Java tokens, however, are case sensitive. For clarity in examples, case
insensitive SQL tokens are uppercase, and Java tokens are lowercase or mixed
case. Throughout this chapter, the lowercase null is used to represent the Java
″null″ value, and the uppercase NULL to represent the SQL null value.

Declaring Iterator Behavior in SQLJ
Unlike SQL statements that retrieve data from a table, applications that
perform positioned UPDATE and DELETE operations, or that use iterators
with holdability or returnability attributes, require two Java source files.
Declare the iterator as public in one source file, appending the with and
implements clause as appropriate.

To set the value of the holdability or returnability attribute, you must
declare the iterator using the with clause for the corresponding attribute. The
following example sets the holdability attribute to true for the iterator
WithHoldCurs:

#sql public iterator WithHoldCurs with (holdability=true) (String EmpNo);

Iterators that perform positioned updates require an implements clause that
implements the sqlj.runtime.ForUpdate interface. For example, suppose that
you declare iterator DelByName like this in file1.sqlj:

#sql public iterator DelByName implements sqlj.runtime.ForUpdate(String EmpNo);

You can then use the translated and compiled iterator in a different source
file. To use the iterator:
1. Declare an instance of the generated iterator class
2. Assign the SELECT statement for the positioned UPDATE or DELETE to

the iterator instance
3. Execute positioned UPDATE or DELETE statements using the iterator

To use DelByName for a positioned DELETE in file2.sqlj, execute
statements like those in “Deleting Rows Using a Positioned Iterator” on
page 641.

640 Application Development Guide

{
DelByName deliter; // Declare object of DelByName class
String enum;

�1� #sql deliter = { SELECT EMPNO FROM EMP WHERE WORKDEPT='D11'};
while (deliter.next())
{

�2� enum = deliter.EmpNo(); // Get value from result table
�3� #sql { DELETE WHERE CURRENT OF :deliter };

// Delete row where cursor is positioned
}

}

Notes:

1. �1�This SQLJ clause executes the SELECT statement, constructs an iterator
object that contains the result table for the SELECT statement, and assigns
the iterator object to variable deliter.

2. �2�This statement positions the iterator to the next row to be deleted.
3. �3�This SQLJ clause performs the positioned DELETE.

Chapter 21. Programming in Java 641

SQLJ Example: App.sqlj
The following example SQLJ application, App.sqlj, uses static SQL to retrieve
and update data from the EMPLOYEE table of the DB2 sample database.
1. Declare iterators. This section declares two types of iterators:

App_Cursor1
Declares column data types and names, and returns the values of
the columns according to column name (Named binding to
columns).

App_Cursor2
Declares column data types, and returns the values of the columns
by column position (Positional binding to columns).

2. Initialize the iterator. The iterator object cursor1 is initialized using the
result of a query. The query stores the result in cursor1.

3. Advance the iterator to the next row. The cursor1.next() method returns
a Boolean false if there are no more rows to retrieve.

4. Move the data. The named accessor method empno() returns the value of
the column named empno on the current row. The named accessor method
firstnme() returns the value of the column named firstnme on the
current row.

5. SELECT data into a host variable. The SELECT statement passes the
number of rows in the table into the host variable count1.

6. Initialize the iterator. The iterator object cursor2 is initialized using the
result of a query. The query stores the result in cursor2.

7. Retrieve the data. The FETCH statement returns the current value of the
first column declared in the ByPos cursor from the result table into the
host variable str2.

8. Check the success of a FETCH..INTO statement. The endFetch() method
returns a Boolean true if the iterator is not positioned on a row, that is, if
the last attempt to fetch a row failed. The endFetch() method returns
false if the last attempt to fetch a row was successful. DB2 attempts to
fetch a row when the next() method is called. A FETCH...INTO statement
implicitly calls the next() method.

9. Close the iterators. The close() method releases any resources held by the
iterators. You should explicitly close iterators to ensure that system
resources are released in a timely fashion.

JDBC Example: App.sqlj:
import java.sql.*;
import sqlj.runtime.*;
import sqlj.runtime.ref.*;

#sql iterator App_Cursor1 (String empno, String firstnme) ; �1�
#sql iterator App_Cursor2 (String) ;

642 Application Development Guide

class App
{

/**********************
** Register Driver **
**********************/

static
{

try
{

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();
}
catch (Exception e)
{

e.printStackTrace();
}

}

/********************
** Main **
********************/

public static void main(String argv[])
{

try
{

App_Cursor1 cursor1;
App_Cursor2 cursor2;

String str1 = null;
String str2 = null;
long count1;

// URL is jdbc:db2:dbname
String url = "jdbc:db2:sample";

DefaultContext ctx = DefaultContext.getDefaultContext();
if (ctx == null)
{

try
{

// connect with default id/password
Connection con = DriverManager.getConnection(url);
con.setAutoCommit(false);
ctx = new DefaultContext(con);

}
catch (SQLException e)
{

System.out.println("Error: could not get a default context");
System.err.println(e) ;
System.exit(1);

}
DefaultContext.setDefaultContext(ctx);

}

Chapter 21. Programming in Java 643

// retrieve data from the database
System.out.println("Retrieve some data from the database.");
#sql cursor1 = {SELECT empno, firstnme FROM employee}; �2�

// display the result set
// cursor1.next() returns false when there are no more rows
System.out.println("Received results:");
while (cursor1.next()) �3�
{

str1 = cursor1.empno(); �4�
str2 = cursor1.firstnme();

System.out.print (" empno= " + str1);
System.out.print (" firstname= " + str2);
System.out.print ("");

}
cursor1.close(); �9�

// retrieve number of employee from the database
#sql { SELECT count(*) into :count1 FROM employee }; �5�
if (1 == count1)

System.out.println ("There is 1 row in employee table");
else

System.out.println ("There are " + count1
+ " rows in employee table");

// update the database
System.out.println("Update the database. ");
#sql { UPDATE employee SET firstnme = 'SHILI' WHERE empno = '000010' };

// retrieve the updated data from the database
System.out.println("Retrieve the updated data from the database.");
str1 = "000010";
#sql cursor2 = {SELECT firstnme FROM employee WHERE empno = :str1}; �6�

// display the result set
// cursor2.next() returns false when there are no more rows
System.out.println("Received results:");
while (true)
{

#sql { FETCH :cursor2 INTO :str2 }; �7�
if (cursor2.endFetch()) break; �8�

System.out.print (" empno= " + str1);
System.out.print (" firstname= " + str2);
System.out.print ("");

}
cursor2.close(); �9�

// rollback the update
System.out.println("Rollback the update.");
#sql { ROLLBACK work };
System.out.println("Rollback done.");

}

644 Application Development Guide

catch(Exception e)
{

e.printStackTrace();
}

}
}

Chapter 21. Programming in Java 645

Host Variables in Java
Arguments to embedded SQL statements are passed through host variables,
which are variables of the host language that appear in the SQL statement.
Host variables have up to three parts:
v A colon prefix, :.
v An optional parameter mode identifier: IN, OUT, or INOUT.
v A Java host variable that is a Java identifier for a parameter, variable, or

field.

The evaluation of a Java identifier does not have side effects in a Java
program, so it may appear multiple times in the Java code generated to
replace an SQLJ clause.

The following query contains the host variable, :x, which is the Java variable,
field, or parameter x visible in the scope containing the query:

SELECT COL1, COL2 FROM TABLE1 WHERE :x > COL3

All host variables specified in compound SQL are input host variables by
default. You have to specify the parameter mode identifier OUT or INOUT
before the host variable in order to mark it as an output host variable. For
example:

#sql {begin compound atomic static
select count(*) into :OUT count1 from employee;
end compound}

Calls to Stored Procedures and Functions in SQLJ
Databases may contain stored procedures, user-defined functions, and user-defined
methods. Stored procedures, user-defined functions, and user-defined methods
are named schema objects that execute in the database. An SQLJ executable
clause appearing as a Java statement may call a stored procedure by means of
a CALL statement like the following:

#sql { CALL SOME_PROC(:INOUT myarg) };

Stored procedures may have IN, OUT, or INOUT parameters. In the above
case, the value of host variable myarg is changed by the execution of that
clause. An SQLJ executable clause may call a function by means of the SQL
VALUES construct. For example, assume a function F that returns an integer.
The following example illustrates a call to that function that then assigns its
result to Java local variable x:

{
int x;
#sql x = { VALUES(F(34)) };

}

Compiling and Running SQLJ Programs
To run an SQLJ program with program name MyClass, do the following:

646 Application Development Guide

1. Translate the Java source code with Embedded SQL to generate the Java
source code MyClass.java and profiles MyClass_SJProfile0.ser,
MyClass_SJProfile1.ser, ... (one profile for each connection context):

sqlj MyClass.sqlj

When you use the SQLJ translator without specifying an sqlj.properties
file, the translator uses the following values:

sqlj.url=jdbc:db2:sample
sqlj.driver=COM.ibm.db2.jdbc.app.DB2Driver
sqlj.online=sqlj.semantics.JdbcChecker
sqlj.offline=sqlj.semantics.OfflineChecker

If you do specify an sqlj.properties file, make sure the following options
are set:

sqlj.url=jdbc:db2:dbname
sqlj.driver=COM.ibm.db2.jdbc.app.DB2Driver
sqlj.online=sqlj.semantics.JdbcChecker
sqlj.offline=sqlj.semantics.OfflineChecker

where dbname is the name of the database. You can also specify these
options on the command line. For example, to specify the database mydata
when translating MyClass, you can issue the following command:

sqlj -url=jdbc:db2:mydata MyClass.sqlj

Note that the SQLJ translator automatically compiles the translated source
code into class files, unless you explicitly turn off the compile option with
the -compile=false clause.

2. Install DB2 SQLJ Customizers on generated profiles and create the DB2
packages in the DB2 database dbname:

db2profc -user=user-name -password=user-password -url=jdbc:db2:dbname
-prepoptions="bindfile using MyClass0.bnd package using MyClass0"
MyClass_SJProfile0.ser

db2profc -user=user-name -password=user-password -url=jdbc:db2:dbname
-prepoptions="bindfile using MyClass1.bnd package using MyClass1"
MyClass_SJProfile1.ser

...

3. Execute the SQLJ program:
java MyClass

The translator generates the SQL syntax for the database for which the SQLJ
profile is customized. For example,

i = { VALUES (F(:x)) };

is translated by the SQLJ translator and stored as
? = VALUES (F (?))

Chapter 21. Programming in Java 647

in the generated profile. When connecting to a DB2 Universal Database
database, DB2 will customize the VALUE statement into:

VALUES(F(?)) INTO ?

but when connecting to a DB2 Universal Database for OS/390 database, DB2
customizes the VALUE statement into:

SELECT F(?) INTO ? FROM SYSIBM.SYSDUMMY1

If you run the DB2 SQLJ profile customizer, db2profc, against a DB2 Universal
Database database and generate a bind file, you cannot use that bind file to
bind up to a DB2 for OS/390 database when there is a VALUES clause in the
bind file. This also applies to generating a bind file against a DB2 for OS/390
database and trying to bind with it to a DB2 Universal Database database.

For detailed information on building and running DB2 SQLJ programs, refer
to the Application Building Guide.

SQLJ Translator Options
The SQLJ translator supports the same precompile options as the DB2
PRECOMPILE command, with the following exceptions:

CONNECT
DISCONNECT
DYNAMICRULES
NOLINEMACRO
OPTLEVEL
OUTPUT
SQLCA
SQLFLAG
SQLRULES
SYNCPOINT
TARGET
WCHARTYPE

To print the content of the profiles generated by the SQLJ translator in plain
text, use the profp utility as follows:

profp MyClass_SJProfile0.ser
profp MyClass_SJProfile1.ser

...

To print the content of the DB2 customized version of the profile in plain text,
use the db2profp utility as follows, where dbname is the name of the database:

db2profp -user=user-name -password=user-password -url=jdbc:db2:dbname
MyClass_SJProfile0.ser

db2profp -user=user-name -password=user-password -url=jdbc:db2:dbname
MyClass_SJProfile1.ser

...

648 Application Development Guide

Stored Procedures and UDFs in Java

You can create and use stored procedures and UDFs in Java just like you can
for other programming languages. There are some programming
considerations (as discussed in “Function Definitions in Java” on page 656)
that you need to know when you write your Java code. You also need to
register your stored procedure and UDFs. For information on how to register
your stored procedure, see “Chapter 7. Stored Procedures” on page 187. For
information on how to register your UDF, refer to the CREATE FUNCTION
statement in the SQL Reference.

To run your UDFs and stored procedures on the server, DB2 calls the JVM.
Ensure that the appropriate Java Development Kit (JDK) or Java Runtime
Environment is installed and configured on your DB2 server before starting
up the database.

The runtime libraries for the JVM must be available in the system search
paths (PATH or LIBPATH or LD_LIBRARY_PATH, and CLASSPATH). For
more information on setting up the Java environment, refer to the Application
Building Guide.

DB2 loads or starts the JVM on the first call to a Java UDF or stored
procedure. For NOT FENCED UDFs and stored procedures, DB2 loads one
JVM per database instance, and runs it inside the address space of the
database engine to improve performance. For FENCED UDFs, DB2 uses a
distinct JVM inside the db2udf process; similarly, FENCED stored procedures
use a distinct JVM inside the db2dari process. In all cases, the JVM stays
loaded until the embedding process ends.

Note: If you are running a database server with local clients node type, you
must set the maxdari database manager configuration parameter to a
non-zero value before you invoke a Java stored procedure.

You can study the Java stored procedure samples that are provided in the
sqllib/samples/java directory. For a list of the sample programs included
with DB2, see “Appendix B. Sample Programs” on page 729.

Remember that all Java class files that you use to implement a stored
procedure or UDF must reside in either a JAR file you have installed in the
database, or in the correct stored procedure or UDF path for your operating
system as discussed in “Where to Put Java Classes” on page 650.

Note: On a mixed code page database server, Java user-defined functions and
stored procedures cannot use CLOB type arguments, because random
access on character boundaries on large mixed code page strings has
not yet been implemented. Full support for all LOB types is intended

Chapter 21. Programming in Java 649

for SBCS databases. For mixed databases, support is intended for the
BLOB and the DBCLOB types. As a workaround, applications running
on a mixed database system should convert CLOB arguments to
DBCLOB, LONG VARGRAPHIC, or LONG VARCHAR types. For
UDFs, this can be done with the CAST operator.

Where to Put Java Classes
You can choose to use individual Java class files for your stored procedures
and UDFs, or collect the class files into JAR files and install the JAR file in the
database. If you decide to use JAR files, refer to “Java Stored Procedures and
UDFs” on page 654 for further instructions.

Note: If you update or replace Java routine class files, you must issue a CALL
SQLJ.REFRESH_CLASSES() statement to enable DB2 to load the
updated classes. For more information on the CALL
SQLJ.REFRESH_CLASSES() statement, refer to “Updating Java Classes
for Routines” on page 651.

To enable DB2 to find and use your stored procedures and UDFs, you must
store the corresponding class files in the function directory, which is a directory
defined for your operating system as follows:

Unix operating systems
sqllib/function

OS/2 or Windows 32-bit operating systems
instance_name\function, where instance_name represents the value of
the DB2INSTPROF instance-specific registry setting.

For example, the function directory for a Windows NT server with
DB2 installed in the C:\sqllib directory, and with no specified
DB2INSTPROF registry setting, is:

C:\sqllib\function

If you choose to use individual class files, you must store the class files in the
appropriate directory for your operating system. If you declare a class to be
part of a Java package, create the corresponding subdirectories in the function
directory and place the files in the corresponding subdirectory. For example, if
you create a class ibm.tests.test1 for a Linux system, store the
corresponding Java bytecode file (named test1.class) in
sqllib/function/ibm/tests.

The JVM that DB2 invokes uses the CLASSPATH environment variable to
locate Java files. DB2 adds the function directory and sqllib/java/db2java.zip
to the front of your CLASSPATH setting.

To set your environment so that the JVM can find the Java class files, you may
need to set the jdk11_path configuration parameter, or else use the default

650 Application Development Guide

value. Also, you may need to set the java_heap_sz configuration parameter to
increase the heap size for your application. For more information on
configuration parameters, refer to the Administration Guide.

Updating Java Classes for Routines
When you update Java routine classes, you must also issue a CALL
SQLJ.REFRESH_CLASSES() statement to force DB2 to load the new classes. If
you do not issue the CALL SQLJ.REFRESH_CLASSES() statement after you
update Java routine classes, DB2 continues to use the previous versions of the
classes. The CALL SQLJ.REFRESH_CLASSES() statement only applies to
FENCED routines. DB2 refreshes the classes when a COMMIT or ROLLBACK
occurs.

Note: You cannot update NOT FENCED routines without stopping and
restarting the database manager.

Debugging Stored Procedures in Java
DB2 provides the capability to interactively debug a stored procedure written
in JDBC when the stored procedure executes on an AIX or Windows NT
server. The easiest way to invoke debugging is through the DB2 Stored
Procedure Builder. See the online help for the Stored Procedure Builder for
more information about how to do this.

This section includes the following topics:
v Preparing to debug
v Populating the debug table
v Invoking the debugger

Preparing to Debug
1. Compile the stored procedure in debug mode according to your JDK

documentation.
2. Prepare the server.

v If the source code is stored on the server, set the CLASSPATH
environment variable to include the Java source code directory or store
the source code in the function directory, as defined in “Where to Put
Java Classes” on page 650.

v Use the db2set command to enable debugging for your instance:
db2set DB2ROUTINE_DEBUG=ON

3. Set the client environment variables.
v If the source code is stored on the client, set the DB2_DBG_PATH

environment variable to the directory which contains the source code for
the stored procedure.

4. Create the debug table.

Chapter 21. Programming in Java 651

If you do not use the Stored Procedure Builder to invoke the debugger,
create the debug table with the following command:

db2 -tf sqllib/misc/db2debug.ddl

Note: On DB2 Enterprise - Extended Edition systems, the default
nodegroup is IBMDEFAULTGROUP for the USERSPACE1 table
space, and consists of all nodes defined for the system. To improve
the performance of debugging stored procedures in a DB2
Enterprise - Extended Edition configuration, you should have a
single coordinator node where debugging will occur and define a
nodegroup that only contains that node.

5. Start the debugger daemon on the client.
From the stored procedure client, start the debugger daemon with the
following command:

db2dbugd -qport=portno

where portno is an unused TCP/IP port number. If you do not supply a
value, the debugger uses 8000 as the default port number. On Windows
32-bit operating systems, you can also click the debugger daemon shortcut
located in the DB2 folder to start the debugger with the default port
number.

Populating the Debug Table
The debug table contains information about the stored procedures you debug
and the client/server environment that you debug in. Only DBAs or users
with INSERT, UPDATE, or DELETE privilege can manipulate values directly
in the base table DB2DBG.ROUTINE_DEBUG. However, unless the DBA has
added further restrictions, anyone can add, update, or delete rows through the
user view, DB2DBG.ROUTINE_DEBUG_USER. Therefore, the rest of this
section assumes that you are populating that table through the user view.

If you use the Stored Procedure Builder to invoke debugging, you can use the
debugger utility to populate and manage the debug table. Otherwise, to
enable debugging support for a given stored procedure, issue the following
command from the CLP:

DB2 INSERT INTO db2dbg.routine_debug_user (AUTHID, TYPE,
ROUTINE_SCHEMA, SPECIFICNAME, DEBUG_ON, CLIENT_IPADDR)

VALUES ('authid', 'S', 'schema', 'proc_name', 'Y', 'IP_num')

where:

authid The user name used for debugging the stored procedure, that is, the
user name used to connect to the database.

schema
The schema name for the stored procedure.

652 Application Development Guide

proc_name
The specific name of the stored procedure. This is the specific name
that was provided on the CREATE PROCEDURE command or a
system generated identifier, if no specific name has been provided.

IP_num
The IP address in the form nnn.nnn.nnn.nnn of the client used to
debug the stored procedure.

For example, to enable debugging for the stored procedure MySchema.myProc
by the user USER1 with the debugging client located at the IP address
123.234.111.222, type the following command:

DB2 INSERT INTO db2dbg.routine_debug_user (AUTHID, TYPE,
ROUTINE_SCHEMA, SPECIFICNAME, DEBUG_ON, CLIENT_IPADDR)

VALUES ('USER1', 'S', 'MySchema', 'myProc', 'Y', '123.234.111.222')

If you drop a stored procedure, its debug information is not automatically
deleted from the debug table. Debug information for non-existent stored
procedures cannot harm your database or instance. If you want to keep the
debug table synchronized with the DB2 catalog, you must delete the debug
information manually.

Whether you create the debug table manually or through the Stored
Procedure Builder, the debug table is named DB2DBG.ROUTINE_DEBUG and
has the following definition:

Table 32. DB2DBG.ROUTINE_DEBUG Table Definition

Column Name Data Type Attributes Description

AUTHID VARCHAR(128) NOT NULL,
DEFAULT USER

The application authid under which the
debugging for this stored procedure is to
be performed. This is the user ID that
was provided on connect to the database.

TYPE CHAR(1) NOT NULL Valid values: ’S’ (Stored Procedure)

ROUTINE_SCHEMA VARCHAR(128) NOT NULL Schema name of the stored procedure to
be debugged

SPECIFICNAME VARCHAR(18) NOT NULL Specific name of the stored procedure to
be debugged

DEBUG_ON CHAR(1) NOT NULL,
DEFAULT ’N’

Valid values:

v Y - enables debugging for the stored
procedure named in
ROUTINE_SCHEMA.SPECIFICNAME

v N - disables debugging for stored
procedure named in
ROUTINE_SCHEMA.SPECIFICNAME.
This is the default.

Chapter 21. Programming in Java 653

Table 32. DB2DBG.ROUTINE_DEBUG Table Definition (continued)

Column Name Data Type Attributes Description

CLIENT_IPADDR VARCHAR(15) NOT NULL The IP address of the client that does the
debugging of the form nnn.nnn.nnn.nnn

CLIENT_PORT INTEGER NOT NULL,
DEFAULT 8000

The port of the debugging
communication. The default is 8000.

DEBUG_STARTN INTEGER NOT NULL Not used.

DEBUG_STOPN INTEGER NOT NULL Not used.

The primary key of this table is AUTHID, TYPE, ROUTINE_SCHEMA, SPECIFICNAME.

Invoking the Debugger
If you have successfully followed the previous steps, calling a stored
procedure invokes the debugger on the client with the IP address that you
specified in the debug table.

In the debugger, you can step through the source code, display variables, and
set breakpoints in the source code. For detailed information on using the
debugger, see the debugger documentation contained in the online help.

Java Stored Procedures and UDFs
Java stored procedures and UDFs, collectively known as Java routines, must be
registered in the DB2 catalog. DB2 Universal Database Version 7 supports the
SQLJ Routines core specification for registering and deploying Java routines.
Use PARAMETER STYLE JAVA in your CREATE PROCEDURE and CREATE
FUNCTION statements to specify compliance with SQLJ Routines.

Alternatively, DB2 supports DB2 V5 and V5.2 PARAMETER STYLE
DB2GENERAL stored procedures and UDFs. For more information, see
“Appendix C. DB2DARI and DB2GENERAL Stored Procedures and UDFs” on
page 751.

To register a Java function or stored procedure, follow these steps:
1. Create the Java routine as a Java method. Compile the Java source code

into a Java class file. For information on creating Java stored procedures,
see “Chapter 7. Stored Procedures” on page 187. For information on
creating Java UDFs, see “Creating and Using Java User-Defined Functions”
on page 412.

2. Collect the class file containing the Java routine in a jar file. You can collect
one or more class files in a single JAR file. For instructions on creating JAR
files, refer to the Application Building Guide.

3. Install the JAR file in the DB2 instance. For instructions on how to use the
CALL SQLJ.INSTALL_JAR statement from the command line, see

654 Application Development Guide

“Installing, Replacing, and Removing JAR Files”. You can also CALL the
sqlj.install_jar procedure in an application or from the CLP.

4. Issue the appropriate CREATE PROCEDURE or CREATE FUNCTION SQL
statement for the Java routine.
v For a description and examples of using the CREATE PROCEDURE

statement, see “Registering Stored Procedures” on page 193.
v For a description and examples of using the CREATE FUNCTION

statement, refer to the SQL Reference.

When you install a JAR file, DB2 extracts the Java class files from the JAR file
and registers each class in the system catalog. DB2 copies the JAR file to a
jar/schema subdirectory of the function directory. DB2 gives the new copy of
the JAR file the name given in the jar-id clause. Do not directly modify a JAR
file which has been installed in the DB2 instance. Instead, you can use the
CALL SQLJ.REMOVE_JAR and CALL SQLJ.REPLACE_JAR commands to
remove or replace an installed JAR file.

Installing, Replacing, and Removing JAR Files
To install or replace a JAR file in the DB2 instance, you can use the following
command syntax at the Command Line Processor:

WW
(1) (2)

CALL SQLJ.INSTALL_JAR (’ jar-url ’ , ’ jar-id ’)
SQLJ.REPLACE_JAR

WY

Notes:

1 Specifies the URL containing the JAR file to be installed or replaced. The
only URL scheme supported is ’file:’.

2 Specifies the JAR identifier in the database to be associated with the
file specified by the jar-url.

Note: On OS/2 and Windows 32-bit operating systems, DB2 stores JAR files
in the path specified by the DB2INSTPROF instance-specific registry
setting. To make JAR files unique for an instance, you must specify a
unique value for DB2INSTPROF for that instance.

For example, to install the Proc.jar file located in the
file:/home/db2inst/classes/ directory in the DB2 instance, issue the
following command from the Command Line Processor:

CALL SQLJ.INSTALL_JAR('file:/home/db2inst/classes/Proc.jar' , 'myproc_jar')

Subsequent SQL commands that use of the Procedure.jar file refer to it with
the name myproc_jar. To remove a JAR file from the database, use the CALL
REMOVE_JAR command with the following syntax:

Chapter 21. Programming in Java 655

WW
(1)

CALL SQLJ.REMOVE_JAR (’ jar-id ’) WY

Notes:

1 Specifies the JAR identifier of the JAR file that is to be removed from the
database

To remove the JAR file myProc_jar from the database, enter the following
command at the Command Line Processor:

CALL SQLJ.REMOVE_JAR('myProc_jar')

Function Definitions in Java
To create a Java routine, you must code the corresponding public static
method in a public class. A Java routine must also be declared with the
throws SQLException clause. Code the method signature and the rest of the
method declaration to correspond with the output expected from the method
body.

Functions That Return No Values in Java: To create a method that returns
no values to the calling program, declare the method to return void and
include any parameters in the signature that need to be passed to the method
body. You can write a stored procedure that performs a simple UDPATE and
returns no value to the client application as follows:

public class JavaExamples {
public static void updateJob(String oldJob, String newJob)

throws SQLException {
Connection conn=DriverManager.getConnection("jdbc:ibm.db2.sample");
PreparedStatement stmt = conn.prepareStatement("UPDATE employee

SET job = ? WHERE job = ?");
stmt.setString(1, newJob);
stmt.setString(2, oldJob);
stmt.executeUpdate();
conn.close();
return;
}

}

Functions That Return A Single Value in Java: Declare Java methods that
return a single value with the Java return type that corresponds to the
respective SQL data type (see “Supported SQL Data Types in Java” on
page 625). You can write a scalar UDF that returns an SQL INTEGER value as
follows:
public class JavaExamples {

public static int getDivision(String division) throws SQLException {
if (division.equals("Corporate")) return 1;
else if (division.equals("Eastern")) return 2;
else if (division.equals("Midwest")) return 3;

656 Application Development Guide

else if (division.equals("Western")) return 4;
else return 5;

}
}

Functions That Return Multiple Values in Java: Java methods which are
cataloged as stored procedures may return one or more values. You can also
write Java stored procedures that return multiple result sets; see “Returning
Result Sets from Stored Procedures” on page 225. To code a method which
will return a predetermined number of values, declare the return type void
and include the types of the expected output as arrays in the method
signature. You can write a stored procedure which returns the names, years of
service, and salaries of the two most senior employees with a salary under a
given threshold as follows:
public Class JavaExamples {

public static void lowSenioritySalary
(String[] name1, int[] years1, BigDecimal[] salary1,
String[] name2, int[] years2, BigDecimal[] salary2,
Integer threshhold) throws SQLException {
#sql iterator ByNames (String name, int years, BigDecimal salary);
ByNames result;
#sql result = {"SELECT name, years, salary

FROM staff
WHERE salary < :threshhold
ORDER BY years DESC"};

if (result.next()) {
name1[0] = result.name();
years1[0] = result.years();
salary1[0] = result.salary();

}
else {

name1[0] = "****";
return;

}
if (result.next()) {

name2[0] = result.name();
years2[0] = result.years();
salary2[0] = result.salary();

}
else {

name2[0] = "****";
return;

}
}

}

Using LOBs and Graphical Objects With JDBC 1.22

The JDBC 2.0 specification for JDK 1.2 defines support for LOBs and graphic
types. For more information on the DB2 JDBC 2.0 driver support, see “JDBC
2.0” on page 634.

Chapter 21. Programming in Java 657

Note: You cannot use the DB2 JDBC 2.0 driver support for LOB and graphic
types in stored procedures or UDFs. To use LOB or graphic types in
stored procedures or UDFs, you must use the JDBC 1.22 LOB support.
For more information on using using DB2 JDBC 1.22 LOB support with
the DB2 JDBC 2.0 driver, see “JDBC 2.0 Compatibility” on page 636.

However, the JDBC 1.22 specification does not explicitly mention large objects
(LOBs) or graphic types. DB2 provides the following support for LOBs and
graphic types if you use the JDBC 1.22 driver.

If you use LOBs or graphic types in your applications, treat LOBs as the
corresponding LONGVAR type. Because LOB types are declared in SQL with
a maximum length, ensure that you do not return arrays or strings longer
than the declared limit. This consideration applies to SQL string types as well.

Treat GRAPHIC and DBCLOB data types as the corresponding CHAR types.

To convert data from the server code page to Unicode, the DB2 client first
converts the data from the server code page to the client code page. The client
then converts the data from the client code page to Unicode. The following
JDBC APIs convert data to or from Unicode:

getString
Converts from server code page to Unicode.

setString
Converts from Unicode to server code page.

getUnicodeStream
Converts from server code page to Unicode.

setUnicodeStream
Converts from Unicode to server code page.

The following JDBC APIs involve conversion between the client code page
and the server code page:

setAsciiStream
Converts from client code page to server code page.

getAsciiStream
Converts from server code page to client code page.

JDBC and SQLJ Interoperability

The SQLJ language provides direct support for static SQL operations that are
known at the time the program is written. If some or all of a particular SQL
statement cannot be determined until run time, it is a dynamic operation. To
perform dynamic SQL operations from an SQLJ program, use JDBC. A

658 Application Development Guide

ConnectionContext object contains a JDBC Connection object which can be
used to create JDBC Statement objects needed for dynamic SQL operations.

Every SQLJ ConnectionContext class includes a constructor that takes as an
argument a JDBC Connection. This constructor is used to create an SQLJ
connection context instance that shares its underlying database connection
with that of the JDBC connection.

Every SQLJ ConnectionContext instance has a getConnection() method that
returns a JDBC Connection instance. The JDBC Connection returned shares
the underlying database connection with the SQLJ connection context. It may
be used to perform dynamic SQL operations as described in the JDBC API.

Session Sharing
The interoperability methods described above provide a conversion between
the connection abstractions used in SQLJ and those used in JDBC. Both
abstractions share the same database session, that is, the underlying database
connection. Accordingly, calls to methods that affect session state on one
object will also be reflected in the other object, as it is actually the underlying
shared session that is being affected.

JDBC defines the default values for session state of newly created connections.
In most cases, SQLJ adopts these default values. However, whereas a newly
created JDBC connection has auto commit mode on by default, an SQLJ
connection context requires the auto commit mode to be specified explicitly
upon construction.

Connection Resource Management in Java
Calling the close() method of a connection context instance causes the
associated JDBC connection instance and the underlying database connection
to be closed. Since connection contexts may share the underlying database
connection with other connection contexts and/or JDBC connections, it may
not be desirable to close the underlying database connection when a
connection context is closed. A programmer may wish to release the resources
maintained by the connection context (for example, statement handles)
without actually closing the underlying database connection. To this end,
connection context classes also support a close() method which takes a
Boolean argument indicating whether or not to close the underlying database
connection: the constant CLOSE_CONNECTION if the database connection should
be closed, and KEEP_CONNECTION if it should be retained. The variant of
close() that takes no arguments is a shorthand for calling
close(CLOSE_CONNECTION).

If a connection context instance is not explicitly closed before it is garbage
collected, then close(KEEP_CONNECTION) is called by the finalize method of the
connection context. This allows connection related resources to be reclaimed

Chapter 21. Programming in Java 659

by the normal garbage collection process while maintaining the underlying
database connection for other JDBC and SQLJ objects that may be using it.
Note that if no other JDBC or SQLJ objects are using the connection, then the
database connection is closed and reclaimed by the garbage collection process.

Both SQLJ connection context objects and JDBC connection objects respond to
the close() method. When writing an SQLJ program, it is sufficient to call the
close() method on only the connection context object. This is because closing
the connection context also closes the JDBC connection associated with it.
However, it is not sufficient to close only the JDBC connection returned by the
getConnection() method of a connection context. This is because the close()
method of a JDBC connection does not cause the containing connection
context to be closed, and therefore resources maintained by the connection
context are not released until it is garbage collected.

The isClosed() method of a connection context returns true if any variant of
the close() method has been called on the connection context instance. If
isClosed() returns true, then calling close() has no effect, and calling any
other method is undefined.

660 Application Development Guide

Chapter 22. Programming in Perl

Programming Considerations for Perl . . . 661
Perl Restrictions 661
Connecting to a Database Using Perl . . . 661
Fetching Results in Perl 662

Parameter Markers in Perl 663
SQLSTATE and SQLCODE Variables in Perl 663
Perl DB2 Application Example 664

Programming Considerations for Perl

Perl is a popular programming language that is freely available for many
operating systems. Using the DBD::DB2 driver available from
http://www.ibm.com/software/data/db2/perl with the Perl Database
Interface (DBI) Module available from http://www.perl.com, you can create
DB2 applications using Perl.

Because Perl is an interpreted language and the Perl DBI Module uses
dynamic SQL, Perl is an ideal language for quickly creating and revising
prototypes of DB2 applications. The Perl DBI Module uses an interface that is
quite similar to the CLI and JDBC interfaces, which makes it easy for you to
port your Perl prototypes to CLI and JDBC.

Most database vendors provide a database driver for the Perl DBI Module,
which means that you can also use Perl to create applications that access data
from many different database servers. For example, you can write a Perl DB2
application that connects to an Oracle database using the DBD::Oracle
database driver, fetch data from the Oracle database, and insert the data into a
DB2 database using the DBD::DB2 database driver.

Perl Restrictions

The Perl DBI module supports only dynamic SQL. When you need to execute
a statement multiple times, you can improve the performance of your Perl
DB2 applications by issuing a prepare call to prepare the statement.

For current information on the restrictions of the version of the DBD::DB2
driver that you install on your workstation, refer to the CAVEATS file in the
DBD::DB2 driver package.

Connecting to a Database Using Perl

To enable Perl to load the DBI module, you must include the following line in
your DB2 application:

use DBI;

© Copyright IBM Corp. 1993, 2000 661

http://www.ibm.com/software/data/db2/perl/
http://www.perl.com/

The DBI module automatically loads the DBD::DB2 driver when you create a
database handle using the DBI->connect statement with the following syntax:

my $dbhandle = DBI->connect(‘dbi:DB2:dbalias’, $userID, $password);

where:

$dbhandle
represents the database handle returned by the connect statement

dbalias
represents a DB2 alias cataloged in your DB2 database directory

$userID
represents the user ID used to connect to the database

$password
represents the password for the user ID used to connect to the
database

Fetching Results in Perl

Because the Perl DBI Module only supports dynamic SQL, you do not use
host variables in your Perl DB2 applications. To return results from an SQL
query, perform the following steps:
Step 1. Create a database handle, as described in “Connecting to a Database

Using Perl” on page 661.
Step 2. Create a statement handle from the database handle. For example,

you can call prepare with an SQL statement as a string argument to
return statement handle $sth from the database handle, as
demonstrated in the following Perl statement:

my $sth = $dbhandle->prepare(
'SELECT firstnme, lastname

FROM employee '
);

Step 3. Execute the SQL statement by calling execute on the statement
handle. A successful call to execute associates a result set with the
statement handle. For example, you can execute the statement
prepared in the previous example using the following Perl statement:

#Note: $rc represents the return code for the execute call
my $rc = $sth->execute();

Step 4. Fetch a row from the result set associated with the statement handle
with a call to fetchrow(). The Perl DBI returns a row as an array
with one value per column. For example, you can return all of the
rows from the statement handle in the previous example using the
following Perl statement:

662 Application Development Guide

while (($firstnme, $lastname) = $sth->fetchrow()) {
print "$firstnme $lastname\n";

}

Parameter Markers in Perl

To enable you to execute a prepared statement using different input values for
specified fields, the Perl DBI module enables you to prepare and execute a
statement using parameter markers. To include a parameter marker in an SQL
statement, use the question mark (?) character.

The following Perl code creates a statement handle that accepts a parameter
marker for the WHERE clause of a SELECT statement. The code then executes
the statement twice using the input values 25000 and 35000 to replace the
parameter marker.

my $sth = $dbhandle->prepare(
'SELECT firstnme, lastname

FROM employee
WHERE salary > ?'

);

my $rc = $sth->execute(25000);

...

my $rc = $sth->execute(35000);

SQLSTATE and SQLCODE Variables in Perl

To return the SQLSTATE associated with a Perl DBI database handle or
statement handle, call the state method. For example, to return the
SQLSTATE associated with the database handle $dbhandle, include the
following Perl statement in your application:

my $sqlstate = $dbhandle->state;

To return the SQLCODE associated with a Perl DBI database handle or
statement handle, call the err method. To return the message for an
SQLCODE associated with a Perl DBI database handle or statement handle,
call the errstr method. For example, to return the SQLCODE associated with
the database handle $dbhandle, include the following Perl statement in your
application:

my $sqlcode = $dbhandle->err;

Chapter 22. Programming in Perl 663

Perl DB2 Application Example
#!/usr/bin/perl
use DBI;

my $database='dbi:DB2:sample';
my $user='';
my $password='';

my $dbh = DBI->connect($database, $user, $password)
or die "Can't connect to $database: $DBI::errstr";

my $sth = $dbh->prepare(
q{ SELECT firstnme, lastname

FROM employee }
)
or die "Can't prepare statement: $DBI::errstr";

my $rc = $sth->execute
or die "Can't execute statement: $DBI::errstr";

print "Query will return $sth->{NUM_OF_FIELDS} fields.\n\n";
print "$sth->{NAME}->[0]: $sth->{NAME}->[1]\n";

while (($firstnme, $lastname) = $sth->fetchrow()) {
print "$firstnme: $lastname\n";

}

check for problems which may have terminated the fetch early
warn $DBI::errstr if $DBI::err;

$sth->finish;

664 Application Development Guide

Chapter 23. Programming in COBOL

Programming Considerations for COBOL 665
Language Restrictions in COBOL 665
Input and Output Files for COBOL 665
Include Files for COBOL 665
Embedding SQL Statements in COBOL . . 668
Host Variables in COBOL 671

Naming Host Variables in COBOL . . . 671
Declaring Host Variables 671
Indicator Variables in COBOL. 675
LOB Declarations in COBOL 675
LOB Locator Declarations in COBOL . . 676
File Reference Declarations in COBOL 677
Host Structure Support in COBOL . . . 677

Indicator Tables in COBOL. 680
Using REDEFINES in COBOL Group
Data Items 680
Using BINARY/COMP-4 COBOL Data
Types 681

Supported SQL Data Types in COBOL . . . 681
FOR BIT DATA in COBOL 684

SQLSTATE and SQLCODE Variables in
COBOL 685
Japanese or Traditional Chinese EUC, and
UCS-2 Considerations for COBOL 685
Object Oriented COBOL 686

Programming Considerations for COBOL

Special host-language programming considerations are discussed in the
following pages. Included is information on language restrictions, host
language specific include files, embedding SQL statements, host variables, and
supported data types for host variables.

Language Restrictions in COBOL

All API pointers are 4 bytes long. All integer variables used as value
parameters in API calls must be declared with a USAGE COMP-5 clause.

Input and Output Files for COBOL

By default, the input file has an extension of .sqb, but if you use the TARGET
precompile option (TARGET ANSI_COBOL, TARGET IBMCOB, TARGET
MFCOB or TARGET MFCOB16), the input file can have any extension you
prefer.

By default, the output file has an extension of .cbl, but you can use the
OUTPUT precompile option to specify a new name and path for the output
modified source file.

Include Files for COBOL

The host-language-specific include files for COBOL have the file extension
.cbl. If you use the ″System/390 host data type support″ feature of IBM
COBOL compiler, the DB2 include files for your applications are in the
following directory:

© Copyright IBM Corp. 1993, 2000 665

$HOME/sqllib/include/cobol_i

If you build the DB2 sample programs with the supplied script files, you must
change the include file path specified in the script files to the cobol_i
directory and not the cobol_a directory.

If you do not use the ″System/390 host data type support″ feature of the IBM
COBOL compiler, or you use an earlier version of this compiler, then the DB2
include files for your applications are in the following directory:

$HOME/sqllib/include/cobol_a

The include files that are intended to be used in your applications are
described below.

SQL (sql.cbl) This file includes language-specific prototypes for the binder,
precompiler, and error message retrieval APIs. It also defines
system constants.

SQLAPREP (sqlaprep.cbl)
This file contains definitions required to write your own
precompiler.

SQLCA (sqlca.cbl)
This file defines the SQL Communication Area (SQLCA)
structure. The SQLCA contains variables that are used by the
database manager to provide an application with error
information about the execution of SQL statements and API
calls.

SQLCA_92 (sqlca_92.cbl)
This file contains a FIPS SQL92 Entry Level compliant version
of the SQL Communications Area (SQLCA) structure. This file
should be included in place of the sqlca.cbl file when
writing DB2 applications that conform to the FIPS SQL92
Entry Level standard. The sqlca_92.cbl file is automatically
included by the DB2 precompiler when the LANGLEVEL
precompiler option is set to SQL92E.

SQLCODES (sqlcodes.cbl)
This file defines constants for the SQLCODE field of the
SQLCA structure.

SQLDA (sqlda.cbl)
This file defines the SQL Descriptor Area (SQLDA) structure.
The SQLDA is used to pass data between an application and
the database manager.

SQLEAU (sqleau.cbl)
This file contains constant and structure definitions required

666 Application Development Guide

for the DB2 security audit APIs. If you use these APIs, you
need to include this file in your program. This file also
contains constant and keyword value definitions for fields in
the audit trail record. These definitions can be used by
external or vendor audit trail extract programs.

SQLENV (sqlenv.cbl)
This file defines language-specific calls for the database
environment APIs, and the structures, constants, and return
codes for those interfaces.

SQLETSD (sqletsd.cbl)
This file defines the Table Space Descriptor structure,
SQLETSDESC, which is passed to the Create Database API,
sqlgcrea.

SQLE819A (sqle819a.cbl)
If the code page of the database is 819 (ISO Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 500 (EBCDIC International)
binary collation. This file is used by the CREATE DATABASE
API.

SQLE819B (sqle819b.cbl)
If the code page of the database is 819 (ISO Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 037 (EBCDIC US English) binary
collation. This file is used by the CREATE DATABASE API.

SQLE850A (sqle850a.cbl)
If the code page of the database is 850 (ASCII Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 500 (EBCDIC International)
binary collation. This file is used by the CREATE DATABASE
API.

SQLE850B (sqle850b.cbl)
If the code page of the database is 850 (ASCII Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 037 (EBCDIC US English) binary
collation. This file is used by the CREATE DATABASE API.

SQLE932A (sqle932a.cbl)
If the code page of the database is 932 (ASCII Japanese), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 5035 (EBCDIC Japanese) binary
collation. This file is used by the CREATE DATABASE API.

SQLE932B (sqle932b.cbl)
If the code page of the database is 932 (ASCII Japanese), this

Chapter 23. Programming in COBOL 667

sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 5026 (EBCDIC Japanese) binary
collation. This file is used by the CREATE DATABASE API.

SQL1252A (sql1252a.cbl)
If the code page of the database is 1252 (Windows Latin-1),
this sequence sorts character strings that are not FOR BIT
DATA according to the host CCSID 500 (EBCDIC
International) binary collation. This file is used by the
CREATE DATABASE API.

SQL1252B (sql1252b.cbl)
If the code page of the database is 1252 (Windows Latin-1),
this sequence sorts character strings that are not FOR BIT
DATA according to the host CCSID 037 (EBCDIC US English)
binary collation. This file is used by the CREATE DATABASE
API.

SQLMON (sqlmon.cbl)
This file defines language-specific calls for the database
system monitor APIs, and the structures, constants, and return
codes for those interfaces.

SQLMONCT (sqlmonct.cbl)
This file contains constant definitions and local data structure
definitions required to call the Database System Monitor APIs.

SQLSTATE (sqlstate.cbl)
This file defines constants for the SQLSTATE field of the
SQLCA structure.

SQLUTBCQ (sqlutbcq.cbl)
This file defines the Table Space Container Query data
structure, SQLB-TBSCONTQRY-DATA, which is used with the
table space container query APIs, sqlgstsc, sqlgftcq and
sqlgtcq.

SQLUTBSQ (sqlutbsq.cbl)
This file defines the Table Space Query data structure,
SQLB-TBSQRY-DATA, which is used with the table space
query APIs, sqlgstsq, sqlgftsq and sqlgtsq.

SQLUTIL (sqlutil.cbl)
This file defines the language-specific calls for the utility APIs,
and the structures, constants, and codes required for those
interfaces.

Embedding SQL Statements in COBOL

Embedded SQL statements consist of the following three elements:

668 Application Development Guide

Element Correct COBOL Syntax

Keyword pair EXEC SQL

Statement string Any valid SQL statement

Statement terminator END-EXEC.

For example:
EXEC SQL SELECT col INTO :hostvar FROM table END-EXEC.

The following rules apply to embedded SQL statements:
v Executable SQL statements must be placed in the PROCEDURE DIVISION.

The SQL statements can be preceded by a paragraph name just as a COBOL
statement.

v SQL statements can begin in either Area A (columns 8 through 11) or Area
B (columns 12 through 72).

v Start each SQL statement with EXEC SQL and end it with END-EXEC. The
SQL precompiler includes each SQL statement as a comment in the
modified source file.

v You must use the SQL statement terminator. If you do not use it, the
precompiler will continue to the next terminator in the application. This
may cause indeterminate errors.

v SQL comments are allowed on any line that is part of an embedded SQL
statement. These comments are not allowed in dynamically executed
statements. The format for an SQL comment is a double dash (--) followed
by a string of zero or more characters and terminated by a line end. Do not
place SQL comments after the SQL statement terminator as they will cause
compilation errors because they would appear to be part of the COBOL
language.

v COBOL comments are allowed almost anywhere within an embedded SQL
statement. The exceptions are:
– Comments are not allowed between EXEC and SQL.
– Comments are not allowed in dynamically executed statements.

v SQL statements follow the same line continuation rules as the COBOL
language. However, do not split the EXEC SQL keyword pair between lines.

v Do not use the COBOL COPY statement to include files containing SQL
statements. SQL statements are precompiled before the module is compiled.
The precompiler will ignore the COBOL COPY statement. Instead, use the
SQL INCLUDE statement to include these files.
To locate the INCLUDE file, the DB2 COBOL precompiler searches the
current directory first, then the directories specified by the DB2INCLUDE
environment variable. Consider the following examples:
– EXEC SQL INCLUDE payroll END-EXEC.

Chapter 23. Programming in COBOL 669

If the file specified in the INCLUDE statement is not enclosed in
quotation marks, as above, the precompiler searches for payroll.sqb,
then payroll.cpy, then payroll.cbl, in each directory in which it looks.

– EXEC SQL INCLUDE 'pay/payroll.cbl' END-EXEC.

If the file name is enclosed in quotation marks, as above, no extension is
added to the name.
If the file name in quotation marks does not contain an absolute path,
then the contents of DB2INCLUDE are used to search for the file,
prepended to whatever path is specified in the INCLUDE file name. For
example, with DB2 for AIX, if DB2INCLUDE is set to
‘/disk2:myfiles/cobol’, the precompiler searches for
‘./pay/payroll.cbl’, then ‘/disk2/pay/payroll.cbl’, and finally
‘./myfiles/cobol/pay/payroll.cbl’. The path where the file is actually
found is displayed in the precompiler messages. On OS/2 and Windows
platforms, substitute back slashes (\) for the forward slashes in the
above example.

Note: The setting of DB2INCLUDE is cached by the DB2 Command Line
Processor. To change the setting of DB2INCLUDE after any CLP
commands have been issued, enter the TERMINATE command, then
reconnect to the database and precompile as usual.

v To continue a string constant to the next line, column 7 of the continuing
line must contain a '-' and column 12 or beyond must contain a string
delimiter.

v SQL arithmetic operators must be delimited by blanks.
v Full-line COBOL comments can occur anywhere in the program, including

within SQL statements.
v Use host variables exactly as declared when referencing host variables

within an SQL statement.
v Substitution of white space characters such as end-of-line and TAB

characters occur as follows:
– When they occur outside quotation marks (but inside SQL statements),

end-of-lines and TABs are substituted by a single space.
– When they occur inside quotation marks, the end-of-line characters

disappear, provided the string is continued properly for a COBOL
program. TABs are not modified.

Note that the actual characters used for end-of-line and TAB vary from
platform to platform. For example, OS/2 uses Carriage Return/Line Feed
for end-of-line, whereas UNIX-based systems use just a Line Feed.

670 Application Development Guide

Host Variables in COBOL

Host variables are COBOL language variables that are referenced within SQL
statements. They allow an application to pass input data to the database
manager and receive output data from the database manager. After the
application is precompiled, host variables are used by the compiler as any
other COBOL variable. Obey the rules described below when naming,
declaring, and using host variables.

Naming Host Variables in COBOL
The SQL precompiler identifies host variables by their declared name. The
following rules apply:
v Specify variable names up to 255 characters in length.
v Begin host variable names with prefixes other than SQL, sql, DB2, or db2,

which are reserved for system use.
v FILLER items using the declaration syntaxes described below are permitted

in group host variable declarations, and will be ignored by the precompiler.
However, if you use FILLER more than once within an SQL DECLARE
section, the precompiler fails. You may not include FILLER items in
VARCHAR, LONG VARCHAR, VARGRAPHIC or LONG VARGRAPHIC
declarations.

v You can use hyphens in host variable names.
SQL interprets a hyphen enclosed by spaces as a subtraction operator. Use
hyphens without spaces in host variable names.

v The REDEFINES clause is permitted in host variable declarations.
v Level-88 declarations are permitted in the host variable declare section, but

are ignored.

Declaring Host Variables
An SQL declare section must be used to identify host variable declarations.
This alerts the precompiler to any host variables that can be referenced in
subsequent SQL statements.

For information on declaring host variables for structured types, see
“Declaring Structured Type Host Variables” on page 340.

The COBOL precompiler only recognizes a subset of valid COBOL
declarations.

Syntax for Numeric Host Variables in COBOL shows the syntax for numeric
host variables.

Syntax for Numeric Host Variables in COBOL

Chapter 23. Programming in COBOL 671

WW 01
77

variable-name PICTURE
PIC

IS
picture-string W

W
(1)

COMP-3
IS COMPUTATIONAL-3

USAGE COMP-5
COMPUTATIONAL-5

.
IS

VALUE value

WY

Notes:

1 An alternative for COMP-3 is PACKED-DECIMAL.

Floating Point

WW 01
77

variable-name
IS

USAGE

(1)
COMPUTATIONAL-1
COMP-1

(2)
COMPUTATIONAL-2
COMP-2

W

W
IS

VALUE value

. WY

Notes:

1 REAL (SQLTYPE 480), Length 4

2 DOUBLE (SQLTYPE 480), Length 8

Numeric Host Variable Considerations:

1. Picture-string must have one of the following forms:
v S9(m)V9(n)
v S9(m)V
v S9(m)

2. Nines may be expanded (e.g., ″S999″ instead of S9(3)″)
3. m and n must be positive integers.

Syntax for Character Host Variables in COBOL: Fixed Length shows the
syntax for character host variables.

Syntax for Character Host Variables in COBOL: Fixed Length

672 Application Development Guide

WW 01
77

variable-name PICTURE
PIC

IS
picture-string W

W
IS

VALUE value

. WY

Variable Length

WW 01 variable-name . WY

WW 49 identifier-1 PICTURE
PIC

IS
S9(4) W

W
COMP-5

IS COMPUTATIONAL-5
USAGE

IS
VALUE value

. WY

WW 49 identifier-2 PICTURE
PIC

IS
picture-string

IS
VALUE value

W

W . WY

Character Host Variable Consideration:

1. Picture-string must have the form X(m). Alternately, X's may be expanded
(for example, ″XXX″ instead of ″X(3)″).

2. m is from 1 to 254 for fixed-length strings.
3. m is from 1 to 32 700 for variable-length strings.
4. If m is greater than 32 672, the host variable will be treated as a LONG

VARCHAR string, and its use may be restricted.
5. Use X and 9 as the picture characters in any PICTURE clause. Other

characters are not allowed.
6. Variable-length strings consist of a length item and a value item. You can

use acceptable COBOL names for the length item and the string item.
However, refer to the variable-length string by the collective name in SQL
statements.

Chapter 23. Programming in COBOL 673

7. In a CONNECT statement, such as shown below, COBOL character string
host variables dbname and userid will have any trailing blanks removed
before processing:

EXEC SQL CONNECT TO :dbname USER :userid USING :p-word
END-EXEC.

However, because blanks can be significant in passwords, the p-word host
variable should be declared as a VARCHAR data item, so that your
application can explicitly indicate the significant password length for the
CONNECT statement as follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 dbname PIC X(8).
01 userid PIC X(8).
01 p-word.

49 L PIC S9(4) COMP-5.
49 D PIC X(18).

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

MOVE "sample" TO dbname.
MOVE "userid" TO userid.
MOVE "password" TO D OF p-word.
MOVE 8 TO L of p-word.

EXEC SQL CONNECT TO :dbname USER :userid USING :p-word
END-EXEC.

Syntax for Graphic Host Variables in COBOL: Fixed Length shows the syntax
for graphic host variables.

Syntax for Graphic Host Variables in COBOL: Fixed Length

WW 01
77

variable-name PICTURE
PIC

IS
picture-string USAGE W

W
IS

DISPLAY-1
IS

VALUE value

. WY

Variable Length

WW 01 variable-name . WY

WW 49 identifier-1 PICTURE
PIC

IS
S9(4) W

674 Application Development Guide

W
COMP-5

IS COMPUTATIONAL-5
USAGE

IS
VALUE value

. WY

WW 49 identifier-2 PICTURE
PIC

IS
picture-string USAGE

IS
DISPLAY-1 W

W
IS

VALUE value

. WY

Graphic Host Variable Considerations:

1. Picture-string must have the form G(m). Alternately, G's may be expanded
(for example, ″GGG″ instead of ″G(3)″).

2. m is from 1 to 127 for fixed-length strings.
3. m is from 1 to 16 350 for variable-length strings.
4. If m is greater than 16 336, the host variable will be treated as a LONG

VARGRAPHIC string, and its use may be restricted.

Indicator Variables in COBOL
Indicator variables should be declared as a PIC S9(4) COMP-5 data type.

LOB Declarations in COBOL
Syntax for LOB Host Variables in COBOL shows the syntax for declaring large
object (LOB) host variables in COBOL.

Syntax for LOB Host Variables in COBOL

WW 01 variable-name
USAGE

IS

SQL TYPE IS BLOB
CLOB
DBCLOB

W

W (length) .
K
M
G

WY

LOB Host Variable Considerations:

1. For BLOB and CLOB 1 <= lob-length <= 2 147 483 647.
2. For DBCLOB 1 <= lob-length <= 1 073 741 823.
3. SQL TYPE IS, BLOB, CLOB, DBCLOB, K, M, G can be in either uppercase,

lowercase, or mixed.

Chapter 23. Programming in COBOL 675

4. Initialization within the LOB declaration is not permitted.
5. The host variable name prefixes LENGTH and DATA in the precompiler

generated code.

BLOB Example:

Declaring:
01 MY-BLOB USAGE IS SQL TYPE IS BLOB(2M).

Results in the generation of the following structure:
01 MY-BLOB.

49 MY-BLOB-LENGTH PIC S9(9) COMP-5.
49 MY-BLOB-DATA PIC X(2097152).

CLOB Example:

Declaring:
01 MY-CLOB USAGE IS SQL TYPE IS CLOB(125M).

Results in the generation of the following structure:
01 MY-CLOB.

49 MY-CLOB-LENGTH PIC S9(9) COMP-5.
49 MY-CLOB-DATA PIC X(131072000).

DBCLOB Example:

Declaring:
01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(30000).

Results in the generation of the following structure:
01 MY-DBCLOB.

49 MY-DBCLOB-LENGTH PIC S9(9) COMP-5.
49 MY-DBCLOB-DATA PIC G(30000) DISPLAY-1.

LOB Locator Declarations in COBOL
Syntax for LOB Locator Host Variables in COBOL shows the syntax for
declaring large object (LOB) locator host variables in COBOL.

Syntax for LOB Locator Host Variables in COBOL

WW 01 variable-name
USAGE

IS

SQL TYPE IS BLOB-LOCATOR
CLOB-LOCATOR
DBCLOB-LOCATOR

. WY

676 Application Development Guide

LOB Locator Host Variable Considerations:

1. SQL TYPE IS, BLOB-LOCATOR, CLOB-LOCATOR, DBCLOB-LOCATOR
can be either uppercase, lowercase, or mixed.

2. Initialization of locators is not permitted.

BLOB Locator Example (other LOB locator types are similar):

Declaring:
01 MY-LOCATOR USAGE SQL TYPE IS BLOB-LOCATOR.

Results in the generation of the following declaration:
01 MY-LOCATOR PIC S9(9) COMP-5.

File Reference Declarations in COBOL
Syntax for File Reference Host Variables in COBOL shows the syntax for
declaring file reference host variables in COBOL.

Syntax for File Reference Host Variables in COBOL

WW 01 variable-name
USAGE

IS

SQL TYPE IS BLOB-FILE
CLOB-FILE
DBCLOB-FILE

. WY

v SQL TYPE IS, BLOB-FILE, CLOB-FILE, DBCLOB-FILE can be either
uppercase, lowercase, or mixed.

BLOB File Reference Example (other LOB types are similar):

Declaring:
01 MY-FILE USAGE IS SQL TYPE IS BLOB-FILE.

Results in the generation of the following declaration:
01 MY-FILE.

49 MY-FILE-NAME-LENGTH PIC S9(9) COMP-5.
49 MY-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 MY-FILE-FILE-OPTIONS PIC S9(9) COMP-5.
49 MY-FILE-NAME PIC X(255).

Host Structure Support in COBOL
The COBOL precompiler supports declarations of group data items in the host
variable declare section. Among other things, this provides a shorthand for
referring to a set of elementary data items in an SQL statement. For example,
the following group data item can be used to access some of the columns in
the STAFF table of the SAMPLE database:

01 staff-record.
05 staff-id pic s9(4) comp-5.
05 staff-name.

Chapter 23. Programming in COBOL 677

49 l pic s9(4) comp-5.
49 d pic x(9).

05 staff-info.
10 staff-dept pic s9(4) comp-5.
10 staff-job pic x(5).

Group data items in the declare section can have any of the valid host
variable types described above as subordinate data items. This includes all
numeric and character types, as well as all large object types. You can nest
group data items up to 10 levels. Note that you must declare VARCHAR
character types with the subordinate items at level 49, as in the above
example. If they are not at level 49, the VARCHAR is treated as a group data
item with two subordinates, and is subject to the rules of declaring and using
group data items. In the example above, staff-info is a group data item,
whereas staff-name is a VARCHAR. The same principle applies to LONG
VARCHAR, VARGRAPHIC and LONG VARGRAPHIC. You may declare
group data items at any level between 02 and 49.

You can use group data items and their subordinates in four ways:

Method 1.

The entire group may be referenced as a single host variable in an SQL
statement:

EXEC SQL SELECT id, name, dept, job
INTO :staff-record
FROM staff WHERE id = 10 END-EXEC.

The precompiler converts the reference to staff-record into a list, separated by
commas, of all the subordinate items declared within staff-record. Each
elementary item is qualified with the group names of all levels to prevent
naming conflicts with other items. This is equivalent to the following method.

Method 2.

The second way of using group data items:
EXEC SQL SELECT id, name, dept, job

INTO
:staff-record.staff-id,
:staff-record.staff-name,
:staff-record.staff-info.staff-dept,
:staff-record.staff-info.staff-job
FROM staff WHERE id = 10 END-EXEC.

Note: The reference to staff-id is qualified with its group name using the
prefix staff-record., and not staff-id of staff-record as in pure
COBOL.

678 Application Development Guide

Assuming there are no other host variables with the same names as the
subordinates of staff-record, the above statement can also be coded as in
method 3, eliminating the explicit group qualification.

Method 3.

Here, subordinate items are referenced in a typical COBOL fashion, without
being qualified to their particular group item:

EXEC SQL SELECT id, name, dept, job
INTO
:staff-id,
:staff-name,
:staff-dept,
:staff-job
FROM staff WHERE id = 10 END-EXEC.

As in pure COBOL, this method is acceptable to the precompiler as long as a
given subordinate item can be uniquely identified. If, for example, staff-job
occurs in more than one group, the precompiler issues an error indicating an
ambiguous reference:

SQL0088N Host variable "staff-job" is ambiguous.

Method 4.

To resolve the ambiguous reference, you can use partial qualification of the
subordinate item, for example:

EXEC SQL SELECT id, name, dept, job
INTO
:staff-id,
:staff-name,
:staff-info.staff-dept,
:staff-info.staff-job
FROM staff WHERE id = 10 END-EXEC.

Because a reference to a group item alone, as in method 1, is equivalent to a
comma-separated list of its subordinates, there are instances where this type
of reference leads to an error. For example:

EXEC SQL CONNECT TO :staff-record END-EXEC.

Here, the CONNECT statement expects a single character-based host variable.
By giving the staff-record group data item instead, the host variable results
in the following precompile-time error:

SQL0087N Host variable "staff-record" is a structure used where
structure references are not permitted.

Other uses of group items which cause an SQL0087N to occur include
PREPARE, EXECUTE IMMEDIATE, CALL, indicator variables, and SQLDA

Chapter 23. Programming in COBOL 679

references. Groups with only one subordinate are permitted in such situations,
as are references to individual subordinates, as in method 2, 3 and 4 above.

Indicator Tables in COBOL
The COBOL precompiler supports the declaration of tables of indicator
variables, which are convenient to use with group data items. They are
declared as follows:

01 <indicator-table-name>.
05 <indicator-name> pic s9(4) comp-5

occurs <table-size> times.

For example:
01 staff-indicator-table.

05 staff-indicator pic s9(4) comp-5
occurs 7 times.

This indicator table can be used effectively with the first format of group item
reference above:

EXEC SQL SELECT id, name, dept, job
INTO :staff-record :staff-indicator
FROM staff WHERE id = 10 END-EXEC.

Here, the precompiler detects that staff-indicator was declared as an
indicator table, and expands it into individual indicator references when it
processes the SQL statement. staff-indicator(1) is associated with staff-id
of staff-record, staff-indicator(2) is associated with staff-name of
staff-record, and so on.

Note: If there are k more indicator entries in the indicator table than there are
subordinates in the data item (for example, if staff-indicator has 10
entries, making k=6), the k extra entries at the end of the indicator table
are ignored. Likewise, if there are k fewer indicator entries than
subordinates, the last k subordinates in the group item do not have
indicators associated with them. Note that you can refer to individual
elements in an indicator table in an SQL statement.

Using REDEFINES in COBOL Group Data Items
You can use the REDEFINES clause when declaring host variables. If you
declare a member of a group data item with the REDEFINES clause and that
group data item is referred to as a whole in an SQL statement, any
subordinate items containing the REDEFINES clause are not expanded. For
example:

01 foo.
10 a pic s9(4) comp-5.
10 a1 redefines a pic x(2).
10 b pic x(10).

680 Application Development Guide

Referring to foo in an SQL statement as follows:
... INTO :foo ...

The above statement is equivalent to:
... INTO :foo.a, :foo.b ...

That is, the subordinate item a1, declared with the REDEFINES clause is not
automatically expanded out in such situations. If a1 is unambiguous, you can
explicitly refer to a subordinate with a REDEFINES clause in an SQL
statement, as follows:

... INTO :foo.a1 ...

or
... INTO :a1 ...

Using BINARY/COMP-4 COBOL Data Types
The DB2 COBOL precompiler supports the use of BINARY, COMP, and
COMP-4 data types wherever integer host variables and indicators are
permitted, as long as the target COBOL compiler views (or can be made to
view) the BINARY, COMP, or COMP-4 data types as equivalent to the
COMP-5 data type. In this book, such host variables and indicators are shown
with type COMP-5. Target compilers supported by DB2 that treat COMP,
COMP-4, BINARY COMP and COMP-5 as equivalent are:
v IBM COBOL Set for AIX
v Micro Focus COBOL for AIX
v IBM COBOL Visual Set for OS/2 (with the -qbinary(native) option set)
v IBM VisualAge for COBOL for OS/2, Windows NT and Windows 95, (with

the -qbinary(native) option set)

Supported SQL Data Types in COBOL

Certain predefined COBOL data types correspond to column types. Only
these COBOL data types can be declared as host variables.

Table 33 on page 682 shows the COBOL equivalent of each column type.
When the precompiler finds a host variable declaration, it determines the
appropriate SQL type value. The database manager uses this value to convert
the data exchanged between the application and itself.

Not every possible data description for host variables is recognized. COBOL
data items must be consistent with the ones described in the following table.
If you use other data items, an error can result.

Note: There is no host variable support for the DATALINK data type in any
of the DB2 host languages.

Chapter 23. Programming in COBOL 681

Table 33. SQL Data Types Mapped to COBOL Declarations

SQL Column Type1 COBOL Data Type SQL Column Type
Description

SMALLINT
(500 or 501)

01 name PIC S9(4) COMP-5. 16-bit signed integer

INTEGER
(496 or 497)

01 name PIC S9(9) COMP-5. 32-bit signed integer

BIGINT
(492 or 493)

01 name PIC S9(18) COMP-5. 64-bit signed integer

DECIMAL(p,s)
(484 or 485)

01 name PIC S9(m)V9(n) COMP-3. Packed decimal

REAL2

(480 or 481)
01 name USAGE IS COMP-1. Single-precision floating

point

DOUBLE3

(480 or 481)
01 name USAGE IS COMP-2. Double-precision floating

point

CHAR(n)
(452 or 453)

01 name PIC X(n). Fixed-length character
string

VARCHAR(n)
(448 or 449)

01 name.
49 length PIC S9(4) COMP-5.
49 name PIC X(n).

1<=n<=32 672

Variable-length character
string

LONG VARCHAR
(456 or 457)

01 name.
49 length PIC S9(4) COMP-5.
49 data PIC X(n).

32 673<=n<=32 700

Long variable-length
character string

CLOB(n)
(408 or 409)

01 MY-CLOB USAGE IS SQL TYPE IS CLOB(n).

1<=n<=2 147 483 647

Large object
variable-length character
string

CLOB locator variable4

(964 or 965)
01 MY-CLOB-LOCATOR USAGE IS SQL TYPE IS
CLOB-LOCATOR.

Identifies CLOB entities
residing on the server

CLOB file reference variable4

(920 or 921)
01 MY-CLOB-FILE USAGE IS SQL TYPE IS
CLOB-FILE.

Descriptor for file
containing CLOB data

BLOB(n)
(404 or 405)

01 MY-BLOB USAGE IS SQL TYPE IS BLOB(n).

1<=n<=2 147 483 647

Large object
variable-length binary
string

BLOB locator variable4

(960 or 961)
01 MY-BLOB-LOCATOR USAGE IS SQL TYPE IS
BLOB-LOCATOR.

Identifies BLOB entities
residing on the server

BLOB file reference variable4

(916 or 917)
01 MY-CLOB-FILE USAGE IS SQL TYPE IS
CLOB-FILE.

Descriptor for file
containing CLOB data

DATE
(384 or 385)

01 identifier PIC X(10). 10-byte character string

TIME
(388 or 389)

01 identifier PIC X(8). 8-byte character string

TIMESTAMP
(392 or 393)

01 identifier PIC X(26). 26-byte character string

682 Application Development Guide

Table 33. SQL Data Types Mapped to COBOL Declarations (continued)

SQL Column Type1 COBOL Data Type SQL Column Type
Description

Note: The following data types are only available in the DBCS environment.

GRAPHIC(n)
(468 or 469)

01 name PIC G(n) DISPLAY-1. Fixed-length double-byte
character string

VARGRAPHIC(n)
(464 or 465)

01 name.
49 length PIC S9(4) COMP-5.
49 name PIC G(n) DISPLAY-1.

1<=n<=16 336

Variable length
double-byte character
string with 2-byte string
length indicator

LONG VARGRAPHIC
(472 or 473)

01 name.
49 length PIC S9(4) COMP-5.
49 name PIC G(n) DISPLAY-1.

16 337<=n<=16 350

Variable length
double-byte character
string with 2-byte string
length indicator

DBCLOB(n)
(412 or 413)

01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(n).

1<=n<=1 073 741 823

Large object variable
length double-byte
character string with
4-byte string length
indicator

DBCLOB locator variable4

(968 or 969)
01 MY-DBCLOB-LOCATOR USAGE IS SQL TYPE IS
DBCLOB-LOCATOR.

Identifies DBCLOB entities
residing on the server

DBCLOB file reference variable4

(924 or 925)
01 MY-DBCLOB-FILE USAGE IS SQL TYPE IS
DBCLOB-FILE.

Descriptor for file
containing DBCLOB data

Note:
1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the second

number indicates that an indicator variable is provided. An indicator variable is needed to indicate NULL values,
or to hold the length of a truncated string. These are the values that would appear in the SQLTYPE field of the
SQLDA for these data types.

2. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA is
the length value (4 or 8).

3. The following SQL types are synonyms for DOUBLE:
v FLOAT
v FLOAT(n) where 24 < n < 54 is
v DOUBLE PRECISION

4. This is not a column type but a host variable type.

The following is a sample SQL declare section with a host variable declared
for each supported SQL data type.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
*

01 age PIC S9(4) COMP-5.
01 divis PIC S9(9) COMP-5.
01 salary PIC S9(6)V9(3) COMP-3.
01 bonus USAGE IS COMP-1.
01 wage USAGE IS COMP-2.
01 nm PIC X(5).
01 varchar.

Chapter 23. Programming in COBOL 683

49 leng PIC S9(4) COMP-5.
49 strg PIC X(14).

01 longvchar.
49 len PIC S9(4) COMP-5.
49 str PIC X(6027).

01 MY-CLOB USAGE IS SQL TYPE IS CLOB(1M).
01 MY-CLOB-LOCATOR USAGE IS SQL TYPE IS CLOB-LOCATOR.
01 MY-CLOB-FILE USAGE IS SQL TYPE IS CLOB-FILE.
01 MY-BLOB USAGE IS SQL TYPE IS BLOB(1M).
01 MY-BLOB-LOCATOR USAGE IS SQL TYPE IS BLOB-LOCATOR.
01 MY-BLOB-FILE USAGE IS SQL TYPE IS BLOB-FILE.
01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(1M).
01 MY-DBCLOB-LOCATOR USAGE IS SQL TYPE IS DBCLOB-LOCATOR.
01 MY-DBCLOB-FILE USAGE IS SQL TYPE IS DBCLOB-FILE.
01 MY-PICTURE PIC G(16000) USAGE IS DISPLAY-1.
01 dt PIC X(10).
01 tm PIC X(8).
01 tmstmp PIC X(26).
01 wage-ind PIC S9(4) COMP-5.

*
EXEC SQL END DECLARE SECTION END-EXEC.

The following are additional rules for supported COBOL data types:
v PIC S9 and COMP-3/COMP-5 are required where shown.
v You can use level number 77 instead of 01 for all column types except

VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG VARGRAPHIC and
all LOB variable types.

v Use the following rules when declaring host variables for DECIMAL(p,s)
column types. Refer to the following sample:

01 identifier PIC S9(m)V9(n) COMP-3
– Use V to denote the decimal point.
– Values for n and m must be greater than or equal to 1.
– The value for n + m cannot exceed 31.
– The value for s equals the value for n.
– The value for p equals the value for n + m.
– The repetition factors (n) and (m) are optional. The following examples

are all valid:
01 identifier PIC S9(3)V COMP-3
01 identifier PIC SV9(3) COMP-3
01 identifier PIC S9V COMP-3
01 identifier PIC SV9 COMP-3

– PACKED-DECIMAL can be used instead of COMP-3.
v Arrays are not supported by the COBOL precompiler:

FOR BIT DATA in COBOL
Certain database columns can be declared FOR BIT DATA. These columns,
which generally contain characters, are used to hold binary information. The
CHAR(n), VARCHAR, LONG VARCHAR, and BLOB data types are the

684 Application Development Guide

COBOL host variable types that can contain binary data. Use these data types
when working with columns with the FOR BIT DATA attribute.

SQLSTATE and SQLCODE Variables in COBOL

When using the LANGLEVEL precompile option with a value of SQL92E, the
following two declarations may be included as host variables:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 SQLSTATE PICTURE X(5).
01 SQLCODE PICTURE S9(9) USAGE COMP.
.
.
.
EXEC SQL END DECLARE SECTION END-EXEC.

If neither of these is specified, the SQLCODE declaration is assumed during
the precompile step. The ’01’ can also be ’77’ and the ’PICTURE’ can be ’PIC’.
Note that when using this option, the INCLUDE SQLCA statement should not
be specified.

For applications made up of multiple source files, the SQLCODE and
SQLSTATE declarations may be included in each source file as shown above.

Japanese or Traditional Chinese EUC, and UCS-2 Considerations for COBOL

Any graphic data sent from your application running under an eucJp or
eucTW code set, or connected to a UCS-2 database, is tagged with the UCS-2
code page identifier. Your application must convert a graphic-character string
to UCS-2 before sending it to a the database server. Likewise, graphic data
retrieved from a UCS-2 database by any application, or from any database by
an application running under an EUC eucJP or eucTW code page, is encoded
using UCS-2. This requires your application to convert from UCS-2 to your
application code page internally, unless the user is to be presented with UCS-2
data.

Your application is responsible for converting to and from UCS-2 since this
conversion must be conducted before the data is copied to, and after it is
copied from, the SQLDA. DB2 Universal Database does not supply any
conversion routines that are accessible to your application. Instead, you must
use the system calls available from your operating system. In the case of a
UCS-2 database, you may also consider using the VARCHAR and
VARGRAPHIC scalar functions.

For further information on these functions, refer to the SQL Reference. For
general EUC application development guidelines, see “Japanese and
Traditional Chinese EUC and UCS-2 Code Set Considerations” on page 511.

Chapter 23. Programming in COBOL 685

Object Oriented COBOL

If you are using Object Oriented COBOL, you must observe the following:
v SQL statements can only appear in the first program or class in a compile

unit. This is because the precompiler inserts temporary working data into
the first Working-Storage section it sees.

v In an Object Oriented COBOL program, every class containing SQL
statements must have a class-level Working-Storage Section, even if it is
empty. This section is used to store data definitions generated by the
precompiler.

686 Application Development Guide

Chapter 24. Programming in FORTRAN

Programming Considerations for FORTRAN 687
Language Restrictions in FORTRAN . . . 687

Call by Reference in FORTRAN 687
Debugging and Comment Lines in
FORTRAN 688
Precompiling Considerations for
FORTRAN 688

Input and Output Files for FORTRAN . . . 688
Include Files for FORTRAN 688

Including Files in FORTRAN 691
Embedding SQL Statements in FORTRAN 691
Host Variables in FORTRAN 693

Naming Host Variables in FORTRAN . . 693

Declaring Host Variables 693
Indicator Variables in FORTRAN. . . . 696
LOB Declarations in FORTRAN 696
LOB Locator Declarations in FORTRAN 697
File Reference Declarations in FORTRAN 697

Supported SQL Data Types in FORTRAN 698
SQLSTATE and SQLCODE Variables in
FORTRAN 700
Considerations for Multi-byte Character Sets
in FORTRAN 700
Japanese or Traditional Chinese EUC, and
UCS-2 Considerations for FORTRAN . . . 701

Programming Considerations for FORTRAN

Special host-language programming considerations are discussed in the
following pages. Included is information on language restrictions, host
language specific include files, embedding SQL statements, host variables, and
supported data types for host variables.

Note: FORTRAN support stabilized in DB2 Version 5, and no enhancements
for FORTRAN support are planned for the future. For example, the
FORTRAN precompiler cannot handle SQL object identifiers, such as
table names, that are longer than 18 bytes. To use features introduced to
DB2 after Version 5, such as table names from 19 to 128 bytes long, you
must write your applications in a language other than FORTRAN.

Language Restrictions in FORTRAN

The following sections describe the FORTRAN language restrictions.

Call by Reference in FORTRAN
Some API parameters require addresses rather than values in the call
variables. The database manager provides the GET ADDRESS,
DEREFERENCE ADDRESS, and COPY MEMORY APIs which simplify your
ability to provide these parameters. Refer to the Administrative API Reference
for a full description of these APIs.

© Copyright IBM Corp. 1993, 2000 687

Debugging and Comment Lines in FORTRAN
Some FORTRAN compilers treat lines with a 'D' or 'd' in column 1 as
conditional lines. These lines can either be compiled for debugging or treated
as comments. The precompiler will always treat lines with a 'D' or 'd' in
column 1 as comments.

Precompiling Considerations for FORTRAN
The following items affect the precompiling process:
v The precompiler allows only digits, blanks, and tab characters within

columns 1-5 on continuation lines.
v Hollerith constants are not supported in .sqf source files.

Refer to the Application Building Guide for information on any other
precompiling considerations that may affect you.

Input and Output Files for FORTRAN

By default, the input file has an extension of .sqf, but if you use the TARGET
precompile option the input file can have any extension you prefer.

By default, the output file has an extension of .f on UNIX-platforms, and
.for on OS/2 and Windows-based platforms, however you can use the
OUTPUT precompile option to specify a new name and path for the output
modified source file.

Include Files for FORTRAN

The host-language specific include files for FORTRAN have the file extension
.f on UNIX platforms, and .for on OS/2. You can use the following
FORTRAN include files in your applications.

SQL (sql.f) This file includes language-specific prototypes for the binder,
precompiler, and error message retrieval APIs. It also defines
system constants.

SQLAPREP (sqlaprep.f)
This file contains definitions required to write your own
precompiler.

SQLCA (sqlca_cn.f, sqlca_cs.f)
This file defines the SQL Communication Area (SQLCA)
structure. The SQLCA contains variables that are used by the
database manager to provide an application with error
information about the execution of SQL statements and API
calls.

688 Application Development Guide

Two SQLCA files are provided for FORTRAN applications.
The default, sqlca_cs.f, defines the SQLCA structure in an
IBM SQL compatible format. The sqlca_cn.f file, precompiled
with the SQLCA NONE option, defines the SQLCA structure for
better performance.

SQLCA_92 (sqlca_92.f)
This file contains a FIPS SQL92 Entry Level compliant version
of the SQL Communications Area (SQLCA) structure. This file
should be included in place of either the sqlca_cn.f or the
sqlca_cs.f files when writing DB2 applications that conform
to the FIPS SQL92 Entry Level standard. The sqlca_92.f file is
automatically included by the DB2 precompiler when the
LANGLEVEL precompiler option is set to SQL92E.

SQLCODES (sqlcodes.f)
This file defines constants for the SQLCODE field of the
SQLCA structure.

SQLDA (sqldact.f)
This file defines the SQL Descriptor Area (SQLDA) structure.
The SQLDA is used to pass data between an application and
the database manager. See “Allocating an SQLDA Structure”
on page 147 for details of how to code an SQLDA in a

FORTRAN program.

SQLEAU (sqleau.f)
This file contains constant and structure definitions required
for the DB2 security audit APIs. If you use these APIs, you
need to include this file in your program. This file also
contains constant and keyword value definitions for fields in
the audit trail record. These definitions can be used by
external or vendor audit trail extract programs.

SQLENV (sqlenv.f)
This file defines language-specific calls for the database
environment APIs, and the structures, constants, and return
codes for those interfaces.

SQLE819A (sqle819a.f)
If the code page of the database is 819 (ISO Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 500 (EBCDIC International)
binary collation. This file is used by the CREATE DATABASE
API.

SQLE819B (sqle819b.f)
If the code page of the database is 819 (ISO Latin-1), this
sequence sorts character strings that are not FOR BIT DATA

Chapter 24. Programming in FORTRAN 689

according to the host CCSID 037 (EBCDIC US English) binary
collation. This file is used by the CREATE DATABASE API.

SQLE850A (sqle850a.f)
If the code page of the database is 850 (ASCII Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 500 (EBCDIC International)
binary collation. This file is used by the CREATE DATABASE
API.

SQLE850B (sqle850b.f)
If the code page of the database is 850 (ASCII Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 037 (EBCDIC US English) binary
collation. This file is used by the CREATE DATABASE API.

SQLE932A (sqle932a.f)
If the code page of the database is 932 (ASCII Japanese), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 5035 (EBCDIC Japanese) binary
collation. This file is used by the CREATE DATABASE API.

SQLE932B (sqle932b.f)
If the code page of the database is 932 (ASCII Japanese), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 5026 (EBCDIC Japanese) binary
collation. This file is used by the CREATE DATABASE API.

SQL1252A (sql1252a.f)
If the code page of the database is 1252 (Windows Latin-1),
this sequence sorts character strings that are not FOR BIT
DATA according to the host CCSID 500 (EBCDIC
International) binary collation. This file is used by the
CREATE DATABASE API.

SQL1252B (sql1252b.f)
If the code page of the database is 1252 (Windows Latin-1),
this sequence sorts character strings that are not FOR BIT
DATA according to the host CCSID 037 (EBCDIC US English)
binary collation. This file is used by the CREATE DATABASE
API.

SQLMON (sqlmon.f)
This file defines language-specific calls for the database
system monitor APIs, and the structures, constants, and return
codes for those interfaces.

SQLSTATE (sqlstate.f)
This file defines constants for the SQLSTATE field of the
SQLCA structure.

690 Application Development Guide

SQLUTIL (sqlutil.f)
This file defines the language-specific calls for the utility APIs,
and the structures, constants, and codes required for those
interfaces.

Including Files in FORTRAN
There are two methods for including files: the EXEC SQL INCLUDE statement
and the FORTRAN INCLUDE statement. The precompiler will ignore
FORTRAN INCLUDE statements, and only process files included with the
EXEC SQL statement.

To locate the INCLUDE file, the DB2 FORTRAN precompiler searches the
current directory first, then the directories specified by the DB2INCLUDE
environment variable. Consider the following examples:
v EXEC SQL INCLUDE payroll

If the file specified in the INCLUDE statement is not enclosed in quotation
marks, as above, the precompiler searches for payroll.sqf, then payroll.f
(payroll.for on OS/2) in each directory in which it looks.

v EXEC SQL INCLUDE 'pay/payroll.f'

If the file name is enclosed in quotation marks, as above, no extension is
added to the name. (For OS/2, the file would be specified as
'pay\payroll.for'.)
If the file name in quotation marks does not contain an absolute path, then
the contents of DB2INCLUDE are used to search for the file, prepended to
whatever path is specified in the INCLUDE file name. For example, with
DB2 for AIX, if DB2INCLUDE is set to ‘/disk2:myfiles/fortran’, the
precompiler searches for ‘./pay/payroll.f’, then ‘/disk2/pay/payroll.f’,
and finally ‘./myfiles/cobol/pay/payroll.f’. The path where the file is
actually found is displayed in the precompiler messages. On OS/2,
substitute back slashes (\) for the forward slashes, and substitute ‘for’ for
the ‘f’ extension in the above example.

Note: The setting of DB2INCLUDE is cached by the DB2 Command Line
Processor. To change the setting of DB2INCLUDE after any CLP
commands have been issued, enter the TERMINATE command, then
reconnect to the database and precompile as usual.

Embedding SQL Statements in FORTRAN

Embedded SQL statements consist of the following three elements:

Element Correct FORTRAN Syntax

Keyword EXEC SQL

Chapter 24. Programming in FORTRAN 691

Statement string Any valid SQL statement with blanks as
delimiters

Statement terminator End of source line.

The end of the source line serves as the statement terminator. If the line is
continued, the statement terminator is the end of the last continued line.

For example:
EXEC SQL SELECT COL INTO :hostvar FROM TABLE

The following rules apply to embedded SQL statements:
v Code SQL statements between columns 7 and 72 only.
v Use full-line FORTRAN comments, or SQL comments, but do not use the

FORTRAN end-of-line comment '!' character in SQL statements. This
comment character may be used elsewhere, including host variable
declarations.

v Use blanks as delimiters when coding embedded SQL statements, even
though FORTRAN statements do not require blanks as delimiters.

v Use only one SQL statement for each FORTRAN source line. Normal
FORTRAN continuation rules apply for statements that require more than
one source line. Do not split the EXEC SQL keyword pair between lines.

v SQL comments are allowed on any line that is part of an embedded SQL
statement. These comments are not allowed in dynamically executed
statements. The format for an SQL comment is a double dash (--) followed
by a string of zero or more characters and terminated by a line end.

v FORTRAN comments are allowed almost anywhere within an embedded
SQL statement. The exceptions are:
– Comments are not allowed between EXEC and SQL.
– Comments are not allowed in dynamically executed statements.
– The extension of using ! to code a FORTRAN comment at the end of a

line is not supported within an embedded SQL statement.
v Use exponential notation when specifying a real constant in SQL

statements. The database manager interprets a string of digits with a
decimal point in an SQL statement as a decimal constant, not a real
constant.

v Statement numbers are invalid on SQL statements that precede the first
executable FORTRAN statement. If an SQL statement has a statement
number associated with it, the precompiler generates a labeled CONTINUE
statement that directly precedes the SQL statement.

v Use host variables exactly as declared when referencing host variables
within an SQL statement.

v Substitution of white space characters such as end-of-line and TAB
characters occur as follows:

692 Application Development Guide

– When they occur outside quotation marks (but inside SQL statements),
end-of-lines and TABs are substituted by a single space.

– When they occur inside quotation marks, the end-of-line characters
disappear, provided the string is continued properly for a FORTRAN
program. TABs are not modified.

Note that the actual characters used for end-of-line and TAB vary from
platform to platform. For example, OS/2 uses Carriage Return/Line Feed
for end-of-line, whereas UNIX-based systems use just a Line Feed.

Host Variables in FORTRAN

Host variables are FORTRAN language variables that are referenced within
SQL statements. They allow an application to pass input data to the database
manager and receive output data from it. After the application is precompiled,
host variables are used by the compiler as any other FORTRAN variable. Use
the following suggestions when naming, declaring, and using host variables.

Naming Host Variables in FORTRAN
The SQL precompiler identifies host variables by their declared name. The
following suggestions apply:
v Specify variable names up to 255 characters in length.
v Begin host variable names with prefixes other than SQL, sql, DB2, or db2,

which are reserved for system use.

Declaring Host Variables
An SQL declare section must be used to identify host variable declarations.
This alerts the precompiler to any host variables that can be referenced in
subsequent SQL statements.

The FORTRAN precompiler only recognizes a subset of valid FORTRAN
declarations as valid host variable declarations. These declarations define
either numeric or character variables. A numeric host variable can be used as
an input or output variable for any numeric SQL input or output value. A
character host variable can be used as an input or output variable for any
character, date, time or timestamp SQL input or output value. The
programmer must ensure that output variables are long enough to contain the
values that they will receive. Syntax for Numeric Host Variables in FORTRAN
shows the syntax for numeric host variables.

For information on declaring host variables for structured types, see
“Declaring Structured Type Host Variables” on page 340.

Syntax for Numeric Host Variables in FORTRAN

Chapter 24. Programming in FORTRAN 693

WW INTEGER*2
INTEGER*4
REAL*4
REAL *8
DOUBLE PRECISION

X

,

varname
/ initial-value /

WY

Numeric Host Variable Considerations:

1. REAL*8 and DOUBLE PRECISION are equivalent.
2. Use an E rather than a D as the exponent indicator for REAL*8 constants.

Syntax for Character Host Variables in FORTRAN: Fixed Length shows the
syntax for character host variables.

Syntax for Character Host Variables in FORTRAN: Fixed Length

WW X

,

CHARACTER varname
*n / initial-value /

WY

Variable Length

WW X

,

SQL TYPE IS VARCHAR (length) varname WY

Character Host Variable Considerations:

1. *n has a maximum value of 254.
2. When length is between 1 and 32 672 inclusive, the host variable has type

VARCHAR(SQLTYPE 448).
3. When length is between 32 673 and 32 700 inclusive, the host variable has

type LONG VARCHAR(SQLTYPE 456).
4. Initialization of VARCHAR and LONG VARCHAR host variables is not

permitted within the declaration.

VARCHAR Example:

Declaring:
sql type is varchar(1000) my_varchar

Results in the generation of the following structure:
character my_varchar(1000+2)
integer*2 my_varchar_length
character my_varchar_data(1000)

694 Application Development Guide

equivalence(my_varchar(1),
+ my_varchar_length)
equivalence(my_varchar(3),
+ my_varchar_data)

The application may manipulate both my_varchar_length and
my_varchar_data; for example, to set or examine the contents of the host
variable. The base name (in this case, my_varchar), is used in SQL statements
to refer to the VARCHAR as a whole.

LONG VARCHAR Example:

Declaring:
sql type is varchar(10000) my_lvarchar

Results in the generation of the following structure:
character my_lvarchar(10000+2)
integer*2 my_lvarchar_length
character my_lvarchar_data(10000)
equivalence(my_lvarchar(1),
+ my_lvarchar_length)
equivalence(my_lvarchar(3),
+ my_lvarchar_data)

The application may manipulate both my_lvarchar_length and
my_lvarchar_data; for example, to set or examine the contents of the host
variable. The base name (in this case, my_lvarchar), is used in SQL statements
to refer to the LONG VARCHAR as a whole.

Note: In a CONNECT statement, such as in the following example,
FORTRAN character string host variables dbname and userid will have
any trailing blanks removed before processing.
EXEC SQL CONNECT TO :dbname USER :userid USING :passwd

However, because blanks can be significant in passwords, you should
declare host variables for passwords as VARCHAR, and have the
length field set to reflect the actual password length:

EXEC SQL BEGIN DECLARE SECTION
character*8 dbname, userid
sql type is varchar(18) passwd

EXEC SQL END DECLARE SECTION
character*18 passwd_string
equivalence(passwd_data,passwd_string)
dbname = 'sample'
userid = 'userid'
passwd_length= 8
passwd_string = 'password'
EXEC SQL CONNECT TO :dbname USER :userid USING :passwd

Chapter 24. Programming in FORTRAN 695

Indicator Variables in FORTRAN
Indicator variables should be declared as an INTEGER*2 data type.

LOB Declarations in FORTRAN
Syntax for Large Object (LOB) Host Variables in FORTRAN shows the syntax
for declaring large object (LOB) host variables in FORTRAN.

Syntax for Large Object (LOB) Host Variables in FORTRAN

WW X

,

SQL TYPE IS BLOB (length) variable-name
CLOB K

M
G

WY

LOB Host Variable Considerations:

1. GRAPHIC types are not supported in FORTRAN.
2. SQL TYPE IS, BLOB, CLOB, K, M, G can be in either uppercase, lowercase,

or mixed.
3. For BLOB and CLOB 1 <= lob-length <= 2 147 483 647.
4. The initialization of a LOB within a LOB declaration is not permitted.
5. The host variable name prefixes ’length’ and ’data’ in the precompiler

generated code.

BLOB Example:

Declaring:
sql type is blob(2m) my_blob

Results in the generation of the following structure:
character my_blob(2097152+4)
integer*4 my_blob_length
character my_blob_data(2097152)
equivalence(my_blob(1),
+ my_blob_length)
equivalence(my_blob(5),
+ my_blob_data)

CLOB Example:

Declaring:
sql type is clob(125m) my_clob

Results in the generation of the following structure:

696 Application Development Guide

character my_clob(131072000+4)
integer*4 my_clob_length
character my_clob_data(131072000)
equivalence(my_clob(1),
+ my_clob_length)
equivalence(my_clob(5),
+ my_clob_data)

LOB Locator Declarations in FORTRAN
Syntax for Large Object (LOB) Locator Host Variables in FORTRAN shows the
syntax for declaring large object (LOB) locator host variables in FORTRAN.

Syntax for Large Object (LOB) Locator Host Variables in FORTRAN

WW X

,

SQL TYPE IS BLOB_LOCATOR variable-name
CLOB_LOCATOR

WY

LOB Locator Host Variable Considerations:

1. GRAPHIC types are not supported in FORTRAN.
2. SQL TYPE IS, BLOB_LOCATOR, CLOB_LOCATOR can be either

uppercase, lowercase, or mixed.
3. Initialization of locators is not permitted.

CLOB Locator Example (BLOB locator is similar):

Declaring:
SQL TYPE IS CLOB_LOCATOR my_locator

Results in the generation of the following declaration:
integer*4 my_locator

File Reference Declarations in FORTRAN
Syntax for File Reference Host Variables in FORTRAN shows the syntax for
declaring file reference host variables in FORTRAN.

Syntax for File Reference Host Variables in FORTRAN

WW X

,

SQL TYPE IS BLOB_FILE variable-name
CLOB_FILE

WY

File Reference Host Variable Considerations:

1. Graphic types are not supported in FORTRAN.

Chapter 24. Programming in FORTRAN 697

2. SQL TYPE IS, BLOB_FILE, CLOB_FILE can be either uppercase, lowercase,
or mixed.

Example of a BLOB file reference variable (CLOB file reference variable is
similar):

SQL TYPE IS BLOB_FILE my_file

Results in the generation of the following declaration:
character my_file(267)
integer*4 my_file_name_length
integer*4 my_file_data_length
integer*4 my_file_file_options
character*255 my_file_name
equivalence(my_file(1),
+ my_file_name_length)
equivalence(my_file(5),
+ my_file_data_length)
equivalence(my_file(9),
+ my_file_file_options)
equivalence(my_file(13),
+ my_file_name)

Supported SQL Data Types in FORTRAN

Certain predefined FORTRAN data types correspond to database manager
column types. Only these FORTRAN data types can be declared as host
variables.

Table 34 shows the FORTRAN equivalent of each column type. When the
precompiler finds a host variable declaration, it determines the appropriate
SQL type value. The database manager uses this value to convert the data
exchanged between the application and itself.

Note: There is no host variable support for the DATALINK data type in any
of the DB2 host languages.

Table 34. SQL Data Types Mapped to FORTRAN Declarations

SQL Column Type1 FORTRAN Data Type SQL Column Type Description

SMALLINT
(500 or 501)

INTEGER*2 16-bit, signed integer

INTEGER
(496 or 497)

INTEGER*4 32-bit, signed integer

REAL2

(480 or 481)
REAL*4 Single precision floating point

DOUBLE3

(480 or 481)
REAL*8 Double precision floating point

DECIMAL(p,s)
(484 or 485)

No exact equivalent; use REAL*8 Packed decimal

698 Application Development Guide

Table 34. SQL Data Types Mapped to FORTRAN Declarations (continued)

SQL Column Type1 FORTRAN Data Type SQL Column Type Description

CHAR(n)
(452 or 453)

CHARACTER*n Fixed-length character string of length n
where n is from 1 to 254

VARCHAR(n)
(448 or 449)

SQL TYPE IS VARCHAR(n) where
n is from 1 to 32 672

Variable-length character string

LONG VARCHAR
(456 or 457)

SQL TYPE IS VARCHAR(n) where
n is from 32 673 to 32 700

Long variable-length character string

CLOB(n)
(408 or 409)

SQL TYPE IS CLOB (n) where n is
from 1 to 2 147 483 647

Large object variable-length character string

CLOB locator variable4

(964 or 965)
SQL TYPE IS CLOB_LOCATOR Identifies CLOB entities residing on the

server

CLOB file reference variable4

(920 or 921)
SQL TYPE IS CLOB_FILE Descriptor for file containing CLOB data

BLOB(n)
(404 or 405)

SQL TYPE IS BLOB(n) where n is
from 1 to 2 147 483 647

Large object variable-length binary string

BLOB locator variable4

(960 or 961)
SQL TYPE IS BLOB_LOCATOR Identifies BLOB entities on the server

BLOB file reference variable4

(916 or 917)
SQL TYPE IS BLOB_FILE Descriptor for the file containing BLOB data

DATE
(384 or 385)

CHARACTER*10 10-byte character string

TIME
(388 or 389)

CHARACTER*8 8-byte character string

TIMESTAMP
(392 or 393)

CHARACTER*26 26-byte character string

Note:
1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the second

number indicates that an indicator variable is provided. An indicator variable is needed to indicate NULL values,
or to hold the length of a truncated string. These are the values that would appear in the SQLTYPE field of the
SQLDA for these data types.

2. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA is
the length value (4 or 8).

3. The following SQL types are synonyms for DOUBLE:
v FLOAT
v FLOAT(n) where 24 < n < 54 is
v DOUBLE PRECISION

4. This is not a column type but a host variable type.

The following is a sample SQL declare section with a host variable declared
for each supported data type:

EXEC SQL BEGIN DECLARE SECTION
INTEGER*2 AGE /26/
INTEGER*4 DEPT
REAL*4 BONUS
REAL*8 SALARY
CHARACTER MI
CHARACTER*112 ADDRESS
SQL TYPE IS VARCHAR (512) DESCRIPTION

Chapter 24. Programming in FORTRAN 699

SQL TYPE IS VARCHAR (32000) COMMENTS
SQL TYPE IS CLOB (1M) CHAPTER
SQL TYPE IS CLOB_LOCATOR CHAPLOC
SQL TYPE IS CLOB_FILE CHAPFL
SQL TYPE IS BLOB (1M) VIDEO
SQL TYPE IS BLOB_LOCATOR VIDLOC
SQL TYPE IS BLOB_FILE VIDFL
CHARACTER*10 DATE
CHARACTER*8 TIME
CHARACTER*26 TIMESTAMP
INTEGER*2 WAGE_IND

EXEC SQL END DECLARE SECTION

The following are additional rules for supported FORTRAN data types:
v You may define dynamic SQL statements longer than 254 characters by

using VARCHAR, LONG VARCHAR, OR CLOB host variables.

SQLSTATE and SQLCODE Variables in FORTRAN

When using the LANGLEVEL precompile option with a value of SQL92E, the
following two declarations may be included as host variables:

EXEC SQL BEGIN DECLARE SECTION;
CHARACTER*5 SQLSTATE
INTEGER SQLCOD
.
.
.

EXEC SQL END DECLARE SECTION

If neither of these is specified, the SQLCOD declaration is assumed during the
precompile step. The variable named ’SQLSTATE’ may also be ’SQLSTA’.
Note that when using this option, the INCLUDE SQLCA statement should not
be specified.

For applications that contain multiple source files, the declarations of
SQLCOD and SQLSTATE may be included in each source file as shown
above.

Considerations for Multi-byte Character Sets in FORTRAN

There are no graphic (multi-byte) host variable data types supported in
FORTRAN. Only mixed character host variables are supported through the
character data type. It is possible to create a user SQLDA that contains
graphic data.

700 Application Development Guide

Japanese or Traditional Chinese EUC, and UCS-2 Considerations for FORTRAN

Any graphic data sent from your application running under an eucJp or
eucTW code set, or connected to a UCS-2 database, is tagged with the UCS-2
code page identifier. Your application must convert a graphic-character string
to UCS-2 before sending it to a the database server. Likewise, graphic data
retrieved from a UCS-2 database by any application, or from any database by
an application running under an EUC eucJP or eucTW code page, is encoded
using UCS-2. This requires your application to convert from UCS-2 to your
application code page internally, unless the user is to be presented with UCS-2
data.

Your application is responsible for converting to and from UCS-2 since this
conversion must be conducted before the data is copied to, and after it is
copied from, the SQLDA. DB2 Universal Database does not supply any
conversion routines that are accessible to your application. Instead, you must
use the system calls available from your operating system. In the case of a
UCS-2 database, you may also consider using the VARCHAR and
VARGRAPHIC scalar functions.

For further information on these functions, refer to the SQL Reference.

For general EUC application development guidelines, see “Japanese and
Traditional Chinese EUC and UCS-2 Code Set Considerations” on page 511.

Chapter 24. Programming in FORTRAN 701

702 Application Development Guide

Chapter 25. Programming in REXX

Programming Considerations for REXX . . 703
Language Restrictions for REXX 704

Registering SQLEXEC, SQLDBS and
SQLDB2 in REXX 704

Embedding SQL Statements in REXX . . . 705
Host Variables in REXX 707

Naming Host Variables in REXX 707
Referencing Host Variables in REXX . . 707
Indicator Variables in REXX 708
Predefined REXX Variables. 708
LOB Host Variables in REXX 710
LOB Locator Declarations in REXX . . . 710
LOB File Reference Declarations in REXX 711
Clearing LOB Host Variables in REXX 712

Supported SQL Data Types in REXX . . . 712
Using Cursors in REXX 714

Execution Requirements for REXX 715
Bind Files for REXX 715

API Syntax for REXX 716
REXX Stored Procedures 718

Calling Stored Procedures in REXX . . . 718
Considerations on the Client for REXX 719
Considerations on the Server for REXX 719
Retrieving Precision and SCALE
Values from SQLDA Decimal Fields. . 720

Japanese or Traditional Chinese EUC
Considerations for REXX 720

Programming Considerations for REXX

Special host-language programming considerations are discussed in the
following pages. Included is information on embedding SQL statements,
language restrictions, and supported data types for host variables.

Note: REXX support stabilized in DB2 Version 5, and no enhancements for
REXX support are planned for the future. For example, REXX cannot
handle SQL object identifiers, such as table names, that are longer than
18 bytes. To use features introduced to DB2 after Version 5, such as
table names from 19 to 128 bytes long, you must write your
applications in a language other than REXX.

Because REXX is an interpreted language, no precompiler, compiler, or linker
is used. Instead, three DB2 APIs are used to create DB2 applications in REXX.
Use these APIs to access different elements of DB2.

SQLEXEC
Supports the SQL language

SQLDBS
Supports command-like versions of DB2 APIs.

SQLDB2
Supports a REXX specific interface to the command-line processor. See
“API Syntax for REXX” on page 716 for details and restrictions on
how this interface can be used.

© Copyright IBM Corp. 1993, 2000 703

Language Restrictions for REXX

It is possible that tokens within statements or commands that are passed to
the SQLEXEC, SQLDBS, and SQLDB2 routines could correspond to REXX
variables. In this case, the REXX interpreter substitutes the variable’s value
before calling SQLEXEC, SQLDBS, or SQLDB2.

To avoid this situation, enclose statement strings in quotation marks (’ ’ or ″
″). If you do not use quotation marks, any conflicting variable names are
resolved by the REXX interpreter, instead of being passed to the SQLEXEC,
SQLDBS or SQLDB2 routines.

Compound SQL is not supported in REXX/SQL.

REXX/SQL stored procedures are supported on the OS/2 and Windows 32-bit
operating systems, but not on AIX.

Registering SQLEXEC, SQLDBS and SQLDB2 in REXX
Before using any of the DB2 APIs or issuing SQL statements in an application,
you must register the SQLDBS, SQLDB2 and SQLEXEC routines. This notifies
the REXX interpreter of the REXX/SQL entry points. The method you use for
registering varies slightly between the OS/2 and AIX platforms. The following
examples show the correct syntax for registering each routine:

Sample registration on OS/2 or Windows
/* ------------ Register SQLDBS with REXX -------------------------*/
If Rxfuncquery('SQLDBS') <> 0 then

rcy = Rxfuncadd('SQLDBS','DB2AR','SQLDBS')
If rcy \= 0 then

do
say 'SQLDBS was not successfully added to the REXX environment'
signal rxx_exit

end

/* ------------ Register SQLDB2 with REXX -------------------------*/
If Rxfuncquery('SQLDB2') <> 0 then

rcy = Rxfuncadd('SQLDB2','DB2AR','SQLDB2')
If rcy \= 0 then

do
say 'SQLDB2 was not successfully added to the REXX environment'
signal rxx_exit

end

/* ----------------- Register SQLEXEC with REXX --------------------*/
If Rxfuncquery('SQLEXEC') <> 0 then

rcy = Rxfuncadd('SQLEXEC','DB2AR','SQLEXEC')
If rcy \= 0 then

do
say 'SQLEXEC was not successfully added to the REXX environment'
signal rxx_exit

end

704 Application Development Guide

Sample registration on AIX

/* ------------ Register SQLDBS, SQLDB2 and SQLEXEC with REXX --------*/
rcy = SysAddFuncPkg("db2rexx")
If rcy \= 0 then

do
say 'db2rexx was not successfully added to the REXX environment'
signal rxx_exit

end

On OS/2, the RxFuncAdd commands need to be executed only once for all
sessions.

On AIX, the SysAddFuncPkg should be executed in every REXX/SQL
application.

Details on the RXfuncadd and SysAddFuncPkg APIs are available in the
REXX documentation for OS/2 and AIX, respectively.

Embedding SQL Statements in REXX

Use the SQLEXEC routine to process all SQL statements. The character string
arguments for the SQLEXEC routine are made up of the following elements:
v SQL keywords
v Pre-declared identifiers
v Statement host variables.

Make each request by passing a valid SQL statement to the SQLEXEC routine.
Use the following syntax:

CALL SQLEXEC 'statement'

SQL statements can be continued onto more than one line. Each part of the
statement should be enclosed in single quotation marks, and a comma must
delimit additional statement text as follows:

CALL SQLEXEC 'SQL text',
'additional text',

.

.

.
'final text'

The following is an example of embedding an SQL statement in REXX:
statement = "UPDATE STAFF SET JOB = 'Clerk' WHERE JOB = 'Mgr'"
CALL SQLEXEC 'EXECUTE IMMEDIATE :statement'
IF (SQLCA.SQLCODE < 0) THEN

SAY 'Update Error: SQLCODE = ' SQLCA.SQLCODE

Chapter 25. Programming in REXX 705

In this example, the SQLCODE field of the SQLCA structure is checked to
determine whether the update was successful.

The following rules apply to embedded SQL statements:
v The following SQL statements can be passed directly to the SQLEXEC

routine:
CALL
CLOSE
COMMIT
CONNECT
CONNECT TO
CONNECT RESET
DECLARE
DESCRIBE
DISCONNECT
EXECUTE
EXECUTE IMMEDIATE
FETCH
FREE LOCATOR
OPEN
PREPARE
RELEASE
ROLLBACK
SET CONNECTION

Other SQL statements must be processed dynamically using the EXECUTE
IMMEDIATE, or PREPARE and EXECUTE statements in conjunction with
the SQLEXEC routine.

v You cannot use host variables in the CONNECT and SET CONNECTION
statements in REXX.

v Cursor names and statement names are predefined as follows:

c1 to c100
Cursor names, which range from c1 to c50 for cursors declared
without the WITH HOLD option, and c51 to c100 for cursors
declared using the WITH HOLD option.

The cursor name identifier is used for DECLARE, OPEN, FETCH,
and CLOSE statements. It identifies the cursor used in the SQL
request.

s1 to s100
Statement names, which range from s1 to s100.

The statement name identifier is used with the DECLARE,
DESCRIBE, PREPARE, and EXECUTE statements.

706 Application Development Guide

The pre-declared identifiers must be used for cursor and statement names.
Other names are not allowed.

v When declaring cursors, the cursor name and the statement name should
correspond in the DECLARE statement. For example, if c1 is used as a
cursor name, s1 must be used for the statement name.

v Do not use comments within an SQL statement.

Host Variables in REXX

Host variables are REXX language variables that are referenced within SQL
statements. They allow an application to pass input data to DB2 and receive
output data from DB2. REXX applications do not need to declare host
variables, except for LOB locators and LOB file reference variables. Host
variable data types and sizes are determined at run time when the variables
are referenced. Apply the following rules when naming and using host
variables.

Naming Host Variables in REXX
Any properly named REXX variable can be used as a host variable. A variable
name can be up to 64 characters long. Do not end the name with a period. A
host variable name can consist of alphabetic characters, numerics, and the
characters @, _, !, ., ?, and $.

Referencing Host Variables in REXX
The REXX interpreter examines every string without quotation marks in a
procedure. If the string represents a variable in the current REXX variable
pool, REXX replaces the string with the current value. The following is an
example of how you can reference a host variable in REXX:

CALL SQLEXEC 'FETCH C1 INTO :cm'
SAY 'Commission = ' cm

To ensure that a character string is not converted to a numeric data type,
enclose the string with single quotation marks as in the following example:

VAR = '100'

REXX sets the variable VAR to the 3-byte character string 100. If single
quotation marks are to be included as part of the string, follow this example:

VAR = "'100'"

When inserting numeric data into a CHARACTER field, the REXX interpreter
treats numeric data as integer data, thus you must concatenate numeric
strings explicitly and surround them with single quotation marks.

Chapter 25. Programming in REXX 707

Indicator Variables in REXX
An indicator variable data type in REXX is a number without a decimal point.
Following is an example of an indicator variable in REXX using the
INDICATOR keyword.

CALL SQLEXEC 'FETCH C1 INTO :cm INDICATOR :cmind'
IF (cmind < 0)

SAY 'Commission is NULL'

In the above example, cmind is examined for a negative value. If it is not
negative, the application can use the returned value of cm. If it is negative, the
fetched value is NULL and cm should not be used. The database manager
does not change the value of the host variable in this case.

Predefined REXX Variables
SQLEXEC, SQLDBS and SQLDB2 set predefined REXX variables as a result of
certain operations. These variables are:

RESULT
Each operation sets this return code. Possible values are:
n Where n is a positive value indicating the number of bytes in

a formatted message. The GET ERROR MESSAGE API alone
returns this value.

0 The API was executed. The REXX variable SQLCA contains
the completion status of the API. If SQLCA.SQLCODE is not
zero, SQLMSG contains the text message associated with that
value.

–1 There is not enough memory available to complete the API.
The requested message was not returned.

–2 SQLCA.SQLCODE is set to 0. No message was returned.
–3 SQLCA.SQLCODE contained an invalid SQLCODE. No

message was returned.
–6 The SQLCA REXX variable could not be built. This indicates

that there was not enough memory available or the REXX
variable pool was unavailable for some reason.

–7 The SQLMSG REXX variable could not be built. This indicates
that there was not enough memory available or the REXX
variable pool was unavailable for some reason.

–8 The SQLCA.SQLCODE REXX variable could not be fetched
from the REXX variable pool.

–9 The SQLCA.SQLCODE REXX variable was truncated during
the fetch. The maximum length for this variable is 5 bytes.

–10 The SQLCA.SQLCODE REXX variable could not be converted
from ASCII to a valid long integer.

–11 The SQLCA.SQLERRML REXX variable could not be fetched
from the REXX variable pool.

–12 The SQLCA.SQLERRML REXX variable was truncated during
the fetch. The maximum length for this variable is 2 bytes.

708 Application Development Guide

–13 The SQLCA.SQLERRML REXX variable could not be
converted from ASCII to a valid short integer.

–14 The SQLCA.SQLERRMC REXX variable could not be fetched
from the REXX variable pool.

–15 The SQLCA.SQLERRMC REXX variable was truncated during
the fetch. The maximum length for this variable is 70 bytes.

–16 The REXX variable specified for the error text could not be
set.

–17 The SQLCA.SQLSTATE REXX variable could not be fetched
from the REXX variable pool.

–18 The SQLCA.SQLSTATE REXX variable was truncated during
the fetch. The maximum length for this variable is 2 bytes.

Note: The values –8 through –18 are returned only by the GET
ERROR MESSAGE API.

SQLMSG
If SQLCA.SQLCODE is not 0, this variable contains the text message
associated with the error code.

SQLISL
The isolation level. Possible values are:
RR Repeatable read.
RS Read stability.
CS Cursor stability. This is the default.
UR Uncommitted read.
NC No commit (NC is only supported by some host or AS/400

servers.)

SQLCA
The SQLCA structure updated after SQL statements are processed and
DB2 APIs are called. The entries of this structure are described in the
Administrative API Reference.

SQLRODA
The input/output SQLDA structure for stored procedures invoked
using the CALL statement. It is also the output SQLDA structure for
stored procedures invoked using the Database Application Remote
Interface (DARI) API. The entries of this structure are described in the
Administrative API Reference.

SQLRIDA
The input SQLDA structure for stored procedures invoked using the
Database Application Remote Interface (DARI) API. The entries of this
structure are described in the Administrative API Reference.

SQLRDAT
An SQLCHAR structure for server procedures invoked using the

Chapter 25. Programming in REXX 709

Database Application Remote Interface (DARI) API. The entries of this
structure are described in the Administrative API Reference.

LOB Host Variables in REXX
When you fetch a LOB column into a REXX host variable, it will be stored as
a simple (that is, uncounted) string. This is handled in the same manner as all
character-based SQL types (such as CHAR, VARCHAR, GRAPHIC, LONG,
and so on). On input, if the size of the contents of your host variable is larger
than 32K, or if it meets other criteria set out below, it will be assigned the
appropriate LOB type.

In REXX SQL, LOB types are determined from the string content of your host
variable as follows:

Host variable string content Resulting LOB type

:hv1=’ordinary quoted string longer than 32K ...’ CLOB

:hv2=″’string with embedded delimiting quotation marks ″,
″longer than 32K...’″

CLOB

:hv3=″G’DBCS string with embedded delimiting single ″,
″quotation marks, beginning with G, longer than 32K...’″

DBCLOB

:hv4=″BIN’string with embedded delimiting single ″,
″quotation marks, beginning with BIN, any length...’″

BLOB

LOB Locator Declarations in REXX
“Syntax for LOB Locator Host Variables in REXX” shows the syntax for
declaring LOB locator host variables in REXX.

Syntax for LOB Locator Host Variables in REXX

WW X

,

DECLARE : variable-name LANGUAGE TYPE BLOB LOCATOR
CLOB
DBCLOB

WY

You must declare LOB locator host variables in your application. When
REXX/SQL encounters these declarations, it treats the declared host variables
as locators for the remainder of the program. Locator values are stored in
REXX variables in an internal format.

Example:
CALL SQLEXEC 'DECLARE :hv1, :hv2 LANGUAGE TYPE CLOB LOCATOR'

710 Application Development Guide

Data represented by LOB locators returned from the engine can be freed in
REXX/SQL using the FREE LOCATOR statement which has the following
format:

Syntax for FREE LOCATOR Statement

WW X

,

FREE LOCATOR : variable-name WY

Example:
CALL SQLEXEC 'FREE LOCATOR :hv1, :hv2'

LOB File Reference Declarations in REXX
You must declare LOB file reference host variables in your application. When
REXX/SQL encounters these declarations, it treats the declared host variables
as LOB file references for the remainder of the program.

“Syntax for LOB File Reference Variables in REXX” shows the syntax for
declaring LOB file reference host variables in REXX.

REXX File Reference Declarations

WW X

,

DECLARE : variable-name LANGUAGE TYPE BLOB FILE
CLOB
DBCLOB

WY

Example:
CALL SQLEXEC 'DECLARE :hv3, :hv4 LANGUAGE TYPE CLOB FILE'

File reference variables in REXX contain three fields. For the above example
they are:
hv3.FILE_OPTIONS.

Set by the application to indicate how the file will be used.
hv3.DATA_LENGTH.

Set by DB2 to indicate the size of the file.
hv3.NAME.

Set by the application to the name of the LOB file.

For FILE_OPTIONS, the application sets the following keywords:

Keyword (Integer Value)
Meaning

Chapter 25. Programming in REXX 711

READ (2)
File is to be used for input. This is a regular file that can be opened,
read and closed. The length of the data in the file (in bytes) is
computed (by the application requestor code) upon opening the file.

CREATE (8)
On output, create a new file. If the file already exists, it is an error.
The length (in bytes) of the file is returned in the DATA_LENGTH field of
the file reference variable structure.

OVERWRITE (16)
On output, the existing file is overwritten if it exists, otherwise a new
file is created. The length (in bytes) of the file is returned in the
DATA_LENGTH field of the file reference variable structure.

APPEND (32)
The output is appended to the file if it exists, otherwise a new file is
created. The length (in bytes) of the data that was added to the file
(not the total file length) is returned in the DATA_LENGTH field of the
file reference variable structure.

Note: A file reference host variable is a compound variable in REXX, thus you
must set values for the NAME, NAME_LENGTH and FILE_OPTIONS fields in
addition to declaring them.

Clearing LOB Host Variables in REXX
On OS/2 it may be necessary to explicitly clear REXX SQL LOB locator and
file reference host variable declarations as they remain in effect after your
application program ends. This is because the application process does not
exit until the session in which it is run is closed. If REXX SQL LOB
declarations are not cleared, they may interfere with other applications that
are running in the same session after a LOB application has been executed.

The syntax to clear the declaration is:
CALL SQLEXEC "CLEAR SQL VARIABLE DECLARATIONS"

You should code this statement at the end of LOB applications. Note that you
can code it anywhere as a precautionary measure to clear declarations which
might have been left by previous applications (for example, at the beginning
of a REXX SQL application).

Supported SQL Data Types in REXX

Certain predefined REXX data types correspond to DB2 column types.
Table 35 shows how SQLEXEC and SQLDBS interpret REXX variables in order
to convert their contents to DB2 data types.

Note: There is no host variable support for the DATALINK data type in any
of the DB2 host languages.

712 Application Development Guide

Table 35. SQL Column Types Mapped to REXX Declarations

SQL Column Type1 REXX Data Type SQL Column Type Description

SMALLINT
(500 or 501)

A number without a decimal point
ranging from -32 768 to 32 767

16-bit signed integer

INTEGER
(496 or 497)

A number without a decimal point
ranging from -2 147 483 648 to
2 147 483 647

32-bit signed integer

REAL2

(480 or 481)
A number in scientific notation
ranging from -3.40282346 x 1038 to
3.40282346 x 1038

Single-precision floating point

DOUBLE3

(480 or 481)
A number in scientific notation
ranging from -1.79769313 x 10308 to
1.79769313 x 10308

Double-precision floating point

DECIMAL(p,s)
(484 or 485)

A number with a decimal point Packed decimal

CHAR(n)
(452 or 453)

A string with a leading and trailing
quote (’), which has length n after
removing the two quote marks

A string of length n with any
non-numeric characters, other than
leading and trailing blanks or the E in
scientific notation

Fixed-length character string of length
n where n is from 1 to 254

VARCHAR(n)
(448 or 449)

Equivalent to CHAR(n) Variable-length character string of
length n, where n ranges from 1 to
4000

LONG VARCHAR
(456 or 457)

Equivalent to CHAR(n) Variable-length character string of
length n, where nranges from 1 to
32 700

CLOB(n)
(408 or 409)

Equivalent to CHAR(n) Large object variable-length character
string of length n, where n ranges
from 1 to 2 147 483 647

CLOB locator variable4

(964 or 965)
DECLARE :var_name LANGUAGE
TYPE CLOB LOCATOR

Identifies CLOB entities residing on
the server

CLOB file reference variable4

(920 or 921)
DECLARE :var_name LANGUAGE
TYPE CLOB FILE

Descriptor for file containing CLOB
data

BLOB(n)
(404 or 405)

A string with a leading and trailing
apostrophe, preceded by BIN,
containing n characters after
removing the preceding BIN and the
two apostrophes.

Large object variable-length binary
string of length n, where n ranges
from 1 to 2 147 483 647

BLOB locator variable4

(960 or 961)
DECLARE :var_name LANGUAGE
TYPE BLOB LOCATOR

Identifies BLOB entities on the server

BLOB file reference variable4

(916 or 917)
DECLARE :var_name LANGUAGE
TYPE BLOB FILE

Descriptor for the file containing
BLOB data

DATE
(384 or 385)

Equivalent to CHAR(10) 10-byte character string

Chapter 25. Programming in REXX 713

Table 35. SQL Column Types Mapped to REXX Declarations (continued)

SQL Column Type1 REXX Data Type SQL Column Type Description

TIME
(388 or 389)

Equivalent to CHAR(8) 8-byte character string

TIMESTAMP
(392 or 393)

Equivalent to CHAR(26) 26-byte character string

Note: The following data types are only available in the DBCS environment.

GRAPHIC(n)
(468 or 469)

A string with a leading and trailing
apostrophe preceded by a G or N,
containing n DBCS characters after
removing the preceding character and
the two apostrophes

Fixed-length graphic string of length
n, where n is from 1 to 127

VARGRAPHIC(n)
(464 or 465)

Equivalent to GRAPHIC(n) Variable-length graphic string of
length n, where n ranges from 1 to
2000

LONG VARGRAPHIC
(472 or 473)

Equivalent to GRAPHIC(n) Long variable-length graphic string of
length n, where n ranges from 1 to
16 350

DBCLOB(n)
(412 or 413)

Equivalent to GRAPHIC(n) Large object variable-length graphic
string of length n, where n ranges
from 1 to 1 073 741 823

DBCLOB locator variable4

(968 or 969)
DECLARE :var_name LANGUAGE
TYPE DBCLOB LOCATOR

Identifies DBCLOB entities residing
on the server

DBCLOB file reference variable4

(924 or 925)
DECLARE :var_name LANGUAGE
TYPE DBCLOB FILE

Descriptor for file containing
DBCLOB data

Notes:

1. The first number under Column Type indicates that an indicator variable is not provided, and the second number
indicates that an indicator variable is provided. An indicator variable is needed to indicate NULL values, or to
hold the length of a truncated string.

2. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA is
the length value (4 or 8).

3. The following SQL types are synonyms for DOUBLE:
v FLOAT
v FLOAT(n) where 24 < n < 54 is
v DOUBLE PRECISION

4. This is not a column type but a host variable type.

Using Cursors in REXX
When a cursor is declared in REXX, the cursor is associated with a query. The
query is associated with a statement name assigned in the PREPARE
statement. Any referenced host variables are represented by parameter
markers. The following example shows a DECLARE statement associated with
a dynamic SELECT statement.

714 Application Development Guide

prep_string = "SELECT TABNAME FROM SYSCAT.TABLES WHERE TABSCHEMA = ?"
CALL SQLEXEC 'PREPARE S1 FROM :prep_string';
CALL SQLEXEC 'DECLARE C1 CURSOR FOR S1';
CALL SQLEXEC 'OPEN C1 USING :schema_name';

Execution Requirements for REXX

REXX applications are not precompiled, compiled, or linked.

On OS/2, your application file must have a .CMD extension. After creation,
you can run your application directly from the operating system command
prompt.

On Windows 32-bit operating systems, your application file can have any
name. After creation, you can run your application from the operating system
command prompt by invoking the REXX interpreter as follows:

REXX file_name

On AIX, your application file can have any extension. You can run your
application using either of the following two methods:
1. At the shell command prompt, type rexx name where name is the name of

your REXX program.
2. If the first line of your REXX program contains a ″magic number″ (#!) and

identifies the directory where the REXX/6000 interpreter resides, you can
run your REXX program by typing its name at the shell command prompt.
For example, if the REXX/6000 interpreter file is in the /usr/bin directory,
include the following as the very first line of your REXX program:

#! /usr/bin/rexx

Then, make the program executable by typing the following command at
the shell command prompt:

chmod +x name

Run your REXX program by typing its file name at the shell command
prompt.

Note: On AIX, you should set the LIBPATH environment variable to include
the directory where the REXX SQL library, db2rexx is located. For
example:

export LIBPATH=/lib:/usr/lib:/usr/lpp/db2_07_01/lib

Bind Files for REXX
Five bind files are provided to support REXX applications. The names of these
files are included in the DB2UBIND.LST file. Each bind file was precompiled
using a different isolation level; therefore, there are five different packages
stored in the database.

Chapter 25. Programming in REXX 715

The five bind files are:

DB2ARXCS.BND
Supports the cursor stability isolation level

DB2ARXRR.BND
Supports the repeatable read isolation level

DB2ARXUR.BND
Supports the uncommitted read isolation level

DB2ARXRS.BND
Supports the read stability isolation level.

DB2ARXNC.BND
Supports the no commit isolation level. This isolation level is used
when working with some host or AS/400 database servers. On other
databases, it behaves like the uncommitted read isolation level.

Note: In some cases, it may be necessary to explicitly bind these files to the
database.

When you use the SQLEXEC routine, the package created with cursor stability
is used as a default. If you require one of the other isolation levels, you can
change isolation levels with the SQLDBS CHANGE SQL ISOLATION LEVEL
API, before connecting to the database. This will cause subsequent calls to the
SQLEXEC routine to be associated with the specified isolation level.

OS/2 REXX applications cannot assume that the default isolation level is in
effect unless they know that no other REXX programs in the session have
changed the setting. Before connecting to a database, a REXX application
should explicitly set the isolation level.

API Syntax for REXX

Use the SQLDBS routine to call DB2 APIs with the following syntax:
CALL SQLDBS 'command string'

For information on how the DB2 APIs work, see the complete descriptions in
the DB2 API chapter of the Administrative API Reference.

If a DB2 API you want to use cannot be called using the SQLDBS routine (and
consequently, not listed in the Administrative API Reference), you may still call
the API by calling the DB2 command line processor (CLP) from within the
REXX application. However, since the DB2 CLP directs output either to the
standard output device or to a specified file, your REXX application cannot
directly access the output from the called DB2 API nor can it easily make a
determination as to whether the called API is successful or not. The SQLDB2

716 Application Development Guide

API provides an interface to the DB2 CLP that provides direct feedback to
your REXX application on the success or failure of each called API by setting
the compound REXX variable, SQLCA, after each call.

You can use the SQLDB2 routine to call DB2 APIs using the following syntax:
CALL SQLDB2 'command string'

where 'command string' is a string that can be processed by the
command-line processor (CLP). Refer to the Command Reference for the syntax
of strings that can be processed by the CLP.

Calling a DB2 API using SQLDB2 is equivalent to calling the CLP directly,
except for the following:
v The call to the CLP executable is replaced by the call to SQLDB2 (all other

CLP options and parameters are specified the same way).
v The REXX compound variable SQLCA is set after calling the SQLDB2 but is

not set after calling the CLP executable.
v The default display output of the CLP is set to off when you call SQLDB2,

whereas the display is set to on output when you call the CLP executable.
Note that you can turn the display output of the CLP to on by passing the
+o or the −o− option to the SQLDB2.

Since the only REXX variable that is set after you call SQLDB2 is the SQLCA,
you only use this routine to call DB2 APIs that do not return any data other
than the SQLCA and that are not currently implemented through the SQLDBS
interface. Thus, only the following DB2 APIs are supported by SQLDB2:

Activate Database
Add Node
Bind for DB2 Version 1(1) (2)

Bind for DB2 Version 2 or 5(1)

Create Database at Node
Drop Database at Node
Drop Node Verify
Deactivate Database
Deregister
Load(3)

Load Query
Precompile Program(1)

Rebind Package(1)

Redistribute Nodegroup
Register
Start Database Manager
Stop Database Manager

Chapter 25. Programming in REXX 717

Notes on DB2 APIs Supported by SQLDB2:

1. These commands require a CONNECT statement through the SQLDB2
interface. Connections using the SQLDB2 interface are not accessible to the
SQLEXEC interface and connections using the SQLEXEC interface are not
accessible to the SQLDB2 interface.

2. Is supported on OS/2 through the SQLDB2 interface.
3. The optional output parameter, pLoadInfoOut for the Load API is not

returned to the application in REXX. Refer to the Administrative API
Reference for more information on the Load API and its parameters.

Note: Although the SQLDB2 routine is intended to be used only for the DB2
APIs listed above, it can also be used for other DB2 APIs that are not
supported through the SQLDBS routine. Alternatively, the DB2 APIs
can be accessed through the CLP from within the REXX application.

REXX Stored Procedures

REXX SQL applications can call stored procedures at the database server by
using the SQL CALL statement. The stored procedure can be written in any
language supported on that server, except for REXX on AIX systems. (Client
applications may be written in REXX on AIX systems, but, as with other
languages, they cannot call a stored procedure written in REXX on AIX.)

Calling Stored Procedures in REXX
The CALL statement allows a client application to pass data to, and receive
data from, a server stored procedure. The interface for both input and output
data is a list of host variables (refer to the SQL Reference for details). Because
REXX generally determines the type and size of host variables based on their
content, any output-only variables passed to CALL should be initialized with
dummy data similar in type and size to the expected output.

Data can also be passed to stored procedures through SQLDA REXX variables,
using the USING DESCRIPTOR syntax of the CALL statement. Table 36 shows
how the SQLDA is set up. In the table, ':value' is the stem of a REXX host
variable that contains the values needed for the application. For the
DESCRIPTOR, 'n' is a numeric value indicating a specific sqlvar element of the
SQLDA. The numbers on the right refer to the notes following Table 36.

Table 36. Client-side REXX SQLDA for Stored Procedures using the CALL Statement

USING DESCRIPTOR :value.SQLD 1

:value.n.SQLTYPE 1

:value.n.SQLLEN 1

:value.n.SQLDATA 1 2

:value.n.SQLDIND 1 2

718 Application Development Guide

Notes:

1. Before invoking the stored procedure, the client application must initialize
the REXX variable with appropriate data.
When the SQL CALL statement is executed, the database manager
allocates storage and retrieves the value of the REXX variable from the
REXX variable pool. For an SQLDA used in a CALL statement, the
database manager allocates storage for the SQLDATA and SQLIND fields
based on the SQLTYPE and SQLLEN values.
In the case of a REXX stored procedure (that is, the procedure being called
is itself written in OS/2 REXX), the data passed by the client from either
type of CALL statement or the DARI API is placed in the REXX variable
pool at the database server using the following predefined names:

SQLRIDA
Predefined name for the REXX input SQLDA variable

SQLRODA
Predefined name for the REXX output SQLDA variable

2. When the stored procedure terminates, the database manager also retrieves
the value of the variables from the stored procedure. The values are
returned to the client application and placed in the client’s REXX variable
pool.

Considerations on the Client for REXX
When using host variables in the CALL statement, initialize each host variable
to a value that is type compatible with any data that is returned to the host
variable from the server procedure. You should perform this initialization
even if the corresponding indicator is negative.

When using descriptors, SQLDATA must be initialized and contain data that
is type compatible with any data that is returned from the server procedure.
You should perform this initialization even if the SQLIND field contains a
negative value.

Considerations on the Server for REXX
Ensure that all the SQLDATA fields and SQLIND (if it is a nullable type) of
the predefined output sqlda SQLRODA are initialized. For example, if
SQLRODA.SQLD is 2, the following fields must contain some data (even if
the corresponding indicators are negative and the data is not passed back to
the client):
v SQLRODA.1.SQLDATA
v SQLRODA.2.SQLDATA

Chapter 25. Programming in REXX 719

Retrieving Precision and SCALE Values from SQLDA Decimal Fields
To retrieve the precision and scale values for decimal fields from the SQLDA
structure returned by the database manager, use the sqllen.scale and
sqllen.precision values when you initialize the SQLDA output in your
REXX program. For example:

.

.

.
/* INITIALIZE ONE ELEMENT OF OUTPUT SQLDA */
io_sqlda.sqld = 1
io_sqlda.1.sqltype = 485 /* DECIMAL DATA TYPE */
io_sqlda.1.sqllen.scale = 2 /* DIGITS RIGHT OF DECIMAL POINT */
io_sqlda.1.sqllen.precision = 7 /* WIDTH OF DECIMAL */
io_sqlda.1.sqldata = 00000.00 /* HELPS DEFINE DATA FORMAT */
io_sqlda.1.sqlind = -1 /* NO INPUT DATA */
.
.
.

Japanese or Traditional Chinese EUC Considerations for REXX

REXX applications are not supported under Japanese or Traditional Chinese
EUC environments.

720 Application Development Guide

Part 7. Appendixes

© Copyright IBM Corp. 1993, 2000 721

722 Application Development Guide

Appendix A. Supported SQL Statements

Table 37:
v Lists all the supported SQL statements in DB2 Universal Database for

Linux, OS/2, UNIX, and Windows 32-bit operating systems
v Indicates (with an 'X') if they can be executed dynamically
v Indicates (with an 'X') if they are supported by the command line processor

(CLP)
v Indicates (with an 'X' or DB2 CLI function name) if the statement can be

executed using the DB2 Call Level Interface (DB2 CLI)
v Indicates (with an 'X') if the statement can be executed in an SQL procedure

You can use Table 37 as a quick reference aid. For a complete discussion of all
the statements, including their syntax, refer to the SQL Reference.

Table 37. SQL Statements (DB2 Universal Database)

SQL Statement Dynamic1 Command
Line
Processor
(CLP)

Call Level Interface3 (CLI) SQL
Procedure

ALLOCATE CURSOR X

assignment statement X

ASSOCIATE LOCATORS X

ALTER { BUFFERPOOL,
NICKNAME,10 NODEGROUP,
SERVER,10 TABLE,
TABLESPACE, USER
MAPPING,10 TYPE, VIEW }

X X X

BEGIN DECLARE SECTION2

CALL X9 X4 X

CASE statement X

CLOSE X SQLCloseCursor(),
SQLFreeStmt()

X

COMMENT ON X X X X

COMMIT X X SQLEndTran, SQLTransact() X

Compound SQL (Embedded) X4

compound statement X

© Copyright IBM Corp. 1993, 2000 723

Table 37. SQL Statements (DB2 Universal Database) (continued)

SQL Statement Dynamic1 Command
Line
Processor
(CLP)

Call Level Interface3 (CLI) SQL
Procedure

CONNECT (Type 1) X SQLBrowseConnect(),
SQLConnect(),
SQLDriverConnect()

CONNECT (Type 2) X SQLBrowseConnect(),
SQLConnect(),
SQLDriverConnect()

CREATE { ALIAS,
BUFFERPOOL,
DISTINCT TYPE,
EVENT MONITOR,
FUNCTION, FUNCTION
MAPPING,10 INDEX, INDEX
EXTENSION, METHOD,
NICKNAME,10 NODEGROUP,
PROCEDURE, SCHEMA,
TABLE, TABLESPACE,
TRANSFORM TYPE
MAPPING,1 TRIGGER, USER
MAPPING,10 TYPE, VIEW,
WRAPPER10 }

X X X X11

DECLARE CURSOR2 X SQLAllocStmt() X

DECLARE GLOBAL
TEMPORARY TABLE

X X X X

DELETE X X X X

DESCRIBE8 X SQLColAttributes(),
SQLDescribeCol(),
SQLDescribParam()6

DISCONNECT X SQLDisconnect()

DROP X X X X11

END DECLARE SECTION2

EXECUTE SQLExecute() X

EXECUTE IMMEDIATE SQLExecDirect() X

EXPLAIN X X X X

FETCH X SQLExtendedFetch()7,
SQLFetch(), SQLFetchScroll()7

X

FLUSH EVENT MONITOR X X X

FOR statement X

724 Application Development Guide

Table 37. SQL Statements (DB2 Universal Database) (continued)

SQL Statement Dynamic1 Command
Line
Processor
(CLP)

Call Level Interface3 (CLI) SQL
Procedure

FREE LOCATOR X4 X

GET DIAGNOSTICS X

GOTO statement X

GRANT X X X X

IF statement X

INCLUDE2

INSERT X X X X

ITERATE X

LEAVE statement X

LOCK TABLE X X X X

LOOP statement X

OPEN X SQLExecute(), SQLExecDirect() X

PREPARE SQLPrepare() X

REFRESH TABLE X X X

RELEASE X X

RELEASE SAVEPOINT X X X X

RENAME TABLE X X X

RENAME TABLESPACE X X X

REPEAT statement X

RESIGNAL statement X

RETURN statement X

REVOKE X X X

ROLLBACK X X SQLEndTran(), SQLTransact() X

SAVEPOINT X X X X

select-statement X X X X

SELECT INTO X

SET CONNECTION X SQLSetConnection()

SET CURRENT DEFAULT
TRANSFORM GROUP

X X X X

SET CURRENT DEGREE X X X X

Appendix A. Supported SQL Statements 725

Table 37. SQL Statements (DB2 Universal Database) (continued)

SQL Statement Dynamic1 Command
Line
Processor
(CLP)

Call Level Interface3 (CLI) SQL
Procedure

SET CURRENT EXPLAIN
MODE

X X X, SQLSetConnectAttr() X

SET CURRENT EXPLAIN
SNAPSHOT

X X X, SQLSetConnectAttr() X

SET CURRENT PACKAGESET

SET CURRENT QUERY
OPTIMIZATION

X X X X

SET CURRENT REFRESH AGE X X X X

SET EVENT MONITOR STATE X X X X

SET INTEGRITY X X X

SET PASSTHRU10 X X X X

SET PATH X X X X

SET SCHEMA X X X X

SET SERVER OPTION10 X X X X

SET transition-variable5 X X X X

SIGNAL statement X

SIGNAL SQLSTATE5 X X X

UPDATE X X X X

VALUES INTO X

WHENEVER2

WHILE statement X

726 Application Development Guide

Table 37. SQL Statements (DB2 Universal Database) (continued)

SQL Statement Dynamic1 Command
Line
Processor
(CLP)

Call Level Interface3 (CLI) SQL
Procedure

Note:
1. You can code all statements in this list as static SQL, but only those marked with X as dynamic

SQL.
2. You cannot execute this statement.
3. An X indicates that you can execute this statement using either SQLExecDirect() or SQLPrepare()

and SQLExecute(). If there is an equivalent DB2 CLI function, the function name is listed.
4. Although this statement is not dynamic, with DB2 CLI you can specify this statement when calling

either SQLExecDirect(), or SQLPrepare() and SQLExecute().
5. You can only use this within CREATE TRIGGER statements.
6. You can only use the SQL DESCRIBE statement to describe output, whereas with DB2 CLI you can

also describe input (using the SQLDescribeParam() function).
7. You can only use the SQL FETCH statement to fetch one row at a time in one direction, whereas

with the DB2 CLI SQLExtendedFetch() and SQLFetchScroll() functions, you can fetch into arrays.
Furthermore, you can fetch in any direction, and at any position in the result set.

8. The DESCRIBE SQL statement has a different syntax than that of the CLP DESCRIBE command. For
information on the DESCRIBE SQL statement, refer to the SQL Reference. For information on the
DESCRIBE CLP command, refer to the Command Reference.

9. When CALL is issued through the command line processor, only certain procedures and their
respective parameters are supported (see “Installing, Replacing, and Removing JAR Files” on
page 655).

10. Statement is supported only for federated database servers.
11. SQL procedures can only issue CREATE and DROP statements for indexes, tables, and views.

Appendix A. Supported SQL Statements 727

728 Application Development Guide

Appendix B. Sample Programs

This section provides information on the sample programs supplied with DB2.
All sample programs can be found in the samples subdirectory of the sqllib
directory. There is a subdirectory for each supported language.

The sample programs used in this book show examples of embedded SQL
statements and API calls in the supported host languages. The sample
programs are written to be short and simple. Production applications should
check the return codes, and especially the SQLCODE or SQLSTATE from all
API calls and SQL statements. For information on handling error conditions,
SQLCODEs, and SQLSTATEs, see “Diagnostic Handling and the SQLCA
Structure” on page 115. See the Application Building Guide for details on how to
install, build, and execute these programs in your environment.

Notes:

1. This section describes sample programs for the programming languages
for all platforms supported by DB2. Not all sample programs have been
ported to all platforms or supported programming languages.

2. DB2 sample programs are provided ″as is″ without any warranty of any
kind. The user, and not IBM, assumes the entire risk of quality,
performance, and repair of any defects.

The sample programs come with the DB2 Application Development (DB2 AD)
Client. You can use the sample programs as templates to create your own
applications.

Sample program file extensions differ for each supported language, and for
embedded SQL and non-embedded SQL programs within each language. File
extensions may also differ for groups of programs within a language. These
different sample file extensions are categorized in the following tables:

Sample File Extensions by Language
Table 38 on page 731.

Sample File Extensions by Program Group
Table 39 on page 731.

The following tables document the sample programs by type:

DB2 API Sample Programs with No Embedded SQL
Table 40 on page 733.

DB2 API Embedded SQL Sample Programs
Table 41 on page 736.

© Copyright IBM Corp. 1993, 2000 729

Embedded SQL Sample Programs with No DB2 APIs
Table 42 on page 738.

User-Defined Function Sample Programs
Table 43 on page 740

DB2 CLI Sample Programs
Table 44 on page 740.

Java JDBC Sample Programs
Table 45 on page 742.

Java SQLJ Sample Programs
Table 46 on page 743.

SQL Procedure Sample Programs
Table 47 on page 744.

ActiveX Data Objects, Remote Data Objects, and Microsoft Transaction
Server Sample Programs

Table 48 on page 746.

Object Linking and Embedding (OLE) Automation Sample Programs
Table 49 on page 747.

Object Linking and Embedding Database (OLE DB) Table Functions
Table 50 on page 747.

Command Line Processor (CLP) Sample Programs
Table 51 on page 748.

Log Management User Exit Programs
Table 52 on page 749.

Notes:

1. Table 41 on page 736 contains programs that have both DB2 APIs and
embedded SQL statements. For all DB2 API sample programs, please see
both Table 40 on page 733 and Table 41 on page 736. For all embedded SQL
sample programs (except for Java SQLJ), please see both Table 41 on
page 736 and Table 42 on page 738.

2. Table 43 on page 740 of UDF sample programs does not contain DB2 CLI
UDF programs. For these, please see Table 44 on page 740.

730 Application Development Guide

Table 38. Sample File Extensions by Language

Language Directory Embedded SQL Programs Non-embedded SQL
Programs

C samples/c
samples/cli (CLI programs)

.sqc .c

C++ samples/cpp .sqC (UNIX)
.sqx (Windows & OS/2)

.C (UNIX)

.cxx (Windows & OS/2)

COBOL samples/cobol
samples/cobol_mf

.sqb .cbl

JAVA samples/java .sqlj .java

REXX samples/rexx .cmd .cmd

Table 39. Sample File Extensions by Program Group

Sample Group Directory File Extension

ADO, RDO, MTS samples\ADO\VB (Visual Basic)
samples\ADO\VC (Visual C++)
samples\RDO
samples\MTS

.bas .frm .vbp (Visual Basic)

.cpp .dsp .dsw (Visual C++)

CLP samples/clp .db2

OLE samples\ole\msvb (Visual Basic)
samples\ole\msvc (Visual C++)

.bas .vbp (Visual Basic)

.cpp (Visual C++)

OLE DB samples\oledb .db2

SQL Procedures samples/sqlproc .db2
.c .sqc (Client Applications)

User Exit samples/c .cad (OS/2)
.cadsm (UNIX & Windows)
.cdisk (UNIX & Windows)
.ctape (UNIX)

Note:

Directory Delimiters
On UNIX are /. On OS/2 and Windows platforms, are \. In the
tables, the UNIX delimiters are used unless the directory is only
available on Windows and/or OS/2.

File Extensions
Are provided for the samples in the tables where only one
extension exists.

Appendix B. Sample Programs 731

Embedded SQL Programs
Require precompilation, except for REXX embedded SQL
programs where the embedded SQL statements are interpreted
when the program is run.

IBM COBOL samples
Are only supplied for AIX, OS/2, and Windows 32-bit
operating systems in the cobol subdirectory.

Micro Focus Cobol Samples
Are only supplied for AIX, HP-UX, OS/2, Solaris Operating
Environment, and Windows 32-bit operating systems in the
cobol_mf subdirectory.

Java Samples
Are Java Database Connectivity (JDBC) applets, applications,
and stored procedures, embedded SQL for Java (SQLJ) applets,
applications, and stored procedures, as well as Java UDFs. Java
samples are available on all supported DB2 platforms.

REXX Samples
Are only supplied for AIX, OS/2, and Windows NT operating
systems.

CLP Samples
Are Command Line Processor scripts that execute SQL
statements.

OLE Samples
Are for Object Linking and Embedding (OLE) in Microsoft
Visual Basic and Microsoft Visual C++, supplied for Windows
32-bit operating systems only.

ADO, RDO, and MTS Samples
Are ActiveX Data Objects samples in Microsoft Visual Basic and
Microsoft Visual C++, and Remote Data Objects and Microsoft
Transaction Server samples in Microsoft Visual Basic, supplied
for Windows 32-bit operating systems only.

User Exit samples
Are Log Management User Exit programs used to archive and
retrieve database log files. The files must be renamed with a .c
extension and compiled as C language programs.

You can find the sample programs in the samples subdirectory of the directory
where DB2 has been installed. There is a subdirectory for each supported
language. The following examples show you how to locate the samples
written in C or C++ on each supported platform.
v On UNIX platforms.

732 Application Development Guide

You can find the C source code for embedded SQL and DB2 API programs
in sqllib/samples/c under your database instance directory; the C source
code for DB2 CLI programs is in sqllib/samples/cli. For additional
information about the programs in the samples tables, refer to the README
file in the appropriate samples subdirectory under your DB2 instance. The
README file will contain any additional samples that are not listed in this
book.

v On OS/2 and Windows 32-bit operating systems.

You can find the C source code for embedded SQL and DB2 API programs
in %DB2PATH%\samples\c under the DB2 install directory; the C source code
for DB2 CLI programs is in %DB2PATH%\samples\cli. The variable %DB2PATH%
determines where DB2 is installed. Depending on the drive where DB2 is
installed, %DB2PATH% will point to drive:\sqllib. For additional information
about the sample programs in the samples tables, refer to the README file in
the appropriate %DB2PATH%\samples subdirectory. The README file will
contain any additional samples that are not listed in this book.

If your platform is not addressed in Table 38 on page 731, please refer to the
Application Building Guide for information specific to your environment.

The sample programs directory is typically read-only on most platforms.
Before you alter or build the sample programs, copy them to your working
directory.

DB2 API Non-Embedded SQL Samples

Table 40. DB2 API Sample Programs with No Embedded SQL

Sample Program Included APIs

backrest v sqlbftcq - Fetch Tablespace Container Query

v sqlbstsc - Set Tablespace Containers

v sqlfudb - Update Database Configuration

v sqlubkp - Backup Database

v sqluroll - Rollforward Database

v sqlurst - Restore Database

checkerr v sqlaintp - Get Error Message

v sqlogstt - Get SQLSTATE Message

cli_info v sqleqryi - Query Client Information

v sqleseti - Set Client Information

client v sqleqryc - Query Client

v sqlesetc - Set Client

Appendix B. Sample Programs 733

Table 40. DB2 API Sample Programs with No Embedded SQL (continued)

Sample Program Included APIs

d_dbconf v sqleatin - Attach

v sqledtin - Detach

v sqlfddb - Get Database Configuration Defaults

d_dbmcon v sqleatin - Attach

v sqledtin - Detach

v sqlfdsys - Get Database Manager Configuration Defaults

db_udcs v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

db2mon v sqleatin - Attach

v sqlmon - Get/Update Monitor Switches

v sqlmonss - Get Snapshot

v sqlmonsz - Estimate Size Required for sqlmonss() Output
Buffer

v sqlmrset - Reset Monitor

dbcat v sqlecadb - Catalog Database

v sqledcls - Close Database Directory Scan

v sqledgne - Get Next Database Directory Entry

v sqledosd - Open Database Directory Scan

v sqleuncd - Uncatalog Database

dbcmt v sqledcgd - Change Database Comment

v sqledcls - Close Database Directory Scan

v sqledgne - Get Next Database Directory Entry

v sqledosd - Open Database Directory Scan

v sqleisig - Install Signal Handler

dbconf v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

v sqlfrdb - Reset Database Configuration

v sqlfudb - Update Database Configuration

v sqlfxdb - Get Database Configuration

734 Application Development Guide

Table 40. DB2 API Sample Programs with No Embedded SQL (continued)

Sample Program Included APIs

dbinst v sqleatcp - Attach and Change Password

v sqleatin - Attach

v sqledtin - Detach

v sqlegins - Get Instance

dbmconf v sqleatin - Attach

v sqledtin - Detach

v sqlfrsys - Reset Database Manager Configuration

v sqlfusys - Update Database Manager Configuration

v sqlfxsys - Get Database Manager Configuration

dbsnap v sqleatin - Attach

v sqlmonss - Get Snapshot

dbstart v sqlepstart - Start Database Manager

dbstop v sqlefrce - Force Application

v sqlepstp - Stop Database Manager

dcscat v sqlegdad - Catalog DCS Database

v sqlegdcl - Close DCS Directory Scan

v sqlegdel - Uncatalog DCS Database

v sqlegdge - Get DCS Directory Entry for Database

v sqlegdgt - Get DCS Directory Entries

v sqlegdsc - Open DCS Directory Scan

dmscont v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

ebcdicdb v sqleatin - Attach

v sqlecrea - Create Database

v sqledrpd - Drop Database

migrate v sqlemgdb - Migrate Database

monreset v sqleatin - Attach

v sqlmrset - Reset Monitor

monsz v sqleatin - Attach

v sqlmonss - Get Snapshot

v sqlmonsz - Estimate Size Required for sqlmonss() Output
Buffer

Appendix B. Sample Programs 735

Table 40. DB2 API Sample Programs with No Embedded SQL (continued)

Sample Program Included APIs

nodecat v sqlectnd - Catalog Node

v sqlencls - Close Node Directory Scan

v sqlengne - Get Next Node Directory Entry

v sqlenops - Open Node Directory Scan

v sqleuncn - Uncatalog Node

restart v sqlerstd - Restart Database

setact v sqlesact - Set Accounting String

setrundg v sqlesdeg - Set Runtime Degree

sws v sqleatin - Attach

v sqlmon - Get/Update Monitor Switches

utilapi v sqlaintp - Get Error Message

v sqlogstt - Get SQLSTATE Message

DB2 API Embedded SQL Samples

Table 41. DB2 API Embedded SQL Sample Programs

Sample Program Included APIs

asynrlog v sqlurlog - Asynchronous Read Log

autocfg v db2AutoConfig -- Autoconfig

v db2AutoConfigMemory -- Autoconfig Free Memory

v sqlfudb -- Update Database Configuration

v sqlfusys -- Update Database Manager Configuration

v sqlesetc -- Set Client

v sqlaintp -- SQLCA Message

dbauth v sqluadau - Get Authorizations

dbstat v sqlureot - Reorganize Table

v sqlustat - Runstats

expsamp v sqluexpr - Export

v sqluimpr - Import

impexp v sqluexpr - Export

v sqluimpr - Import

loadqry v db2LoadQuery - Load Query

736 Application Development Guide

Table 41. DB2 API Embedded SQL Sample Programs (continued)

Sample Program Included APIs

makeapi v sqlabndx - Bind

v sqlaprep - Precompile Program

v sqlepstp - Stop Database Manager

v sqlepstr - Start Database Manager

rebind v sqlarbnd - Rebind

rechist v sqlubkp - Backup Database

v sqluhcls - Close Recovery History File Scan

v sqluhgne - Get Next Recovery History File Entry

v sqluhops - Open Recovery History File Scan

v sqluhprn - Prune Recovery History File

v sqluhupd - Update Recovery History File

tabscont v sqlbctcq - Close Tablespace Container Query

v sqlbftcq - Fetch Tablespace Container Query

v sqlbotcq - Open Tablespace Container Query

v sqlbtcq - Tablespace Container Query

v sqlefmem - Free Memory

tabspace v sqlbctsq - Close Tablespace Query

v sqlbftpq - Fetch Tablespace Query

v sqlbgtss - Get Tablespace Statistics

v sqlbmtsq - Tablespace Query

v sqlbotsq - Open Tablespace Query

v sqlbstpq - Single Tablespace Query

v sqlefmem - Free Memory

tload v sqluexpr - Export

v sqluload - Load

v sqluvqdp - Quiesce Tablespaces for Table

Appendix B. Sample Programs 737

Table 41. DB2 API Embedded SQL Sample Programs (continued)

Sample Program Included APIs

tspace v sqlbctcq - Close Tablespace Container Query

v sqlbctsq - Close Tablespace Query

v sqlbftcq - Fetch Tablespace Container Query

v sqlbftpq - Fetch Tablespace Query

v sqlbgtss - Get Tablespace Statistics

v sqlbmtsq - Tablespace Query

v sqlbotcq - Open Tablespace Container Query

v sqlbotsq - Open Tablespace Query

v sqlbstpq - Single Tablespace Query

v sqlbstsc - Set Tablespace Containers

v sqlbtcq - Tablespace Container Query

v sqlefmem - Free Memory

utilemb v sqlaintp - Get Error Message

v sqlogstt - Get SQLSTATE Message

Embedded SQL Samples With No DB2 APIs

Table 42. Embedded SQL Sample programs with No DB2 APIs

Sample Program
Name

Program Description

adhoc Demonstrates dynamic SQL and the SQLDA structure to process SQL commands
interactively. SQL commands are input by the user, and output corresponding to
the SQL command is returned. See “Example: ADHOC Program” on page 154 for
details.

advsql Demonstrates the use of advanced SQL expressions like CASE, CAST, and scalar
full selects.

blobfile Demonstrates the manipulation of a Binary Large Object (BLOB), by reading a
BLOB value from the sample database and placing it in a file. The contents of this
file can be displayed using an external viewer.

columns Demonstrates the use of a cursor that is processed using dynamic SQL. This
program lists a result set from SYSCAT.COLUMNS under a desired schema name.

cursor Demonstrates the use of a cursor using static SQL. See “Example: Cursor Program”
on page 84 for details.

delet Demonstrates static SQL to delete items from a database.

dynamic Demonstrates the use of a cursor using dynamic SQL.

joinsql Demonstrates using advanced SQL join expressions.

738 Application Development Guide

Table 42. Embedded SQL Sample programs with No DB2 APIs (continued)

Sample Program
Name

Program Description

largevol Demonstrates parallel query processing in a partitioned environment, and the use
of an NFS file system to automate the merging of the result sets. Only available on
AIX. See “Example: Extracting Large Volume of Data (largevol.c)” on page 552 for
details.

lobeval Demonstrates the use of LOB locators and defers the evaluation of the actual LOB
data. See “How the Sample LOBEVAL Program Works” on page 352 for details.

lobfile Demonstrates the use of LOB file handles. See “How the Sample LOBFILE
Program Works” on page 360 for details.

lobloc Demonstrates the use of LOB locators. See “How the Sample LOBLOC Program
Works” on page 345 for details.

lobval Demonstrates the use of LOBs.

openftch Demonstrates fetching, updating, and deleting of rows using static SQL. See “How
the OPENFTCH Program Works” on page 93 for details.

recursql Demonstrates the use of advanced SQL recursive queries.

sampudf Demonstrates User-Defined Types (UDTs) and User-Defined Functions (UDFs)
implemented to modify table entries. All UDFs declared in this program are
sourced UDFs.

spclient A client application that calls stored procedures in the spserver shared library.

spcreate.db2 A CLP script that contains the CREATE PROCEDURE statements to register the
stored procedures created by the spserver program.

spdrop.db2 A CLP script that contains the DROP PROCEDURE statements necessary for
deregistering the stored procedures created by the spserver program.

spserver A server program demonstrating stored procedures. The client program is
spclient.

static Demonstrates static SQL to retrieve information. See “Example: Static SQL
Program” on page 63 for details.

tabsql Demonstrates the use of advanced SQL table expressions.

tbdefine Demonstrates creating and dropping tables.

thdsrver Demonstrates the use of POSIX threads APIs for thread creation and management.
The program maintains a pool of contexts. A generate_work function is executed
from main, and creates dynamic SQL statements that are executed by worker
threads. When a context becomes available, a thread is created and dispatched to
do the specified work. The work generated consists of statements to delete entries
from either the STAFF or EMPLOYEE tables of the sample database. This program
is only available on UNIX platforms.

trigsql Demonstrates using advanced SQL triggers and constraints.

udfcli Demonstrates calling a user-defined function (UDF) created by the udfsrv
program, and stored on the server to access tables in the sample database.

Appendix B. Sample Programs 739

Table 42. Embedded SQL Sample programs with No DB2 APIs (continued)

Sample Program
Name

Program Description

updat Demonstrates static SQL to update a database. See “Example: UPDAT Program” on
page 105 for details.

varinp Demonstrates variable input to Embedded Dynamic SQL statement calls using
parameter markers. See “How the VARINP Program Works” on page 162 for
details.

User-Defined Function Samples

Table 43. User-Defined Function Sample programs

Sample Program
Name Program Description

DB2Udf.java A Java UDF that demonstrates several tasks, including integer division,
manipulation of Character Large Objects (CLOBs), and the use of Java instance
variables.

udfsrv.c Creates a library with the User-Defined Function ScalarUDF, to access the sample
database tables.

UDFsrv.java Demonstrates the use of Java User-Defined Functions (UDFs).

DB2 Call Level Interface Samples

Table 44. Sample CLI Programs in DB2 Universal Database

Sample Program
Name

Program Description

Common Utility Files

utilcli.c Utility functions used in CLI samples.

utilapi.c Utility functions that call DB2 APIs.

Application Level - Samples that deal with the application level of DB2 and CLI.

apinfo.c How to get and set application level information.

aphndls.c How to allocate and free handles.

apsqlca.c How to work with SQLCA data.

Installation Image Level - Samples that deal with the installation image level of DB2 and CLI.

ilinfo.c How to get and set installation level information (such as the version of the CLI
driver).

Instance Level - Samples that deal with the instance level of DB2 and CLI.

ininfo.c How to get and set instance level information.

740 Application Development Guide

Table 44. Sample CLI Programs in DB2 Universal Database (continued)

Sample Program
Name

Program Description

Database Level - Samples that deal with database objects in DB2.

dbconn.c How to connect and disconnect from a database.

dbinfo.c How to get and set information at a database level.

dbmconn.c How to connect and disconnect from multiple databases (uses DB2 APIs to
create and drop second database).

dbmuse.c How to perform transactions with multiple databases (uses DB2 APIs to create
and drop second database).

dbnative.c How to translate a statement that contains an ODBC escape clause to a data
source specific format.

dbuse.c How to work with database objects.

dbusemx.sqc How to use a single database in conjunction with embedded SQL.

Table Level - Samples that deal with table objects in DB2.

tbconstr.c How to work with table constraints.

tbconstr.c How to create, alter and drop tables.

tbinfo.c How to get and set information at a table level.

tbmod.c How to modify information in a table.

tbread.c How to read information in a table.

Data Type Level - Samples that deal with data types.

dtinfo.c How to get information about data types.

dtlob.c How to read and write LOB data.

dtudt.c How to create, use, and drop user defined distinct types.

UDF Level - Samples that demonstrate user defined functions.

udfcli.c Client application which calls the user defined function in udfsrv.c.

udfsrv.c User defined function ScalarUDF called by udfcli.c sample.

Stored Procedure Level - Samples that demonstrate stored procedures in CLI.

spcreate.db2 CLP script to issue CREATE PROCEDURE statements.

spdrop.db2 CLP script to drop stored procedures from the catalog.

spclient.c Client program used to call the server functions declared in spserver.c.

spserver.c Stored procedure functions built and run on the server.

spcall.c Program to call any stored procedure.

Appendix B. Sample Programs 741

Table 44. Sample CLI Programs in DB2 Universal Database (continued)

Sample Program
Name

Program Description

Note: Other files in the samples/cli directory include:
v README - Lists all example files.
v makefile - Makefile for all files
v build files for applications and stored procedures

Java Samples

Table 45. Java Database Connectivity (JDBC) Sample Programs

Sample Program
Name Program Description

DB2Appl.java A JDBC application that queries the sample database using the invoking user’s
privileges.

DB2Applt.java A JDBC applet that queries the database using the JDBC applet driver. It uses the
user name, password, server, and port number parameters specified in
DB2Applt.html.

DB2Applt.html An HTML file that embeds the applet sample program, DB2Applt. It needs to be
customized with server and user information.

DB2UdCli.java A Java client application that calls the Java user-defined function, DB2Udf.

Dynamic.java Demonstrates a cursor using dynamic SQL.

MRSPcli.java This is the client program that calls the server program MRSPsrv. The program
demonstrates multiple result sets being returned from a Java stored procedure.

MRSPsrv.java This is the server program that is called by the client program, MRSPcli. The
program demonstrates multiple result sets being returned from a Java stored
procedure.

Outcli.java A Java client application that calls the SQLJ stored procedure, Outsrv.

PluginEx.java A Java program that adds new menu items and toolbar buttons to the DB2 Web
Control Center.

Spclient.java A JDBC client application that calls PARAMETER STYLE JAVA stored procedures
in the Spserver stored procedure class.

Spcreate.db2 A CLP script that contains the CREATE PROCEDURE statements to register the
methods contained in the Spserver class as stored procedures.

Spdrop.db2 A CLP script that contains the DROP PROCEDURE statements necessary for
deregistering the stored procedures contained in the Spserver class.

Spserver.java A JDBC program demonstrating PARAMETER STYLE JAVA stored procedures. The
client program is Spclient.java.

UDFcli.java A JDBC client application that calls functions in the Java user-defined function
library, UDFsrv.

742 Application Development Guide

Table 45. Java Database Connectivity (JDBC) Sample Programs (continued)

Sample Program
Name Program Description

UseThrds.java Shows how to use threads to run an SQL statement asynchronously (JDBC version
of CLI sample async.c).

V5SpCli.java A Java client application that calls the DB2GENERAL stored procedure, V5Stp.java.

V5Stp.java Demonstrates a DB2GENERAL stored procedure that updates the EMPLOYEE table
on the server, and returns new salary and payroll information to the client. The
client program is V5SpCli.java.

Varinp.java Demonstrates variable input to Embedded Dynamic SQL statement calls using
parameter markers.

Table 46. Embedded SQL for Java (SQLJ) Sample Programs

Sample Program
Name Program Description

App.sqlj Uses static SQL to retrieve and update data from the EMPLOYEE table of the
sample database.

Applt.sqlj An applet that queries the database using the JDBC applet driver. It uses the user
name, password, server, and port number parameters specified in Applt.html.

Applt.html An HTML file that embeds the applet sample program, Applt. It needs to be
customized with server and user information.

Cursor.sqlj Demonstrates an iterator using static SQL.

OpF_Curs.sqlj Class file for the Openftch program.

Openftch.sqlj Demonstrates fetching, updating, and deleting rows using static SQL.

Outsrv.sqlj Demonstrates a stored procedure using the SQLDA structure. It fills the SQLDA
with the median salary of the employees in the STAFF table of the sample database.
After the database processing (finding the median), the stored procedure returns
the filled SQLDA and the SQLCA status to the JDBC client application, Outcli.

Stclient.sqlj An SQLJ client application that calls PARAMETER STYLE JAVA stored procedures
created by the SQLJ stored procedure program, Stserver.

Stcreate.db2 A CLP script that contains the CREATE PROCEDURE statements to register the
methods contained in the Stserver class as stored procedures.

Stdrop.db2 A CLP script that contains the DROP PROCEDURE statements necessary for
deregistering the stored procedures contained in the Stserver class.

Stserver.sqlj An SQLJ program demonstrating PARAMETER STYLE JAVA stored procedures.
The client program is Stclient.sqlj.

Static.sqlj Uses static SQL to retrieve information.

Stp.sqlj A stored procedure that updates the EMPLOYEE table on the server, and returns
new salary and payroll information to the JDBC client program, StpCli.

Appendix B. Sample Programs 743

Table 46. Embedded SQL for Java (SQLJ) Sample Programs (continued)

Sample Program
Name Program Description

UDFclie.sqlj A client application that calls functions from the Java user-defined function library,
UDFsrv.

Updat.sqlj Uses static SQL to update a database.

SQL Procedure Samples

Table 47. SQL Procedure Sample Programs

Sample Program
Name Program Description

basecase.db2 The UPDATE_SALARY procedure raises the salary of an employee identified by
the ″empno″ IN parameter in the ″staff″ table of the ″sample″ database. The
procedure determines the raise according to a CASE statement that uses the
″rating″ IN parameter.

basecase.sqc Calls the UPDATE_SALARY procedure.

baseif.db2 The UPDATE_SALARY_IF procedure raises the salary of an employee identified by
the ″empno″ IN parameter in the ″staff″ table of the ″sample″ database. The
procedure determines the raise according to an IF statement that uses the ″rating″
IN parameter.

baseif.sqc Calls the UPDATE_SALARY_IF procedure.

dynamic.db2 The CREATE_DEPT_TABLE procedure uses dynamic DDL to create a new table.
The name of the table is based on the value of the IN parameter to the procedure.

dynamic.sqc Calls the CREATE_DEPT_TABLE procedure.

iterate.db2 The ITERATOR procedure uses a FETCH loop to retrieve data from the
″department″ table. If the value of the ″deptno″ column is not ’D11’, modified data
is inserted into the ″department″ table. If the value of the ″deptno″ column is ’D11’,
an ITERATE statement passes the flow of control back to the beginning of the
LOOP statement.

iterate.sqc Calls the ITERATOR procedure.

leave.db2 The LEAVE_LOOP procedure counts the number of FETCH operations performed
in a LOOP statement before the ″not_found″ condition handler invokes a LEAVE
statement. The LEAVE statement causes the flow of control to exit the loop and
complete the stored procedure.

leave.sqc Calls the LEAVE_LOOP procedure.

loop.db2 The LOOP_UNTIL_SPACE procedure counts the number of FETCH operations
performed in a LOOP statement until the cursor retrieves a row with a space (’ ’)
value for column ″midinit″. The loop statement causes the flow of control to exit
the loop and complete the stored procedure.

loop.sqc Calls the LOOP_UNTIL_SPACE procedure.

744 Application Development Guide

Table 47. SQL Procedure Sample Programs (continued)

Sample Program
Name Program Description

nestcase.db2 The BUMP_SALARY procedure uses nested CASE statements to raise the salaries
of employees in a department identified by the dept IN parameter from the ″staff″
table of the ″sample″ database.

nestcase.sqc Calls the BUMP_SALARY procedure.

nestif.db2 The BUMP_SALARY_IF procedure uses nested IF statements to raise the salaries of
employees in a department identified by the dept IN parameter from the ″staff″
table of the ″sample″ database.

nestif.sqc Calls the BUMP_SALARY_IF procedure.

repeat.db2 The REPEAT_STMT procedure counts the number of FETCH operations performed
in a repeat statement until the cursor can retrieve no more rows. The condition
handler causes the flow of control to exit the repeat loop and complete the stored
procedure.

repeat.sqc Calls the REPEAT_STMT procedure.

rsultset.c Calls the MEDIAN_RESULT_SET procedure, displays the median salary, then
displays the result set generated by the SQL procedure. This client is written using
the CLI API, which can accept result sets.

rsultset.db2 The MEDIAN_RESULT_SET procedure obtains the median salary of employees in a
department identified by the ″dept″ IN parameter from the ″staff″ table of the
″sample″ database. The median value is assigned to the salary OUT parameter and
returned to the ″rsultset″ client. The procedure then opens a WITH RETURN cursor
to return a result set of the employees with a salary greater than the median. The
procedure returns the result set to the client.

spserver.db2 The SQL procedures in this CLP script demonstrate basic error-handling, nested
stored procedure calls, and returning result sets to the client application or the
calling application. You can call the procedures using the ″spcall″ application, in the
CLI samples directory. You can also use the ″spclient″ application, in the C and
CPP samples directories, to call the procedures that do not return result sets.

whiles.db2 The DEPT_MEDIAN procedure obtains the median salary of employees in a
department identified by the ″dept″ IN parameter from the ″staff″ table of the
″sample″ database. The median value is assigned to the salary OUT parameter and
returned to the ″whiles″ client. The whiles client then prints the median salary.

whiles.sqc Calls the DEPT_MEDIAN procedure.

Appendix B. Sample Programs 745

ADO, RDO, and MTS Samples

Table 48. ADO, RDO, and MTS Sample Programs

Sample Program
Name Program Description

Bank.vbp An RDO program to create and maintain data for bank branches, with the ability to
perform transactions on customer accounts. The program can use any database
specified by the user as it contains the DDL to create the necessary tables for the
application to store data.

Blob.vbp This ADO program demonstrates retrieving BLOB data. It retrieves and displays
pictures from the emp_photo table of the sample database. The program can also
replace an image in the emp_photo table with one from a local file.

BLOBAccess.dsw This sample demonstrates highlighting ADO/Blob access using Microsoft Visual
C++. It is similar to the Visual Basic sample, Blob.vbp. The BLOB sample has two
main functions:

1. Read a BLOB from the Sample database and display it to the screen.

2. Read a BLOB from a file and insert it into the database. (Import)

Connect.vbp This ADO program will create a connection object, and establish a connection, to
the sample database. Once completed, the program will disconnect and exit.

Commit.vbp This application demonstrates the use of autocommit/manual-commit features of
ADO. The program queries the EMPLOYEE table of the sample database for
employee number and name. The user has an option of connecting to the database
in either autocommit or manual-commit mode. In the autocommit mode, all of the
changes that a user makes on a record are updated automatically in the database.
In the manual-commit mode, the user needs to begin a transaction before he/she
can make any changes. The changes made since the beginning of a transaction can
be undone by performing a rollback. The changes can be saved permanently by
committing the transaction. Exiting the program automatically rolls back the
changes.

db2com.vbp This Visual Basic project demonstrates updating a database using the Microsoft
Transaction Server. It creates a server DLL used by the client program, db2mts.vbp,
and has four class modules:

v UpdateNumberColumn.cls

v UpdateRow.cls

v UpdateStringColumn.cls

v VerifyUpdate.cls

For this program a temporary table, DB2MTS, is created in the sample database.

db2mts.vbp This is a Visual Basic project for a client program that uses the Microsoft
Transaction Server to call the server DLL created from db2com.vbp.

Select-Update.vbp This ADO program performs the same functions as Connect.vbp, but also provides
a GUI interface. With this interface, the user can view, update, and delete data
stored in the ORG table of the sample database.

746 Application Development Guide

Table 48. ADO, RDO, and MTS Sample Programs (continued)

Sample Program
Name Program Description

Sample.vbp This Visual Basic project uses Keyset cursors via ADO to provide a graphical user
interface to all data in the sample database.

VarCHAR.dsp A Visual C++ program that uses ADO to access VarChar data as textfields. It
provides a graphical user interface to allow users to view and update data in the
ORG table of the sample database.

Object Linking and Embedding Samples

Table 49. Object Linking and Embedding (OLE) Sample Programs

Sample Program
Name Program Description

sales Demonstrates rollup queries on a Microsoft Excel sales spreadsheet (implemented
in Visual Basic).

names Queries a Lotus Notes address book (implemented in Visual Basic).

inbox Queries Microsoft Exchange inbox e-mail messages through OLE/Messaging
(implemented in Visual Basic).

invoice An OLE automation user-defined function that sends Microsoft Word invoice
documents as e-mail attachments (implemented in Visual Basic).

bcounter An OLE automation user-defined function demonstrating a scratchpad using
instance variables (implemented in Visual Basic).

ccounter A counter OLE automation user-defined function (implemented in Visual C++).

salarysrv An OLE automation stored procedure that calculates the median salary of the
STAFF table of the sample database (implemented in Visual Basic).

salarycltvc A Visual C++ embedded SQL sample that calls the Visual Basic stored procedure,
salarysrv.

salarycltvb A Visual Basic DB2 CLI sample that calls the Visual Basic stored procedure,
salarysrv.

testcli An OLE automation embedded SQL client application that calls the stored
procedure, tstsrv (implemented in Visual C++).

tstsrv An OLE automation stored procedure demonstrating the passing of various types
between client and stored procedure (implemented in Visual C++).

Table 50. Object Linking and Embedding Database (OLE DB) Table Functions

Sample Program
Name Program Description

jet.db2 Microsoft.Jet.OLEDB.3.51 Provider

Appendix B. Sample Programs 747

Table 50. Object Linking and Embedding Database (OLE DB) Table Functions (continued)

Sample Program
Name Program Description

mapi.db2 INTERSOLV Connect OLE DB for MAPI

msdaora.db2 Microsoft OLE DB Provider for Oracle

msdasql.db2 Microsoft OLE DB Provider for ODBC Drivers

msidxs.db2 Microsoft OLE DB Index Server Provider

notes.db2 INTERSOLV Connect OLE DB for Notes

sampprov.db2 Microsoft OLE DB Sample Provider

sqloledb.db2 Microsoft OLE DB Provider for SQL Server

Command Line Processor Samples

Table 51. Command Line Processor (CLP) Sample Programs.

Sample File
Name

File Description

const.db2 Creates a table with a CHECK CONSTRAINT clause.

cte.db2 Demonstrates a common table expression. The equivalent sample program
demonstrating this advanced SQL statement is tabsql.

flt.db2 Demonstrates a recursive query. The equivalent sample program demonstrating this
advanced SQL statement is recursql.

join.db2 Demonstrates an outer join of tables. The equivalent sample program demonstrating
this advanced SQL statement is joinsql.

stock.db2 Demonstrates the use of triggers. The equivalent sample program demonstrating this
advanced SQL statement is trigsql.

testdata.db2 Uses DB2 built-in functions such as RAND() and TRANSLATE() to populate a table
with randomly generated test data.

thaisort.db2 This script is particularly for Thai users. Thai sorting is by phonetic order requiring
pre-sorting/swapping of the leading vowel and its consonant, as well as post-sorting
in order to view the data in the correct sort order. The file implements Thai sorting
by creating UDF functions presort and postsort, and creating a table; then it calls the
functions against the table to sort the table data. To run this program, you first have
to build the user-defined function program, udf, from the C source file, udf.c.

748 Application Development Guide

Log Management User Exit Samples

Table 52. Log Management User Exit Sample Programs.

Sample File
Name

File Description

db2uext2.cadsm This is a sample User Exit utilizing ADSTAR DSM (ADSM) APIs to archive and
retrieve database log files. The sample provides an audit trail of calls (stored in a
separate file for each option) including a timestamp and parameters received. It also
provides an error trail of calls in error including a timestamp and an error isolation
string for problem determination. These options can be disabled. The file must be
renamed db2uext2.c and compiled as a C program. Available on UNIX and Windows
32-bit operating systems. The OS/2 version is db2uexit.cad.

db2uexit.cad This is the OS/2 version of db2uext2.cadsm. The file must be renamed db2uexit.c
and compiled as a C program.

db2uext2.cdisk This is a sample User Exit utilizing the system copy command for the particular
platform on which it ships. The program archives and retrieves database log files,
and provides an audit trail of calls (stored in a separate file for each option)
including a timestamp and parameters received. It also provides an error trail of calls
in error including a timestamp and an error isolation string for problem
determination. These options can be disabled. The file must be renamed db2uext2.c
and compiled as a C program. Available on UNIX and Windows 32-bit operating
systems.

db2uext2.ctape This is a sample User Exit utilizing system tape commands for the particular UNIX
platform on which it ships. The program archives and retrieves database log files. All
limitations of the system tape commands are limitations of this user exit. The sample
provides an audit trail of calls (stored in a separate file for each option) including a
timestamp and parameters received. It also provides an error trail of calls in error
including a timestamp and an error isolation string for problem determination. These
options can be disabled. The file must be renamed db2uext2.c and compiled as a C
program. Available on UNIX platforms only.

Appendix B. Sample Programs 749

750 Application Development Guide

Appendix C. DB2DARI and DB2GENERAL Stored
Procedures and UDFs

DB2DARI Stored Procedures 751
Using the SQLDA in a Client Application 751
Using Host Variables in a DB2DARI
Client 752
Using the SQLDA in a Stored Procedure 752

Data Structure Manipulation 753
Summary of Data Structure Usage . . . 753
Input/Output SQLDA and SQLCA
Structures 754
Return Values for DB2DARI Stored
Procedures 755

DB2GENERAL UDFs and Stored Procedures 755
Supported SQL Data Types 756
Classes for Java Stored Procedures and
UDFs 757

COM.ibm.db2.app.StoredProc 758
COM.ibm.db2.app.UDF 759
COM.ibm.db2.app.Lob 761
COM.ibm.db2.app.Blob 762
COM.ibm.db2.app.Clob 762

NOT FENCED Stored Procedures . . . 763
Example Input-SQLDA Programs 764

How the Example Input-SQLDA Client
Application Works 765
C Example: V5SPCLI.SQC 767
How the Example Input-SQLDA Stored
Procedure Works 770
C Example: V5SPSRV.SQC 771

This chapter describes how you can write DB2DARI and DB2GENERAL
parameter style stored procedures and DB2GENERAL UDFs.

DB2DARI Stored Procedures

When invoked, the DB2DARI stored procedure performs the following:
1. Accepts the SQLDA data structure from the client application. (Host

variables are passed through an SQLDA data structure generated by the
database manager when the SQL CALL statement is executed.)

2. Executes on the database server under the same transaction as the client
application.

3. Returns SQLCA information and optional output data to the client
application.

Using the SQLDA in a Client Application
To use the SQLDA structure to pass values to the stored procedure, perform
the following steps before calling the stored procedure:
1. Allocate storage for the structure with the required number of base

SQLVAR elements.
2. Set the SQLN field to the number of SQLVAR elements allocated.
3. Set the SQLD field to the number of SQLVAR elements actually used.
4. Initialize each SQLVAR element used as follows:

v Set the SQLTYPE field to the proper data type.
v Set the SQLLEN field to the size of the data type.

© Copyright IBM Corp. 1993, 2000 751

v Allocate storage for the SQLDATA and SQLIND fields based upon the
values in SQLTYPE and SQLLEN.

If your application will be working with character strings defined as FOR BIT
DATA, you need to initialize the SQLDAID field to indicate that the SQLDA
includes FOR BIT DATA definitions and the SQLNAME field of each SQLVAR
that defines a FOR BIT DATA element.

If your application will be working with large objects, that is, data with types
of CLOB, BLOB, or DBCLOB, you will also need to initialize the secondary
SQLVAR elements. For information on the SQLDA structure, refer to the SQL
Reference.

Using Host Variables in a DB2DARI Client
Declare SQLVARs using the same approach discussed in “Allocating Host
Variables” on page 192. In addition, the client application should set the
indicator of output-only SQLVARs to -1 as discussed in “Data Structure
Manipulation” on page 753. This will improve the performance of the
parameter passing mechanism by avoiding having to pass the contents of the
SQLDATA pointer, as only the indicator is sent. You should set the SQLTYPE
field to a nullable data type for these parameters. If the SQLTYPE indicates a
non-nullable data type, the indicator variable is not checked by the database
manager.

Using the SQLDA in a Stored Procedure
The stored procedure is invoked by the SQL CALL statement and executes
using data passed to it by the client application. Information is returned to the
client application using the stored procedure’s SQLDA structure.

The parameters of the SQL CALL statement are treated as both input and
output parameters and are converted into the following format for the stored
procedure:

SQL_API_RC SQL_API_FN proc_name(void *reserved1,
void *reserved2,
struct sqlda *inoutsqlda,
struct sqlca *sqlca)

The SQL_API_FN is a macro that specifies the calling convention for a function
that may vary across each supported operating system. This macro is required
when you write stored procedures or UDFs.

Following is an example of how a CALL statement maps to a server’s
parameter list:

CALL OUTSRV (:empno:empind,:salary:salind)

752 Application Development Guide

The parameters to this call are converted into an SQLDA structure with two
SQLVARs. The first SQLVAR points to the empno host variable and the empind
indicator variable. The second SQLVAR points to the salary host variable and
the salind indicator variable.

Note: The SQLDA structure is not passed to the stored procedure if the
number of elements, SQLD, is set to 0. In this case, if the SQLDA is not
passed, the stored procedure receives a NULL pointer.

Data Structure Manipulation
The database manager automatically allocates a duplicate SQLDA structure at
the database server. To reduce network traffic, it is important to indicate
which host variables are input-only, and which ones are output-only. The
client procedure should set the indicator of output-only SQLVARs to -1. The
server procedure should set the indicator for input-only SQLVARs to -128.
This allows the database manager to choose which SQLVARs are passed.

Note that an indicator variable is not reset if the client or the server sets it to a
negative value (indicating that the SQLVAR should not be passed). If the host
variable to which the SQLVAR refers is given a value in the stored procedure
or the client code, its indicator variable should be set to zero or a positive
value so that the value is passed. For example, consider a stored procedure
which takes one output-only parameter, called as follows:

empind = -1;
EXEC SQL CALL storproc(:empno:empind);

When the stored procedure sets the value for the first SQLVAR, it should also
set the value of the indicator to a non-negative value so that the result is
passed back to empno.

Summary of Data Structure Usage
Table 53 summarizes the use of the various structure fields by the stored
procedures application. In the table, sqlda is an SQLDA structure passed to
the stored procedure and n is a numeric value indicating a specific SQLVAR
element of the SQLDA. The numbers on the right refer to the notes following
the table.

Table 53. Stored Procedures Parameter Variables

Input/Output SQLDA sqlda.SQLDAID 4

sqlda.SQLDABC 4

sqlda.SQLN 2 4

sqlda.SQLD 2 3 5

Input/Output SQLVAR sqlda.n.SQLTYPE 2 3 5

sqlda.n.SQLLEN 2 3 5

sqlda.n.SQLDATA 1 2 3 6 8

Appendix C. DB2DARI and DB2GENERAL Stored Procedures and UDFs 753

Table 53. Stored Procedures Parameter Variables (continued)

sqlda.n.SQLIND 1 2 3 6 8 9

sqlda.n.SQLNAME.length 6 7

sqlda.n.SQLNAME.data 6 7

sqlda.n.SQLDATATYPE_NAME 2 3 5

sqlda.n.SQLLONGLEN 2 3 5

sqlda.n.SQLDATALEN 1 2 3 6 7

SQLCA (all elements) 6 7

Note:

Before invoking the stored procedure, the client application must:
1. Allocate storage for the pointer element based on SQLTYPE and SQLLEN.
2. Initialize the element with the appropriate data.

When called by the application, the database manager:
3. Sends data in the original element to a duplicate element allocated at the stored procedure. The SQLN element is

initialized with the data in the SQLD element.

When invoked, the stored procedure can:
4. Alter data in the duplicate element. The data can be altered as needed since it is not checked for validity or

returned to the client application.

When the stored procedure terminates, the database manager:
5. Checks data in the duplicate elements. If the values in these fields do not match the data in the original elements,

an error is returned.
6. Returns data in the duplicate elements to the original element.
7. The data can be altered as needed since it is not checked for validity.
8. The data pointed to by the elements can be altered as needed since they are not checked for validity but are

returned to the client application.
9. The SQLIND field is not passed in or out if SQLTYPE indicates the column type is not nullable.

Input/Output SQLDA and SQLCA Structures
The stored procedure runs using any information passed in the input
variables of the SQLDA structure. Information is returned to the client in the
output variables of the SQLDA. Do not change the value of the SQLD,
SQLTYPE, and SQLLEN fields of the SQLDA, as these fields are compared to
the original values set by the client application before data is returned. If they
are different, one of the following SQLCODEs is returned:
SQLCODE -1113 (SQLSTATE 39502)

The data type of a variable (that is, the value in SQLTYPE) has
changed.

SQLCODE -1114 (SQLSTATE 39502)
The length of a variable (that is, the value in SQLLEN) has changed.

SQLCODE -1115 (SQLSTATE 39502)
The SQLD field has changed.

754 Application Development Guide

In addition, do not change the pointer for the SQLDATA and the SQLIND
fields, although you can change the value that is pointed to by these fields.

Note: It is possible to use the same variable for both input and output.

Before the stored procedure returns, SQLCA information should be explicitly
copied to the SQLCA parameter of the stored procedure.

Return Values for DB2DARI Stored Procedures
The return value of the stored procedure is never returned to the client
application. It is used by the database manager to determine if the server
procedure should be released from memory upon exit.

The stored procedure returns one of the following values:

SQLZ_DISCONNECT_PROC
Tells the database manager to release (unload) the library.

SQLZ_HOLD_PROC
Tells the database manager to keep the server library in main memory
so that the library will be ready for the next invocation of the stored
procedure. This may improve performance.

If the stored procedure is invoked only once, it should return
SQLZ_DISCONNECT_PROC.

If the client application issues multiple calls to invoke the same stored
procedure, SQLZ_HOLD_PROC should be the return value of the stored procedure.
The stored procedure will not be unloaded.

If SQLZ_HOLD_PROC is used, the last invocation of the stored procedure should
return the value SQLZ_DISCONNECT_PROC to free the stored procedure library
from main memory. Otherwise, the library remains in main memory until the
database manager is stopped. As an alert to the stored procedure, the client
application could pass a flag in one of the parameters indicating the final call.

DB2GENERAL UDFs and Stored Procedures

PARAMETER STYLE DB2GENERAL UDFs and stored procedures are written
in Java, and hereafter are referred to simply as Java UDFs and stored
procedures. Creating DB2GENERAL UDFs and stored procedures is very
similar to creating UDFs and stored procedures in other supported
programming languages. Once you have created and registered them, you can
call them from programs in any language. Typically, you may call JDBC APIs
from your stored procedures, but you can not call them from UDFs.

Appendix C. DB2DARI and DB2GENERAL Stored Procedures and UDFs 755

Supported SQL Data Types
When you call PARAMETER STYLE DB2GENERAL UDFs and stored
procedures, DB2 converts SQL types to and from Java types for you as
described in Table 54. Several of these classes are provided in the Java
package COM.ibm.db2.app.

Table 54. DB2 SQL Types and Java Objects

SQL Column Type Java Type (UDF)
Java Type (Stored
Procedure)

SMALLINT (500/501) short short

INTEGER (496/497) int int

BIGINT (492/493) long long

FLOAT (480/481) double double

REAL (480/481)1 float float

DECIMAL(p,s) (484/485) java.math.BigDecimal java.math.BigDecimal

NUMERIC(p,s) (504/505) java.math.BigDecimal java.math.BigDecimal

CHAR(n) (452/453) String String

CHAR(n) FOR BIT DATA (452/453) Blob Blob

C null-terminated string (400/401)2 n/a String

VARCHAR(n)(448/449) String String

VARCHAR(n) FOR BIT DATA (448/449) Blob Blob

LONG VARCHAR (456/457) String String

LONG VARCHAR FOR BIT DATA
(456/457)

Blob Blob

GRAPHIC(n) (468/469) String String

C null-terminated graphic string (460/461)2 n/a String

VARGRAPHIC(n) (464/465) String String

LONG VARGRAPHIC (472/473)3 String String

BLOB(n)(404/405)3 Blob Blob

CLOB(n) (408/409)3 Clob Clob

DBCLOB(n) (412/413)3 Clob Clob

DATE (384/385)4 String String

TIME (388/389)4 String String

TIMESTAMP (392/393)4 String String

756 Application Development Guide

Table 54. DB2 SQL Types and Java Objects (continued)

SQL Column Type Java Type (UDF)
Java Type (Stored
Procedure)

Notes:

1. The difference between REAL and DOUBLE in the SQLDA is the length value (4 or 8).

2. Parenthesized types, such as the C null-terminated graphic string, occur in stored procedures when
the calling application uses embedded SQL with some host variable types.

3. The Blob and Clob classes are provided in the COM.ibm.db2.app package. Their interfaces include
routines to generate an InputStream and OutputStream for reading from and writing to a Blob, and a
Reader and Writer for a Clob. See “Classes for Java Stored Procedures and UDFs” for descriptions of
the classes.

4. SQL DATE, TIME, and TIMESTAMP values use the ISO string encoding in Java, as they do for UDFs
coded in C.

Instances of classes COM.ibm.db2.app.Blob and COM.ibm.db2.app.Clob
represent the LOB data types (BLOB, CLOB, and DBCLOB). These classes
provide a limited interface to read LOBs passed as inputs, and write LOBs
returned as outputs. Reading and writing of LOBs occur through standard
Java I/O stream objects. For the Blob class, the routines getInputStream() and
getOutputStream() return an InputStream or OutputStream object through
which the BLOB content may be processed bytes-at-a-time. For a Clob, the
routines getReader() and getWriter() will return a Reader or Writer object
through which the CLOB or DBCLOB content may be processed
characters-at-a-time.

If such an object is returned as an output using the set() method, code page
conversions may be applied in order to represent the Java Unicode characters
in the database code page.

Classes for Java Stored Procedures and UDFs
Java stored procedures are very similar to Java UDFs. Like table functions,
they can have multiple outputs. They also use the same conventions for
NULL values, and the same set routine for output. The main difference is that
a Java class that contains stored procedures must inherit from the
COM.ibm.db2.app.StoredProc class instead of the COM.ibm.db2.app.UDF class.
Refer to “COM.ibm.db2.app.StoredProc” on page 758 for a description of the
COM.ibm.db2.app.StoredProc class.

This interface provides the following routine to fetch a JDBC connection to the
embedding application context:

public java.sql.Connection getConnection()

Appendix C. DB2DARI and DB2GENERAL Stored Procedures and UDFs 757

You can use this handle to run SQL statements. Other methods of the
StoredProc interface are listed in the file
sqllib/samples/java/StoredProc.java.

There are five classes/interfaces that you can use with Java Stored Procedures
or UDFs:
v COM.ibm.db2.app.StoredProc
v COM.ibm.db2.app.UDF
v COM.ibm.db2.app.Lob
v COM.ibm.db2.app.Blob
v COM.ibm.db2.app.Clob

The following sections describe the public aspects of these classes’ behavior:

COM.ibm.db2.app.StoredProc
A Java class that contains methods intended to be called as PARAMETER
STYLE DB2GENERAL stored procedures must be public and must implement
this Java interface. You must declare such a class as follows:
public class <user-STP-class> extends COM.ibm.db2.app.StoredProc{ ... }

You can only call inherited methods of the COM.ibm.db2.app.StoredProc
interface in the context of the currently executing stored procedure. For
example, you cannot use operations on LOB arguments, result- or
status-setting calls, etc., after a stored procedure returns. A Java exception will
be thrown if you violate this rule.

Argument-related calls use a column index to identify the column being
referenced. These start at 1 for the first argument. All arguments of a
PARAMETER STYLE DB2GENERAL stored procedure are considered INOUT
and thus are both inputs and outputs.

Any exception returned from the stored procedure is caught by the database
and returned to the caller with SQLCODE -4302, SQLSTATE 38501. A JDBC
SQLException or SQLWarning is handled specially and passes its own
SQLCODE, SQLSTATE etc. to the calling application verbatim.

The following methods are associated with the COM.ibm.db2.app.StoredProc
class:
public StoredProc() [default constructor]

This constructor is called by the database before the stored procedure call.
public boolean isNull(int) throws Exception

This function tests whether an input argument with the given index is an SQL
NULL.

758 Application Development Guide

public void set(int, short) throws Exception
public void set(int, int) throws Exception
public void set(int, double) throws Exception
public void set(int, float) throws Exception
public void set(int, java.math.BigDecimal) throws Exception
public void set(int, String) throws Exception
public void set(int, COM.ibm.db2.app.Blob) throws Exception
public void set(int, COM.ibm.db2.app.Clob) throws Exception

This function sets the output argument with the given index to the given
value. The index has to refer to a valid output argument, the data type must
match, and the value must have an acceptable length and contents. Strings
with Unicode characters must be representable in the database code page.
Errors result in an exception being thrown.
public java.sql.Connection getConnection() throws Exception

This function returns a JDBC object that represents the calling application’s
connection to the database. It is analogous to the result of a null SQLConnect()
call in a C stored procedure.

COM.ibm.db2.app.UDF
A Java class that contains methods intended to be called as PARAMETER
STYLE DB2GENERAL UDFs must be public and must implement this Java
interface. You must declare such a class as follows:
public class <user-UDF-class> extends COM.ibm.db2.app.UDF{ ... }

You can only call methods of the COM.ibm.db2.app.UDF interface in the context
of the currently executing UDF. For example, you cannot use operations on
LOB arguments, result- or status-setting calls, etc., after a UDF returns. A Java
exception will be thrown if this rule is violated.

Argument-related calls use a column index to identify the column being set.
These start at 1 for the first argument. Output arguments are numbered
higher than the input arguments. For example, a scalar UDF with three inputs
uses index 4 for the output.

Any exception returned from the UDF is caught by the database and returned
to the caller with SQLCODE -4302, SQLSTATE 38501.

The following methods are associated with the COM.ibm.db2.app.UDF class:
public UDF() [default constructor]

This constructor is called by the database at the beginning of a series of UDF
calls. It precedes the first call to the UDF.
public void close()

Appendix C. DB2DARI and DB2GENERAL Stored Procedures and UDFs 759

This function is called by the database at the end of a UDF evaluation, if the
UDF was created with the FINAL CALL option. It is analogous to the final
call for a C UDF. For table functions, close() is called after the CLOSE call to
the UDF method (if NO FINAL CALL is coded or defaulted), or after the
FINAL call (if FINAL CALL is coded). If a Java UDF class does not implement
this function, a no-op stub will handle and ignore this event.
public int getCallType() throws Exception

Table function UDF methods use getCallType() to find out the call type for a
particular call. It returns a value as follows (symbolic defines are provided for
these values in the COM.ibm.db2.app.UDF class definition):
v -2 FIRST call
v -1 OPEN call
v 0 FETCH call
v 1 CLOSE call
v 2 FINAL call
public boolean isNull(int) throws Exception

This function tests whether an input argument with the given index is an SQL
NULL.
public boolean needToSet(int) throws Exception

This function tests whether an output argument with the given index needs to
be set. This may be false for a table UDF declared with DBINFO, if that
column is not used by the UDF caller.
public void set(int, short) throws Exception
public void set(int, int) throws Exception
public void set(int, double) throws Exception
public void set(int, float) throws Exception
public void set(int, java.math.BigDecimal) throws Exception
public void set(int, String) throws Exception
public void set(int, COM.ibm.db2.app.Blob) throws Exception
public void set(int, COM.ibm.db2.app.Clob) throws Exception

This function sets the output argument with the given index to the given
value. The index has to refer to a valid output argument, the data type must
match, and the value must have an acceptable length and contents. Strings
with Unicode characters must be representable in the database code page.
Errors result in an exception being thrown.
public void setSQLstate(String) throws Exception

This function may be called from a UDF to set the SQLSTATE to be returned
from this call. A table UDF should call this function with ″02000″ to signal the
end-of-table condition. If the string is not acceptable as an SQLSTATE, an
exception will be thrown.

760 Application Development Guide

public void setSQLmessage(String) throws Exception

This function is similar to the setSQLstate function. It sets the SQL message
result. If the string is not acceptable (for example, longer than 70 characters),
an exception will be thrown.
public String getFunctionName() throws Exception

This function returns the name of the executing UDF.
public String getSpecificName() throws Exception

This function returns the specific name of the executing UDF.
public byte[] getDBinfo() throws Exception

This function returns a raw, unprocessed DBINFO structure for the executing
UDF, as a byte array. You must first declare it with the DBINFO option.
public String getDBname() throws Exception
public String getDBauthid() throws Exception
public String getDBtbschema() throws Exception
public String getDBtbname() throws Exception
public String getDBcolname() throws Exception
public String getDBver_rel() throws Exception
public String getDBplatform() throws Exception
public String getDBapplid() throws Exception

These functions return the value of the appropriate field from the DBINFO
structure of the executing UDF.
public int[] getDBcodepg() throws Exception

This function returns the SBCS, DBCS, and composite code page numbers for
the database, from the DBINFO structure. The returned integer array has the
respective numbers as its first three elements.
public byte[] getScratchpad() throws Exception

This function returns a copy of the scratchpad of the currently executing UDF.
You must first declare the UDF with the SCRATCHPAD option.
public void setScratchpad(byte[]) throws Exception

This function overwrites the scratchpad of the currently executing UDF with
the contents of the given byte array. You must first declare the UDF with the
SCRATCHPAD option. The byte array must have the same size as
getScratchpad() returns.

COM.ibm.db2.app.Lob
This class provides utility routines that create temporary Blob or Clob objects
for computation inside user-defined functions or stored procedures.

Appendix C. DB2DARI and DB2GENERAL Stored Procedures and UDFs 761

The following methods are associated with the COM.ibm.db2.app.Lob class:
public static Blob newBlob() throws Exception

This function creates a temporary Blob. It will be implemented using a
LOCATOR if possible.
public static Clob newClob() throws Exception

This function creates a temporary Clob. It will be implemented using a
LOCATOR if possible.

COM.ibm.db2.app.Blob
An instance of this class is passed by the database to represent a BLOB as
UDF or stored procedure input, and may be passed back as output. The
application may create instances, but only in the context of an executing UDF
or stored procedure. Uses of these objects outside such a context will throw an
exception.

The following methods are associated with the COM.ibm.db2.app.Blob class:
public long size() throws Exception

This function returns the length (in bytes) of the BLOB.
public java.io.InputStream getInputStream() throws Exception

This function returns a new InputStream to read the contents of the BLOB.
Efficient seek/mark operations are available on that object.
public java.io.OutputStream getOutputStream() throws Exception

This function returns a new OutputStream to append bytes to the BLOB.
Appended bytes become immediately visible on all existing InputStream
instances produced by this object’s getInputStream() call.

COM.ibm.db2.app.Clob
An instance of this class is passed by the database to represent a CLOB or
DBCLOB as UDF or stored procedure input, and may be passed back as
output. The application may create instances, but only in the context of an
executing UDF or stored procedure. Uses of these objects outside such a
context will throw an exception.

Clob instances store characters in the database code page. Some Unicode
characters may not be representable in this code page, and may cause an
exception to be thrown during conversion. This may happen during an
append operation, or during a UDF or StoredProc set() call. This is necessary
to hide the distinction between a CLOB and a DBCLOB from the Java
programmer.

762 Application Development Guide

The following methods are associated with the COM.ibm.db2.app.Clob class:
public long size() throws Exception

This function returns the length (in characters) of the CLOB.
public java.io.Reader getReader() throws Exception

This function returns a new Reader to read the contents of the CLOB or
DBCLOB. Efficient seek/mark operations are available on that object.
public java.io.Writer getWriter() throws Exception

This function returns a new Writer to append characters to this CLOB or
DBCLOB. Appended characters become immediately visible on all existing
Reader instances produced by this object’s GetReader() call.

NOT FENCED Stored Procedures
To indicate that a DB2DARI stored procedure should run as a NOT FENCED
stored procedure, place it in the directory indicated in the Application Building
Guide. For more information on NOT FENCED stored procedures, see “NOT
FENCED Stored Procedures” on page 223.

Appendix C. DB2DARI and DB2GENERAL Stored Procedures and UDFs 763

Example Input-SQLDA Programs

Following is a sample program demonstrating the use of an input SQLDA
structure. The client application invokes a stored procedure that creates a table
named Presidents and loads the table with data.

This program creates a table called Presidents in the SAMPLE database. It
then inserts the values Washington, Jefferson, and Lincoln into the table.

Without using stored procedures, the sample program would have been
designed to transmit data across the network in four separate requests in
order to process each SQL statement, as shown in Figure 23.

Instead, the sample program makes use of the stored procedures technique to
transmit all of the data across the network in one request, allowing the server
procedure to execute the SQL statements as a group. This technique is shown
in Figure 24.

SEND request to create

the Presidents table.

RECEIVE message of

create table.

SEND request to insert

Washington into the

Presidents table.

RECEIVE message of the

table insert.

SEND request to insert

Jefferson into the

Presidents table.

Receive message of the

table insert.

SEND request to insert

Lincoln into the

Presidents Table

CREATE the Presidents

table.

RETURN status of the

create table.

INSERT Washington into

the Presidents table.

RETURN the status of

the insert.

INSERT Jefferson into

the Presidents table.

RETURN the status of

the insert.

INSERT Lincoln into the

Presidents Table

Figure 23. Input-SQLDA Sample Without a Stored Procedure

764 Application Development Guide

A sample input-SQLDA client application and sample input-SQLDA stored
procedure is shown on 765.

How the Example Input-SQLDA Client Application Works
1. Initialize the Input SQLDA Structure. The following fields of the input

SQLDA are initialized:
v The SQLN and SQLD elements are set to the total number of SQLVAR

elements allocated and used.
v The SQLTYPE elements are set to indicate character data type.
v The first SQLDATA element is set to the name of the table. The second

through fourth SQLDATA elements are set to the values Washington,
Jefferson, and Lincoln.

v The SQLLEN elements are set to the length of each SQLDATA element
(plus 1 byte for the C language null terminator).

v The SQLIND elements are set to NULL.
2. Invoke the Server Procedure. The application invokes the procedure

inpsrv at the location of the database, sample using:
a. CALL statement with host variables
b. CALL statement with an SQLDA.

The CHECKERR macro/function is an error checking utility which is external to
the program. The location of this error checking utility depends upon the
programming language used:

C For C programs that call DB2 APIs, the sqlInfoPrint function
in utilapi.c is redefined as API_SQL_CHECK in utilapi.h. For C

Client
Workstation

Database
Server

Call server

procedure.

Receive message

on completion

of the server

procedure.

CREATE the

presidents table.

INSERT Jefferson.

INSERT Washington

into the table.

INSERT Lincoln.

Return the status

of the server

procedure.

Figure 24. Input-SQLDA Sample With a Stored Procedure

Appendix C. DB2DARI and DB2GENERAL Stored Procedures and UDFs 765

embedded SQL programs, the sqlInfoPrint function in
utilemb.sqc is redefined as EMB_SQL_CHECK in utilemb.h.

COBOL CHECKERR is an external program named checkerr.cbl.

FORTRAN CHECKERR is a subroutine located in the util.f file.

REXX CHECKERR is a procedure located at bottom of the current
program.

See “Using GET ERROR MESSAGE in Example Programs” on page 118 for the
source code for this error checking utility.

766 Application Development Guide

C Example: V5SPCLI.SQC
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlenv.h>
#include <sqlca.h>
#include <sqlda.h>
#include <sqlutil.h>
#include "util.h"

#define CHECKERR(CE_STR) if (check_error (CE_STR, &sqlca) != 0) return 1;

int main(int argc, char *argv[]) {

EXEC SQL BEGIN DECLARE SECTION;
char database[9];
char userid[9];
char passwd[19];
char procname[255] = "inpsrv";
char table_name[11] = "PRESIDENTS";
char data_item0[21] = "Washington";
char data_item1[21] = "Jefferson";
char data_item2[21] = "Lincoln";
short tableind, dataind0, dataind1, dataind2;

EXEC SQL END DECLARE SECTION;

/* Declare Variables for CALL USING */
struct sqlca sqlca;
struct sqlda *inout_sqlda = NULL;
char eBuffer[1024]; /* error message buffer */

if (argc != 4) {
printf ("\nUSAGE: inpcli remote_database userid passwd\n\n");
return 1;

}

strcpy (database, argv[1]);
strcpy (userid, argv[2]);
strcpy (passwd, argv[3]);
/* Connect to Remote Database */
printf("CONNECT TO Remote Database.\n");
EXEC SQL CONNECT TO :database USER :userid USING :passwd;
CHECKERR ("CONNECT TO SAMPLE");

/**\
* Call the Remote Procedure via CALL with Host Variables *
**/
printf("Use CALL with Host Variable to invoke the Server Procedure"

" named inpsrv.\n");
tableind = dataind0 = dataind1 = dataind2 = 0;

EXEC SQL CALL :procname (:table_name:tableind, :data_item0:dataind0,
:data_item1:dataind1, :data_item2:dataind2); �2a�

/* COMMIT or ROLLBACK the transaction */

Appendix C. DB2DARI and DB2GENERAL Stored Procedures and UDFs 767

if (SQLCODE == 0)
{ EXEC SQL COMMIT;

printf("Server Procedure Complete.\n\n");
}
else
{ /* print the error message, roll back the transaction and return */

sqlaintp (eBuffer, 1024, 80, &sqlca);
printf("\n%s\n", eBuffer);

EXEC SQL ROLLBACK;
printf("Server Procedure Transaction Rolled Back.\n\n");
return 1;

}

/* Allocate and Initialize Input SQLDA */ �1�
inout_sqlda = (struct sqlda *)malloc(SQLDASIZE(4));
inout_sqlda->sqln = 4;
inout_sqlda->sqld = 4;

inout_sqlda->sqlvar[0].sqltype = SQL_TYP_NCSTR;
inout_sqlda->sqlvar[0].sqldata = table_name;
inout_sqlda->sqlvar[0].sqllen = strlen(table_name) + 1;
inout_sqlda->sqlvar[0].sqlind = &tableind;

inout_sqlda->sqlvar[1].sqltype = SQL_TYP_NCSTR;
inout_sqlda->sqlvar[1].sqldata = data_item0;
inout_sqlda->sqlvar[1].sqllen = strlen(data_item0) + 1;
inout_sqlda->sqlvar[1].sqlind = &dataind0;

inout_sqlda->sqlvar[2].sqltype = SQL_TYP_NCSTR;
inout_sqlda->sqlvar[2].sqldata = data_item1;
inout_sqlda->sqlvar[2].sqllen = strlen(data_item1) + 1;
inout_sqlda->sqlvar[2].sqlind = &dataind1;

inout_sqlda->sqlvar[3].sqltype = SQL_TYP_NCSTR;
inout_sqlda->sqlvar[3].sqldata = data_item2;
inout_sqlda->sqlvar[3].sqllen = strlen(data_item2) + 1;
inout_sqlda->sqlvar[3].sqlind = &dataind2;

/***\
* Call the Remote Procedure via CALL with SQLDA *
***/
printf("Use CALL with SQLDA to invoke the Server Procedure named "

"inpsrv.\n");

tableind = dataind0 = dataind1 = dataind2 = 0;
inout_sqlda->sqlvar[0].sqlind = &tableind;
inout_sqlda->sqlvar[1].sqlind = &dataind0;
inout_sqlda->sqlvar[2].sqlind = &dataind1;
inout_sqlda->sqlvar[3].sqlind = &dataind2;

EXEC SQL CALL :procname USING DESCRIPTOR :*inout_sqlda; �2b�
/* COMMIT or ROLLBACK the transaction */
if (SQLCODE == 0)

768 Application Development Guide

{ EXEC SQL COMMIT;
printf("Server Procedure Complete.\n\n");

}
else
{ /* print the error message, roll back the transaction and return */

sqlaintp (eBuffer, 1024, 80, &sqlca);
printf("\n%s\n", eBuffer);

EXEC SQL ROLLBACK;
printf("Server Procedure Transaction Rolled Back.\n\n");
return 1;

}

/* Free allocated memory */
free(inout_sqlda);

/* Drop the PRESIDENTS table created by the stored procedure */
EXEC SQL DROP TABLE PRESIDENTS;
CHECKERR("DROP TABLE");

/* Disconnect from Remote Database */
EXEC SQL CONNECT RESET;
CHECKERR ("CONNECT RESET");
return 0;

}
/* end of program : inpcli.sqc */

Appendix C. DB2DARI and DB2GENERAL Stored Procedures and UDFs 769

How the Example Input-SQLDA Stored Procedure Works
1. Declare Server Procedure. The procedure accepts pointers to SQLDA and

SQLCA structures.
2. Create Table. Using the data passed in the first SQLVAR of the SQLDA

structure, a CREATE TABLE statement is constructed and executed to
create a table named Presidents.

3. Prepare Insert Statement. An INSERT statement with a parameter marker
? is prepared.

4. Insert Data. The INSERT statement prepared previously is executed using
the data passed in the second through fourth SQLVAR of the SQLDA
structure. The parameter markers are replaced with the values Washington,
Jefferson, and Lincoln. These values are inserted into the Presidents
table.

5. Return to the Client Application. The server procedure copies the SQLCA
to the SQLCA of the client application, issues a COMMIT statement if the
transaction is successful, and returns the value SQLZ_DISCONNECT_PROC,
indicating that no further calls to the server procedure will be made.

Note: Server procedures cannot be written in REXX on AIX systems.

770 Application Development Guide

C Example: V5SPSRV.SQC
#include <memory.h>
#include <string.h>
#include <sqlenv.h>
#include <sqlutil.h>

#ifdef __cplusplus
extern "C"
#endif
SQL_API_RC SQL_API_FN inpsrv(void *reserved1, �1�

void *reserved2,
struct sqlda *inout_sqlda,
struct sqlca *ca)

{
/* Declare a local SQLCA */
EXEC SQL INCLUDE SQLCA;

/* Declare Host Variables */
EXEC SQL BEGIN DECLARE SECTION;

char table_stmt[80] = "CREATE TABLE ";
char insert_stmt[80] = "INSERT INTO ";
char insert_data[21];

EXEC SQL END DECLARE SECTION;

/* Declare Miscellanous Variables */
int cntr = 0;
char *table_name;
char *data_items[3];
short data_items_length[3];
int num_of_data = 0;

/*---*/
/* Assign the data from the SQLDA to local variables so that we */
/* don't have to refer to the SQLDA structure further. This will */
/* provide better portability to other platforms such as DB2 MVS */
/* where they receive the parameter list differently. */
/*---*/

table_name = inout_sqlda->sqlvar[0].sqldata;
num_of_data = inout_sqlda->sqld - 1;

for (cntr = 0; cntr < num_of_data; cntr++)
{

data_items[cntr] = inout_sqlda->sqlvar[cntr+1].sqldata;
data_items_length[cntr] = inout_sqlda->sqlvar[cntr+1].sqllen;

}

/*---*/
/* Create President Table */
/* - For simplicity, we'll ignore any errors from the */
/* CREATE TABLE so that you can run this program even when the */
/* table already exists due to a previous run. */
/*---*/

Appendix C. DB2DARI and DB2GENERAL Stored Procedures and UDFs 771

EXEC SQL WHENEVER SQLERROR CONTINUE;
strcat(table_stmt, table_name);
strcat(table_stmt, " (name CHAR(20))"); �2�

EXEC SQL EXECUTE IMMEDIATE :table_stmt;

EXEC SQL WHENEVER SQLERROR GOTO ext;

/*---*/
/* Generate and execute a PREPARE for an INSERT statement, and */
/* then insert the three presidents. */
/*---*/

strcat(insert_stmt, table_name);
strcat(insert_stmt, " VALUES (?)"); �3�

EXEC SQL PREPARE S1 FROM :insert_stmt;

for (cntr = 0; cntr < num_of_data; cntr++)
{

strncpy(insert_data, data_items[cntr], data_items_length[cntr]);
insert_data[data_items_length[cntr]] = '\0';
EXEC SQL EXECUTE S1 USING :insert_data; �4�

}

/*---*/
/* Return to caller */
/* - Copy the SQLCA */
/* - Update the output SQLDA. Since there's no output to */
/* return, we are setting the indicator values to -128 to */
/* return only a null value. */
/*---*/

ext: �5�
memcpy(ca, &sqlca, sizeof(struct sqlca));
if (inout_sqlda != NULL)
{

for (cntr = 0; cntr < inout_sqlda->sqld; cntr++)
{

*(inout_sqlda->sqlvar[cntr].sqlind) = -128;
}

}

return(SQLZ_DISCONNECT_PROC);
}

772 Application Development Guide

Appendix D. Programming in a Host or AS/400
Environment

This section contains information that is common to the DB2 Connect User’s
Guide. If you encounter an unfamiliar term or concept in this section, refer to
the DB2 Connect User’s Guide.

DB2 Connect lets an application program access data in DB2 databases on
System/390 and AS/400 servers. For example, an application running on
Windows can access data in a DB2 Universal Database for OS/390 database.
You can create new applications, or modify existing applications to run in a
host or AS/400 environment. You can also develop applications in one
environment and port them to another.

DB2 Connect enables you to use the following APIs with host database
products such as DB2 Universal Database for OS/390, as long as the item is
supported by the host database product:
v Embedded SQL, both static and dynamic
v The DB2 Call Level Interface
v The Microsoft ODBC API
v JDBC.

Some SQL statements differ among relational database products. You may
encounter SQL statements that are:
v The same for all the database products that you use regardless of standards
v Documented in the SQL Reference and are therefore available in all IBM

relational database products
v Unique to one database system that you access.

SQL statements in the first two categories are highly portable, but those in the
third category will first require changes. In general, SQL statements in Data
Definition Language (DDL) are not as portable as those in Data Manipulation
Language (DML).

DB2 Connect accepts some SQL statements that are not supported by DB2
Universal Database. DB2 Connect passes these statements on to the host or
AS/400 server. For information on limits on different platforms, such as the
maximum column length, refer to the SQL Reference.

If you move a CICS application from OS/390 or VSE to run under another
CICS product (for example, CICS for AIX), it can also access the OS/390 or

© Copyright IBM Corp. 1993, 2000 773

VSE database using DB2 Connect. Refer to the CICS/6000 Application
Programming Guide and the CICS Customization and Operation manual for more
details.

Note: You can use DB2 Connect with a DB2 Universal Database Version 7
database, although it would be more efficient to use the DB2 private
protocol without DB2 Connect. Most of the incompatibility issues listed
in the following sections will not apply if you are using DB2 Connect
against a DB2 Universal Database Version 7 database, except in cases
where a restriction is due to a limitation of DB2 Connect itself, for
example, the non-support of Abstract Data Types.

When you program in a host or AS/400 environment, you should consider
the following specific factors:
v Using Data Definition Language (DDL)
v Using Data Manipulation Language (DML)
v Using Data Control Language (DCL)
v Connecting and disconnecting
v Precompiling
v Defining a sort order
v Managing referential integrity
v Locking
v Differences in SQLCODEs and SQLSTATEs
v Using system catalogs
v Isolation levels
v Stored procedures
v NOT ATOMIC compound SQL
v Distributed unit of work
v SQL statements supported or rejected by DB2 Connect.

Using Data Definition Language (DDL)

DDL statements differ among the IBM database products because storage is
handled differently on different systems. On host or AS/400 server systems,
there can be several steps between designing a database and issuing a
CREATE TABLE statement. For example, a series of statements may translate
the design of logical objects into the physical representation of those objects in
storage.

The precompiler passes many such DDL statements to the host or AS/400
server when you precompile to a host or AS/400 server database. The same
statements would not precompile against a database on the system where the

774 Application Development Guide

application is running. For example, in an OS/2 application the CREATE
STORGROUP statement will precompile successfully to a DB2 Universal
Database for OS/390 database, but not to a DB2 for OS/2 database.

Using Data Manipulation Language (DML)

In general, DML statements are highly portable. SELECT, INSERT, UPDATE,
and DELETE statements are similar across the IBM relational database
products. Most applications primarily use DML SQL statements, which are
supported by the DB2 Connect program.

Numeric Data Types
When numeric data is transferred to DB2 Universal Database, the data type
may change. Numeric and zoned decimal SQLTYPEs (supported by DB2
Universal Database for AS/400) are converted to fixed (packed) decimal
SQLTYPEs.

Mixed-Byte Data
Mixed-byte data can consist of characters from an extended UNIX code (EUC)
character set, a double-byte character set (DBCS) and a single-byte character
set (SBCS) in the same column. On systems that store data in EBCDIC
(OS/390, OS/400, VSE, and VM), shift-out and shift-in characters mark the
start and end of double-byte data. On systems that store data in ASCII (such
as OS/2 and UNIX), shift-in and shift-out characters are not required.

If your application transfers mixed-byte data from an ASCII system to an
EBCDIC system, be sure to allow enough room for the shift characters. For
each switch from SBCS to DBCS data, add 2 bytes to your data length. For
better portability, use variable-length strings in applications that use
mixed-byte data.

Long Fields
Long fields (strings longer than 254 characters) are handled differently on
different systems. A host or AS/400 server may support only a subset of
scalar functions for long fields; for example, DB2 Universal Database for
OS/390 allows only the LENGTH and SUBSTR functions for long fields.
Also, a host or AS/400 server may require different handling for certain SQL
statements; for example, DB2 for VSE & VM requires that with the INSERT
statement, only a host variable, the SQLDA, or a NULL value be used.

Large Object (LOB) Data Type
The LOB data type is supported by DB2 Connect.

User Defined Types (UDTs)
Only User Defined Distinct Types are supported by DB2 Connect. Abstract
Data Types are not.

Appendix D. Programming in a Host or AS/400 Environment 775

ROWID Data Type
The ROWID data type is handled by DB2 Connect as VARCHAR for bit data.

64-bit Integer (BIGINT) data type
Eight byte (64-bit) integers are supported by DB2 Connect. The BIGINT
internal data type is used to provide support for the cardinality of very large
databases, while retaining data precision.

Using Data Control Language (DCL)

Each IBM relational database management system provides different levels of
granularity for the GRANT and REVOKE SQL statements. Check the
product-specific publications to verify the appropriate SQL statements to use
for each database management system.

Connecting and Disconnecting

DB2 Connect supports the CONNECT TO and CONNECT RESET versions of
the CONNECT statement, as well as CONNECT with no parameters. If an
application calls an SQL statement without first performing an explicit
CONNECT TO statement, an implicit connect is performed to the default
application server (if one is defined).

When you connect to a database, information identifying the relational
database management system is returned in the SQLERRP field of the
SQLCA. If the application server is an IBM relational database, the first three
bytes of SQLERRP contain one of the following:

DSN DB2 Universal Database for OS/390

ARI DB2 for VSE & VM

QSQ DB2 Universal Database for AS/400

SQL DB2 Universal Database.

If you issue a CONNECT TO or null CONNECT statement while using DB2
Connect, the country code or territory token in the SQLERRMC field of the
SQLCA is returned as blanks; the CCSID of the application server is returned
in the code page or code set token.

You can explicitly disconnect by using the CONNECT RESET statement (for
type 1 connect), the RELEASE and COMMIT statements (for type 2 connect),
or the DISCONNECT statement (either type of connect, but not in a TP
monitor environment).

776 Application Development Guide

If a connection is not explicitly disconnected and the application ends
normally, DB2 Connect commits the resulting data implicitly.

Note: An application can receive SQLCODEs indicating errors and still end
normally; DB2 Connect commits the data in this case. If you do not
want the data to be committed, you must issue a ROLLBACK
command.

The FORCE command lets you disconnect selected users or all users from the
database. This is supported for host or AS/400 server databases; the user can
be forced off the DB2 Connect workstation.

Precompiling

There are some differences in the precompilers for different IBM relational
database systems. The precompiler for DB2 Universal Database differs from
the host or AS/400 server precompilers in the following ways:
v It makes only one pass through an application.
v When binding against DB2 Universal Database databases, objects must exist

for a successful bind. VALIDATE RUN is not supported.

Blocking
The DB2 Connect program supports the DB2 database manager blocking bind
options:

UNAMBIG
Only unambiguous cursors are blocked (the default).

ALL Ambiguous cursors are blocked.

NO Cursors are not blocked.

The DB2 Connect program uses the block size defined in the DB2 database
manager configuration file for the RQRIOBLK field. Current versions of DB2
Connect support block sizes up to 32 767. If larger values are specified in the
DB2 database manager configuration file, DB2 Connect uses a value of 32 767
but does not reset the DB2 database manager configuration file. Blocking is
handled the same way using the same block size for dynamic and static SQL.

Note: Most host or AS/400 server systems consider dynamic cursors
ambiguous, but DB2 Universal Database systems consider some
dynamic cursors unambiguous. To avoid confusion, you can specify
BLOCKING ALL with DB2 Connect.

Specify the block size in the DB2 database manager configuration file by using
the CLP, the Control Center, or an API, as listed in the Administrative API
Reference and Command Reference.

Appendix D. Programming in a Host or AS/400 Environment 777

Package Attributes
A package has the following attributes:

Collection ID
The ID of the package. It can be specified on the PREP command.

Owner
The authorization ID of the package owner. It can be specified on the
PREP or BIND command.

Creator
The user name that binds the package.

Qualifier
The implicit qualifier for objects in the package. It can be specified on
the PREP or BIND command.

Each host or AS/400 server system has limitations on the use of these
attributes:

DB2 Universal Database for OS/390
All four attributes can be different. The use of a different qualifier
requires special administrative privileges. For more information on the
conditions concerning the usage of these attributes, refer to the
Command Reference for DB2 Universal Database for OS/390.

DB2 for VSE & VM
All of the attributes must be identical. If USER1 creates a bind file
(with PREP), and USER2 performs the actual bind, USER2 needs DBA
authority to bind for USER1. Only USER1’s user name is used for the
attributes.

DB2 Universal Database for AS/400
The qualifier indicates the collection name. The relationship between
qualifiers and ownership affects the granting and revoking of
privileges on the object. The user name that is logged on is the creator
and owner unless it is qualified by a collection ID, in which case the
collection ID is the owner. The collection ID must already exist before
it is used as a qualifier.

DB2 Universal Database
All four attributes can be different. The use of a different owner
requires administrative authority and the binder must have
CREATEIN privilege on the schema (if it already exists).

Note: DB2 Connect provides support for the SET CURRENT PACKAGESET
command for DB2 Universal Database for OS/390 and DB2 Universal
Database.

778 Application Development Guide

C Null-terminated Strings
The CNULREQD bind option overrides the handling of null-terminated
strings that are specified using the LANGLEVEL option.

See “Null-terminated Strings in C and C++” on page 604 for a description of
how null-terminated strings are handled when prepared with the
LANGLEVEL option set to MIA or SAA1.

By default, CNULREQD is set to YES. This causes null-terminated strings to
be interpreted according to MIA standards. If connecting to a DB2 Universal
Database for OS/390 server it is strongly recommended to set CNULREQD to
YES. You need to bind applications coded to SAA1 standards (with respect to
null-terminated strings) with the CNULREQD option set to NO. Otherwise,
null-terminated strings will be interpreted according to MIA standards, even if
they are prepared using LANGLEVEL set to SAA1.

Standalone SQLCODE and SQLSTATE
Standalone SQLCODE and SQLSTATE variables, as defined in ISO/ANS
SQL92, are supported through the LANGLEVEL SQL92E precompile option.
An SQL0020W warning will be issued at precompile time, indicating that
LANGLEVEL is not supported. This warning applies only to the features
listed under LANGLEVEL MIA in the Command Reference, which is a subset of
LANGLEVEL SQL92E.

Defining a Sort Order

The differences between EBCDIC and ASCII cause differences in sort orders in
the various database products, and also affect ORDER BY and GROUP BY
clauses. One way to minimize these differences is to create a user-defined
collating sequence that mimics the EBCDIC sort order. You can specify a
collating sequence only when you create a new database. For more
information, refer to the Administrative API Reference and the Command
Reference.

Note: Database tables can now be stored on DB2 Universal Database for
OS/390 in ASCII format. This permits faster exchange of data between
DB2 Connect and DB2 Universal Database for OS/390, and removes the
need to provide field procedures which must otherwise be used to
convert data and resequence it.

Managing Referential Integrity

Different systems handle referential constraints differently:

Appendix D. Programming in a Host or AS/400 Environment 779

DB2 Universal Database for OS/390
An index must be created on a primary key before a foreign key can
be created using the primary key. Tables can reference themselves.

DB2 for VSE & VM
An index is automatically created for a foreign key. Tables cannot
reference themselves.

DB2 Universal Database for AS/400
An index is automatically created for a foreign key. Tables can
reference themselves.

DB2 Universal Database
For DB2 Universal Database databases, an index is automatically
created for a unique constraint, including a primary key. Tables can
reference themselves.

Other rules vary concerning levels of cascade.

Locking

The way in which the database server performs locking can affect some
applications. For example, applications designed around row-level locking
and the isolation level of cursor stability are not directly portable to systems
that perform page-level locking. Because of these underlying differences,
applications may need to be adjusted.

The DB2 Universal Database for OS/390 and DB2 Universal Database
products have the ability to time-out a lock and send an error return code to
waiting applications.

Differences in SQLCODEs and SQLSTATEs

Different IBM relational database products do not always produce the same
SQLCODEs for similar errors. You can handle this problem in either of two
ways:
v Use the SQLSTATE instead of the SQLCODE for a particular error.

SQLSTATEs have approximately the same meaning across the database
products, and the products produce SQLSTATEs that correspond to the
SQLCODEs.

v Map the SQLCODEs from one system to another system.
By default, DB2 Connect maps SQLCODEs and tokens from each IBM host
or AS/400 server system to your DB2 Universal Database system. You can
specify your own SQLCODE mapping file if you want to override the

780 Application Development Guide

default mapping or you are using a database server that does not have
SQLCODE mapping (a non-IBM database server). You can also turn off
SQLCODE mapping.
For more information, refer to the DB2 Connect User’s Guide.

Using System Catalogs

The system catalogs vary across the IBM database products. Many differences
can be masked by the use of views. For information, see the documentation
for the database server that you are using.

The catalog functions in CLI get around this problem by presenting support of
the same API and result sets for catalog queries across the DB2 family.

Numeric Conversion Overflows on Retrieval Assignments

Numeric conversion overflows on retrieval assignments may be handled
differently by different IBM relational database products. For example,
consider fetching a float column into an integer host variable from DB2
Universal Database for OS/390 and from DB2 Universal Database. When
converting the float value to an integer value, a conversion overflow may
occur. By default, DB2 Universal Database for OS/390 will return a warning
SQLCODE and a null value to the application. In contrast, DB2 Universal
Database will return a conversion overflow error. It is recommended that
applications avoid numeric conversion overflows on retrieval assignments by
fetching into appropriately sized host variables.

Isolation Levels

DB2 Connect accepts the following isolation levels when you prep or bind an
application:

RR Repeatable Read

RS Read Stability

CS Cursor Stability

UR Uncommitted Read

NC No Commit

The isolation levels are listed in order from most protection to least protection.
If the host or AS/400 server does not support the isolation level that you
specify, the next higher supported level is used.

Table 55 on page 782 shows the result of each isolation level on each host or
AS/400 application server.

Appendix D. Programming in a Host or AS/400 Environment 781

Table 55. Isolation Levels

DB2 Connect DB2 Universal
Database for
OS/390

DB2 for VSE &
VM

DB2 Universal
Database for
AS/400

DB2 Universal
Database

RR RR RR note 1 RR

RS note 2 RR COMMIT(*ALL) RS

CS CS CS COMMIT(*CS) CS

UR note 3 CS COMMIT(*CHG) UR

NC note 4 note 5 COMMIT(*NONE) UR

Notes:

1. There is no equivalent COMMIT option on DB2 Universal Database for AS/400 that matches
RR. DB2 Universal Database for AS/400 supports RR by locking the whole table.

2. Results in RR for Version 3.1, and results in RS for Version 4.1 with APAR PN75407 or Version
5.1.

3. Results in CS for Version 3.1, and results in UR for Version 4.1 or Version 5.1.

4. Results in CS for Version 3.1, and results in UR for Version 4.1 with APAR PN60988 or Version
5.1.

5. Isolation level NC is not supported with DB2 for VSE & VM.

With DB2 Universal Database for AS/400, you can access an unjournalled
table if an application is bound with an isolation level of UR and blocking set
to ALL, or if the isolation level is set to NC.

Stored Procedures

v Invocation
A client program can invoke a server program by issuing an SQL CALL
statement. Each server works a little differently to the other servers in this
case.

OS/390
The schema name must be no more than 8 bytes long, the
procedure name must be no more than 18 bytes long, and the
stored procedure must be defined in the SYSIBM.SYSPROCEDURES
catalog on the server.

VSE or VM
The procedure name must not be more than 18 bytes long and must
be defined in the SYSTEM.SYSROUTINES catalog on the server.

OS/400
The procedure name must be an SQL identifier. You can also use
the DECLARE PROCEDURE or CREATE PROCEDURE statements
to specify the actual path name (the schema-name or
collection-name) to locate the stored procedure.

782 Application Development Guide

All CALL statements to DB2 for AS/400 from REXX/SQL must be
dynamically prepared and executed by the application as the CALL
statement implemented in REXX/SQL maps to CALL USING
DESCRIPTOR.

For the syntax of the SQL CALL statement, refer to the SQL Reference.

You can invoke the server program on DB2 Universal Database with the
same parameter convention that server programs use on DB2 Universal
Database for OS/390, DB2 Universal Database for AS/400, or DB2 for VSE
& VM. For more information on invoking DB2 Universal Database stored
procedures, see “Chapter 7. Stored Procedures” on page 187. For more
information on the parameter convention on other platforms, refer to the
DB2 product documentation for that platform.

All the SQL statements in a stored procedure are executed as part of the
SQL unit of work started by the client SQL program.

v Do not pass indicator values with special meaning to or from stored
procedures.
Between DB2 Universal Database, the systems pass whatever you put into
the indicator variables. However, when using DB2 Connect, you can only
pass 0, -1, and -128 in the indicator variables.

v You should define a parameter to return any errors or warning encountered
by the server application.
A server program on DB2 Universal Database can update the SQLCA to
return any error or warning, but a stored procedure on DB2 Universal
Database for OS/390 or DB2 Universal Database for AS/400 has no such
support. If you want to return an error code from your stored procedure,
you must pass it as a parameter. The SQLCODE and SQLCA is only set by
the server for system detected errors.

v DB2 for VSE & VM Version 7 or higher and DB2 Universal Database for
OS/390 Version 5.1 or higher are the only host or AS/400 Application
Servers that can return the result sets of stored procedures at this time.

Stored Procedure Builder
DB2 Stored Procedure Builder provides an easy-to-use development
environment for creating, installing, and testing stored procedures. It allows
you to focus on creating your stored procedure logic rather than the details of
registering, building, and installing stored procedures on a DB2 server.
Additionally, with Stored Procedure Builder, you can develop stored
procedures on one operating system and build them on other server operating
systems.

Appendix D. Programming in a Host or AS/400 Environment 783

Stored Procedure Builder is a graphical application that supports rapid
development. Using Stored Procedure Builder, you can perform the following
tasks:
v Create new stored procedures.
v Build stored procedures on local and remote DB2 servers.
v Modify and rebuild existing stored procedures.
v Test and debug the execution of installed stored procedures.

You can launch Stored Procedure Builder as a separate application from the
DB2 Universal Database program group, or you can launch Stored Procedure
Builder from any of the following development applications:
v Microsoft Visual Studio
v Microsoft Visual Basic
v IBM VisualAge for Java

You can also launch Stored Procedure Builder from Control Center for DB2 for
OS/390. You can start Stored Procedure Builder as a separate process from the
Control Center Tools menu, toolbar, or Stored Procedures folder. In addition,
from the Stored Procedure Builder Project window, you can export one or
more selected SQL stored procedures built to a DB2 for OS/390 server to a
specified file capable of running within the Command Line Processor (CLP).

Stored Procedure Builder manages your work by using projects. Each Stored
Procedure Builder project saves your connections to specific databases, such as
DB2 for OS/390 servers. In addition, you can create filters to display subsets
of the stored procedures on each database. When opening a new or existing
Stored Procedure Builder project, you can filter stored procedures so that you
view stored procedures based on their name, schema, language, or collection
ID (for OS/390 only).

Connection information is saved in a Stored Procedure Builder project;
therefore, when you open an existing project, you are automatically prompted
to enter your user id and password for the database. Using the Inserting SQL
Stored Procedure wizard, you can build SQL stored procedures on a DB2 for
OS/390 server. For a SQL stored procedure built to a DB2 for OS/390 server,
you can set specific compile, pre-link, link, bind, runtime, WLM environment,
and external security options.

Additionally, you can obtain SQL costing information about the SQL stored
procedure, including information about CPU time and other DB2 costing
information for the thread on which the SQL stored procedure is running. In
particular, you can obtain costing information about latch/lock contention
wait time, the number of getpages, the number of read I/Os, and the number
of write I/Os.

784 Application Development Guide

To obtain costing information, Stored Procedure Builder connects to a DB2 for
OS/390 server, executes the SQL statement, and calls a stored procedure
(DSNWSPM) to find out how much CPU time the SQL stored procedure used.

NOT ATOMIC Compound SQL

Compound SQL allows multiple SQL statements to be grouped into a single
executable block. This may reduce network overhead and improve response
time.

DB2 Connect supports NOT ATOMIC compound SQL. This means that
processing of compound SQL continues following an error. (With ATOMIC
compound SQL, which is not supported by DB2 Connect, an error would roll
back the entire group of compound SQL.)

Statements will continue execution until terminated by the application server.
In general, execution of the compound SQL statement will be stopped only in
the case of serious errors.

NOT ATOMIC compound SQL can be used with all of the supported host or
AS/400 application servers.

If multiple SQL errors occur, the SQLSTATEs of the first seven failing
statements are returned in the SQLERRMC field of the SQLCA with a
message that multiple errors occurred. For more information, refer to the SQL
Reference.

Multisite Update with DB2 Connect

DB2 Connect allows you to perform a multisite update, also known as
two-phase commit. A multisite update is an update of multiple databases
within a single distributed unit of work (DUOW). Whether you can use this
capability depends on several factors:
v Your application program must be precompiled with the CONNECT 2 and

SYNCPOINT TWOPHASE options.
v If you have SNA network connections, you can use two-phase commit

support provided by the sync point manager function of DB2 Connect
Enterprise Edition Version 7 on AIX, OS/2, and Windows NT. This enables
the following host database servers to participate in a distributed unit of
work:
– DB2 for AS/400 Version 3.1 or later
– DB2 for MVS/ESA Version 3.1 or later
– DB2 for OS/390 Version 5.1 or later
– DB2 for VM & VSE Version V5.1 or later.

Appendix D. Programming in a Host or AS/400 Environment 785

The above is true for native DB2 UDB applications and applications
coordinated by an external Transaction Processing (TP) Monitor such as
IBM TXSeries, CICS for Open Systems, BEA Tuxedo, Encina Monitor, and
Microsoft Transaction Server.

Note: For more information on BEA Tuxedo, refer to the DB2 Connect User’s
Guide.

v If you have TCP/IP network connections, then a DB2 for OS/390 V5.1 or
later server can participate in a distributed unit of work. If the application
is controlled by a Transaction Processing Monitor such as IBM TXSeries,
CICS for Open Systems, Encina Monitor, or Microsoft Transaction Server,
then you must use the sync point manager.
If a common DB2 Connect Enterprise Edition server is used by both native
DB2 applications and TP monitor applications to access host data over
TCP/IP connections then the sync point manager must be used.
If a single DB2 Connect Enterprise Edition server is used to access host data
using both SNA and TCP/IP network protocols and two phase commit is
required, then the sync point manager must be used. This is true for both
DB2 applications and TP monitor applications.

Host or AS/400 Server SQL Statements Supported by DB2 Connect

The following statements compile successfully for host or AS/400 server
processing but not for processing with DB2 Universal Database systems:
v ACQUIRE
v DECLARE (modifier.(qualifier.)table_name TABLE ...
v LABEL ON

These statements are also supported by the command line processor.

The following statements are supported for host or AS/400 server processing
but are not added to the bind file or the package and are not supported by
the command line processor:
v DESCRIBE statement_name INTO descriptor_name USING NAMES
v PREPARE statement_name INTO descriptor_name USING NAMES

FROM ...

The precompiler makes the following assumptions:
v Host variables are input variables
v The statement is assigned a unique section number.

786 Application Development Guide

Host or AS/400 Server SQL Statements Rejected by DB2 Connect

The following SQL statements are not supported by DB2 Connect and not
supported by the command line processor:
v COMMIT WORK RELEASE
v DECLARE state_name, statement_name STATEMENT
v DESCRIBE statement_name INTO descriptor_name USING xxxx (where

xxxx is ANY, BOTH, or LABELS)
v PREPARE statement_name INTO descriptor_name USING xxxx FROM

:host_variable (where xxxx is ANY, BOTH, or LABELS)
v PUT ...
v ROLLBACK WORK RELEASE
v SET :host_variable = CURRENT ...

DB2 for VSE & VM extended dynamic SQL statements are rejected with -104
and syntax error SQLCODEs.

Appendix D. Programming in a Host or AS/400 Environment 787

788 Application Development Guide

Appendix E. Simulating EBCDIC Binary Collation

With DB2, you can collate character strings according to a user-defined
collating sequence. You can use this feature to simulate EBCDIC binary
collation.

As an example of how to simulate EBCDIC collation, suppose you want to
create an ASCII database with code page 850, but you also want the character
strings to be collated as if the data actually resides in an EBCDIC database
with code page 500. See Figure 26 on page 792 for the definition of code page
500, and Figure 27 on page 793 for the definition of code page 850.

Consider the relative collation of four characters in a EBCDIC code page 500
database, when they are collated in binary:

Character Code Page 500 Code Point
’a’ X'81'
’b’ X'82'
’A’ X'C1'
’B’ X'C2'

The code page 500 binary collation sequence (the desired sequence) is:
'a' < 'b' < 'A' < 'B'

If you create the database with ASCII code page 850, binary collation would
yield:

Character Code Page 850 Code Point
’a’ X'61'
’b’ X'62'
’A’ X'41'
’B’ X'42'

The code page 850 binary collation (which is not the desired sequence) is:
'A' < 'B' < 'a' < 'b'

To achieve the desired collation, you need to create your database with a
user-defined collating sequence. A sample collating sequence for just this
purpose is supplied with DB2 in the sqle850a.h include file. The content of
sqle850a.h is shown in Figure 25 on page 790.

© Copyright IBM Corp. 1993, 2000 789

To see how to achieve code page 500 binary collation on code page 850
characters, examine the sample collating sequence in sqle_850_500. For each
code page 850 character, its weight in the collating sequence is simply its
corresponding code point in code page 500.

For example, consider the letter ‘a’. This letter is code point X'61' for code
page 850 as shown in Figure 27 on page 793. In the array sqle_850_500, letter
‘a’ is assigned a weight of X'81' (that is, the 98th element in the array
sqle_850_500).

Consider how the four characters collate when the database is created with
the above sample user-defined collating sequence:

Character Code Page 850 Code Point / Weight (from sqle_850_500)
’a’ X'61' / X'81'
’b’ X'62' / X'82'
’A’ X'41' / X'C1'
’B’ X'42' / X'C2'

#ifndef SQL_H_SQLE850A
#define SQL_H_SQLE850A

#ifdef __cplusplus
extern "C" {
#endif

unsigned char sqle_850_500[256] = {
0x00,0x01,0x02,0x03,0x37,0x2d,0x2e,0x2f,0x16,0x05,0x25,0x0b,0x0c,0x0d,0x0e,0x0f,
0x10,0x11,0x12,0x13,0x3c,0x3d,0x32,0x26,0x18,0x19,0x3f,0x27,0x1c,0x1d,0x1e,0x1f,
0x40,0x4f,0x7f,0x7b,0x5b,0x6c,0x50,0x7d,0x4d,0x5d,0x5c,0x4e,0x6b,0x60,0x4b,0x61,
0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0x7a,0x5e,0x4c,0x7e,0x6e,0x6f,
0x7c,�0xc1�,�0xc2�,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6,
0xd7,0xd8,0xd9,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0x4a,0xe0,0x5a,0x5f,0x6d,
0x79,�0x81�,�0x82�,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x91,0x92,0x93,0x94,0x95,0x96,
0x97,0x98,0x99,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xc0,0xbb,0xd0,0xa1,0x07,
0x68,0xdc,0x51,0x42,0x43,0x44,0x47,0x48,0x52,0x53,0x54,0x57,0x56,0x58,0x63,0x67,
0x71,0x9c,0x9e,0xcb,0xcc,0xcd,0xdb,0xdd,0xdf,0xec,0xfc,0x70,0xb1,0x80,0xbf,0xff,
0x45,0x55,0xce,0xde,0x49,0x69,0x9a,0x9b,0xab,0xaf,0xba,0xb8,0xb7,0xaa,0x8a,0x8b,
0x2b,0x2c,0x09,0x21,0x28,0x65,0x62,0x64,0xb4,0x38,0x31,0x34,0x33,0xb0,0xb2,0x24,
0x22,0x17,0x29,0x06,0x20,0x2a,0x46,0x66,0x1a,0x35,0x08,0x39,0x36,0x30,0x3a,0x9f,
0x8c,0xac,0x72,0x73,0x74,0x0a,0x75,0x76,0x77,0x23,0x15,0x14,0x04,0x6a,0x78,0x3b,
0xee,0x59,0xeb,0xed,0xcf,0xef,0xa0,0x8e,0xae,0xfe,0xfb,0xfd,0x8d,0xad,0xbc,0xbe,
0xca,0x8f,0x1b,0xb9,0xb6,0xb5,0xe1,0x9d,0x90,0xbd,0xb3,0xda,0xfa,0xea,0x3e,0x41
};
#ifdef __cplusplus
}
#endif

#endif /* SQL_H_SQLE850A */

Figure 25. User-Defined Collating Sequence - sqle_850_500

790 Application Development Guide

The code page 850 user-defined collation by weight (the desired collation) is:
'a' < 'b' < 'A' < 'B'

In this example, you achieve the desired collation by specifying the correct
weights to simulate the desired behavior.

Closely observing the actual collating sequence, notice that the sequence itself
is merely a conversion table, where the source code page is the code page of
the data base (850) and the target code page is the desired binary collating
code page (500). Other sample collating sequences supplied by DB2 enable
different conversions. If a conversion table that you require is not supplied
with DB2, additional conversion tables can be obtained from the IBM
publication, Character Data Representation Architecture, Reference and Registry,
SC09-2190. You will find the additional conversion tables in a CD-ROM
enclosed with this publication.

For more details on collating sequences, see “Collating Sequence Overview”
on page 494. Also see the CREATE DATABASE API described in the
Administrative API Reference for a description of the collating sequences
supplied with DB2, and for the listing of a sample program (db_udcs.c) that
demonstrates how to create a database with a user-defined collating sequence.

Appendix E. Simulating EBCDIC Binary Collation 791

Figure 26. Code Page 500

792 Application Development Guide

Figure 27. Code Page 850

Appendix E. Simulating EBCDIC Binary Collation 793

794 Application Development Guide

Appendix F. Using the DB2 Library

The DB2 Universal Database library consists of online help, books (PDF and
HTML), and sample programs in HTML format. This section describes the
information that is provided, and how you can access it.

To access product information online, you can use the Information Center. For
more information, see “Accessing Information with the Information Center”
on page 809. You can view task information, DB2 books, troubleshooting
information, sample programs, and DB2 information on the Web.

DB2 PDF Files and Printed Books

DB2 Information
The following table divides the DB2 books into four categories:

DB2 Guide and Reference Information
These books contain the common DB2 information for all platforms.

DB2 Installation and Configuration Information
These books are for DB2 on a specific platform. For example, there are
separate Quick Beginnings books for DB2 on OS/2, Windows, and
UNIX-based platforms.

Cross-platform sample programs in HTML
These samples are the HTML version of the sample programs that are
installed with the Application Development Client. The samples are
for informational purposes and do not replace the actual programs.

Release notes
These files contain late-breaking information that could not be
included in the DB2 books.

The installation manuals, release notes, and tutorials are viewable in HTML
directly from the product CD-ROM. Most books are available in HTML on the
product CD-ROM for viewing and in Adobe Acrobat (PDF) format on the DB2
publications CD-ROM for viewing and printing. You can also order a printed
copy from IBM; see “Ordering the Printed Books” on page 805. The following
table lists books that can be ordered.

On OS/2 and Windows platforms, you can install the HTML files under the
sqllib\doc\html directory. DB2 information is translated into different

© Copyright IBM Corp. 1993, 2000 795

languages; however, all the information is not translated into every language.
Whenever information is not available in a specific language, the English
information is provided

On UNIX platforms, you can install multiple language versions of the HTML
files under the doc/%L/html directories, where %L represents the locale. For
more information, refer to the appropriate Quick Beginnings book.

You can obtain DB2 books and access information in a variety of ways:
v “Viewing Information Online” on page 808
v “Searching Information Online” on page 812
v “Ordering the Printed Books” on page 805
v “Printing the PDF Books” on page 804

Table 56. DB2 Information

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Guide and Reference Information

Administration Guide Administration Guide: Planning provides
an overview of database concepts,
information about design issues (such as
logical and physical database design),
and a discussion of high availability.

Administration Guide: Implementation
provides information on implementation
issues such as implementing your
design, accessing databases, auditing,
backup and recovery.

Administration Guide: Performance
provides information on database
environment and application
performance evaluation and tuning.

You can order the three volumes of the
Administration Guide in the English
language in North America using the
form number SBOF-8934.

SC09-2946
db2d1x70

SC09-2944
db2d2x70

SC09-2945
db2d3x70

db2d0

Administrative API
Reference

Describes the DB2 application
programming interfaces (APIs) and data
structures that you can use to manage
your databases. This book also explains
how to call APIs from your applications.

SC09-2947

db2b0x70

db2b0

796 Application Development Guide

Table 56. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Application Building
Guide

Provides environment setup information
and step-by-step instructions about how
to compile, link, and run DB2
applications on Windows, OS/2, and
UNIX-based platforms.

SC09-2948

db2axx70

db2ax

APPC, CPI-C, and SNA
Sense Codes

Provides general information about
APPC, CPI-C, and SNA sense codes that
you may encounter when using DB2
Universal Database products.

Available in HTML format only.

No form number

db2apx70

db2ap

Application Development
Guide

Explains how to develop applications
that access DB2 databases using
embedded SQL or Java (JDBC and
SQLJ). Discussion topics include writing
stored procedures, writing user-defined
functions, creating user-defined types,
using triggers, and developing
applications in partitioned environments
or with federated systems.

SC09-2949

db2a0x70

db2a0

CLI Guide and Reference Explains how to develop applications
that access DB2 databases using the DB2
Call Level Interface, a callable SQL
interface that is compatible with the
Microsoft ODBC specification.

SC09-2950

db2l0x70

db2l0

Command Reference Explains how to use the Command Line
Processor and describes the DB2
commands that you can use to manage
your database.

SC09-2951

db2n0x70

db2n0

Connectivity Supplement Provides setup and reference information
on how to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as
DRDA application requesters with DB2
Universal Database servers. This book
also details how to use DRDA
application servers with DB2 Connect
application requesters.

Available in HTML and PDF only.

No form number

db2h1x70

db2h1

Appendix F. Using the DB2 Library 797

Table 56. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Data Movement Utilities
Guide and Reference

Explains how to use DB2 utilities, such
as import, export, load, AutoLoader, and
DPROP, that facilitate the movement of
data.

SC09-2955

db2dmx70

db2dm

Data Warehouse Center
Administration Guide

Provides information on how to build
and maintain a data warehouse using
the Data Warehouse Center.

SC26-9993

db2ddx70

db2dd

Data Warehouse Center
Application Integration
Guide

Provides information to help
programmers integrate applications with
the Data Warehouse Center and with the
Information Catalog Manager.

SC26-9994

db2adx70

db2ad

DB2 Connect User’s Guide Provides concepts, programming, and
general usage information for the DB2
Connect products.

SC09-2954

db2c0x70

db2c0

DB2 Query Patroller
Administration Guide

Provides an operational overview of the
DB2 Query Patroller system, specific
operational and administrative
information, and task information for the
administrative graphical user interface
utilities.

SC09-2958

db2dwx70

db2dw

DB2 Query Patroller
User’s Guide

Describes how to use the tools and
functions of the DB2 Query Patroller.

SC09-2960

db2wwx70

db2ww

Glossary Provides definitions for terms used in
DB2 and its components.

Available in HTML format and in the
SQL Reference.

No form number

db2t0x70

db2t0

Image, Audio, and Video
Extenders Administration
and Programming

Provides general information about DB2
extenders, and information on the
administration and configuration of the
image, audio, and video (IAV) extenders
and on programming using the IAV
extenders. It includes reference
information, diagnostic information
(with messages), and samples.

SC26-9929

dmbu7x70

dmbu7

Information Catalog
Manager Administration
Guide

Provides guidance on managing
information catalogs.

SC26-9995

db2dix70

db2di

798 Application Development Guide

Table 56. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Information Catalog
Manager Programming
Guide and Reference

Provides definitions for the architected
interfaces for the Information Catalog
Manager.

SC26-9997

db2bix70

db2bi

Information Catalog
Manager User’s Guide

Provides information on using the
Information Catalog Manager user
interface.

SC26-9996

db2aix70

db2ai

Installation and
Configuration Supplement

Guides you through the planning,
installation, and setup of
platform-specific DB2 clients. This
supplement also contains information on
binding, setting up client and server
communications, DB2 GUI tools, DRDA
AS, distributed installation, the
configuration of distributed requests,
and accessing heterogeneous data
sources.

GC09-2957

db2iyx70

db2iy

Message Reference Lists messages and codes issued by DB2,
the Information Catalog Manager, and
the Data Warehouse Center, and
describes the actions you should take.

You can order both volumes of the
Message Reference in the English
language in North America with the
form number SBOF-8932.

Volume 1
GC09-2978

db2m1x70
Volume 2
GC09-2979

db2m2x70

db2m0

OLAP Integration Server
Administration Guide

Explains how to use the Administration
Manager component of the OLAP
Integration Server.

SC27-0787

db2dpx70

n/a

OLAP Integration Server
Metaoutline User’s Guide

Explains how to create and populate
OLAP metaoutlines using the standard
OLAP Metaoutline interface (not by
using the Metaoutline Assistant).

SC27-0784

db2upx70

n/a

OLAP Integration Server
Model User’s Guide

Explains how to create OLAP models
using the standard OLAP Model
Interface (not by using the Model
Assistant).

SC27-0783

db2lpx70

n/a

OLAP Setup and User’s
Guide

Provides configuration and setup
information for the OLAP Starter Kit.

SC27-0702

db2ipx70

db2ip

OLAP Spreadsheet Add-in
User’s Guide for Excel

Describes how to use the Excel
spreadsheet program to analyze OLAP
data.

SC27-0786

db2epx70

db2ep

Appendix F. Using the DB2 Library 799

Table 56. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

OLAP Spreadsheet Add-in
User’s Guide for Lotus
1-2-3

Describes how to use the Lotus 1-2-3
spreadsheet program to analyze OLAP
data.

SC27-0785

db2tpx70

db2tp

Replication Guide and
Reference

Provides planning, configuration,
administration, and usage information
for the IBM Replication tools supplied
with DB2.

SC26-9920

db2e0x70

db2e0

Spatial Extender User’s
Guide and Reference

Provides information about installing,
configuring, administering,
programming, and troubleshooting the
Spatial Extender. Also provides
significant descriptions of spatial data
concepts and provides reference
information (messages and SQL) specific
to the Spatial Extender.

SC27-0701

db2sbx70

db2sb

SQL Getting Started Introduces SQL concepts and provides
examples for many constructs and tasks.

SC09-2973

db2y0x70

db2y0

SQL Reference, Volume 1
and Volume 2

Describes SQL syntax, semantics, and the
rules of the language. This book also
includes information about
release-to-release incompatibilities,
product limits, and catalog views.

You can order both volumes of the SQL
Reference in the English language in
North America with the form number
SBOF-8933.

Volume 1
SC09-2974

db2s1x70

Volume 2
SC09-2975

db2s2x70

db2s0

System Monitor Guide and
Reference

Describes how to collect different kinds
of information about databases and the
database manager. This book explains
how to use the information to
understand database activity, improve
performance, and determine the cause of
problems.

SC09-2956

db2f0x70

db2f0

Text Extender
Administration and
Programming

Provides general information about DB2
extenders and information on the
administration and configuring of the
text extender and on programming using
the text extenders. It includes reference
information, diagnostic information
(with messages) and samples.

SC26-9930

desu9x70

desu9

800 Application Development Guide

Table 56. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Troubleshooting Guide Helps you determine the source of
errors, recover from problems, and use
diagnostic tools in consultation with DB2
Customer Service.

GC09-2850

db2p0x70

db2p0

What’s New Describes the new features, functions,
and enhancements in DB2 Universal
Database, Version 7.

SC09-2976

db2q0x70

db2q0

DB2 Installation and Configuration Information

DB2 Connect Enterprise
Edition for OS/2 and
Windows Quick
Beginnings

Provides planning, migration,
installation, and configuration
information for DB2 Connect Enterprise
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2953

db2c6x70

db2c6

DB2 Connect Enterprise
Edition for UNIX Quick
Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Enterprise
Edition on UNIX-based platforms. This
book also contains installation and setup
information for many supported clients.

GC09-2952

db2cyx70

db2cy

DB2 Connect Personal
Edition Quick Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Personal
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for all supported clients.

GC09-2967

db2c1x70

db2c1

DB2 Connect Personal
Edition Quick Beginnings
for Linux

Provides planning, installation,
migration, and configuration information
for DB2 Connect Personal Edition on all
supported Linux distributions.

GC09-2962

db2c4x70

db2c4

DB2 Data Links Manager
Quick Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for AIX and
Windows 32-bit operating systems.

GC09-2966

db2z6x70

db2z6

Appendix F. Using the DB2 Library 801

Table 56. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Enterprise - Extended
Edition for UNIX Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2964

db2v3x70

db2v3

DB2 Enterprise - Extended
Edition for Windows Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for
Windows 32-bit operating systems. This
book also contains installation and setup
information for many supported clients.

GC09-2963

db2v6x70

db2v6

DB2 for OS/2 Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the OS/2
operating system. This book also
contains installation and setup
information for many supported clients.

GC09-2968

db2i2x70

db2i2

DB2 for UNIX Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2970

db2ixx70

db2ix

DB2 for Windows Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on Windows
32-bit operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2971

db2i6x70

db2i6

DB2 Personal Edition
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on the OS/2 and Windows 32-bit
operating systems.

GC09-2969

db2i1x70

db2i1

DB2 Personal Edition
Quick Beginnings for
Linux

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on all supported Linux
distributions.

GC09-2972

db2i4x70

db2i4

802 Application Development Guide

Table 56. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Query Patroller
Installation Guide

Provides installation information about
DB2 Query Patroller.

GC09-2959

db2iwx70

db2iw

DB2 Warehouse Manager
Installation Guide

Provides installation information for
warehouse agents, warehouse
transformers, and the Information
Catalog Manager.

GC26-9998

db2idx70

db2id

Cross-Platform Sample Programs in HTML

Sample programs in
HTML

Provides the sample programs in HTML
format for the programming languages
on all platforms supported by DB2. The
sample programs are provided for
informational purposes only. Not all
samples are available in all
programming languages. The HTML
samples are only available when the DB2
Application Development Client is
installed.

For more information on the programs,
refer to the Application Building Guide.

No form number db2hs

Release Notes

DB2 Connect Release
Notes

Provides late-breaking information that
could not be included in the DB2
Connect books.

See note #2. db2cr

DB2 Installation Notes Provides late-breaking
installation-specific information that
could not be included in the DB2 books.

Available on
product
CD-ROM only.

DB2 Release Notes Provides late-breaking information about
all DB2 products and features that could
not be included in the DB2 books.

See note #2. db2ir

Notes:

1. The character x in the sixth position of the file name indicates the
language version of a book. For example, the file name db2d0e70 identifies
the English version of the Administration Guide and the file name db2d0f70
identifies the French version of the same book. The following letters are
used in the sixth position of the file name to indicate the language version:

Language Identifier
Brazilian Portuguese b

Appendix F. Using the DB2 Library 803

Bulgarian u
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Russian r
Simp. Chinese c
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

2. Late breaking information that could not be included in the DB2 books is
available in the Release Notes in HTML format and as an ASCII file. The
HTML version is available from the Information Center and on the
product CD-ROMs. To view the ASCII file:
v On UNIX-based platforms, see the Release.Notes file. This file is located

in the DB2DIR/Readme/%L directory, where %L represents the locale
name and DB2DIR represents:
– /usr/lpp/db2_07_01 on AIX
– /opt/IBMdb2/V7.1 on HP-UX, PTX, Solaris, and Silicon Graphics

IRIX
– /usr/IBMdb2/V7.1 on Linux.

v On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed. On OS/2 platforms, you can
also double-click the IBM DB2 folder and then double-click the Release
Notes icon.

Printing the PDF Books
If you prefer to have printed copies of the books, you can print the PDF files
found on the DB2 publications CD-ROM. Using the Adobe Acrobat Reader,
you can print either the entire book or a specific range of pages. For the file
name of each book in the library, see Table 56 on page 796.

804 Application Development Guide

You can obtain the latest version of the Adobe Acrobat Reader from the
Adobe Web site at http://www.adobe.com.

The PDF files are included on the DB2 publications CD-ROM with a file
extension of PDF. To access the PDF files:
1. Insert the DB2 publications CD-ROM. On UNIX-based platforms, mount

the DB2 publications CD-ROM. Refer to your Quick Beginnings book for
the mounting procedures.

2. Start the Acrobat Reader.
3. Open the desired PDF file from one of the following locations:

v On OS/2 and Windows platforms:
x:\doc\language directory, where x represents the CD-ROM drive and
language represent the two-character country code that represents your
language (for example, EN for English).

v On UNIX-based platforms:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

You can also copy the PDF files from the CD-ROM to a local or network drive
and read them from there.

Ordering the Printed Books

You can order the printed DB2 books either individually or as a set (in North
America only) by using a sold bill of forms (SBOF) number. To order books,
contact your IBM authorized dealer or marketing representative, or phone
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada. You can
also order the books from the Publications Web page at
http://www.elink.ibmlink.ibm.com/pbl/pbl.

Two sets of books are available. SBOF-8935 provides reference and usage
information for the DB2 Warehouse Manager. SBOF-8931 provides reference
and usage information for all other DB2 Universal Database products and
features. The contents of each SBOF are listed in the following table:

Appendix F. Using the DB2 Library 805

Table 57. Ordering the printed books

SBOF Number Books Included

SBOF-8931 v Administration Guide: Planning

v Administration Guide: Implementation

v Administration Guide: Performance

v Administrative API Reference

v Application Building Guide

v Application Development Guide

v CLI Guide and Reference

v Command Reference

v Data Movement Utilities Guide and
Reference

v Data Warehouse Center Administration
Guide

v Data Warehouse Center Application
Integration Guide

v DB2 Connect User’s Guide

v Installation and Configuration
Supplement

v Image, Audio, and Video Extenders
Administration and Programming

v Message Reference, Volumes 1 and 2

v OLAP Integration Server
Administration Guide

v OLAP Integration Server Metaoutline
User’s Guide

v OLAP Integration Server Model User’s
Guide

v OLAP Integration Server User’s Guide

v OLAP Setup and User’s Guide

v OLAP Spreadsheet Add-in User’s
Guide for Excel

v OLAP Spreadsheet Add-in User’s
Guide for Lotus 1-2-3

v Replication Guide and Reference

v Spatial Extender Administration and
Programming Guide

v SQL Getting Started

v SQL Reference, Volumes 1 and 2

v System Monitor Guide and Reference

v Text Extender Administration and
Programming

v Troubleshooting Guide

v What’s New

SBOF-8935 v Information Catalog Manager
Administration Guide

v Information Catalog Manager User’s
Guide

v Information Catalog Manager
Programming Guide and Reference

v Query Patroller Administration Guide

v Query Patroller User’s Guide

DB2 Online Documentation

Accessing Online Help
Online help is available with all DB2 components. The following table
describes the various types of help.

806 Application Development Guide

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive
mode, enter:

? command

where command represents a keyword or the entire
command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE
command.

Client Configuration
Assistant Help

Command Center Help

Control Center Help

Data Warehouse Center
Help

Event Analyzer Help

Information Catalog
Manager Help

Satellite Administration
Center Help

Script Center Help

Explains the tasks you can
perform in a window or
notebook. The help includes
overview and prerequisite
information you need to
know, and it describes how
to use the window or
notebook controls.

From a window or notebook, click the Help push
button or press the F1 key.

Message Help Describes the cause of a
message and any action you
should take.

From the command line processor in interactive
mode, enter:

? XXXnnnnn

where XXXnnnnn represents a valid message
identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext represents the file where you
want to save the message help.

Appendix F. Using the DB2 Library 807

Type of Help Contents How to Access...

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive
mode, enter:

help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the
SELECT statement.
Note: SQL help is not available on UNIX-based
platforms.

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive
mode, enter:

? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL
state and class code represents the first two digits
of the SQL state.

For example, ? 08003 displays help for the 08003
SQL state, while ? 08 displays help for the 08 class
code.

Viewing Information Online
The books included with this product are in Hypertext Markup Language
(HTML) softcopy format. Softcopy format enables you to search or browse the
information and provides hypertext links to related information. It also makes
it easier to share the library across your site.

You can view the online books or sample programs with any browser that
conforms to HTML Version 3.2 specifications.

To view online books or sample programs:
v If you are running DB2 administration tools, use the Information Center.
v From a browser, click File —>Open Page. The page you open contains

descriptions of and links to DB2 information:
– On UNIX-based platforms, open the following page:

INSTHOME/sqllib/doc/%L/html/index.htm

where %L represents the locale name.
– On other platforms, open the following page:

sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

808 Application Development Guide

If you have not installed the Information Center, you can open the page
by double-clicking the DB2 Information icon. Depending on the system
you are using, the icon is in the main product folder or the Windows
Start menu.

Installing the Netscape Browser
If you do not already have a Web browser installed, you can install Netscape
from the Netscape CD-ROM found in the product boxes. For detailed
instructions on how to install it, perform the following:
1. Insert the Netscape CD-ROM.
2. On UNIX-based platforms only, mount the CD-ROM. Refer to your Quick

Beginnings book for the mounting procedures.
3. For installation instructions, refer to the CDNAVnn.txt file, where nn

represents your two character language identifier. The file is located at the
root directory of the CD-ROM.

Accessing Information with the Information Center
The Information Center provides quick access to DB2 product information.
The Information Center is available on all platforms on which the DB2
administration tools are available.

You can open the Information Center by double-clicking the Information
Center icon. Depending on the system you are using, the icon is in the
Information folder in the main product folder or the Windows Start menu.

You can also access the Information Center by using the toolbar and the Help
menu on the DB2 Windows platform.

The Information Center provides six types of information. Click the
appropriate tab to look at the topics provided for that type.

Tasks Key tasks you can perform using DB2.

Reference DB2 reference information, such as keywords, commands, and
APIs.

Books DB2 books.

Troubleshooting
Categories of error messages and their recovery actions.

Sample Programs
Sample programs that come with the DB2 Application
Development Client. If you did not install the DB2
Application Development Client, this tab is not displayed.

Web DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from
your system.

Appendix F. Using the DB2 Library 809

When you select an item in one of the lists, the Information Center launches a
viewer to display the information. The viewer might be the system help
viewer, an editor, or a Web browser, depending on the kind of information
you select.

The Information Center provides a find feature, so you can look for a specific
topic without browsing the lists.

For a full text search, follow the hypertext link in the Information Center to
the Search DB2 Online Information search form.

The HTML search server is usually started automatically. If a search in the
HTML information does not work, you may have to start the search server
using one of the following methods:

On Windows
Click Start and select Programs —> IBM DB2 —> Information —>
Start HTML Search Server.

On OS/2
Double-click the DB2 for OS/2 folder, and then double-click the Start
HTML Search Server icon.

Refer to the release notes if you experience any other problems when
searching the HTML information.

Note: The Search function is not available in the Linux, PTX, and Silicon
Graphics IRIX environments.

Using DB2 Wizards
Wizards help you complete specific administration tasks by taking you
through each task one step at a time. Wizards are available through the
Control Center and the Client Configuration Assistant. The following table
lists the wizards and describes their purpose.

Note: The Create Database, Create Index, Configure Multisite Update, and
Performance Configuration wizards are available for the partitioned
database environment.

Wizard Helps You to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click Add.

Backup Database Determine, create, and schedule a backup
plan.

From the Control Center, right-click
the database you want to back up
and select Backup —> Database
Using Wizard.

810 Application Development Guide

Wizard Helps You to... How to Access...

Configure Multisite
Update

Configure a multisite update, a distributed
transaction, or a two-phase commit.

From the Control Center, right-click
the Databases folder and select
Multisite Update.

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, right-click
the Databases folder and select
Create —> Database Using
Wizard.

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, right-click
the Tables icon and select Create
—> Table Using Wizard.

Create Table Space Create a new table space. From the Control Center, right-click
the Table Spaces icon and select
Create —> Table Space Using
Wizard.

Create Index Advise which indexes to create and drop for
all your queries.

From the Control Center, right-click
the Index icon and select Create
—> Index Using Wizard.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match
your business requirements.

From the Control Center, right-click
the database you want to tune and
select Configure Performance
Using Wizard.

For the partitioned database
environment, from the Database
Partitions view, right-click the first
database partition you want to
tune and select Configure
Performance Using Wizard.

Restore Database Recover a database after a failure. It helps
you understand which backup to use, and
which logs to replay.

From the Control Center, right-click
the database you want to restore
and select Restore —> Database
Using Wizard.

Setting Up a Document Server
By default, the DB2 information is installed on your local system. This means
that each person who needs access to the DB2 information must install the
same files. To have the DB2 information stored in a single location, perform
the following steps:
1. Copy all files and subdirectories from \sqllib\doc\html on your local

system to a Web server. Each book has its own subdirectory that contains
all the necessary HTML and GIF files that make up the book. Ensure that
the directory structure remains the same.

Appendix F. Using the DB2 Library 811

2. Configure the Web server to look for the files in the new location. For
information, refer to the NetQuestion Appendix in the Installation and
Configuration Supplement.

3. If you are using the Java version of the Information Center, you can
specify a base URL for all HTML files. You should use the URL for the list
of books.

4. When you are able to view the book files, you can bookmark commonly
viewed topics. You will probably want to bookmark the following pages:
v List of books
v Tables of contents of frequently used books
v Frequently referenced articles, such as the ALTER TABLE topic
v The Search form

For information about how you can serve the DB2 Universal Database online
documentation files from a central machine, refer to the NetQuestion
Appendix in the Installation and Configuration Supplement.

Searching Information Online
To find information in the HTML files, use one of the following methods:
v Click Search in the top frame. Use the search form to find a specific topic.

This function is not available in the Linux, PTX, or Silicon Graphics IRIX
environments.

v Click Index in the top frame. Use the index to find a specific topic in the
book.

v Display the table of contents or index of the help or the HTML book, and
then use the find function of the Web browser to find a specific topic in the
book.

v Use the bookmark function of the Web browser to quickly return to a
specific topic.

v Use the search function of the Information Center to find specific topics. See
“Accessing Information with the Information Center” on page 809 for
details.

812 Application Development Guide

Appendix G. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1993, 2000 813

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

814 Application Development Guide

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix G. Notices 815

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

816 Application Development Guide

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Appendix G. Notices 817

818 Application Development Guide

Index

Special Characters
#ifdefs, C/C++ language

restrictions 600
#include macro, C/C++ language

restrictions 585
#line macros, C/C++ language

restrictions 585

Numerics
64-bit integer (BIGINT) data type

supported by DB2 Connect
Version 7 776

A
access to data consideration

DB2 Call Level Interface (DB2
CLI) 24

embedded SQL 23
JDBC 24
Microsoft specifications 25
ODBC 24
REXX 24
using Perl 25
using query products 25

ACQUIRE statement 786
activation time and triggers 478
ActiveX Data Object specification

supported in DB2 25
add database wizard 810, 811
ADD METHOD 290
ADHOC.SQC C program

listing 157
ADO specification

supported in DB2 25
AFTER triggers 478, 483
aggregating functions 370
alerts, supported by triggers 474
allocating dynamic memory in a

UDF 439
ALLOW PARALLEL clause 414
ALTER NICKNAME statement

column options 567
data type mappings 571

altering view 306
ambiguous cursors 777
APPC, handling interrupts 118
application design

access to data 23
binding 47

application design (continued)
character conversion

considerations 501
character conversion in SQL

statements 501
character conversions in stored

procedures 503
COBOL Japanese and traditional

Chinese EUC
considerations 685

COBOL requirements, include
files 665

code points for special
characters 502

coding a DB2
application,overview 9

creating SQLDA structure,
guidelines 147

cursor processing,
considerations 82

data relationship 27
data value control

consideration 25
declaring sufficient SQLVAR

entities 143
describing SELECT

statement 146
double-byte character support

(DBCS) 502
dynamic SQL caching 62
error handling, guidelines 116
executing statements without

variables 128
guidelines 21
input-SQLDA procedure, sample

of 764
input-SQLDA stored procedure,

sample of 770
logic at the server 29
OLE automation UDFs 416
package renaming 53
passing data, guidelines 151
precompiling and binding 47
receiving database values 75
retrieving data a second

time 102
REXX requirements, registering

routines 704
sample programs 105

application design (continued)
saving end user requests 153
static SQL, advantages of

using 62
table function

considerations 432
use of dynamic SQL, overview

of 127
using LOB locators in UDFs 434
using parameter markers 161
varying-list statements,

processing of 153
application domain and

object-orientation 267
application environment, for

programming 9
application forms using CREATE

TABLE example 275
application logic

data relationship
consideration 29

data value control
consideration 27

application logic consideration
stored procedures 29
triggers 29
user-defined functions 29

Application Program Interface (API)
for JDBC applications 657
for setting contexts between

threads
sqleAttachToCtx() 533
sqleBeginCtx() 533
sqleDetachFromCtx() 533
sqleEndCtx() 533
sqleGetCurrentCtx() 533
sqleInterruptCtx() 533
sqleSetTypeCtx() 533

overview of 36
restrictions in an XA

environment 541
syntax for REXX 716
types of 36
uses of 36

argument types, promotions in
UDFs 402

arguments, passing from DB2 to a
UDF 387

© Copyright IBM Corp. 1993, 2000 819

arguments between UDFs and
DB2 388

call-type 394
dbinfo 396
diagnostic-message 392
function-name 391
scratchpad 393
specific-name 392
SQL-argument 388
SQL-argument-ind 389
SQL-result 388
SQL-result-ind 389
SQL-state 390

ARI (DB2 for VSE & VM) 776
arithmetic error

in UDFs 389
AS LOCATOR clause 434
ASCII

mixed-byte data 775
sort order 779

assignments in dynamic SQL
example 280

assignments involving different
distinct types example 281

assignments involving distinct types
example 280

asynchronous events 533
asynchronous nature of buffered

insert 550
ATOMIC compound SQL

not supported in DB2
Connect 785

attributes 284
automation server, for OLE 417
AVG over a UDT example 375

B
backing out changes 19
backup database wizard 810
BASIC language

implementation of OLE
automation UDF 417

BASIC types and OLE automation
types 420

BEFORE triggers 478, 483
BEGIN DECLARE SECTION 11
beginning transactions 18
BigDecimal Java type 625
BIGINT parameter to UDF 403
BIGINT SQL data type 77

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756

BIGINT SQL data type 77
(continued)

OLE DB table function 428
BINARY data types in COBOL 681
Binary Large Objects 341
BIND API 56
BIND API, creating packages 53
bind file

precompile options 50
support to REXX

applications 715
bind files

backwards compatibility 55
bind files for REXX 715
bind option

INSERT BUF 550
bind options

EXPLSNAP 55
FUNCPATH 55
QUERYOPT 55

BIND PACKAGE command
rebinding 58

binding
bind file description utility,

db2bfd 56
considerations 55
deferring 56
dynamic statements 54
options for 53
overview of 53

blob C/C++ type 615
blob_file C/C++ type 615
BLOB-FILE COBOL type 682
BLOB_FILE FORTRAN type 698
BLOB FORTRAN type 698
blob_locator C/C++ type 615
BLOB-LOCATOR COBOL type 682
BLOB_LOCATOR FORTRAN

type 698
BLOB parameter to UDF 408
BLOB SQL data type 77, 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

BLOBs (Binary Large Objects)
uses and definition 341

blocking 777
books 795, 805
BSTR OLE automation type 420
buffer size for buffered insert 547

buffered insert
advantages 550
asynchronous nature of 550
buffer size 547
closed state 551
considerations for using 550
deadlock errors 551
error detection during 550
error reporting in buffered

insert 551
group of rows 550
INSERT BUF bind option 550
long field restriction 552
not supported in CLP 552
open state 551
overview 547
partially filled 548
restrictions on using 552
savepoint consideration 182, 548
SELECT buffered insert 550
statements that close 548
transaction log

consideration 550
unique key violation 551

C
C++

consideration for stored
procedures 222

considerations for UDFs 442
type decoration

consideration 582
C++ types and OLE automation

types 420
C/C++ data types

blob 615
blob_file 615
blob_locator 615
char 615
clob 615
clob_file 615
clob_locator 615
dbclob 615
dbclob_file 615
dbclob_locator 615
double 615
float 615
long 615
long int 615
long long 615
long long int 615
null-terminated character

form 615
short 615
short int 615

820 Application Development Guide

C/C++ data types (continued)
sqldbchar 615
sqlint64 615
VARCHAR structured form 615
wchar_t 615

C/C++ language
character set 581
Chinese (Traditional) EUC

considerations 614
data types supported 615
declaring graphic host

variables 593
declaring host variables 589
embedding SQL statements 45
file reference declarations 599
handling class data

members 607
handling null-terminated

strings 604
host variable, naming 588
include files, required 583
initializing host variables 600
input and output files 582
Japanese EUC

considerations 614
LOB data declarations 596
LOB locator declarations 598
member operator, restriction 608
pointer to data type, declaring in

C/C++ 606
programming restrictions in 581
qualification operator,

restriction 608
supported data types 615
trigraph sequences 581

C language type definitions in
sqludf.h 411

C null-terminated graphic string
SQL data type 420

C null-terminated string SQL data
type 420

Call Level Interface (CLI)
advantages of using 171, 173
comparing embedded SQL and

DB2 CLI 170
overview 170

CALL statement
in Java 646
initializing client for stored

procedure (DB2DARI)
SQLDA structure 751

invoking a stored procedure 192
CALL statements

different platforms 782
call-type 432

call-type 432 (continued)
contents with scalar

functions 394
contents with table

functions 395
call-type, passing to UDF 394
CALL USING DESCRIPTOR

statement (OS/400) 782
calling convention

for UDFs 402
calling from a REXX

application 716
calling the DB2 CLP from a REXX

application 716
CARDINALITY specification in table

functions 432
cascade 780
cascading triggers 484
CAST FROM clause 388
CAST FROM clause in the CREATE

FUNCTION statement 402
castability 367
casting

UDFs 383
CHAR 390
char C/C++ type 615
CHAR parameter to UDF 405
CHAR SQL data type 77, 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

CHAR type 657
character comparison,

overview 495
character conversion

coding SQL statements 501
coding stored procedures 503,

523
during precompiling and

binding 504
expansion 507
national language support

(NLS) 504
programming

considerations 501
rules for string conversions 523
string length overflow 522
string length overflow past data

types 523
supported code pages 506

character conversion (continued)
Unicode (UCS-2) 524
when executing an

application 504
when occurs 505

character host variables
C/C++ fixed and

null-terminated 591
C/C++ variable length 592
COBOL 672
fixed and null-terminated in

C/C++ 591
FORTRAN 694
variable length in C/C++ 592

Character Large Objects 341
CHARACTER*n FORTRAN

type 698
CHARACTER parameter to

UDF 405
character sets

extended UNIX code (EUC) 509
character translation 775
CHECKERR.CBL program

listing 122
CHECKERR REXX program

listing 124
Chinese (Traditional)

double-byte considerations 513
Extended UNIX Code

considerations 513
Chinese (Traditional) code sets 511

C/C++ considerations 614
developing applications

using 514
Chinese (Traditional) EUC code sets

REXX considerations 720
CICS 774
CICS SYNCPOINT ROLLBACK

command 540
classes

data members, as host variables
in C/C++ 607

CLASSPATH environment
variable 650

CLI 170
client applications

running stored procedures 192
client-based parameter validation

Extended UNIX Code
consideration 519

client/server
code page conversion 504

client transforms
binding in instances from a client

application 330

Index 821

client transforms (continued)
data type conversion

considerations 330
implemented using external

UDFs 329
overview of 327

clob C/C++ type 615
clob_file C/C++ type 615
CLOB-FILE COBOL type 682
CLOB_FILE FORTRAN type 698
CLOB FORTRAN type 698
clob_locator C/C++ type 615
CLOB-LOCATOR COBOL type 682
CLOB_LOCATOR FORTRAN

type 698
CLOB parameter to UDF 408
CLOB SQL data type 77, 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

CLOBs (Character Large Objects)
uses and definition 341

CLOSE call 395
closed state, buffered insert 551
closing a buffered insert 548
COBOL

declaring host variables 671
embedding SQL statements 45
file reference declarations 677
include files, list of 665
indicator tables 680
input and output files 665
Japanese and traditional Chinese

EUC considerations 685
LOB data declarations 675
LOB locator declarations 676
object oriented restrictions 686
restrictions in 665
rules for indicator variables 675
supported data types 681

COBOL data types
BINARY 681
BLOB 682
BLOB-FILE 682
BLOB-LOCATOR 682
CLOB 682
CLOB-FILE 682
CLOB-LOCATOR 682
COMP 681
COMP-1 682

COBOL data types (continued)
COMP-3 682
COMP-4 681
COMP-5 682
DBCLOB 682
DBCLOB-FILE 682
DBCLOB-LOCATOR 682
PICTURE (PIC) clause 682
USAGE clause 682

COBOL language
data types supported 681

code page
allocating storage for unequal

situations 516
binding considerations 55
character conversion 504
DB2CODEPAGE registry

variable 499
handling expansion at

application 519
handling expansion at

server 519
in SQLERRMC field of

SQLCA 776
locales

deriving in applications 500
how DB2 derives locales 500

national language support
(NLS) 504

stored procedure
considerations 222

supported Windows code
pages 499

unequal situations 508, 516
code point 494
code point, definition of 494
code set

in SQLERRMC field of
SQLCA 776

coding Java UDFs 412
collating sequence

case independent
comparisons 495

code point 494
EBCDIC and ASCII 779
EBCDIC and ASCII sort order

example 497
identity sequence 494
include files

in COBOL 667
in FORTRAN 689

include files in C/C++ 584
multi-byte characters 494
overview of 494
samples of 499

collating sequence (continued)
simulating EBCDIC binary

collation 789
sort order example 497
specifying 498
use in character

comparisons 495
collation

Chinese (Traditional) code
sets 515

Japanese code sets 515
collection ID attribute

DB2 Universal Database for
AS/400 778

package 778
COLLECTION parameters 54
collections 778
column

setting null values in 77
supported SQL data types 77
using indicator variables on

nullable data columns 80
column functions 370
column options 298

ALTER NICKNAME
statement 567

description 566
column types

creating 313
overview of 313

column types, creating in
C/C++ 615

column types, creating in
COBOL 681

column types, creating in
FORTRAN 698

columns
derived 176
generated 176
identity 176

COM.ibm.db2.app.Blob 762
COM.ibm.db2.app.Clob 762
COM.ibm.db2.app.Lob 761
COM.ibm.db2.app.StoredProc 758
COM.ibm.db2.app.UDF 412, 759
COM.ibm.db2.jdbc.app.DB2Driver 630
COM.ibm.db2.jdbc.net.DB2Driver 630
command line processor

prototyping utility 40
Command Line Processor 716
commands

EXCSQLSTT 786
FORCE 777

comments
SQL, rules for 669, 692

822 Application Development Guide

comments, SQL, rules for 587
COMMIT statement 11

association with cursor 82
ending a transaction 18
ending transactions 19
pass-through 577

COMMIT WORK RELEASE
statement

not supported 787
not supported in DB2

Connect 787
committing changes, tables 18
COMP-1 in COBOL types 682
COMP-3 in COBOL types 682
COMP-5 in COBOL types 682
COMP and COMP-4 data types in

COBOL 681
comparisons involving distinct types

example 277, 279
compiled applications, creating

packages for 49
compiling 52
compiling a UDF 370
completion code 15
compound SQL

NOT ATOMIC 785
condition handlers

example 245
overview 243
SQL procedures 243

configuration parameter
LOCKTIMEOUT 536

configure multisite update
wizard 810

connect
CONNECT RESET

statement 776
CONNECT TO statement 776
implicit connect 776
null CONNECT 776

CONNECT
application programs 16
sample programs 105
SQLCA.SQLERRD settings 518

CONNECT RESET statement
ending transactions 19

CONNECT statement 11
CONNECT TYPE 2

considerations with stored
procedures 223

connecting DB2 application
programs 16

connection handle 170
connection pooling in Java 635

consideration
access to data 23
application logic at server 29
data relationship control 27
data value control 25
DB2 application design 21

consistency
of data 17

consistency of data 17
consistent behavior and distinct

types 273
constraint mechanisms on large

objects 267
constructor functions 288
contexts

application dependencies
between 535

database dependencies
between 535

preventing deadlocks
between 536

setting in multithreaded DB2
applications 533

control information to access large
object data 342

conventions used in this book 7
CONVERT

WCHARTYPE
in stored procedures 222

coordinator node
behavior without buffered

insert 549
cost of a UDT example 374
counter for UDFs example 451
counter OLE automation UDF object

example in BASIC 464
counter OLE automation UDF object

example in C++ 466
counting and defining UDFs

example 375
counting with an OLE automation

object 376
country code

in SQLERRMC field of
SQLCA 776

creatable multi-use OLE automation
server 422

creatable single-use OLE automation
server 422

CREATE DATABASE API
SQLEDBDESC structure 498

create database wizard 811
CREATE DISTINCT TYPE statement

and castability 367
examples of using 275

CREATE DISTINCT TYPE
statement (continued)

to define a distinct type 274
CREATE FUNCTION MAPPING

statement
estimating overhead of invoking

functions 575
making data source functions

known to federated server 574
reducing overhead of invoking

functions 574
specifying function names 576

CREATE FUNCTION
statement 393, 394, 396, 432, 434

CAST FROM clause 402
for OLE automation UDFs 417
in federated systems 574
Java UDFs 414
RETURNS clause 402
to register a UDF 371

CREATE METHOD 290
CREATE METHOD statement

to register a method 371
CREATE PROCEDURE

statement 193, 649
CREATE SERVER statement 427
CREATE STORGROUP statement

DB2 Connect support 774
create table space wizard 811
CREATE TABLE statement

defining column options in 298
defining LOB columns 343
examples of using 275
lob-options-clause 343
tablespace-options-clause 343

create table wizard 811
CREATE TABLESPACE statement

DB2 Connect support 774
CREATE TRIGGER statement

multiple triggers 485
order of trigger activation 478
overview 475
REFERENCING clause 480

CREATE TYPE
structured types 286

CREATE TYPE MAPPING
statement 570

CREATE TYPE statement
MODE DB2SQL clause 284
REF USING clause 287

CREATE USER MAPPING
statement 427

CREATE VIEW statement with
creating typed views 303

Index 823

creating
Java stored procedures 649
Java UDFs 412
OLE automation UDFs 417

creating packages for compiled
applications 49

creating typed views 303
creator attributes

package 778
critical section routine, in multiple

threads, guidelines 535
critical sections 535
ctr() UDF C program listing 451
CURRENT EXPLAIN MODE

register 54
CURRENT FUNCTION PATH

register 54
CURRENT QUERY OPTIMIZATION

register 54
cursor

ambiguous 93
completing a unit of work 82
declared WITH HOLD 82
declaring 82
FOR FETCH ONLY 92
issuing a COMMIT statement 82
naming, in REXX 706
naming and defining of 81
positioning at table end 104
processing, in dynamic SQL 131
processing, sample program 84,

133
processing, summary of 81
processing with SQLDA

structure 147
read-only 81, 92
read only, application

requirements for 82
retrieving multiple rows with 81
sample program 93
updatable 93
use in CLI 170

CURSOR.SQB COBOL program
listing 90

CURSOR.SQC C program listing 86
Cursor.sqlj Java program listing 88
cursor stability 780
cursor usage in REXX 714
cursors

ambiguous 777
dynamic 777
unambiguous 777

cursors declared WITH HOLD
X/Open XA Interface 540

D
data

avoiding bottlenecks when
extracting 552

extracting large volumes 552
data control language (DCL) 776
data definition language (DDL) 774
Data Definition Language (DDL)

issuing in savepoints 181
data manipulation language

(DML) 775
data relationship consideration

application logic 29
referential integrity 28
triggers 28

data sources in federated systems
accessing tables, views 564
invoking functions 574
mapping data types from 569
mapping DB2 functions to 574
mapping isolation levels to 568
using distributed requests to

query 571
using pass-through to query 576

data structure
allocating for stored

procedures 192
manipulating for DB2DARI

stored procedure 753
SQLEDBDESC 498
user-defined, with multiple

threads 534
data structures, declaring 11
data transfer

updating 105
data type mappings 569

ALTER NICKNAME
statement 571

CREATE TYPE MAPPING
statement 570

creating for data sources 570
creating for specific

columns 570
default 569

data types
BLOBs 341
C/C++ 615, 620
character conversion

overflow 523
class data members, declaring in

C/C++ 607
CLOB in C/C++ 620
CLOBs 341

data types (continued)
conversion

between DB2 and
COBOL 682

between DB2 and
FORTRAN 698

between DB2 and OLE DB
table function 428

conversion between DB2 and
C/C++ 615

conversion between DB2 and
OLE automation 420

conversion between DB2 and
REXX 712

conversion considerations 330
data value control

consideration 26
DBCLOBs 341
decimal

in FORTRAN 699
description 11
Extended UNIX Code

consideration 522
FOR BIT DATA, in COBOL 684
FOR BIT DATA in C/C++ 620
how they are passed to a

UDF 402
in C/C++ 615
in COBOL 681
in FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
list of types and their

representations in UDFs 402
numeric 775
object-oriented 267
OLE automation 420
pointer to, declaring in

C/C++ 606
selecting graphic types 610
SQL column types, list of 77
supported

in COBOL 681, 682
in COBOL, rules for 684
in FORTRAN 698
in FORTRAN, rules for 700

VARCHAR in C/C++ 620

data value control consideration

application logic and variable
type 27

data types 26
referential integrity

constraints 26
table check constraints 26

824 Application Development Guide

data value control consideration
(continued)

views with check option 27
database access

using different contexts 533
using multiple threads 533

database creation, specifying
collating sequence 498

Database Descriptor Block
(SQLEDBDESC), specifying
collating sequences 498

database manager APIs
calling using stored

procedures 189
defining, sample programs 105

DATE OLE automation type 420
DATE parameter to UDF 408
DATE SQL data type 77, 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

DB2 BIND command
creating packages 53

DB2 Call Level Interface (DB2 CLI)
access to data consideration 24

DB2 Connect 773
isolation level 781

DB2 Connect programming
considerations 773

DB2 library
books 795
Information Center 809
language identifier for

books 803
late-breaking information 804
online help 806
ordering printed books 805
printing PDF books 804
searching online

information 812
setting up document server 811
structure of 795
viewing online information 808
wizards 810

DB2 PREP command
example of 49
overview of 49

DB2 program
set up 11

DB2_SQLROUTINE_KEEP_FILES 255
DB2 System Controller 223
DB2 Universal Database for AS/400

FOR BIT DATA stored procedure
considerations 222

DB2 Universal Database for OS/390
FOR BIT DATA stored procedure

considerations 222
DB2 using DB2 Connect 773
DB2Appl.java

application example 633
DB2ARXCS.BND REXX bind

file 715
DB2ARXNC.BND REXX bind

file 715
DB2ARXRR.BND REXX bind

file 715
DB2ARXRS.BND REXX bind

file 715
DB2ARXUR.BND REXX bind

file 715
db2bfd, bind file dump utility 56
DB2CODEPAGE registry

variable 499
db2dari executable 209
DB2DARI stored procedures 198
db2dclgn command 73
db2diag.log file 559
DB2GENERAL stored

procedures 198
DB2INCLUDE environment

variable 585, 670, 691
db2nodes.cfg file 560
db2udf executable 441
DB2Udf.java 412
DBCLOB

Chinese (Traditional) code
sets 515

Japanese code sets 515
dbclob C/C++ type 615
dbclob_file C/C++ type 615
DBCLOB-FILE COBOL type 682
dbclob_locator C/C++ type 615
DBCLOB-LOCATOR COBOL

type 682
DBCLOB parameter to UDF 409
DBCLOB SQL data type 77, 420

C/C++ 615
COBOL 682
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

DBCLOB type 657

DBCLOBs (Double-Byte Character
Large Objects)

uses and definition 341
DBCS 511
dbinfo 432
dbinfo, passing to UDF 396
DBINFO keyword 396
dbminfo argument, elements of 396

(ver_rel) version/release
number 398

appl_id (unique application
identifier) 399

application authorization ID
(authid) 397

application authorization ID
length (authidlen) 397

authid (application authorization
ID) 397

authidlen (application
authorization ID length) 397

codepg (database code
page) 397

colname (column name) 398
colnamelen (column name

length) 398
column name (colname) 398
column name length

(colnamelen) 398
data base name (dbname) 397
data base name length

(dbnamelen) 397
database code page

(codepg) 397
dbname (data base name) 397
dbnamelen (data base name

length) 397
numtfcol (table function columns

entries) 399
platform 398
schema name (tbschema) 397
schema name length

(tbschemalen) 397
table function column list

(tfcolumn) 399
table function columns entries

(numtfcol) 399
table name (tbname) 398
table name length

(tbnamelen) 397
tbname (table name) 398
tbnamelen (table name

length) 397
tbschema (schema name) 397
tbschemalen (schema name

length) 397

Index 825

dbminfo argument, elements of 396
(continued)
tfcolumn (table function column

list) 399
unique application identifier

(appl_id) 399
version/release number

(ver_rel) 398
DCL (data control language) 776
DDL (data definition language) 774
deadlocks

error in buffered insert 551
in multithreaded

applications 535
preventing in multiple

contexts 536
debugging

Java programs 627
SQL procedures 252, 255
SQLJ programs 627
stored procedures 223, 236

using Stored Procedure
Builder 651

using Visual Studio 236
debugging your UDF 470
DECIMAL parameter to UDF 403
DECIMAL SQL data type 77, 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

DECLARE CURSOR statement 16
DECLARE CURSOR statement,

overview of 81
DECLARE PROCEDURE statement

(OS/400) 782
declare section

creating with db2dclgn 73
in C/C++ 589, 618
in COBOL 671, 683
in FORTRAN 693, 699
rules for statements 71

DECLARE statement 786
DECLARE STATEMENT

DB2 Connect support 787
declared temporary tables 177
declaring

host variable, rules for 71
indicator variables 75

deferring the evaluation of a LOB
expression example 351

DELETE
DB2 Connect support 775
triggers 480

DELETE operation and triggers 476
DEREF function

definition 308
privileges required 309

dereference operator 293
dereference operators

queries using 307
derived columns 176
DESCRIBE statement 786

DB2 Connect support 787
double-byte character set

consideration 521
Extended UNIX Code

consideration 520
Extended UNIX Code

consideration with EUC
database 521

processing arbitrary
statements 152

structured types 340
descriptor handle 170
designing DB2 applications,

guidelines 21
DFT_SQLMATHWARN

configuration parameter 389
diagnostic-message, passing to

UDF 392
differences between different DB2

products 774
differences between host or AS/400

server and workstation 786, 787
differences in SQLCODEs and

SQLSTATEs 780
distinct type 367
distinct types

defining a distinct type 274
defining tables 275
manipulating

examples of 277
resolving unqualified distinct

types 274
strong typing 277

distributed environment 773
distributed requests

coding 571
optimizing 572

distributed subsection (DSS) 545
divid() UDF C program listing 443
DML (data manipulation

language) 775
Double-Byte Character Large

Objects 341

double-byte character set
Chinese (Traditional) code

sets 514
configuration parameters 510
considerations for collation 515
Japanese code sets 514
mixed code set

environments 515
Traditional Chinese

considerations 513
unequal code pages 516

double-byte character set (DBCS)
Chinese (Traditional) code

sets 511
Japanese code sets 511

double-byte code pages 513
double C/C++ type 615
double Java type 625
double OLE automation type 420
DOUBLE parameter to UDF 403,

404
DOUBLE PRECISION parameter to

UDF 404
DOUBLE SQL data type 77, 420
DROP statement

type mappings 305
user-defined types 305

dropping user-defined types 305
dropping view 306
DSN (DB2 Universal Database for

OS/390) 776
DSS (distributed subsection) 545
DUOW 525
DYNAMIC.CMD REXX program

listing 141
dynamic cursors 777
Dynamic.java Java program

listing 137
dynamic memory, allocating in the

UDF 439
DYNAMIC.SQB COBOL program

listing 139
DYNAMIC.SQC C program

listing 135
dynamic SQL

arbitrary statements, processing
of 152

authorization considerations 34
comparing to static SQL 128
considerations 128
contrast with dynamic SQL 61
cursor processing 131
cursor processing, sample

program 133
DB2 Connect support 773

826 Application Development Guide

dynamic SQL (continued)
declaring an SQLDA 143
EXECUTE IMMEDIATE

statement, summary of 128
EXECUTE statement, summary

of 128
limitations 128
overview 127
parameter markers in 161
PREPARE statement, summary

of 128
supported statements, list of 127
syntax, differences with

static 128
transform groups for structured

types 321
using PREPARE, DESCRIBE, and

FETCH 131
dynamic statements

binding 54
dynamic types 295

E
easier maintenance using

triggers 474
EBCDIC

mixed-byte data 775
sort order 779

embedded SQL
access to data consideration 23

embedded SQL statement
comments, rules for 587
examples of 46
overview of 45
rules for, in C/C++ 586
rules for, in COBOL 668
rules for, in FORTRAN 692
syntax rules 46

embedded SQL statements
comments, rules for 669, 692
host variable, referencing in 75

encapsulation and distinct
types 273

END DECLARE SECTION 11
ending transactions 18
ending transactions implicitly 19
environment APIs

include file for C/C++ 584
include file for COBOL 667
include file for FORTRAN 689

environment,for programming 9
environment handle 170
error code 15
error detection in a buffered

insert 550

error handling
C/C++ language

precompiler 586
considerations in a partitioned

environment 558
during precompilation 51
identifying partition that returns

the error 560
in a looping application 560
in a suspended application 560
include file

for FORTRAN 689, 690
in COBOL 666, 668

include file for C/C++ 585
merged multiple SQLCA

structures 559
overview of 115
reporting 560
resetting 15
SQLCA structure 560
SQLCODE 560
using WHENEVER

statement 116
WHENEVER statement 15
with the SQLCA 14

error messages
error conditions flag 115
exception condition flag 115
SQLCA structure 115
SQLSTATE 115
SQLWARN structure 115
timestamps, when

precompiling 58
warning condition flag 115

EUC 511
EUC (extended UNIX code)

character sets 509
examples

ADHOC.SQC C program
listing 157

application forms using CREATE
TABLE 275

assignments in dynamic
SQL 280

assignments involving different
distinct types 281

assignments involving distinct
types 280

BLOB data declarations 597
CLOB data declarations 597
CLOB file reference 600
CLOB locator 599
comparisons involving distinct

types 277, 279
DB2Appl.java 633

examples (continued)
DBCLOB data declarations 598
declaring BLOB file references

using COBOL 677
declaring BLOB file references

using FORTRAN 698
declaring BLOB locator using

COBOL 677
declaring BLOBs using

COBOL 676
declaring BLOBs using

FORTRAN 696
declaring CLOB file locator using

FORTRAN 697
declaring CLOBs using

COBOL 676
declaring CLOBs using

FORTRAN 696
declaring DBCLOBs using

COBOL 676
deferring the evaluation of a LOB

expression 351
DYNAMIC.CMD REXX program

listing 141
Dynamic.java Java program

listing 137
DYNAMIC.SQB COBOL program

listing 139
DYNAMIC.SQC C program

listing 135
extracting a document to a file

(CLOB elements in a
table) 360

inserting data into a CLOB
column 364

Java applets 633
LOBEVAL.SQB COBOL program

listing 355
LOBEVAL.SQC C program

listing 353
LOBFILE.SQB COBOL program

listing 362
LOBFILE.SQC C program

listing 361
LOBLOC.SQB COBOL program

listing 348
LOBLOC.SQC C program

listing 346
money using CREATE DISTINCT

TYPE 275
registering SQLEXEC, SQLDBS

and SQLDB2 705
registering SQLEXEC, SQLDBS

and SQLDB2 for REXX 704

Index 827

examples (continued)
resume using CREATE

DISTINCT TYPE 275
sales using CREATE TABLE 275
sample SQL declare section for

supported SQL data types 618
syntax for character host

variables in FORTRAN 694,
695

use of distinct types in
UNION 282

user-defined sourced functions
on distinct types 280

using a locator to work with a
CLOB value 345

using class data members in an
SQL statement 607

using parameter markers in
search and update 162

V5SPCLI.SQC C program
listing 767

V5SPSRV.SQC C program
listing 771

Varinp.java Java program
listing 166

VARINP.SQB COBOL program
listing 168

VARINP.SQC C program
listing 164

EXCSQLSTT command 786
EXEC SQL INCLUDE SQLCA

multithreading
considerations 534

EXEC SQL INCLUDE statement,
C/C++ language restrictions 585

EXECUTE IMMEDIATE statement,
summary of 128

EXECUTE statement, summary
of 128

execution requirements for
REXX 715

exit routines, use restrictions 118
expansion of data on the host or

AS/400 server 775
EXPLAIN, prototyping utility 41
Explain Snapshot 55
EXPLSNAP bind option 55
exponentiation and defining UDFs

example 372
extended dynamic SQL statements

not supported in DB2
Connect 787

extended UNIX code (EUC)
character sets 509

Extended UNIX Code (EUC)

character conversion
overflow 522

character conversions in stored
procedures 523

character string length
overflow 523

Chinese (Traditional) code
sets 511, 514

Chinese (Traditional) in
C/C++ 614

Chinese (Traditional) in
REXX 720

client-based parameter
validation 519

considerations for collation 515
considerations for DBCLOB

files 515
double-byte code pages 513
expansion at application 519
expansion at server 519
expansion samples 520
fixed or varying length data

types 522
graphic constants 514
graphic data handling 514
Japanese and traditional Chinese

COBOL consideration 685
FORTRAN consideration 701

Japanese code sets 511, 514
Japanese in C/C++ 614
Japanese in REXX 720
mixed code pages 513
mixed code set

environments 515
rules for string conversions 523
stored procedures

considerations 515
Traditional Chinese

considerations 513
UDF considerations 515
unequal code pages 516
using the DESCRIBE

statement 520

extensibility and distinct types 273

extern declaration

C++ 582

EXTERNAL ACTION option and
UDFs 439

EXTERNAL clause 194

EXTERNAL NAME clause 426, 427

extracting

large volumes of data 552

extracting a document to a file
(CLOB elements in a table)
example 360

F
faster application development using

triggers 474
federated systems

column options 566
data integrity 568
data source functions 574
data source tables, views

cataloging information
about 564

considerations,
restrictions 565

nicknames for 564
data type mappings 569
distributed requests 571
function mapping options 575
function mappings 574
introduction 563
isolation levels 568
nicknames 564
pass-through 576
server options 572

FENCED option and UDFs 439
FETCH call 395
FETCH statement

host variables 131
repeated access, technique

for 102
scroll backwards, technique

for 102
using SQLDA structure

with 146
file extensions

sample programs 729
file reference declarations in

REXX 711
file reference variables

examples of using 360
for manipulating LOBs 341
input values 358
output values 359

final call, to a UDF 394
FINAL CALL clause 395
FINAL CALL keyword 394
finalize Java method 414
find the vowel, fold the CLOB for

UDFs example 447
findvwl() UDF C program

listing 447
FIPS 127-2 standard 15
FIRST call 395
first call, to a UDF 394

828 Application Development Guide

fixed or varying length data types
Extended UNIX Code

consideration 522
flagger utility, used in

precompiling 51
flexibility and distinct types 273
float C/C++ type 615
float OLE automation type 420
FLOAT parameter to UDF 404
FLOAT SQL data type 77, 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

floating point parameter to
UDF 404

flushed buffered insert 548
fold() UDF C program listing 447
FOR BIT DATA

considerations for stored
procedures 222

data type in C/C++ 620
FOR BIT DATA modifier in

UDFs 405
FOR BIT DATA SQL data type 420
FOR EACH ROW trigger 477
FOR EACH STATEMENT

trigger 477
FOR UPDATE clause 92
FORCE command 777
foreign key 779
FORTRAN

data types supported 698, 699
embedding SQL statements 45
file reference declarations 697
host variables, overview 693
indicator variables, rules for 696
input and output files 688
Japanese and traditional Chinese

EUC considerations 701
LOB data declarations 696
LOB locator declarations 697
programming

considerations 687
programming restrictions 687
referencing host variables 692

FORTRAN data types
BLOB 698
BLOB_FILE 698
BLOB_LOCATOR 698
CHARACTER*n 698

FORTRAN data types (continued)
CLOB 698
CLOB_FILE 698
CLOB_LOCATOR 698
INTEGER*2 698
INTEGER*4 698
REAL*2 698
REAL*4 698
REAL*8 698

FORTRAN language
data types supported 698

FROM SQL transforms 321
fullselect

buffered insert
consideration 552

fullselect consideration 552
fully qualified name 426
FUNCPATH bind option 55
function directory 194
function invocations example 378
function mappings

CREATE FUNCTION MAPPING
statement 574

options 575
function-name, passing to UDF 391
function path and UDFs 369
function references

summary for UDFs 380
function selection algorithm and

UDFs 369
function templates 574
function transforms

implemented as SQL-bodied
routines 324

overview of 322
passing parameters to external

routines 325
functions

aggregating functions 370
column functions 370
scalar functions 370
syntax for referring to 377
table functions 370
with SQL triggered

statements 483

G
GENERAL stored procedures 198
GENERAL WITH NULLS stored

procedures 198
generated columns 176
GET ERROR MESSAGE API 118,

708
getAsciiStream JDBC method 657
getString JDBC method 657

getUnicodeStream JDBC
method 657

global enforcement of business rules
using triggers 474

GRANT statement
DB2 Connect support 776
issuing on table hierarchies 297

graphic constants
Chinese (Traditional) code

sets 514
Japanese code sets 514

graphic data
Chinese (Traditional) code

sets 511, 514
Japanese code sets 511, 514

graphic data types
selecting 610

graphic host variables
C/C++ 593
COBOL 674

GRAPHIC parameter to UDF 406
GRAPHIC SQL data type

C/C++ 615
COBOL 682
FORTRAN, not supported

in 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

graphic strings
character conversion 508

GRAPHIC type 657
graphical objects

considerations for Java 657
GROUP BY clause

sort order 779
group of rows

in buffered insert 550
guideline

access to data 23
application logic at server 29
data relationship control 27
data value control 25
DB2 application design 21

H
handle

connection handle 170
descriptor handle 170
environment handle 170
statement handle 170

handlers
example 245

Index 829

handlers (continued)
overview 243

hierarchy
structured types 285

holdability in SQLJ iterators 640
host or AS/400

accessing host servers 532
Host or AS/400 environment

programming 773
host variables

allocating in stored
procedures 192

class data members, handling in
C/C++ 607

clearing LOB host variables in
REXX 712

considerations for stored
procedures 222

declaring 71
in COBOL 671
in FORTRAN 693

declaring, examples of 74
declaring, rules for 71
declaring, sample programs 105
declaring as pointer to data

type 606
declaring graphic

in COBOL 674
declaring graphic in C/C++ 593
declaring in C/C++ 589
declaring structured types 340
declaring using db2dclgn 73
declaring using variable list

statement 153
definition 71
determining how to define for

use with a column 14
file reference declarations in

C/C++ 599
file reference declarations in

COBOL 677
file reference declarations in

FORTRAN 697
file reference declarations in

REXX 711
FORTRAN, overview of 693
graphic data 609
in REXX 707
initializing for stored

procedure 191
initializing in C/C++ 600
LOB data declarations in

C/C++ 596
LOB data declarations in

COBOL 675

host variables (continued)
LOB data declarations in

FORTRAN 696
LOB data in REXX 710
LOB locator declarations in

C/C++ 598
LOB locator declarations in

COBOL 676
LOB locator declarations in

FORTRAN 697
LOB locator declarations in

REXX 710
multi-byte character

encoding 609
naming

in COBOL 671
in FORTRAN 693

naming in C/C++ 588
naming in REXX 707
null-terminated strings, handling

in C/C++ 604
referencing

in COBOL 671
in FORTRAN 692

referencing from SQL,
examples 75

referencing in C/C++ 588
referencing in REXX 707
relating to an SQL statement 13
selecting graphic data types 610
static SQL 71
use in dynamic SQL 127
used to pass blocks of data 543
WCHARTYPE precompiler

option 611
how to use this book 4
HTML

sample programs 803
HTML page

tagging for Java applets 633

I
IBM DB2 Universal Database Project

Add-In for Microsoft Visual
C++ 30, 32

IBM DB2 Universal Database Tools
Add-In for Microsoft Visual C++,
activating 32

identity columns 176
identity sequence 494
implementing a UDF 370
implicit connect 776
IN stored procedure

parameters 193, 206

include file

C/C++ requirements for 583
COBOL requirements for 665
FORTRAN requirements for 688
SQL

COBOL 666
FORTRAN 688

SQL for C/C++ 583
SQL1252A

COBOL 668
FORTRAN 690

SQL1252B
COBOL 668
FORTRAN 690

SQLADEF for C/C++ 583
SQLAPREP

COBOL 666
FORTRAN 688

SQLAPREP for C/C++ 583
SQLCA

COBOL 666
FORTRAN 688

SQLCA_92
COBOL 666
FORTRAN 689

SQLCA_CN
FORTRAN 688

SQLCA_CS
FORTRAN 688

SQLCA for C/C++ 583
SQLCLI for C/C++ 583
SQLCLI1 for C/C++ 583
SQLCODES

COBOL 666
FORTRAN 689

SQLCODES for C/C++ 583
SQLDA

COBOL 666
FORTRAN 689

SQLDA for C/C++ 583
SQLDACT

FORTRAN 689
SQLE819A

COBOL 667
FORTRAN 689

SQLE819A for C/C++ 584
SQLE819B

COBOL 667
FORTRAN 689

SQLE819B for C/C++ 584
SQLE850A

COBOL 667
FORTRAN 690

SQLE850A for C/C++ 584

830 Application Development Guide

include file (continued)
SQLE850B

COBOL 667
FORTRAN 690

SQLE850B for C/C++ 584
SQLE932A

COBOL 667
FORTRAN 690

SQLE932A for C/C++ 584
SQLE932B

COBOL 667
FORTRAN 690

SQLE932B for C/C++ 584
SQLEAU

COBOL 666
FORTRAN 689

SQLEAU for C/C++ 584
SQLENV

COBOL 667
FORTRAN 689

SQLENV for C/C++ 584
SQLETSD

COBOL 667
SQLEXT for C/C++ 584
SQLJACB for C/C++ 585
SQLMON

COBOL 668
FORTRAN 690

SQLMON for C/C++ 585
SQLMONCT

COBOL 668
SQLSTATE

COBOL 668
FORTRAN 690

SQLSTATE for C/C++ 585
SQLSYSTM for C/C++ 585
SQLUDF for C/C++ 585
SQLUTBCQ

COBOL 668
SQLUTBSQ

COBOL 668
SQLUTIL

COBOL 668
FORTRAN 691

SQLUTIL for C/C++ 585
SQLUV for C/C++ 585
SQLUVEND for C/C++ 585
SQLXA for C/C++ 585

include files
locating in C/C++ 585
locating in COBOL 669
locating in FORTRAN 691

INCLUDE SQLCA
pseudocode 14

INCLUDE SQLDA statement 16

INCLUDE SQLDA statement,
creating SQLDA structure 147

INCLUDE statement 16
inconsistent data 17
inconsistent state 17
index extensions 268
index wizard 811
indicator tables, COBOL support

for 680
indicator variables

declaring 75
examples 80
in C/C++, rules for 593
in COBOL, rules for 675
in FORTRAN, rules for 696
in REXX, rules for 708
using in DB2DARI stored

procedures 753
using on nullable columns 80

indicator variables and LOB
locators 358

infix notation and UDFs 381
Information Center 809
INHERIT SELECT PRIVILEGES

clause 297
inheritance

controlling with ONLY
clause 297

INOUT stored procedure
parameters 193

INOUT stored procedure
paramter 206

input and output files
C/C++ 582
COBOL 665
FORTRAN 688

input and output to screen and
keyboard and UDFs 441

input file extensions, C/C++
language 582

INSERT BUF bind option
buffered inserts 550

INSERT operation and triggers 476
INSERT statement

DB2 Connect support 775
not supported in CLP 552
populating typed tables

with 298
with VALUES clause 549

inserting data into a CLOB column
example 364

inserts
without buffered insert 549

installing
Netscape browser 809

instances of object-oriented data
types, storing 267

instantiability 295
Int Java type 625
INTEGER 394
INTEGER*2 FORTRAN type 698
INTEGER*4 FORTRAN type 698
integer divide operator for UDFs

example 443
INTEGER or INT parameter to

UDF 403
INTEGER SQL data type 77, 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

interactive SQL
processing, sample program 154

interrupt handling with SQL
statements 117

interrupts, SIGUSR1 118
invoking UDFs 377
IS OF predicate

restricting returned types
with 309

ISO 10646 standard 511
ISO 2022 standard 511
ISO/ANS SQL92 779
ISO/ANS SQL92 standard 15
isolation level 568, 781
isolation levels 781

J
Japanese and traditional Chinese

EUC code sets
COBOL considerations 685
FORTRAN considerations 701

Japanese code sets 511
C/C++ considerations 614
developing applications

using 514
Japanese EUC code sets

REXX considerations 720
Java

applet support 629
application support 628
comparison of SQLJ with

JDBC 623
comparison with other

languages 624
connection pooling 635
debugging 627

Index 831

Java (continued)
distributing and running

applets 633
distributing and running

applications 633
embedding SQL statements 45
installing JAR files 654, 655
JDBC 2.0 Optional Package API

support 635
JDBC example program 630
JDBC specification 628
JNDI support 635
overview 623
overview of DB2 support

for 628
SQLCODE 627
SQLJ (Embedded SQL for Java)

calling stored procedures 646
example program using 642
host variables 646

SQLJ (Embedded SQLJ for
Java) 637

applets 638
db2profc 637
db2profp 637
declaring cursors 640
declaring iterators 640
embedding SQL statments

in 639
example clauses 639
holdability 640
positioned DELETE

statement 640
positioned UPDATE

statement 640
profconv 637
restrictions 638
returnability 640
translator 637

SQLJ specification 628
SQLMSG 627
SQLSTATE 627
stored procedures 654, 655

examples 656
Transaction API (JTA) 636
UDFs (user-defined

functions) 654, 655
examples 656

Java application

SCRATCHPAD
consideration 414

signature for UDFs 412
using graphical and large

objects 657

Java class files
CLASSPATH environment

variable 650
java_heap_sz configuration

parameter 650
jdk11_path configuration

parameter 650
where to place 650

Java data types
BigDecimal 625
Blob 625
double 625
Int 625
java.math.BigDecimal 625
short 625
String 625

Java Database Connectivity 630
java_heap_sz configuration

parameter 650
Java I/O streams

System.err 412
System.in 412
System.out 412

java.math.BigDecimal Java type 625
Java Naming and Directory Interface

(JNDI) 635
Java packages and classes 630

COM.ibm.db2.app 625
JAVA stored procedures 198
Java UDF consideration 387
JDBC

1.22 drivers 634
2.0 Core API 634
2.0 drivers 634
2.0 Optional Package API 635
access to data consideration 24
COM.ibm.db2.jdbc

.app.DB2Driver 630
COM.ibm.db2.jdbc

.net.DB2Driver 630
comparison with SQLJ 623
example program using 630
getAsciiStream method 657
getString method 657
getUnicodeStream method 657
setAsciiStream method 657
setString method 657
setUnicodeStream method 657
SQLJ interoperability 658

jdk11_path configuration
parameter 650

JNDI (Java Naming and Directory
Interface) 635

JTA (Java Transaction API) 636

K
keys

foreign 779
primary 779

L
LABEL ON statement 786
LANGLEVEL precompile option

MIA 620
SAA1 620
using SQL92E and SQLSTATE or

SQLCODE variables 620, 685,
700

LANGLEVEL SQL92E precompile
option 779

language identifier
books 803

LANGUAGE OLE clause 417
large object descriptor 341
large object value 341
latch

status with multiple threads 533
late-breaking information 804
limitations

stored procedures
(DB2DARI) 753

linking
overview of 52

linking a UDF 370
LOB data type

supported by DB2 Connect
Version 7 775

LOB locator APIs, used in UDFs
sqludf_append API 434
sqludf_create_locator API 434
sqludf_free_locator API 434
sqludf_length API 434
sqludf_substr API 434

LOB locator example program
listing 461

LOB locators
scenarios for using 438
used in UDFs 434

lob-options-clause of the CREATE
TABLE statement 343

LOBEVAL.SQB COBOL program
listing 355, 362

LOBEVAL.SQC C program
listing 353, 361

LOBLOC.SQB COBOL program
listing 348

LOBLOC.SQC C program
listing 346

LOBs (Large Objects)
and DB2 object extensions 267

832 Application Development Guide

LOBs (Large Objects) (continued)
considerations for Java 657
file reference variables 341

examples of using 360
input values 358
output values 359
SQL_FILE_APPEND, output

value option 359
SQL_FILE_CREATE, output

value option 359
SQL_FILE_OVERWRITE,

output value option 359
SQL_FILE_READ, input value

option 358
large object descriptor 341
large object value 341
locators 341, 343

example of using 345, 351
indicator variables 358
programming scenarios 351

manipulating 267
programming options for

values 344
storing 267
synergy with triggers, UDTs, and

UDFs 486
local bypass 546
locales

deriving in application
programs 500

how DB2 derives 500
locating include files

C/C++ 585
COBOL 669
FORTRAN 691

locators for manipulating LOBs 341
locking

buffered insert error 551
page-level 780
row-level 780
timeout 780

LOCKTIMEOUT configuration
parameter 536

LOCKTIMEOUT multisite update
configuration parameter 530

long C/C++ type 615
long field restriction

using buffered inserts 552
long fields 775
long int C/C++ type 615
long long C/C++ type 615
long long int C/C++ type 615
long OLE automation type 420
LONG VARCHAR

parameter to UDF 405

LONG VARCHAR (continued)
storage limits 341

LONG VARCHAR SQL data
type 77, 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

LONG VARGRAPHIC
parameter to UDF 407
storage limits 341

LONG VARGRAPHIC SQL data
type 77, 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

LONGVAR type 657
looping application

diagnosing 560

M
macro processing for the C/C++

language 581
macros in sqludf.h 411
mail OLE automation UDF object

example in BASIC 468
manipulating large objects 267
maxdari configuration

parameter 649
maximum size for large object

columns, defining 342
member operator, C/C++

restriction 608
memory

decreasing requirement using
LOB locators 434

memory, allocating dynamic in the
UDF 439

memory allocation for unequal code
pages 516

memory size, shared for UDFs 441
message file, definition of 51
method invocation

for OLE automation UDFs 418
methods

definition 365

methods (continued)
implementing 366
invocation operator 290
invoking 290
rationale 366
registering 371
writing 371, 385

MIA 620
Microsoft Exchange, used in mail

example 468
Microsoft specifications

access to data consideration 25
ADO (ActiveX Data Object) 25
MTS (Microsoft Transaction

Server) 25
RDO (Remote Data Object) 25
Visual Basic 25
Visual C++ 25

Microsoft Transaction Server
specification

access to data consideration 25
Microsoft Visual C++

IBM DB2 Universal Database
Project Add-In 30

mixed-byte data 775
mixed code set environments

application design 515
mixed Extended UNIX Code

considerations 513
MODE DB2SQL clause 284
model for DB2 programming 20
modelling entities as independent

objects 267
money using CREATE DISTINCT

TYPE example 275
moving large objects using a file

reference variable 341
multi-byte character support

code points for special
characters 502

multi-byte code pages
Chinese (Traditional) code

sets 511, 514
Japanese code sets 511, 514

multi-byte considerations
Chinese (Traditional) code sets in

C/C++ 614
Chinese (Traditional) EUC code

sets in REXX 720
Japanese and traditional Chinese

EUC code sets
in COBOL 685
in FORTRAN 701

Japanese code sets in
C/C++ 614

Index 833

multi-byte considerations (continued)
Japanese EUC code sets in

REXX 720
multiple definitions of SQLCA,

avoiding 15
multiple threads

application dependencies
between contexts 535

database dependencies between
contexts 535

guidelines 534
preventing deadlocks between

contexts 536
using in DB2 applications 533

multiple triggers, ordering of 485
multisite update

coding SQL for a multisite
update application 526

configuration parameters 530
considerations with stored

procedures 223
DB2 Connect support 785
general considerations 525
overview 525
restrictions 530
support 785
when to use 526

multisite update configuration
parameter

LOCKTIMEOUT 530
RESYNC_INTERVAL 530
SPM_LOG_NAME 531
SPM_NAME 530
SPM_RESYNC_AGENT_LIMIT 530
TM_DATABASE 530
TP_MON_NAME 530

mutator methods 289

N
national language support (NLS)

character conversion 504
code page 504
considerations 493
mixed-byte data 775

nested stored procedures 208
parameter passing 248
recursion 249
restrictions 249
returning result sets 249
SQL procedures 248

Netscape browser
installing 809

nicknames
cataloging related

information 564
considerations, restrictions 565

nicknames (continued)
CREATE NICKNAME

statement 565
using with views 567

NOCONVERT
WCHARTYPE

in stored procedures 222
NOLINEMACRO

PREP option 586
nonexecutable SQL statements

DECLARE CURSOR 16
INCLUDE 16
INCLUDE SQLDA 16

normal call, to a UDF 394
NOT ATOMIC compound SQL 785
NOT DETERMINISTIC option and

UDFs 439
NOT FENCED LOB locator

UDFs 434
NOT FENCED stored procedures

considerations 225
precompiling 224
working with 223

NOT NULL CALL clause 389
NOT NULL CALL option and

UDFs 439
null-terminated character form

C/C++ type 615
null-terminator 620
NULL value

receiving, preparing for 75
numeric conversion overflows 781
numeric data types 775
numeric host variables

C/C++ 590
COBOL 671
FORTRAN 693

NUMERIC parameter to UDF 403
NUMERIC SQL data type 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

O
object identifier columns 287, 288

naming 296
object identifiers

choosing representation type
for 300

creating constraints on 312

object identifiers (continued)
generating automatically 311

object instances
for OLE automation UDFs 418

Object Linking and Embedding
(OLE) 416

object-orientation and UDFs 366
object oriented COBOL

restrictions 686
object-oriented extensions and

distinct types 273
object-relational

application domain and
object-orientation 267

constraint mechanisms 267
data types 267
definition 267
LOBs 267
triggers 267
UDTs and UDFs 267
why use the DB2 object

extensions 267
observer methods 289
ODBC

access to data consideration 24
OLE automation data types 420

BSTR 420
DATE 420
double 420
float 420
long 420
SAFEARRAY 420
short 420

OLE automation object counting
example 376

OLE automation server 417
OLE automation types 418
OLE automation types and BASIC

types 420
OLE automation types and C++

types 420
OLE automation UDFs

creatable multi-use OLE
automation server 422

creatable single-use OLE
automation server 422

implementation 417
implementation in BASIC 420
implementation in C++ 421
object instances 418
scratchpad considerations 418
UDFs 416

OLE DB
supported in DB2 25
table functions 423

834 Application Development Guide

OLE DB (continued)
CREATE SERVER

statement 427
CREATE USER MAPPING

statement 427
creating 424
defining a user mapping 427
EXTERNAL NAME

clause 426
fully qualified names 426
identifying servers 427

using connection string 425
using CONNECTSTRING

option 424
using server name 425

OLE keyword 416
OLE messaging example 468
OLE programmatic ID (progID) 417
online help 806
online information

searching 812
viewing 808

ONLY clause
restricting returned types

with 309
open state, buffered insert 551
OPENFTCH.SQB COBOL program

listing 100
OPENFTCH.SQC C program

listing 95
Openftch.sqlj Java program

listing 97
ORDER BY clause

sort order 779
OS/400 using DB2 Connect 773
OUT stored procedure

parameters 193, 206
OUTER keyword

returning subtype attributes
with 310

output and input to screen and
keyboard and UDFs 441

output file extensions, C/C++
language 582

overloading
function names 369
stored procedure names 193

owner attributes
package 778

P
package

attributes 778
creating 53

package (continued)
creating for compiled

applications 49
renaming 53
support to REXX

applications 715
timestamp errors 58

package attributes
creator 778
owner 778
qualifier 778

page-level locking 780
parameter markers 170

in functions example 379
in processing arbitrary

statements 152
programming example 162
SQLVAR entries 161
use in dynamic SQL 161

partitioned environment
error handling

considerations 558
identifying when errors

occur 560
improving performance 545
severe error considerations 559

pass-through
COMMIT statement 577
considerations, restrictions 577
SET PASSTHRU RESET

statement 577
SET PASSTHRU statement 577
SQL processing 576

passing contexts between
threads 533

PDF 804
performance

dynamic SQL caching 62
factors affecting, static SQL 62
improving

using stored procedures 188
improving in partitioned

environments 545
improving with buffered

inserts 547
improving with directed

DSS 545
improving with local

bypass 546
improving with read only

cursors 92
improving with READ ONLY

cursors 545
increasing using LOB

locators 434

performance (continued)
large objects 343
NOT FENCED stored

procedure 223
optimizing with packages 57
passing blocks of data 542
precompiling static SQL

statements 57
UDFs 366

performance advantages
with buffered insert 550

performance and distinct types 273
performance configuration

wizard 811
Perl

access to data consideration 25
PICTURE (PIC) clause in COBOL

types 682
portability 171
porting applications 773
precompile option

WCHARTYPE
NOCONVERT 224

precompiler
C/C++ #include macro 581
C/C++ character set 581
C/C++ language 608
C/C++ language debugging 586
C/C++ macro processing 581
C/C++ symbol substitution 581
C/C++ trigraph sequences 581
COBOL 665
DB2 Connect support 774, 777
FORTRAN 687
options 49
overview of 46
supported languages 10
types of output 49

precompiling 51
accessing host or AS/400

application server through DB2
Connect 51

accessing multiple servers 51
example of 49
flagger utility 51
options, updatable cursor 93
overview of 49
supporting dynamic SQL

statements 127
PREP option

NOLINEMACRO 586
PREPARE statement

DB2 Connect support 787
processing arbitrary

statements 152

Index 835

PREPARE statement (continued)
summary of 128

preprocessor functions and the SQL
precompiler 600

prerequisites, for programming 9
primary key 779
printf() for debugging UDFs 470
printing PDF books 804
problem resolution

stored procedures 236
processing SQL statements in

REXX 705
program variable type, data value

control consideration 27
programmatic ID (progID) for OLE

automation UDFs 417
programming considerations

accessing host or AS/400
servers 532

collating sequences 493
conversion between different

code pages 493
in a host or AS/400

environment 773
in C/C++ 581
in COBOL 665
in FORTRAN 687
in REXX 703
national language support 493
programming in complex

environments 493
X/Open XA interface 539

programming framework 20
protecting UDFs 439
prototyping SQL code 40
PUT statement

not supported in DB2
Connect 787

Q
QSQ (DB2 Universal Database for

AS/400) 776
qualification and member operators

in C/C++ 608
qualifier attributes

different platforms 778
package 778

query products, access to data
consideration 25

QUERYOPT bind option 55

R
RAISE_ERROR built-in

function 483
RDO specification

supported in DB2 25

re-entrant
stored procedures 224
UDFs 430

re-use and UDFs 366
REAL*2 FORTRAN type 698
REAL*4 FORTRAN type 698
REAL*8 FORTRAN type 698
REAL parameter to UDF 404
REAL SQL data type 77, 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

rebinding
description 58
REBIND PACKAGE

command 58
REDEFINES in COBOL 680
REF USING clause 287
reference columns

assigning scope in typed
views 305

defining the scope of 298
reference types

casting 288
choosing representation type

for 300
comparing 288, 300
definition 287

references
comparison with referential

constraints 293
defining relationships using 292
dereference operator 293

REFERENCING clause in the
CREATE TRIGGER statement 480

referential integrity 779
comparison to scoped

references 303
data relationship

consideration 28
referential integrity constraint

data value control
consideration 26

registering
OLE automation UDFs 417
UDFs 370

registering Java stored
procedures 649

release notes 804

RELEASE SAVEPOINT
statement 180

releasing your connection
CMS applications 18
to DB2 19

Remote Data Object specification
supported in DB2 25

remote unit of work 525
renaming, package 53
REORGANIZE TABLE

command 513
repeatable read, technique for 102
reporting errors 560
representation types 288
restore wizard 811
restoring data 19
restrictions

for UDFs 441
in C/C++ 600
in COBOL 665
in FORTRAN 687
in REXX 704
on using buffered inserts 552

restrictions for DB2DARI stored
procedures 753

result code 15
RESULT REXX predefined

variable 708
result sets

from stored procedures 225
returning from SQL

procedures 249
resume using CREATE DISTINCT

TYPE example 275
RESYNC_INTERVAL multisite

update configuration
parameter 530

retrieving
multiple rows 81
one row 63
rows 92

retrieving data
a second time 102
scroll backwards, technique

for 102
updating 105

return code 15
SQLCA structure 115

returnability in SQLJ iterators 640
RETURNS clause in the CREATE

FUNCTION statement 402
RETURNS TABLE clause 388
REVOKE statement

DB2 Connect support 776
issuing on table hierarchies 297

836 Application Development Guide

REVOKE statement (continued)
statement 776

REXX
access to data consideration 24
API syntax 716
bind files 715
calling the DB2 CLP from

application 716
Chinese (Traditional)

considerations 720
clearing LOB host variables 712
cursor identifiers 706
data types supported 712
execution requirements 715
indicator variables 708, 714
initializing variables 718
Japanese considerations 720
LOB data 710
LOB file reference

declarations 711
LOB locator declarations 710
predefined variables 708
programming

considerations 704
registering routines in 704
registering SQLEXEC, SQLDBS

and SQLDB2 704
restrictions in 704
stored procedures in 718
supported SQL statements 706

REXX and C++ data types 712
REXX APIs

SQLDB2 703, 716
SQLDBS 703
SQLEXEC 703

ROLLBACK statement 11, 777
association with cursor 82
backing out changes 19
ending transactions 19
restoring data 19
rolling back changes 19

ROLLBACK TO SAVEPOINT
statement 180

ROLLBACK WORK RELEASE
not supported in DB2

Connect 787
rolling back changes 19
root types 286
row

order of, controlling 103
order of in table,

positioning 104
retrieving multiple with

cursor 92
retrieving one 63

row (continued)
retrieving using SQLDA 146
selecting one, with SELECT INTO

statement 63
row blocking

customizing for
performance 542

row-level locking 780
ROWID data type

supported by DB2 Connect
Version 7 776

rows
set of rows affected by

triggers 477
RQRIOBLK field 777
rules that govern operations on large

objects 267
run-time services

multiple threads, affect on
latches 533

RUOW 525

S
SAA1 620
SAFEARRAY OLE automation

type 420
sales using CREATE TABLE

example 275
sample programs

Application Program Interface
(API) 729

cross-platform 803
embedded SQL statements 729
HTML 803
Java stored procedures 649
Java UDFs 412
location of 729

savepoint, buffered insert
consideration 548

SAVEPOINT statement 180
savepoints 179

atomic compound SQL 180
blocking cursors 182
buffered inserts 182
Data Definition Language 181
nested 180
restrictions 180
SET INTEGRITY statement 180
triggers 180
XA transaction managers 183

scalar functions 370
contents of call-type

argument 394
schema-name and UDFs 369

scoped references
comparison to referential

integrity 303
scoping references 298
scratchpad, passing to UDF 387,

393
scratchpad and UDFs 414, 430
SCRATCHPAD clause 395
scratchpad considerations

for OLE automation UDFs 418
SCRATCHPAD keyword 393, 394,

414, 430
SCRATCHPAD option

for OLE automation UDFs 418
searching

online information 810, 812
section number 786
SELECT INTO statement

overview of 63
SELECT statement

association with EXECUTE
statement 128

buffered insert
consideration 550

DB2 Connect support 775
declaring an SQLDA 143
dereference operators in 307
describing, after allocating

SQLDA 146
in DECLARE CURSOR

statement 81
inheriting privileges from

supertables 297
retrieving data a second

time 102
retrieving multiple rows with 81
scoped references in 307
typed tables 306
updating retrieved data 105
varying-list, overview of 153

self-referencing tables 779
self-referencing typed tables 301
semantic behavior of stored

objects 267
semaphores 535
serialization of data structures 534
serialization of SQL statement

execution 533
server options 572
SET CURRENT FUNCTION PATH

statement 370
SET CURRENT PACKAGESET

statement 54
SET CURRENT statement

DB2 Connect support 787

Index 837

SET PASSTHRU RESET
statement 577

SET PASSTHRU statement 577
SET SERVER OPTION

statement 573
setAsciiStream JDBC method 657
setString JDBC method 657
setting up a DB2 program 11
setting up document server 811
setUnicodeStream JDBC

method 657
severe errors

considerations in a partitioned
environment 559

shared memory size for UDFs 441
shift-out and shift-in characters 775
short C/C++ type 615
short int C/C++ type 615
short Java type 625
short OLE automation type 420
signal handlers

installing, sample programs 105
with SQL statements 117

SIGNAL SQLSTATE SQL statement
to validate input data 474

signature, two functions and the
same 369

SIGUSR1 interrupt 118
SIMPLE stored procedures 198
SIMPLE WITH NULLS stored

procedures 198
SMALLINT 389
SMALLINT parameter to UDF 403
SMALLINT SQL data type 77, 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

SmartGuides
wizards 810

snapshot monitor
diagnosing a suspended or

looping application 560
solving problems

numeric conversion
overflows 781

sort order
collating sequence 779
defining 779

sorting, specifying collating
sequence 498

source file
creating, overview of 47
file name extensions 49
modified source file, definition

of 49
requirements 51
SQL file extensions 47

source-level debuggers and
UDFs 470

sourced UDF 278
special registers

CURRENT EXPLAIN MODE 54
CURRENT FUNCTION

PATH 54
CURRENT QUERY

OPTIMIZATION 54
specific-name, passing to UDF 392
SPM_LOG_SIZE multisite update

configuration parameter 531
SPM_NAME multisite update

configuration parameter 530
SPM_RESYNC_AGENT_LIMIT

multisite update configuration
parameter 530

SQL
authorization considerations 33
authorization considerations for

dynamic SQL 34
authorization considerations for

static SQL 35
authorization considerations

using APIs 35
dynamically prepared 171

SQL_API_FN macro 402, 752
SQL-argument 394
SQL-argument, passing to UDF 388
SQL-argument-ind 394
SQL-argument-ind, passing to

UDF 389
SQL arguments, passing from DB2 to

a UDF 387
SQL Communications Area

(SQLCA) 14
SQL data types 418, 420
SQL Data Types

BIGINT 77
BLOB 77, 420
CHAR 77, 420
CLOB 77, 420
COBOL 682
conversion to C/C++ 615
DATE 77, 420
DBCLOB 77, 420
DECIMAL 77
DOUBLE 420

SQL Data Types (continued)
FLOAT 77, 420
FOR BIT DATA 420
FORTRAN 698
GRAPHIC 420
INTEGER 77, 420
Java 625
LONG GRAPHIC 420
LONG VARCHAR 77, 420
LONG VARGRAPHIC 77, 420
NUMERIC 420
OLE DB table function 428
REAL 77, 420
REXX 712
SMALLINT 77, 420
TIME 77, 420
TIMESTAMP 77, 420
VARCHAR 77, 420
VARGRAPHIC 77, 420

SQL data types, passed to a
UDF 402

SQL declare section 11
SQL/DS using DB2 Connect 773
SQL_FILE_READ, input value

option 358
SQL include file

for C/C++ applications 583
for COBOL applications 666
for FORTRAN applications 688

SQL procedures
CALL statements in 248
condition handlers 243
debugging 252, 255
dynamic SQL 246
log file 255
receiving result sets 251
recursion 249
RESIGNAL 245
restrictions 249
returning result sets 249
SIGNAL 245

SQL-result 394, 432
SQL-result, passing to UDF 388
SQL-result-ind 394, 432
SQL-result-ind, passing to UDF 389
SQL-state, passing to UDF 390
SQL statement execution

serialization 533
SQL statements

C/C++ syntax 586
categories 773
COBOL syntax 668
DB2 Connect support 786, 787
exception handlers 118
FORTRAN syntax 691

838 Application Development Guide

SQL statements (continued)
grouping using stored

procedures 189
interrupt handlers 118
REXX syntax 705
saving end user requests 153
signal handlers 118
supported in REXX 706

SQL_WCHART_CONVERT
preprocessor macro 611

SQL1252A include file
for COBOL applications 668
for FORTRAN applications 690

SQL1252B include file
for COBOL applications 668
for FORTRAN applications 690

SQL92 779
SQLADEF include file

for C/C++ applications 583
SQLAPREP include file

for C/C++ applications 583
for COBOL applications 666
for FORTRAN applications 688

SQLCA
avoiding multiple definitions 15
error reporting in buffered

insert 551
incomplete insert when error

occurs 551
multithreading

considerations 534
SQLERRMC field 776, 785
SQLERRP field 776

SQLCA_92 include file
for COBOL applications 666
for FORTRAN applications 689

SQLCA_92 structure
include file

for FORTRAN
applications 689

SQLCA_CN include file 688
SQLCA_CS include file 688
SQLCA include file

for C/C++ applications 583
for COBOL applications 666
for FORTRAN applications 688

SQLCA predefined variable 708
SQLCA.SQLERRD settings on

CONNECT 518
SQLCA structure

defining, sample programs 105
include file

for COBOL applications 666
for FORTRAN

applications 688

SQLCA structure (continued)
include file for C/C++ 583
merged multiple structures 559
multiple definitions 116
overview 115
reporting errors 560
requirements 115
sqlerrd 559
SQLERRD(6) field 560
SQLWARN1 field 77
using in stored procedures 754
warnings 77

SQLCHAR structure
passing data with 151

SQLCLI include file
for C/C++ applications 583

SQLCLI1 include file
for C/C++ applications 583

SQLCODE
in Java programs 627
including SQLCA 15
platform differences 780
reporting errors 560
standalone 779
structure 115

SQLCODE -1015 559
SQLCODE -1034 559
SQLCODE -1224 559
SQLCODES include file

for C/C++ applications 583
for COBOL applications 666
for FORTRAN applications 689

SQLDA
multithreading

considerations 534
SQLDA include file

for C/C++ applications 583
for COBOL applications 666
for FORTRAN applications 689

sqlda.n.SQLDAT 753
sqlda.n.SQLDATALEN 753
sqlda.n.SQLDATATYPE_NAME 753
sqlda.n.SQLIND 753
sqlda.n.SQLLEN 753
sqlda.n.SQLLONGLEN 753
sqlda.n.SQLNAME.data 753
sqlda.n.SQLNAME.length 753
sqlda.n.SQLTYPE 753
sqlda.SQLDABC 753
sqlda.SQLDAID 753
sqlda.SQLN 753
SQLDA structure

association with PREPARE
statement 128

creating (allocating) 147

SQLDA structure (continued)
creating, host language

examples 148
declaring 143
declaring sufficient SQLVAR

entities 145
fields used in stored procedures

SQLDATA 754
SQLIND 754
SQLLEN 754
SQLTYPE 754

initializing for stored procedure
(DB2DARI) 751

input-SQLDA procedure, sample
of 764

manipulation with DB2DARI
stored procedure 753

passing data with 151
preparing statements using

minimum 144
server input procedure, sample

of 770
used to pass blocks of data 543
using, sample program 154
using in stored procedures 754

SQLDACT include file 689
SQLDATA field 754
SQLDB2, registering for REXX 704
SQLDB2 REXX API 703, 716
sqldbchar and wchar_t, selecting

data types 610
sqldbchar C/C++ type 615
sqldbchar data type 406, 407, 409,

610
SQLDBS, registering for REXX 704
SQLDBS REXX API 703
SQLE819A include file

for C/C++ applications 584
for COBOL applications 667
for FORTRAN applications 689

SQLE819B include file
for C/C++ applications 584
for COBOL applications 667
for FORTRAN applications 689

SQLE850A include file
for COBOL applications 667
for FORTRAN applications 690

SQLE850B include file
for COBOL applications 667
for FORTRAN applications 690

SQLE859A include file
for C/C++ applications 584

SQLE859B include file
for C/C++ applications 584

Index 839

SQLE932A include file
for C/C++ applications 584
for COBOL applications 667
for FORTRAN applications 690

SQLE932B include file
for C/C++ applications 584
for COBOL applications 667
for FORTRAN applications 690

sqleAttachToCtx() API 533
SQLEAU include file

for C/C++ applications 584
for COBOL applications 666
for FORTRAN applications 689

sqleBeginCtx() API 533
sqleDetachFromCtx() API 533
sqleEndCtx() API 533
sqleGetCurrentCtx() API 533
sqleInterruptCtx() API 533
SQLENV include file

for C/C++ applications 584
for COBOL applications 667
for FORTRAN applications 689

SQLERRD(1) 507, 516, 518
SQLERRD(2) 507, 516, 518
SQLERRD(3)

in an XA environment 541
SQLERRMC field of SQLCA 507,

776, 785
SQLERRP field of SQLCA 776
sqleSetTypeCtx() API 533
SQLETSD include file

for COBOL applications 667
SQLException

handling 121
retrieving SQLCODE from 627
retrieving SQLMSG from 627
retrieving SQLSTATE from 627

SQLEXEC
processing SQL statements in

REXX 705
SQLEXEC, registering for

REXX 704
SQLEXEC REXX API 703
SQLEXT include file

for CLI applications 584
SQLIND field 754
sqlint64 C/C++ type 615
SQLISL predefined variable 708
SQLJ (Embedded SQL for Java)

applets 638
calling stored procedures 646
db2profc command 637
db2profp command 637
declaring cursors 640
declaring iterators 640

SQLJ (Embedded SQL for Java)
(continued)

embedding SQL statements
in 639

example clauses 639
example program using 642
holdability 640
host variables 646
Java Database Connectivity

(JDBC) interoperability 658
overview 637
positioned DELETE

statement 640
positioned UPDATE

statement 640
profconv command 637
restrictions 638
returnability 640
translator command 637

SQLJ (Embedded SQLJ for Java)
comparison with Java Database

Connectivity (JDBC) 623
SQLJACB include file

for C/C++ applications 585
SQLLEN field 754
SQLMON include file

for C/C++ applications 585
for COBOL applications 668
for FORTRAN applications 690

SQLMONCT include file
for COBOL applications 668

SQLMSG
in Java programs 627

SQLMSG predefined variable 708
SQLRDAT predefined variable 708
SQLRIDA predefined variable 708
SQLRODA predefined variable 708
SQLSTATE

differences 780
in CLI 170
in Java programs 627
in SQLERRMC field of

SQLCA 785
standalone 779

SQLSTATE field, in error
messages 115

SQLSTATE include file
for C/C++ applications 585
for COBOL applications 668
for FORTRAN applications 690

SQLSYSTM include file
for C/C++ applications 585

SQLTYPE field 754
sqludf_append API 434
sqludf_create_locator API 434

sqludf_free_locator API 434
sqludf.h include file 402
sqludf.h include file for UDFs 411
SQLUDF include file

description 411
for C/C++ applications 585
UDF interface 387

sqludf_length API 434
sqludf_substr API 434
SQLUTBCQ include file

for COBOL applications 668
SQLUTBSQ include file

for COBOL applications 668
SQLUTIL include file

for C/C++ applications 585
for COBOL applications 668
for FORTRAN applications 691

SQLUV include file
for C/C++ applications 585

SQLUVEND include file
for C/C++ applications 585

SQLVAR entities
declaring sufficient number

of 145
variable number of,

declaring 143
SQLWARN structure, overview

of 115
SQLXA include file

for C/C++ applications 585
SQLZ_DISCONNECT_PROC return

value 755
SQLZ_HOLD_PROC return

value 755
statement handle 170
statements

ACQUIRE 786
BEGIN DECLARE SECTION 11
call 782
COMMIT 18
COMMIT WORK RELEASE 787
connect 776
CONNECT 16
CREATE STORGROUP 774
CREATE TABLESPACE 774
DECLARE 786, 787
DELETE 775
DESCRIBE 786, 787
END DECLARE SECTION 11
GRANT 776
INCLUDE SQLCA 14
INSERT 775
LABEL ON 786
PREPARE 787
ROLLBACK 19, 777

840 Application Development Guide

statements (continued)
SELECT 775
SET CURRENT 787
UPDATE 775

STATIC.SQB COBOL program
listing 69

STATIC.SQC C program listing 66
static SQL

coding statements to retrieve and
manipulate data 71

comparing to dynamic SQL 128
considerations 128
DB2 Connect support 773
overview 61
precompiling, advantages of 57
sample program 63
static update programming

example 105
transform groups for structured

types 321
using host variables 71

Static.sqlj Java program listing 67
static types 295
storage

allocating to hold row 146
declaring sufficient SQLVAR

entities 143
storage allocation for unequal code

pages 516
Stored Procedure Builder

debug table 652
environment settings 651
features 784
overview 783

stored procedures
advantages 188
allocating storage 192
allowed SQL statements in 207
application logic

consideration 29
application troubleshooting 236
architecture 190
C++ consideration 222
CALL statement 192
CALL statements in 248
character conversion 503
character conversions, for

EUC 523
Chinese (Traditional) code

sets 515
client application 192
code page considerations 222
CONTAINS SQL clause 207
CREATE PROCEDURE

statement 193

stored procedures (continued)
creating and using in Java 649
db2dari executable 209
debugging 223

using Stored Procedure
Builder 651

declaring parameter modes 193
example 206
EXTERNAL clause 194
FOR BIT DATA

considerations 222
general 782
graphic host variable

considerations 222
host variables 192
initializing REXX variables 718
input-SQLDA procedure, sample

of 764
input-SQLDA stored procedure,

sample of 770
invoking 192
Japanese code sets 515
LANGUAGE clause 196
languages supported 196
location 194
multisite update

considerations 223
nested 208
NOT FENCED 223
OUT parameter client

program 212
overloading names 193
overview of 187, 192
PARAMETER STYLE clause 198
parameters 193, 206
passing DBINFO structures 205
path 194
PROGRAM TYPE clause 197
registering in Java 649
registering with CREATE

PROCEDURE 193
requirements for 190
restrictions 209
returning result sets 225
REXX applications 718
using the SQLDA and SQLCA

structures 754
where to place 194
written as a main function 197

stored procedures (DB2DARI)

calling convention
parameter conversion 752
SQL_API_FN 752

data structure usage 753
NOT FENCED 763

stored procedures (DB2DARI)
(continued)

parameter variables
sqlda.n.SQLDAT 753
sqlda.n.SQLDATALEN 753
sqlda.n.SQLDATATYPE_NAME 753
sqlda.n.SQLIND 753
sqlda.n.SQLLEN 753
sqlda.n.SQLLONGLEN 753
sqlda.n.SQLNAME.data 753
sqlda.n.SQLNAME.length 753
sqlda.n.SQLTYPE 753
sqlda.SQLDABC 753
sqlda.SQLDAID 753
sqlda.SQLN 753

restrictions 753
return values 755
using indicator variables 753

storing large objects 267
String 625
string search and defining UDFs

example 372
string search on BLOBs 373
string search over UDT

example 373
strong typing and distinct

types 277
structure definitions in sqludf.h 411
Structured Query Language (SQL)

statements, summary 33
table of supported

statements 723
structured types

accessing subtypes in type
hierarchy 295

advantages 284
attributes 284
binding in subtypes with

tranform functions 336
comparing instances with 309
constructor functions 288
creating an instance of 288
creating typed tables 291
declaring host variables for 340
defining behavior for 290
defining structured type

attributes for 314
DESCRIBE statement 340
dynamic types 295
hierarchy 285
inheritance 284
inserting instances into

columns 314
instantiable types 295
invoking methods of 314

Index 841

structured types (continued)
invoking methods on 290
MODE DB2SQL clause 284
mutator methods 289
noninstantiable types 295
observer methods 289
overview 284
passing instances to client

applications 327
referring to row objects 287
representation types 288
retrieving attribute values 289
retrieving instances as single

values 316
retrieving internal ID of 308
retrieving schema name of 308
retrieving subtype attributes

of 316
retrieving type name of 308
returning information about 318
static types 295
storing 285
storing as rows 291
storing in columns 313
storing objects in columns 293
updating attributes of 289, 316,

317
subtables

creating 291
inheriting attributes from

subtables 297
subtitutability 292, 295
subtypes 285

binding in with tranform
functions 336

returning attributes using
OUTER 310

writing transform functions
for 332

success code 15
supertypes 285
surrogate functions 474
suspended application

diagnosing 560
symbol substitutions, C/C++

language restrictions 600
Sync Point Manager 531
syntax

character host variables 592
declare section

in COBOL 671
in FORTRAN 693

declare section in C/C++ 589
embedded SQL statement

comments in COBOL 669

syntax (continued)
embedded SQL statement

(continued)
comments in FORTRAN 692
in COBOL 668
in FORTRAN 691

embedded SQL statement
avoiding line breaks 587

embedded SQL statement
comments in C/C++ 587

embedded SQL statement
comments in REXX 707

embedded SQL statement in
C/C++ 586

embedded SQL statement
substitution of white space
characters 588

graphic host variable in
C/C++ 593

processing SQL statement in
REXX 705

syntax for referring to
functions 377

SYSCAT.FUNCMAPOPTIONS
catalog view 574

SYSCAT.FUNCTIONS catalog
view 575

SYSIBM.SYSPROCEDURES catalog
(OS/390) 782

SYSSTAT.FUNCTIONS catalog
view 575

system catalog
dropping view implications 306
using 781

system catalog views
prototyping utility 41

system configuration parameter for
shared memory size 441

System.err Java I/O stream 412
System.in Java I/O stream 412
System.out Java I/O stream 412

T
table

committing changes 18
data source tables 564
lob-options-clause of the CREATE

TABLE statement 343
positioning cursor at end 104
tablespace-options-clause of the

CREATE TABLE statement 343
table check constraint, data value

control consideration 26
table function 388

SQL-result argument 388
table function example 376

table functions 370
application design

considerations 432
contents of call-type

argument 395
in Java 412
OLE DB 423

table names
resolving unqualified 54

tables
temporary 177

tablespace-options-clause of the
CREATE TABLE statement 343

target partition
behavior without buffered

insert 549
temporary tables 177
territory

in SQLERRMC field of
SQLCA 776

test data
generating 38

test database
CREATE DATABASE API 37
creating 36
recommendations 37

testing and debugging utilities
database system monitor 40
Explain facility 40
flagger 40
system catalog views 40
updating system catalog

statistics 40
testing environment

for partitioned
environments 558

setting up 36
test databases, guidelines for

creating 36
testing your UDF 470
tfweather_u table function C

program listing 453
TIME parameter to UDF 408
TIME SQL data type 77, 420

C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

timeout on a lock 780
TIMESTAMP parameter to

UDF 408

842 Application Development Guide

TIMESTAMP SQL data type 77, 420
C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

TM_DATABASE multisite update
configuration parameter 530

TO SQL transforms 321
TP_MON_NAME multisite update

configuration parameter 530
transaction

beginning a transaction 18
committing work done 18
description 17
ending a transaction 18
ending the program

COMMIT and ROLLBACK
statements 19

implicitly ending 19
rolling back work done 19
savepoints 179

transaction log, buffered insert
consideration 550

transaction log consideration
for buffered insert 550

transaction processing monitors
X/Open XA Interface 539

transform function
binding in subtypes 336

transform functions
associating with structured

types 318
handling subtype

parameters 332
mapping structured type

attributes 321
passing objects to external

routines 321, 322
passing structured types to client

applications 327
summary table 332

transform groups
for dynamic SQL 321
for external routines 320
for static SQL 321
naming recommendations 319

transition tables
based on type of trigger

event 480
OLD_TABLE and

NEW_TABLE 480

transition variables, OLD and NEW
transition variables based on type

of trigger event 479
translation

character 775
TREAT expression 316
trigger event such as UPDATE,

INSERT or DELETE 476
triggers

activation time 478
AFTER triggers 478, 483
and DB2 object extensions 267
application logic

consideration 29
BEFORE triggers 478, 483
benefits 474
cascading 484
data relationship

consideration 28
definition 473
DELETE operation 476
functions with SQL triggered

statements
RAISE_ERROR built-in

function 483
INSERT operation 476
interactions with referential

constraints 485
multiple triggers, ordering

of 485
overview 475
referential constraints,

interactions with using
triggers 485

set of affected rows 477
synergy with UDTs, UDFs, and

LOBs 486
transition tables 480
transition variables 479
trigger event 476
trigger granularity 477
triggered action condition 482
triggered SQL statement 482
UPDATE operation 476
WHEN clause 482
why use triggers 473

trigraph sequences 581

troubleshooting

stored procedures 236
using Visual Studio 236

truncation

host variables 77
indicator variables 77

type conversion
between SQL types and OLE

automation types 418
type decoration

in stored procedures 222
in UDFs 442

type decoration consideration
C++ 582

TYPE_ID function 308
type mapping

OLE automation types and
BASIC types 420

OLE automation types and C++
types 420

type mappings 569
dropping restrictions 305

TYPE_NAME function 308
TYPE predicate

restricting returned types
with 309

TYPE_SCHEMA function 308
typed tables

accessing subtypes in type
hierarchy 292

controlling privileges on 297
creating 296
creating subtables 291
defining relationships

between 292, 301
defining the scope of 298
definition of 291
determining hierarchy

position 297
inserting object identifiers 300
inserting objects into 298
object identifier column 296
returning subtype attributes 310
selecting data from 306
self-referencing 301

typed views
assigning scope to reference

columns in 305
body of 304
creating 303
creating on root types 303
creating on subtypes 303

types
ROWID 776

types or arguments, promotions in
UDFs 402

U
UCS-2 511
UDFs (User-defined functions)

allocating dynamic memory in
the UDF 439

Index 843

UDFs (User-defined functions)
(continued)

and DB2 object extensions 267
C++ consideration 442
calling convention 402
casting 383
caveats 441
Chinese (Traditional) code

sets 515
code page differences 441
coding in Java 412
concepts 369
considerations when using

protected resources 441
creating and using in Java 412
db2udf executable 441
debugging your UDF 470
definition 365
DETERMINISTIC 431
example 447
examples of UDF code 443
EXTERNAL ACTION

option 439
FENCED option 439
function path 369
function selection algorithm 369
general considerations 381
hints and tips for coding 439
implementing 366
infix notation 381
input and output to screen and

keyboard 441
interface between DB2 and a

UDF 387
invoking 377

parameter markers in
functions 379

qualified function
reference 379

unqualified function
reference 380

Japanese code sets 515
Java consideration 387
list of types and their

representations in UDFs 402
LOB locator usage scenarios 438
LOB types 382
NOT DETERMINISTIC 430
NOT DETERMINISTIC

option 439
NOT FENCED 445
NOT NULL CALL 445
NOT NULL CALL option 439
OLE automation UDFs 416

UDFs (User-defined functions)
(continued)

output and input to screen and
keyboard 441

overloading function names 369
passing arguments from DB2 to a

UDF 387
process of implementation 370
rationale 366
re-entrant UDFs 430
referring to functions 377
registering 371
restrictions and caveats 441
save state in function 430
schema-name and UDFs 369
SCRATCHPAD 431
scratchpad considerations 430
shared memory size 441
sourced 278
SQL_API_FN 444
SQL data types, how they are

passed 402
SQLUDF include file 387, 411
SUBSTR built-in function 450
summary of function

references 380
system configuration parameter

for shared memory size 441
table functions 432
type of functions 370
unqualified reference 369
using LOB locators 434
writing 371, 385

UDFs (User-defined Functions)
synergy with triggers, UDTs, and

LOBs 486
UDFs and LOB types 382
UDTs (User-defined types)

and DB2 object extensions 267
UDTs (User-defined Types)

synergy with triggers, UDFs, and
LOBs 486

unambiguous cursors 777
unequal code pages 516

allocating storage 516
unfenced stored procedures 223
Unicode

Java 657
Unicode (UCS-2)

character conversion 524
character conversion

overflow 522
Chinese (Traditional) code

sets 511
Japanese code sets 511

Unicode (UCS-2) (continued)
UDF considerations 515

unique key violation
buffered insert 551

unit of work
completing 82
cursor considerations 82
distributed 525
remote 525

unqualified function reference
example 380

unqualified reference 369
unqualified table names

resolving 54
UPDAT.CMD REXX program

listing 113
UPDAT.SQB COBOL program

listing 111
UPDAT.SQC C program listing 107
Updat.sqlj Java program listing 109
update operation 475
UPDATE operation and

triggers 476
UPDATE statement

DB2 Connect support 775
USAGE clause in COBOL types 682
use of distinct types in UNION

example 282
user-defined collating

sequence 779, 789
user-defined function, application

logic consideration 29
user-defined sourced functions on

distinct types example 280
user-defined type (UDT)

dropping restrictions 305
user defined types

supported by DB2 Connect 775
USER MAPPING in OLE DB table

functions 427
user updatable catalog statistics

prototyping utility 41
using

Java stored procedures 649
Java UDFs 412

using a locator to work with a CLOB
value example 345

using qualified function reference
example 379

UTILAPI.C program listing 119
utility APIs

include file for C/C++
applications 585

include file for COBOL
applications 667, 668

844 Application Development Guide

utility APIs (continued)
include file for FORTRAN

applications 691

V
V5SPCLI.SQC C program

listing 767
V5SPSRV.SQC C program

listing 771
VALIDATE RUN

DB2 Connect support 777
VALUES clause

on INSERT statement 549
VARCHAR 391, 392
VARCHAR FOR BIT DATA

parameter to UDF 405
VARCHAR SQL data type 77, 420

C/C++ 615
C or C++ 620
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

VARCHAR structured form C/C++
type 615

VARGRAPHIC data 620
VARGRAPHIC parameter to

UDF 407
VARGRAPHIC SQL data type 77,

420
C/C++ 615
COBOL 682
FORTRAN 698
Java 625
Java stored procedures

(DB2GENERAL) 756
OLE DB table function 428
REXX 712

variable-length strings 775
variables

SQLCODE 620, 685, 700
SQLSTATE 620, 685, 700

variables, declaring 11
variables, predefined in REXX 708
Varinp.java Java program

listing 166
VARINP.SQB COBOL program

listing 168
VARINP.SQC C program listing 164
view

altering 306
data source views 564

view (continued)
data value control

consideration 27
dropping 306
dropping implications for system

catalogs 306
restrictions 306

viewing
online information 808

views
system catalogs 781

Visual Basic
supported in DB2 25

Visual C++
IBM DB2 Universal Database

Project Add-In 30
supported in DB2 25

W
warning message, truncation 77
wchar_t and sqldbchar, selecting

data types 610
wchar_t C/C++ type 615
wchar_t data type 406, 407, 409,

610
WCHARTYPE

guidelines 612
in stored procedures 222

WCHARTYPE precompiler
option 224, 611

weight, definition of 494
WHENEVER SQLERROR

CONTINUE statement 15
WHENEVER statement

caution in using with SQL
statements 15

error indicators with SQLCA 15
in error handling 116

wild moves, DB2 checking of 470
Windows code pages

DB2CODEPAGE registry
variable 499

supported code pages 499
Windows registration database

for OLE automation UDFs 417
WITH OPTIONS clause

defining column options
with 298

defining reference column
scope 298

wizards
add database 810, 811
backup database 810
completing tasks 810
configure multisite update 810

wizards (continued)
create database 811
create table 811
create table space 811
index 811
performance configuration 811
restore database 811

work environment
setting up 36
test databases, guidelines for

creating 36

X
X/Open XA Interface 539

API restrictions 541
characteristics of transaction

processing 539
CICS environment 539
COMMIT and ROLLBACK 540
cursors declared WITH

HOLD 540
DISCONNECT 539
multithreaded application 542
savepoints 183
SET CONNECTION 539
single-threaded application 542
SQL CONNECT 540
transactions 539
XA environment 541
XASerialize 542

Index 845

846 Application Development Guide

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1993, 2000 847

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this document,
go to the following Web page: http://www.ibm.com/support/, and then
select the IBM Software Support Handbook link near the bottom of the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

848 Application Development Guide

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2949-00

	Contents
	Part 1. DB2 Application Development Concepts
	Chapter 1. Getting Started with DB2 ApplicationDevelopment
	About This Book
	Who Should Use This Book
	How to Use This Book
	Conventions
	Related Publications

	Chapter 2. Coding a DB2 Application
	Prerequisites for Programming
	DB2 Application Coding Overview
	Declaring and Initializing Variables
	Declaring Variables that Interact with the Database Manager
	Handling Errors and Warnings
	Using Additional Nonexecutable Statements

	Connecting to the Database Server
	Coding Transactions
	Beginning a Transaction
	Ending a Transaction

	Ending the Program
	Implicitly Ending a Transaction
	On Most Supported Operating Systems
	On Windows 32-bit Operating Systems
	When Using the DB2 Context APIs

	Application Pseudocode Framework

	Designing an Application For DB2
	Access to Data
	Embedded SQL
	DB2 Call Level Interface (DB2 CLI) and Open Database Connectivity(ODBC)
	JDBC
	Microsoft Specifications
	Perl DBI
	Query Products

	Data Value Control
	Data Types
	Unique Constraints
	Table Check Constraints
	Referential Integrity Constraints
	Views with Check Option
	Application Logic and Program Variable Types

	Data Relationship Control
	Referential Integrity Constraints
	Triggers
	Application Logic

	Application Logic at the Server
	Stored Procedures
	User-Defined Functions
	Triggers

	The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
	Activating the IBM DB2 Universal Database Project Add-In for MicrosoftVisual C++
	Activating the IBM DB2 Universal Database Tools Add-In for MicrosoftVisual C++

	Supported SQL Statements
	Authorization Considerations
	Dynamic SQL
	Static SQL
	Using APIs
	Example

	Database Manager APIs Used in Embedded SQL or DB2 CLI Programs
	Setting Up the Testing Environment
	Creating a Test Database
	Creating Test Tables
	Generating Test Data

	Running, Testing and Debugging Your Programs
	Prototyping Your SQL Statements

	Part 2. Embedding SQL in Applications
	Chapter 3. Embedded SQL Overview
	Embedding SQL Statements in a Host Language
	Creating and Preparing the Source Files
	Creating Packages for Embedded SQL
	Precompiling
	Source File Requirements

	Compiling and Linking
	Binding
	Renaming Packages
	Binding Dynamic Statements
	Resolving Unqualified Table Names
	Other Binding Considerations

	Advantages of Deferred Binding
	DB2 Bind File Description Utility - db2bfd
	Application, Bind File, and Package Relationships
	Timestamps
	Rebinding

	Chapter 4. Writing Static SQL Programs
	Characteristics and Reasons for Using Static SQL
	Advantages of Static SQL
	Example: Static SQL Program
	How the Static Program Works
	C Example: STATIC.SQC
	Java Example: Static.sqlj
	COBOL Example: STATIC.SQB

	Coding SQL Statements to Retrieve and Manipulate Data
	Retrieving Data

	Using Host Variables
	Declaration Generator - db2dclgn

	Using Indicator Variables
	Data Types
	Using an Indicator Variable in the STATIC program

	Selecting Multiple Rows Using a Cursor
	Declaring and Using the Cursor
	Cursors and Unit of Work Considerations
	Read Only Cursors
	WITH HOLD Option

	Example: Cursor Program
	How the Cursor Program Works
	C Example: CURSOR.SQC
	Java Example: Cursor.sqlj
	COBOL Example: CURSOR.SQB

	Updating and Deleting Retrieved Data
	Updating Retrieved Data
	Deleting Retrieved Data
	Types of Cursors
	Example: OPENFTCH Program
	How the OPENFTCH Program Works
	C Example: OPENFTCH.SQC
	Java Example: Openftch.sqlj
	COBOL Example: OPENFTCH.SQB

	Advanced Scrolling Techniques
	Scrolling Through Data that has Already Been Retrieved
	Keeping a Copy of the Data
	Retrieving the Data a Second Time
	Retrieving from the Beginning
	Retrieving from the Middle
	Order of Rows in the Second Result Table
	Retrieving in Reverse Order

	Establishing a Position at the End of a Table
	Updating Previously Retrieved Data
	Example: UPDAT Program
	How the UPDAT Program Works
	C Example: UPDAT.SQC
	Java Example: Updat.sqlj
	COBOL Example: UPDAT.SQB
	REXX Example: UPDAT.CMD

	Diagnostic Handling and the SQLCA Structure
	Return Codes
	SQLCODE and SQLSTATE
	Token Truncation in SQLCA Structure
	Handling Errors using the WHENEVER Statement
	Exception, Signal, Interrupt Handler Considerations
	Exit List Routine Considerations
	Using GET ERROR MESSAGE in Example Programs
	C Example: UTILAPI.C
	Java Example: Catching SQLException
	COBOL Example: CHECKERR.CBL
	REXX Example: CHECKERR Procedure

	Chapter 5. Writing Dynamic SQL Programs
	Why Use Dynamic SQL?
	Dynamic SQL Support Statements
	Comparing Dynamic SQL with Static SQL

	Using PREPARE, DESCRIBE, FETCH and the SQLDA
	Declaring and Using Cursors
	Example: Dynamic SQL Program
	How the Dynamic Program Works
	C Example: DYNAMIC.SQC
	Java Example: Dynamic.java
	COBOL Example: DYNAMIC.SQB
	REXX Example: DYNAMIC.CMD

	Declaring the SQLDA
	Preparing the Statement Using the Minimum SQLDA Structure
	Allocating an SQLDA with Sufficient SQLVAR Entries
	Describing the SELECT Statement
	Acquiring Storage to Hold a Row
	Processing the Cursor
	Allocating an SQLDA Structure
	Passing Data Using an SQLDA Structure
	Processing Interactive SQL Statements
	Determining Statement Type
	Varying-List SELECT Statement

	Saving SQL Requests from End Users
	Example: ADHOC Program
	How the ADHOC Program Works
	C Example: ADHOC.SQC

	Variable Input to Dynamic SQL
	Using Parameter Markers
	Example: VARINP Program
	How the VARINP Program Works
	C Example: VARINP.SQC
	Java Example: Varinp.java
	COBOL Example: VARINP.SQB

	The DB2 Call Level Interface (CLI)
	Comparing Embedded SQL and DB2 CLI
	Advantages of Using DB2 CLI
	Deciding on Embedded SQL or DB2 CLI

	Chapter 6. Common DB2 Application Techniques
	Generated Columns
	Identity Columns
	Declared Temporary Tables
	Controlling Transactions with Savepoints
	Savepoint Restrictions
	Savepoints and Data Definition Language (DDL)
	Savepoints and Buffered Inserts
	Using Savepoints with Cursor Blocking
	Savepoints and XA Compliant Transaction Managers

	Part 3. Stored Procedures
	Chapter 7. Stored Procedures
	Stored Procedure Overview
	Advantages of Stored Procedures
	Writing Stored Procedures
	Client Application
	Allocating Host Variables
	Calling Stored Procedures
	Running the Client Application

	Stored Procedures on the Server
	Registering Stored Procedures
	Variable Declaration and CREATE PROCEDURE Examples
	SQL Statements in Stored Procedures
	Nested Stored Procedures
	Restrictions

	Writing OLE Automation Stored Procedures
	Example OUT Parameter Stored Procedure
	OUT Client Description
	Example OUT Client Application: Java
	Example OUT Client Application: C
	OUT Stored Procedure Description
	Example OUT Parameter Stored Procedure: Java
	Example OUT Parameter Stored Procedure: C

	Code Page Considerations
	C++ Consideration
	Graphic Host Variable Considerations
	Multisite Update Consideration

	NOT FENCED Stored Procedures
	Returning Result Sets from Stored Procedures
	Example: Returning a Result Set from a Stored Procedure
	C Example: SPSERVER.SQC (one_result_set_to_client)
	Java Example: Spserver.java (resultSetToClient)

	Resolving Problems

	Chapter 8. Writing SQL Procedures
	Comparison of SQL Procedures and External Procedures
	Valid SQL Procedure Body Statements
	Issuing CREATE PROCEDURE Statements
	Handling Conditions in SQL Procedures
	Declaring Condition Handlers
	SIGNAL and RESIGNAL Statements
	SQLCODE and SQLSTATE Variables in SQL Procedures

	Using Dynamic SQL in SQL Procedures
	Nested SQL Procedures
	Passing Parameters Between Nested SQL Procedures
	Returning Result Sets From Nested SQL Procedures
	Restrictions on Nested SQL Procedures

	Returning Result Sets From SQL Procedures
	Returning Result Sets to Caller or Client
	Returning Result Sets to the Client
	Returning Result Sets to the Caller

	Receiving Result Sets as a Caller

	Debugging SQL Procedures
	Displaying Error Messages for SQL Procedures
	Debugging SQL Procedures Using Intermediate Files

	Examples of SQL Procedures

	Chapter 9. IBM DB2 Stored Procedure Builder
	What is Stored Procedure Builder?
	Advantages of Using Stored Procedure Builder
	Creating New Stored Procedures
	Working with Existing Stored Procedures
	Creating Stored Procedure Builder Projects
	Debugging Stored Procedures

	Part 4. Object-Relational Programming
	Chapter 10. Using the Object-Relational Capabilities
	Why Use the DB2 Object Extensions?
	Object-Relational Features of DB2
	User-defined Distinct Types
	Defining Behavior for Objects: User-defined Routines

	Chapter 11. User-defined Distinct Types
	Why Use Distinct Types?
	Defining a Distinct Type
	Resolving Unqualified Distinct Types
	Examples of Using CREATE DISTINCT TYPE
	Example: Money
	Example: Job Application

	Defining Tables with Distinct Types
	Example: Sales
	Example: Application Forms

	Manipulating Distinct Types
	Examples of Manipulating Distinct Types
	Example: Comparisons Between Distinct Types and Constants
	Example: Casting Between Distinct Types
	Example: Comparisons Involving Distinct Types
	Example: Sourced UDFs Involving Distinct Types
	Example: Assignments Involving Distinct Types
	Example: Assignments in Dynamic SQL
	Example: Assignments Involving Different Distinct Types
	Example: Use of Distinct Types in UNION

	Chapter 12. Working with Complex Objects: User-DefinedStructured Types
	Structured Types Overview
	Creating a Structured Type Hierarchy
	Reference Types and Their Representation Types
	Casting and Comparing Reference Types
	Other System-Generated Routines
	Defining Behavior for Types

	Storing Objects in Typed Tables
	Defining Relationships Between Objects in Typed Tables

	Storing Objects in Columns
	Additional Properties of Structured Types

	Using Structured Types in Typed Tables
	Creating a Typed Table
	Defining the Type of the Table
	Naming the Object Identifier
	Specifying the Position in the Table Hierarchy
	Indicating that SELECT Privileges are Inherited
	Defining Column Options
	Defining the Scope of a Reference Column

	Populating a Typed Table
	Using Reference Types
	Comparing Reference Types
	Using References to Define Semantic Relationships
	Differences Between Referential Integrity and Scoped References

	Creating a Typed View
	Dropping a User-Defined Type (UDT) or Type Mapping
	Altering or Dropping a View
	Querying a Typed Table
	Queries that Dereference References
	DEREF Built-in Function
	Other Type-related Built-in Functions

	Additional Query Specification Techniques
	Returning Objects of a Particular Type Using ONLY
	Restricting Returned Types Using a TYPE Predicate
	Returning All Possible Attributes Using OUTER

	Additional Hints and Tips
	Defining System-generated Object Identifiers
	Creating Constraints on Object Identifier Columns

	Creating and Using Structured Types as Column Types
	Inserting Structured Type Instances into a Column
	Defining Tables with Structured Type Columns
	Defining Types with Structured Type Attributes
	Inserting Rows that Contain Structured Type Values
	Retrieving and Modifying Structured Type Values
	Retrieving Attributes
	Accessing the Attributes of Subtypes
	Modifying Attributes
	Returning Information About the Type

	Associating Transforms with a Type
	Recommendations for Naming Transform Groups

	Where Transform Groups Must Be Specified
	Specifying Transform Groups for External Routines
	Setting the Transform Group for Dynamic SQL
	Setting the Transform Group for Static SQL

	Creating the Mapping to the Host Language Program: TransformFunctions
	Exchanging Objects with External Routines: Function Transforms
	Transform Function Summary
	Retrieving Subtype Data from DB2 (Bind Out)
	Returning Subtype Data to DB2 (Bind In)

	Working with Structured Type Host Variables
	Declaring Structured Type Host Variables
	Describing a Structured Type

	Chapter 13. Using Large Objects (LOBs)
	What are LOBs?
	Understanding Large Object Data Types (BLOB, CLOB, DBCLOB)
	Understanding Large Object Locators
	Example: Using a Locator to Work With a CLOB Value
	How the Sample LOBLOC Program Works
	C Sample: LOBLOC.SQC
	COBOL Sample: LOBLOC.SQB

	Example: Deferring the Evaluation of a LOB Expression
	How the Sample LOBEVAL Program Works
	C Sample: LOBEVAL.SQC
	COBOL Sample: LOBEVAL.SQB
	Indicator Variables and LOB Locators

	LOB File Reference Variables
	Example: Extracting a Document To a File
	How the Sample LOBFILE Program Works
	C Sample: LOBFILE.SQC
	COBOL Sample: LOBFILE.SQB

	Example: Inserting Data Into a CLOB Column

	Chapter 14. User-Defined Functions (UDFs) and Methods
	What are Functions and Methods?
	Why Use Functions and Methods?
	UDF And Method Concepts
	Implementing Functions and Methods
	Writing Functions and Methods
	Registering Functions and Methods
	Examples of Registering UDFs and Methods
	Example: Exponentiation
	Example: String Search
	Example: BLOB String Search
	Example: String Search over UDT
	Example: External Function with UDT Parameter
	Example: AVG over a UDT
	Example: Counting
	Example: Counting with an OLE Automation Object
	Example: Table Function Returning Document IDs

	Using Functions and Methods
	Referring to Functions
	Examples of Function Invocations
	Using Parameter Markers in Functions
	Using Qualified Function Reference
	Using Unqualified Function Reference
	Summary of Function References

	Chapter 15. Writing User-Defined Functions (UDFs) andMethods
	Description
	Interface between DB2 and a UDF
	The Arguments Passed from DB2 to a UDF
	Summary of UDF Argument Use
	How the SQL Data Types are Passed to a UDF
	Writing Scratchpads on 32-bit and 64-bit Platforms
	The UDF Include File: sqludf.h

	Creating and Using Java User-Defined Functions
	Coding a Java UDF
	Changing How a Java UDF Runs
	Table Function Execution Model for Java

	Writing OLE Automation UDFs
	Creating and Registering OLE Automation UDFs
	Object Instance and Scratchpad Considerations
	How the SQL Data Types are Passed to an OLE Automation UDF
	Implementing OLE Automation UDFs in BASIC and C++
	OLE Automation UDFs in BASIC
	OLE Automation UDFs in C++

	OLE DB Table Functions
	Creating an OLE DB Table Function
	Fully Qualified Rowset Names
	Defining a Server Name for an OLE DB Provider
	Defining a User Mapping
	Supported OLE DB Data Types

	Scratchpad Considerations
	Table Function Considerations
	Table Function Error Processing
	Scalar Function Error Processing
	Using LOB Locators as UDF Parameters or Results
	Scenarios for Using LOB Locators

	Other Coding Considerations
	Hints and Tips
	UDF Restrictions and Caveats

	Examples of UDF Code
	Example: Integer Divide Operator
	Example: Fold the CLOB, Find the Vowel
	Example: Counter
	Example: Weather Table Function
	Example: Function using LOB locators
	Example: Counter OLE Automation UDF in BASIC
	Example: Counter OLE Automation UDF in C++
	Example: Mail OLE Automation Table Function in BASIC

	Debugging your UDF

	Chapter 16. Using Triggers in an Active DBMS
	Why Use Triggers?
	Benefits of Triggers

	Overview of a Trigger
	Trigger Event
	Set of Affected Rows
	Trigger Granularity
	Trigger Activation Time
	Transition Variables
	Transition Tables
	Triggered Action
	Triggered Action Condition
	Triggered SQL Statements
	Functions Within SQL Triggered Statement

	Trigger Cascading
	Interactions with Referential Constraints
	Ordering of Multiple Triggers
	Synergy Between Triggers, Constraints, UDTs, UDFs, and LOBs
	Extracting Information
	Preventing Operations on Tables
	Defining Business Rules
	Defining Actions

	Part 5. DB2 Programming Considerations
	Chapter 17. Programming in Complex Environments
	National Language Support Considerations
	Collating Sequence Overview
	Collating Sequences
	Collating Sequence Sort Order: EBCDIC and ASCII Example
	Specifying a Collating Sequence

	Deriving Code Page Values
	Deriving Locales in Application Programs
	How DB2 Derives Locales

	National Language Support Application Development
	Coding SQL Statements
	Coding Remote Stored Procedures and UDFs
	Package Name Considerations in Mixed Code Page Environments
	Precompiling and Binding
	Executing an Application
	A Note of Caution
	Conversion Between Different Code Pages

	DBCS Character Sets
	Extended UNIX Code (EUC) Character Sets
	Running CLI/ODBC/JDBC/SQLJ Programs in a DBCS Environment
	Japanese and Traditional Chinese EUC and UCS-2 Code SetConsiderations
	Mixed EUC and Double-Byte Client and Database Considerations
	Considerations for Traditional Chinese Users
	Developing Japanese or Traditional Chinese EUC Applications
	Developing for Mixed Code Set Environments
	Applications Connected to a Unicode (UCS-2) Database

	Considerations for Multisite Updates
	Remote Unit of Work
	Multisite Update
	When to Use Multisite Update
	Coding SQL for a Multisite Update Application
	Precompiling a Multisite Update Application
	Specifying Configuration Parameters for a Multisite Update Application
	Multisite Update Restrictions

	Accessing Host or AS/400 Servers
	Multiple Thread Database Access
	Recommendations for Using Multiple Threads
	Multithreaded UNIX Applications Working with Code Page and CountryCode
	Potential Pitfalls when Using Multiple Threads
	Preventing Deadlocks for Multiple Contexts

	Concurrent Transactions
	Potential Pitfalls when Using Concurrent Transactions
	Preventing Deadlocks for Concurrent Transactions

	X/Open XA Interface Programming Considerations
	Application Linkage

	Working with Large Volumes of Data Across a Network

	Chapter 18. Programming Considerations in a PartitionedEnvironment
	Improving Performance
	Using FOR READ ONLY Cursors
	Using Directed DSS and Local Bypass
	Directed DSS
	Using Local Bypass

	Using Buffered Inserts
	Considerations for Using Buffered Inserts
	Restrictions on Using Buffered Inserts

	Example: Extracting Large Volume of Data (largevol.c)

	Creating a Test Environment
	Error-Handling Considerations
	Severe Errors
	Merged Multiple SQLCA Structures
	Identifying the Partition that Returned the Error

	Debugging
	Diagnosing a Looping or Suspended application

	Chapter 19. Writing Programs for DB2 Federated Systems
	Introduction to DB2 Federated Systems
	Accessing Data Source Tables and Views
	Working with Nicknames
	Cataloging Information about Data Source Tables and Views
	Considerations and Restrictions
	Defining Column Options
	Using Nicknames with Views

	Using Isolation Levels to Maintain Data Integrity

	Working with Data Type Mappings
	How DB2 Determines What Data Types to Define Locally
	Default Data Type Mappings
	How You Can Override Default Type Mappings and Create New Ones
	Defining a Type Mapping That Applies to One or More Data Sources
	Changing a Type Mapping for a Specific Table

	Using Distributed Requests to Query Data Sources
	Coding Distributed Requests
	A Request with a Subquery
	A Request with Set Operators
	A Request for a Join

	Using Server Options to Facilitate Optimization

	Invoking Data Source Functions
	Enabling DB2 to Invoke Data Source Functions
	Reducing the Overhead of Invoking a Function
	Specifying Function Names in the CREATE FUNCTION MAPPINGStatement
	Discontinuing Function Mappings

	Using Pass-Through to Query Data Sources Directly
	SQL Processing in Pass-Through Sessions
	Considerations and Restrictions
	Using Pass-Through with All Data Sources
	Using Pass-Through with Oracle Data Sources

	Part 6. Language Considerations
	Chapter 20. Programming in C and C++
	Programming Considerations for C and C++
	Language Restrictions for C and C++
	Trigraph Sequences for C and C++
	C++ Type Decoration Consideration

	Input and Output Files for C and C++
	Include Files for C and C++
	Including Files in C and C++

	Embedding SQL Statements in C and C++
	Host Variables in C and C++
	Naming Host Variables in C and C++
	Declaring Host Variables in C and C++
	Indicator Variables in C and C++
	Graphic Host Variable Declarations in C or C++
	LOB Data Declarations in C or C++
	LOB Locator Declarations in C or C++
	File Reference Declarations in C or C++
	Initializing Host Variables in C and C++
	C Macro Expansion
	Host Structure Support in C and C++
	Indicator Tables in C and C++
	Null-terminated Strings in C and C++
	Pointer Data Types in C and C++
	Using Class Data Members as Host Variables in C and C++
	Using Qualification and Member Operators in C and C++
	Handling Graphic Host Variables in C and C++
	Multi-byte Character Encoding in C and C++
	Selecting the wchar_t or sqldbchar Data Type in C and C++
	The WCHARTYPE Precompiler Option in C and C++

	Japanese or Traditional Chinese EUC, and UCS-2 Considerations in C andC++

	Supported SQL Data Types in C and C++
	FOR BIT DATA in C and C++

	SQLSTATE and SQLCODE Variables in C and C++

	Chapter 21. Programming in Java
	Programming Considerations for Java
	Comparison of SQLJ to JDBC
	Advantages of Java over Other Languages
	SQL Security in Java
	Source and Output Files for Java
	Java Class Libraries
	Java Packages
	Supported SQL Data Types in Java
	SQLSTATE and SQLCODE Values in Java
	Trace Facilities in Java
	Creating Java Applications and Applets
	How Does It Work?

	JDBC Programming
	How the DB2Appl Program Works
	JDBC Example: DB2Appl.java

	Distributing a JDBC Application
	Distributing and Running a JDBC Applet
	JDBC 2.0
	JDBC 2.0 Core API Support
	JDBC 2.0 Optional Package API Support
	JDBC 2.0 Compatibility

	SQLJ Programming
	DB2 SQLJ Support
	DB2 SQLJ Restrictions

	Embedding SQL Statements in Java
	Declaring Iterator Behavior in SQLJ
	SQLJ Example: App.sqlj

	Host Variables in Java
	Calls to Stored Procedures and Functions in SQLJ
	Compiling and Running SQLJ Programs
	SQLJ Translator Options

	Stored Procedures and UDFs in Java
	Where to Put Java Classes
	Updating Java Classes for Routines
	Debugging Stored Procedures in Java
	Preparing to Debug
	Populating the Debug Table
	Invoking the Debugger

	Java Stored Procedures and UDFs
	Installing, Replacing, and Removing JAR Files
	Function Definitions in Java

	Using LOBs and Graphical Objects With JDBC 1.22
	JDBC and SQLJ Interoperability
	Session Sharing
	Connection Resource Management in Java

	Chapter 22. Programming in Perl
	Programming Considerations for Perl
	Perl Restrictions
	Connecting to a Database Using Perl
	Fetching Results in Perl
	Parameter Markers in Perl
	SQLSTATE and SQLCODE Variables in Perl
	Perl DB2 Application Example

	Chapter 23. Programming in COBOL
	Programming Considerations for COBOL
	Language Restrictions in COBOL
	Input and Output Files for COBOL
	Include Files for COBOL
	Embedding SQL Statements in COBOL
	Host Variables in COBOL
	Naming Host Variables in COBOL
	Declaring Host Variables
	Indicator Variables in COBOL
	LOB Declarations in COBOL
	LOB Locator Declarations in COBOL
	File Reference Declarations in COBOL
	Host Structure Support in COBOL
	Indicator Tables in COBOL
	Using REDEFINES in COBOL Group Data Items
	Using BINARY/COMP-4 COBOL Data Types

	Supported SQL Data Types in COBOL
	FOR BIT DATA in COBOL

	SQLSTATE and SQLCODE Variables in COBOL
	Japanese or Traditional Chinese EUC, and UCS-2 Considerations for COBOL
	Object Oriented COBOL

	Chapter 24. Programming in FORTRAN
	Programming Considerations for FORTRAN
	Language Restrictions in FORTRAN
	Call by Reference in FORTRAN
	Debugging and Comment Lines in FORTRAN
	Precompiling Considerations for FORTRAN

	Input and Output Files for FORTRAN
	Include Files for FORTRAN
	Including Files in FORTRAN

	Embedding SQL Statements in FORTRAN
	Host Variables in FORTRAN
	Naming Host Variables in FORTRAN
	Declaring Host Variables
	Indicator Variables in FORTRAN
	LOB Declarations in FORTRAN
	LOB Locator Declarations in FORTRAN
	File Reference Declarations in FORTRAN

	Supported SQL Data Types in FORTRAN
	SQLSTATE and SQLCODE Variables in FORTRAN
	Considerations for Multi-byte Character Sets in FORTRAN
	Japanese or Traditional Chinese EUC, and UCS-2 Considerations for FORTRAN

	Chapter 25. Programming in REXX
	Programming Considerations for REXX
	Language Restrictions for REXX
	Registering SQLEXEC, SQLDBS and SQLDB2 in REXX

	Embedding SQL Statements in REXX
	Host Variables in REXX
	Naming Host Variables in REXX
	Referencing Host Variables in REXX
	Indicator Variables in REXX
	Predefined REXX Variables
	LOB Host Variables in REXX
	LOB Locator Declarations in REXX
	LOB File Reference Declarations in REXX
	Clearing LOB Host Variables in REXX

	Supported SQL Data Types in REXX
	Using Cursors in REXX

	Execution Requirements for REXX
	Bind Files for REXX

	API Syntax for REXX
	REXX Stored Procedures
	Calling Stored Procedures in REXX
	Considerations on the Client for REXX
	Considerations on the Server for REXX
	Retrieving Precision and SCALE Values from SQLDA Decimal Fields

	Japanese or Traditional Chinese EUC Considerations for REXX

	Part 7. Appendixes
	Appendix A. Supported SQL Statements
	Appendix B. Sample Programs
	DB2 API Non-Embedded SQL Samples
	DB2 API Embedded SQL Samples
	Embedded SQL Samples With No DB2 APIs
	User-Defined Function Samples
	DB2 Call Level Interface Samples
	Java Samples
	SQL Procedure Samples
	ADO, RDO, and MTS Samples
	Object Linking and Embedding Samples
	Command Line Processor Samples
	Log Management User Exit Samples

	Appendix C. DB2DARI and DB2GENERAL StoredProcedures and UDFs
	DB2DARI Stored Procedures
	Using the SQLDA in a Client Application
	Using Host Variables in a DB2DARI Client
	Using the SQLDA in a Stored Procedure
	Data Structure Manipulation

	Summary of Data Structure Usage
	Input/Output SQLDA and SQLCA Structures
	Return Values for DB2DARI Stored Procedures

	DB2GENERAL UDFs and Stored Procedures
	Supported SQL Data Types
	Classes for Java Stored Procedures and UDFs
	COM.ibm.db2.app.StoredProc
	COM.ibm.db2.app.UDF
	COM.ibm.db2.app.Lob
	COM.ibm.db2.app.Blob
	COM.ibm.db2.app.Clob

	NOT FENCED Stored Procedures

	Example Input-SQLDA Programs
	How the Example Input-SQLDA Client Application Works
	C Example: V5SPCLI.SQC
	How the Example Input-SQLDA Stored Procedure Works
	C Example: V5SPSRV.SQC

	Appendix D. Programming in a Host or AS/400Environment
	Using Data Definition Language (DDL)
	Using Data Manipulation Language (DML)
	Numeric Data Types
	Mixed-Byte Data
	Long Fields
	Large Object (LOB) Data Type
	User Defined Types (UDTs)
	ROWID Data Type
	64-bit Integer (BIGINT) data type

	Using Data Control Language (DCL)
	Connecting and Disconnecting
	Precompiling
	Blocking
	Package Attributes
	C Null-terminated Strings
	Standalone SQLCODE and SQLSTATE

	Defining a Sort Order
	Managing Referential Integrity
	Locking
	Differences in SQLCODEs and SQLSTATEs
	Using System Catalogs
	Numeric Conversion Overflows on Retrieval Assignments
	Isolation Levels
	Stored Procedures
	Stored Procedure Builder

	NOT ATOMIC Compound SQL
	Multisite Update with DB2 Connect
	Host or AS/400 Server SQL Statements Supported by DB2 Connect
	Host or AS/400 Server SQL Statements Rejected by DB2 Connect

	Appendix E. Simulating EBCDIC Binary Collation
	Appendix F. Using the DB2 Library
	DB2 PDF Files and Printed Books
	DB2 Information
	Printing the PDF Books
	Ordering the Printed Books

	DB2 Online Documentation
	Accessing Online Help
	Viewing Information Online
	Installing the Netscape Browser
	Accessing Information with the Information Center

	Using DB2 Wizards
	Setting Up a Document Server
	Searching Information Online

	Appendix G. Notices
	Trademarks

	Index
	Contacting IBM
	Product Information

