DB2® Server for VSE & VM

Interactive SQL Guide and

Retference

Version 6 Release 1

SC09-2674-00

DB2® Server for VSE & VM

Interactive SQL Guide and

Retference

Version 6 Release 1

SC09-2674-00

— Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

This book is also provided as an online book that can be viewed with the IBM® BookManager® READ and IBM Library Reader™
licensed programs.

First Edition (December 1998)

This edition SC09-2674, applies to Version 6 Release 1, of the IBM DATABASE 2™ Server for VSE & VM Program 5648-A70, and to
all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for
the level of the product.

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change or addition.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments to:
IBM Canada Ltd. Laboratory, Information Development, 2G/345/1150/TOR, 1150 Eglinton Ave East, North York, Ontario, Canada
M3C 1H7.

You can also send your comments by facsimile to (416) 448-6161 addressed to the attention of the RCF Coordinator. If you have
access to Internet, you can send your comments electronically to torrcf@ca.ibm.com ; IBMLink™, to toribm(torrcf) ; IBM/PROFS®,
to torolab4(torrcf) ; IBMMAIL, to ibmmail(caibmwt9) ; or through our home page at

http://www.software.ibm.com/data/db2/vse-vm/

If you choose to respond through Internet, please include either your entire Internet network address, or a postal address.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices Xi
Trademarks Xi
About This Manual Xiii
How to Use This Manual Xiii
Components of the Relational Database Management System XV
Prerequisite Publications Xviii
Corequisite Publications XVili
Syntax Notation Conventions Xviii
SQL Reserved Words XXi
Authorization Names and Passwords, XXii
Authorization Names without Quotation Marks XXii
Authorization Names in Double Quotation Marks XXili
Use of Highlighting in This Guide XXili
Summary of Changes for DB2 Version 6 Release 1 XXV
Enhancements, New Functions, and New Capabilites XXV
DRDA® RUOW Application Requestor for VSE (Online) XXV
Stored Procedures XXV
TCP/IP Support for DB2 Server for VM XXVi
New Code Page and Euro Symbol Code Page Support XXVi
DataPropagator™ Capture XXVi
QMF for VM, QMF for VSE, and QMF for Windows® XXVii
RDS Above the Line XXVii
Combining of NLS Feature Installation Tapes with Base Product Installation
Tape . .. XXVii
Control Center Feature XXViii
Data Restore Feature XXViii
DB2 REXX SQL Feature XXVili
Reliability, Availability, and Serviceability Improvements XXViii
Migration Considerations XXViii
Library Enhancements XXiX
Chapter 1. Getting Started 1
Introducing the DB2 Server for VSE & VM Database Manager 1
Introducing ISQL 2
Introducing the ISQL Display Terminal 3
Using the Program Function Keys 3
Defining the ISQL Session 4
Using DBCS for DB2 Server for VM oo 5
Before Starting ISQL 5
DB2 Server for VSE 5
DB2 Server for VM 5
Starting ISQL for DB2 Server for VSE oo 6
Alternative Methods for Starting ISQL L. 6
Starting ISQL for DB2 Server for VM 8
Controlling the Display 9
Interpreting DB2 Server for VSE & VM Messages 10
Entering Commands 11
DB2 Server for VSE 11

© Copyright IBM Corp. 1987, 1998 ili

iv

DB2 Server for VM e
Entering Commands While Viewing the Results of a Query
Understanding ISQL Modes
Using the Continuation Character

DB2 Server for VSE

DB2 Server for VM
Correcting Typing Errors

DB2 Server for VSE

DB2 Server for VM
Using ISQL on a Non-DB2 Server for VM Application Server (VM Only) . . .
Using ISQL on a Remote Application Server (VSEOnly)
Stopping ISQL

DB2 Server for VSE

DB2 Server for VM
Entering Commands While Viewing the Results of a Query
CHARNAME and DBCS Options

Chapter 2. Querying Tables
Selecting Particular Columns
Ending a Query Display
Selecting All Columns
Selecting Particular Rows
Introducing Expressions and Operators
Preventing the Selection of Duplicate Rows
Using the AND and OR Operators
Selecting Rows by Using Special Registers
Selecting Rows That Contain a Matched Value
Selecting Rows That Contain Values withina Range
Selecting Rows That Contain a Particular Character Combination
Evaluating Character String Expressions
Using the LIKE Predicate
Defining the Underscore and Percent Characters
Using the Percent Character
Using the Underscore Character
Using an Escape Character
Selecting Rows That Contain Null Values
Selecting Rows That Satisfy a Calculated Condition
Selecting Rows Using Durations
Labeled Durations
Date Durations
Time Durations e
Timestamp Durations
Using a Labeled Duration

Chapter 3. Manipulating Query Information
Selecting Information Calculated from Table Data
Interpreting Arithmetic Errors
Selecting Information Using Datetime Arithmetic
Selecting Information Using Database Manager Functions
Defining Column Functions
Using Column Functions
Defining Scalar Functions
Using Scalar Functions
Ordering Rows of a Query Result

Interactive SQL Guide and Reference

Establishing Field Procedures, 53

Basing the Ordered Rows on a Calculated Result 54
Using the Concatenation Operator 54
Selecting Constants 55
Obtaining Online HELP Information at a Terminal 56

Selecting Online HELP Information 56

Typing While Viewing Online HELP Information 57
Chapter 4. Using Query Results 61
Displaying Query Results 61

Results That Have Too Many Rows for One Display 62

Results That Are Too Wide for One Display 64
Obtaining a Printed Report 67

Obtaining Multiple Copies of a Printed Report 68

Using More Than One Keyword with the Print Command 69
Chapter 5. Managing Table Data 71
Controlling Changesto Table Data 71

Using the AUTOCOMMIT ON Setting, 71

Using the AUTOCOMMIT OFF Setting 71

Interpreting Messages While Making Changes 72

Interpreting Errors While Making Changes 72
Understanding Referential Integrity 72

Defining Referential Integrity 72

Defining a Primary Key 72

Defining a Foreign Key 73

Establishing a Referential Constraint 74
Updating Table Data 75

Updating Rows 75

Updating Multiple Rows 77

Updating Using Special Registers 77

Updating Columns That Are Primary Keys, Foreign Keys, or Unique

Constraints 78
Deleting Table Data 79

Deleting Rows 79

Deleting Data from a Table Containing Referential Constraints 80
Inserting Table Data 81

Inserting Multiple Rows 81

Inserting a Single Row 83

Inserting Data into Tables Containing Referential Constraints 83

Inserting Table Data 83
Using Tables Containing Null Values 83

Chapter 6. Using ISQL Commands to Save Time When Executing

Statements 87
Reusing the Current SQL Statement 87
Retrieving and Correcting SQL Lines 87
Altering and Reusing SQL Lines 90
Changing the Current SQL Statement 90

Correcting Typing Errors in the Statement 90
Altering and Reusing the Statement, 91
Deleting Portions of the Statement 91
Ignoring an SQL Line 91
Preventing the Immediate Processing of an SQL Statement 92

Contents V

Using Placeholders in SQL Statements 92

Chapter 7. Formatting Query Results 95
Formatting Columns 95
Creating a Report from Query Results 95
Modifying the Separation between Columns 96
Excluding Columns from the Display 97
Including Columns inthe Display 98
Changing a Displayed Column Heading 99
Changing the Number of Decimal Places Displayed 100
Controlling the Display of Leading Zeros 100
Changing the Displayed Length Attribute of a Column 101
Formatting Reports 102
Obtaining an Outline Report Format 103
Obtaining Totals for Reports 104
Creating Titles for Printed Reports 106
Using More Than One Keyword in a FORMAT Command 108
Displaying Null Values and Arithmetic Errors 110
Controlling Null-Field Displays 110
Controlling Query Format Characteristics 111
Setting the Format Characteristics by Using the SET Command 112
Printing Reports on a Workstation Printer (DB2 Server for VSE) 116
Chapter 8. Storing SQL Statements 119
Storing the Current Statement 119
Protecting a Stored Statement 119
Starting a Stored Statement 120
Starting a Stored Statement That Contains Placeholders 120
Recalling a Stored Statement 121
Saving the Format Information L. 121
Changing a Stored Statement 122
Listing the Names of Stored Statements 123
Renaming a Stored Statement L 123
Erasing a Stored Statement 124
Chapter 9. Creating and Using Routines 125
Running Routines When ISQL Is Started 125
Profile Routines 125
Routines to Which Parameters Can Be Passed (DB2 Server for VM) . . . 125
Using the ISQL Transaction Identifier (DB2 Server for VSE) 126
Establishing Where Routines Are Stored 127
Storing a Routine 128
Managing a Routine 129
Runninga Routine 130
Running Shared Routines 130
Error Mode Processing in a Routine 130
Using INPUT Commands in a Routine 131
Using SELECT Statements in a Routine 131
Chapter 10. Using Additional Query Techniques 135
Selecting Data from Two or More Tables 135
Joininga Tableto Itself 136
SortinginaJoin 137
Qualifying Table Names with Their Owner 137

Interactive SQL Guide and Reference

Using Correlation Names in Queries 138

Using Correlation Names to Combine Information in the Same Table 138
Selecting Summary Information by Groups 139
Specifying a Search Condition for Groups 141
Using Subqueries to Build Search Conditons 142
Used with the IN Predicate 143
Used in UPDATE Statements 143
Used in DELETE Statements 143
Uses for Subqueries 144
Modified Comparison Operators 144
Unmodified Comparison Operators 145
Using a Correlated Subquery to Build a Search Condition 145
Used ina Join Query 146
Usedina HAVING Clause 147
Correlated Function 147
Used in DELETE or UPDATE Statements 147
Using Views to Simplify Queries 148
Naming Columns ina View 149
Using a Correlated Subquery witha Join 150
Combining Multiple Queries 151
Using the UNION Operator oo 151
Comparing the UNION and UNION ALL Operators 153
Using the UNION ALL Operator 154
Using Parentheses in UNION Statements 154
Using Subqueries in Unions 155
Using Additional View Techniques 156
Joining Views with Tables 157
Joining Views with Other Views 158
Testing for Existence 159
Using Views in Unions 160
Updating Tables on Which Views are Defined 162
Creating a View Defined on Another View 164
Checking Inserts or Updates ina View 165
Listing Information about the Views You Create 166
Dropping Views 167
Computing Percentages 167
Example of Computing a Simple Percentage 168
Example of Computing an Aggregate Percentage 169
Cancelling Running Commands 171
Chapter 11. Creating and Managing Tables 175
Managing Your Own Tables 175
Querying Information about Your Tables 175
Creating Your Own Tables 177
Storing Your Tables 180
Copying Data from Other Tables 181
Droppinga Table 181
Identifying the Minimum Contentsofa Table 181
Adding a ColumntoaTable 182
Specifying Referential Constraints 182
Creating a Table That Contains a Primary Key 183
Adding a Primary Key to an Existing Table 184
Creating a Table That Contains a Foreign Key 184
Adding a Foreign Key to an Existing Table 185

Contents Vi

Activating and Deactivating Primary Keys, Foreign Keys, or Unique

Constraints
Determining Effects on Stored Format Information
Sharing Your Tables with OtherUsers
Granting the Privilege to Select Data from Your Tables
Granting INSERT, UPDATE, and DELETE Privileges on Your Tables
Granting the Privilege to Reference a Primary Key
Granting the Privilege to Change Columns or Keys
Granting All Privilegestoa User
Restricting the Update Privilege to Certain Columns
Granting Privileges to Multiple Users
Revoking Granted Privileges
Using a View to Restrict Privileges to Certain Rows
Using a View to Restrict Privileges to Certain Columns
Creating Tables That You Wantto Share
Accessing Tables Belonging to Other Users
Using Synonyms
Improving Query Performance L.
Indexinga Table
Maintaining Updated Statistics
Locking Data
Chapter 12. Using VM Functions
CMS-Subset Processing
Returning to ISQL from CMS Subset Mode
Entering CP Commands
Obtaining Printed Reports on a Workstation Printer
Specifying the Number of Copies of Printed Reports
Using EXEC Files
Stacking Commands inan EXEC File
Prompting by Using an EXEC File
Starting ISQL from a Terminal
Disconnecting after Starting ISQL
Chapter 13. ISQL Commands
BACKOUT
BACKWARD e
CANCEL
CHANGE
COLUMN . .
COUNTER
DISPLAY . . e
END . . e
ERASE e
EXIT e
FORMAT . . e
FORWARD e
HELP . . . e
HOLD e
IGNORE e
INPUT . .
Interactive Select
ISQLTRACE e
LEFT . . e

Interactive SQL Guide and Reference

PRINT . . e 237
RECALL e 240
RENAME e 241
RIGHT . . . e 242
RUN e 243
SAVE . 244
SET 245
SHOW . . 253
START . . 255
STORE . . . 257
TAB . e 259

Example 259
Appendix A. Answers to the Exercises 261
Appendix B. Sample Tables 269
DEPARTMENT Table 269

Relationship to Other Tables 270
EMPLOYEE Table 271

Relationship to Other Tables 274
PROJECT Table 275

Relationship to Other Tables 276
ACTIVITY Table 277

Relationship to Other Tables 278
PROJ_ACT Table 278

Relationship to Other Tables 279
EMP_ACT Table 279

Relationship to Other Tables 281
IN. TRAY Table 281
CL_SCHED Table 282
Appendix C. Summary of ISQL PFKeys 283
Using PF Keys in CMS FULLSCREEN Mode (DB2 Server for VM) 283
Appendix D. Summary of SQL Statements for Interactive Use 285

Appendix E. Suppressing the ISQL Sign-On Display for DB2 Server for

VSE . . 287
Bibliography 289
Index 293

Contents X

X Interactive SQL Guide and Reference

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of

Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Canada Ltd., Department 071,
1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks

The following terms are trademarks of International Business Machines Corporation
in the United States and/or other countries:

IBM
ACF/NTAM
BookManager
IBMLink
CICS/VSE
DATABASE 2
DataPropagator
DB2

Distributed Relational Database Architecture
DRDA

IMS

Library Reader
0S/390

QMF

SQL/DS
VM/ESA
VSE/ESA

© Copyright IBM Corp. 1987, 1998 Xi

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

Other company, product, and service names may be trademarks or service marks
of others.

Xii Interactive SQL Guide and Reference

About This Manual

This manual is a tutorial and reference for IBM DATABASE 2 Server for VSE & VM
(DB2 Server for VSE & VM) interactive SQL (ISQL) users in a Virtual Storage
Extended/Enterprise Systems Architecture (VSE/ESA) or Virtual Machine/Enterprise
Systems Architecture (VM/ESA) environment. The manual presents reference
information for particular topics, followed by tutorial exercises that illustrate the
reference information. Screen images (hereafter referred to as displays) that are
similar to the displays that you view when performing ISQL exercises are included
in the text.

The manual begins with an introduction to:

e The DB2 Server for VSE & VM relational database management system
(RDBMS).

e The Structured Query Language (SQL) which manipulates and controls data
managed by the RDBMS.

e The Interactive SQL (ISQL) facility, through which SQL statements are issued
from a display terminal.

The manual continues with query and management techniques for DB2 Server for
VSE & VM tables that are used during an ISQL session. Specific guidelines are
provided for the use of ISQL commands, SQL statements, routines, and VM
functions.

The examples and exercises that are provided throughout this manual to familiarize
you with ISQL are supplemented by answers and example table layouts, both of
which are in appendixes.

Note:

e The terms DBZ2 Server for VM, DB2 Server for VSE, and DB2 Server for VSE &
VM are used in this guide to refer to DB2 Server for VM Version 6 Release 1
unless otherwise indicated.

e When the term CICS is used in this manual, CICS/VSE is implied. The
CICS/VSE product is required for DBCS support.

e The term VSE refers to VSE/Enterprise Systems Architecture Version 2
Release 1 Modification 2 or later.

e The term VM is used in this guide to refer to VM/ESA Version 2 Release 1 or
later.

For a quick summary of reference information on ISQL functions, refer to the DB2
Server for VSE & VM Quick Reference manual.

How to Use This Manual

The following information provides a brief description of each chapter and appendix
in the manual.

The Summary of Changes summarizes the technical and library changes made for
Version 6 Release 1 of the database manager product.

© Copyright IBM Corp. 1987, 1998 Xiii

Xiv

Chapter 1, “Getting Started” on page 1, introduces the database manager, SQL,
and ISQL facilities, and takes the reader through a typical ISQL session using the
display terminal.

Chapter 2, “Querying Tables” on page 21, discusses query techniques for
database manager table data. It describes the use of expressions, operators,
keywords, predicates, and durations.

Chapter 3, “Manipulating Query Information” on page 41, describes the
manipulation of queried information to produce calculated results by using
functions, concatenation operators, and constants. A separate section describing
how to obtain online reference information is included.

Chapter 4, “Using Query Results” on page 61, discusses the presentation of
queried information both on the display and in a printed report.

Chapter 5, “Managing Table Data” on page 71, provides DB2 Server for VSE &
VM table management guidelines that include the timing of table changes,
referential integrity, and inserting, updating, and deleting table data.

Chapter 6, “Using ISQL Commands to Save Time When Executing Statements” on
page 87, explains the use of ISQL commands with SQL statements during an ISQL
session.

Chapter 7, “Formatting Query Results” on page 95, offers additional methods of
displaying queried information. Formatting techniques for both the display and for
printed reports are discussed in detail.

Chapter 8, “Storing SQL Statements” on page 119, describes the use of stored
SQL statements, including management and processing methods.

Chapter 9, “Creating and Using Routines” on page 125, discusses the use of
database manager routines to process a series of ISQL commands or SQL
statements.

Chapter 10, “Using Additional Query Techniques” on page 135, provides additional
guery techniques, including the use of multiple tables, correlation names, multiple
gueries, subqueries, views, and unions.

Chapter 11, “Creating and Managing Tables” on page 175, describes procedures
to create and maintain a personal set of database manager tables with an
emphasis on the use of table keys. In addition, information is provided that explains
the sharing of tables with other database manager users. Guidelines that improve
query performance are also provided.

— DB2 Server for VM

Chapter 12, “Using VM Functions” on page 197, discusses the use of VM
commands and functions to enhance the ISQL session, such as the
specification of the number of copies of printed reports.

Chapter 13, “ISQL Commands” on page 203, is a reference chapter for ISQL
commands that provides a format diagram, a description, and an example, where
appropriate, for each command.

Interactive SQL Guide and Reference

Appendix A, “Answers to the Exercises” on page 261, contains the answers to the
exercises in the manual.

Appendix B, “Sample Tables” on page 269, describes the structure and contents of
the sample database manager tables used in the examples and exercises in the
manual.

Appendix C, “Summary of ISQL PF Keys” on page 283, describes the ISQL
commands associated with the PF keys on the keyboard.

Appendix D, “Summary of SQL Statements for Interactive Use” on page 285, lists
the SQL statements that you can refer to the DB2 Server for VSE & VM SQL
Reference manual, if you want more information.

— DB2 Server for VSE

Appendix E, “Suppressing the ISQL Sign-On Display for DB2 Server for VSE”
on page 287, gives you information on suppressing the ISQL sign-on display
and related terminal messages.

The Bibliography lists the full titles and order numbers of related publications, and
is followed by the Index.

Components of the Relational Database Management System

Figure 1 on page xvi depicts a typical configuration with one database and two
users.

Figure 2 on page xvii depicts a typical configuration with one database, one batch
partition user, and a CICS® partition with several interactive users.

About This Manual XV

Communication Link (IUCV or APPC/VM)

Database User
Machine Machine

Data System Control i
Service
Relational Data System

Database Storage Mpisk
Subsystem

Database Manager

TN

Resource Adapter

1 1
1 1
1 1
| Application Requester |

Interactive SQL

i 1
i '
1 1
: Preprocessors :
! 1
1 DBS Utility |
I 1

Applications

PN m TN - 1

User
Machine

’..
>

Resource Adapter

1 1
1 1
1 1
I Application Requester I

Interactive SQL

Preprocessors

Dirgctory

il

Log Disk

Database |

1 1

1 1

1 1

1 1

Storage ! 1
Pool | DBS Utility 1
1 1

Applications

Application Server

Figure 1. Basic Components of the RDBMS in VM/ESA

XVi Interactive SQL Guide and Reference

1
Online Resource Adapter
|

1
1
1
I Application Requester I

| 1
: Interactive SQL :
1
: CICS Application 1
i] Dbextent Storage
Applications
I idi I Pool

CICS Partition _— o
| — 7)
Batch Resource Adapter 1 Application
1
I Application Requester I Preram L Directow
09

VSE Batch
Partition Database |

e e

1

| Data System Control
I | ata System Control : VSAM
| | Relational Data System :
: Dataéb%se Storage 1 DB2
i t
- ey] Database for VSE
I Database Manager I Partition Library
VSE Application Server

Figure 2. Basic Components of the RDBMS in VSE

The database is composed of :

* A collection of data contained in one or more storage pools, each of which in
turn is composed of one or more database extents (dbextents). A dbextent is a
VM minidisk.

» A directory that identifies data locations in the storage pools. There is only one
directory per database.

¢ A Jog that contains a record of operations performed on the database. A
database can have either one or two logs.

The database manager is the program that provides access to the data in the
database. In VM it is loaded into the database virtual machine from the production
disk. In VSE it is loaded into the database partition from the DB2 Server for VM
library.

The application server is the facility that responds to requests for information from
and updates to the database. It is composed of the database and the database
manager.

The application requester is the facility that transforms a request from an
application into a form suitable for communication with an application server.

About This Manual ~ XVii

Prerequisite Publications

Although not required, you should have an understanding of material covered in the
DB2 Server for VSE & VM Overview manual.

Corequisite Publications
The following manuals should be used with this manual:

DB2 Server for VSE & VM SQL Reference
DB2 Server for VM Database Administration
DB2 Server for VSE Database Administration
DB2 Server for VSE & VM Overview.

Syntax Notation Conventions
Throughout this manual, syntax is described using the structure defined below.

* Read the syntax diagrams from left to right and from top to bottom, following
the path of the line.

The >>—— symbol indicates the beginning of a statement or command.

The ——> symbol indicates that the statement syntax is continued on the next
line.

The >—— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

Diagrams of syntactical units that are not complete statements start with the
>— symbol and end with the —> symbol.

e Some SQL statements, Interactive SQL (ISQL) commands, or database
services utility (DBS Utility) commands can stand alone. For example:

v
A

»—SAVE

Others must be followed by one or more keywords or variables. For example:

»»—SET AUTOCOMMIT OFF

\4
A

e Keywords may have parameters associated with them which represent
user-supplied names or values. These names or values can be specified as
either constants or as user-defined variables called host variables
(host_variables can only be used in programs).

»»—DROP SYNONYM—synonym

\ 4
A

XVviii Interactive SQL Guide and Reference

» Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be present;
you can omit those in lowercase.

» Parameters appear in lowercase and in italics (for example, synonym).

e If such symbols as punctuation marks, parentheses, or arithmetic operators

are shown, you must use them as indicated by the syntax diagram.
* All items (parameters and keywords) must be separated by one or more blanks.

e Required items appear on the same horizontal line (the main path). For
example, the parameter integer is a required item in the following command:

»»—SHOW DBSPACE—integer

\4
A

This command might appear as:
SHOW DBSPACE 1

e Optional items appear below the main path. For example:

\4
A

»»—CREATE INDEX
|—UNIQUEJ

This statement could appear as either:
CREATE INDEX
or
CREATE UNIQUE INDEX
e |f you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item appears on the main path. For
example:

\4
A

»»—SHOW LOCK DBSPACE ALL
7
integer

Here, the command could be either:
SHOW LOCK DBSPACE ALL

or
SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the
main path. For example:

About This Manual ~ XiX

A\
A

integer—

»»—BACKWARD: i:
MAX

Here, the command could be:
BACKWARD

or
BACKWARD 2

or
BACKWARD MAX

e The repeat symbol indicates that an item can be repeated. For example:

\4
A

»—ERASE !

name

This statement could appear as:
ERASE NAME1

or
ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

»»—VALUES—(constant |) ><
host_variable_list—
NULL
special_register—

e If an item is above the main line, it represents a default, which means that it will
be used if no other item is specified. In the following example, the ASC
keyword appears above the line in a stack with DESC. If neither of these
values is specified, the command would be processed with option ASC.

|—ASC—|
- |—DESCJ

A\
A

e When an optional keyword is followed on the same path by an optional default
parameter, the default parameter is assumed if the keyword is not entered.
However, if this keyword is entered, one of its associated optional parameters
must also be specified.

XX Interactive SQL Guide and Reference

elln the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you do not
enter PCTFREE =, the database manager will set it to the default value of 10.

PCTFREE

10

\4
A

»>> |_
C

PCTFREE

integer—

* Words that are only used for readability and have no effect on the execution of
the statement are shown as a single uppercase default. For example:

PRIVILEGES
»—REVOKE ALL L |

\4
A

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means
the same thing.

e Sometimes a single parameter represents a fragment of syntax that is
expanded below. In the following example, fieldproc_block is such a fragment
and it is expanded following the syntax diagram containing it.

| | fieldproc_block |

\ 4
\ 4

\
A

|—NOT NULL

UNIQUE
PRIMARY KEY—

fieldproc_block:
—FIELDPROC—program_name i

L(—[éonstan tj—)J

SQL Reserved Words

The following words are reserved in the SQL language. They cannot be used in
SQL statements except for their defined meaning in the SQL syntax or as host
variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or
dbspaces unless they are enclosed in double quotation marks (").

About This Manual ~ XXi

ACQUIRE GRANT RESOURCE
ADD GRAPHIC REVOKE
ALL GROUP ROLLBACK
ALTER ROW
AND HAVING RUN
ANY
AS IDENTIFIED SCHEDULE
ASC IN SELECT
AVG INDEX SET
INSERT SHARE
BETWEEN INTO SOME
BY IS STATISTICS
STORPOOL
CHAR LIKE SUM
CHARACTER LOCK SYNONYM
COLUMN LONG
COMMENT TABLE
COMMIT MAX TO
CONCAT MIN
CONNECT MODE UNION
COUNT UNIQUE
CREATE NAMED UPDATE
CURRENT NHEADER USER
NOT
DBA NULL VALUES
DBSPACE VIEW
DELETE OF
DESC ON WHERE
DISTINCT OPTION WITH
DOUBLE OR WORK
DROP ORDER
EXCLUSIVE PACKAGE
EXECUTE PAGE
EXISTS PAGES
EXPLAIN PCTFREE
PCTINDEX
FIELDPROC PRIVATE
FOR PRIVILEGES
FROM PROGRAM
PUBLIC

Authorization Names and Passwords

Authorization names and passwords are limited to 8 characters and cannot have
embedded blanks.

Authorization Names without Quotation Marks

The name must begin with a letter, $, #, or @ and contain letters, numbers, $, #,
@, or underscore. Avoid using SQL reserved words and Database Services Utility
reserved words. See the DB2 Server for VSE & VM Quick Reference manual for a
list of these reserved words.

XXii Interactive SQL Guide and Reference

— DB2 Server for VM

Note: # is the usual CP TERMINAL LINEND character.

Authorization Names in Double Quotation Marks

Names can begin with any character and contain any combination of characters
when enclosed in double quotation marks. However, the double quotation mark
character itself is not allowed within the names, and leading blanks cause errors.

Use of Highlighting in This Guide

Database manager commands and statements are illustrated throughout this
manual using

indented and highlighted type.
You can type these commands and statements. Commands or statements that are
indented but not highlighted
illustrate additional examples and options. If you type them, you may produce
results different from those shown in this manual.

Titles of publications, command variables, parameter values, character strings, and
the first use of a term are printed in italics.

Any information appearing on the display that is referred to in the text is highlighted
in this manual. For example, if the term User ID appears on the display, an
instruction to the reader to make an entry beside the term is written in the manual
as: Type your user ID in the User ID input area. Note the special highlighting for
User ID.
Uppercase characters are used for:

e Acronyms (for example, DB2 Server for VSE & VM)

e ISQL commands, statements, and instructions (for example, the CHANGE
command)

* Names on top of keys (for example, PF3)
e Names of programs, macros, and EXECs (for example, the PROFILE EXEC)

e Option names, keywords, and special registers (for example, the CASE
keyword of the SET command)

e Datasets and files, including tables (for example, the ACTIVITY table).

Italics emphasize the importance of the italicized phrase.

About This Manual ~ XXiii

XXV Interactive SQL Guide and Reference

. Summary of Changes for DB2 Version 6 Release 1

This is a summary of the technical changes to the DB2 Server for VSE & VM
Version 6 Release 1 database management system. All manuals are affected by
some or all of the changes discussed here. This summary does not list
incompatibilities between releases of the DB2 Server for VSE & VM product; see
either the DB2 Server for VSE & VM SQL Reference, DB2 Server for VM System
Administration, or the DB2 Server for VSE System Administration manuals for a
discussion of incompatibilities. Version 6 Release 1 of the DB2 Server for VSE &
VM database management system is intended to run on the Virtual
Machine/Enterprise Systems Architecture (VM/ESA®) Version 2 Release 2 or later
environment and on the Virtual Storage Extended/Enterprise Systems Architecture
(VSE/ESA™) Version 2 Release 2 or later environment.

Enhancements, New Functions, and New Capabilities

DRDA® RUOW Application Requestor for VSE (Online)

DRDA Remote Unit of Work Application Requestor provides read and update
capability in one location in a single unit of work.

This support provides CICS/VSE® online application programs with the ability to
execute SQL statements to access and manipulate data managed by any remote
application server that implements the DRDA architecture. Online application
programs that access remote application servers need to be preprocessed to create
a bind file and then bound (using CBND) to the remote application server. Online
application programs that access a local application server are preprocessed as in
previous releases.

See the following DB2 Server for VSE & VM manuals for further information:
e DBZ2 Server for VSE System Administration
e DB2 Server for VSE & VM SQL Reference
e DBZ2 Server for VSE Database Administration
e DB?2 Server for VSE Application Programming
» DB2 Server for VSE Installation

Stored Procedures

The ability to use stored procedures provides distributed solutions that let more
people access data faster.

A stored procedure is a user-written application program compiled and stored at the
server. When the database is running in multiple user mode, local applications or
remote DRDA applications can invoke the stored procedure. SQL statements are
local to the server and issued by a stored procedure so they do not incur the high
network costs of distributed statements. Instead, a single network send and receive
operation is used to invoke a series of SQL statements contained in a stored
procedure.

See the following DB2 Server for VSE & VM manuals for further information:

© Copyright IBM Corp. 1987, 1998 XXV

e DB?2 Server for VM System Administration

e DB2 Server for VM Database Administration
e DB2 Server for VSE & VM SQL Reference
e DB?2 Server for VSE & VM Operation

TCP/IP Support for DB2 Server for VM
TCP/IP support allows:

* VM applications to use SQLDS-private protocol to connect to VM databases
over TCP/IP.

* VM applications to use DRDA protocol to connect to DB2 family databases
(and any other database that supports DRDA connections) over TCP/IP.

* non-VM applications to use DRDA-protocol to access VM database over
TCPI/IP.

TCP/IP support for DB2 Server for VM integrated with the DB2 Server for VM
application server means a system easier to configure and maintain.

The database manager will optionally secure TCP/IP connections using any
external security manager that supports the RACROUTE interface.

New Code Page and Euro Symbol Code Page Support

The following CCSIDs are now supported:
e 1112: Latvian/Lithuanian
e 1122: Estonian
e 1123: Ukrainian
e 1130: Vietnamese
e 1132: Lao
e 1148: E-International
e 1140: E-English
e 1141: E-German
e 1144: E-ltalian
e 1147: E-French

Additional support has been added for conversions from Unicode (UCS-2) to host
CCSIDs.

For a complete list of CCSIDs supported refer to the DB2 Server for VM System
Administration and DB2 Server for VSE System Administration manuals.

DataPropagator ™ Capture

DataPropagator Capture is part of the DB2 Family of DataPropagator products.
DataPropagator Capture is updated for Version 6 Release 1 compatibility.

XXVi Interactive SQL Guide and Reference

QMF for VM, QMF for VSE, and QMF for Windows ®

RDS Above the

IBM Query Management Facility (QMF™) is now an separately priced feature of
DB2 Server for VSE & VM. QMF is a tightly integrated, powerful, and reliable tool
that performs query and reporting for IBM's DB2 relational database Management
System Family. It offers an easy-to-learn, interactive interface. Users with little or no
data processing experience can easily retrieve, create, update, insert, or delete
data that is stored in DB2.

QMF offers a total solution that includes accessing large amounts of data and
sharing central repositories of queries and enterprise reports. It also allows you to
implement tightly-controlled, distributed, or client-server solutions. In addition, you
can use QMF to publish reports to the World Wide Web that you can view with your
favorite web browser.

Using QMF, users can access a wide variety of data sources, including operational
or warehouse data from many platforms: DB2 for VSE, VM, 0S/390® and
Windows. Via IBM Data Joiner, you can access non-relational data, such as IMS™
and VSAM, as well as data from other vendor platforms.

Line

The RDS component will load and execute above the 16 megabyte line. This
support frees up approximately 1.5 megabytes of storage below the 16 megabyte
line (or approximately 2.5 megabytes, if DRDA is installed) when compared to
Version 5 Release 1. No installation or migration changes are required for this
support to be used (except for the definition of VM Shared Segments and for users
who execute the database server with AMODE(24)). If sufficient storage is
available, the RDS component will be automatically loaded above the 16 megabyte
line. When using VM Shared Segments, the RDS Segment should be defined
above the 16 megabyte line.

VM users who wish to run the database server in 24-bit addressing mode (i.e. use
the AMODE(24) parameter) must use a virtual storage size no greater than 16
megabytes. See the DB2 Server for VM System Administration or DB2 Server for
VSE System Administration for release to release incompatibility information.

Combining of NLS Feature Installation Tapes with Base Product
Installation Tape

All available NLS features for DB2 Server for VSE, DB2 Server for VM, Control
Center for VSE and REXX SQL for VM have been combined with the respective
base product installation tape. Customers interested in an NLS feature language
will no longer need to order an additional NLS feature tape because all NLS
languages will be available to all customers. In all cases, the default language as
shipped is American English. The installation and migration processes have been
changed to allow you to choose the default language. Refer to the DB2 Server for
VM Program Directory, DB2 Server for VSE Installation, DB2 for VSE Control
Center Installation and Operations Guide, and DB2 REXX SQL for VM/ESA
Installation for the details of how these changes affect the installation process and
how you can choose to have a different default language.

Summary of Changes for DB2 Version 6 Release 1 XXVii

| Control Center Feature
| DB2 Server for VSE & VM Version 6 Release 1 enhances the new Control Center

| feature as follows:
| For both VM/ESA and VSE/ESA:
| * Access to the Query Management Facility (QMF)

| For VM/ESA:

| e Compatibility with DB2 Server for VM Version 6 Release 1 initialization
| parameters and operator commands

| e Shared File System Support (SFS) in a VM/ESA environment
| e CA-DYNAM/T Interface Support in a VM/ESA environment

| e Data Restore Incremental Backup Support in a VM/ESA environment

| For VSE/ESA:
| e Control Center code installation on any library

| ¢ Ability to use while viewing a list of tables online

Ability to create, reorganize, unload, reload, move and copy tables in batch
| mode

| Ability to update table statistics in batch mode

Ability to drop tables online

Data Restore Feature

|

| The Data Restore feature provides archiving and recovery functions in addition to
| those provided in DB2 for VSE & VM. Data Restore is enhanced in Version 6

| Release 1 with incremental database archiving support. The support allows you to
| archive only the areas of the database that have been updated since the last

| database archive, instead of having to archive the entire database. This can

| provide significant savings for customers with large databases which are updated
| infrequently, or where only a small fraction of the database is updated frequently.

DB2 REXX SQL Feature

The DB2 REXX SQL feature provides a REXX interface for VM customers to allow
SQL calls to be executed from REXX programs. The DB2 REXX SQL feature is
updated for Version 6 Release 1 compatibility.

| Reliability, Availability, and Serviceability Improvements

Migration Considerations

I

| Migration is supported from SQL/DS™ Version 3 and DB2 Server for VSE & VM

| Version 5. Migration from SQL/DS Version 2 Release 2 or earlier releases is not
| supported. Refer to the DB2 Server for VM System Administration or DB2 Server
| for VSE System Administration manual for migration considerations.

XXViii Interactive SQL Guide and Reference

Library Enhancements
Some general library enhancements include:

¢ The following books have been removed from the library:
— DB2 Server for VM Operation
— DB2 Server for VSE Operation
— DB2 Server for VM Interactive SQL Guide and Reference
— DB2 Server for VSE Interactive SQL Guide and Reference
— DB2 Server for VM Database Services Utility
— DB2 Server for VSE Database Services Ultility

¢ The following books have been added to the library:
— DB2 Server for VSE & VM Operation
— DBZ2 Server for VSE & VM Interactive SQL Guide and Reference
— DB2 Server for VSE & VM Database Services Ultility

Refer to the new DB2 Server for VSE & VM Overview for a better understanding of
the benefits DB2 Server for VSE & VM can provide.

Summary of Changes for DB2 Version 6 Release 1 XXIiX

XXX Interactive SQL Guide and Reference

Chapter 1. Getting Started

This chapter introduces the database manager and the Interactive SQL (ISQL)
facility, and shows how to access both.

With the ISQL facility, you can manipulate data contained in a relational database
from a display terminal. In the ISQL environment, you will learn such procedures as
controlling the display, interpreting database manager messages, entering ISQL
commands, and stopping ISQL.

Introducing the DB2 Server for VSE & VM Database Manager

The DB2 Server for VSE & VM relational database management system uses the
Structured Query Language (SQL) to manage stored data.

Using SQL, you can query, add, delete, and update data. The language consists of
a collection of statements, each of which performs a particular function.

This manual describes how to use the database manager interactively from a CICS
display terminal. The terminals supported are IBM 3277, 3278, 3279, or 3290 (or
equivalent) with a line length of at least 80 characters and at least 24 lines per
display. The database manager also supports the larger display sizes offered by
some models of the 3278 and 3279 terminals.

Designed for the interactive user, the manual gives examples of those functions
and statements that can be used interactively. For a more comprehensive
description of database manager functions, as well as SQL statements used for
querying and displaying data, see the DB2 Server for VSE & VM SQL Reference
manual.

All data stored in the database is in the form of tables. The person who creates the
table also names it. The table shown in Figure 3 is named CARS.

column
CARS MODEL YEAR COLOR
Dodge 1963 Green
Ford 1967 Blue
row— —» Buick 1970 White
Jeep 1978 Red

Figure 3. A DB2 Server for VSE & VM Table

A table consists of (vertical) columns and (horizontal) rows. Each column has a
name; the columns in the CARS table are MODEL, YEAR, and COLOR.

© Copyright IBM Corp. 1987, 1998 1

A value is found at the intersection of a column and a row; for example, in the third
row of the CARS table, the information in the COLOR column is the value White.

You usually require several tables to adequately store information for an
organization. To illustrate how information is stored and used, a set of sample
tables is provided for your use. These tables reside in a sample relational
database, For DB2 Server for VM users, who request access to this relational
database are generally granted their own individual online copies. For DB2 Server
for VSE users, if your administrator used the IBM-supplied routine ARINEWUS to
set you up as a new ISQL user, you receive a copy of the sample tables with all
privileges on these tables. Your copy ensures that the table data will remain
uncorrupted by other users, which sometimes occurs when multiple users have
access to the same data.

If you do not have a copy of the sample tables, you can still do the exercises, but
you must use the prefix SQLDBA. with the table names. The sample tables are
described and illustrated in Appendix B, “Sample Tables” on page 269, and are
referred to throughout this manual.

This book uses simple examples and samples, but this database manager can
readily be used for complex applications in many environments, including scientific,
technological, and academic.

Introducing ISQL

2

SQL statements retrieve, add, delete, and update data in tables, and can be either
embedded or interactive. The Embedded SQL statements are coded within an
application program, and do not begin until the program is being run. SQL
statements that are issued interactively, by comparison, create an immediate
program or system response for each statement the user issues at a display
terminal. This is interactive processing, and it is the focus of this manual.

You can issue statements or commands from a display terminal through the
interactive SQL (ISQL) facility. Using the following ISQL commands, you can work
with the database manager from a display terminal to:

e Control the Display of Data

You can control the display of data that results from a query in several ways.
For example, you can scroll through the results of a query that has more rows
than can fit on one display, or look at results that are too wide for the display.

e Print Reports

You can create reports that are based on data in tables. You can also modify
these reports to fit your needs with titles, page numbers, dates and totals.

¢ Enter Data

You can enter one or more rows of data into an existing table with the ISQL
INPUT command.

e Obtain Online HELP Information from a Display Terminal

If online HELP information was loaded during installation, you can obtain
reference information on your display for ISQL topics. The topics available
include reference information about SQL statements, ISQL commands, and
messages.

Interactive SQL Guide and Reference

Online HELP information may also have been installed on your system in other
national languages. If you want HELP information in one of these languages,
you can specify the language for online HELP by using the SET LANGUAGE
command.

e Store SQL Statements for Repetitive Use

You can store SQL statements that are used frequently. A name is assigned to
each stored statement to identify it for future use.

 List Operating Characteristics

You can inquire about operating characteristics that are set using the ISQL
SET command. For example, you can see the character that is displayed in null
fields.

e Use Routines

You can store routines, which consist of a series of ISQL commands, SQL
statements, or both, and run them at a later time. A routine is especially useful
for a frequently used sequence of commands and statements. Routines are
discussed in detail in Chapter 9, “Creating and Using Routines” on page 125.

e Switch between Application Servers

With the CONNECT statement, you can access other application servers. You
can access any application servers that have implemented the DRDA protocol.
For more information about the CONNECT statement, see the DB2 Server for
VSE & VM SQL Reference manual.

Introducing the ISQL Display Terminal

ISQL can be run on a variety of display terminals, including the larger display sizes
offered by some models of the IBM 3278 and 3279 (or equivalent) display devices.
ISQL also supports 5550 terminals with double-byte character sets.

The amount of data displayed varies according to the dimensions of the display
terminal being used. Examples in this book are usually a 24-line by 80-character
display.

—— DB2 Server for VSE

Note: The 62 x 160 display requires a CICS/VSE terminal. In an SNA
environment, it requires CICS 1.6 ACF/VTAM® Release 1 or later or
TCAM Version 2 Release 3 or later.

Using the Program Function Keys

Most keyboards have a group of special keys called program function (or just PF)
keys. You use them for quick entry of common ISQL commands. Use of the keys is
explained as you proceed through this manual. A summary of the PF keys is in
Appendix C, “Summary of ISQL PF Keys” on page 283.

If your PF keys do not match those described in the summary, you can change

their functions and tailor them to your needs. Consult the appropriate person in
your organization to determine the customized key setting.

Chapter 1. Getting Started 3

Defining the ISQL Session

4

An ISQL session is signing on, starting ISQL, performing a task (or tasks), and then
stopping ISQL.

Before using ISQL from a display terminal, consult the appropriate person in your
organization to obtain the following:

—— DB2 Server for VSE

e A user ID. This is a unique user identification that identifies you to the
database manager. The user ID and password are optional. If you do not
want to type a user ID or password, press ENTER, and the default user ID
and password are used. This lets you perform certain activities as defined
by your site.

e A password. This identification is yours exclusively, and should be kept
secret. The user ID and password are optional. If you do not want to type a
user ID or password, press ENTER, and the default user ID and password
are used. This lets you perform certain activities as defined by your site.

e Access to the sample tables. A description of how your database
administrator (DBA) can provide these tables for you is in the DB2 Server
for VSE Database Administration manual. The tables must be created as
described in the DB2 Server for VSE Database Administration manual to
ensure that the examples and exercises produce the results described in
this manual.

— DB2 Server for VM

e Access to ISQL. You must have a user ID (to identify you to the VM
system) and a password. You must also have authorization to connect with
the database manager. This authorization is generally granted by someone
with database administrator (DBA) authority.

e Access to the sample tables. A description of how your DBA can provide
these tables for you is in the DB2 Server for VM Database Administration
manual. The tables must be created as described in the DB2 Server for VM
Database Administration manual to ensure that the examples and exercises
produce the results described in this manual.

Note: Your site may have a different signon procedure than that shown on the
following pages. Consult the appropriate person in your organization for the
correct procedure.

To access ISQL in the VM system environment, you must do the following:

1. Log on the VM system.
2. Start IPL to load the Conversational Monitor System (CMS).
3. Start ISQL.

Each of the activities is described later in this chapter.

Interactive SQL Guide and Reference

Using DBCS for DB2 Server for VM

Some languages, such as Japanese and Korean, require double-byte character
sets. If you want to input or see double-byte character sets (DBCS) during your
ISQL session, you must enter the following CMS command before starting ISQL.:

SET FULLSCREEN ON
The SET FULLSCREEN ON command lets you input DBCS characters in CMS
command mode, and allows input and display of DBCS characters in ISQL
command and display mode.

If you are not going to work with DBCS, you do not need this command.

Before Starting 1ISQL

DB2 Server for VSE

The online resource adapter (ORA) must be enabled before you can start ISQL.
ISQL accesses the application server to which the ORA is connected. The ORA
connects multiple application servers at a time. You specify the application servers
by the DBNAME parameter of the CIRB transaction.

After the online resource adapter is started, you can use the CIRA transaction to
add connections to other DB2 Server for VSE & VM application servers. CIRA can
be entered multiple times with different server_names to establish connections to
the specified application server. With one CIRA command, you can also establish a
list of server_names. The system operator or database administrator (DBA) usually
performs these tasks.

While in ISQL you can enter a null CONNECT statement to display the connected
user ID and application server names.

DB2 Server for VM

Before you can start ISQL, the following steps must be completed for you:

e The DB2 Server for VM disks must be linked.
e The application server must be started.
¢ The SQLINIT EXEC must be run.

The first two tasks are usually performed by the system operator or the database
administrator (DBA), and the SQLINIT EXEC is usually automatically run when you
log on your user ID.

The SQLINIT EXEC establishes the required links and defines the name of the
application server. If the SQLINIT EXEC is not automatically run for you, run the
EXEC before you start ISQL. You must know the name of the application server. If
you do not know the name of the application server, speak to your DBA. In the
following example, to run the SQLINIT EXEC establishing a link to the SAMPLEDB
server, type the following and press ENTER:

sqlinit dbname(sampledb)

If you want to use the SQLINIT EXEC, refer to the DB2 Server for VSE Database
Administration and DB2 Server for VM Database Administration manuals.

Chapter 1. Getting Started 5

Starting ISQL for DB2 Server for VSE

ISQL runs as a CICS/VSE transaction. A CICS user invokes this transaction just
like any other CICS transaction.

After CICS has been activated and the DB2 Server for VSE & VM online support
has been started, the CICS user starts ISQL by entering the following
four-character CICS transaction identifier from a CICS terminal, and pressing
ENTER:

isql

ISQL responds with a display like the one shown in Figure 4 on page 7.
The screen displays the default application server to which the ORA is connected.

The target application server can be changed by entering the target database
information as in the following example:

Enter User ID, Password and Target Database, then press Enter

User‘ ID ==========>
Password =========>
Target Database ==> SQLDB1_TOR_INV

This is also the application server to which ISQL will be connected to subsequently.
At this point, because ISQL is not connected to the application server to which the
ORA is connected, you can end the ORA and restart to another database. If you
log on to ISQL again, the signon screen is redisplayed showing the target
application server to which the ORA is now connected.

When not connected to a target application server, the ISQL system displays the
line Online Support is not ready. Please exit ISQL. The online resource adapter
(ORA) must be enabled before you can start ISQL. For additional information on
enabling the ORA, and other requirements before you can start ISQL, refer to
“Before Starting ISQL” on page 5 and the DB2 Server for VSE System
Administration and DB2 Server for VM System Administration manuals.

Alternative Methods for Starting ISQL

6

If you decide to press ENTER instead of specifying your user ID and password
when the signon display is displayed, then you must use the explicit database
manager CONNECT statement as follows:

CONNECT authorization_name IDENTIFIED BY password TO server_name

An exception to using the CONNECT statement in the above situation is if your
installation has defined a default authorization _name for you, in which case, you do
not have to specify your authorization_name, password, nor server_name.

If the TO parameter is not specified, then the connection to the previously
connected server will be maintained.

An alternate method for invoking ISQL without having to use the ISQL signon
display is described in Appendix E, “Suppressing the ISQL Sign-On Display for
DB2 Server for VSE” on page 287.

Interactive SQL Guide and Reference

Welcome to the interactive SQL facility of DB2 for VSE

ITITITIT SSSSSSSS QQQQQQQQQ LL

11 sS QQ Q LL
IT $SSSSSSS QQ Q LL
11 SS QQ QQ QQ LL
IIIIIIII SSSSSSSS QQQQQQQQQ LLLLLLLL
QQ

Default Target Database is SQLDS
Enter User ID, Password and Target Database, then press Enter
User ID —S=========>

Password =========>
Target Database ==>

To exit now, enter EXIT in user ID field with no password, press Enter.
To exit later, use the EXIT command. Use the HELP command for help.

Figure 4. Initial ISQL Screen

You may run an ISQL routine as part of the ISQL signon procedure. Refer to
“Using the ISQL Transaction Identifier (DB2 Server for VSE)” on page 126 and
Appendix E, “Suppressing the ISQL Sign-On Display for DB2 Server for VSE” on
page 287.

Signing On by Using the Signon Display
Signon is accomplished by:

1. Entering your user ID at the location identified by the cursor (two positions to
the right of User ID ==>). There must be one, and only one, blank between the
> and your user ID.

2. Positioning the cursor two positions to the right of Password ==> and typing your
DB2 Server for VSE & VM password. There must be one, and only one, blank
between the > and your password. (You can use the tab key to position the
cursor to the correct position. Tab is the key with the arrow pointing to a vertical
line on the right side of the key.)

The area to the right of Password ==> is a dark field; characters typed in this
area remain invisible.

3. Entering the target application server identified by the cursor (two positions to
the right of Target Database ==>). There must be one, and only one, blank
between the > and the target application server.

4. Pressing ENTER.

Note: On some occasions, your display may lock up and you are unable to type
data. If this happens, simply press RESET, ensure that the cursor is in the
correct position, and retype the information.

Chapter 1. Getting Started 7

When ISQL recognizes your signon name and password, it responds with the
display shown in Figure 5 on page 8.

ARI7399I The ISQL default profile values are in effect.
ARI7079I ISQL initialization complete.
ARI7080A Please enter an ISQL or SQL command.

Enter a command

Figure 5. Initial ISQL Display

Leaving ISQL from the Signon Display

You can exit ISQL from the signon display by typing EXIT in the user ID field,
leaving the password field blank, and pressing ENTER. If you enter EXIT in the user
ID field, but also enter a password, ISQL will treat it as a user ID and continue
processing.

If you enter EXIT to end ISQL, message ARI76011 is displayed as follows:
ARI7601I ISQL ended normally by your request.

Starting ISQL for DB2 Server for VM

Now type ISQL (or the name of your EXEC for ISQL) as follows:
isql
Press ENTER.

ISQL responds with a display similar to the one shown in Figure 6 on page 9.

8 Interactive SQL Guide and Reference

Ready; T=0.01/0.03 13:41:49
isql
ARI0659I Line-edit symbols reset:
LINEND=# LINEDEL=0FF CHARDEL=0FF
ESCAPE=0FF TABCHAR=0FF
ARIO662I EMSG function value reset to ON.
ARIO320I The default server name is SAMPLEDB.
ARI77161 User SQLUSER1 connected to server SAMPLEDB.
ARI7399I The ISQL default profile values are in effect.
ARI7079I ISQL initialization complete.
ARI7080A Please enter an ISQL command or an SQL statement

Figure 6. Initial ISQL Display

To use SQL/DS™ Version 1 input and output facilities, specify VISCRIO in the
ISQL EXEC. For example, instead of typing isql, type:

isql vlscrio

Press ENTER.

If you specify VISCRIO, ISQL uses the input and output display commands that
were used before the VM/SP 5 version. These older commands support the
terminal characters (such as Line-end and Escape) and the RETRIEVE command
that are available in SQL/DS Version 1.

You cannot use the V1SCRIO option under the following conditions:

¢ When you are working with a double-byte character set (DBCS). If you invoke
ISQL with V1SCRIO in FULLSCREEN MODE, ISQL performs a SET
FULLSCREEN OFF at the outset.

* When you are working with large logical screens, such as a model 3290, which
is 160 characters by 62 lines, or a model 8514, which is 128 characters by 53
lines. ISQL calculates the logical screen area and does not use the V1SCRIO
option if the calculation is greater than 3960 bytes.

Other optional parameters that you can use with the ISQL EXEC, including the
V1SCRIO and ROUTINE parameters, are described in “Routines to Which
Parameters Can Be Passed (DB2 Server for VM)” on page 125.

Controlling the Display

If your system default is not set for the full-screen environment, you can set it by
typing SET FULLSCREEN ON on a CMS command line. Full-screen CMS uses
several preset PF keys and displays the current PF key settings in the bottom
portion of the display. Before you start ISQL, the PF settings reflect those for the
CMS environment. For example, keying PF12 lets you type a command on the
command line. After you start ISQL, the PF key settings displayed change to the
ISQL settings, and the display is similar to the one shown in Figure 7 on page 10.

Chapter 1. Getting Started 9

Fullscreen CMS Columns 1 - 79 of 81

Ready; T7=0.01/0.03 13:41:49
isql
ARI0659I Line-edit symbols reset:
LINEND=# LINEDEL=OFF CHARDEL=0FF
ESCAPE=0FF TABCHAR=0FF
ARIO662I EMSG function value reset to ON.
ARI0320I The default server name is SAMPLEDB.
ARI7716I User SQLUSER1 connected to server SAMPLEDB.
ARI7399I The ISQL default profile values are in effect.
ARI7079I ISQL initialization complete.
ARI7080A Please enter an ISQL command or an SQL statement

PF1=HELP 2=START 3= = 5=RECALL 6=
PF7= 8= 9=HOLD 10= 11= 12=RETRIEVE

Figure 7. Initial ISQL Display with Full-Screen CMS

All commands you type appear in the input area near the bottom of the display. All
data returned by ISQL appears on a different display; when you exit from such a
display, a display similar to the one shown in Figure 7 is returned.

If you want to temporarily suspend the full-screen option, see the VM/ESA: CMS
Command Reference manual, for information on the SET FULLSCREEN command.

Interpreting DB2 Server for VSE & VM Messages

10

The system displays messages about certain operating conditions for your terminal
session. (See Figure 6 on page 9 for examples of the system messages.) You can
receive messages in the language you want, depending on your site. The text of
the messages that you receive may be slightly different from those shown here.

Messages have two parts. The first part is the message number, which remains the
same regardless of the language setting. An example of a message number is
ARIO503E. It starts with the letters ARI, which identify it as a DB2 Server for VSE &
VM message. Then it contains a four-digit number to identify the message. Finally,
it ends with one of the following letters that indicates the message type:

An informational message is displayed.

A system wait message is displayed.

An error has occurred and may require some action on your part.
An action on your part is required.

Your decision and reply is required.

o>ms —

The second part is the text of the message; for example, An SQL error has
occurred. ISQL uses the same language for messages as your CMS language
setting. For more information, see “SET” on page 245. In most situations, the text
is self-explanatory. If it is not, you can use the message number with the HELP

Interactive SQL Guide and Reference

command. (For information about using the HELP command to display the
message description, refer to Chapter 13, “ISQL Commands” on page 203.) You
can also use the message number to look up the message description in the DB2
Server for VSE Messages and Codes and DB2 Server for VM Messages and
Codes manuals.

Messages ARIO503E, ARI0O505I, and ARIO504I are usually encountered when an
error is detected while the system is processing an SQL statement. Message
ARIO5041 is an informational message that provides data useful to those who are
responsible for locating problems within the system. You can usually ignore this
message, but there may be occasions when you are prompted to record its
contents.

Message ARI05041 always follows message ARIO505I. Message ARIO503E indicates
that the SQL statement being processed was unsuccessful. Message ARI05051I
follows ARIO503E and provides a 3-digit number called an SQLCODE in its message
text. For example, assume you receive the following messages:

ARIO503E An SQL error has occurred.

SQL command begins properly but is incomplete.
ARIO505I SQLCODE = -106 SQLSTATE = 37501 ROWCOUNT = 0
ARIO5041 SQLERRP: ARIXPA1 SQLERRD1: -150 SQLERRD2: 0

The SQLCODE provided in message ARI0505I is -106. Text for this SQLCODE
begins on the second line of message ARI0O503E and describes the cause of the
error. If you want further explanation of the error, use the SQLCODE (in this
example, -106) to view the online help information or to look up the explanation in
the DB2 Server for VSE Messages and Codes and DB2 Server for VM Messages
and Codes manuals.

The SQLSTATE information provides a code for error conditions that are common
across relational database products. For more information about SQLSTATE, refer
to the DB2 Server for VSE Messages and Codes and DB2 Server for VM
Messages and Codes manuals.

The ROWCOUNT information is useful only for certain commands and is explained
in the command descriptions. You can ignore the information in message ARI05041,
unless you are prompted to record it.

Entering Commands

DB2 Server for VSE
Figure 8 on page 12 shows a diagram of how ISQL divides your display.

Chapter 1. Getting Started 11

OUTPUT AREA

STATUS AREA

Figure 8. DB2 Server for VSE & VM Display Format

The bottom line is the status area. Here, ISQL provides brief messages which
indicate its current status during your terminal session. For example, whenever
Enter a command appears, you know ISQL is ready to receive another command.

Note: For the remainder of this chapter, the general term command indicates
ISQL commands, SQL statements and data.

You type commands in the input area, which is just above the status area. The
input area consists of a single line and begins at the second-character position of
the line. You do not have to move the cursor to this location; it is placed there by
the database manager.

Although the --> cursor-movement key can be used to leave a blank space in the
input line, it does not provide a blank character as does the space bar. Use the
space bar to insert a blank character; use the cursor key to move the cursor.

The input area is also used by ISQL to provide the following message:
ARI70441 Command in progress. Terminal is now free.

This message, displayed when you have typed a command that is taking longer to
execute than a preset amount of time, is meant for users involved with more than
one CICS transaction. This message is only displayed if the ISQL user is
connected to a local application server. ISQL is one of several CICS transactions
available at your terminal. If you are not involved with multiple CICS transactions,
ignore the message and wait for the command to complete. If you are involved with
multiple CICS transactions and want to issue another CICS transaction while
waiting for the command to be completed, this message indicates the terminal is
free to do so. To enter another CICS transaction in response to this message,
press CLEAR and type the desired CICS transaction identifier code. The
transaction must not be pseudoconversational. For more information, see the DB2

12 Interactive SQL Guide and Reference

Server for VSE System Administration and DB2 Server for VM System
Administration manuals.

The output area displays information typed in the input area. It is also used to
display any database manager responses to your input. Specific uses of the output
area are discussed where appropriate in the manual.

DB2 Server for VM
A diagram of the way ISQL divides your display is shown in Figure 9.

OUTPUT AREA

INPUT AREA

| STATUS AREA

Figure 9. DB2 Server for VSE & VM Display Format

The last 21 characters of the bottom line are the status area. Here, the current VM
system status is displayed during your terminal session. For example, when the VM
READ message appears, you know that the system is ready to receive another
command from you.

You type commands and data in the input area, which includes all of the line above
the status area and the part of the next line that is to the left of the status area. The
input area begins at the second character position of the display. You do not have
to move the cursor to this location; it is placed there by the ISQL system.

The key marked --> only moves the cursor. This key does not insert blank
characters into an input line. To insert a blank character, you must use the space
bar.

The output area displays your commands and data after they are typed in the input
area. It also displays ISQL status messages and any database manager responses
to your input. Specific uses of the output area are discussed where appropriate in
the manual.

Chapter 1. Getting Started 13

ISQL status messages are displayed as informational or ARI-type messages. They
appear on the last line of the output area.

The command line is usable at all times. You can type commands or statements
even while others are being processed. For example, you can type a SELECT
statement and then several FORMAT commands before the query results are
displayed.

VM also permits you to stack commands. Commands are stored in the console
stack; VM will then execute them one at a time.

Entering Commands While Viewing the Results of a Query

You can type any SQL statement or ISQL command while viewing the results of a
guery as long as that result does not originate from a query processed in an ISQL
routine. Exceptions to this restriction are display commands, which you can use
while viewing the results of a query being processed in a routine. (Routines are
discussed in Chapter 9, “Creating and Using Routines” on page 125.)

If you do type a command, other than a display command, while viewing the results
of a query being processed in a routine, you receive the following message:

ARI7956E Command failed. This command is not valid
while you view a query result from a routine.

The query result, because it is the result of a routine, is not affected.

If you are viewing a query result that is not from a routine, and you type an ISQL
command or SQL statement that changes the current display, you receive the
following message:

ARI79551 The system ended your query result to process your command.
In this situation, ISQL ends the current query display and processes the new
command or statement.

If you are viewing a query result that is not from a routine, and you type a display
command, the display command is processed.

Understanding ISQL Modes

14

The two modes in ISQL are wait and display. They provide different displays and,
for particular commands and statements, they react differently. Wait mode is
indicated by the VM READ displayed in the status area (lower right corner) of the
display. In wait mode, you can enter any SQL statement and any ISQL command
other than display commands. Each command or statement that you type is
displayed line by line in the output area. From wait mode, you can query your
application server. A query (a SELECT statement) puts the display into display
mode.

In display mode, no message is displayed in the status area, and the entire output
area displays the results of a query. From display mode, you can type any SQL
statement or any ISQL command including ISQL display commands to move
through the displayed data. You end display mode when you type END, an SQL
statement other than SELECT, an ISQL command other than a display command,
or an incorrect SELECT statement. In all instances wait mode is returned.

Interactive SQL Guide and Reference

Using the Continuation Character

DB2 Server for VSE

Sometimes your input (commands, statements, or data) is too long to fit on the
single input area line. When this happens, you can continue typing by using the
continuation character, which is usually a hyphen. When the database manager is
installed, the hyphen is the continuation character. The continuation character can
be changed. For more information on the continuation character, see the SET
command description in Chapter 13, “ISQL Commands” on page 203. This
continuation character causes what you type to be redisplayed in the output area
and frees the input area for more typing.

If a line ends in a complete word, leave a space after it, type the hyphen, and press
ENTER. If you have to break a word at the end of a line, just type the hyphen
without a space before it, and press ENTER.

The continuation character lets ISQL know that you have not finished with the
command, and it responds with continue command in the status area. When you are
finished typing, press ENTER. The entire command cannot exceed 2048 characters
and the last line of the command must not end with a continuation character.

If the output area becomes full, you are prompted to clear it. Press CLEAR to clear
both the input and output areas to allow the command in progress to continue.
Incomplete portions of the command that were in the output area are stored in the
SQL command buffer, but are not displayed. You do not have to repeat them.
Everything in the input area is removed from the display when you press CLEAR.

DB2 Server for VM

Sometimes your input (commands, statements, or data) is too long to fit in the input
area. When this happens, you can continue typing by using the continuation
character, which is usually a hyphen. When the database manager is installed, the
hyphen is the continuation character. The continuation character can be changed.
For more information on the continuation character, see the SET command
description in Chapter 13, “ISQL Commands” on page 203.

If a line ends with a complete word, leave a space after it, type the hyphen, and
press ENTER. If you have to break a word at the end of a line, type the hyphen
without a space before it, and press ENTER.

The continuation character indicates that you are not finished with the command.
The system displays VM READ in the status area. It also displays the following
message in the output area:

ARI7068I Your input is being continued. Type more input or press Enter.

Type the additional input for the command. When you are finished, press ENTER.
The last line of the command must not end with a continuation character, and the
entire command cannot exceed 2048 characters.

If the output area becomes full, you are prompted to clear it. Press CLEAR to clear

both the input and output areas to allow the command in progress to continue.
Incomplete portions of the command in the output area are stored in the SQL

Chapter 1. Getting Started 15

command buffer but are not displayed. You do not have to repeat them. Everything
in the input area is removed from the display when you press CLEAR.

You can also press PA2 (Field Mark) to clear the output area. This clears only the
output area and leaves anything that you have typed in the input area intact.

Correcting Typing Errors

DB2 Server for VSE

You can correct a typing error in the input area by backspacing and typing the
correct characters before you press ENTER.

If you press ENTER before you notice the typing error, the command containing the
typing error is displayed in the output area. It is no longer in the input area. You
cannot backspace and retype information already in the output area.

To correct a mistake in a multiple-line command, type the following ISQL command
at the beginning of the input area and press ENTER.

ignore

ISQL responds by telling you that it has ignored all lines previously entered in a
multi-line input. The status area contains Enter a new command. You can then
retype the command correctly.

You can also use the RETRIEVE function to review and correct any typed
information. ISQL saves the typed lines.

To use the RETRIEVE function, press PF12 (or PF24).

This function retrieves the last line that you typed and redisplays it in the input area
for review and correction. The cursor is positioned at the end of the displayed line.
You can continue to press PF12 (or PF24) until the command you want to change
is redisplayed in the input area. Then, you can make any necessary corrections
and press ENTER.

Each time you press F12, ISQL retrieves another line and redisplays it in the input
area. After the earlier line is retrieved, command retrieval begins again with the
most recent command typed. ISQL retains a varying number of your commands
depending on their size. The shorter the commands, the more ISQL retains.

DB2 Server for VM

16

You can correct a typing error in the input area by backspacing and typing the
correct characters before you press ENTER.

If you press ENTER before you notice the typing error, the command or statement
containing the typing error is displayed in the output area. It is no longer in the
input area. You cannot backspace and retype information already in the output
area.

To correct a mistake in a multiple-line command, type the following ISQL command
at the beginning of the input area and press ENTER.

ignore

Interactive SQL Guide and Reference

ISQL responds by telling you that it has ignored all lines previously entered in a
multi-line input. The status area contains VM READ. You can then retype the
information correctly.

You can also use the CMS RETRIEVE function to review and correct typed
information. CMS saves the lines that you have typed.

To use the RETRIEVE function, press PF12.

This function retrieves the last line that you typed and redisplays it in the input area
for your review and, if necessary, correction. The cursor is positioned at the end of
the displayed line. You can continue to press PF12 (or PF24) until the command
that you want to change is redisplayed in the input area. Then you can make any
necessary corrections and press ENTER to start the command.

Each time that you press PF12, CMS retrieves another line and redisplays it in the
input area. After the earlier line is retrieved, command retrieval begins again with
the most recent command typed. CMS retains a varying number of your
commands, depending on their size. The shorter the commands, the more CMS
retains.

The retrieve key function operates as if ISQL has two command stacks, one for
guery commands (commands related to a SELECT statement) and one for
nonquery commands. Query commands typed during the query cannot be retrieved
after the query is finished. For more information on the RETRIEVE function, see
“Retrieving and Correcting SQL Lines” on page 87.

Using ISQL on a Non-DB2 Server for VM Application Server (VM Only)

With the implementation of the Distributed Relational Database Architecture™
(DRDA) protocol, you can use ISQL to access data on non-DB2 Server for VM
application servers that support the DRDA protocol and on which ISQL is loaded. If
you plan to use ISQL to access data on a non-DB2 Server for VM application
server, you should check with your System Administrator to see whether your
application requester and the non-DB2 Server for VM application server are set up
for access using the DRDA protocol.

| Using ISQL on a Remote Application Server (VSE Only)

With the implementation of the Distributed Relational Database Architecture
(DRDA) protocol, you can use ISQL to access data on remote DRDA application
servers that support the DRDA protocol and on which ISQL is loaded. If you plan to
use ISQL to access data on a remote DRDA application server, you should check
with your System Administrator to see whether your application requester and the
remote DRDA application server are set up for access using the DRDA protocol.

Stopping ISQL

Chapter 1. Getting Started 17

DB2 Server for VSE

To stop communication with the application server through ISQL, type the following
command in the input area and press ENTER.

exit

This completes your first ISQL session.

DB2 Server for VM

To stop communication with the application server through ISQL, type the following
command in the input area:

exit

Press ENTER.

Entering Commands While Viewing the Results of a Query

You can type any ISQL command or SQL statement while viewing the results of a
query only if the result is not from a query being processed in an ISQL routine.
Exceptions to this restriction are display commands, which you can use while
viewing the results of a query being processed in a routine. (For information about
routines refer to Chapter 9, “Creating and Using Routines” on page 125.)

If you do type a command, other than a display command, while viewing the results
of a query being processed in a routine, you receive the following message:

ARI7963E Command failed. This command is not valid while you view
a query result from a routine or an EXEC.

Because the query result is the result of a routine, it is not affected.
If you are viewing a query result that is not from a routine, and you type an ISQL

command or SQL statement that changes the current display, you receive the
following message:

ARI79551 The system ended your query result to process your command.
In this case, ISQL ends the current query display and processes the new command
or statement.

If you are viewing a query result that is not from a routine, and you type a display
command, the display command is processed.

i CHARNAME and DBCS Options

18

ISQL queries the following system catalog tables at initialization:

1. SYSTEM.SYSOPTIONS catalog - to retrieve information such as the default
setting for DBCS and CHARNAME. In DB2 Server for VSE Version 6 Release
1, this information is retrieved from the SQLGLOB file. The user DBCS and
CHARNAME SQLGLOB values become the default setting for DBCS and
CHARNAME, if they exist. Otherwise, the global DBCS and CHARNAME
SQLGLOB values become the default setting for DBCS and CHARNAME.

ISQL uses the user CHARNAME to get the folding table to fold input from the
terminal from lowercase to uppercase. However, for CCSID data conversion,
ISQL uses the global CHARNAME.

Interactive SQL Guide and Reference

2. SYSTEM.SYSCHARSETS catalog - to retrieve the CHARTRANS information
corresponding to the default CHARNAME. In DB2 Server for VSE Version 6
Release 1, this information is retrieved from the ARISSCRD phase file, if it
exists. If not, the system defaults are supplied.

Chapter 1. Getting Started

19

20 Interactive SQL Guide and Reference

Chapter 2. Querying Tables

Querying table data is the most common activity performed by the database
manager.

The topics that follow describe query techniques that use data from the sample
tables in Appendix B, “Sample Tables” on page 269. Before continuing, check with
the persons responsible for the system in your organization to ensure the sample
tables are stored in the system for your use. If they are, you can use them to
practice commands and statements as you learn them. Having access to the
sample tables is not absolutely necessary, but being able to work with them from
your display terminal is of considerable help as you learn to use the system.

Selecting Particular Columns

Use the interactive SELECT statement to query data in a table. With this statement,
you select columns from a table.

The SELECT statement requires two parts:
SELECT clause Lists the columns you want to select.
FROM clause Names the table from which to select the columns.

These two parts, or clauses, of the SELECT statement are always needed. The
SELECT clause is always first, immediately followed by the FROM clause.

Suppose that you want to select all the columns from the DEPARTMENT table.
Start ISQL, and type a SELECT statement in the input area as shown in Figure 11
or Figure 10. List the columns you want and name the table that contains them.

Note: ISQL recognizes (by default) uppercase and lowercase letters as identical in
commands. Also by default, all character data in a table is stored as
uppercase. Your query on the row containing the word James, for example,
selects the row containing JAMES in uppercase, even if you typed james in
lowercase in your query. These case defaults can be changed using the
SET CASE command, which is discussed in detail in Chapter 13, “ISQL
Commands” on page 203.

select deptno,deptname,mgrno,admrdept from department
Enter a command

Figure 10. DB2 Server for VSE SELECT Statement Entered from Wait Mode

select deptno,deptname,mgrno,admrdept from department
VM READ

Figure 11. DB2 Server for VM SELECT Statement Entered from Wait Mode

You have just typed your first query.

© Copyright IBM Corp. 1987, 1998 21

22

Note: Naming conventions for columns, tables, and other SQL features are in the
DB2 Server for VSE & VM SQL Reference manual.

Now press ENTER.

The application server retrieves the data, and ISQL displays your query result in the
output area. The display then looks like Figure 12.

DEPTNO DEPTNAME MGRNO ADMRDEPT
AOO SPIFFY COMPUTER SERVICE DIV. 000010 A00

BO1 PLANNING 000020 AGO

col INFORMATION CENTER 000030 A00

DOl DEVELOPMENT CENTER ? AOO

D11 MANUFACTURING SYSTEMS 000060 DO1

D21 ADMINISTRATION SYSTEMS 000070 DO1

EO1 SUPPORT SERVICES 000050 A0O

Ell OPERATIONS 000090 EO1

E21 SOFTWARE SUPPORT 000100 EOL

* End of Result ##xxwsxxxkxxxx 9 Rows Displayed ##xxx* Cost Estimate is 1 #x

Figure 12. Display Mode Showing Query Result

The SELECT clause causes the DEPTNO, DEPTNAME, MGRNO, and
ADMRDEPT columns to be selected, and the FROM clause names the
DEPARTMENT table as the table from which to select the columns. Here you
selected all four columns in the table, but you can select any number of columns
(up to the maximum of 45). When selecting more than one column, use commas
to separate the column names.

The sequence in which the columns are displayed is the same sequence in which
the column names appear in the SELECT clause. You control the left-to-right order
of the columns of your query results by specifying the sequence of column names.

The displayed length attribute of VARCHAR columns such as DEPTNAME is
determined by the default VARCHAR length set in your profile. The system default
length for VARCHAR columns is 20 characters. Only the first 20 characters are
displayed. You can change the default length by using the SET command. Because
the default length for VARCHAR columns can be different, you may see more or
fewer characters on your display of VARCHAR columns than are shown in this
manual.

You may have seen the following message on your display just before the query
result:

ARI7960I The query cost estimate for this SELECT statement is 1.

The cost estimate value for this SELECT statement is also displayed in the last row
of output at the end of the query result.

This information is useful for estimating the time needed to obtain query results.
Larger cost-estimate values suggest that processing takes longer. The information
is provided before the query result is displayed so that you can cancel the request
if you think it will take too much time. The information is also provided after the
query result is displayed, because the query result may have been displayed before
you read message ARI7960I, or the message may have been suppressed. For

Interactive SQL Guide and Reference

additional information on the SET COSTEST command refer to Chapter 13, “ISQL
Commands” on page 203.

The cost estimate value is not a unit of time such as seconds. The value becomes
more useful as you enter more SELECT statements and become acquainted with
the processing times for the cost estimate values.

—— DB2 Server for VSE

Notice the status area. It contains Enter a DISPLAY command.

You can manipulate query results shown on your display by using ISQL display
commands. The only display command that you need to know now is the END
command, which the following sections discuss. Other display commands are
described in subsequent sections of this manual.

Ending a Query Display

Always end a query result when you are finished with it (so that ISQL performance
for other users is not affected). The END command removes your query result from
the display. Type the following and press ENTER:

end

— DB2 Server for VM

ISQL returns to wait mode.

Selecting All Columns

In the previous examples, information was selected by listing the names of the
columns desired. When all the columns of a table are to be selected, you can
substitute an asterisk for the column names. If the table has more than 45 columns,
only the first 45 columns are displayed. To display more than 45 columns, see the
SELECT statement discussion in the DB2 Server for VSE & VM SQL Reference
manual.

Query statements can be typed on one line by omitting the continuation character,
or they can be typed on several lines by incorporating the continuation character.
For example, type the following query in the input area and press ENTER. This
guery comprises two separate statements that can be typed on the same line
because the continuation character is omitted.

select * from department

Your display should look like Figure 13 on page 24. Type the END command to
end the query result, and then type the following and press ENTER:

select *» -

A continuation character was used. Now type the following and press ENTER:

from department

Chapter 2. Querying Tables 23

This query, using a continuation character, produces the same display as before,
as shown in Figure 13 on page 24. Continuation characters are used in most of
the examples and exercises, because they allow the entry of lengthy or complex
queries.

DEPTNO DEPTNAME MGRNO ADMRDEPT
A0O SPIFFY COMPUTER SERVICE DIV. 000010 A0O

BO1 PLANNING 000020 A0O

Cco1 INFORMATION CENTER 000030 A00

DO1 DEVELOPMENT CENTER ? AOO

D11 MANUFACTURING SYSTEMS 000060 DO1

D21 ADMINISTRATION SYSTEMS 000070 DO1

EOL SUPPORT SERVICES 000050 A0O

Ell OPERATIONS 000090 EO1

E21 SOFTWARE SUPPORT 000100 EO1

* End of Result *** 9 Rows Displayed ***Cost Estimate is Lxswxxkxsxkxsrkkskkkkr®

Figure 13. A Query That Selects All Columns

When you use an asterisk, the order in which the columns are displayed is the
order in which they appear in the table. Type the END command to end the query
result.

EXERCISE 1 (Answers are in Appendix A, Answers to the Exercises, on page 261.)

Create and type a statement for each of the following:
1. Select the column called ACTNO from the ACTIVITY table.
2. Select the DEPTNO, RESPEMP, and PRSTAFF columns from the PROJECT table.
3. Select all the columns from the PROJ_ACT table.

Selecting Particular Rows

24

In the previous example, you selected all the rows in the table. Suppose you want
the rows of the EMPLOYEE table with an entry of James in the FIRSTNME
column. To extract this conditional information, you must add a WHERE clause to
the SELECT statement. The form is:

v

»—WHERE—search_condition

You can also specify a search condition for groups of rows that satisfy a particular
condition by using a HAVING clause. A HAVING clause contains one or more
group-qualifying predicates connected by AND and OR operators. (Predicates are
discussed later in this chapter; operators are discussed in the next section.) The
form is:

Interactive SQL Guide and Reference

v

»—HAVING—search_condition

search_condition
is one or more conditions (or predicates) to apply in selecting, updating, or
deleting data. These conditions are basically a comparison between two
expressions.

Introducing Expressions and Operators

An expression refers to a column, a constant, an SQL special register, a column
function, a scalar function, an arithmetic expression, a character expression, or a
labeled duration. Expressions are connected by one or more of the following
arithmetic operators:

+ (add)
- (subtract) (multiply)
/ (divide)

The following are examples of valid arithmetic expressions:

bonus + 200
salary * prstaff
7000/ 3.1416

Each condition can include one or more of the following Boolean (or logical)
operators:

Operator Example

AND where salary > 30000 AND sex ='m'
OR where projno = 'AD3100' OR projno = 'AD3111'
NOT where NOT(projno = 'AD3100 OR projno = '‘AD3111")

Each condition can also include one of the following comparison operators:

= (equal to)

<> (not equal to)

> (greater than)

>= (greater than or equal to)
< (less than)

<= (less than or equal to)

You can use these operators to compare one item with another. For example, using
the DEPARTMENT table in the sample tables, you can use the following search
condition to select the row whose department number is A0O:

select * -
from department -
where deptno = 'A00'

Chapter 2. Querying Tables 25

The specified value for DEPTNO is enclosed in single quotation marks because the
column is defined as character-type data. No quotation marks are needed for
numeric-type data.

Type the following statement in the input area and press ENTER.

select * -
from employee -
where firstnme = 'JAMES'

The query result is displayed as shown in Figure 14.

EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE
000190 JAMES H WALKER D11 2986 1974-07-26
000230 JAMES J JEFFERSON D21 2094 1966-11-21

* End of Result *** 2 Rows Displayed ***Cost Estimate is Lixkkkskkkkkkkkkkkhkkkk

Figure 14. Result of a Query Using Expressions and Operators

When used, a WHERE clause always follows the FROM clause. The WHERE
clause in this example specifies that only the rows that contain JAMES in their
FIRSTNME column are to be selected. Again, JAMES must be enclosed in single
guotation marks to show that it refers to character data; do not enclose numeric
data in quotation marks.

You can now end the query result. This time, however, press PF3 instead of typing
the END command. PF3 enters an END command and you can use it whenever
you want to end a query result.

Preventing the Selection of Duplicate Rows

26

Sometimes you want to prevent the selection of rows that duplicate others you
have already selected. For example, if you want to know the department numbers
in the PROJECT table, type the following statement:

select deptno -
from project

Press ENTER.

This displays the result in Figure 15 on page 27.

Interactive SQL Guide and Reference

DEPTNO

* End of Result *** 20 Rows Displayed ***Cost Estimate is lsxxkkkkkkdkkkrhkrkkk

Figure 15. A Query Result with Duplicate Rows

The result shows the department numbers, but particular department numbers are
repeated. Press PF3 to end the query result.

To eliminate repeated numbers, modify the SELECT clause as follows:

select distinct deptno -
from project

Press ENTER.

This produces the result shown in Figure 16.

DEPTNO

E21
* End of Result *** 8 Rows Displayed ***Cost Estimate is laskxkkkkkkkkkkrhkrkkk

Figure 16. A Query Result without Duplicate Rows

Press PF3 to end the query result.

Chapter 2. Querying Tables 27

Using the AND and OR Operators

28

It is often necessary to select rows of a table based on more than one search
condition. Multiple conditions are connected by the logical operators AND or OR.

The difference between the AND and OR operators is that with AND all conditions
connected by the AND operator must be met for the row to be selected, but with
OR, if any of the conditions are met, the row is selected.

The following example illustrates the AND operator. This query searches the
EMPLOYEE table and selects only female employees who earn a salary greater
than $30000.

select * from employee -
where salary > 30000 and sex = 'f'

The following example illustrates the OR operator. The SQL UPDATE statement
changes the bonus to $800 for employees whose education level is greater than 18
or whose job is analyst.

update employee -
set bonus = 800 -
where edlevel > 18 or job = 'analyst'

Using the NOT Operator

You can use the NOT operator with an expression to indicate a condition to be met
when you are selecting rows. For example, the following statement selects the rows
from the EMP_ACT table that have employee project time, but that do not have an

activity number of 90:

select » -
from emp_act -
where emptime > 0 and not actno = 90

Note: You can also type the WHERE clause as:

where emptime > 0 and actno <> 90

(not actno = 90 is the same as actno <> 90).

Grouping Search Conditions

You can use parentheses to group conditions to give higher precedence to the logic
within the parentheses. For example, you can use the following search conditions
to create a view (discussed in Chapter 10, “Using Additional Query Techniques” on
page 135) of the rows of the DEPARTMENT table where the administrative
reporting department is AOO or D01, and the department number is AOO:

create view rpt -

as select * from department -

where deptno = 'a00' -

and (admrdept = 'a00' or admrdept = 'd0l')

If this search condition is used without the parentheses, a view is created for the
first, fifth, and sixth rows of the DEPARTMENT table, instead of just for the first.
This is because, without the parentheses, the AND operator would take precedence
over the OR operator.

Interactive SQL Guide and Reference

Additional Examples

To select all the rows from the PROJ_ACT table for project number AD3100, and
all the rows for project number AD3111 except the row for activity number 60, type
the following statement:

select * -

from proj_act -

where projno = 'AD3100' or projno = 'AD3111' -
and not actno = 60

Note: You can also type the WHERE clause as:

where projno='AD3100' or projno='AD3111' and actno<>60
Press ENTER.

This clause produces the result shown in Figure 17.

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

AD3100 10 0.50 1982-01-01 1982-07-01

AD3111 70 1.50 1982-02-15 1982-10-15

AD3111 70 0.50 1982-03-15 1982-10-15

AD3111 80 1.25 1982-04-15 1983-01-15

AD3111 80 1.00 1982-09-15 1983-01-01

AD3111 180 1.00 1982-10-15 1983-01-15

* End of Result *** 6 Rows Displayed ***Cost Estimate is Lakxskkxkkkrkkkkrkkkrs

Figure 17. A Query Result Using NOT and Grouping Search Conditions

The WHERE clause in Figure 17 can also be written using parentheses:

where projno = 'AD3100' -
or (projno = 'AD3111' and not actno = 60)

Parentheses group multiple search conditions to form one search condition; the
WHERE clause shown above contains two search conditions:

e projno='AD3100'
e projno='AD3111' and not actno=60

Press PF3 to end the query result.

The search conditions in a WHERE clause can be modified merely by a change in
the location of the parentheses. For example, to omit the rows for activity number
60 from both projects in the above example, type the following statement:

select * -

from proj_act
where (projno
and not actno

'AD3100' or projno = 'AD3111') -
60

Press ENTER.

The query displays the result shown in Figure 18 on page 30.

Chapter 2. Querying Tables 29

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

AD3100 10 0.50 1982-01-01 1982-07-01
AD3111 70 1.50 1982-02-15 1982-10-15
AD3111 70 0.50 1982-03-15 1982-10-15
AD3111 80 1.25 1982-04-15 1983-01-15
AD3111 80 1.00 1982-09-15 1983-01-01

AD3111 180 1.00 1982-10-15 1983-01-15
* End of Result xx% 6 Rows Displayed #**Cost Estimate is Laxsxssssdrrrssssdsrr

Figure 18. A Query Result When Search Condition is Modified by Parentheses

Press PF3 to end the query result. (By now you are probably getting used to using
the END command (PF3 key); it is mentioned only occasionally in the remainder of
the manual.)

EXERCISE 2 (Answers are in Appendix A, Answers to the Exercises, on page 261.)

Create and type a statement for each of the
following:

1. Select the information in the LASTNAME, WORKDEPT, and PHONENO columns of
the EMPLOYEE table for the rows where the salary is greater than $50000.

2. Select the department number, department name, manager humber, and senior
department number information from the DEPARTMENT table for any department
that reports to department AQO.

3. Select the activity numbers from the PROJ_ACT table that need 0.75 or
more mean number of employees to staff the activity.

4. Select all the information in the PROJ_ACT table that applies to
project numbers AD3100, IF1000, or MA2111.

Selecting Rows by Using Special Registers

You can use special registers whenever you use an expression in statements such
as SELECT or UPDATE. The special registers are:

CURRENT DATE Returns the current date in the local time zone.

CURRENT SERVER Returns the name of the application server to which
your terminal is connected.

CURRENT TIME Returns the current time in the local time zone.

CURRENT TIMESTAMP Returns the current timestamp in the local time
zone.

CURRENT TIMEZONE Returns a signed time duration as a DEC(6,0)

number containing the local time-zone value.

USER Returns your authorization ID.

The value stored in the table for CURRENT DATE is a date value (years, months,
and days). The value stored in the table for CURRENT TIME is a time value

30 Interactive SQL Guide and Reference

(hours, minutes, and seconds). The CURRENT TIMESTAMP stores a combination
of date and time values (combining date and time elements, which include
microseconds).

You can use CURRENT SERVER to display the name of the application server to
which your terminal is connected. In the following example, CURRENT SERVER
displays the name of the application server on which the table SAMP1 resides.

select current server,id,indate -
from sampl

You can use special registers such as CURRENT TIME and CURRENT
TIMESTAMP to timestamp your tables. The sample tables do not contain time
values, but suppose you query a table called OPERATIONS that has a TIME or
TIMESTAMP column as follows:

select * from operations -
where end_time = '16:30'

This SELECT statement results in a query display of all rows from OPERATIONS
where the value in the END_TIME column is 16:30 (16 hours and 30 minutes). If
any of the END_TIME entries are generated by a special register, those entries
include the seconds part of the time value as well, and may include the
microseconds if the column is defined as a TIMESTAMP column.

When you query rows whose time values have only hours and minutes, the rows
with seconds values are bypassed. Your query result is incomplete, and essential
rows may be missing. To include the missing rows, word the SELECT statement
more carefully as in the following example:

select * from operations -
where hour(end_time) = 16 -
and minute(end_time) = 30

This statement produces a query result that includes all rows with time values of 16
hours, 30 minutes, and anywhere from 0 to 59 seconds.

You can also have problems of consistency and accuracy when dealing with
datetime values from different time zones, or daylight-saving-time values that are
incompatible with non-daylight-saving-time values from the same time zone.

The CURRENT TIMEZONE allows easy conversion of a local time into Greenwich
Mean Time (GMT) by subtracting CURRENT TIMEZONE from local time. The
CURRENT TIMEZONE can be subtracted from a TIME or a TIMESTAMP data
type. This value is a negative time value if you are west of the GMT zone, and a
positive value if you are east of the GMT zone.

The value of each of the four special registers that deal with time is based on the
Time-of-Day (TOD) clock reading performed during the processing of the statement
containing the particular special register.

You can use special register USER in the definition of a search condition or in a
select list. The database manager replaces USER with your authorization ID when
it processes the search condition. For example, if your authorization ID is SMITH
and the following search condition is specified:

where name = USER

Chapter 2. Querying Tables 31

The database manager searches for name = 'SMITH'.

Selecting Rows That Contain a Matched Value

32

With the IN predicate you can select rows that contain a particular value (or
character combination) in a certain column by matching the value with a value or a
list of values (or character combinations) that you specify.

With the IN predicate you can quickly compare the value of an expression with an
item or a list of items that you specify. The format of an IN predicate is:

»—expression IN subselect >
p LNOTJ L()

(constan 1,“—4|—‘—)J
special_register

The condition is satisfied if the expression is equal to one or more items or, if the
NOT option is used, is not equal to any item. The following example illustrates this
type of condition:

deptno in ('DO1','BO1','CO1')

The list can be formed by using a subquery. Subqueries are discussed in
Chapter 10, “Using Additional Query Techniques” on page 135.

To select rows from the DEPARTMENT table for manager numbers 10, 20, and 30,
you could type the following statement:

select * -

from department -

where mgrno = '000010' -
or mgrno = '000020' -

or mgrno = '000030'

You can also use the IN predicate as part of the WHERE clause to obtain the same
result by typing:

select * -
from department -
where mgrno in ('000010','000020','000030')

Either query would present the display in Figure 19.

DEPTNO DEPTNAME MGRNO ADMRDEPT
A0O SPIFFY COMPUTER SERVICE DIV. 000010 A0O
BO1 PLANNING 000020 AQO
co1 INFORMATION CENTER 000030 A00

* End of Result xx% 3 Rows Displayed ***Cost Estimate is Lixaxsssdddkrrssshdkrx

Figure 19. A Query Result from Using the IN Predicate

Interactive SQL Guide and Reference

Selecting Rows That Contain Values within a Range

Sometimes you must select data that falls within a range; for example, you want to
select the rows from the EMPLOYEE table where the salary is between $30000
and $40000. Obtain this information by typing:

select workdept,phoneno,hiredate, job,edlevel,sex,birthdate,salary -
from employee -
where salary between 30000 and 40000

This produces the display in Figure 20.

WORKDEPT ~PHONENO HIREDATE JOB EDLEVEL SEX BIRTHDATE SALARY
co1 4738 1975-04-05 MANAGER 20 F 1941-05-11 38250.00
D11 6423 1973-09-14 MANAGER 16 M 1945-07-07 32250.00
D21 7831 1980-09-30 MANAGER 16 F 1953-05-26 36170.00

* End of Result *** 3 Rows Displayed ***Cost Estimate is Laaxskkasskrsskrrskrrs

Figure 20. A Query Result from Using the BETWEEN Predicate

Using the BETWEEN predicate, you can determine whether a value falls within a
specified range of values. The format of a BETWEEN predicate is:

»—expression_l —L—_'—B ETWEEN—expression_2—AND—expression_3——»
NOT

The condition is satisfied if expression_1 is equal to or greater than expression_2,
and equal to or less than expression_3. These three expressions are standard
expressions containing column names and constants.

The BETWEEN predicate can be modified by NOT. With the NOT option, the
condition is satisfied if expression 1 is less than expression_2 or greater than
expression_3.

Selecting Rows That Contain a Particular Character Combination

Rows can be selected that contain a particular combination of characters in
columns containing character data.

Evaluating Character String Expressions

The database manager observes the following rules when evaluating
character-string expressions:

1. When comparing two character strings, alphanumeric ordering is used. The
number 9 is greater than 8 and so on to 0. The number 0 is greater than the
uppercase Z, which is greater than Y and so on to A. The character A is
greater than the lowercase z, which is greater than y and so on to a. The
character a is greater than the special characters.

2. When comparing two character strings of fixed length, or when comparing a
fixed-length string and a varying-length string, the database manager pads the
shorter string on the right with blanks until it equals the length of the longer

Chapter 2. Querying Tables 33

string; then it performs the comparison. For example, if SMITH is compared
with a 10-character string, the database manager pads it with blanks like this:

'SMITH '

3. Two VARCHAR strings must match in content, not length, to be considered
equal. For example, 'SMITH ' is the same as 'SMITH".

Trailing blanks, however, are significant when you compare LONG VARCHAR
strings or LONG GRAPHIC strings. Trailing blanks are also significant when
you use the LIKE predicate.

4. A VARCHAR field that has a length of zero can be represented in a search
condition by two single quotation marks without a blank between them.

For more information and examples, see “Selecting Rows That Contain Null
Values” on page 37.

Using the LIKE Predicate

The LIKE predicate searches for character string data that partially matches a
particular string. Its format is:

»—column_name LIKE string_constant
|—NOT—J |—USER—J |—ESCAPE—escape_chara(:ter‘—J

v

As indicated in the syntax diagram, NOT can modify LIKE.

Note: You cannot use LIKE with a date or time value.

The specified column must be of fixed-length or varying-length character or graphic
data type. Datetime columns and numeric type columns are not permitted. The
string_constant can contain any character string, with special meanings reserved
for the underscore () and percent (%) characters.

Defining the Underscore and Percent Characters

34

The underscore character represents any single character. The percent character
represents any string of zero or more characters. These two special characters can
be used in any combination in the string _constant. The following examples
illustrate the use of the LIKE predicate, the underscore character, and the percent
character:

name like '%anne%'

This example searches for any name that contains the word anne, for example,
LIZANNE, ANNETTE, or ANNE.

The following example searches for any 3-character description that has an N as
the second character.

description like '_n_

To satisfy this pattern, a data value must be 3 characters long. Its data type can be
either CHAR or VARCHAR.

The following example uses both special characters in the same string constant.

name like '_e_e%

Interactive SQL Guide and Reference

This example searches for any name that is a minimum of 4 characters and has E
as the second and fourth characters.

Note: The character string can be longer than 4 characters.

Using the Percent Character
To select from the ACTIVITY table the activity keyword and activity description of
those activities whose descriptions are maintenance-related, type the following
SELECT statement:

select actkwd,actdesc -
from activity -
where actkwd Tike '%maint%'

This produces the result in Figure 21.

ACTKWD ACTDESC

MAINT Maint software sys
* End of Result *** 1 Rows Displayed ***Cost Estimate is Lxxxskkxkskkrskkkrhkrrs

Figure 21. A Query Result from Using the Percent Character

Using the Underscore Character

Select the rows from the PROJ_ACT table that contain a project number of 6
characters and starts with the an A:

select » -
from proj_act -
where projno like 'A

Note: Do not leave blanks either between the underscores, or between the first
underscore and the letter A.

The query displays the result in Figure 22 on page 36.

Chapter 2. Querying Tables 35

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

AD3100 10 0.50 1982-01-01 1982-07-01
AD3110 10 1.00 1982-01-01 1983-01-01
AD3111 60 0.80 1982-01-01 1982-04-15
AD3111 60 0.50 1982-03-15 1982-04-15
AD3111 70 1.50 1982-02-15 1982-10-15
AD3111 70 0.50 1982-03-15 1982-10-15
AD3111 80 1.25 1982-04-15 1983-01-15
AD3111 80 1.00 1982-09-15 1983-01-01
AD3111 180 1.00 1982-10-15 1983-01-15
AD3112 60 0.75 1982-01-01 1982-03-15
AD3112 60 0.50 1982-02-01 1982-03-15
AD3112 60 0.75 1982-12-01 1983-01-01
AD3112 60 1.00 1983-01-01 1983-02-01
AD3112 70 0.75 1982-01-01 1982-10-15
AD3112 70 0.50 1982-02-01 1982-03-15
AD3112 70 1.00 1982-03-15 1982-08-15
AD3112 70 0.25 1982-08-15 1982-10-15
AD3112 80 0.35 1982-08-15 1982-12-01
AD3112 80 0.50 1982-10-15 1982-12-01
AD3112 180 0.50 1982-08-15 1983-01-01
AD3113 60 0.75 1982-03-01 1982-10-15
AD3113 60 1.00 1982-04-01 1982-09-01

Figure 22. A Query Result from Using the Underscore Character

Using an Escape Character

36

If the underscore or percent characters are in the string constant, you can define an
escape character that instructs the database manager not to treat them as special
characters but as part of the string.

The following example illustrates the definition of an escape character:
name like '+%+_vacancy %' ESCAPE '+'

The ESCAPE '+' defines + as the escape character and indicates a search for a
string that begins with the characters %_ VACANCY.

The +% and the +_ at the beginning of the string indicate that the percent and
underscore characters are part of the string constant. Because no + appears before
the second % in the example, % accepts any character string to the right of
%_VACANCY; for example, %_VACANCY RATE.

If you use the special register USER in a character-string search, it is interpreted as
a CHAR(8) string whose value is the authorization ID of the user currently
connected. The following example illustrates what you would type:

name like user

The special register USER is further discussed in “Selecting Rows by Using Special
Registers” on page 30.

Note: To prepare for the following exercise, type SET CASE STRING on the ISQL
command line, and press ENTER. The SET CASE STRING setting and
other SET commands are explained in Chapter 13, "ISQL Commands" on
page 246.

Interactive SQL Guide and Reference

EXERCISE 3 (Answers are in Appendix A, Answers to the Exercises, on page 261.)

Create and type a statement for each of the following:

1. Select the activity numbers from the PROJ_ACT table that require a mean
number of employees between 0.75 and 1.25.

2. Select the project number and activity start date from the PROJ_ACT
table for project numbers AD3100, IF1000, and MA2111.

3. Select the activity number from the ACTIVITY table for those activities
that have the word DATA in their description.

Selecting Rows That Contain Null Values

A null represents an undefined value. A null differs from a blank in that a blank in a
table indicates that the value is blank for that position. A null indicates that no value
is defined for this position. A null value is represented in an ISQL query display by
a control character (usually a question mark).

The IS NULL predicate either searches for null values in a table, or excludes null
values from the result of a query. The format of an IS NULL predicate is:

v

»—column_name—1IS NULL
|—NOTJ

A row of a table satisfies this condition if the value in the designated column is (or
is not) null.

The following statement retrieves those rows from the DEPARTMENT table that
have a null value in their MGRNO field:

select » -
from department -
where mgrno is null

If you want to search for a null value among other items, you must put the null
value in a separate search condition rather than as a list item. For example, the
following statement retrieves those rows from the PROJECT table whose PRSTAFF
field contains 1, 2, or a null value:

select * -

from project -

where prstaff in (1,2) -
or prstaff is null

when you retrieve data from tables that contain null values, you may not retrieve all
the data you want. Suppose you query a table as follows:

select * -
from proj_act -
where acstaff <> .50

Chapter 2. Querying Tables 37

The ACSTAFF column was defined to allow nulls. The query result only provides
those rows where the ACSTAFF column is not assigned the value of .50. You
would not see rows that contain a null value in the ACSTAFF column. To view
these rows, as well as those with a value other than .50, type:

select *» -
from proj_act -
where acstaff <> .50 or acstaff is null

Selecting Rows That Satisfy a Calculated Condition

A search condition can also contain arithmetic operators that allow you to select
rows based on calculated values. For example, if you want to identify the
employees in the EMPLOYEE table that earn more than $40000 when their salary
and bonus are added, type:

select empno,salary -
from employee -
where salary + bonus > 40000.00

This presents the result in Figure 23.

EMPNO SALARY
000010 52750.00
000110 46500.00
000020 41250.00
000050 40175.00
* End of Result *** 4 Rows Displayed ***Cost Estimate is Lakxskkxksdkrkkkrrkkkrk

Figure 23. A Query Result That Satisfies a Calculated Condition

The arithmetic operations that can be performed are:

+ (add)

- (subtract)
* (multiply)
/ (divide)

More than one arithmetic operator can appear in a search condition, and
parentheses can be used in the same way they are used in any arithmetic
expression.

Note: The conversion processes needed to use operands of different data types in
calculations are described in the DB2 Server for VSE & VM SQL Reference
manual.

Selecting Rows Using Durations

38

A duration is an interval of time expressed in the form of a labeled duration, or a
date, time, or timestamp duration.

Interactive SQL Guide and Reference

Labeled Durations

A labeled duration represents any number of years, months, days, hours, minutes,
seconds, or microseconds. Such an expression lets you isolate parts of a date or
time value and accomplish tasks, such as adding 4 days to a date value in a table.
The number can be either a numeric constant, a column-name, a function, or a
numeric expression in parentheses. The number is then converted as if it were
assigned to a DEC(15,0) number. Fractional durations are truncated to the whole
number. The unit is expressed by a keyword following the number.

The keywords are:

YEAR(S)
MONTH(S)

DAY(S)

HOUR(S)
MINUTE(S)
SECOND(S)
MICROSECOND(S).

An example of a labeled duration is:
start_date + 120 days

The labeled duration, 120 days, results in 120 days being added to the starting
date.

Date Durations

A date duration represents a number of years, months, and days. It is expressed as
a DEC(8,0) number. The interpretation of the 8 digits is yyyyxxdd, where yyyy is the
number of years, xx is the number of months, and dd is the number of days.

An example of a date duration is:
datel - date2

where both datel and date2 are defined as date values.

Time Durations

A time duration represents a number of hours, minutes, and seconds. It is
expressed as a DEC(6,0) number. The interpretation of the 6 digits is hhmmss,
where hh is the number of hours, mm is the number of minutes, and ss is the
number of seconds.

An example of a time duration is:

timel + time2

where both timel and time2 are defined as time values.

Timestamp Durations

A timestamp duration represents an amount of time. It is expressed as a DEC(20,6)
number. The interpretation of the 20 digits is yyyyxxddhhmmsszzzzzz, where yyyy
is the number of years, xx is the number of months, dd is the number of days, hhis
the number of hours, mm is the number of minutes, ss is the number of seconds,
and zzzzzz is the number of microseconds.

Chapter 2. Querying Tables 39

An example of a timestamp duration is:

timestampl - timestamp2

where both timestampl and timestampZ2 are defined as timestamp values.

Using a Labeled Duration

Suppose you want to select the rows from the EMPLOYEE table where the time

between birth date and hiring date is less than 25 years. Type the following

SELECT statement:

select hiredate,job,edlevel,sex,birthdate,salary,bonus -
from employee -
where birthdate + 25 years > hiredate

The result is displayed in Figure

24,

HIREDATE

1963-12-05
1972-02-12
1977-10-11
1973-07-07
1974-07-26
1966-03-03
1968-08-29
1949-08-17
1980-06-19
1947-05-05

JoB
CLERK
DESIGNER
DESIGNER
DESIGNER
DESIGNER
DESIGNER
DESIGNER
MANAGER
MANAGER
FIELDREP

EDLEVEL

16

SEX BIRTHDATE

EEZEZTOEZETITIEZX

1942-10-18
1947-05-17
1955-04-12
1949-02-21
1952-06-25
1941-05-29
1948-03-19
1925-09-15
1956-12-18
1926-05-17

SALARY

23840.
* End of Result x#*xx*xx*xx*xx*x 10 Rows Displayed #*x*xx Cost Estimate is

Figure 24. A Query Result from Using a Labeled Duration

In a date or time expression containing two values, only one value can be a

500.

1

*%

labeled-duration expression. The other value must be a date or time expression.

40 Interactive SQL Guide and Reference

Chapter 3. Manipulating Query Information

Besides specifying the data that you want to see, you can specify the form in which
it appears. The following sections describe how you can manipulate the data with
arithmetic operators and functions. You can calculate percentages, join character
strings, select constants, and put the rows in an order that makes the query more
useful to you. Because there are so many ways to manipulate query information,
this chapter includes a section about online HELP information.

Selecting Information Calculated from Table Data

The result in “Selecting Rows That Satisfy a Calculated Condition” on page 38
does not show the calculated income. To show calculated values in a result, you
can use an expression in the SELECT clause. For example, type the following
statement:

select empno,lastname,bonus + comm -
from employee -
where bonus + comm > 3000.00

The resulting display is shown in Figure 25.

EMPNO LASTNAME EXPRESSION 1
000010 HAAS 5220.00
000110 LUCCHESI 4620.00
000020 THOMPSON 4100.00
000030 KWAN 3860.00
000060 STERN 3180.00
000070 PULASKI 3593.00
000050 GEYER 4014.00
* End of Result *** 7 Rows Displayed ***Cost Estimate is Lixskxskkskkdkkkhrskrskrx

Figure 25. A Query Result Calculated from Table Data

The column heading for the calculated value is EXPRESSION 1. It cannot be labeled
BONUS or COMM because the values displayed are not the values stored in the
BONUS or COMM columns in the EMPLOYEE table. Rather, they are calculated
values. A later section describes how you can use the FORMAT command to
create a more meaningful column heading.

Interpreting Arithmetic Errors

Errors, such as divide-by-zero or overflow, can occur during the execution of an
arithmetic expression in a SELECT statement. If an arithmetic error occurs, the
operation is not terminated. Instead, each field that has an arithmetic error is
displayed in the resulting table as a row of number signs (#).

For example, a SELECT A/B is performed on the following table:

© Copyright IBM Corp. 1987, 1998 41

Alw ([N]|>
RrlRr|lO|FR,|T

The result is as follows:

The number signs indicate the row in which an arithmetic error or exception occurs
as a result of dividing by zero.

Note: When an error occurs, ISQL message ARI77171 appears and the display is
put in HOLDING status. Clear the display. If more than one arithmetic error
occurs in the same operation, no additional messages are displayed.

Selecting Information Using Datetime Arithmetic

The arithmetic operations possible between date values or time values are addition
and subtraction. For example, to increase the estimated starting date in the
PROJECT table by a certain value and display the result, type the following
SELECT statement:

select prstdate + 30 days -
from project -
where prstdate = '1982-01-01'

The result of this query is shown in Figure 26 on page 43.

42 Interactive SQL Guide and Reference

EXPRESSION 1
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31
1982-01-31

Figure 26. A Query Result from Using Datetime Arithmetic

In the following example, suppose you want to schedule a status meeting one

* End of Result *** 19 Rows Displayed ***Cost Estimate is lxxskkxkkkkkkkkrkkkrk

month after the start date of each project in the PROJECT table. You can find the

dates by typing the following:

select prstdate,date(prstdate + 1 month) -
from project

From this query you obtain two columns, the PRSTDATE date and the status

meeting date. Or, you can type the following if you only want the dates of the status

meetings:

select date(prstdate + 1 month) -
from project

For detailed rules on the use of datetime arithmetic, see the DB2 Server for VSE &

VM SQL Reference manual.

EXERCISE 4 (Answers are in Appendix A, Answers to the Exercises, on page 262.)

Create and type a statement for each of the
following:

1. Retrieve the employee number, last name, and the salary plus ten percent
from the EMPLOYEE table for people who have a bonus of a thousand dollars or
greater.

2. Retrieve the project number and activity number for those projects in the
PROJ_ACT table whose activity staff is less than 1.5, even with another
half staff added.

Chapter 3. Manipulating Query Information

43

Selecting Information Using Database Manager Functions

The functions offered by the database manager consist of column functions and
scalar functions. Column functions apply the function to a set of values in a column
over multiple rows and produce a single result. Scalar functions apply the function
to a single value in each row and produce a result for each row.

Defining Column Functions

An SQL column function takes an entire column of data over multiple rows as its
argument and produces a single data item that summarizes the column.

44

The column functions are:

AVG

COUNT

MAX

Calculates the average value of the item to be selected. This function is for
numeric columns only (INTEGER, SMALLINT, DECIMAL, and FLOAT). The
keyword DISTINCT can be used with AVG to use only distinct (different)
values in calculating the average. The function and keyword are written like
this:

AVG(DISTINCT item)

In computing the average, null values are ignored. If all the items specified
are null, the average calculated is null. The data type of this column
function has the null permitting attribute and is the same as that of its
argument except when the argument is SMALLINT, in which case, the
resultant data type is INTEGER.

This function can be used in one of two ways:

COUNT(*) returns a number indicating how many rows satisfied the search
condition (regardless of whether they contain null values).

COUNT(DISTINCT column_name) returns a number indicating how many
rows containing different values in the column satisfied the
search condition. Duplicate values and null values are not
counted.

The data type for this column function is INTEGER. The result can be zero,
but not null.

Finds the largest value for the item to be selected. This function can be
applied to columns of any type, except long strings. If applied to a CHAR or
VARCHAR type column, alphanumeric ordering is used. The number 9 is
greater than 8 and so on to 0. The number 0 is greater than the uppercase
Z, which is greater than Y, and so on to A. The character A is greater than
the lowercase z, which is greater than y, and so on to a. The character a is
greater than the special characters.

If the argument is a datetime data type, then the ordering is in
chronological order.

If the argument has a data type of VARCHAR or VARGRAPHIC, and the
values differ only by trailing blanks, the MAX function considers the values
equal.

Interactive SQL Guide and Reference

In finding the maximum, null values are ignored. If all the items specified
are null, null is returned. The data type of this column function has the null
permitting attribute and is of the same data type as that of the argument.

MIN
This function works the same way that the MAX function works, except that
it finds the smallest value of the item to be selected instead of the largest.
For details, see the paragraph above describing MAX function.

SUM

Calculates the total value of the item to be selected. This function is for
numeric columns only (INTEGER, SMALLINT, DECIMAL, and FLOAT). The
keyword DISTINCT can be used with SUM to use only distinct (different)
values in calculating the sum. The function and the keyword are written like
this:

SUM(DISTINCT item)

In computing the total, null values are ignored. If all the items specified are
null, the total calculated is null. The data type of this column function has
the null permitting attribute and is the same as that of its argument except
when the argument is SMALLINT type, in which case, the resultant data
type is INTEGER.

Using Column Functions

The five column functions, AVG, COUNT, MAX, MIN, and SUM, can be applied to
data retrieved from a table.

You apply these functions to a column name or expression in the SELECT clause.
They calculate a single value for the column or expression to which they are
applied. Therefore, if a column function is applied to one column or expression in a
SELECT clause, then all selected columns and expressions must have an
associated column function. The one exception to this rule is grouping. 1t is
explained under “Selecting Summary Information by Groups” on page 139.

For example, suppose you need to know the average estimated mean number of
employees needed to staff an activity, as well as the total of these mean numbers,
for project AD3111. Type:

select avg(acstaff),sum(acstaff) -
from proj_act -
where projno = 'AD3111’'

This displays Figure 27.

AVG (ACSTAFF) SUM(ACSTAFF)

0.9357142857142857142857142 6.55
* End of Result #x% 1 Rows Displayed #**Cost Estimate is Laxsxssskddkkrsssskkhrx

Figure 27. A Query Result from Using Column Functions AVG and SUM

As shown in the above example, the item in the SELECT clause that the column
function is applied to must be enclosed in parentheses.

Chapter 3. Manipulating Query Information 45

The column functions MIN, MAX, and SUM are treated in the same manner as
AVG. COUNT can be used to count the number of rows selected (by using an
asterisk in place of a column name), or it can be used to count the number of
distinct values in a particular column of the rows selected. For example, the
following query counts how many rows for employee 130 are contained in the
EMP_ACT table:

select count(*) -
from emp_act -
where empno = '000130'

This produces the display in Figure 28.

COUNT (EXPRESSION 1)

* End of Result ##x 1 Rows Displayed ***Cost Estimate is Lawxsssaxkdkakdtxins

Figure 28. A Query Result from Using the COUNT Column Function

Notice the column heading for the calculated value is COUNT (EXPRESSION 1). The =
in the query is replaced by EXPRESSION 1.

The following query counts how many distinct department numbers are contained in
the PROJECT table:

select count(distinct deptno) -

from project

This presents the display in Figure 29.

COUNT(DISTINCT DEPTNO)

* End of Result *** 1 Rows Displayed ***Cost Estimate is lxskxskkkskkdkkdrskhrskrx

Figure 29. A Query Result from Using DISTINCT with the COUNT Column Function
Notice that the column heading DISTINCT DEPTNO is not replaced by EXPRESSION 1
because DISTINCT DEPTNO describes the values displayed.

Note: The column functions AVG and SUM cannot be used on columns that
contain date, time, or timestamp values.

Defining Scalar Functions

46

Scalar functions can be used wherever an expression can be used. The function
acts on one row of a table at a time and is applied to a single value within the row.
The function produces a result for each row.

Scalar functions are:

CHAR
gives character representation of a decimal, timestamp, or datetime value in a
specified format.

Interactive SQL Guide and Reference

Suppose the activity start date has an internal representation of 1982-02-15,
and you would like to see the date in USA (character) format (02/15/1982), you
would type:

char(acstdate, usa)

DATE
creates a date, as data type DATE, from an expression.

The following example shows how to select all rows from the IN_TRAY table,
representing notes that were received on January 1, 1965:

select source, subject from in_tray -

where date(received) = '1965-01-01"'

DAY
extracts the day portion of a date, timestamp, date duration, or timestamp
duration.

The following example shows how to select the day part of the column
HIREDATE:

select day(hiredate) from employee

DAYS
extracts the number of days since December 31, 0000.

The following example shows how to obtain the number of days between the
HIREDATE and the current date:

days(current date) - days(hiredate)

DECIMAL(expression)

DECIMAL(expression,precision)

DECIMAL(expression,precision,scale)
returns a decimal representation of a numeric value. The precision and scale of
the result you want are specified by the second and third parameters
respectively. These two parameters are optional. See the DB2 Server for VSE
& VM SQL Reference manual for their defaults. In the following example, the
precision is 8 and the scale is 2 for one and a half times the salary:

select decimal(salary * 1.5,8,2) from employee

DIGITS
returns a character representation of a numeric value. The result does not
include a sign or decimal point.

The following example shows how to obtain a character representation of
EDLEVEL, which is of data type SMALLINT:

select digits(edlevel) from employee

FLOAT
returns a double-precision, floating-point representation of a numeric value.

The following example shows how to obtain ACTNO in floating-point notation;

select float(actno), actdesc from activity

HEX
returns a hexadecimal representation of a value.

The following example shows how to convert the activity number in ACTIVITY
to a hexadecimal representation:

Chapter 3. Manipulating Query Information 47

48

select hex(actno) from activity

HOUR
extracts the number of hours from a time, timestamp, time duration, or
timestamp duration.

The following example shows how to select rows where the STARTING (a
TIME data type) is between 12:00 and 16:00:

select * from cl_sched -
where hour(starting) between 12 and 16

INTEGER
returns an integer representation of a numeric value. If the value has a decimal
part, it is truncated.

The following example shows how you can obtain an integer value in the select
list:

select integer(salary * 1.5) from employee

LENGTH
returns the actual length of an argument.

The following example shows how to find the length of the data in the
FIRSTNME field:

select length(firstnme) from employee

MICROSECOND
extracts the number of microseconds from a timestamp or timestamp duration.

The following example shows how to obtain the microsecond value from the
RECEIVED column (a TIMESTAMP data type):

select microsecond(received) from in_tray

MINUTE
extracts the number of minutes from a time, timestamp, time duration, or
timestamp duration. The following example shows how to select all rows from
the CL_SCHED table where minutes in ENDING (a TIME data type) is less
than 30:

select * from cl_sched -
where minute(ending) < 30

MONTH
extracts the number of months from a date, timestamp, date duration, or
timestamp duration.

The following example shows how to obtain the month portion of the
PRSTDATE column:

select month(prstdate) from project

SECOND
extracts the number of seconds from a time, timestamp, time duration, or
timestamp duration.

The following example shows how to obtain the second portion when
STARTING (a TIME data type) is subtracted from the CURRENT TIME special
register:

Interactive SQL Guide and Reference

select second(current time - starting) -
from c1_sched

STRIP(string)

STRIP(string,option)

STRIP(string,option,char)
removes blanks and other specified characters from a string. The second
parameter indicates the placement of the characters to be stripped (leading,
trailing or both), while the third parameter indicates the character to be stripped.
These two parameters are optional. See the DB2 Server for VSE & VM SQL
Reference manual for their defaults.

The following example shows how to strip leading zeros from a number;

select strip(mgrno,1,'0') from department

MGRNO is the name of the column, 1 is for leading, and 0 is the character to
be removed.

SUBSTR(string, start)

SUBSTR(string,start,length)
returns a smaller part (substring) of a string beginning at a start position and
continuing for a length. The length parameter is optional. See the DB2 Server
for VSE & VM SQL Reference manual for its default.

The following example shows how you can list all projects starting with A:

select * from project -
where substr(projname,1,1) = 'a

TIME
creates a time from a time, a timestamp, or a string representation of a time.

The following example shows how to obtain a time greater than 5:00 from the
RECEIVED column (a TIMESTAMP data type):

select received, source, subject from in_tray -
where time(received) > '5.00'

This example uses the ISO time format; see “Identifying Datetime Types” on
page 179 for other time formats.

TIMESTAMP
creates a timestamp from a date and a time.

The following example shows how to obtain the timestamp value from the
CURRENT DATE special register and STARTING (a TIME data type):

select timestamp(current date,starting) -
from c1_sched

TRANSLATE(string,to_string)

TRANSLATE(string,to_string,from_string)

TRANSLATE(string,to_string,from_string,pad_character)
changes characters in a string into other characters or can be used to reorder
characters in a string. When string is a character-compatible string, and
to_string and from_string are not supplied, the string is folded to uppercase
using the character set specified in SYSCHARSETS. Long field strings are not
supported.

Chapter 3. Manipulating Query Information 49

The following example shows how to convert the string abbc, replacing every b
in the input string to a $ in the output string. Because no conversion character
is provided for a or c, they are not converted.

translate('abbc','$','b")
The string resulting from the conversion is a$$c.

The following example shows how to use the TRANSLATE function to reorder
the characters in a string. The format of the date is changed from yyyy-mm-dd
to dd-mm-yyyy.

select translate('gh-ef-abcd',emendate, 'abcd-ef-gh')-
from emp_act

VALUE(expression,expression)
returns the first non-null result in a series of expressions.

The following example shows how you can set up a default value of zero if the
ACTNO is undefined (that is, null):

select value(actno,0) from activity
VARGRAPHIC
returns a graphic string representation of a character string.

The following example shows how to convert ACTKWD in the ACTIVITY table
to graphic characters:

select vargraphic(actkwd) from activity

YEAR
extracts the number of years from a date, timestamp, date duration, or
timestamp duration.

The following example shows how to select all rows where the year portion of
ACSTDATE is greater than 1982:

select * from proj_act -
where year(acstdate) > 1982

For more information on functions, see the DB2 Server for VSE & VM SQL
Reference manual.

Using Scalar Functions

50

Scalar functions can be grouped into three general categories. The first category
applies to datetime values and can extract or create information; the second
category manipulates character string values; the third category converts data from
one type to another.

Datetime Functions

The twelve scalar functions that can be applied to date or time values are CHAR,
DAY, DAYS, DATE, HOUR, MICROSECOND, MINUTE, MONTH, SECOND, TIME,
TIMESTAMP, and YEAR.

You apply these functions to a column name, datetime value, or expression in the
SELECT or WHERE clause.

Interactive SQL Guide and Reference

To illustrate the usefulness of these functions, suppose you want to query the
PROJECT table to determine which projects have a year or more estimated for the
completion of the project. You can use the DAYS function in the query:

select projname -
from project -
where days(prstdate) <= days(prendate) - 365

The DAYS function serves to turn the date fields into the number of days since
December 31, 0000; then you can compare the two dates as numbers, and perform
arithmetic operations with them.

Character-String Functions

The three functions that manipulate strings are STRIP, SUBSTR, and TRANSLATE.
You apply these functions to a column name, string value, or expression in the
SELECT or WHERE clause.

These functions can be used many ways. Use SUBSTR to list all project numbers
starting with an I:

select * -
from proj_act -
where substr(projno,1,1) = 'I'

TRANSLATE can be used to change a character string from lowercase characters
into uppercase characters. For example, if employee first names were typed in both
uppercase and lowercase characters, TRANSLATE can be used as follows to
display all names in uppercase characters only:

select translate(firstnme) from employee

Note: Converting lowercase characters to uppercase characters is useful only if
your display is in mixed-case characters.

It may be necessary to change the value of a character in a string for your display.
TRANSLATE changes each S in the fields of the LASTNAME column in the
EMPLOYEE table to a $ as shown in the following statement:

select translate(lastname,'$','S') from employee

TRANSLATE can also reorder a string such as the day/month/year sequence in a
date. You can convert the date representation in the PRSTDATE column of the
PROJECT table from year/month/day to month/day/year as follows:

select translate('ab/cd/efgh',prstdate,'efgh/ab/cd') -
from project

The first argument in this TRANSLATE function call indicates the desired order for
the characters in the string that is the second argument. The third argument
represents the current order of the characters in the second argument.

Note: The strings in the previous examples are converted for display only. Use of
the TRANSLATE function in a SELECT statement does not affect the data
stored in the tables.

Chapter 3. Manipulating Query Information 51

Data-Conversion Functions
The six functions that convert data from one data type to another are DECIMAL,
DIGITS, FLOAT, HEX, INTEGER, and VARGRAPHIC.

You apply these functions to a column name, a value, or an expression in the
SELECT or WHERE clause.

INTEGER can be used to ensure an INTEGER value when calculating values as
follows:

select integer(prstaff » 1.5) -
from project

Ordering Rows of a Query Result

52

So far, the rows of query results have been shown in an order determined by the
database manager. You can also determine the order yourself. For example,
suppose you want to select the project number, project name, and estimated mean
project staffing value from the PROJECT table for estimated means 1 and 2, and
you want the results ordered by estimated mean. Do this by adding an ORDER BY
clause to your query like this:

select projno,projname,prstaff -
from project -

where prstaff = 1 or prstaff =
order by prstaff

This query displays the result shown in Figure 30.

PROJNO PROJNAME PRSTAFF
IF2000 USER EDUCATION

0P2012 APPLICATIONS SUPPORT
0P2013 DB/DC SUPPORT

0P2011 SCP SYSTEMS SUPPORT
PL2100 WELD LINE PLANNING
AD3112 PERSONNEL PROGRAMMING
MA2111 W L PROGRAM DESIGN
IF1000 QUERY SERVICES

AD3113 ACCOUNT PROGRAMMING
AD3111 PAYROLL PROGRAMMING

* End of Result *#x 10 Rows Displayed N A TR L —

I\)I‘\)r\)r\)l—lb—-r—ll—\l—lb—-
(<]
(<]

Figure 30. A Query Result Where the Rows Are in Order

An ORDER BY clause is always the last clause of a query, and it takes the
following form:

ASC
»—ORDER BYi[coZumn name [_lJ
znteger DESC

The ORDER BY clause puts the displayed table in order by the values of the
columns you identify. The database manager orders the rows in an ascending order

v

Interactive SQL Guide and Reference

unless you indicate that you want them in descending order. If you identify more
than one column, the database manager orders the rows by the values of the first
column you identify, then by the values of the second column, and so on. For
example, to order the above query results primarily by estimated mean and
secondarily by project number, type:

select projno,projname,prstaff -
from project -

where prstaff = 1 or prstaff = 2 -
order by prstaff,projno

This query produces the result in Figure 31.

PROJNO PROJNAME PRSTAFF
AD3112 PERSONNEL PROGRAMMING
IF2000 USER EDUCATION

0P2011 SCP SYSTEMS SUPPORT
0P2012 APPLICATIONS SUPPORT
0P2013 DB/DC SUPPORT

PL2100 WELD LINE PLANNING
AD3111 PAYROLL PROGRAMMING
AD3113 ACCOUNT PROGRAMMING
IF1000 QUERY SERVICES

MA2111 W L PROGRAM DESIGN .00

* End of Result *** 10 Rows Displayed ***Cost Estimate is lsxxkkkkkkdkkdrhkrkks

NN NMN
(<]
o

Figure 31. A Query Result Ordered According to Two Columns

Trailing blanks in VARCHAR and VARGRAPHIC columns do not affect the order of
rows when you use the ORDER BY clause. The database manager removes
trailing blanks before it compares VARCHAR or VARGRAPHIC rows, so that two
entries that differ only by trailing blanks may not maintain their relative positions.

Defining a field procedure for a column can affect its order when you use the
ORDER BY clause. For more information about field procedures, see the DB2
Server for VSE & VM SQL Reference manual.

Establishing Field Procedures
The standard EBCDIC sorting sequence may be incorrect or insufficient for some
applications. Languages that do not use the Roman alphabet, such as Kaniji
(Japanese), can only be sorted properly using a field procedure. You can use a
field procedure to alter the sorting sequence of values entered in a single short
string column (CHAR, VARCHAR, GRAPHIC, VARGRAPHIC); however, you must
write a routine to establish the sorting sequence of values.

The database manager creates indexes by using the sorting sequence that the field
procedure defines. Column values are sorted using the new sequence. With the
CREATE TABLE or ALTER TABLE statement, you can assign a field procedure to
a new column by issuing the FIELDPROC clause. However, if you have created a
column without a field procedure, you cannot add one later, unless you unload the
data and recreate the table to include the field procedure. For further details on
writing field procedures, refer to the following manuals:

e DB2 Server for VSE System Administration
e DB?2 Server for VM System Administration

Chapter 3. Manipulating Query Information 53

» DB?2 Server for VSE Application Programming
e DBZ2 Server for VM Application Programming.

Basing the Ordered Rows on a Calculated Result

The order of rows can also be based on a column result that is calculated. For
example, suppose you want to know any salaries which exceed $40000 when
multiplied by 1.1, and you want the results in descending order by salaries. Do this
by typing:

select empno,salary * 1.1 -

from employee -

where salary*1.1 > 40000.00 -
order by 2 desc

This query displays Figure 32.

EMPNO EXPRESSION 1
000010 58025.000
000110 51150.000
000020 45375.000
000050 44192.500
000030 42075.000
* End of Result *** 5 Rows Displayed ***Cost Estimate is Laxxskdkxsskksskkrskkrs

Figure 32. A Query Result Ordered by Column 2 in Descending Order

Here the ORDER BY clause contains a number instead of a column name, and
DESC to indicate descending order. The number refers to the position of the item in
the SELECT clause to be used for ordering. In the above example, a number was
necessary because you were ordering by a calculated column (one that does not
exist in the table). For a column that does exist in the table, either its name or a
number can be used.

Using the Concatenation Operator

54

You can join two character strings by using the concatenation operator (CONCAT).
This operator is useful if you want to display the character data from two columns
without having extra blanks between the entry in each field. For example, to
display the first name and last name of each employee in the EMPLOYEE table
with only a single space between the first and last name, type:

select firstnme CONCAT ' ' CONCAT lastname -
from employee

FIRSTNME and LASTNAME are variable-length fields. Only the actual length of the
string in the field is concatenated for the display. Fixed-length strings retain the
extra blanks even when concatenated. To limit the number of blanks when
concatenating fixed-length strings, you can use the STRIP function to remove
trailing blanks and then concatenate the results.

The concatenation operator can also add string constants such as commas,
dashes, or words to the display. For example, to separate the employee number
and the employee’s first name with a dash, type:

Interactive SQL Guide and Reference

select strip(empno) CONCAT ' - ' CONCAT firstnme -
from employee

The above SELECT statement uses the STRIP scalar function to remove trailing
blanks from each employee number (a fixed-length string) before concatenating the
number, a dash, and the first name.

The concatenation operator joins any two strings as long as they are compatible
data types: two character strings, a character string and a datetime value, or two
graphic strings. You can also use || as a synonym for CONCAT.

Selecting Constants

A constant can be a numeric value, hexadecimal data, or character data.

Constants that contain character or hexadecimal data must be enclosed in single
guotation marks. To represent a single quotation mark within a constant, use two
single quotation marks. For example, to represent the constant BILL'S HOTEL, use:

'bill's hotel’

Hexadecimal data can be used for both character and DBCS data representation.
To represent the word BOAT with a hexadecimal constant, use the following:

X'C2D6C1E3"’

To represent graphic constants, you must use shift-out and shift-in characters as
follows:

G'so...si

where so is the shift-out character (X'OE"), si is the shift-in character (X'OF"), and
. is graphic data (a DBCS string).

In addition to selecting data from a table, the SELECT statement can be used to
create a column containing some desirable constant. For example, write the project
number for the query shown on page 45 by including the project number as a
constant as follows:

select avg(acstaff),sum(acstaff),'AD3111"' -
from proj_act -
where projno = 'AD3111’'

This displays the result in Figure 33.

AVG (ACSTAFF) SUM(ACSTAFF) EXPRESSIO

0.9357142857142857142857142 6.55 AD3111
* End of Result xx% 1 Rows Displayed ***Cost Estimate is Lawxssssddrrrsssddsk

Figure 33. A Query Result with the Project Number as a Constant

On queries that return multiple rows, the constant appears in every row of the
result.

Chapter 3. Manipulating Query Information 55

EXERCISE 5 (Answers are in Appendix A, Answers to the Exercises, on page 262.)
Create and type a statement for each of the
following:

1. Retrieve the total mean number of staff needed for activity number 20 if
the mean number of staff was reduced to three quarters of its present size.

2. Retrieve the count of how many different departments are listed in the
PROJECT table.

3. Retrieve the minimum salary for department D11 from the EMPLOYEE table.

Obtaining Online HELP Information at a Terminal

The database manager offers online HELP information that provides you with, for
example, information about ISQL commands; this saves you time in looking up the
commands in Chapter 13, “ISQL Commands” on page 203.

Online HELP information is available for:

e Reference information

e SQL statements

e |SQL commands

e Messages, codes and SQLSTATEs.

Online HELP information is not supported on non-DB2 Server for VSE & VM
application servers.

Selecting Online HELP Information

Online HELP information may also have been installed on your system in
languages other than English. If you want to read HELP information in one of these
other languages, you can specify the language for online HELP using the SET
LANGUAGE command, which is discussed in “Language of Messages and HELP
Text” on page 115 and in Chapter 13, “ISQL Commands” on page 203.

The database manager online HELP information is stored in a table and displayed
in the same manner as queries. After you have retrieved some information, you can
use display commands to move through it. The online information is broken up into
many topics. Each topic is identified by a name. Most topic names are either a
statement name (such as SELECT or INSERT), a message number (such as
ARI7399I1 or ARI7307A), a message code (such as -205 or 100), or an SQLSTATE
(such as SQLSTATE 01525). For example, to retrieve the online help information
for the UPDATE statement, type:

help update
To move forward through the UPDATE information, type FORWARD commands
until you have reached the end. See “Results That Have Too Many Rows for One

Display” on page 62 for more information about FORWARD. Type the END
command to end the display.

56 Interactive SQL Guide and Reference

Some topic names have more than one word. When retrieving these topics,
enclose the topic name in single quotation marks. For example, to retrieve the
online help information for search conditions, type:

help 'search conditions'

To see a list of the topics available, type:

help contents

To obtain a list of topics, and a description of how to use the HELP command,
press PF1 or type:

help

Typing While Viewing Online HELP Information

You can type commands and statements while online HELP information is being
displayed. This is particularly useful when you want to type a statement, and you
know all the necessary column and table name information, but you cannot
remember the correct format for the statement.

If you want to execute a SELECT statement but cannot remember its format, type:

help select

This displays online HELP information for the SELECT statement similar to the
following:

Chapter 3. Manipulating Query Information 57

58

interactive-select-statement

»—| fullselect |

| L
’ ASC
ORDER BY—l:Ecolumn_name [_IJ
integer DESC
'—NITH RR:
CS
UR:

fullselect:

v

A\
A

subselect . v | I
(fullselect) \—[UNIONﬂ—[subselectil—‘
UNION ALL (fullselect)

subselect:

ALL
F—SELECT [.
DISTINCT- ,

v

expression
table_name. *
view_name. *
correlation_name.*—

»—F ROMAE’[L‘ able_name |
view_nameJ |—cor‘r‘elation_nameJ

»
»

v

v

|—WHERE—search_condi t‘ionJ L [’—_l_
GROUP BY column_name
> |

|—HAV ING—search_condit ionJ

PROJNO PRSTAFF

IF2000 1.00
0P2012 1.00
0P2013 1.00
0P2011 1.00
PL2100 1.00
AD3112 1.00
MA2111 2.00
IF1000 2.00
AD3113 2.00
AD3111 2.00

* End of Result xxx 10 Rows Displayed ***Cost Estimate is Lawxssssdddnrsssokdkkx

Figure 34. A Query Result after Using Online HELP Information

Interactive SQL Guide and Reference

EXERCISE 6 (Answers are in Appendix A, Answers to the Exercises, on page 262.)

Create and type a statement for each of the
following:

1. Retrieve the rows of the PROJ_ACT table that pertain to project number
OP2010. Order the results primarily by activity staff and secondarily by
activity number.

2. Retrieve the project numbers and project names from the PROJECT table that
end on February 1, 1983, and also use the constant ends Feb 1, 1983
in the results. Order the results by project number in descending order.

Chapter 3. Manipulating Query Information 59

60 Interactive SQL Guide and Reference

Chapter 4. Using Query Results

Previous chapters described how to display the query result that you want. Now
that you have it on your display, you can look at it, and perhaps print it. The
following sections show how to look at the entire query result if it does not all fit on
your display, and how to direct the query result to a printer.

Displaying Query Results

So far, you have used only one of the display commands that can be entered while
displaying query results: the END command (PF3). Because the sample tables are
small, END is generally the only display command you require; however, when your
query results are larger than a single display, you must know the display
commands with which you can view different portions of the query result. The
following examples show how to use the other display commands to query longer
and wider tables.

Type the following query and press ENTER:

select * -

from proj_act -

where projno <> 'AD3111' -
order by actno,acendate

This query selects all the rows that contain project numbers other than AD3111 in
the column named PROJNO from the PROJ_ACT table. It produces a result similar
to the display in Figure 35.

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

AD3100 10 0.50 1982-01-01 1982-07-01
MA2100 10 0.50 1982-01-01 1982-11-01
IF2000 10 0.50 1982-01-01 1983-01-01
IF1000 10 0.50 1982-06-01 1983-01-01
IF1000 10 0.50 1982-01-01 1983-01-01
AD3110 10 1.00 1982-01-01 1983-01-01
0P1000 10 0.25 1982-01-01 1983-02-01
0P1010 10 1.00 1982-01-01 1983-02-01
0P2010 10 1.00 1982-01-01 1983-02-01
MA2110 10 1.00 1982-01-01 1983-02-01
MA2100 20 1.00 1982-01-01 1982-03-01
PL2100 30 1.00 1982-02-01 1982-09-01
PL2100 30 1.00 1982-01-01 1982-09-15
MA2111 40 1.00 1982-01-01 1983-02-01
MA2111 50 1.00 1982-01-01 1982-06-01
0P2000 50 0.75 1982-01-01 1983-02-01
AD3112 60 0.75 1982-01-01 1982-03-15
AD3112 60 0.50 1982-02-01 1982-03-15
MA2112 60 2.00 1982-01-01 1982-07-01
AD3113 60 1.00 1982-04-01 1982-09-01
MA2113 60 1.00 1982-02-15 1982-09-01
AD3113 60 0.75 1982-03-01 1982-10-15

Figure 35. Example of a Long Query Result

This query result is used in the following topics. Do not end it yet.

© Copyright IBM Corp. 1987, 1998 61

Results That Have Too Many Rows for One Display

The query results that you are retrieving are longer than can be shown on one
display. To see the remaining portions of the query result, you must know how to
scroll forward through it. Usually, the command to scroll forward 20 rows is
FORWARD 20.

Instead of entering FORWARD 20, take advantage of the special function of the
ENTER key on query results. While viewing a query result, pressing ENTER
without having a command in the input area repeats the previous display command.
If there was no previous display command entered, the length of the display is
scrolled forward. If the previous command is BACKWARD MAX and the display
starts from the beginning of the table, press ENTER to scroll forward the length of

the display.

Press ENTER. On a 24 X 80 terminal you see a result similar to the display in

Figure 36.
PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE
AD3112 70 0.50 1982-02-01 1982-03-15
AD3113 70 0.50 1982-06-15 1982-07-01
AD3112 70 1.00 1982-03-15 1982-08-15
MA2112 70 1.00 1982-02-01 1982-10-01
AD3112 70 0.75 1982-01-01 1982-10-15
AD3112 70 0.25 1982-08-15 1982-10-15
AD3113 70 0.75 1982-09-01 1982-10-15
AD3113 70 1.25 1982-06-01 1982-12-15
MA2112 70 1.50 1982-02-15 1983-02-01
AD3113 70 1.00 1982-07-01 1983-02-01
AD3113 70 1.00 1982-10-15 1983-02-01
MA2112 70 1.00 1982-06-01 1983-02-01
MA2113 70 2.00 1982-04-01 1983-12-15
AD3113 80 1.75 1982-01-01 1982-04-15
AD3113 80 0.50 1982-03-01 1982-04-15
AD3112 80 0.50 1982-10-15 1982-12-01
AD3112 80 0.35 1982-08-15 1982-12-01
MA2113 80 0.50 1982-10-01 1983-02-01
MA2113 80 1.50 1982-09-01 1983-02-01
MA2113 80 1.00 1982-01-01 1983-02-01
MA2112 80 1.00 1982-10-01 1983-10-01
1F1000 90 0.50 1982-10-01 1983-01-01

Figure 36. Display 20 Rows Forward by Pressing ENTER

To scroll through the query result a half display at a time, you can either enter
FORWARD or press PFS8.

Press PF8.

The rows on the display scroll half the display. The middle row of the previous
display is now the first row of the new display.

Now, to move forward to the remaining rows, enter:

forward max

This results in a display similar to Figure 37 on page 63.

62 Interactive SQL Guide and Reference

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

IF1000 90 0.50 1982-10-01 1983-01-01
IF1000 90 1.00 1982-01-01 1983-01-01
IF2000 100 0.50 1982-03-01 1982-07-01
IF2000 100 0.75 1982-01-01 1982-07-01
IF1000 100 0.50 1982-10-01 1983-01-01
IF2000 110 0.50 1982-03-01 1982-07-01
IF2000 110 0.50 1982-10-01 1983-01-01
0P1010 130 4.00 1982-01-01 1983-02-01
0P2012 140 0.25 1982-01-01 1983-02-01
0P2011 140 0.75 1982-01-01 1983-02-01
0P2013 140 0.50 1982-01-01 1983-02-01
0P2011 150 0.25 1982-01-01 1983-02-01
0P2012 160 0.75 1982-01-01 1983-02-01
0P2013 170 0.50 1982-01-01 1983-02-01
AD3113 180 1.00 1982-04-15 1982-06-01
AD3113 180 0.50 1982-06-01 1982-07-01
AD3113 180 0.75 1982-03-01 1982-07-01
AD3112 180 0.50 1982-08-15 1983-01-01
MA2113 180 0.50 1982-10-01 1983-01-01
MA2112 180 1.00 1982-07-01 1983-02-01
MA2112 180 1.00 1982-07-15 1983-02-01

* End of Result #*x 70 Rows Displayed ***Cost Estimate is Liskswwssdddedsshsskik

Figure 37. Display after Moving to the End of the Query Result

To move back through the query result, use a BACKWARD command. Also, you
can use PF7 to move your view of the result backward one-half display. Moving
back through the query result is limited; you can move back only to a limit of one

full display from the last FORWARD command. If you want to go farther back, you

must return directly to the beginning of the query result.

For example, to view the previous 15 rows, enter:
backward 15

This command presents the display in Figure 38 on page 64.

Chapter 4. Using Query Results

63

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

AD3112 70 0.50 1982-02-01 1982-03-15
AD3113 70 0.50 1982-06-15 1982-07-01
AD3112 70 1.00 1982-03-15 1982-08-15
MA2112 70 1.00 1982-02-01 1982-10-01
AD3112 70 0.75 1982-01-01 1982-10-15
AD3112 70 0.25 1982-08-15 1982-10-15
AD3113 70 0.75 1982-09-01 1982-10-15
AD3113 70 1.25 1982-06-01 1982-12-15
MA2112 70 1.50 1982-02-15 1983-02-01
AD3113 70 1.00 1982-07-01 1983-02-01
AD3113 70 1.00 1982-10-15 1983-02-01
MA2112 70 1.00 1982-06-01 1983-02-01
MA2113 70 2.00 1982-04-01 1983-12-15
AD3113 80 1.75 1982-01-01 1982-04-15
AD3113 80 0.50 1982-03-01 1982-04-15
AD3112 80 0.50 1982-10-15 1982-12-01
AD3112 80 0.35 1982-08-15 1982-12-01
MA2113 80 0.50 1982-10-01 1983-02-01
MA2113 80 1.50 1982-09-01 1983-02-01
MA2113 80 1.00 1982-01-01 1983-02-01
MA2112 80 1.00 1982-10-01 1983-10-01
IF1000 90 0.50 1982-10-01 1983-01-01

Figure 38. Results When You Try to Exceed the Limit of a Full Display

The view is moved back to the limit of one full display. Enter the following
command to return to the first rows of the query result:

backward max

Now that you are finished with this query result, end it.

Results That Are Too Wide for One Display

To learn about viewing results that are too wide for a single display, it is necessary
to use a sample table of greater width than the PROJ_ACT table. For the next
several examples, the EMPLOYEE table is used.

Enter the following query:

select *» -
from employee

The resulting query on an 80-character display is similar to Figure 39 on page 65.

64 Interactive SQL Guide and Reference

000010
000110
000120
000020
000030
000130
000140
000060
000150
000160
000170
000180
000190
000200
000210
000220
000070
000230
000240
000250
000260
000270

FIRSTNME

CHRISTINE
VINCENZO
SEAN
MICHAEL
SALLY
DOLORES
HEATHER
IRVING
BRUCE
ELIZABETH
MASATOSHI
MARILYN
JAMES
DAVID
WILLIAM
JENNIFER
EVA

JAMES
SALVATORE
DANIEL
SYBIL
MARIA

MIDINIT LASTNAME

I HAAS
LUCCHESI
0'CONNELL
THOMPSON
KWAN
QUINTANA
NICHOLLS
STERN
ADAMSON
PIANKA
YOSHIMURA
SCOUTTEN
WALKER
BROWN
JONES
LuTZ
PULASKI
JEFFERSON
MARINO
SMITH
JOHNSON
PEREZ

M=

T wn G o

mroOown=Zocox-—

WORKDEPT PHONENO HIREDATE

A0O 3978 1991-05-27
A0O 3490 1958-05-16
A0O 2167 1963-12-05
BO1 3476 1973-10-10
co1 4738 1975-04-05
co1 4578 1971-07-28
col 1793 1976-12-15
D11 6423 1973-09-14
D11 4510 1972-02-12
D11 3782 1977-10-11
D11 2890 1978-09-15
D11 1682 1973-07-07
D11 2986 1974-07-26
D11 4501 1966-03-03
D11 0942 1979-04-11
D11 0672 1968-08-29
D21 7831 1980-09-30
D21 2094 1966-11-21
D21 3780 1979-12-05
D21 0961 1969-10-30
D21 8953 1975-09-11
D21 9001 1980-09-30

Figure 39. Results of Query That is Too Wide for Display

There is no visual indication that this query result is too wide for the display;
however, because the columns extend to the far right side of the display, there is a
possibility that additional columns of data may be beyond the last column. To
search for any additional columns that may exist, enter the following display

command:

right 7

This moves your view of the query seven columns to the right, resulting in

Figure 40 on page 66.

Chapter 4. Using Query Results

65

JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM
PRES 18 F 1933-08-01 52750.00 1000.00 4220.00
SALESREP 19 M 1929-11-05 46500.00 800.00 3720.00
CLERK 14 M 1942-10-18 29250.00 600.00 2340.00
MANAGER 18 M 1948-02-02 41250.00 800.00 3300.00
MANAGER 20 F 1941-05-11 38250.00 800.00 3060.00
ANALYST 16 F 1925-09-15 23800.00 800.00 1904.00
ANALYST 18 F 1946-01-19 28420.00 800.00 2274.00
MANAGER 16 M 1945-07-07 32250.00 600.00 2580.00
DESIGNER 16 M 1947-05-17 25280.00 500.00 2022.00
DESIGNER 17 F 1955-04-12 22250.00 400.00 1780.00
DESIGNER 16 M 1951-01-05 24680.00 500.00 1974.00
DESIGNER 17 F 1949-02-21 21340.00 500.00 1707.00
DESIGNER 16 M 1952-06-25 20450.00 400.00 1636.00
DESIGNER 16 M 1941-05-29 27740.00 600.00 2217.00
DESIGNER 17 M 1953-02-23 18270.00 400.00 1462.00
DESIGNER 18 F 1948-03-19 29840.00 600.00 2387.00
MANAGER 16 F 1953-05-26 36170.00 700.00 2893.00
CLERK 14 M 1935-05-30 22180.00 400.00 1774.00
CLERK 17 M 1954-03-31 28760.00 600.00 2301.00
CLERK 15 M 1939-11-12 19180.00 400.00 1534.00
CLERK 16 F 1936-10-05 1725.00 300.00 1380.00
CLERK 15 F 1953-05-26 27380.00 500.00 2190.00

Figure 40. Display of Query Moved Seven Columns to the Right

Now you can see that there are an additional seven columns, but it is still not clear
that you have reached the last column of the table. Enter the following command to
move your view two more columns to the right:

right 2

You should now see the display in Figure 41.

SEX BIRTHDATE SALARY BONUS COMM
F 1933-08-01 52750.00 1000.00 4220.00
M 1929-11-05 46500.00 800.00 3720.00
M 1942-10-18 29250.00 600.00 2340.00
M 1948-02-02 41250.00 800.00 3300.00
F 1941-05-11 38250.00 800.00 3060.00
F 1925-09-15 23800.00 800.00 1904.00
F 1946-01-19 28420.00 800.00 2274.00
M 1945-07-07 32250.00 600.00 2580.00
M 1947-05-17 25280.00 500.00 2022.00
F 1955-04-12 22250.00 400.00 1780.00
M 1951-01-05 24680.00 500.00 1974.00
F 1949-02-21 21340.00 500.00 1707.00
M 1952-06-25 20450.00 400.00 1636.00
M 1941-05-29 27740.00 600.00 2217.00
M 1953-02-23 18270.00 400.00 1462.00
F 1948-03-19 29840.00 600.00 2387.00
F 1953-05-26 36170.00 700.00 2893.00
M 1935-05-30 22180.00 400.00 1774.00
M 1954-03-31 28760.00 600.00 2301.00
M 1939-11-12 19180.00 400.00 1534.00
F 1936-10-05 1725.00 300.00 1380.00
F 1953-05-26 27380.00 500.00 2190.00

Figure 41. Display of Query Moved Two More Columns to the Right

66 Interactive SQL Guide and Reference

Now it is apparent that COMM is the final column in the table, because no other
columns appear to the right of it in the query result. If you only want to move your
view of the table one column to the right, you can omit the number and just type
right. You can also move your view one column to the right by pressing PF11.

To move your view to the left, type:
left

This command works in the same manner as RIGHT. Again, you can move your
view one column to the left by pressing PF10.

Now move your view all the way back to the first column by using the following
command:

column 1

The COLUMN command aligns the column you specify with the left edge of the
display. The number refers to the column’s position in the query result. If you do
not specify a number with the COLUMN command, column 1 is placed at the left
edge of the display.

A column of characters that is wider than the display width requires another display
command, TAB, to let you see the entire length attribute of a column. The TAB
command is described in Chapter 13, “ISQL Commands” on page 203.

Obtaining a Printed Report

So far you have learned how to view query results at your display terminal. Now
produce a printed copy of a query result on the system printer. The information
requested to be printed is a copy of the DEPARTMENT table. Begin by entering the
following query:

select * -
from department -
order by deptno

As you can see, this query selects all the columns and all the rows from the
DEPARTMENT table. Request a printed copy of this query result by entering the
following display command:

print
Another way to request a printed copy of the query result is to press PF4.

Figure 42 on page 68 illustrates the printed information for the preceding query.
Consult the appropriate person at your location for printing procedures.

Each printed page is numbered, dated, and titled. The title consists of the first 100

characters of the SELECT statement that you typed. For information on the creation
of report titles, refer to Chapter 7, “Formatting Query Results” on page 95.

Chapter 4. Using Query Results 67

07/13/89 SELECT = FROM DEPARTMENT ORDER BY DEPTNO PAGE 1 .

DEPTNO DEPTNAME MGRNO ADMRDEPT

A0O SPIFFY COMPUTER SERVICE DIV. 000010 A0O

BO1 PLANNING 000020 AOO
co1l INFORMATION CENTER 000030 AGO
DO1 DEVELOPMENT CENTER ? A0O
D11 MANUFACTURING SYSTEMS 000060 DO1
D21 ADMINISTRATION SYSTEMS 000070 DO1
E01 SUPPORT SERVICES 000050 AGO
E11 OPERATIONS 000090 EO1
E21 SOFTWARE SUPPORT 000100 EO1

Figure 42. Example of a Printed Report

Although this query fits on one display, a long query that requires several displays
is also printed entirely, regardless of the rows being displayed when you typed the
PRINT command. In addition, when the PRINT command completes printing the
report, the end rows of the query result are displayed regardless of the rows being
displayed when you entered the PRINT command.

The printed report does, however, start with the column that is currently at the left
edge of the display, and continues for as many print positions as can fit on the
specified page size. You can print reports that are too wide for the page size by
entering a PRINT command at column 1, moving the display to start with the
column that would not fit on the page, entering another PRINT command, and so
on. Page-size specification is discussed in “Page Size of Printed Reports” on
page 114.

You may have special printing requirements for your query results (such as the
type of paper or its size) that you can specify using the CLASS keyword of the
PRINT command. See the PRINT command in Chapter 13, “ISQL Commands” on
page 203 for a description of this procedure. For DB2 Server for VM, the CLASS
value can also be set by a CP SPOOL command.

Obtaining Multiple Copies of a Printed Report

68

For three copies, type:

print copies 3

— DB2 Server for VM

You can also use the CP SPOOL command to specify the number of copies.
The value for copies that is specified on the CP SPOOL command remains in
effect until another value is specified by another CP SPOOL command.

Note: If you specify the number of copies on the PRINT command after you
specified it using a CP SPOOL command, the PRINT command quantity
is used for that print operation. All following PRINT commands use the
quantity specified by the CP SPOOL command, unless you specify it
using the COPIES keyword.

Interactive SQL Guide and Reference

Using More Than One Keyword with the Print Command

You can specify both your print requirements and number of copies with one
PRINT command. For example, you can type:

print copies 3 class a

EXERCISE 7 (Answers are in Appendix A, Answers to the Exercises, on page 262.)

Enter the following command:
select * -
from proj_act -
where projno <> 'AD3111' -
order by actno,acendate
Perform the following:
1. Move the display so that it begins with the 40th row of the query result.
2. Display the end of the query result.

3. Move the display so that it begins with the second column of the query
result.

4. Move the display so that it begins with the first column of the query
result.

5. Move the display so that it begins with the first row of the query result.
6. Request a printed copy of this result.

7. End the query result.

Chapter 4. Using Query Results 69

70 Interactive SQL Guide and Reference

Chapter 5. Managing Table Data

This chapter shows how to maintain the data in your tables by updating, deleting,
and inserting the necessary information. When the tables are interrelated, you must
maintain the accuracy of all the tables whenever you make changes. The following
sections describe how to control your changes and preserve the relationships
between tables.

Controlling Changes to Table Data

Sometimes you want to make updates only with other updates (or deletions). For
example, a new employee is hired and is assigned to a project. This involves
updates to the EMPLOYEE and EMP_ACT tables. In addition, the employee is
made responsible for the project, requiring an update of the PROJECT table
(RESPEMP column). The three tables are updated simultaneously, because if only
some of the updates are made, and an interval of time passes before the remaining
updates are made, anyone accessing the tables during the interval for information
about the new employee receives inaccurate information.

For simultaneous updating of tables, you can group SQL statements into a single
unit. The statements are run as a group, and only upon your specification. You can
also cancel the statements as a group. Such a grouping of one or more statements
is called a logical unit of work (LUW). Two system settings are used in LUW
processing: AUTOCOMMIT ON and AUTOCOMMIT OFF.

Using the AUTOCOMMIT ON Setting

With the AUTOCOMMIT ON setting, each statement is treated as an LUW. The
work performed by each statement is committed as part of statement processing,
resulting in a permanent change. There are, however, a few exceptions. When an
INSERT, UPDATE, or DELETE statement that affects more than one row is typed,
the LUW is not completed until the next statement is typed. If the next statement is
CANCEL or ROLLBACK, the work performed by the INSERT, UPDATE, or
DELETE operation before the CANCEL or ROLLBACK is undone instead of being
committed. If the next statement is not CANCEL or ROLLBACK, the work
performed by the INSERT, UPDATE, or DELETE is committed automatically before
the new statement is processed. The CANCEL command is described under
“Cancelling Running Commands” on page 171 and Chapter 13, “ISQL Commands”
on page 203.

The default setting in ISQL is AUTOCOMMIT ON.

Using the AUTOCOMMIT OFF Setting

Use the AUTOCOMMIT OFF setting to control the committing of information. After
you type SET AUTOCOMMIT OFF, any subsequent statements you type are
grouped into a single LUW. The statements are processed but not committed until
you type the SQL statement COMMIT. As you type the statements, the table data
shown on the display looks as if the changes are being committed: they are not. In
addition, no other system user can view or modify the changes that you are making
until you type the COMMIT statement. Typing COMMIT completes your LUW and
commits all processing performed since the beginning of the LUW.

© Copyright IBM Corp. 1987, 1998 71

After you set AUTOCOMMIT OFF, and if for any reason, such as an update error,
you decide not to commit the LUW processing, you can cancel all processing
performed since the beginning of the LUW by typing ROLLBACK. After you set
AUTOCOMMIT OFF, you must explicitly end the LUW by typing COMMIT or
ROLLBACK.

Attention Use AUTOCOMMIT OFF cautiously because it prevents other users from
accessing the rows of tables used in your processing. In particular, avoid using it
for a query.

To return to the condition in which ISQL automatically commits your work, type SET
AUTOCOMMIT ON. The system displays a message requesting you to commit or
rollback any work done during the logical unit of work. You must respond to this
message before any further statements can be typed.

Interpreting Messages While Making Changes

Messages are displayed after data has been inserted, deleted, or updated to
indicate the number of rows affected by each operation. These messages help you
verify the changes.

Interpreting Errors While Making Changes

A single statement can change many rows in a table. If a statement error occurs
after only some rows have been changed, all changes are rolled back or withdrawn,
and the entire operation fails. If the failed statement is part of an LUW, previously
completed statements in the LUW are not affected. You still have the option of
entering COMMIT or ROLLBACK for the other statements in the LUW.

Understanding Referential Integrity

The database manager provides you with referential integrity to maintain the
integrity of the data in your tables. The following paragraphs discuss important
aspects of referential integrity.

Defining Referential Integrity

Referential integrity is the condition in which the existence of values in one table
depends on the existence of the same values in another table. For example, you
want to ensure that only valid, existing department numbers from your
DEPARTMENT table are stored in your EMPLOYEE table. You may also want any
deletions or changes to department numbers in the DEPARTMENT table to be
prevented until the changes are reflected in the corresponding rows in the
EMPLOYEE table. The database manager maintains referential integrity through
the use of table keys and a set of rules known as referential constraints that define
insert, update, and delete rules for tables in referential relationships.

Defining a Primary Key

In some tables, each row represents a unique item. For example, each row in the
EMPLOYEE table in Figure 43 on page 73 represents a different employee.

72 Interactive SQL Guide and Reference

EMPNO FIRSTNAME LASTNAME WORKDEPT . ..
00010 CHRISTINE | HAAS A00
00110 VINCENZO LUCCHESI A01
00120 SEAN O'CONNELL A01
00020 MICHAEL THOMPSON BO1
00030 SALLY KWAN C01

Figure 43. EMPLOYEE Table

Each employee is identified by a unique employee number in the EMPNO column,
which has been defined as the primary key.

A primary key is a column or a set of columns that uniquely identifies each row.
The primary key is part of the table definition. When a column or columns is
defined as a primary key, the database manager monitors all changes to the table,
preventing the insertion of null or duplicate values in the primary key column.

Defining a Foreign Key

Other tables can access data in a table with a primary key, and the system checks
that references between the tables are valid. In the sample application illustrated in
Figure 44 on page 74, the EMPLOYEE table serves as a master list of all
employees, the DEPARTMENT table acts as a master list of all valid departments,
and the PROJECT table provides a master list of current projects.

Other tables refer to employees, departments, or projects by using the unique
values for each row in the master lists. These matching values are contained in a
column or set of columns that have the same data types and attributes as the
primary key in the master list. The column (or set of columns) in one table that
refers to a primary key in another table is a foreign key. The foreign key must have
the same number of columns as the primary key that it references. The maximum
number of columns that can form a primary or foreign key is 16.

Chapter 5. Managing Table Data 73

EMPNO FIRSTNME MIDINIT LASTNAME 'WORKDEPT PHONENO HIREDATE 0B EDLEVEL SEX. BIRTHDATE SALARY BONUS COMM
000010 CHRISTINE | HAAS AQ0 3978 1965-01-01 PRES 18 F 1933-08-14 52750 1000 4220
000020 MICHAEL L THOMPSON BO1 3476 1973-10-10 MANAGER 18 M 1948-02-02 41250 800 3300
000030 SALLY A KWAN cot 4738 1975-04-05 MANAGER 20 F 1941-05-11 38250 800 3060
000050 JOHN B GEYER E01 6789 1949-08-17 MANAGER 16 M 1925-09-15 40175 800 3214
000060 IRVING F STERN D11 6423 1973-09-14 MANAGER 16 M 1945-07-07 32250 600 2580
000070 EVA D PULASKI D21 7831 1980-09-30 MANAGER 16 F 1953-05-26 36170 700 2893
000090 EILEEN w HENDERSON| __E11 5498 1970-08-15 MANAGER 16 F 1941-05-15 29750 600 2380
000100 THEODORE Q SPENSER E21 0972 1980-06-19 MANAGER 14 M 1956-12-18 26150 500 2092
000110 VINCENZO G LUCCHESI A0O 3490 1958-05-16 SALESREP. 19 M 1929-11-05 46500 900 3720
000120 SEAN O'CONNELL A0O 2167 1963-12-05 CLERK 14 M 1942-10-18 29250 600 2340
000130 DOLORES M QUINTANA cot 4578 1971-07-28 | ANALYST 16 F 1925-09-15 23800 500 1904
000140 HEATHER A NICHOLLS co1 1793 1976-12-15 ANALYST 18 F 1946-01-19 28420 600 2274
000150 BRUCE ADAMSON D11 4510 1972-02-12 DESIGNER 16 M 1947-05-17 25280 500 2022
000160 ELIZABETH R PIANKA D11 3782 1977-10-11 DESIGNER 17 F 1955-04-12 22250 400 1780
000170 MASATOSHI J YOSHIMURA D11 2890 1978-09-15 DESIGNER 16 M 1951-01-05 24680 500 1974
000180 MARILYN S SCOUTTEN D11 1682 1973-07-07 DESIGNER 17 F 1949-02-21 21340 500 1707
000190 JAMES H WALKER D11 2986 1974-07-26 DESIGNER 16 M 1952-06-25 20450 400 1636
000200 DAVID BROWN D11 4501 1966-03-03 DESIGNER 16 M 1941-05-29 27740 600 2217
000210 WILLIAM T JONES D11 0942 1979-04-11 DESIGNER 17 M 1953-02-23 18270 400 1462
000220 JENNIFER K LUTZ D11 0672 1968-08-29 DESIGNER 18 F 1948-03-19 29840 600 2387
000230 JAMES J JEFFERSON D21 2094 1966-11-21 CLERK 14 M 1935-05-30 22180 400 1774
000240 SALVATORE M MARINO D21 3780 1979-12:05 CLERK 17 M 1954-03-31 28760 600 2301
000250 DANIEL s SMITH D21 0961 1969-10-30 CLERK 15 M 1939-11-12 19180 400 1534
000260 SYBIL P JOHNSON D21 8953 1975-09-11 CLERK 16 F 1936-10-05 17250 300 1380
000270 MARIA L PEREZ D21 9001 1980-09-30 CLERK 15 F 1953-05-26 27380 500 2190
000280 ETHEL R SCHNEIDER E11 8997 1967-03-24 OPERATOR 17 F 1936-03-28 26250 500 2100
000290 JOHN R PARKER E11 4502 1980-05-30 OPERATOR 12 M 1946-07-09 15340 300 1227
000300 PHILIP X SMITH E11 2095 1972:06-19 OPERATOR 14 M 1936-10-27 17750 400 1420
000310 MAUDE F SETRIGHT E11 3332 1964-08-12 OPERATOR 12 F 1931-04-21 15900 300 1272
000320 RAMLAL v MEHTA E21 9990 1965-07-07 FIELDREP 16 M 1932-08-11 19950 400 1596
000330 WING LEE E21 2103 1976-02-23 FIELDREP 14 M 1941-07-18 25370 500 2030
000340 JASON R GOUNOT E21 5698 1947-05-05 FIELDREP 16 M 1926-05-17 23840 500 1907
Figure 44. Relationships Among Tables in the Sample Application

Foreign key values, such as employee number in the EMP_ACT table, are
controlled to make sure that each foreign key value references a valid row in the
master list. Each foreign key value must match a primary key value or else be null.
A foreign key value in a row is null when any one of the fields that make up the
foreign key value in that row is null. Primary keys cannot consist of columns
containing null values. A foreign key value that matches a primary key value is
dependent on that primary key value.

Establishing a Referential Constraint

The relationship between the primary key and the foreign key is formalized in a
referential constraint. A referential constraint identifies the table in which the
primary key occurs and the foreign key referencing it. Each referential constraint
involves a set of rules to ensure that each foreign key value matches a primary key
value (or is null) regardless of updates, insertions, and deletions in either the parent
table or the dependent table. The parent table contains the primary key; the
dependent table contains the foreign key.

A referential constraint is part of the dependent table’s definition. After a table has
been set up as part of a referential structure, subsequent access to both parent and
dependent tables is controlled.

As illustrated in Figure 44, tables can have only one primary key, For example,
EMPLOYEE is the parent table and DEPARTMENT is the dependent table in the
referential constraint involving the foreign key MGRNO (DEPARTMENT) and the
primary key EMPNO (EMPLOYEE). EMPLOYEE is the dependent table and

74 Interactive SQL Guide and Reference

DEPARTMENT is the parent table in the referential constraint involving the foreign
key WORKDEPT (EMPLOYEE) and the primary key DEPTNO (DEPARTMENT).

The referential structure in this manual involves only six tables. But even in so
simple an application, it is obvious how changes to rows in one table can affect the
validity of rows in another. For example, changes to a department number in the
DEPARTMENT table can affect rows in the PROJECT or EMPLOYEE tables.
Changes to an employee row can affect the DEPARTMENT, PROJECT, and the
EMP_ACT tables.

Users who access tables in a referential structure such as this, however, need not
set up any constraints themselves. The database manager implements the
constraints.

For more information on referential integrity, see the DB2 Server for VSE Database
Administration and DB2 Server for VM Database Administration manuals.

Updating Table Data

Updating Rows

If you have not entered SET AUTOCOMMIT OFF, do so now. This ensures that
any updates to the table data can be rolled back if necessary. For more information
about the AUTOCOMMIT OFF setting, see “Using the AUTOCOMMIT OFF Setting”
on page 71.

Suppose you want to advance the completion date by 5 days for activity 100 in
project IF1000, which is updating the appropriate EMENDATE column in the
EMP_ACT table, and the ACENDATE column in the PROJ_ACT table. Assume that
you queried the tables and know that both columns contain the value 1983-01-01.
To update the EMP_ACT table, type:

update emp_act
set emendate =
where projno =
and actno = 100

'1983-01-06"' -
'IF1000' -

After this statement is entered, you receive a message indicating that one row is
updated.

To update the PROJ_ACT table, type:

update proj_act -

set acendate = '1983-01-06"' -
where projno = 'IF1000' -

and actno = 100

In the previous update statements, you supplied the new date value. As an
alternative, the database manager can calculate the new value for you by
specifying that 5 days be added to the current value. You can specify the following
in the SET clause:

set acendate = acendate + 5 days

Query the EMP_ACT table to verify the change. The display is similar to Figure 45
on page 76.

Chapter 5. Managing Table Data 75

EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000030 IF1000 10 .50 1982-06-01 1983-01-01
000130 IF1000 90 .00 1982-01-01 1982-10-01
000130 IF1000 100 .50 1982-10-01 1983-01-06
000140 IF1000 90 .50 1982-10-01 1983-01-01
000030 IF2000 10 .50 1982-01-01 1983-01-01

000140 IF2000 100
000140 IF2000 100
000140 IF2000 110
000140 IF2000 110

.00 1982-01-01 1982-03-01
.50 1982-03-01 1982-07-01
.50 1982-03-01 1982-07-01
.50 1982-10-01 1983-01-01

Ll e e el el e e N o NoNoNol bl oNoNol i o)
o1
(<>}

000010 MA2100 10 1982-01-01 1982-11-01
000110 MA2100 20 .00 1982-01-01 1982-03-01
000010 MA2110 10 .00 1982-01-01 1983-02-01
000200 MA2111 50 .00 1982-01-01 1982-06-15
000200 MA2111 60 .00 1982-06-15 1983-02-01
000220 MA2111 40 .00 1982-01-01 1983-02-01
000150 MA2112 60 .00 1982-01-01 1982-07-15
000150 MA2112 180 .00 1982-07-15 1983-02-01
000170 MA2112 60 .00 1982-01-01 1983-06-01
000170 MA2112 70 .00 1982-06-01 1983-02-01
000190 MA2112 70 .00 1982-02-01 1982-10-01
000190 MA2112 80 .00 1982-10-01 1983-10-01
000160 MA2112 60 .00 1982-07-15 1983-02-01

Figure 45. Verify Changed Dates in EMP_ACT Table

Now query the PROJ_ACT table. It resembles Figure 46.

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

IF1000 10 0.50 1982-01-01 1983-01-01
IF1000 10 0.50 1982-06-01 1983-01-01
IF1000 90 1.00 1982-01-01 1983-01-01
IF1000 90 0.50 1982-10-01 1983-01-01
IF1000 100 0.50 1982-01-01 1983-01-06
IF2000 10 0.50 1982-01-01 1983-01-01
IF2000 100 0.75 1982-01-01 1982-07-01
IF2000 100 0.50 1982-03-01 1982-07-01
IF2000 110 0.50 1982-03-01 1982-07-01
IF2000 110 0.50 1982-10-01 1983-01-01
MA2100 10 0.50 1982-01-01 1982-11-01
MA2100 20 1.00 1982-01-01 1982-03-01
MA2110 10 1.00 1982-01-01 1983-02-01
MA2111 40 1.00 1982-01-01 1983-02-01
MA2111 50 1.00 1982-01-01 1982-06-01
MA2111 60 1.00 1982-06-01 1983-02-01
MA2111 60 1.00 1982-06-15 1983-02-01
MA2112 60 2.00 1982-01-01 1982-07-01
MA2112 70 1.00 1982-02-01 1982-10-01
MA2112 70 1.50 1982-02-15 1983-02-01
MA2112 70 1.00 1982-06-01 1983-02-01
MA2112 80 1.00 1982-10-01 1983-10-01

Figure 46. Verify Changed Dates in PROJ_ACT Table

If the changes are not correct, update again by issuing the following command:
rollback

76 Interactive SQL Guide and Reference

If the changes are correct, you can type the COMMIT statement to commit the
changes to the application server. Instead, to maintain the current sample data,

type:
rollback

Updating Multiple Rows
Suppose you decide to give all employees an extra $25 bonus. Type the following:

update employee -
set bonus=bonus+25.00

The system returns a warning message indicating that more than one data row is
affected. You receive this message because you did not include a WHERE clause
in the UPDATE statement. Because you want to update all rows, you can ignore
the message.

Select EMPNO, FIRSTNME, SALARY, BONUS, and COMM from the EMPLOYEE
table to view the changes. The table now resembles Figure 47.

EMPNO FIRSTNME SALARY BONUS COMM
000010 CHRISTINE 52750.00 1025.00 4220.00
000110 VINCENZO 46500.00 925.00 3720.00
000120 SEAN 29250.00 625.00 2340.00
000020 MICHAEL 41250.00 825.00 3300.00
000030 SALLY 38250.00 825.00 3060.00
000130 DOLORES 23800.00 825.00 1904.00
000140 HEATHER 28420.00 825.00 2274.00
000060 IRVING 32250.00 625.00 2580.00
000150 BRUCE 25280.00 525.00 2022.00
000160 ELIZABETH 22250.00 425.00 1780.00
000170 MASATOSHI 24680.00 525.00 1974.00
000180 MARILYN 21340.00 525.00 1707.00
000190 JAMES 20450.00 425.00 1636.00
000200 DAVID 27740.00 625.00 2217.00
000210 WILLIAM 18270.00 425.00 1462.00
000220 JENNIFER 29840.00 625.00 2387.00
000070 EVA 36170.00 725.00 2893.00
000230 JAMES 22180.00 425.00 1774.00
000240 SALVATORE 28760.00 625.00 2301.00
000250 DANIEL 19180.00 425.00 1534.00
000260 SYBIL 1725.00 325.00 1380.00
000270 MARIA 27380.00 525.00 2190.00

Figure 47. Verify UPDATE of Multiple Rows

Now, type:
rollback

Updating Using Special Registers
You can assign any of the special registers to a column. For example, you can
assign special registers to columns when the date or time value that you want is
the current one (the date or time at which you are assigning the value to a column).
The following example stores the current date in the designated row of the
EMPLOYEE table:

Chapter 5. Managing Table Data 77

update employee -
set hiredate = current date -
where empno = '000010'

You can also use CURRENT SERVER in an UPDATE or INSERT statement to put
the name of the currently connected application server in a table. The following
example shows how to use the INSERT statement to put the name of the
application server to which your terminal is connected into column INRDB of table
SAMP1:

insert into sampl (id,indate,intime,inrdb) -
values (4,'06/24/1986','16:24', current server)

Updating Columns That Are Primary Keys, Foreign Keys, or Unique

Constraints

78

The previous update examples contain columns that are not primary or foreign
keys, and for which no particular update rules apply. For key columns in a parent
table, a dependent table, or a column with the UNIQUE attribute, follow these rules:

* A new primary key value or a new unique constraint value can neither duplicate
an existing primary key or unique constraint value in that table, nor can it be
null.

e Primary key and unique constraint values cannot be changed to null.

e Primary key values that have matching dependent foreign key values cannot be
changed.

* Any new foreign key value in a dependent table must match an existing primary
key value in its parent or be null. A foreign key value can be updated to a null
value only if its definition allows one or more of the columns making up the key
to be set to null.

You may need to change the foreign key value for a row. For example, change the
employee working on project IF2000, activity 100, which started on 1982-03-01,
from employee number 140 to employee number 130 as follows:

update emp_act -

set empno = '000130' -
where empno = '000140' -
and projno = 'IF2000' -
and actno = 100 -

and emstdate = '1982-03-01'

Do a select on EMP_ACT for activities related to project number IF2000 to verify
that the update worked. If the new employee number for the project activity was 40,
this update would not occur. There is currently no employee number 40 in the
EMPLOYEE table.

Primary key values are not likely to be changed often. Any change you do make is
checked to ensure that it does not violate one of the above rules. For example,
department BO1 in the DEPARTMENT table is referenced by foreign keys in the
EMPLOYEE table and in the PROJECT table. Try to change the department
number for Planning from BO1 to B11 by typing the following statement:

Interactive SQL Guide and Reference

update department -
set deptno = 'B11' -
where deptno = 'BO1'

Because there are matching dependent foreign key values, the system returns the
following error message:

ARIO503E An SQL error has occurred.
The DELETE or UPDATE operation is prevented by a rule of
RESTRICT associated with the foreign key SQLDBA.R DEPT2
ARIO505I SQLCODE = -532 SQLSTATE = 23504 ROWCOUNT = 0
ARIO5041 SQLERRP: ARIXRID SQLERRD1: -160 SQLERRD2: 0
ARI79331 The ROLLBACK process is complete.

To change a primary key value that has matching foreign key values, you can:

1. Insert a new row for the new primary key value in the parent table.

2. Update the foreign key values that match the primary key value that you want
to change. These foreign key values can be changed to the new primary key
value, another existing primary key value, or to null (if allowed).

3. Delete the row containing the primary key value that you wanted to change.

Deleting Table Data
This section explains how to:
e Delete a row of information from a table

e Delete a row of information from a dependent table.

Deleting Rows
If you have not entered SET AUTOCOMMIT OFF, do so now. See “Using the
AUTOCOMMIT OFF Setting” on page 71.

Delete information from a table by row. Individual columns cannot be deleted. For
example, type:

delete from emp_act -
where projno = 'IF1000'

A message is displayed indicating that several rows are affected by the command.

Query the EMP_ACT table and compare the results with Figure 48 on page 80.

Chapter 5. Managing Table Data 79

EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000270 AD3113 60 .25 1982-09-01 1982-10-15
000270 AD3113 70 .75 1982-09-01 1982-10-15
000270 AD3113 70 .00 1982-10-15 1983-02-01
000270 AD3113 80 .00 1982-01-01 1982-03-01
000270 AD3113 80 .50 1982-03-01 1982-04-01
000030 IF2000 10 .50 1982-01-01 1983-01-01

000140 IF2000 100
000130 IF2000 100
000140 IF2000 110
000140 IF2000 110

.00 1982-01-01 1982-03-01
.50 1982-03-01 1982-07-01
.50 1982-03-01 1982-07-01
1982-10-01 1983-01-01

PR RPRPRRPRPRRPRRPRRPRRRPRRPOOOOOOHOOHREHOO®
o1
(<>}

000010 MA2100 10 .50 1982-01-01 1982-11-01
000110 MA2100 20 .00 1982-01-01 1982-03-01
000010 MA2110 10 .00 1982-01-01 1983-02-01
000200 MA2111 50 .00 1982-01-01 1982-06-15
000200 MA2111 60 .00 1982-06-15 1983-02-01
000220 MA2111 40 .00 1982-01-01 1983-02-01
000150 MA2112 60 .00 1982-01-01 1982-07-15
000150 MA2112 180 .00 1982-07-15 1983-02-01
000170 MA2112 60 .00 1982-01-01 1983-06-01
000170 MA2112 70 .00 1982-06-01 1983-02-01
000190 MA2112 70 .00 1982-02-01 1983-10-01
000190 MA2112 80 .00 1982-10-01 1983-10-01

Figure 48. Verify That Rows Were Deleted

If a DELETE statement is typed without a WHERE clause, all rows of the table are
deleted. The table still exists but no longer contains any rows. A message informing
you of the absence of the WHERE clause is displayed so that you can catch
potential deletions.

Deleting Data from a Table Containing Referential Constraints

80

The referential constraints in the sample tables, described in Appendix B, “Sample
Tables” on page 269, provide examples of all three delete rules. These
relationships and their associated delete rules are illustrated in Figure 44 on

page 74. Because of a delete rule of RESTRICT, a row in the DEPARTMENT table
cannot be deleted if its DEPARTMENT value is referenced in the PROJECT table.
Deleting an employee who is also a manager of a department removes the
employee (and employee number EMPNO) from the EMPLOYEE table, and sets
that department’s manager number to null in the DEPARTMENT table because of
the delete rule of SET NULL. Deleting an employee from the EMPLOYEE table
deletes rows for that employee in the EMP_ACT table because of the delete rule of
CASCADE.

To see the effects of the delete rule of SET NULL, assume Irving Stern, employee
number 60 and manager of department D11, has resigned. Delete this row in the
EMPLOYEE table with the following command:

delete from employee -
where empno = '000060'

When the deletion is completed, the system displays a message informing you that
two dependent rows are affected by the deletion (one in the parent table and the
other in the dependent table). This message is displayed following deletions from a
parent table in a referential constraint with a delete rule of SET NULL or of
CASCADE. The message helps you to monitor the effects of parent row deletions.

Interactive SQL Guide and Reference

Query the EMPLOYEE table and verify the results. Query the DEPARTMENT table
as well. There should be a null value in the manager number column for
department D11.

Inserting Table Data

To insert information in a table, you can enter either several rows at a time or one
row at a time.

Inserting Multiple Rows
To use the ISQL command INPUT to insert multiple rows, type:

input activity

A display appears similar to Figure 49.

input activity
ARI7307A Enter data values, separated by commas,
for the following columns.
Character data must be enclosed in single quotes.

COLUMN NAME DATA TYPE NULL VALUES ALLOWED
ACTNO WHOLE NUMBER No
ACTKWD CHARACTER (6) No
ACTDESC CHARACTER (20) No

Figure 49. ISQL Display for Inserting Multiple Rows into a Table

Notice the message on the line below your statement in the output area. It explains
how to enter a row of data. The data must be entered in the order listed (ACTNO,
ACTKWD, and ACTDESC). This order was defined when the ACTIVITY table was
created. You can specify a different order by using column names with the INPUT
command like this:

input activity (actno,actdesc,actkwd)

Similarly, to insert data only in the ACTNO and ACTKWD columns, you can use:
input activity (actno,actkwd)

Returning to the message on your display, note that the type of data that belongs in

each column is also described. Under the heading NULL VALUES ALLOWED, the word

NO appears for all columns. This indicates that you must enter data in these

columns. (A YES indicates you can omit data by typing null in the column.) This

condition is determined by the owner of the table.

Now that you understand the message, type the first row of data:

1,'frst','First activity'

Your input line is moved to the output area as shown in Figure 50 on page 82.

Chapter 5. Managing Table Data 81

input activity
ARI7307A Enter data values, separated by commas,
for the following columns.
Character data must be enclosed in single quotes.

COLUMN NAME DATA TYPE NULL VALUES ALLOWED
ACTNO WHOLE NUMBER No
ACTKWD CHARACTER (6) No
ACTDESC CHARACTER (20) No

1,'frst','First activity'

Figure 50. Display of Input Line Moved to Output Area

The database manager then waits for more input. Type the next row of data:

2,'scnd', 'Second activity'

Again, your input line moves to the output area and the database manager waits for
you to type more input. This time, however, you have finished entering data and
must inform the database manager. Type the following command:

end

A message appears prompting you to commit the new information. Because you
should not alter the sample tables at this time, do not commit the new information.
Type:

rollback

You have now finished adding rows. It is important to note that data added with an
INPUT command is not committed to the table until the command is ended with the
END command. It is not committed even then if AUTOCOMMIT is off. With
AUTOCOMMIT on, you can commit data to the table before having entered all the
new data. This is done by typing the following command in the input area instead of
a row of data:

save

The SAVE command commits all data entered since the previous SAVE command
or, if one had not been entered, since the start of the INPUT command. This is
usually done periodically when you are entering large amounts of data.

In addition to committing data before ending an INPUT command, you can also
delete all data entered since the last SAVE command, or since the start of the
INPUT command if a SAVE command has not been entered. This is done by typing
the following command in the input area instead of data:

backout
Use this if you discover typing errors in a row of data already moved to the output
area.

Note: You can enter DBCS data into GRAPHIC and VARGRAPHIC columns. For
example, you would type:

G'so...si

to enter a DBCS string, where so is the shift-out character (X'OE"), si is the
shift-in character (X'OF'"), and ... is the DBCS string.

Note: You can use N' as a synonym for G'

82 Interactive SQL Guide and Reference

Inserting a Single Row
You use the SQL statement INSERT to insert a single row. Continuing with the
ACTIVITY table, type:

insert into activity -
values (3,'thrd','Third activity')

A message appears, indicating that processing was successful. Type:
rollback

As with the INPUT command, if you do not specify the columns in which data is to
be added, addition is performed in the order defined when the table was created.

Inserting Data into Tables Containing Referential Constraints

Inserting Table Data

When inserting a single row or several rows into a table that is part of a referential
structure, the following rules are enforced:

e Each row inserted into a parent table must have a non-null primary key value
that does not duplicate an existing primary key value.

e Each row inserted into a dependent table must have a foreign key value that
matches an existing primary key value in its parent table, or is null.

When you are inserting rows into both parent and dependent tables for new primary
key values, you must insert the row containing the new primary key value into the
parent table first. For example, a new employee who has been assigned to work on
a project cannot be recorded in the EMP_ACT table until that employee’s data has
been inserted into the EMPLOYEE table.

As another example, assume a new project is approved, but its responsibility is not
yet assigned to an employee. Insert a row for the new project with project number
MA2114, project name Expert Systems, and department number D11. Leave the
other fields null.

insert into project -
values ('MA2114','Expert Systems','D1l',null,null,null,null, null)

Query the PROJECT table to verify that this row was entered.

Using Tables Containing Null Values

When querying columns that contain null values, use an IS NULL clause in the
SELECT statement to retrieve only the null values in the query display.

The format for the IS NULL clause is:

v

»—column_name—1IS NULL
Lot

As an example, type:

Chapter 5. Managing Table Data 83

84

select * -

from department -

where mgrno = '000010' -
or mgrno is null

This produces Figure 51.

DEPTNO DEPTNAME MGRNO ADMRDEPT
A0O SPIFFY COMPUTER SERVICE DIV. 000010 AQO
Dol DEVELOPMENT CENTER ? AQO

* End of Result *** 2 Rows Displayed ***Cost Estimate is laskxkkkkkkdkkkrkkrkkk

Figure 51. A Query Result with Null Values
The ? in the display represents a null value.

Use NOT with the NULL function to find the non-null values. To retrieve all
information in the DEPARTMENT table that does not contain null values, type:

select * -
from department -
where mgrno is not null

Note: If any operand in an arithmetic operation is null, the result of the operation

is null. For example, the result of null + 6 is null. Now type:
rollback

To return to automatic statement committing by the database manager,
type:

set autocommit on
Respond to the resulting message with:

rollback

Interactive SQL Guide and Reference

EXERCISE 8 (Answers are in Appendix A, Answers to the Exercises, on page 263.)

Perform the following:
1. Start an LUW.

2. Insert the activity MARKETING, with the keyword MARKET and the number 190,
into the ACTIVITY table.

3. Rollback your changes.

4. Retrieve all information for any item that has a null value in the major
project column in PROJECT.

5. Update the PROJECT table to increase the mean project staff by 0.5, and
make the project end date 7 days sooner.

6. Update the PROJECT table to show a project start date of March 1, 1982,
for department E21 if the major project is OP2010.

7. Input into the DEPARTMENT table the following:

¢ A department number of FO1 with the name PERSONNEL, manager number 000110.
This department reports to A0O.

¢ A department number of GO1 with the name MARKETING AND SALES, manager
number 000120. This department also reports to AQO.

8. Delete the rows of the DEPARTMENT table for department numbers FO1, F11,
and F21.

9. Query the DEPARTMENT table, and then the PROJECT table, to verify your
changes. Make any corrections necessary (or if you made serious errors, enter
ROLLBACK and start over).

10. Insert Irving F. Stern’s basic personnel information back into the
EMPLOYEE table.

This information is in Appendix B, “Sample Tables” on page 269 in the EMPLOYEE table, under employee number 000060.

11. Delete the new Expert Systems project (project number MA2114)
from the PROJECT table.

12. To verify your changes, query the EMPLOYEE table and then query the
PROJECT table.

13. Rollback your changes and return to committing commands automatically.

Chapter 5. Managing Table Data 85

86 Interactive SQL Guide and Reference

Chapter 6. Using ISQL Commands to Save Time When
Executing Statements

To avoid retyping similar SQL statements or retyping an entire statement just to
correct one error, you can use the ISQL commands in this chapter. It explains how
to retrieve, modify, and delete SQL statements, how to withhold a statement from
processing until you have checked it for errors, and how to reuse the same SQL
statement for different tables, columns, and rows.

Reusing the Current SQL Statement

Before the system processes an SQL statement, it inserts it into a special storage
area called the SQL command buffer. Once in the buffer, the statement becomes
the current statement until it is pushed down in the queue by the next statement.
ISQL commands are also inserted into the command buffer when you type them in,
but not when you invoke them by using a PF key.

Using the command buffer facility, you can rerun a typed statement by using the
ISQL START command (PF12).

Process the current SQL statement by performing the following:

1. Type the statement:

select * -
from department

2. When the result is displayed, type the END command.
3. Reenter the SQL statement by typing:
start
The START command becomes even more useful when you have a typing error in

an SQL statement. The error can be corrected (described in the next topic) and the
START command used to reenter the corrected statement.

Retrieving and Correcting SQL Lines

You can use the RETRIEVE function to correct a statement already in the
command line buffer. RETRIEVE moves the previously-typed line into the input
area. The following example shows how to retrieve and correct a line in the output
area. Type the following and press ENTER:

select actnum,actkwd,actdesc -

The line is moved to the output area.

Now type:
from activity
Press ENTER.

An error message is issued indicating that the column ACTNUM was not found.
(ACTNO is the correct name.)

© Copyright IBM Corp. 1987, 1998 87

88

To retrieve the last input line entered, press the PF12 key to invoke the RETRIEVE
function. The following line is now displayed in the input area with the cursor
positioned at the end of the line:

from activity
Press the PF12 key again to retrieve the previous input line. The input area now
contains:

select actnum,actkwd,actdesc -

with the cursor positioned at the end of the line. You can now correct the error as
you would any other error in the input area by backspacing and typing the correct
characters.

After you have corrected the line in the input area, press ENTER.

— DB2 Server for VSE

The corrected line is now displayed in the output area, and CONTINUE COMMAND
has appeared in the status area to confirm that you are to continue entering the
statement.

— DB2 Server for VM

The corrected line is now displayed in the output area, VM READ has appeared in
the status area, and message ARI70681 has appeared in the output area to
confirm that you are to continue typing the statement.

Continue the statement by using either of the following two methods:
* Type the FROM clause in the input area as follows:
from activity
Press ENTER.

e Press PF12 twice. The FROM clause is displayed in the input area with the
cursor at the end of the line:

from activity_

Press ENTER.

The result is the same using either method: the SELECT statement is reissued.

Note: The command buffer holds a variable number of statements, depending on
their length. If your statements are short, the buffer can hold more of them.
As you press PF12 repeatedly, the system retrieves statements from the
buffer starting with the most recent, and continues until it retrieves the
oldest statement. Then it starts over and returns the most recent statement.

Interactive SQL Guide and Reference

— DB2 Server for VM

The RETRIEVE facility functions differently in wait mode compared to display
mode. In display mode, the system can retrieve any information typed during
the ISQL session that is still contained in the command buffer. In wait mode (VM
READ shows in the status area of the display), the system can retrieve
information typed in wait mode or from a time prior to starting ISQL.

Incorrect information typed from wait mode can be retrieved immediately, and
corrected as illustrated in the previous example. Incorrect information typed
from display mode forces display mode to end, and returns you to wait mode.
Pressing PF12 does not retrieve the incorrect information in this case, because
you typed it from display mode. The following examples illustrate the
RETRIEVE-function differences between wait and display mode.

Ensure that you are in wait mode. If you do not see VM READ in the lower-right
corner of your display, press PF3. Now, type the following (with activity spelled
incorrectly):

select * from abtivity

An error message is issued indicating that ABTIVITY cannot be found. Press
PF12. The incorrect select * from abtivity statement appears in your input
area, where you can correct it.

Erroneous lines typed from display mode cannot be immediately retrieved with
RETRIEVE key PF12. To illustrate, type the following correct statement from
wait mode.

select * from activity

The ACTIVITY table is displayed, and the message disappears from the status
area to indicate that you are in display mode.

Do not press PF3 to end the display. Instead, type the following incorrect
statement from display mode:

select * from supply

The SUPPLY table is not found; VM READ reappears in the lower-right corner of
your display to indicate that you are back in wait mode.

Now, press PF12. select = from activity appears in the input area. It is not
the last statement you typed, but is the last one you typed from wait mode. The
line in error that was entered from display mode cannot be retrieved from wait
mode. It has been saved, however, and can be retrieved when you return to
display mode. To illustrate this, enter the following correct query, which returns
you to display mode:

select actno from activity

Now, from display mode, press PF12. The last line typed, select actno from
activity, appears in the input area.

Press PF12 again. This time the line in error, select * from supply, does
appear in the input area.

Chapter 6. Using ISQL Commands to Save Time When Executing Statements

89

— DB2 Server for VM

All lines typed during an ISQL session can be retrieved from within display
mode (up to the maximum number of lines the buffer can hold), including lines
entered from display mode and wait mode. Only those lines entered from wait
mode can be retrieved from wait mode. Since ISQL commands other than
display commands, SQL statements other than SELECT, and incorrect SELECT
statements entered from display mode return you to wait mode, you cannot
immediately retrieve this type of statement or command. Pressing PF3 after you
have finished each query ensures that you enter each statement or command
from wait mode and can immediately retrieve and change the information.

Altering and Reusing SQL Lines

The RETRIEVE facility is especially useful when you enter similar commands. To
save time, you can retrieve an earlier command, alter it, and then enter it.

For example, enter the following statement:

select » -
from employee

Your next statement to be typed is select * from department. To save time,
reuse the statement you just typed as follows.

Press PF12 twice to place select * - in the input area. Then, press ENTER.

Press PF12 twice. from employee is now contained in the input area. Backspace
and type DEPARTMENT over EMPLOYEE. Then, press ENTER.

In this way, select * from department is typed in just a few keystrokes.

Remember, a variable number of your statements are retained, and you may or
may not be able to retrieve a particular statement.

Changing the Current SQL Statement

These statements can be corrected, altered and reused, and portions of them can
be deleted.

Correcting Typing Errors in the Statement

90

Having the facility to change the current SQL statement lets you correct one
containing typing errors. For example, enter the following statement (with activity
misspelled):

select actno -
from adtivity -
where actno > 100

This returns an error message stating that there is no table owned by you named
ADTIVITY. Correct the error by entering the following ISQL command:

change /adtivity/activity/

Interactive SQL Guide and Reference

The slashes in CHANGE commands separate the data to be changed (between the
first two slashes) from the new data to replace it (between the last two slashes).
Always include a blank before the first slash and always enter the final slash. ISQL
changes the statement at the first occurrence of the data you place between the
first two slashes, so ensure that the data you want changed is the first occurrence
of that data in the statement to be changed.

Note: You do not have to use a slash to separate the data; any character except
a blank can be used in its place. To change data that contains a slash,
choose a character that does not occur in the data to be changed or in the
new data.

Now enter the START command to process the changed SQL statement. If you
have made no other mistakes, the query result for this SELECT statement is
displayed on your display.

Altering and Reusing the Statement

You can use the CHANGE command to alter and then reuse the statement in the
command buffer.

In “Altering and Reusing SQL Lines” on page 90, you used the RETRIEVE function
to change the table name from EMPLOYEE to DEPARTMENT. Alternatively, you
can query the EMPLOYEE table, end the query, and then type the following
statement:

change /employee/department/

This command changes the statement in the buffer. To perform the new statement,
which queries the DEPARTMENT table, type:

start

Notice that the RETRIEVE command uses lines of information from the command
line buffer; the CHANGE command uses the statement from the command buffer.

Deleting Portions of the Statement

The CHANGE command can also be used to delete a portion of a current
statement. For example, suppose you had selected the ACTNO, ACTKWD, and
ACTDESC columns from the ACTIVITY table. After you end the query, you can
delete the selection of the ACTKWD column table by typing:

change /,actkwd//

By providing no replacement string (nothing between the second and third slashes),
the characters matching the string between the first two slashes are effectively
deleted from the statement. You can see the result of your changed query by using
the START command.

Ignoring an SQL Line

Another way to correct a typing mistake in a multiple-line statement is to use the
IGNORE command.

To illustrate, type the following (deptname is misspelled):

select depname,mgrno -

Chapter 6. Using ISQL Commands to Save Time When Executing Statements 91

Press ENTER. Now, you realize the valid column name is DEPTNAME. Type:

ignore

— DB2 Server for VSE

You receive the message:

ARI7061I Previous input ignored.

in the output area, and the status area contains ENTER A NEW COMMAND.

— DB2 Server for VM

You receive the message:

ARI7061I Previous input ignored.

in the output area, and the status area contains VM READ.

You can now retype the statement, or use PF12 to retrieve the line for correction.

Preventing the Immediate Processing of an SQL Statement

You can prevent an SQL statement from being processed immediately after being
typed. This lets you check the statement for typing errors before it is processed
using a START command. It also allows an SQL statement containing placeholders
to be placed in the SQL command buffer, and values to be substituted for the
placeholders when the statement is started using the START command. (The
START command and placeholders are discussed in the next section.)

To illustrate, the following example shows how to prevent the statement SELECT *
FROM PROJECT from being processed immediately. Type the following ISQL
command:

hold select * from project
This statement remains in the buffer as the current statement until you enter
another SQL statement (or another HOLD command).

The HOLD command can also be invoked by pressing PF9. If you press PF9
instead of ENTER after typing an SQL statement, it is placed in the command
buffer and is not processed.

Your held statement can then be processed using the START command.

Note: HOLD cannot be used with ISQL commands.

Using Placeholders in SQL Statements

92

You can form SQL statements that contain placeholders. They reserve areas in the
statements, which are filled in when the statement is performed. One reason for
doing this, for example, is to avoid typing an UPDATE statement for each table
update. Suppose you want to update the EMPLOYEE table to reflect a $100 bonus
increase for particular employees.

1. To prevent your changes from being automatically committed, type:

Interactive SQL Guide and Reference

set autocommit off
This starts a logical unit of work. Now type:

hold update employee -
set bonus = &1 -
where empno = '&2'

The use of HOLD at the beginning of this example places the UPDATE
statement in the command buffer without processing it.

In the example, &1 and &2 are the placeholders. The number following the
ampersand refers to the sequence in which the placeholders are replaced. The
database manager performs the replacement as follows: the first item of
information replaces &1, the second replaces &2, and so on.

2. Start the UPDATE statement and supply the replacement information:
start (bonus+100.00 '000010')
This command adds a $100 bonus to employee 000010, and produces a

message indicating that one row (ROWCOUNT=1) was updated. The actual
UPDATE statement processed is:

update employee
set bonus = bonus + 100.00
where empno = '000010'

The two items of information which replace the placeholders are called
parameters.

3. Because START is an ISQL command, it does not replace the UPDATE
statement in the command buffer. This lets you continue to use the UPDATE
statement to update another row as follows:

start (bonus+100.00 '000050')

4. This process can continue for as many updates as needed. Remember though,
that the START command uses the statement currently contained in the
command buffer. If you typed another SQL statement, it would replace the
UPDATE statement in the buffer, and you would have to recall the UPDATE
statement to continue. (Statement recalling is discussed in Chapter 8, “Storing
SQL Statements” on page 119.)

5. Type the following command to return to normal command processing:

set autocommit on

Respond to the resulting message with the following to prevent the changes
from being committed:

rollback

The following are rules for the use of placeholders and parameters:

* A placeholder for a character data item must be enclosed in single quotation
marks.

* A parameter for a character data item must also be enclosed in single
guotation marks.

e When using parameters in a START command, enclose them in parentheses
and separate each parameter with a blank.

* A parameter may be one word, several words, or an expression.

Chapter 6. Using ISQL Commands to Save Time When Executing Statements 93

— If one parameter (replacing just one placeholder) consists of a list of words
separated by commas, such as a list of column names in a select_list, the
list of words must use commas (and not blanks) as separators.

— If a parameter contains a list of words separated by blanks, that list of
words must be enclosed in single quotation marks to distinguish between
the blanks within the one parameter and the blanks that separate
parameters.

¢ In a stored SQL command, you can only use the ampersand (&) to create
placeholders.

EXERCISE 9 (Answers are in Appendix A, Answers to the Exercises, on page 264.)

Perform the following:

1. Enter and hold an SQL statement that retrieves the entire DEPARTMENT
table.

2. Change the command created in step 1 to select two columns, and use
placeholders to define them.

3. Start the command, replacing the two placeholders with values that
retrieve the DEPTNO and DEPTNAME columns. Check the results, and then end the
display.

4. Change the current SQL statement to add a WHERE clause. Use a placeholder
for the search condition.

5. Start the command, replacing the placeholders with values that select the
department name and the manager number for departments that report to EO1.

94 Interactive SQL Guide and Reference

Chapter 7. Formatting Query Results

This chapter builds on the information in previous chapters. In Chapter 2,

“Querying Tables” on page 21 and Chapter 3, “Manipulating Query Information” on
page 41, you learned how to produce and manipulate query information. When the
information appears on your display, you can change the way it looks. You can
format the columns so that they appear with different headings, widths, or
separators. You can format the whole query result so that it appears as a report,
divided into groups, totaled, and titled. You can also use ISQL commands to set the
query format characteristics for all queries in a session.

Formatting Columns

In Chapter 2, “Querying Tables” on page 21, you learned how to produce query
information. In this chapter, you learn techniques to arrange the information in a
report format. You can:

Change the number of blanks that separate columns or even change the
blanks to some other characters.

Cease display of a column (and later include it, if desired).

Change the name of a displayed column heading.

Specify the number of decimal places to display for numeric columns.
Control the display of leading zeros on numeric columns.

Change the display width of a column.

Creating a Report from Query Results

To illustrate the formatting changes that you can make to columns, you first need a
query result. Type the following statement:

select projno,actno,acstaff,acstaff + .25,acstdate -
from proj_act -

where projno = 'AD3100' -

or projno = 'AD3111' -

or projno = 'AD3112' -

order by projno,actno

The query result for this statement (shown in Figure 52 on page 96) is used over
the next several topics. Do not end it until asked to do so.

© Copyright IBM Corp. 1987, 1998 95

PROJNO ACTNO ACSTAFF EXPRESSION 1 ACSTDATE
AD3100 10 0.50 0.75 1982-01-01
AD3111 60 0.80 1.05 1982-01-01
AD3111 60 0.50 0.75 1982-03-15
AD3111 70 1.50 1.75 1982-02-15
AD3111 70 0.50 0.75 1982-03-15
AD3111 80 1.25 1.50 1982-04-15
AD3111 80 1.00 1.25 1982-09-15
AD3111 180 1.00 1.25 1982-10-15
AD3112 60 0.75 1.00 1982-01-01
AD3112 60 0.50 0.75 1982-02-01
AD3112 60 0.75 1.00 1982-12-01
AD3112 60 1.00 1.25 1983-01-01
AD3112 70 0.75 1.00 1982-01-01
AD3112 70 0.50 0.75 1982-02-01
AD3112 70 1.00 1.25 1982-03-15
AD3112 70 0.25 0.50 1982-08-15
AD3112 80 0.35 0.60 1982-08-15
AD3112 80 0.50 0.75 1982-10-15
AD3112 180 0.50 0.75 1982-08-15
* End of Result *** 19 Rows Displayed ***Cost Estimate is lxxskkxkkkkkkkkrkkkrs

Figure 52. A Query Result to Be Used to lllustrate Formatting Techniques

Field procedures can affect the order of the rows when you use the ORDER BY
clause. For more information about field procedures, see the DB2 Server for VSE &
VM SQL Reference manual.

Modifying the Separation between Columns

Using the query result described above, change the number of blanks used to
separate the columns by typing the following display command:

format separator 4 blanks

FORMAT is the name of the command; SEPARATOR describes the kind of
formatting to be done. After this command has been processed, four blanks are
displayed between columns. Now separate the columns with a vertical bar and a
couple of blanks by typing the following command:

format separator ' | '
This defines a separator that consists of a blank, followed by a vertical bar,
followed by a blank. The quotation marks were used to include the blanks as part

of the separator. Quotation marks are needed whenever the separator you are
defining contains a blank. For example, the 3-character separator:

does not require quotation marks, whereas this separator does:
1 | | 1

The result of typing the above FORMAT command is shown in Figure 53 on
page 97.

96 Interactive SQL Guide and Reference

PROJNO ACTNO | ACSTAFF EXPRESSION 1 | ACSTDATE
AD3100 10 0.50 0.75 | 1982-01-01
AD3111 60 0.80 1.05 | 1982-01-01
AD3111 60 0.50 0.75 | 1982-03-15
AD3111 70 1.50 1.75 | 1982-02-15
AD3111 70 0.50 0.75 | 1982-03-15
AD3111 80 1.25 1.50 | 1982-04-15
AD3111 80 1.00 1.25 | 1982-09-15
AD3111 180 1.00 1.25 | 1982-10-15
AD3112 60 0.75 1.00 | 1982-01-01
AD3112 60 0.50 0.75 | 1982-02-01
AD3112 60 0.75 1.00 | 1982-12-01
AD3112 60 1.00 1.25 | 1983-01-01
AD3112 70 0.75 1.00 | 1982-01-01
AD3112 70 0.50 0.75 | 1982-02-01
AD3112 70 1.00 1.25 | 1982-03-15
AD3112 70 0.25 0.50 | 1982-08-15
AD3112 80 0.35 0.60 | 1982-08-15
AD3112 80 0.50 0.75 | 1982-10-15
AD3112 180 0.50 0.75 | 1982-08-15
* End of Result xx#*xxs*xxx** 19 Rows Displayed #**x*+ Cost Estimate is 1 =

Figure 53. A Query Result with a Formatted Separator between Columns

Excluding Columns from the Display

There can be occasions when you obtain a query result and decide that it contains
columns that you do not want in your report. You can end the result and retype the
statement with the correct columns listed in the SELECT clause, but there is an
alternative to retyping.

Suppose you want to exclude the ACSTAFF and ACSTDATE columns in the
current display. Type:

format exclude (acstaff acstdate)
Issuing a FORMAT command with EXCLUDE instructs ISQL to exclude the
columns specified from the current display. When specifying more than one column

name, enclose them in parentheses and separate the names with a blank. The
above FORMAT command displays Figure 54 on page 98.

Chapter 7. Formatting Query Results 97

PROJNO ACTNO EXPRESSION 1
AD3100 10 0.75
AD3111 60 1.05
AD3111 60 0.75
AD3111 70 1.75
AD3111 70 0.75
AD3111 80 1.50
AD3111 80 1.25
AD3111 180 1.25
AD3112 60 1.00
AD3112 60 0.75
AD3112 60 1.00
AD3112 60 1.25
AD3112 70 1.00
AD3112 70 0.75
AD3112 70 1.25
AD3112 70 0.50
AD3112 80 0.60
AD3112 80 0.75
AD3112 180 0.75
* End of Result xx#*xxs*xxx** 19 Rows Displayed #**x*+ Cost Estimate is 1 =

Figure 54. A Query Result Formatted to Exclude Two Columns

You can use a number instead of a column name to identify the excluded column.
The number refers to the column’s position in the SELECT clause. For example,
the ACSTAFF and ACSTDATE columns can be excluded by typing:

format exclude (3 5)

Sometimes it is easier to define columns you want included. For example, if you
want to include only the third column of a query result that contained many
columns, you can type:

format exclude all but (3)

The parentheses can be omitted when only one column is specified.

Including Columns in the Display

98

The effects of excluding a column from the display can be reversed. You can use
the INCLUDE option to include the ACSTAFF and ACSTDATE columns in the
current display. Do this by typing:

format include (acstaff acstdate)

Again, numbers can be used instead of column names. For example, to include
only the first and third columns of a query result, you can type:

format include only (1 3)

The above FORMAT command displays Figure 55 on page 99.

Interactive SQL Guide and Reference

PROJNO
AD3100
AD3111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112

ACSTAFF

OO0 OHOOHOOOHHFMHFEFOHOOO
(S
[}

.50

* End of Result *** 19 Rows Displayed ***Cost Estimate is lxxskkxkkkkkkkkrkkkrk

Figure 55. A Query Result Formatted for Include-Only Columns

To display all the columns again, type:

format include

Changing a Displayed Column Heading

The query result you are using has EXPRESSION 1 as a column heading. To make
the heading more meaningful, use the NAME keyword of the FORMAT command.

Type the following command:

format column 'expression 1' name 'staff + .25'

The above FORMAT command displays Figure 56.

PROJNO
AD3100
AD3111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112

180

ACSTAFF

OO OOHOOHOOOHRFRPHFHFOFROOO
[$a)
(<)

STAFF + .25

OO ORFRPFFEFORFEFFEFEFEFOFRFORFRO
~
o

.75

ACSTDATE

1982-01-01
1982-01-01
1982-03-15
1982-02-15
1982-03-15
1982-04-15
1982-09-15
1982-10-15
1982-01-01
1982-02-01
1982-12-01
1983-01-01
1982-01-01
1982-02-01
1982-03-15
1982-08-15
1982-08-15
1982-10-15
1982-08-15

* End of Result x#xx*xx*xx*kx*x 19 Rows Displayed #*x*xx Cost Estimate is 1

Figure 56. A Query Result Formatted to Change a Displayed Column Heading

Chapter 7. Formatting Query Results

*%

99

Numbers can also be used to identify the column heading to change; for example:

format column 4 name 'staff + .25'

Remember, the 4 refers to the column’s position in the SELECT clause, not the

position of the column displayed.

Changing the Number of Decimal Places Displayed

The query result on your display shows two decimal places for both the ACSTAFF
and ACSTAFF + .25 columns. You control the humber of decimal places displayed
using the DPLACES option of the FORMAT command. For example, to display only
one decimal place for the STAFF + .25 column, type:

format column 'staff + .25' dplaces 1

This displays a result similar to Figure 57.

PROJNO | ACTNO | ACSTAFF STAFF + .25
AD3100 10 0.50 0.7
AD3111 60 0.80 1.0
AD3111 60 0.50 0.7
AD3111 70 1.50 1.7
AD3111 70 0.50 0.7
AD3111 80 1.25 1.5
AD3111 80 1.00 1.2
AD3111 180 1.00 1.2
AD3112 60 0.75 1.0
AD3112 60 0.50 0.7
AD3112 60 0.75 1.0
AD3112 60 1.00 1.2
AD3112 70 0.75 1.0
AD3112 70 0.50 0.7
AD3112 70 1.00 1.2
AD3112 70 0.25 0.5
AD3112 80 0.35 0.6
AD3112 80 0.50 0.7
AD3112 180 0.50 0.7
* End of Result sxkxxxtsixsxx 19 Rows Disp

ACSTDATE

1982-01-01
1982-01-01
1982-03-15
1982-02-15
1982-03-15
1982-04-15
1982-09-15
1982-10-15
1982-01-01
1982-02-01
1982-12-01
1983-01-01
1982-01-01
1982-02-01
1982-03-15
1982-08-15
1982-08-15
1982-10-15
1982-08-15
layed **x*x* Cost Estimate is

Figure 57. A Query Result Formatted to Display One Decimal Place

Controlling the Display of Leading Zeros

You can show leading zeros for a numeric column. Do this for the ACTNO column

by typing:

format column actno zeros on

The above FORMAT command displays Figure 58 on page 101.

100 Interactive SQL Guide and Reference

1

%

PROJNO ACTNO | ACSTAFF STAFF + .25
AD3100 00010 0.50 0.7
AD3111 00060 0.80 1.0
AD3111 00060 0.50 0.7
AD3111 00070 1.50 1.7
AD3111 00070 0.50 0.7
AD3111 00080 1.25 1.5
AD3111 00080 1.00 1.2
AD3111 00180 1.00 1.2
AD3112 00060 0.75 1.0
AD3112 00060 0.50 0.7
AD3112 00060 0.75 1.0
AD3112 00060 1.00 1.2
AD3112 00070 0.75 1.0
AD3112 00070 0.50 0.7
AD3112 00070 1.00 1.2
AD3112 00070 0.25 0.5
AD3112 00080 0.35 0.6
AD3112 00080 0.50 0.7
AD3112 00180 0.50 0.7
* End of Result xx#*xxs*xx*** 19 Rows Disp

ACSTDATE

1982-01-01
1982-01-01
1982-03-15
1982-02-15
1982-03-15
1982-04-15
1982-09-15
1982-10-15
1982-01-01
1982-02-01
1982-12-01
1983-01-01
1982-01-01
1982-02-01
1982-03-15
1982-08-15
1982-08-15
1982-10-15
1982-08-15

layed x**x%* Cost Estimate is 1

Figure 58. A Query Result Formatted to Display Leading Zeros

Stop the display of leading zeros in the ACTNO column by typing:

format column actno zeros off

Changing the Displayed Length Attribute of a Column
You may want to modify the displayed length attribute of a column to fit your report
on the paper being used for printing. For example, to change the length attribute of
the PROJNO column of the current query result, type:

format column projno width 8

The above FORMAT command displays Figure 59.

*%

PROJNO
AD3100
AD3111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112

180

ACSTAFF

OO0 OHOOHOOOHMHMHFOHOOO
o1
(<)

.50

STAFF + .25

loNoNoNoN N o Nl N o Nl el N o N o)
~
[$)]

.75

ACSTDATE

1982-01-01
1982-01-01
1982-03-15
1982-02-15
1982-03-15
1982-04-15
1982-09-15
1982-10-15
1982-01-01
1982-02-01
1982-12-01
1983-01-01
1982-01-01
1982-02-01
1982-03-15
1982-08-15
1982-08-15
1982-10-15
1982-08-15

* End of Result x#xx*xx*xx*kx*x 19 Rows Displayed #*x*xx Cost Estimate is 1

Figure 59. A Query Result Formatted to Display a Different Column Width

Chapter 7. Formatting Query Results

*%

101

Columns defined as variable-character have an additional command to control the
displayed length attribute. See the explanation of the VARCHAR keyword in the
FORMAT command description in Chapter 13, “ISQL Commands” on page 203.

You have now finished formatting the report. To produce a copy, type a PRINT
command before typing the END command.

You can specify more than one keyword in a single FORMAT command. For
example, the following command combines several keywords:

format separator ' | ' column 'expression 1' name -
'staff + .25' dplaces 1 column actno zeros off

Because ISQL treats this information as a single command, considerable
processing time is saved. Multiple-keyword entry is described in more detail under
“Using More Than One Keyword in a FORMAT Command” on page 108.

EXERCISE 10 (Answers are in Appendix A, Answers to the Exercises, on page 264.)

Perform the following:

1. Retrieve the employee number, project number, and proportion of employee
time from the EMP_ACT table for project numbers IF1000 and 1F2000. Order
the results primarily by project number and secondarily by employee number.

2. Separate all columns with two blanks, an asterisk, and two more blanks.
3. Display all columns except the EMPNO column.

4. Change the column heading for the EMPTIME column to PROPTN and its
displayed length attribute to 8 characters.

Formatting Reports

Earlier in this chapter, you learned formatting techniques to create a report. In this
section, you learn to prepare totals, create an outline format, and specify report
titles.

To illustrate these functions, type the following query statement and format
commands:

select projno,actno,acstaff,acstaff + .25,acstdate -
from proj_act -

where projno = 'AD3100' -

or projno = 'AD3111' -

or projno = 'AD3112' -

order by projno,actno

format separator ' | ' column 'expression 1' name -
'staff + .25' -
column projno width 8

This produces the following result in Figure 60 on page 103.

102 Interactive SQL Guide and Reference

PROJNO
AD3100
AD3111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3111
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112
AD3112

180

ACSTAFF

OO0 OHOOHOOOHMHMHFOHOOO
o1
(<}

.50

STAFF + .25

loNoNoNoN N o NNl N o Nl el N o NN o)
~
o

.75

ACSTDATE

1982-01-01
1982-01-01
1982-03-15
1982-02-15
1982-03-15
1982-04-15
1982-09-15
1982-10-15
1982-01-01
1982-02-01
1982-12-01
1983-01-01
1982-01-01
1982-02-01
1982-03-15
1982-08-15
1982-08-15
1982-10-15
1982-08-15

* End of Result xx#*xxs*xx**x 19 Rows Displayed ***x** Cost Estimate is 1

Figure 60. A Formatted Query Result to Be Used to Illustrate Report Format

Obtaining an Outline Report Format

An outline report format suppresses the display of duplicate values in a particular
column. To provide this feature for the PROJNO column, type the following

command:

format group (projno)

This produces Figure 61.

*%

PROJNO

AD3100

AD3111

AD3112

180

ACSTAFF

PR PRPORFR,ROO
o
o

ODOOOHOOHROOO
(S
(<=}

.50

STAFF + .25

RO O
~
o

[oNoNoNoN S No N NN o N
~
ol

.75

ACSTDATE

1982-01-01

1982-01-01
1982-03-15
1982-02-15
1982-03-15
1982-04-15
1982-09-15
1982-10-15

1982-01-01
1982-02-01
1982-12-01
1983-01-01
1982-01-01
1982-02-01
1982-03-15
1982-08-15
1982-08-15
1982-10-15
1982-08-15

* End of Result s#x*x*x*x*x*x 19 Rows Displayed ***x*x Cost Estimate is 1

Figure 61. A Query Result Displayed in Outline Report Format

Chapter 7. Formatting Query Results

*%

103

Outlining is appropriate only on a column that has been ordered into groups of
similar values (through an ORDER BY clause in the SELECT statement). Although
outlining can be performed on an unordered column, the frequent changes in the
values that are likely to occur in that column cause such outlining to be of little
value.

Outlining is normally performed when you specify GROUP on a FORMAT
command. For a description of how this process is controlled, see the FORMAT
command section in Chapter 13, “ISQL Commands” on page 203.

Note: If you have VARCHAR or VARGRAPHIC columns with values that differ
only by trailing blanks, the FORMAT GROUP command treats them as
duplicates. Therefore, if you have 'AD3100' and 'AD3100 ' in a
VARCHAR column, a FORMAT GROUP command eliminates one of them.

Obtaining Totals for Reports

104

To produce a total for the STAFF + .25 column, type:
format total ('staff + .25')
Note: Although included here, the parentheses are necessary only when
specifying multiple columns to be totaled.

This FORMAT command displays a result similar to Figure 62.

PROJNO ACTNO | ACSTAFF STAFF + .25 | ACSTDATE

AD3100 10 0.50 0.75 | 1982-01-01

AD3111 60 0.80 1.05 | 1982-01-01
60 0.50 0.75 | 1982-03-15
70 1.50 1.75 | 1982-02-15
70 0.50 0.75 | 1982-03-15
80 1.25 1.50 | 1982-04-15
80 1.00 1.25 | 1982-09-15
180 1.00 1.25 | 1982-10-15

AD3112 60 0.75 1.00 | 1982-01-01
60 0.50 0.75 | 1982-02-01
60 0.75 1.00 | 1982-12-01
60 1.00 1.25 | 1983-01-01
70 0.75 1.00 | 1982-01-01
70 0.50 0.75 | 1982-02-01
70 1.00 1.25 | 1982-03-15
70 0.25 0.50 | 1982-08-15
80 0.35 0.60 | 1982-08-15
80 0.50 0.75 | 1982-10-15
180 0.50 0.75 | 1982-08-15

18.65
* End of Result xx#*xxs*xxx** 19 Rows Displayed #**xx* Cost Estimate is 1 **

Figure 62. A Query Result Formatted to Produce Totals

You can also create subtotals for this column by typing the following command:
format subtotal ('staff + .25')
This displays Figure 63 on page 105.

Interactive SQL Guide and Reference

PROJNO ACTNO | ACSTAFF STAFF + .25 | ACSTDATE

AD3100 10 0.50 0.75 | 1982-01-01

R N I R (;;g

AD3111 60 0.80 1.05 | 1982-01-01
60 0.50 0.75 | 1982-03-15
70 1.50 1.75 | 1982-02-15
70 0.50 0.75 | 1982-03-15
80 1.25 1.50 | 1982-04-15
80 1.00 1.25 | 1982-09-15
180 1.00 1.25 | 1982-10-15

e | T é?:;(;

AD3112 60 0.75 1.00 | 1982-01-01
60 0.50 0.75 | 1982-02-01
60 0.75 1.00 | 1982-12-01
60 1.00 1.25 | 1983-01-01
70 0.75 1.00 | 1982-01-01
70 0.50 0.75 | 1982-02-01
70 1.00 1.25 | 1982-03-15
70 0.25 0.50 | 1982-08-15

Figure 63. A Query Result Formatted to Produce Subtotals

Notice that subtotals are created in the STAFF + .25 column for each change in the
value in the PROJNO column.

The conditions on which subtotals are created are defined, like outlining, by the
GROUP option of a FORMAT command. Subtotals are created whenever the value
changes in the column (or columns) specified with FORMAT GROUP. Columns
identified with FORMAT GROUP should have been specified in the ORDER BY
clause of the SELECT statement that produced the query results, and should
appear in the same sequence as they appeared in the ORDER BY clause.
Otherwise, the resulting subtotals can be meaningless.

You can erase these totals and subtotals. For example, to erase the totals in the
above report, you would type:

format total erase

This FORMAT command would display a result similar to Figure 64 on page 106.

Chapter 7. Formatting Query Results 105

PROJNO ACTNO | ACSTAFF STAFF + .25 | ACSTDATE
60 0.50 0.75 | 1982-03-15
70 1.50 1.75 | 1982-02-15
70 0.50 0.75 | 1982-03-15
80 1.25 1.50 | 1982-04-15
80 1.00 1.25 | 1982-09-15
180 1.00 1.25 | 1982-10-15

*hkkkhkhk 8.30

AD3112 60 0.75 1.00 | 1982-01-01
60 0.50 0.75 | 1982-02-01
60 0.75 1.00 | 1982-12-01
60 1.00 1.25 | 1983-01-01
70 0.75 1.00 | 1982-01-01
70 0.50 0.75 | 1982-02-01
70 1.00 1.25 | 1982-03-15
70 0.25 0.50 | 1982-08-15
80 0.35 0.60 | 1982-08-15
80 0.50 0.75 | 1982-10-15
180 0.50 0.75 | 1982-08-15

*hkkhKKhK 9.60

Figure 64. A Query Result Formatted with the Totals Erased

Subtotals can be erased and included in the same manner by substituting
SUBTOTAL for TOTAL in the above example. Erasing subtotals also erases totals
for the specified columns.

There are some variations in the use of GROUP, SUBTOTAL, and TOTAL with
FORMAT commands. See the FORMAT command section in Chapter 13, “ISQL
Commands” on page 203 for details.

Creating Titles for Printed Reports

106

Specify a top title for the current report by typing:

format ttitle 'summary of employee time'

The quotation marks are needed because the title contains blanks. The command
displays the current top title, and prompts you to return to the query result by
issuing the following message in the status area:

—— DB2 Server for VSE

Press clear key to continue

— DB2 Server for VSE

MORE ...

To return to the query result, press CLEAR.

Interactive SQL Guide and Reference

The top title can be erased and replaced with the first 100 characters of the
associated SELECT statement by typing:

format ttitle erase
A bottom title can also be specified. Use the following command to create a bottom
title for this report:

format btitle 'company confidential'

The bottom title can also be erased by typing:

format btitle erase
Top and bottom titles are centered in the top and bottom margins of the printed
report. Although the titles cannot be seen until your report is printed, you can view

them by typing FORMAT TTITLE (or FORMAT BTITLE) without specifying a title.
For example, type:

format ttitle
Pressing CLEAR in response to this message returns you to the query result.

Now print a copy of this report by typing:
print

Your printed report is similar to Figure 65 on page 108.

Chapter 7. Formatting Query Results 107

08/10/89 SUMMARY OF EMPLOYEE TIME
PROJNO ACTNO | ACSTAFF STAFF + .25 | ACSTDATE
AD3100 10 0.50 0.75 | 1982-01-01
*kkkkkkk 0.75
AD3111 60 0.80 1.05 | 1982-01-01
60 0.50 0.75 | 1982-03-15
70 1.50 1.75 | 1982-02-15
70 0.50 0.75 | 1982-03-15
80 1.25 1.50 | 1982-04-15
80 1.00 1.25 | 1982-09-15
180 1.00 1.25 | 1982-10-15
Kk k kxR 8.30
AD3112 60 0.75 1.00 | 1982-01-01
60 0.50 0.75 | 1982-02-01
60 0.75 1.00 | 1982-12-01
60 1.00 1.25 | 1983-01-01
70 0.75 1.00 | 1982-01-01
70 0.50 0.75 | 1982-02-01
70 1.00 1.25 | 1982-03-15
70 0.25 0.50 | 1982-08-15
80 0.35 0.60 | 1982-08-15
80 0.50 0.75 | 1982-10-15
180 0.50 0.75 | 1982-08-15
EE T 9.60
18.65
COMPANY CONFIDENTIAL

Figure 65. Example of a Printed Report

Using More Than One Keyword in a FORMAT Command

108

The following example provides additional practice in using multiple-keyword
FORMAT commands.

Assume you want to create a report from a query result that is to include the
following modifications:

¢ Change the blanks that separate columns to another character (SEPARATOR
keyword).

¢ Change the name of a column heading (NAME keyword).
e Leave out a column (EXCLUDE keyword).

e Specify the number of decimal places to be displayed for decimal columns
(DPLACES keyword).

e Create subtotals for specific columns (SUBTOTAL keyword and GROUP
keyword).

e Create totals for specific columns (TOTAL keyword and GROUP keyword).

First, type the following statement:

Interactive SQL Guide and Reference

select actno,acstaff,acstdate -
from proj_act -
where actno between 0 and 20 -
order by actno

This produces the display in Figure 66.

ACTNO ACSTAFF ACSTDATE
10 0.50 1982-01-01
10 1.00 1982-01-01
10 0.25 1982-01-01
10 1.00 1982-01-01
10 0.50 1982-01-01
10 0.50 1982-01-01
10 0.50 1982-06-01
10 0.50 1982-01-01
10 1.00 1982-01-01
10 1.00 1982-01-01
20 1.00 1982-01-01

* End of Result *** 11 Rows Displayed ***Cost Estimate is lxxskkxkkkrkkkkrkkkrk

Figure 66. A Query Result to Be Used for a Multiple-Keyword Format Command

Using the above query result, type the following FORMAT command:

format column 2 name 'mean empl' dplaces 1 -
separator ' | ' exclude (acstdate) -

group actno -

subtotal ('mean empl')

The command produces Figure 67.

ACTNO | MEAN EMPL
10 0.5
1.0
0.2
1.0
0.5
0.5
0.5
0.5
1.0
1.0
oxonrx | (_5_;
20 1.0
*kKkhrK ______IT(T)
7.7
* End of Result sx#*xx**xxx%x 11 Rows Displayed ##*x*+ Cost Estimate is 1 **

Figure 67. A Query Result Formatted by a Multiple-Keyword Format Command

Use the END command to end this query and clear the display.

Chapter 7. Formatting Query Results 109

Displaying Null Values and Arithmetic Errors
Null values (indicated by a question mark) and arithmetic errors (indicated by
number signs separated by blanks) are displayed in a formatted table. They are
treated as zeros in any total or subtotal calculations of the columns they appear in.

In the sample report in Figure 68, the mean employee staff is unknown for one
project activity, and contains an arithmetic error for another.

SUMMARY OF EMPLOYEE DISTRIBUTION FOR ACTIVITIES 10 AND 20

02/09/89 PAGE 1
ACTNO | MEAN EMPL
10 0.5
#H##H#A
0.2
1.0
0.5
0.5
0.5
?
1.0
*kKkhkk 6.7
20 1.0
*hkKhkk 1.0
7.7

COMPANY CONFIDENTIAL

Figure 68. Sample Report Displaying Null Values and Arithmetic Errors

Controlling Null-Field Displays

When formatting reports, you may want something other than a question mark to
be used to represent null values. To illustrate, type the following statement:

select » -
from department -
order by mgrno

This displays Figure 69 on page 111.

110 Interactive SQL Guide and Reference

DEPTNO DEPTNAME MGRNO ADMRDEPT

A0O SPIFFY COMPUTER SERV< 000010 AOO

BO1 PLANNING 000020 A0O
co1 INFORMATION CENTER 000030 A0O
E01 SUPPORT SERVICES 000050 A0O

D11 MANUFACTURING SYSTEM< 000060 DO1
D21 ADMINISTRATION SYSTE< 000070 DO1

El1 OPERATIONS 000090 EO1
E21 SOFTWARE SUPPORT 000100 EO1
Dol DEVELOPMENT CENTER ? A0O

* End of Result #*x 9 Rows Displayed x*xCost Estimate is Lk

Figure 69. A Query Result Displaying a Null Value

To format a report from this query result that replaces the question mark with
NULL, type:

format null *null*

This FORMAT command should display a result similar to Figure 70.

DEPTNO DEPTNAME MGRNO ADMRDEPT
A0O SPIFFY COMPUTER SERV< 000010 AO0O
BO1 PLANNING 000020 A0O
co1 INFORMATION CENTER 000030 A00
EO1 SUPPORT SERVICES 000050 A0

D11 MANUFACTURING SYSTEM< 000060 DO1
D21 ADMINISTRATION SYSTE< 000070 DO1
Ell OPERATIONS 000090 EO1
E21 SOFTWARE SUPPORT 000100 EO1
DO1 DEVELOPMENT CENTER *NULL* AQO
* End of Result *** 9 Rows Displayed ***Cost Estimate is Lxswxxkxsxkxsxsksksrsr®

Figure 70. A Query Result Displaying a Formatted Null Field
The maximum number of characters that can be used as a null field indicator is 20.

Use the END command to end this query and clear the display.

Controlling Query Format Characteristics

You will probably develop a standard style for formatting query results that will be
consistent across queries. Given this standardization, you can specify some
formatting at the beginning of a display terminal session. The formatting remains
effective for the session, unless you change or override it.
The formatting that you can set in this fashion is listed below:

e Punctuation displayed for numeric columns.

e Separation characters displayed between columns.

e Characters displayed for null fields.

e The displayed length attribute of variable character fields. This topic is
explained in the description of the VARCHAR item in the FORMAT command
section of Chapter 13, “ISQL Commands” on page 203.

Chapter 7. Formatting Query Results 111

The number of copies and page size can also be set for the duration of a display
terminal session.

Note: Formatting information can also be set up automatically every time you
begin a DB2 Server for VSE & VM display-terminal session, by defining the
information in a routine. For an explanation of the routines, refer to “Profile
Routines” on page 125.

Setting the Format Characteristics by Using the SET Command

112

ISQL gives you some control over what you see on your display. You can specify:

¢ Punctuation displayed for numeric fields

e Separation characters displayed between columns
e Characters displayed for null fields

* Page size of printed reports

¢ Language of messages and HELP text.

Furthermore, you can specify all of these features in one command and get a list of
the current settings.

Punctuation Displayed for Numeric Fields

Punctuation for numeric fields refers to the use of periods, commas, and blanks for
the decimal and thousands separators. Valid combinations of the decimal and
thousands separators are:

Thousands Separator Decimal Separator Example
(nothing) . 1234.56
) 1,234.56
:) 1.234,56
(a blank) , 1 234,56

You can set any of these combinations for the duration of a session. For example,
set the thousands separator to a comma and the decimal separator to a period for
the duration of the current session by typing:

set decimal /,/./

The character between the first two slashes represents the thousands separator;
the character between the last two, the decimal separator. The slashes distinguish
the thousands separator from the decimal separator in the command.

Now, observe how a number is displayed using these separators. Type the
following statement:

select 1000 * acstaff -

from proj_act -

where projno = 'ma2112' and actno = 60 -
and acstdate = '1982-01-01'

This SELECT statement displays a result similar to Figure 71 on page 113.

Interactive SQL Guide and Reference

EXPRESSION 1

2,000.00
% End of Result #*x 1 Rows Displayed x*xCost Estimate is Lk

Figure 71. A Query Result with a Formatted Numeric Field

This punctuation remains in effect for all numeric columns until the end of this
session. Your next session begins with the normal default (no thousands separator
and a period for the decimal separator).

The valid punctuation combinations are set like this:

set decimal /,/./
set decimal /./,/
set decimal / /,/
set decimal //./ (nothing for thousands separator)

Separation Characters Displayed between Columns

Using the ISQL SET command, you can set the humber of blanks or the kinds of
characters to be displayed between columns for the duration of a session. The
syntax for this command is shown in the following diagram:

I
»»—SET—SEParator B BLANKs
integer—
string

\ 4
A

This command can set the number of blanks displayed between the columns when
an integer is used. For example, the following command causes five blanks to be
displayed between columns:

set separator 5 blanks

You can set a character string to be displayed between columns. To display an
asterisk between columns, type the following command:

set separator *

Characters Displayed for Null Fields
You can set the characters displayed for null fields for the duration of a session by
typing a SET NULL command as illustrated in the following diagram:

?

\ 4
A

»»—SET—NULL E
string—

Replace string with the actual characters you want displayed. The maximum
string length is 20 characters.

Chapter 7. Formatting Query Results 113

114

Number of Copies of Printed Reports (DB2 Server for VSE)

In addition to specifying the number of copies desired for printed reports on the
PRINT command, you can specify the number of copies for all print requests you
make during the current session. This command has the following syntax:

1
»»—SET—COPIES ’_ —l
]

\ 4
A

Replace n with the number of copies required. The maximum number that can be
specified is 99.

If you specify the number of copies on the PRINT command after also having
specified it using a SET command, the PRINT command quantity is used for that
print operation. All following PRINT commands use the quantity specified by the
SET command unless they too include the COPIES keyword.

Page Size of Printed Reports

Defining the page size lets you place printed query results on various paper sizes.
Page size is defined in terms of the number of characters that are to be printed on
a line and the number of lines that are to be printed on a page.

Before defining the page size, consider the output paper size to be used and the
printer characteristics (characters per inch on a line and number of lines per vertical
inch) to ensure that your definition fits on the paper. For example, suppose the
printer class you are going to use is set up to use 8-1/2 inch wide by 11 inch long
paper, and the printer prints 10 characters to the inch horizontally and prints lines
at 6 to the inch vertically. This would allow each line to contain 85 characters (8.5 x
10) and 66 lines to be on a page. The maximum page size would therefore be 85
characters wide and 66 lines in length. The maximum number of lines that can
actually be printed on a page is 8 less than the length (8 lines are reserved for top
and bottom titles and column headings).

Once set, the specified page size remains in effect for the duration of the display
terminal session or until it is changed. The SET PAGESIZE command has the
following format:

|—132—

\ 4
A

66
LENgth -

»»>—SET—PAGEsize—WIDth B
integer—

|—integer‘—

The specified width must be from 19 to 204 and the length must be from 9 to
32767.

When setting the page size, it is not necessary to specify both width and length. In
addition, length and width can be specified in either order. The default value for
page size is a width of 132 and a length of 66.

Interactive SQL Guide and Reference

Language of Messages and HELP Text

Messages and HELP text can be displayed in any of several national languages. If
additional languages were installed on your system, you can use the SET
command to display messages and HELP text in another language. Operator
messages are displayed in the national language of the application server. The
SET LANGUAGE command takes the following form:

\ 4
A

»»—SET LANGuage—[Zanguage_name
langid

Messages can be displayed in one of the languages listed in the table in Figure 72.

Figure 72. Alternative Languages for Messages and HELP Text
Language Language ID
American English (mixed case) AMENG
American English (uppercase) UCENG

French FRANC

German GER

Simplified Chinese HANZI

Japanese KANJI

Either the name of the language or the language ID can be used as the language
identifier in the SET LANGUAGE command. For example, you could have
messages displayed in French by typing:

set language franc
If your system uses french as the language name you could also type:
set language french

Languages for which there is no language ID can be set using the name of the
language. If your system does not support the language you request, an error
message is displayed in the default language.

To find out what languages are available on your system (and what language
names or language identifiers you can use to select a language) type:

select * from sqldba.syslanguage

A table is displayed listing the names, language IDs, and a brief description of each
language available to you.

Multiple Format Characteristics

You can use the SET command with more than one keyword. In this way, you can
specify or change multiple characteristics to be effective for the duration of your
display session. For example, type the following command to combine several
features that you set earlier using separate commands:

set autocommit on null *null* separator 2 blanks

This command sets AUTOCOMMIT to on, display *NULL* for each null field, and
produces a display with columns separated by 2 blanks.

Chapter 7. Formatting Query Results 115

The range of characteristics you can set with the SET command is included in
Chapter 13, “ISQL Commands” on page 203.

List of Current Settings
The current settings of all the format characteristics described above can be listed
on your display. List them by typing:

list set *

The asterisk means that you want to list all settings. This displays a series of
messages that describe the settings of each operational characteristic.

You can request a specific characteristic by specifying the name of the
characteristic instead of the asterisk on the SET command. For example, type the
following command to list the current setting for the column separator:

list set separator

Printing Reports on a Workstation Printer (DB2 Server for VSE)

116

Your printed output is automatically sent to the system printer designated by your
site. You can change or redirect your printed output to a CICS terminal printer or
POWER remote workstation.
To route your printed output to a CICS terminal printer, you would specify:

print termid termid
or

set printroute termid

where termid is replaced with the CICS terminal printer identifier.

To route printed output to a POWER remote workstation, specify:
print destid wkstat
or
set printroute wkstat
where wkstat is replaced with the identifier for the required POWER remote
workstation.
The system printer is specified as:
print system
or

set printroute system

Interactive SQL Guide and Reference

EXERCISE 11 (Answers are in Appendix A, Answers to the Exercises, on page 265.)

Perform the following:

1. For DB2 Server for VSE, set the number of copies requested for printed
reports to two.

2. List the current settings for format characteristics.

3. Retrieve all of the information from PROJ_ACT where the project number
is AD3112; order the result by activity end date.

4. Create an outline format for the activity end date column and exclude the
activity start date column.

5. Create a top title called PERSONNEL PROGRAMMING DEADLINES.
6. For DB2 Server for VSE, request printed copies of this report.
7. For DB2 Server for VM, request two printed copies of this report.

Chapter 7. Formatting Query Results 117

118 Interactive SQL Guide and Reference

Chapter 8. Storing SQL Statements

Storing frequently-used SQL statements saves you from retyping them. On longer
statements, such as that used in the previous chapter to format a report, typing
errors can be avoided by storing the statement and reusing it. A stored SQL
statement may also contain placeholders.

Storing the Current Statement

Type the following:
select deptno,mgrno -
from department -
order by mgrno

Now, type the following format commands:
format separator ' | ' -
column mgrno width 8

End the query.

Store the current SQL statement by typing the following:
store dept

If you know that the stored command DEPT already exists, and you wish to replace
it, include the keyword REPLACE in your STORE command, as follows:

store dept replace

When the STORE command is processed, a message informs you that the SQL
statement is stored. Use storage names that are 8 characters or less in length. Do
not use the name previous because ISQL always saves the current SQL statement,
and names it previous when a new SQL statement is typed.

Protecting a Stored Statement

If the name you use with the STORE command is the name of a statement that is
already stored, and you do not use the REPLACE keyword, you receive a warning
message. The warning gives you the following choices:

* REPLACE the existing stored SQL statement with the new statement.

e END the processing of the STORE command, leaving the existing stored SQL
statement intact.

e Enter a new name under which your new statement is to be stored.

The message itself appears as in Figure 73 on page 120.

© Copyright IBM Corp. 1987, 1998 119

ARI7955I The system ended your query result to process your command.
ARI7577D A stored SQL statement named DEPT already exists.
Enter a new name to store the SQL statement, or enter
one of the following keywords:
REPLACE - to replace the existing stored SQL statement, or
END - to end the store command processing.

Figure 73. Warning Message Displayed If You Try to Store a Name Already Stored

You can use the REPLACE function to replace an old statement with a new one. If
you have already stored a statement under the name DEPT, you can still store the
current statement under the same name by typing:

replace

and pressing ENTER.

If you do not want to replace the previously stored statement, simply type:

end

Press ENTER.

The END command returns you to the ISQL environment.

Starting a Stored Statement

When you start a stored SQL statement, ISQL moves it to the command buffer and
then processes it. Start the statement stored as DEPT by typing the following:

start dept

When the results appear on your display, verify that the FORMAT commands you
typed with the SELECT statement stored as DEPT are still in effect.

Note: Only the SELECT portion of the stored statement is recalled. The stored
formatting commands are not shown although you can see their effect on
the query.

Type END. The stored SELECT statement called DEPT is not erased. It remains in
storage until you decide to erase it.

Starting a Stored Statement That Contains Placeholders
First, store a statement that contains placeholders. Type:

hold select &1 -
from &2 -
where &3

store myquery

Now start the statement, and add parameters to complete it. Type:
start myquery (* employee empno='000010")
This produces the following statement:

select * from employee where empno='000010"

120 Interactive SQL Guide and Reference

and displays Figure 74 on page 121.

EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT ~PHONENO HIREDATE

000010 CHRISTINE I HAAS AOO 3978 1965-01-01
* End of Result ##x 1 Rows Displayed ***Cost Estimate is Lawxwskaxidmasddkxins

Figure 74. A Query Result from Starting a Stored Statement with Placeholders

Note: A message is displayed, indicating that any formatting performed while
viewing this query result is not saved. This condition is explained in detail in
“Saving the Format Information.”

Because the placeholders are replaced by the parameters when the statement is
processed, the stored SQL statement remains unchanged and can be reused.

Recalling a Stored Statement

A stored SQL statement can be recalled to the command buffer to become the
current SQL statement without being processed. You can do this to make changes
to it and store it again, or to simply verify that it is the statement that you want to
process next. For example, recall DEPT by typing:

recall dept

The recalled statement resembles:
SELECT DEPTNO,MGRNO FROM DEPARTMENT ORDER BY MGRNO

You can also use the RECALL command to display the current SQL statement, or
to place the previous SQL statement in the command buffer at the top of the stack
so that it becomes the current SQL statement. To recall the previous SQL
statement, type:

recall previous

The statement that was current in the buffer becomes the new previous SQL
statement.

To display the current SQL statement in the command buffer, type:
recall

or press PF5. The absence of a name on the RECALL command instructs ISQL to
display the current SQL statement.

Saving the Format Information

The formatting information performed while viewing the query result is always
saved when the query does not contain placeholders. When the query contains
placeholders, however, the formatting information is saved only if the placeholders
are not in the SELECT or FROM clause. To illustrate how format information is
saved, remove the placeholders and insert actual values into the SELECT and
FROM clauses of MYQUERY, but retain the placeholder in the WHERE clause by

typing:

Chapter 8. Storing SQL Statements 121

hold select * -
from employee -
where &1

store myquery replace

Notice the keyword REPLACE; it instructs ISQL that the statement you are now
storing replaces the previous version of MYQUERY. If the keyword REPLACE is
not used, ISQL issues the warning message described earlier. Of course, you can
choose another name and save both the old and new queries.

Now start MYQUERY and include the parameter that completes the WHERE
clause:

start myquery (empno='000010")
This processes the following statement:

select » -
from employee -
where empno='000010"
Add formatting information to the query result. Type:

format separator ' | '

End the query, and then save the formatting information by typing:

store myquery replace

Start the query again, but substitute a different value for the placeholder:

start myquery (empno='000150")

You see that the query result has retained the separator that you formatted and
stored.

Changing a Stored Statement

122

Changes can be made to a stored SQL statement using the CHANGE command
discussed earlier in this chapter under “Changing the Current SQL Statement” on
page 90. For example, to change the ORDER BY clause in the statement stored
as DEPT, perform the following:

1. Use the RECALL command to display the stored statement. Type:
recall dept
The recalled statement appears as:
SELECT DEPTNO,MGRNO FROM DEPARTMENT ORDER BY MGRNO

2. For this example, change the ORDER BY feature to the DEPTNO column.
Type:
change /by mgrno/by deptno/
The changed statement is displayed as:
SELECT DEPTNO,MGRNO FROM DEPARTMENT ORDER BY DEPTNO
3. Now, store the changed SELECT statement as DEPTZ:
store dept2

Interactive SQL Guide and Reference

4. To verify the new statement, use the RECALL command:

recall dept2

If you look at the query results of DEPT and DEPT2, you will notice that the
FORMAT information is maintained. As long as the statement to be changed or
stored contains an unchanged SELECT or FROM clause, FORMAT information is
saved.

Listing the Names of Stored Statements
To view the names and contents of stored statements, type:

list sql *

This displays information similar to Figure 75.

DEPT SELECT DEPTNO,MGRNO FROM DEPARTMENT ORDER BY MGRNO
DEPT2 SELECT DEPTNO,MGRNO FROM DEPARTMENT ORDER BY DEPTN
MYQUERY SELECT * FROM EMPLOYEE WHERE &1;

ARI76201 You have 3 stored SQL statements.

Figure 75. A Display of the Stored SQL Statements
Notice that only the first 50 characters of each statement are displayed.

You may wish to store a statement but are unsure if the stored name you want to
use is already in use. Using the LIST SQL * command becomes tedious if there are
many stored statements. Instead, you can list a specific stored statement by using
its name in the LIST command. Type:

list sql getsup

You receive a message indicating that GETSUP is not found, and you can use it as
the new store name.

You can also use this form of the LIST command to view statements whose name
you know. For example, type the following to view DEPT2:

list sql dept2

You can use multiple statement names with the LIST command. For example, type:

list sql dept myquery

Renaming a Stored Statement
You can rename stored SQL statements. For example, type:
rename dept olddept

The stored statement DEPT is now called OLDDEPT. Do not use previous with the
RENAME command.

Chapter 8. Storing SQL Statements 123

Erasing a Stored Statement

When you no longer need a stored SQL statement, you can erase it. Type:

erase olddept

The stored statement called OLDDEPT has been erased.

You can erase several stored statements with a single ERASE command:

erase first second

EXERCISE 12 (Answers are in Appendix A, Answers to the Exercises, page 265.)

1. Recall the stored query MYQUERY.

2. Change the query so that information is retrieved for salaries between
$25000 and $30000, and is ordered by the employee's first name.

3. Start the query.
4. Exclude the middle initial from the result.

5. Separate all columns with a blank, a vertical bar, an asterisk, a vertical
bar, and a blank.

6. Change the EDLEVEL column heading to SCHOOL YEARS.

7. End the display and store the command along with all its formatting
information using the name EXER11.

8. List all the stored SQL statements.
9. Retrieve the help information for the ISQL STORE command.

124 Interactive SQL Guide and Reference

Chapter 9. Creating and Using Routines

A routine is a series of ISQL commands, SQL statements, or both, which is stored
under an identifying name. When a routine is run, each command or statement in
the routine is performed as if it had been typed from the keyboard. Routines save
(and later run) frequently-used sequences of commands and statements, such as a
series of ISQL SET commands that set certain operational characteristics.

Routines offer a number of features to users. In addition to using them to perform a
frequently used set of commands or statements, you can:

e Define a profile routine that is run automatically when you start ISQL

* Use a routine to start one or more stored SQL statements

e Share routines with other users

e Use a routine to display and print query results.

Running Routines When ISQL Is Started

Profile Routines

A routine named PROFILE, that was previously set up by you, is performed
automatically when you start ISQL. This allows unique terminal-session
characteristics to be established before any information is typed. You can set these
characteristics yourself by using the SET command described in Chapter 13, “ISQL
Commands” on page 203.

—— DB2 Server for VM

Note: The PROFILE routines described in this section are ISQL PROFILE
routines and should not be confused with a VM PROFILE EXEC.

Placeholders are not allowed in a profile routine. Because the routine is run
automatically, there is no way to pass parameters to substitute for the placeholders.

In addition, a unique master profile routine can be created by someone having DBA
authority. It is created with an authorization ID of SQLDBA and is run automatically
for each user who starts ISQL as if it were the user's own profile routine.

Both the master and your own profile routines run automatically when you start
ISQL. Your routine runs second, and its operational characteristics override those in
the master routine.

Routines to Which Parameters Can Be Passed (DB2 Server for VM)

After the profile routine is run, you can invoke a subsequent routine to run as part
of the ISQL signon process. Parameters can be passed on to this routine. The
ISQL EXEC procedure invokes ISQL and runs this subsequent routine.

The ISQL EXEC procedure has the following format:

© Copyright IBM Corp. 1987, 1998 125

»»—ISQL

l—VlSCRIOJ l—ROUTi ne— (—routine_name B

\ 4
A

)

(pammeter_list)J

You can create your own EXEC procedure from the ISQL EXEC procedure. For
example, you can add commands to your EXEC to change the PF-key settings or
to route printed reports.

You set your own terminal-session characteristics by using the SET command
described in Chapter 13, “ISQL Commands” on page 203.

Using the ISQL Transaction Identifier (DB2 Server for VSE)

A profile routine cannot contain parameters, but an ISQL routine that runs as part
of the ISQL signon procedure can contain parameters. You use the 4-character
transaction identifier ISQL to start ISQL and to run a routine. Two ways of using the
transaction identifier are:

1. Start ISQL, type your user ID and password, which the signon screen prompts
you to do.

2. Start ISQL from another CICS transaction that suppresses the signon screen
and the related terminal messages. The format for doing this along with its
explanation are found in Appendix E, “Suppressing the ISQL Sign-On Display
for DB2 Server for VSE” on page 287.

For method 1, the ISQL transaction identifier and routine have the following format:

\ 4
A

|—(par‘ameter'_list)J

|—r‘0ut ine_name

Both of the above-mentioned methods let you specify a routine, and any
parameters to be passed to that routine, to be run by ISQL after it has run a profile
routine. For method 1, the ISQL transaction identifier and the routine name and all
its parameters must not be longer than the screen width or 132, whichever is less.
For method 2, the command which suppresses the ISQL signon display as
described in Appendix E, “Suppressing the ISQL Sign-On Display for DB2 Server
for VSE” on page 287, must not be longer than the screen width or 132, whichever
is less.

You can insert any number of blanks after the routine name or the parameters and
the surrounding parentheses. For example:

isql routine (abc (1 2 3))

You can create your own routine or profile routine. For example, in your profile, you
can add commands to change the number of copies of printed reports or route
printed reports.

126 Interactive SQL Guide and Reference

You can change the terminal-session characteristics. You can do this each time
you use ISQL (SET command, page 245), or you can have ISQL do it for you (SET
commands in the PROFILE routine).

Establishing Where Routines Are Stored

Routines are stored in a special table called ROUTINE. It consists of four columns:
NAME, SEQNO, COMMAND, and REMARKS (optional). An example of a routine
table is shown in Figure 76.

Figure 76. Example of a Routine Table

NAME SEQNO COMMAND REMARKS
EMPLREP 10 SELECT PROJNO,ACTNO,ACSTAFF - GENERATE AND PRINT A
EMPLREP 20 FROM PROJ_ACT - REPORT FOR PROJECT
EMPLREP 30 WHERE PROJNO IN (&1) - STAFF
EMPLREP 40 ORDER BY PROJNO,ACTNO
EMPLREP 50 FORMAT GROUP PROJNO
EMPLREP 60 FORMAT SUBTOTAL ACSTAFF
EMPLREP 70 FORMAT TTITLE 'AVERAGE PROJECT
STAFF!'
EMPLREP 80 PRINT
EMPLREP 90 END
PRINTDEP 10 SELECT * FROM DEPARTMENT FORMAT DEPARTMENT TABLE
PRINTDEP 20 FORMAT SEPARATOR ' | ' AND PRINT IT
PRINTDEP 30 FORMAT COLUMN DEPTNAME WIDTH 30
PRINTDEP 40 PRINT
PRINTDEP 50 END

The NAME column identifies the rows that belong to a particular routine. SEQNO
specifies the sequence in which the commands and statements are executed. Use
sequence numbers that are increments of ten to allow for later additions. The
COMMAND column contains the SQL statements and ISQL commands.

Before creating routines, you must have a routine table. You can create your own
routine table if you have Resource authority or your own private dbspace (DB2
Server for VM user only). If you do not have Resource authority, ask the
appropriate person to create a routine table for you. The following SQL statement
illustrates the creation of a routine table:

create table routine (name char(8) not null, -
seqno integer not null, -
command varchar(254) not null, -
remarks varchar(254))

The CREATE TABLE statement is discussed in detail in Chapter 11, “Creating and
Managing Tables” on page 175.

When creating this table, use the CREATE TABLE statement exactly as shown
above, except for the REMARKS column which is optional. If it is included,
specifying a data type of VARCHAR with a length of 40 is usually sufficient. The
size selected for the REMARKS column should accommodate the largest entry
used. Allow nulls so that remarks are not required. The COMMAND column can be
a maximum length of 254 characters.

Chapter 9. Creating and Using Routines 127

Once the table is created, create an index for it so that when the table is
referenced, the commands or statements are displayed or executed in the correct
order. To create an index, type a statement similar to the following (substitute a
name of your choice for RINDEX):

create unique index rindex on routine -
(name, seqno)

For detailed information on the CREATE INDEX statement, refer to Chapter 11,
“Creating and Managing Tables” on page 175.

Storing a Routine

128

When you insert new commands or statements for a routine into the ROUTINE
table, always assign the same routine name in the NAME column. Commands and
statements are inserted into the routine table in the same manner as data is
inserted into any database manager table by using SQL INSERT statements or the
ISQL INPUT command.

The use of ampersands (&) in a routine is allowed only for creating placeholders
(see the description of the RUN command for more information on placeholders).

In the COMMAND column of the routine, be sure to:

e Put single quotation marks around any placeholder that stands for a character
data item. Enclose the COMMAND column (CHARACTER data type) in single
quotation marks, and use a pair of single quotation marks for each single
guotation mark that is to appear inside an SQL statement. This is shown in the
example below.

¢ Use the continuation character as if you were typing a long SQL statement.

In the following example, the INPUT command inserts the commands and
statements for a routine named QREPORT into the routine table.

input routine

'qreport',10, 'select projno,acstaff -','begin:'
'qreport',20, 'from proj_act -',null
'qreport',30, 'where projno = '&1'' -',null
'qreport',40,'or actno = & -',null
'qreport',50, 'order by projno',null
'qreport’',60, 'format group projno’',null
'qreport',70, 'format subtotal acstaff',null
'qreport',80, 'print',null
'qreport',90,'end', 'done!"’

end

The stored information should resemble Figure 77.

Interactive SQL Guide and Reference

Figure 77. Routine Statements Inserted in the Routine Table

NAME SEQNO COMMAND REMARKS
QREPORT 10 SELECT PROJNO,ACSTAFF - BEGIN:
QREPORT 20 FROM PROJ_ACT -

QREPORT 30 WHERE PROJNO = '&1' -

QREPORT 40 OR ACTNO = &2 -

QREPORT 50 ORDER BY PROJNO

QREPORT 60 FORMAT GROUP PROJNO

QREPORT 70 FORMAT SUBTOTAL ACSTAFF

QREPORT 80 PRINT

QREPORT 90 END DONE!

To display your stored QREPORT routine, type:

select * -
from routine -
where name='qreport'

The display resembles Figure 78.

NAME SEQNO COMMAND REMARKS
QREPORT 10 SELECT PROJNO,ACSTAF< BEGIN:
QREPORT 20 FROM PROJ_ACT ?
QREPORT 30 WHERE PROJNO = '&1' ?
QREPORT 40 OR ACTNO = &2 - ?
QREPORT 50 ORDER BY PROJNO ?
QREPORT 60 FORMAT GROUP PROJNO ?
QREPORT 70 FORMAT SUBTOTAL ACST< ?
QREPORT 80 PRINT ?
QREPORT 90 END DONE!

* End of Result *** 9 Rows Displayed ***Cost Estimate is 1 #xx#kx%x

Figure 78. Display of Routine Statements Inserted in the Routine Table

Managing a Routine

Routines stored in a table are managed in the same manner as data in any table
by using SQL UPDATE, INSERT, and DELETE statements.

For example, to modify the PRINTDEP routine (shown in Figure 76 on page 127)
to use a double bar instead of a single bar to separate columns, you can type:

update routine -
set command = 'format separator '' || ''' -
where seqno = 20 and name = 'printdep’
As another example, you can delete the entire QREPORT routine by typing:

delete from routine -
where name = 'qgreport'

Chapter 9. Creating and Using Routines 129

Running a Routine

You run routines by using the ISQL RUN command. Use placeholders and
parameters in the same manner as you would use them in stored SQL statements.

For example, type the following command and placeholder replacement values to
run the QREPORT routine you created:

run qreport ('ad3100' 180)

Routine QREPORT creates a printed report similar to that shown in Figure 79. The
query result is printed rather than displayed because of the PRINT command
contained in the routine. Producing a query result on the display is discussed later
in this chapter under “Using SELECT Statements in a Routine” on page 131.

. 08/27/89 SELECT PROJNO,ACSTAFF FROM PROJ_ACT WHERE PROJNO = 'AD3

. PROJNO ACSTAFF

. AD3100 0.50

L kkkkkk 0.50

. AD3111 1.00

L kkkkkk 1.00

. AD3112 0.50

L kkkkkk 0.50
. AD3113 0.75
1.00
0.50
. kkkkkk 2.25

. MA2112 1.00

Figure 79. Example of a Report Created from a Routine

Running Shared Routines

You can run another user’s routine if you have obtained the SELECT privilege
(using a GRANT statement as described in “Sharing Your Tables with Other Users”
on page 186) on that user’s routine table.

Error Mode Processing in a Routine

When an error is detected in a routine, continued processing depends on a setting
you make to a special RUNMODE indicator. It indicates the mode of operation for
running routines.

The format for the command that sets the indicator is:

130 Interactive SQL Guide and Reference

I——CONTInue—

»»—SET—RUNMode

\ 4
A

STOP—
CANCEL—

CONTInue
indicates that your routine continues to the next command or statement even if
errors are detected. You are likely to use this option when your routine contains
several independent commands or statements. Failure of a particular command
or statement does not affect the remaining commands and statements.

If you do not specify a RUNMODE option, CONTINUE becomes the default
value.

STOP
indicates that your routine is ended, but a ROLLBACK operation is not
performed. Select this option when commands and statements within a routine
are not interrelated, and you want to maintain any changes made to the
database. The remaining commands and statements are not executed if errors
exist in any of their predecessors.

CANCEL
indicates that your routine is ended and a ROLLBACK operation is performed.
Select this option when your routine contains a series of interrelated commands
and statements that update tables. When an error is detected, all changes
generated by the routine are erased and the integrity of the database is
maintained.

You can display the current RUNMODE setting by issuing the following command:

list set runmode

You can set the RUNMODE indicator at any time, either from the display terminal
or in a routine.

Using INPUT Commands in a Routine

If the ISQL INPUT command is used in a routine, all data and INPUT
subcommands (SAVE and BACKOUT) must also be entered from the routine.

Using SELECT Statements in a Routine

The use of SELECT statements in a routine (either an actual statement contained

in the routine or a stored statement started by the routine) is slightly different from

usage of the statements at a keyboard. SELECT statements contained in a routine
do not cause query results to be displayed automatically at the terminal.

The SELECT statement results can be displayed at the terminal by placing an ISQL
DISPLAY command in the routine at the desired location. This command can be
placed anywhere between the SELECT statement and its associated END
command. The DISPLAY command allows results to be formatted before they are
displayed. It also lets you type display commands from the keyboard after the
routine results are displayed.

Chapter 9. Creating and Using Routines 131

132

To illustrate this process, type the following command:

insert into routine (name,seqno,command) -
values ('qreport',75,'display')

The QREPORT routine now appears as Figure 80.

Figure 80. Modified QREPORT Routine

NAME SEQNO COMMAND REMARKS
QREPORT 10 SELECT PROJNO, ACSTAFF - BEGIN:
QREPORT 20 FROM PROJ_ACT -

QREPORT 30 WHERE PROJNO ='&1' -

QREPORT 40 OR ACTNO = &2 -

QREPORT 50 ORDER BY PROJNO

QREPORT 60 FORMAT GROUP PROJNO

QREPORT 70 FORMAT SUBTOTAL ACSTAFF

QREPORT 75 DISPLAY

QREPORT 80 PRINT

QREPORT 90 END DONE!

Run the routine by typing:

run qreport ('ad3100' 180)

The formatted query result is now displayed at your terminal. If required, you can
alter it using additional FORMAT commands. The display resembles Figure 81.

AD3100

*kkkkk

AD3111

*kkkkk

AD3112

*kkkkk

AD3113

*kkkkk

MA2112

*kkkkk

PROJNO ACSTAFF

Figure 81. Formatted Query Result from Running Routine QREPORT

Type an END command to end the display of the query result and return to the
routine. The routine issues its remaining commands, causing a report containing
the modified query results to be printed.

Interactive SQL Guide and Reference

EXERCISE 13 (Answers are in Appendix A, Answers to the Exercises, page 266.)

1. Create a routine named EXER13 to:
a. Select the ACTNO and ACTDESC columns from the ACTIVITY table.
b. Provide a separation between columns consisting of three blanks.
c. Display the results on the screen.
d. Request three copies of the resulting report.
e. End the query.

Note: Remember to take the REMARKS column of the ROUTINE table into account if you
have such a column.

Chapter 9. Creating and Using Routines 133

134 Interactive SQL Guide and Reference

Chapter 10. Using Additional Query Techniques

This chapter builds on information in the previous chapters. The new query
techniques described in this chapter fall into these major categories:

e Selecting data from two or more tables

¢ Using correlation names

» Using groups to get summary information
e Working with subqueries

e Working with views

e Combining multiple queries

e Canceling running commands.

Selecting Data from Two or More Tables

All queries discussed so far have used only one table, which you specified in the
FROM clause of the query.

With the join feature of the database manager, you can write a query that combines
two or more tables or views. (The use of join on views is discussed later in this
chapter.) The maximum number of table or view references is 15; none of the
tables or views can have the same name.

To perform a table join, list all the tables involved in the join operation in the FROM
clause and separate them by commas. This enables you to select data from each
table and combine it into a single query result. Suppose you want the surnames of
the employees involved in project IF1000. This information is contained in the
EMPLOYEE and EMP_ACT tables. Type:

select projno,lastname -

from employee,emp_act -

where employee.empno = emp_act.empno -
and projno = 'IF1000' -

order by projno,lastname

This displays Figure 82.

PROJNO LASTNAME

IF1000 KWAN

IF1000 NICHOLLS

IF1000 QUINTANA

IF1000 QUINTANA

* End of Result *** 4 Rows Displayed ***Cost Estimate is Lkxskkxkkkrkkkkrkkkrs

Figure 82. A Query Result Displaying Data from Two Tables

Notice that some of the column names in the statement are prefixed with either
EMPLOYEE or EMP_ACT, while others are not. This prefix differentiates columns which
have the same name but are contained in different tables. Column names that are
unigue among the tables in the join operation do not require such a prefix.

The WHERE clause specifies which data in the tables is to be selected:

where employee.empno = emp_act.empno -

© Copyright IBM Corp. 1987, 1998 135

The condition in the WHERE clause that specifies this relationship between two
tables is a join condition. A join condition is never satisfied by a null value. If a row
in any table involved in a join condition contains a null value, the row is ignored.

If no join condition is given in the WHERE clause, all possible combinations of rows
from the tables named in the FROM clause are displayed. This is normally not the
desired result, so you should always consider adding a join condition when
connecting tables.

If SELECT *is used in a join query, all columns of the first table or view, followed
by all the columns of the second table or view, are selected.

If a join query uses a qualified column name in its SELECT clause, the same
qualified column name can be used in the ORDER BY clause. For example,
ORDER BY X.EMPLOYEE and ORDER BY EMP_ACT.EMPLOYEE are
acceptable.

If a field procedure is defined on a column in the ORDER BY clause, it affects the
order of the rows. See the following manuals for more information about field
procedures:

e DBZ2 Server for VSE System Administration

e DB2 Server for VM System Administration

* DBZ2 Server for VSE Application Programming
e DB?2 Server for VM Application Programming

A view whose definition involves a GROUP BY cannot be joined with another table
or view.

Joining a Table to Itself

136

It is possible to write a query in which a table is joined to itself. You use the table
name two or more times in the FROM clause.

Using the table name more than once indicates that the join consists of
combinations of two or more rows from the same table. Because the table name is
no longer unique, each table name in the FROM clause must be given a unique
correlation name. The correlation name can be any string of as many as 18
characters, beginning with a letter. The correlation names identify column names in
the SELECT and WHERE clauses.

For example, you want the total of the values from the ACSTAFF column
(PROJ_ACT table) for activities 60 and 70 for any project that contains both these
activities. Type:

select pal.projno,pal.acstaff + pa2.acstaff -
from proj_act pal,proj_act pa2 -

where pal.projno = pa2.projno -

and pal.actno = 60 and pa2.actno = 70 -

order by 1

This provides a result similar to Figure 83 on page 137.

Interactive SQL Guide and Reference

PROJNO EXPRESSION 1
AD3111 2.30
AD3111 1.30
AD3111 2.00
AD3111 1.00
AD3112 1.50
AD3112 1.25
AD3112 1.75
AD3112 1.00
AD3112 1.25
AD3112 1.00
AD3112 1.50
AD3112 0.75
AD3112 1.50
AD3112 1.25
AD3112 1.75
AD3112 1.00
AD3112 1.75
AD3112 1.50
AD3112 2.00
AD3112 1.25
AD3113 1.25
AD3113 1.75

Figure 83. A Query Result Where the Table is Joined to Itself

In this query, the PROJ_ACT table is treated as if it is two different tables, which
are named PA1 and PA2. In PAL, the database manager searches for rows with
activity 60 (PA1.ACTNO = 60). In PA2, it searches for rows with activity 70
(PA2.ACTNO = 70). The information from a PAL row is combined with the information
from a PA2 row with the same project number (PA1.PROJNO = PA2.PROJNO).

Sorting in a Join
If a sort is needed because of the join, consideration must be given to the length of
the encoded key that is built by the sort. The length of the encoded key must not
exceed 255 hytes. It is the sum of the lengths of the columns, plus approximately
25% of the lengths of any columns that are of varying-length character type.

Qualifying Table Names with Their Owner
A table name must be qualified by an owner if the table was created by another
user. For example, to access the EMPLOYEE table created by SQLDBA, refer to
this table as SQLDBA.EMPLOYEE.

The table name qualifying the column must include the owner if the table name in a
FROM clause is qualified by an owner. This table name qualifies a column
reference in a WHERE clause, ORDER BY clause, GROUP BY clause, or HAVING
clause. For example, the following query accurately identifies both tables and
columns:

select projname from sqldba.project,sqldba.proj_act -
where sqldba.project.projno = sqldba.proj_act.projno
If you are the creator of the tables, this query could be typed as:

select projname from project,proj act -
where project.projno = proj_act.projno

Chapter 10. Using Additional Query Techniques 137

Using Correlation Names in Queries

Queries become rather wordy when a column name is qualified by its table name.
To simplify such a query, you can define a correlation name for a table. For
example, the query in “Selecting Data from Two or More Tables” on page 135 can
be typed as:

select projno,lastname -
from employee e,emp_act ea -
where e.empno = ea.empno -
and projno = 'IF1000' -
order by projno,lastname

In this example, the letter e refers to the EMPLOYEE table and ea refers to the
EMP_ACT table. Correlation names are defined in the FROM clause by placing the
correlation name after the table name to which it refers. A blank must separate the
table name from its correlation name. Correlation nhames must begin with a letter
and can be up to 18 characters long.

Correlation names must not duplicate any other correlation name or table name in
the query. In the FROM clause, the tables cannot have identical names as well as
identical correlation names. If you use duplicate names, you receive an error
message.

If a column name is qualified with a table name or correlation name, the column
name must be within the scope of the table name or correlation name.

The following example is valid because the DEPTNO column name is qualified with
the PROJECT table name.

select project.deptno from project
The following example is also valid, but this time because the DEPTNO column
name is qualified with the PRO correlation hame.

select pro.deptno from project pro

Using Correlation Names to Combine Information in the Same Table

138

You can use a correlation name for more than just a means of abbreviating a table
name in a query. It also lets you reference a single table as though it were two (or
more) different tables. In this case, you can list the same table twice in the FROM

clause, but you must give each table name a unique correlation name.

For example, assume you want the combined estimated mean number of
employees needed for activities 60 and 70 for any project that contains these two
activities. Type:

select pl.projno,pl.acstaff + p2.acstaff -
from proj_act pl,proj_act p2 -

where pl.projno = p2.projno -

and pl.actno = 60 and p2.actno = 70 -
order by 1

This displays Figure 84 on page 139.

Interactive SQL Guide and Reference

PROJNO EXPRESSION 1
AD3111 2.30
AD3111 1.30
AD3111 2.00
AD3111 1.00
AD3112 1.50
AD3112 1.25
AD3112 1.75
AD3112 1.00
AD3112 1.25
AD3112 1.00
AD3112 1.50
AD3112 0.75
AD3112 1.50
AD3112 1.25
AD3112 1.75
AD3112 1.00
AD3112 1.75
AD3112 1.50
AD3112 2.00
AD3112 1.25
AD3113 1.25
AD3113 1.75

Figure 84. A Query Result from Using Correlation Names

Correlation names must not duplicate each other or any of the table names in the
query.

Selecting Summary Information by Groups

In “Using Column Functions” on page 45, you learned how to select information
using the column functions AVG, SUM, MIN, MAX, and COUNT. It was pointed out
that a column function returns a single value for the query result. Sometimes it is
necessary to perform several queries containing a column function to solve a
problem. For example, to find the average estimated mean number of employees
for each project in the PROJ_ACT table you can type:

select avg(acstaff) -
from proj act -
where projno = 'AD3100'

select avg(acstaff) -
from proj_act -
where projno = 'AD3111'

This procedure can also be performed using a single query that contains a GROUP
BY clause:

select projno,avg(acstaff) -
from proj_act -

group by projno -

order by projno

Chapter 10. Using Additional Query Techniques 139

This displays Figure 85 on page 140.

PROJNO AVG (ACSTAFF)
AD3100 0.5000000000000000000000000
AD3110 1.0000000000000000000000000
AD3111 0.9357142857142857142857142
AD3112 0.6227272727272727272727272
AD3113 0.8461538461538461538461538
IF1000 0.6000000000000000000000000
IF2000 0.5500000000000000000000000
MA2100 0.7500000000000000000000000
MA2110 0.7500000000000000000000000
MA2111 1.0000000000000000000000000
MA2112 1.2142857142857142857142857
MA2113 1.0714285714285714285714285
0P1000 0.2500000000000000000000000
0P1010 2.5000000000000000000000000
0P2000 0.7500000000000000000000000
0P2010 1.0000000000000000000000000
0P2011 0.5000000000000000000000000
0P2012 0.5000000000000000000000000
0P2013 0.5000000000000000000000000
PL2100 0.8333333333333333333333333
* End of Result x#*xx*xx*xx*x*x 20 Rows Displayed ****x* Cost Estimate is 1 **

Figure 85. A Query Result Displaying Summary Information by Group

In the above example, the database manager performs grouping as follows:

1. A project number is selected from the PROJ_ACT table (using the SELECT
clause).

2. All the rows that have the same project number are grouped (using the
GROUP BY clause), and the average mean number of employees is
calculated. This produces one row of the query result.

3. Another project number is selected, grouped, the average mean is calculated,
and another row for the query result is produced. This process continues until
all project numbers have been selected.

Note: All rows containing a null value (indicated by a question mark) in the
grouping column are grouped together, just as they would be if they
contained identical numeric or character values in that column. All rows
containing arithmetic errors (indicated by number signs) in the grouping
column are grouped together and appear after the null values.

When used, the GROUP BY clause always follows the WHERE clause (or the
FROM clause if no WHERE clause is in the command). It identifies which selected
column to use for grouping results. All columns included in the SELECT clause
must either have an associated column function or also appear in the GROUP BY
clause.

140 Interactive SQL Guide and Reference

Specifying a Search Condition for Groups

You may want to select only grouped summary information. For example, to find
the average mean number of employees for projects having more than three
activities, type:

select projno,avg(acstaff) -
from proj_act -

group by projno -

having count(*) > 3 -

order by projno

This displays Figure 86.

PROJNO AVG (ACSTAFF)
AD3111 0.9357142857142857142857142
AD3112 0.6227272727272727272727272
AD3113 0.8461538461538461538461538
IF1000 0.6000000000000000000000000
1F2000 0.5500000000000000000000000
MA2111 1.0000000000000000000000000
MA2112 1.2142857142857142857142857
MA2113 1.0714285714285714285714285
* End of Result *** 8 Rows Displayed ***Cost Estimate is Lxswxkxsxkxskkkskkkkr®

Figure 86. A Query Result of Grouped Summary Information

You can think of the HAVING clause as the WHERE clause for groups. When
used, the HAVING clause always comes after the GROUP BY clause. It states a
search condition to be applied to each group. If a group satisfies this condition, it is
included in the query result.

The search condition must qualify the group. For example, the condition can be the
result of a column function such as COUNT, SUM, or AVG. The condition cannot
apply to individual rows within the group.

If you are grouping values in a VARCHAR column, the GROUP BY clause puts
together all the values that differ only by trailing blanks. Therefore, ' Adm services'
and 'Adm services ' are grouped together.

The HAVING clause is always evaluated before the SELECT clause in a SELECT
statement to eliminate groups of rows that would otherwise cause arithmetic errors
during evaluation of the SELECT clause.

Consider, for example, the following query on the EMPLOYEE table:

select workdept,sum(salary) / sum(comm) -
from employee -

group by workdept -

having sum(comm) <> 0 -

order by workdept

For those departments that do not get a commission, the sum of commissions
would add up to zero. If this were the case, and no commission group totals were
qualified in a HAVING clause, the database manager could not evaluate the
expression SUM(SALARY) / SUM(COMM), because division by zero is an invalid

Chapter 10. Using Additional Query Techniques 141

arithmetic operation. The problem is solved by the HAVING clause, which specifies
only those groups that do not add up to zero commission. Because the HAVING
clause is evaluated before the SELECT clause, all groups that would otherwise
have a total commission of zero are eliminated before any rows are selected from
the table by the SELECT clause.

Using Subqueries to Build Search Conditions

142

Suppose you want to view the salaries of all employees assigned to project
OP1010. First you query the EMP_ACT table to determine the employees assigned
to that project; then you query the EMPLOYEE table for these employees to view
their salaries. The first query can be made a subquery of the second, and the entire
process can be performed in one statement by typing:

select empno,salary -
from employee -
where empno in -
(select empno -
from emp_act -
where projno = '0P1010') -
order by empno

This produces the display in Figure 87.

EMPNO SALARY
000090 29750.00
000280 26250.00
000290 15340.00
000300 17750.00
000310 15900.00
* End of Result ##xxwkxxxksxxx 5 Rows Displayed ##xxx* Cost Estimate is 1 #x

Figure 87. A Query Result from Using a Subquery

Subqueries must be placed last in a WHERE clause or HAVING clause. They
cannot be used with the BETWEEN, LIKE, or NULL predicates.

When a subquery is used in a comparison, the subquery must contain only a single
column or expression in its SELECT clause. It can also have a GROUP BY and
HAVING clause. The subquery returns only one value except when using the IN
predicate or when modifying the comparison operator with ALL, ANY, or SOME.
(Modified comparison operators are discussed later in this chapter).

For example, the following query finds the activities for project IF1000 whose
estimated mean number of employees is greater than the minimum estimated mean
for that project:

select actno,acstaff -
from proj_act -
where projno = 'IF1000' -
and acstaff > -
(select min(acstaff) -
from proj_act -
where projno = 'IF1000') -
order by actno

Interactive SQL Guide and Reference

Used with the IN Predicate

The IN predicate links to a subquery that returns a set of values. For example, the
following query lists the surnames of employees responsible for projects MA2100
and OP2012:

select lastname -
from employee -
where empno in -
(select respemp -
from project -
where projno = 'MA2100' -
or projno = '0P2012')

The subquery is evaluated once, and the resulting list is substituted directly into the
outer-level query. For example, if the subquery above selects employee numbers
60 and 330, the outer-level query is evaluated as if its WHERE clause is WHERE
EMPNO IN (60, 330).

Used in UPDATE Statements

Subqueries used in UPDATE statements cannot be based on the same table in
which rows are to be updated. The following example illustrates an UPDATE
statement with a subquery. It adds five days to the estimated completion date of
any activity for project IF1000 whose activity keyword begins with A:

update proj_act -
set acendate = acendate + 5 days -
where projno = 'IF1000' -
and actno in -
(select actno -
from activity -
where actkwd Tike 'A%')

Used in DELETE Statements

Subqueries used in DELETE statements have the following restrictions, where T1
denotes a table that is referenced in the FROM clause of the subquery, T2 denotes
the object table of a DELETE statement, and T3 denotes another table that is
delete-connected to T2:

e T1 and T2 must not be the same table.

e T1 must not be a dependent of T2 in a relationship with a delete rule of
CASCADE or SET NULL.

e T1 must not be a dependent of T3 in a relationship with a delete rule of
CASCADE or SET NULL, if deletions from T2 cascade to T3.

The following example illustrates a DELETE statement with a subquery. It deletes
all activities for any project whose major project is OP1000.

delete from emp_act -
where projno = -
(select projno -
from project -
where majproj = '0P1000"')

Chapter 10. Using Additional Query Techniques 143

Uses for Subqueries

A subquery can include a join, a grouping, or one or more lower-level subqueries.
Many subqueries can be included in the same outer-level query, each contained in
its own search condition and enclosed in parentheses. The following example
shows how a join and a subquery might be combined to solve a problem. The
query lists the department and project names of departments with projects having
an activity with a start date of January 1, 1983:

select deptname,projname -
from department,project -
where department.deptno = project.deptno -
and projno in -
(select projno -
from proj_act -
where acstdate = '1983-01-01')

You are not limited to only one subquery, and you are not limited to using
subqueries only to calculate a list. Up to 16 subqueries can be used and any of the
operators (for example, =, ==, >, and <>) can be used to link them to the next
higher-level query. For example, assume you want the names of the projects
associated with the activity whose keyword is TEACH. Type:

select projname -
from project -
where projno in (select projno -
from proj_act -
where actno = (select actno -
from activity -
where actkwd = 'TEACH'))

The operators you use to link the subqueries can be modified by ALL, ANY, or
SOME.

Modified Comparison Operators

144

When used with a subquery, the comparison operators =, <>, >, >=, <, and <= can
be modified by ALL , ANY, or SOME. These words permit the subquery to return a
set of values. They also determine how the set is to be treated in the
search-condition where it appears. Using the comparison operator > as an example
(the remarks below apply to the other operators as well), ALL and ANY are used
like this:

field > (subquery) denotes that the subquery must return exactly one
value; otherwise, an error condition results. The
condition is satisfied if the given field is greater
than the value returned by the subquery.

field > ALL (subquery) denotes that the subquery may return a set of
values. The condition is satisfied if the given field is
greater than each individual value in the returned
set. If the subquery returns an empty set, the
condition is satisfied.

field > ANY (subquery) denotes that the subquery may return a set of
values. The condition is satisfied if the given field is
greater than at least one of the values in the set. If
the subquery returns an empty set, the condition is
not satisfied.

Interactive SQL Guide and Reference

SOME can be used as a synonym for ANY.

The following example uses an ALL comparison to find those projects with activities
whose estimated mean number of employees is greater than all of the estimated
mean number of employees for activity 10 for project AD3100:

select projno,actno -
from proj_act -
where acstaff > all -
(select acstaff -
from proj_act -
where actno = 10 -
and projno = 'AD3100')

Unmodified Comparison Operators

If a subquery is linked to an outer-level query by an unmodified comparison
operator such as = or >, the subquery cannot contain a GROUP BY or HAVING
clause. However, a subquery can contain a GROUP BY or HAVING clause if it is
used with a comparison operator modified by ALL or ANY, or by an IN or EXISTS
predicate. The EXISTS predicate is described under “Testing for Existence” on
page 159.

The subquery capability is quite powerful and can also be used in UPDATE and
DELETE statements. The GROUP BY and HAVING clauses can also be used in
subqueries.

Using a Correlated Subquery to Build a Search Condition

There may be times when you need to relate the search condition in a subquery to
a value in each row of the table named in the main query. For example, suppose
you want to know the project and activity numbers for activities that have an
estimated mean number of employees that is less than the average estimated
mean for that activity. First you need a main query to select rows from the
PROJ_ACT table:

select projno,actno,acstaff -
from proj_act -
where acstaff < ...

Second you need a subquery that calculates the average estimated mean for each
activity being considered for selection in the main query:

where acstaff < (select avg(acstaff) -
from proj_act -
where actno = ...)

This subquery, which calculates the average mean, cannot do so until the activity
number that is being considered for selection in the main query is provided. A
method is needed to correlate the activity number being considered for selection in
the main query with the search condition in the subquery. This association is made
with a correlation name as shown in the finished query:

Chapter 10. Using Additional Query Techniques 145

select projno,actno,acstaff -

from proj_act x -

where acstaff < (select avg(acstaff) -
from proj_act -
where actno = x.actno)

In this example, x is the correlation name that links the two queries. It enables a
new average to be calculated for each activity being considered for selection in the
main query. This differs from the ordinary subquery, which evaluates the subquery
only once and then uses the single result in the main query. The correlation name
that you choose must be different from any column name or correlation name in the
main query and subquery.

As with subqueries, correlated subqueries can also be applied to UPDATE and
DELETE statements.

The correlation name must be defined in the FROM clause of a query that contains
the correlated subquery. However, this containment may involve several levels of
nesting, as illustrated in the following example. It finds employees currently
assigned to and responsible for, at least two projects. Note how the outer-level
query is correlated to a second-level subquery:

select empno,lastname -
from employee y -
where 2 <= -
(select count(distinct projno) -
from emp_act -
where empno = y.empno -
and projno in -
(select projno -
from project -
where respemp = y.empno))

Used in a Join Query

The outer-level query that defines a correlation name can be a join query. In this
case, it has more than one table name in its FROM clause, and the correlation
name is associated with one of these table names. The following example lists
projects with activities whose estimated mean number of employees is less than
the average mean. In this example, the project name is also selected by means of
a join:
select project.projno,projname,actno,acstaff -
from project,proj_act x -
where project.projno = proj_act.projno -
and acstaff < -
(select avg(acstaff) -
from proj_act -
where actno = x.actno) -
order by 1,3

In the above example, the correlated subquery is used in the WHERE clause and is
evaluated once per row of the outer-level query.

146 Interactive SQL Guide and Reference

Used in a HAVING Clause

A correlated subquery can also be used in a HAVING clause, in which case it is
evaluated once per group of the outer-level query as defined by its GROUP BY
clause. If a subquery is used in a HAVING clause, the correlated column reference
in the subquery must be a property of each group. It must be either the columns
you want to group by, or some other column used with a function.

The following statement uses a correlated subquery in the HAVING clause.

select projno -

from proj_act p -

group by projno -

having sum(acstaff) &gltsym.= (select avg(acstaff) -
from proj_act -
where projno = p.projno)

If a table name in a FROM clause is qualified by an owner, and this table name
qualifies a column reference in a WHERE, ORDER BY, GROUP BY, or HAVING
clause, the column-reference qualifier must also include the owner, along with the
table name.

Correlated Function

The use of a function with a correlation name in a subquery is called a correlated
function. The correlated function must contain one correlated column that is not an
expression (for example, X.SALARY). A correlated function can specify the
DISTINCT option, such as COUNT(DISTINCT X.DEPTNO)). If so, the DISTINCT
counts as the single permitted DISTINCT specification for the outer-level query
(remember that a query can use DISTINCT only once).

Used in DELETE or UPDATE Statements

As with subqueries, correlated subqueries can also be applied to UPDATE and
DELETE statements. The following example illustrates an UPDATE statement with
a correlated subquery that uses correlation name ABC. It writes the word
INACTIVE in the PROJNAME column of those projects that do not have an entry in
the PROJ_ACT table.

update project abc -
set projname = 'inactive' -
where not exists -

(select * -

from proj_act -

where projno = abc.projno)

The following example shows the use of a correlated subquery with a DELETE
statement. The statement would delete those employees from the EMPLOYEE
table who have no entries in the EMP_ACT table:

delete from employee x -
where 0 = -
(select count(*) -
from emp_act -
where empno = x.empno)

A correlated subquery inside a DELETE statement has the following restrictions,
where T1 denotes a table that is referenced in the FROM clause of the subquery

Chapter 10. Using Additional Query Techniques 147

statement, T2 denotes the object table of a DELETE statement, and T3 denotes
another table that is delete-connected to T2:

e T1 and T2 must not be the same table.

e T1 must not be a dependent of T2 in a relationship with a delete rule of
CASCADE or SET NULL.

e T1 must not be a dependent of T3 in a relationship with a delete rule of
CASCADE or SET NULL, if deletions from T2 cascade to T3.

Using Views to Simplify Queries

A lengthy query may just be the beginning of your questions. Having found an
answer to your query, you might want to enter additional queries against that
answer. Instead of storing the query statement, you can access a simple table that
holds the results of the query. You do this by using a database manager view.

A view is an imaginary table that logically contains the results of a query. Because
the results are tabular, the view resembles a database manager table and can be
gueried using SQL SELECT commands as though it were an actual table.

The following example creates a view called ACT10. It selects information for
projects that contain activity 10:

create view actl0 -
as select p.projno,projname,acstaff -
from project p,proj_act pa -
where p.projno = pa.projno -
and actno = 10

Type the following statement to display this view:

select * -
from actl0 -
order by projno

This query presents the display in Figure 88.

PROJNO PROJNAME ACSTAFF
AD3100 ADMIN SERVICES
AD3110 GENERAL AD SYSTEMS
IF1000 QUERY SERVICES
IF1000 QUERY SERVICES
IF2000 USER EDUCATION
MA2100 WELD LINE AUTOMATION
MA2110 W L PROGRAMMING
0P1000 OPERATION SUPPORT
0P1010 OPERATION

0P2010 SYSTEMS SUPPORT .00

* End of Result xxs*xxs*xxx** 10 Rows Displayed #**x*+ Cost Estimate is 1 =

PR OFRFOOOORFO
o
(<}

Figure 88. A Query Result Showing the Contents of the ACT10 View

When defining a view, you cannot use an ORDER BY clause. Ordering is specified
when querying the view.

148 Interactive SQL Guide and Reference

Views are not limited to tables; they can be written on other views as well. You can
use almost any kind of query against almost any kind of view. Techniques such as
joining, grouping, and subquerying can be combined arbitrarily.

Naming Columns in a View

Sometimes it is necessary to provide new column names for a view. For example,
suppose in the view just created you want .10 subtracted from the estimated mean
number of employees in any row selected from the PROJ_ACT table. A meaningful
column title for the subtraction result, such as REDUCED_ MEAN, can be created
by using the CREATE VIEW statement. To illustrate, create a view similar to the
view you just created, using 60 as the activity number. Type:

create view act60 (projno,projname,reduced mean) -
as select p.projno,projname,acstaff-.10 -
from project p, proj_act pa -
where p.projno = pa.projno -
and actno = 60

Now type the following statement to display this view:

select projno,projname,reduced_mean -
from act60 -
order by projno

This query presents Figure 89.

PROJNO PROJNAME REDUCED_MEAN
AD3111 PAYROLL PROGRAMMING
AD3111 PAYROLL PROGRAMMING
AD3112 PERSONNEL PROGRAMMG
AD3112 PERSONNEL PROGRAMMG
AD3112 PERSONNEL PROGRAMMG
AD3112 PERSONNEL PROGRAMMG
AD3113 ACCOUNT PROGRAMMING
AD3113 ACCOUNT PROGRAMMING
AD3113 ACCOUNT PROGRAMMING
MA2111 W L PROGRAM DESIGN
MA2111 W L PROGRAM DESIGN
MA2112 W L ROBOT DESIGN
MA2113 W L PROD CONT PROGS
MA2113 W L PROD CONT PROGS .90

* End of Result #*x**x*x*x*x*x 14 Rows Displayed ****x* Cost Estimate is 1 *=

[eNol NoloNoloNooNoNoloN ool
(=]
o

Figure 89. A Query Result Showing the Named Columns of a View

You must provide column names for any views that contain a column whose values
are calculated by an expression or a column function.

Views are discussed in several sections of this manual. For more information, see

“Using a View to Restrict Privileges to Certain Rows” on page 190 and “Using a
View to Restrict Privileges to Certain Columns” on page 190.

Chapter 10. Using Additional Query Techniques 149

EXERCISE 14 (Answers are in Appendix A, Answers to the Exercises, on page 266.)

Perform the following:

1.

Retrieve the activity number, employee number, project number, employee
time, and activity description for all employees in the EMP_ACT table.
Order the results by activity number.

. Retrieve the total employee time for each activity. Order the results by

activity number.

. Create a view called EMPLS that has the following columns from the

EMP_ACT and EMPLOYEE tables:

ACTNO (rename ACTIVITY)
EMPTIME (rename FRACTION_TIME)
LASTNAME (rename SURNAME)

. Using the view created in the above step, retrieve the activity number,

proportion of employee time, and last name for activity 100.

. Using the view EMPLS, select the entire view. Order the results by

activity number and proportion of employee time.

. Create an outline format for the ACTIVITY column of EMPLS and create a top

title for this report called WHO IS DOING WHAT.

. Retrieve information in the PROJ_ACT table for activities that are

currently performed for project number AD3113. Order the results by activity
number.

. Find the activity number and activity staff for activities ending on

January 1, 1983, where the activity number is greater than the maximum
activity number for project IF2000.

. Retrieve the last name and salary of all the designers whose salary is

greater than the average employee salary.

Using a Correlated Subquery with a Join

150

As you recall from working with subqueries and joins earlier in this chapter,
subqueries produce lists to be used in the main query. You can also correlate a
subquery to the main query by using a correlation name. The following query
contains both a correlated subquery and a join:

select mx.projno,max(mx.emptime) ,mx.empno, -
min(mn.emptime) ,mn.empno -
from emp_act mn,emp_act mx -
where mx.projno = mn.projno -
and mx.emptime = (select max(emptime) -
from emp_act -
where projno = mx.projno) -
and mn.emptime = (select min(emptime) -
from emp_act -
where projno = mn.projno) -
group by mx.projno,mx.empno,mn.empno -
order by mx.projno

Interactive SQL Guide and Reference

This query finds the maximum and minimum employee time proportions for each
project in the EMP_ACT table, along with the associated employee numbers for
those maximum and minimum values. The result is displayed in Figure 90 on

page 151.
PROJNO MAX (EMPTIME) EMPNO MIN(EMPTIME) EMPNO
AD3100 0.50 000010 0.50 000010
AD3110 1.00 000070 1.00 000070
AD3111 1.00 000240 0.50 000230
AD3111 1.00 000230 0.50 000230
AD3112 1.00 000250 0.25 000250
AD3113 1.00 000260 0.25 000270
AD3113 1.00 000270 0.25 000270
IF1000 1.00 000130 0.50 000030
IF1000 1.00 000130 0.50 000130
IF1000 1.00 000130 0.50 000140
IF2000 1.00 000140 0.50 000030
1F2000 1.00 000140 0.50 000130
IF2000 1.00 000140 0.50 000140
MA2100 1.00 000110 0.50 000010
MA2110 1.00 000010 1.00 000010
MA2111 1.00 000200 1.00 000200
MA2111 1.00 000200 1.00 000220
MA2111 1.00 000220 1.00 000200
MA2111 1.00 000220 1.00 000220
MA2112 1.00 000150 1.00 000150
MA2112 1.00 000150 1.00 000170
MA2112 1.00 000150 1.00 000190

Figure 90. A Query Result from Using a Correlated Subquery and a Join

Remember, a join operation uses the values from two or more tables in the same
guery. To combine two or more queries into a single query result, use the UNION
operator described in the next section.

Combining Multiple Queries

Two operators are used when combining multiple queries: UNION and UNION ALL.

Using the UNION Operator

The UNION operator provides a means of combining two or more queries into a
single query by merging values found in one or more tables.

The format of the union operator is:

v

»>—UNION
LL

Each of the queries connected by UNION is executed to produce an answer set.
The UNION keyword (without ALL) combines these answer sets and eliminates
duplicate rows from the combined answer set. UNION ALL combines the results of
two or more queries without eliminating the duplicates. Column headings for the
result are taken from the first query. The ORDER BY clause, if any, must be written

Chapter 10. Using Additional Query Techniques 151

152

after the last query in the UNION and is applied to the combined result that is
displayed.

The UNION operator is useful when you want to merge lists of values based on
more than one search condition, and when you want to indicate in the result which
condition or conditions caused the resulting row to be selected.

The following query lists all projects for which the estimated mean number of
employees is greater than .50, and the proportion of employee time spent on the
project is greater than .5:

select projno, 'mean' -

from proj_act -

where acstaff > .50 -

union -

select projno, 'proportion' -
from emp_act -

where emptime > .5

In Figure 91, generated by the previous union query, the constants mean and
proportion identify which query produced a particular row.

PROJNO EXPRESSION 1
AD3110 MEAN
AD3110 PROPORTION
AD3111 MEAN
AD3111 PROPORTION
AD3112 MEAN
AD3112 PROPORTION
AD3113 MEAN
AD3113 PROPORTION
IF1000 MEAN
IF1000 PROPORTION
IF2000 MEAN
IF2000 PROPORTION
MA2100 MEAN
MA2100 PROPORTION
MA2110 MEAN
MA2110 PROPORTION
MA2111 MEAN
MA2111 PROPORTION
MA2112 MEAN
MA2112 PROPORTION
MA2113 MEAN
MA2113 PROPORTION

Figure 91. A Query Result from Using UNION

The query result appears to be ordered by PROJNO even though the example did
not contain an ORDER BY clause. The database manager determines the order of
the rows when it processes a UNION; therefore, the order of the rows on your
display may differ from the order shown in Figure 91.

The database manager first executes the query on the PROJ_ACT table and forms
an answer. It then performs the same activities on the EMP_ACT table. Then it
combines the answers from the queries, sorts the rows, and eliminates duplicate
rows.

Interactive SQL Guide and Reference

The data types of the corresponding items in the SELECT clauses of all of the
gueries being merged must be compatible but need not be identical.

For a collection of queries to be connected by the UNION operator, they must
satisfy the following rules:

e The data types of corresponding items in the SELECT clauses of all the
gueries must be compatible. For example, if the first column in a SELECT
clause has a column type of CHAR, the first column of the SELECT clause of
each query must be CHAR or VARCHAR,; if the first column in a SELECT
clause has a column type of INTEGER, the first item of the SELECT clause of
each query must be any numeric type. Refer to the DB2 Server for VSE & VM
SQL Reference manual for combinations of data types that can be used in the
UNION operation.

e Corresponding items in the SELECT clauses need not have the same name.
For example, a query beginning SELECT X can be united with a query that
begins SELECT Y, if the X and Y have compatible data types.

e Each of the queries connected by a UNION or UNION ALL must have the
same number of columns.

 |f the results of the union are to be ordered, the ORDER BY clause must be
written after the last query in the union. The order list must also indicate the
position of an item in the select list, not the column name. To illustrate, ORDER
BY 1 is acceptable; ORDER BY PROJNO is not.

A UNION cannot occur inside a subquery.

A UNION cannot be used in the definition of a view.

If a sort is needed because of the union operation, consideration must be given to
the length of the encoded key that is built by the sort. The length of the encoded
key must not exceed 255 bytes, and is the sum of the lengths of the columns plus
25% of the lengths of any columns that are of varying-length character type.

Comparing the UNION and UNION ALL Operators

Use UNION ALL if no duplicate rows exist or if duplicate rows can be tolerated.
UNION ALL results in better performance because no sorting is done to eliminate
duplicates.

When you use both UNION and UNION ALL in a single statement, the result of the
operation depends on the order of evaluation. Subqueries are evaluated from left
to right. The following example contains no duplicates, because the result of the
third query (UNION Q3) removes all duplicates:

Q1 UNION ALL Q2 UNION Q3

The following example contains no duplicates if Q2 contains rows that are
duplicates of rows resulting from the union between Q3 and Q1:

Q3 UNION Q1 UNION ALL Q2

Chapter 10. Using Additional Query Techniques 153

Using the UNION ALL Operator

In contrast to a UNION operator, a UNION ALL operator displays the results of two
or more queries without eliminating any duplicates and without sorting the rows.

For example, type the previous SELECT statement with UNION ALL substituted for
the UNION operator:

select projno, 'mean' -

from proj_act -

where acstaff > .50 -

union all -

select projno, 'proportion' -
from emp_act -

where emptime > .5

This displays the result shown in Figure 92.

PROJNO EXPRESSION 1
AD3110 PROPORTION
AD3111 PROPORTION
AD3111 PROPORTION
AD3111 PROPORTION
AD3111 PROPORTION
AD3112 PROPORTION
AD3112 PROPORTION
AD3112 PROPORTION
AD3113 PROPORTION
AD3113 PROPORTION
AD3113 PROPORTION
AD3113 PROPORTION
AD3113 PROPORTION
AD3113 PROPORTION
AD3113 PROPORTION
IF1000 PROPORTION
IF2000 PROPORTION
MA2100 PROPORTION
MA2110 PROPORTION
MA2111 PROPORTION
MA2111 PROPORTION
MA2111 PROPORTION

Figure 92. A Query Result from Using UNION ALL

The rows in this display are not sorted as they are for the UNION display. Using
an ORDER BY clause displays sorted results for the UNION ALL query.

Using Parentheses in UNION Statements
You can also use parentheses to group subqueries in a UNION and UNION ALL
statement to affect the result of the operation. When parentheses are included, the
subqueries in the parentheses are evaluated first, followed by, from left to right, the
other components in the statement.
As a result, the following operation:
(Q1 UNION ALL Q2) UNION Q3

can be quite different from:

154 Interactive SQL Guide and Reference

(Q3 UNION Q1) UNION ALL Q2

Using Subqueries in Unions

You can also use subqueries in UNIONs. Before you begin the following example,
set your terminal to process mixed case characters by typing:

set case string

The new setting permits the database manager to compare the mixed case
characters in your query (in single quotation marks) with the mixed case characters
in the ACTDESC column of the ACTIVITY table. The query:

select acstaff,acstdate, 'Doc start' -
from proj_act -
where actno = (select actno -

from activity -

where actdesc = 'Document') -
union -
select acstaff,acstdate, 'Spec start' -
from proj_act -
where actno = (select actno -

from activity -

where actdesc = 'Write specs')

lists the mean number of employees and estimated start date for activities
DOCUMENT and WRITE SPECS. The query result is shown in Figure 93.

ACSTAFF ACSTDATE EXPRESSION 1
.50 1982-01-01 Spec start
.50 1982-06-01 Doc start
.50 1982-08-15 Doc start
.50 1982-10-01 Doc start

1982-01-01 Spec start
.75 1982-03-01 Doc start
.00 1982-01-01 Spec start
.00 1982-04-15 Doc start
.00 1982-07-01 Doc start
.00 1982-07-15 Doc start
.00 1982-10-15 Doc start

* End of Result *** 11 Rows Displayed ***Cost Estimate is lxxskkxkkkkkkkkrkkkrs

ol o N oNoNoNoNoNo]
~
ol

Figure 93. A Query Result from Using Subqueries in Unions

If you want to use a character constant in the SELECT clause of only one of the
gueries in a union operation, the constant must correspond to items in the SELECT
clauses of the other query or queries that have a data type of CHAR or VARCHAR.
You type the character constant enclosed in quotation marks. For example, the
EMPLOYEE table has the column:

Column Name Data Type

lastname varchar(15) not null

To enter a constant in a union operation involving this table, type the following
query:

Chapter 10. Using Additional Query Techniques 155

select lastname -
from employee -
union -
select 'thompson' -
from employee
The character constant thompson is enclosed in quotation marks.

Note: You cannot use a UNION inside a subquery.

Reset your terminal to process uppercase characters by typing:

set case upper

Using Additional View Techniques

156

Views are described in “Using Views to Simplify Queries” on page 148 and
“Naming Columns in a View” on page 149. These sections show you how to create
views and name view columns that contain calculated values. Views are again
mentioned in “Using a View to Restrict Privileges to Certain Rows” on page 190
and “Using a View to Restrict Privileges to Certain Columns” on page 190. Here
you use them to manage your tables by limiting other users’ access to your tables.
Simplifying queries and preventing access to data are the two major reasons views
are created.

For further practice, create the view PROJ1 as follows:

create view projl (proj_num,activ_num,mean_num) -
as select projno,actno,acstaff -
from proj_act -
where projno in (select projno -
from project -
where projname like '%program%')

The PROJ1 view contains the information shown in Figure 94 on page 157. (Recall
that views are only imaginary tables that contain the results of a query.)
To see the contents of the PROJ1 view, type:

select * -
from projl

Interactive SQL Guide and Reference

PROJ_NUM ACTIV_NUM MEAN_NUM
AD3111 60 0.80
AD3111 60 0.50
AD3111 70 1.50
AD3111 70 0.50
AD3111 80 1.25
AD3111 80 1.00
AD3111 180 1.00
AD3112 60 0.75
AD3112 60 0.50
AD3112 60 0.75
AD3112 60 1.00
AD3112 70 0.75
AD3112 70 0.50
AD3112 70 1.00
AD3112 70 0.25
AD3112 80 0.35
AD3112 80 0.50
AD3112 180 0.50
AD3113 60 0.75
AD3113 60 1.00

Figure 94. Contents of the PROJ1 View

This view renamed and rearranged columns, and omitted unwanted columns and
rows. You could have also defined the view’s columns by calculating expressions,
grouping results, or combining more than one table. Any SELECT statement that

does not contain an ORDER BY clause or UNION can be used as the base of a

view. The selected columns and rows become the view’'s columns and rows.

You can now use the view PROJ1 in the same manner as you use a table in
queries, subqueries, or unions. The SQL statement that you type to query a view is
combined with the definition of the view by the database manager to form an SQL
statement that queries the underlying table.

Joining Views with Tables
A query that joins a view and a table is written just like a query that joins tables.

To retrieve the name and number of the project, as well as the activity humber and
description for all of the items in PROJ1, type the following join query:

select projname,proj_num,activ_num,actdesc -
from project,projl,activity -

where projno = proj_num and activ_num = actno -
order by 2,3

This displays the result shown in Figure 95 on page 158.

Chapter 10. Using Additional Query Techniques 157

PROJNAME PROJ_NUM ACTIV_NUM ACTDESC
PAYROLL PROGRAMMING AD3111 60 Describe logic
PAYROLL PROGRAMMING AD3111 60 Describe logic
PAYROLL PROGRAMMING AD3111 70 Code programs
PAYROLL PROGRAMMING AD3111 70 Code programs
PAYROLL PROGRAMMING AD3111 80 Test programs
PAYROLL PROGRAMMING AD3111 80 Test programs
PAYROLL PROGRAMMING AD3111 180 Document
PERSONNEL PROGRAMMG AD3112 60 Describe Togic
PERSONNEL PROGRAMMG AD3112 60 Describe logic
PERSONNEL PROGRAMMG AD3112 60 Describe logic
PERSONNEL PROGRAMMG AD3112 60 Describe logic
PERSONNEL PROGRAMMG AD3112 70 Code programs
PERSONNEL PROGRAMMG AD3112 70 Code programs
PERSONNEL PROGRAMMG AD3112 70 Code programs
PERSONNEL PROGRAMMG AD3112 70 Code programs
PERSONNEL PROGRAMMG AD3112 80 Test programs
PERSONNEL PROGRAMMG AD3112 80 Test programs
PERSONNEL PROGRAMMG AD3112 180 Document
ACCOUNT PROGRAMMING AD3113 60 Describe Togic
ACCOUNT PROGRAMMING AD3113 60 Describe logic

Figure 95. A Query Result from Joining a View with a Table

Joining Views with Other Views

Besides joining a view with a table, you can join a view with another view. Create
the view PROJ2 as follows:

create view proj2 (proj_nmbr,activ_nmbr,mean_num) -
as select projno,actno,acstaff -

from proj_act -

where projno = 'AD3111'

PROJ2 contains the information shown in Figure 96. Query PROJ2 to produce the
display.

PROJ_NMBR ACTIV_NMBR MEAN_NUM

AD3111 60 0.80
AD3111 60 0.50
AD3111 70 1.50
AD3111 70 0.50
AD3111 80 1.25
AD3111 80 1.00
AD3111 180 1.00

* End of Result *x#*xxskxxx*xx 7 Rows Displayed ***xx* Cost Estimate is 1 **

Figure 96. Content of PROJ2 View

You can now use PROJ1 and PROJ2 in the same query or queries. Type:
select proj_num,activ_num,pl.mean_num -
from projl pl,proj2 p2 -
where proj_num = proj_nmbr -
and activ_num = activ_nmbr -
and pl.mean_num = p2.mean_num

and you see the result in Figure 97 on page 159.

158 Interactive SQL Guide and Reference

PROJ_NUM ACTIV_NUM MEAN_NUM

AD3111 60 0.80
AD3111 60 0.50
AD3111 70 1.50
AD3111 70 0.50
AD3111 80 1.25
AD3111 80 1.00
AD3111 180 1.00

* End of Result xxs*xxskxxx**x 7 Rows Displayed #**x*+ Cost Estimate is 1 =

Figure 97. A Query Result from Joining Two Views

This query found the information in PROJ1 that is also contained in PROJ2. You
can also produce this information by testing for existence, which is discussed in the
next section.

Testing for Existence

You test for existence to determine if a row exists that satisfies a certain condition.
Type the following query:

select proj_num,activ_num,mean_num -

from projl -

where exists (select * -
from proj2 -
where projl.proj_num = proj_nmbr -
and projl.activ_num = activ_nmbr)

The subquery is processed until one row is found that satisfies that subquery, or
until every row is checked and none found that satisfies the subquery. In the
SELECT clause of the subquery, the * returns all columns of the table for each row
satisfying the WHERE condition. Because you only want to know if the subquery
would return data, you need not select information from a particular table column.

This query produces a result identical to the query in the previous section as you
can see by comparing Figure 97 and Figure 98.

PROJ_NUM ACTIV_NUM MEAN_NUM

AD3111 60 0.80
AD3111 60 0.50
AD3111 70 1.50
AD3111 70 0.50
AD3111 80 1.25
AD3111 80 1.00
AD3111 180 1.00

* End of Result s*x*x*x*x*x*x* 7 Rows Displayed ****xx Cost Estimate is 1 *=

Figure 98. A Query Result Showing the Existence of Rows That Meet Conditions

The syntax for the EXISTS search condition in a query is:

v

>—L—_|—EXISTS—(subquery)
NOT

Chapter 10. Using Additional Query Techniques 159

The WHERE clause is satisfied if any rows are returned by the subquery. Use NOT
EXISTS if you want the WHERE clause to be satisfied if no rows are returned by
the subquery.

To find the information for projects in PROJ1 that are not in PROJ2, type:

select projname,proj_num,actdesc -
from project,projl,activity -
where not exists (select proj_nmbr -
from proj2 -
where proj _nmbr = projl.proj num) -
and activ_num = actno -
and proj_num = projno

The results are shown in Figure 99.

Note that AND connects the other search conditions to the NOT EXISTS function.

PROJNAME PROJ_NUM ACTDESC
PERSONNEL PROGRAMMI AD3112 Code programs
PERSONNEL PROGRAMMI AD3112 Code programs
PERSONNEL PROGRAMMI AD3112 Code programs
PERSONNEL PROGRAMMI AD3112 Code programs
ACCOUNT PROGRAMMING AD3113 Code programs
ACCOUNT PROGRAMMING AD3113 Code programs
ACCOUNT PROGRAMMING AD3113 Code programs
ACCOUNT PROGRAMMING AD3113 Code programs
ACCOUNT PROGRAMMING AD3113 Code programs
PERSONNEL PROGRAMMI AD3112 Document
ACCOUNT PROGRAMMING AD3113 Document
ACCOUNT PROGRAMMING AD3113 Document
ACCOUNT PROGRAMMING AD3113 Document

W L PROGRAM DESIGN MA2111 Lead program/design
PERSONNEL PROGRAMMI AD3112 Describe Togic
PERSONNEL PROGRAMMI AD3112 Describe logic
PERSONNEL PROGRAMMI AD3112 Describe logic
PERSONNEL PROGRAMMI AD3112 Describe Togic
PERSONNEL PROGRAMMI AD3112 Describe Togic
ACCOUNT PROGRAMMING AD3113 Describe logic
ACCOUNT PROGRAMMING AD3113 Describe logic
ACCOUNT PROGRAMMING AD3113 Describe logic

Figure 99. A Query Result from Using NOT EXISTS

Using Views in Unions

In addition to tables, you can also merge views using the UNION operator. You
can use tables and views or only views when you merge the information. Type:

select » -

from projl -

where mean_num >= 1.00 -
union -

select * -

from proj2 -

where mean_num >= 1.00

The result of this query is in Figure 100 on page 161.

160 Interactive SQL Guide and Reference

PROJ_NUM ACTIV_NUM MEAN_NUM
AD3111 70 1.50
AD3111 80 1.00
AD3111 80 1.25
AD3111 180 1.00
AD3112 60 1.00
AD3112 70 1.00
AD3113 60 1.00
AD3113 70 1.00
AD3113 70 1.25
AD3113 80 1.75
AD3113 180 1.00
MA2110 10 1.00
MA2111 40 1.00
MA2111 50 1.00
MA2111 60 1.00
* End of Result *** 15 Rows Displayed ***Cost Estimate is lxxskkxkkkkkskkrkkkrs

Figure 100. A Query Result from Using Views in Unions

Notice that the column names of the first SELECT statement name the columns in
the query result. Remember, however, that corresponding columns must have the
same data type.

If you use an ORDER BY clause in a UNION operation, you cannot use the column
name after ORDER BY. Use a column number, as shown in the following query.

select prstdate,prendate, 'projl' -

from project -

where projno in (select proj_num -
from projl) -

union -

select prstdate,prendate,'proj2' -

from project -

where projno in (select proj_nmbr -
from proj2) -

order by 2,3

The columns are ordered primarily by the estimated project end date and
secondarily by the constant.

The result of these merged queries is in Figure 101.

PRSTDATE PRENDATE EXPRESSION 1

1982-01-01 1982-12-01 PROJ1
1982-01-01 1983-02-01 PROJ1
1982-01-01 1983-02-01 PR0OJ2
* End of Result *** 3 Rows Displayed ***Cost Estimate is lixwkxsksskkdkkkrskhrskrs

Figure 101. A Query Result from Using Views in Unions with the ORDER BY Clause

Chapter 10. Using Additional Query Techniques 161

Updating Tables on Which Views are Defined

162

Like SELECT statements, the INSERT, DELETE, and UPDATE statements can be
applied to a view as though it is an actual, stored table. When you change a table
by using an update statement on either a table or a view, this change can be seen
by the users of the view, of the underlying table, or of other views defined on the
same data. The SQL statement that operates on the view is combined with the
view definition to form an SQL statement that operates on the related table.

To illustrate updating, consider the view PROAC, which is created using the
following statement:

create view proac (proj,activ,est _mean,est_start) -
as select projno,actno,acstaff,acstdate -

from proj_act -

where acstaff > 1.00

You can update this view using a statement such as:

update proac -

set est_start = '1982-07-15' -
where proj = 'AD3113' -

and activ = 70

To apply this change, the database manager updates the underlying table,
PROJ_ACT, with an update operation equivalent to:

update proj_act -

set acstdate = '1982-07-15' -

where projno = 'AD3113' -

and actno = 70

The following limitations must be observed when modifying a table through a view:

1. INSERT, DELETE, and UPDATE of the view are not permitted if the view
involves any of the following operations: join, GROUP BY, HAVING, DISTINCT,
or any column function such as AVG. If one or more of these operations is
present in the view definition, the owner of the view does not receive INSERT,
DELETE, or UPDATE privileges on the view.

2. A column of a view can be updated only if it is derived directly from a column of
a stored table. Columns defined by expressions such as EMPTIME+.25 cannot
be updated. If a view is defined containing one or more such columns, the
owner does not receive update privileges on these columns. INSERT
statements are not permitted on views containing such columns; DELETE
statements are permitted.

3. ALTER TABLE, CREATE INDEX, and UPDATE STATISTICS statements
cannot be applied to a view.

4. INSERT, DELETE, and UPDATE statements, as well as INPUT commands,
cannot be applied to a view defined on a read-only view.

An INSERT statement can be used with a view that does not contain all the
columns of the stored underlying table. For example, it is possible to insert rows
into the view PROAC even though it does not contain the column ACENDATE of
the underlying table PROJ_ACT. When such an insert is performed, the underlying
table column is given a null value.

Note: Insertions to a view are not permitted in cases where any underlying table
column that does not permit null values is omitted from the view.

Interactive SQL Guide and Reference

If a view is created without the WITH CHECK OPTION, you can perform insert or
update operations on that view, even though the insert or update operation does
not satisfy the view definition. For example, the view PROAC is defined by the
condition ACSTAFF>1.00. Inserting rows into PROAC that contain a value less than
1.00 in the EST_MEAN field (the field defined as ACSTAFF), or updating a row of
PROAC so that its EST_MEAN value becomes less than 1.00, is possible because
the insert or update operations are performed on the underlying PROJ_ACT table.

If you want to make sure that the insert or update operation conforms with the view
definition, use the WITH CHECK OPTION clause as described in “Checking Inserts
or Updates in a View” on page 165.

Be careful when updating tables through views that may contain duplicate rows. For
example, suppose a view ACTIV, which is defined on the ACTIVITY table, contains
only the columns ACTKWD and ACTDESC from ACTIVITY. Because the
primary-key column ACTNO, whose presence ensures unigue rows, is not included
in the view, duplicate row entries can exist for the ACTKWD and ACTDESC
columns. When you update the ACTIVITY table using the ACTIV view, all the
duplicate rows, if they exist, are also updated.

Another area for caution involves inserting information into a table and then
querying the table through its associated view. Depending on how the view is
defined, the new table information may or may not be displayed in the view query.
To illustrate, consider the PROJ1 view you created for the PROJ_ACT table in
“Using Additional View Technigues” on page 156. Start by making the following two
insertions into the PROJ_ACT table:

insert into proj_act -
values ('MA2110',50,.50,'1982-01-01','1982-06-01")

insert into proj_act -
values ('PL2100',50,.50,'1982-01-01"','1982-06-01")

Now when you query the table by querying the PROJ1 view, you see the display in
Figure 102 on page 164.

Chapter 10. Using Additional Query Techniques 163

PROJ_NUM ACTIV_NUM MEAN_NUM
AD3111 60 0.80
AD3111 60 0.50
AD3111 70 1.50
AD3111 70 0.50
AD3111 80 1.25
AD3111 80 1.00
AD3111 180 1.00
AD3112 60 0.75
AD3112 60 0.50
AD3112 60 0.75
AD3112 60 1.00
AD3112 70 0.75
AD3112 70 0.50
AD3112 70 1.00
AD3112 70 0.25
AD3112 80 0.35
AD3112 80 0.50
AD3112 180 0.50
AD3113 60 0.75
AD3113 60 1.00
AD3113 60 0.25
AD3113 70 0.50

Figure 102. A Query Result Showing What New Table Data Is Displayed in a View

If you scroll down, you see that the new row for project MA2110, activity 50,
appears, but the new row for project PL2100, activity 50, does not. Project PL2100
is not selected because its project name does not meet the view requirements that
it contain the character string program.

You can also change the underlying table by performing update commands on the
view. But again, exercise caution. The following example illustrates why:

insert into projl -
values ('IF1000',50,.75)

This insert operation fails because it attempts to insert null values into the
PROJ_ACT columns ACSTDATE and ACENDATE, and ACSTDATE requires
values.

Creating a View Defined on Another View

164

You create a view defined on another view the same way you create a view
defined on a table—by using the CREATE VIEW statement.

To create view PROJ3, which contains the activity numbers and estimated mean
number of employees from the view PROJ2, which you created earlier, type:

create view proj3 (act, mean) -
as select activ_nmbr,mean_num -
from proj2

PROJ3 contains the information shown in Figure 103 on page 165. Query PROJ3
to display these results.

Interactive SQL Guide and Reference

60 0.80
60 0.50
70 1.50
70 0.50
80 1.25
80 1.00
180 1.00

* End of Result *xx 7 Rows Displayed *xxCost Estimate is lxxsxxasssassssssssssx

Figure 103. Contents of a View Defined on Another View

You can use PROJ3 in the same kinds of queries and unions as you used PROJ1
or PROJ2.

Note: SELECT is the only operation you can use, or grant as a privilege, on a
view defined on another view.

Checking Inserts or Updates in a View
To ensure all insert and update operations are done according to your view

definition, you can include the WITH CHECK OPTION clause in your CREATE
VIEW statement.

This clause lets you check all inserts and updates on a view against the view
definition that you specify. If the associated value or values do not fall within the
definition you created, the inserts or updates are not allowed.

Consider the following example:

create view vl -
as select * from employee -
where salary <= 50000

You can update SALARY to a value higher than 50000 even though such a row
cannot be selected.

However, if the WITH CHECK OPTION clause is added, as in the following
definition, you can update SALARY to a value up to and including 50000 only:
create view vl -
as select * from employee -

where salary <= 50000 -
with check option

You cannot use the WITH CHECK OPTION clause on views that cannot be
updated or views that are built on subqueries.

If a view depends on other views, checking is performed according to the following
rules:

e |f a view and the views on which it depends use the WITH CHECK OPTION
clause, all inserts and updates to this view are checked against the definitions
of the view and the views on which it depends.

 |f this view uses the WITH CHECK OPTION clause, but none of the views on
which it depends do so, all inserts and updates to this view will be checked
against the definition of this view only.

Chapter 10. Using Additional Query Techniques 165

* |f this view does not use the WITH CHECK OPTION clause, but some views on
which it depends use it, all inserts and updates to this view will be checked
only against the definitions of the views that use the WITH CHECK OPTION
clause.

e If no view uses the WITH CHECK OPTION clause, no checking is performed.

Listing Information about the Views You Create

166

You have created several views. To display their names, you can use the query on
page 175 to access the catalog table SYSCATALOG. But a problem arises here in
that the query does not indicate whether the names listed refer to tables or views.
To display only the names of the views you have created, type:

select tname -
from system.syscatalog -
where creator = user and tabletype = 'v

This query displays a result similar to Figure 104.

SYSUSERLIST

ACT10

ACT60

EMPLS

PROJ1

PROJ2

PROAC

PROJ3

* End of Result ##x 8 Rows Displayed ***Cost Estimate is Lawxwwwaxsdmasidkxins

Figure 104. A Query Result That Displays the Names of the Views You Created
Use a TABLETYPE of R to produce a list of table names.

You can also query the SYSVIEWS system catalog. It indicates the name of the
view, the SQL statement that defined or created the view, and other information. To
determine the view names and definition statement, type:

select viewname,viewtext -
from system.sysviews -
where vcreator = user

This query displays a result similar to Figure 105 on page 167.

Interactive SQL Guide and Reference

VIEWNAME VIEWTEXT

ACT10 CREATE VIEW ACT10 AS<

ACT60 CREATE VIEW ACT60 (P<

EMPLS CREATE VIEW EMPLS (A<

PROAC CREATE VIEW PROAC (P<

PROJ1 CREATE VIEW PROJ1 (P<

PROJ2 CREATE VIEW PROJ2 (P<

PROJ3 CREATE VIEW PROJ3 (A<

SYSUSERLIST CREATE VIEW SQLDBA.S<

* End of Result *** 8 Rows Displayed ***Cost Estimate is Lixxkkkskkkkkkkkkkrkkkkk

Figure 105. A Query Result Showing the Names and Creations of Views

The column VIEWNAME contains the name of the view. The VIEWTEXT column
contains the first 20 characters of the view definition. The character < at the end of
each line under this column indicates that the view definition statement is longer
than 20 characters. Only 20 characters are shown because that is the value to
which VARCHAR is set in the profile routine, but this is not always the case (see
“Selecting Particular Columns” on page 21). You can change this setting by using
the SET VARCHAR command described in “SET” on page 245.

Dropping Views
You can drop (delete) your views from the database using the DROP VIEW
statement. Enter the following to drop PROJ2:

drop view proj2

The database manager automatically deletes all other views that refer to the
deleted view; PROJ3 is also deleted. If you now try to use PROJ3 in a query, you
receive the following error message:

ARIO503E An SQL error has occurred.

SQLDBA.PROJ3 was not found in the system catalogs.
ARI05051 SQLCODE = -204 SQLSTATE = 52004 ROWCOUNT = 0
ARIO5041 SQLERRP: ARIXOCA SQLERRD1: -100 SQLERRD2: 0

The underlying table(s) on which the view(s) are defined are not affected by DROP
VIEW statements.

Computing Percentages
Computing percentages is not a function of the database manager. You can,
however, compute percentages by using the following techniques.
In general, two passes through a table are required to compute percentages. An

auxiliary table holds the result of the first pass.

1. The first pass develops the totals of interest and places them in the auxiliary
table. Use a Format 2 INSERT statement that contains a SELECT statement.

2. The second pass uses the result of the first pass to compute the percentages.
Use a SELECT statement to join the first table to the second table. Finally,
ISQL FORMAT commands can be used to prepare the final display or report.

The following examples illustrate the calculation of:

Chapter 10. Using Additional Query Techniques 167

e A simple percentage — a detail row divided by the total.

e Aggregate percentages — a grouped row value divided by a total for the group
or by the overall total.

Note: In some of the examples, the percentage values may not total 100%
because of truncation.

Example of Computing a Simple Percentage
This example uses a table defined as:

create table sales (item char(8) not null, -
quantity integer, -
amount decimal(9,2))

You can input the table data that is shown below. See “Inserting Table Data” on
page 81 if you want to know how to input the data.

Sales Table:

ITEM QUANTITY AMOUNT

1111 100 5500.50
2222 200 30000.50
3333 300 4780.10

To calculate percentages, the totals must be computed first. The totals are held in
an auxiliary table defined as:

create table total (quantity integer, -
amount decimal(9,2))

The totals are calculated and stored in the auxiliary table by this INSERT
command:

insert into total -
select sum(quantity),sum(amount) -
from sales

By joining each row in the SALES table with the row in the TOTAL table, you can
calculate and display the percentages with this SELECT statement:

select item, -
sales.quantity, -
sales.quantity * 100/total.quantity, -
sales.amount, -
sales.amount * 100/total.amount -
from sales,total

The addition of these FORMAT commands gives a result similar to that shown in
Figure 106 on page 169:

format column 3 name '% OF TOTAL QTY.'
format column 5 name '% OF TOTAL AMT.'
format total (2 3 4 5)

168 Interactive SQL Guide and Reference

Result Display:

ITEM QUANTITY

1111 100
2222 200
3333 300

600

% OF TOTAL QTY. AMOUNT
16.66 5500.50
33.33 30000.50
50.00 4780.10
99.99 40281.10

% OF TOTAL AMT.

Figure 106. Simple Percentage Example

Example of Computing an Aggregate Percentage
This example uses a table defined as:

create table regionsales (region
sales
item

quantity

amount

char(3), -
char(3), -
char(8), -
integer, -
decimal(9,2))

This table holds the sales records of the items by region. You can input the table

data that is shown below. See “Inserting Table Data” on page 81 if you want to

know how to input the data.

Regionsales Table:
REGION

001
001
001
001
001
002
002
002
002

SALES

AAA
BBB
AAA
BBB
ccc
DDD
EEE
DDD
EEE

ITEM

1111
1111
2222
2222
3333
1111
2222
3333
3333

QUANTITY

60
40
100
100
300
90
20
20
130

AMOUNT

3300.
2200.
15000.
15000.
4780.
4950.
3000.
318.
2071.

30
20
25
25
10
45
05
67
38

To calculate aggregate percentages, you must compute the totals first. The totals
are held in an auxiliary table defined as:

create table totals

(id char(1), -
region char(3), -
quantity integer, -
amount decimal(9,2))

The grand totals are calculated by this INSERT command:

insert into totals (id,quantity,amount) -
select 't',sum(quantity),sum(amount) -

from regionsales

The regional totals are calculated by this INSERT command:

Chapter 10. Using Additional Query Techniques

169

insert into totals (id,region,quantity,amount) -
select 'r',region,sum(quantity),sum(amount) -
from regionsales -
group by region

By joining each row in the REGIONSALES table with the T row in the TOTALS
table grouped by item, you can calculate and display the aggregate percentage for
each item to the grand totals with this SELECT statement:

select item, -

sum(regionsales.quantity), -

sum(regionsales.quantity) * 100 -

/ (sum(totals.quantity)/count(*)), -

sum(regionsales.amount), -

sum(regionsales.amount) * 100 / (sum(totals.amount)/count(*)) -
from regionsales,totals -
where id = 't' -
group by item -
order by item

The addition of these FORMAT commands gives a result similar to that shown in
Figure 107:

format column 3 name '% OF TOTAL QTY.'
format column 5 name '% OF TOTAL AMT.'
format total (2 3 4 5)

Result: (Aggregate percentages of each item to the grand totals)

ITEM SUM(QUANTITY) % OF TOTAL QTY. SUM(AMOUNT) % OF TOTAL AMT.

1111 190 22 10450.95 20.
2222 220 25 33000.55 65.
3333 450 52 7170.15 14.

860 99 50621.65 99.

Figure 107. Aggregate Percentage Example — by Item

By joining each row in the REGIONSALES table with the R and T rows in the
TOTALS table grouped by region and salesperson, you can calculate and display
the aggregate percentage for each salesperson by region and the grand total with
this SELECT statement:

170 Interactive SQL Guide and Reference

select regionsales.region,sales, -
sum(regionsales.quantity), -
sum(regionsales.quantity) * 100 / (sum(r.quantity)/count(*)), -
sum(regionsales.quantity) * 100 / (sum(t.quantity)/count(*)), -
sum(regionsales.amount), -
sum(regionsales.amount) * 100 / (sum(r.amount)/count(*)), -
sum(regionsales.amount) * 100 / (sum(t.amount)/count(x)) -

from regionsales,totals r,totals t -

where r.id = 'r' and -
t.id = 't' and -
r.region = regionsales.region -

group by regionsales.region,sales -

order by regionsales.region,sales

Note: count(*) represents the number of occurrences of the item in the group;
therefore, it is the number of joins with the T row in the TOTALS table.

The addition of these FORMAT commands gives a result similar to that shown in
Figure 108:

format column 4 name '% REGION'
format column 5 name '% TOTAL'
format column 7 name '% REGION'
format column 8 name '% TOTAL'
format group 1

format subtotal (3 456 7 8)
format total except (4 7)

REGION SALES SUM(QUANTITY) % REGION % TOTAL SUM(AMOUNT) % REGION % TOTAL
001 AAA 160 26 18 18300.55 45, 36.
BBB 140 23 16 17200.45 42. 33.

ccc 300 50 34 4780.10 11. 9.

xkK 600 99 68 40281.10 98. 78.
002 DDD 110 42 12 5269.12 50. 10.
EEE 150 57 17 5071.43 49, 10.

xkKk 260 99 29 10340.55 99. 20.
860 97 50621.65 98

Figure 108. Aggregate Percentage Example — by Region

Cancelling Running Commands

It may take extended time for your commands, statements, or routines to be
performed. The processing of your query statement, for example, can be delayed if
another user is accessing the same table.

Chapter 10. Using Additional Query Techniques 171

— DB2 Server for VM

You can query the status of the command, statement or routine by issuing the
CMS Immediate command, SQLQRY. The SQLQRY command returns
information that can help you to determine the cause of the delay. For more
information on the SQLQRY command, refer to the DB2 Server for VM
Database Administration manual.

You have the option of cancelling in-progress commands (such as the ISQL INPUT
command), long-running SQL commands (in which case message ARI7044l is
issued in VSE only), or LUWs (where AUTOCOMMIT is off), by issuing a CANCEL
command. You can type this command anytime during the typing of commands,
statements, or data.

To cancel an operation, type:

cancel

—— DB2 Server for VSE

This command also performs a ROLLBACK operation.

To cancel a long-running command, wait until you receive the message:
ARI70441 Command in progress. Terminal is now free.

Press CLEAR, and type:

isql cancel
If the ISQL user is connected to a remote DRDA application server, the user

cannot cancel long-running SQL commands. In this case, message ARI7044l is
not displayed.

—— DB2 Server for VM

This command also causes a ROLLBACK RELEASE operation to be performed.
The database manager releases your connection to the application server that
you are using. If you previously issued an explicit CONNECT command to
connect to a particular application server, you must reissue another CONNECT
command. If you do not, the next statement or command you type causes you
to be implicitly connected to the default application server. If you have been
implicitly connected to a default application server, your next statement or
command implicitly reconnects you.

When you cancel a routine that is in progress, the routine stops execution
immediately, and you are left in ISQL.

For information on the effects of AUTOCOMMIT on the CANCEL command, see

“Using the AUTOCOMMIT ON Setting” on page 71, or the description of the
CANCEL command in Chapter 13, “ISQL Commands” on page 203.

172 Interactive SQL Guide and Reference

EXERCISE 15

(Answers are in Appendix A, Answers to the Exercises, on page 267.)

Perform the following:

1.

Select the project number, project name, project staff, activity number,
and activity staff for those activities where the total activity staff adds up
to more than half the project staff for that project. Order the results by
project number.

. Retrieve the project number, activity number, activity staff, employee

time, and employee number, where the employee time is less than half the
average activity staff for that project, and there are at least three activity
numbers for that project.

. Retrieve the total commission for the MANUFACTURING SYSTEMS and the

ADMINISTRATION SYSTEMS departments. Include the constant MANUFACTURING
SYSTEMS for department D11 and the constant ADMINISTRATION
SYSTEMS for department D21.

. Use the union operation to select the employee number, activity number,

and employee time for project W L PROGRAMMING and project number MA2112.

. Create the view MANAGERS on the EMPLOYEE table for all information where

the job is manager.

. Retrieve the last name, project number, and activity number for each row

in MANAGERS.

. Select the average, maximum, and minimum salary from MANAGERS and
EMPLOYEE. Use the constants MANAGERS and EMPLOYEES to identify the results.

. Drop the MANAGERS view.

. Determine which views you have defined.
10.
11.

Drop the views you created in this chapter.

Delete the three rows you added to the PROJ_ACT table in this chapter.

Chapter 10. Using Additional Query Techniques

173

174 Interactive SQL Guide and Reference

Chapter 11. Creating and Managing Tables

Some users of the database manager are authorized to create and manage their
own set of tables. There are two ways you can obtain the authority to create and
manage your own tables. You may have RESOURCE authority, or you may ask
someone with DBA authority to acquire a dbspace on your behalf. The latter lets
you create tables in a private dbspace only (dbspaces are discussed later in this
chapter.)

To determine what authority you have, type:

select resourceauth from sqldba.sysuserlist -
where name = user

A Y under RESOURCEAUTH indicates that you have resource authority and can create
and manage your own set of tables.

You can use the following sections if you have resource authority. They describe
how to manage your own tables, share them with other users, and improve query
performance.

Managing Your Own Tables
Managing your tables consists of the following:

e Determining what your information is

e Creating tables

» Creating referential structures

e Determining where your tables are stored

e Dropping (deleting) tables

e Dropping primary or foreign keys

e Activating or deactivating primary or foreign keys
e Copying data from one table into another

e Identifying the minimum contents of a table

¢ Adding columns to a table.

Querying Information about Your Tables
The database manager automatically maintains a catalog that contains several
catalog tables. The catalog holds information about the application server. Table
names, view names, table owners, view owners, and column names are just a part
of the information that can be found in the catalog tables. The data in the catalog
tables is available to SQL users through the normal SQL query facilities. Whenever
you use the catalog tables, remember to prefix the table name with the owner
name system.

To find out which tables and views belong to you, type the following:
select tname,remarks -
from system.syscatalog -

where creator = user

This query presents results similar to Figure 109 on page 176.

© Copyright IBM Corp. 1987, 1998 175

TNAME REMARKS

* End of Result xxx 5 Rows Displayed #**Cost Estimate is Likaxssssksdddkkissssdsk

Figure 109. A Query Result Displaying Which Tables and Views Belong to You

Your display may provide additional information if you have created views and
tables of your own.

The column TNAME contains the table or view name. The REMARKS column contains
information about the table or view. You enter information into this field for your
tables or views using the COMMENT command. (For information on using the
COMMENT command, see the DB2 Server for VSE & VM SQL Reference manual.)

USER in the above query instructs the system to use your authorization ID when
selecting information from the SYSCATALOG table. You can use your authorization
ID in place of USER in the WHERE clause. If your authorization ID is VELDA, for
example, you can type the previous statement as:

select tname,remarks -
from system.syscatalog -
where creator = 'velda'

To determine the column names of the EMPLOYEE table, type the following:

select cname -
from system.syscolumns -
where tname = 'employee'

This query provides results similar to Figure 110.

BIRTHDATE
BONUS
COMM
EDLEVEL
EMPNO
FIRSTNME
HIREDATE
JOB
LASTNAME
MIDINIT
PHONENO
SALARY
SEX
WORKDEPT
* End of Result xx% 14 Rows Displayed ***Cost Estimate is Lasxssssdsrrsssskdrr

Figure 110. A Query Result Displaying the Column Names of the EMPLOYEE Table

For more information on the catalog, see the DB2 Server for VSE & VM SQL
Reference manual.

176 Interactive SQL Guide and Reference

Creating Your Own Tables

You can create your own table by providing the database manager with a name for
the table and the columns that you want it to contain. The names chosen can
consist of letters, numbers, and some special characters. If you want a blank or
other special character in the name, you must enclose the name in double
guotation marks.

When you provide the column names, you must also indicate the type of data for
each column.

For example, type the following SQL statement to create a table with employee
information for a particular quarter:

create table empl -
(empno char(6), -
lastname varchar(15), -
edlevel smallint, -
birthdate date, -
quarter integer)

Identifying Data Types

The DBCS data types support character sets that require 2 bytes of storage for
each character in the character set. Kanji and APL are examples of such character
sets.

— DB2 Server for VM
If you are going to use double-byte characters during your ISQL session, you
enter the CMS command:

set fullscreen on

before starting ISQL or from CMS subset mode (see “CMS-Subset Processing”
on page 197.

Once you have created a table, you can insert data into it using the commands
described in “Inserting Table Data” on page 81. The list below shows the types of
data that can be defined for a column. See the DB2 Server for VSE & VM SQL
Reference manual for more information.

INTeger
For large positive or negative whole numbers.

SMALLINT
For small positive or negative whole numbers. The largest number you can put
in this field is 32767; the smallest, -32768.

DECimal or NUMERIC

DECimal (p) or NUMERIC (p)

DECimal (p,s) or NUMERIC (p,s)
For decimal data. The p identifies the total number of decimal digits a number
can have. The maximum allowable precision is 31 digits. The s identifies the
number of digits on the right side of the decimal point. The default value is
DECimal(5,0). NUMERIC is a synonym for DECIMAL. If a column name is
defined as NUMERIC, the column is treated like a DECIMAL data type.

Chapter 11. Creating and Managing Tables 177

FLOAT
FLOAT (n)
For floating-point numbers.

REAL
For single precision floating-point numbers.

DOUBLE PRECISION
For double precision floating-point hnumbers.

CHARacter
CHARacter(n)
For character data

that has a fixed number of characters (n). The maximum number of characters
is 254.

VARCHAR(n)
For character data! that varies in length.

LONG VARCHAR
For character data! that varies in length up to 32767 characters.

GRAPHIC
GRAPHIC(n)
For double-byte character set (DBCS)

data that has a fixed number of DBCS characters (n). The maximum number of
DBCS characters is 127.

VARGRAPHIC(n)
For a varying-length graphic string of maximum length n, which can range from
1 to 16383 double-byte characters.? If n is greater than 127 double-type
characters, the string is defined as a long string column.

LONG VARGRAPHIC
For a varying-length string of double-byte characters, of maximum length 16383
bytes.? A LONG VARGRAPHIC column is always a long string column (even if
its actual length is less than 128 double-byte characters).

VARGRAPHIC(n)
For a varying-length graphic string of maximum length n, which can range from
1 to 16383 double-byte characters. 2

DATE
For a three-part value in several formats that designates a point in time
according to the calendar.

TIME
For a three-part value in several formats that designates a time of day
according to a 24-hour clock.

Character data types CHAR, VARCHAR, and LONG VARCHAR support the BIT, mixed, and SBCS data subtypes. See the DB2

Server for VSE & VM SQL Reference manual for more information on defining character data types.

ISQL does not support INSERT, UPDATE, or SELECT for tables or views with VARCHAR>254, VARGRAPHIC>127, LONG

VARCHAR or LONG VARGRAPHIC columns.

ISQL supports hexadecimal constants and graphic constants that can be used to insert (INSERT or INPUT commands) or update

data into DBCS columns of length <= 127. Hexadecimal constants and graphic constants can also be used in WHERE clauses
with DBCS columns. See the DB2 Server for VSE & VM SQL Reference manual for more information about this data type.

178

Interactive SQL Guide and Reference

TIMESTAMP

For a seven-part value that designates a date and time, including a fractional

part. The seven parts are year, month, day, hour, minute, second, and
microsecond.

Identifying Datetime Types
Five formats are available when you are typing datetime data. You can use any

format for input. However, when the datetime data is displayed, or returned to the
application program, the default format is used. For more information on Datetime

data type formats, see the DB2 Server for VSE & VM SQL Reference manual.

Figure 111 summarizes the different formats you can use to type datetime values:

Figure 111. Date and Time Formats
Data Type Data Type
Data Type Description Format
Date ISO yyyy-mm-dd
JIS yyyy-mm-dd
EUR dd.mm.yyyy
USA mm/dd/yyyy
LOCAL site defined
Time ISO hh.mm[.ss]
JIS hh:mm[:ss]
EUR hh.mm[.ss]
USA hh:mm xM
LOCAL site defined
Timestamp yyyy-mm-dd-hh.mm.ss[.[zzzzzZ]]
Where:

¢ |SO is the International Standards Organization form.

e JIS is the Japanese Industrial Standard Christian Era form.
e USA is the IBM standard for the United States form.

e EUR is the IBM standard for the European form.

e LOCAL is any site defined form.

e yyyy is the year.
e mm is the month.
e dd is the day.

e hhis the hour

In USA format, the range of hh is 1-12 except for 00:00 am. In ISO, JIS, and

EUR format, the range of hh is 0-24. For input purposes, the leading zeros
be suppressed.

e mm is the minute.

e ssis the second.

e 777777 is the microsecond.

e XM is AM or PM.

e [] indicates it is optional; default is zeros.

Note: LOCAL date and time is not supported on an application server that is

accessed using the DRDA protocol.

Chapter 11. Creating and Managing Tables

can

179

A DBA can change the date and time default formats, which are defined in the
SYSTEM.SYSOPTIONS table, from ISO (which is the system-supplied application
server default form) to any site-defined format. The change becomes effective the
next time the application server is started.

Date, time, and timestamp values are stored in their respective internal formats.
They can be displayed to the user in one of the stated formats. You can use the
CHAR scalar function to display the date or time value in the format you want. The
datetime values can only be assigned to a column of data type CHAR, VARCHAR,
or one of DATE, TIME, or TIMESTAMP.

Defining Column Data

When you create a table, you can indicate that character columns will contain
single-byte characters, single or double-byte characters, or bit data by specifying
FOR SBCS DATA, FOR MIXED DATA, or FOR BIT DATA respectively.

You can also indicate that character or graphic columns will contain data
represented using a specific character set, code page, and encoding scheme by
specifying a Coded Character Set Identifier (CCSID). CCSIDs are important for
applications that use the DRDA protocol. With the DRDA protocol, data at the
application server and application requester could be represented by different
CCSIDs, as for example in the ASCII and EBCDIC environments. The CCSID
clause consists of the keyword CCSID followed by an integer and assigns the
integer identifier as the CCSID attribute of the column. This attribute defines the
specific character set, code page, and encoding scheme used to represent the data
in the character or graphic column.

For more information on column clauses and CCSIDs, see the DB2 Server for VSE
& VM SQL Reference manual.

Storing Your Tables

180

When you create a table, the database manager inserts it into a section of the
database that is reserved for you. For DB2 Server for VSE, these sections are
called dbspaces. For DB2 Server for VM, these sections are called private
dbspaces.

There are private dbspaces and public dbspaces. If a DBA has given you
RESOURCE authority, you can acquire private dbspaces to contain your tables.
You can also create your tables in public dbspaces if you have RESOURCE
authority. If you do not have RESOURCE authority, you can create tables only if a
DBA has acquired a private dbspace for you.

If you have more than one dbspace, you can let the database manager choose the
one in which to place your tables, or you can specify the dbspace yourself. For
example, assume that you have had two dbspaces reserved for you named JOHN1
and JOHNZ2. To place the EMPL table in JOHNZ2, you type the following when you
create the table:

create table empl -
(empno char(6), -
lastname varchar(15), -
edlevel smallint, -
birthdate date, -
quarter integer) -

in john2

Interactive SQL Guide and Reference

Copying Data from Other Tables

Data can be loaded into your table by copying data from another table. This is
performed using a variation of the INSERT statement. For example, load (copy)
data from the EMPLOYEE table into the EMPL table using the following INSERT
statement:

insert into empl (lastname,edlevel,birthdate,quarter) -
select lastname,edlevel,birthdate,'014' -
from employee

This form of the INSERT statement uses a subquery instead of the VALUES
clause. The information retrieved by the subquery is placed into the table as if
multiple INSERT statements had been entered.

In the example above, the database manager is instructed to copy the employee
information from each row of the EMPLOYEE table into the EMPL table. The
database manager is also instructed to place the value 014 in the QUARTER
column for each row inserted.

Dropping a Table

You can drop (delete) one of your tables using a DROP TABLE statement. For
example, drop the table just created by typing:

drop table empl

The DROP TABLE statement deletes all the rows of the table, as well as the
definition of the table. (Recall that the DELETE statement, discussed in “Deleting
Table Data” on page 79, deletes individual rows.)

Identifying the Minimum Contents of a Table

When you create a table, you can identify which columns must contain entries. You
would typically want key fields such as EMPNO in the EMPLOYEE table to always
contain valid (not null) values. You prevent the use of nulls by specifying the NOT
NULL option in the column definitions of CREATE TABLE statements.

For example, the following statement can be used to prevent nulls from being used
for the EMPNO and LASTNAME columns of the EMPL table:

create table empl -

(empno char(6) not null, -
lastname varchar(15) not null, -
edlevel smallint, -
birthdate date, -
quarter integer)

Specifying NOT NULL can be very useful in copying data from other tables
because it prevents incomplete rows from being inserted into your table.

In the above example, the BIRTHDATE column was defined as NOT NULL,
because nulls are allowed for the corresponding column in the EMPLOYEE table.

Chapter 11. Creating and Managing Tables 181

Adding a Column to a Table

When you create a table, it is not necessary to know or specify all columns.
Additional columns can be added later using the SQL statement ALTER TABLE.
For example, you can add a column to the EMPL table to contain employee salary
information by typing:

alter table empl -

add salary decimal(9,2)

You cannot specify the NOT NULL option in an ALTER TABLE statement. All
existing rows of the table assume a null value for the SALARY column as a result
of the ALTER TABLE statement.

After a column has been added, you can insert values using the UPDATE
statement. See “Updating Rows” on page 75.

Specifying Referential Constraints

182

Referential constraints can be specified when tables are defined, or they can be
added later.

When a primary key is added to an existing table, the database manager checks
the table to ensure that all keys are unique. When a foreign key is added, the
database manager checks all non-null foreign keys to ensure that they exist in the
parent table.

Constraints can also be dropped, activated, or deactivated. When referential
constraints have been deactivated, the database manager suspends checking, and
the tables become unavailable for access by anyone other than the owner of the
table or by someone possessing DBA authority.

Tables are deactivated, for example, to load large amounts of data onto the table.
Since checking of the data has been suspended, the speed of the loading process
increases considerably. When loading is complete, the table is activated.

When the primary key is deactivated, the primary key index on the parent table is
automatically dropped and all active dependent foreign keys are implicitly
deactivated. When a primary key is deactivated, all associated foreign keys are
implicitly deactivated. When a primary key or a dependent foreign key is
deactivated, all tables involved in the referential constraint become unavailable until
the keys are activated once again. Activating the keys causes the database
manager to validate the references in the data, and referential constraints are
automatically enforced once again.

Additional information is provided for activation and deactivation in “Activating and
Deactivating Primary Keys, Foreign Keys, or Unique Constraints” on page 185.

You can remove a referential constraint by dropping the foreign key. Dropping a
table containing foreign keys removes the constraints associated with its keys.
When a table containing a primary key is dropped, any foreign keys that reference
the primary key are dropped automatically, thereby removing all the constraints that
reference the primary key.

Interactive SQL Guide and Reference

Identifying Required Privileges
The following table identifies the privileges required for changes to the referential
structure.

Figure 112. Privileges Required

ALTER TABLE Clause

Privilege on

Parent Table

Privilege on

Dependent Table

Add Column ALTER

Add Primary Key ALTER

Add Foreign Key REFERENCES ALTER

Drop Primary Key ALTER ALTER
REFERENCES (1)

Drop Foreign Key REFERENCES ALTER

Deactivate Primary Key ALTER ALTER
REFERENCES (1)

Deactivate Foreign Key REFERENCES ALTER

Activate Primary Key ALTER REFERENCES
REFERENCES (1)

Activate Foreign Key REFERENCES REFERENCES?2

Create Foreign Key REFERENCES not applicable

Create Primary Key

not applicable

not applicable

Notes:

1. The REFERENCES privilege is required only if the parent table has any
dependents.

2. The ALTER privilege is required if the primary key has any foreign keys defined
on it.

To add, drop, deactivate, activate, or create a unique constraint, you must have the
ALTER privilege on the table. See the discussions of the CREATE TABLE and
ALTER TABLE statements in the DB2 Server for VSE & VM SQL Reference
manual.

Creating a Table That Contains a Primary Key

You can create a table with a primary key by using a PRIMARY KEY clause in the
CREATE TABLE statement. This clause specifies the column that is the primary
key. For example, create a new table for students that contains a student first
name, last name, and student number (the primary key) with the following
statement:

Chapter 11. Creating and Managing Tables 183

create table students -

(firstname varchar(12) not null, -
lastname varchar(15) not null, -
studentno char(6) not null, -
primary key (studentno))

The last line in the CREATE TABLE statement defines the STUDENTNO column
as the primary key for this table. A column named as a primary key must have
been defined with the NOT NULL option.

Adding a Primary Key to an Existing Table

It is not necessary to define the primary key in the CREATE TABLE statement. It
can be added later using the ALTER TABLE statement. You can create the table

first using:
create table students -
(firstname varchar(12) not null, -
lastname varchar(15) not null, -
studentno char(6) not null)

Then add a primary key:

alter table students -
add primary key (studentno)

This makes the STUDENTNO column the primary key in the STUDENTS table if
there are no duplicate values in that column. If duplicate values exist when you
attempt to add a primary key on an existing column, the ALTER TABLE statement
fails. If the column named for the primary key allows nulls, the statement also fails.

Creating a Table That Contains a Foreign Key

You can create a table with a foreign key by adding the FOREIGN KEY clause to
the CREATE TABLE statement. This clause specifies the column that will be the
foreign key and the table containing the primary key to be referenced. The parent
table referenced must already exist and must have a primary key defined.

Create a table for a computer science class that contains a row for each student
enrolled in the class and references the STUDENTS table as follows:

create table cs110 -

(studentno char(6) not null, -

midterm integer, -

final integer, -

foreign key r_studt (studentno) references -
students on delete cascade)

This creates a table where every row must represent a student who is listed in the
STUDENT table. If a student is deleted from the STUDENT table, that student is
also automatically deleted from this class list because of the delete cascade rule
specified in the foreign key definition.

The referential constraint defined in the above example is r_studt. This name is
used when the foreign key is deactivated, activated, or dropped.

184 Interactive SQL Guide and Reference

Adding a Foreign Key to an Existing Table

Foreign keys can be added after a table has been created by using the ALTER
TABLE statement. The dependent table CS110 can be created by creating the
table first and without the foreign key:

create table cs110 -
(studentno char(6) not null, -
midterm integer, -

final integer)

You then add the foreign key using the following statement:

alter table csl110 add -
foreign key r_studt (studentno) references -
students on delete cascade

When a foreign key is added in this way, all foreign key values currently in the table
must match existing values in the primary key referenced, or the attempt to add a
foreign key fails.

When creating referential constraints involving two tables that reference each other
(such as the EMPLOYEE table and the DEPARTMENT table in the referential
structure in Figure 119 on page 269), at least one of the foreign keys must be
added after the table has been created. It is impossible to reference a table (and its
primary key) if that table has not been created. To create this type of structure,
create one table with its primary key. Create the second table with its primary key
and the foreign key referencing the first table. Then, add a foreign key to the first
table which references the primary key in the second. See the create statements
for the EMPLOYEE and DEPARTMENT tables in Appendix B, “Sample Tables” on
page 269 for examples of how this can be performed.

Activating and Deactivating Primary Keys, Foreign Keys, or Unique

Constraints

The constraints placed on altering tables that contain primary or foreign keys, or
unigue constraints, can be suspended by deactivating the keys in the table. For
example, the primary key in the STUDENTS table is deactivated with the following
statement:

alter table students deactivate primary key

The above statement causes the restrictions on inserting, deleting, and updating to
be suspended until the key is reactivated. No other users are allowed access to a
table while it has an inactive key. In addition, keys that are related to an inactive
key through a referential constraint are also considered inactive by the database
manager. If the primary key in STUDENTS is deactivated, the foreign key in CS110
becomes inactive, and that table cannot be accessed.

To activate an inactive key, you must alter the table as follows:

alter table students activate primary key

If you make changes to the STUDENTS table while its primary key is inactive, the
result of those changes cannot violate any of the constraints on the primary key, or
of the referential constraint. If the changes produced any duplicate primary key
values, dependent foreign key values without matching primary key values, or null
primary key values, the primary key activation fails.

Chapter 11. Creating and Managing Tables 185

Foreign keys can be deactivated and then activated in the same way as primary
keys by using an ALTER TABLE statement. When activating or deactivating a
foreign key, the ALTER TABLE statement must include the name of the referential
constraint. Deactivating the foreign key in the referential constraint r_studt for the
CS110 table is accomplished by typing:

alter table cs110 deactivate foreign key r_studt

You can also use the ALTER TABLE statement to deactivate and activate unique
constraints. As with a foreign key, you have to use the constraint name when you
deactivate or activate it. To deactivate the unique constraint empno for the table
TEACHERS, type:

alter table teachers deactivate unique empno

This statement causes the restrictions on inserting and updating to be suspended
until the constraint is reactivated. For more information about adding a unique
constraint to an existing table, or creating a table that contains a unique constraint,
refer to the DB2 Server for VSE Database Administration and DB2 Server for VM
Database Administration manuals.

Determining Effects on Stored Format Information

Performing management tasks on your tables also affects any stored queries you
have. The result of these tasks depends on the type of query stored and the type of
changes made to the table.

If the table referred to by a stored query is changed by DROP TABLE, CREATE
TABLE, or ALTER TABLE statements, the formatting information stored with that
guery may no longer be valid. For example, suppose a stored query performed
grouping on columns 1 and 2 of a table. These two table columns are defined as
VARCHAR.

The table is dropped and recreated with column 1 now defined as CHAR and
column 2 again defined as VARCHAR. The formatting information saved in the
stored query for column 1 is no longer valid. The formatting for the other columns is
still valid if the data types defined for these columns is the same in the recreated
table as in the original table.

In this last example, you get the same result if the stored query did not contain a
GROUP BY clause.

Sharing Your Tables with Other Users

186

When you create a table, you become its owner. Only you and a person with DBA
authority can use the table. However, you may want to share access to your tables.
This section describes the sharing of your data with other users, including the
determination of what data they can use, and what they can do with it.

You give access to your data using an SQL GRANT statement, and you take away
access using the SQL REVOKE statement. These statements and other techniques
for sharing data are discussed in the following sections.

Interactive SQL Guide and Reference

Granting the Privilege to Select Data from Your Tables
The most common reason for sharing data is to let another user query your tables.

To illustrate, here is an example of how you would grant select capability on your
EMPL table to user Farley:

grant select -
on empl -
to farley

If you want the recipient of the privilege to be able to grant that privilege to other
users, add the keyword phrase WITH GRANT OPTION at the end of the statement:

grant select -

on empl -

to farley -

with grant option

Granting INSERT, UPDATE, and DELETE Privileges on Your Tables
These privileges are also granted using the GRANT statement and can be included
in a single GRANT statement. For example, grant INSERT and UPDATE capability
on the EMPL table to Farley by typing:

grant insert,update -
on empl -
to farley

Now Farley can insert, update, and query EMPL. Note, however, that because you
did not identify the DELETE function in either of the GRANT statements, Farley
cannot delete rows.

Note also that when you grant multiple functions, they are separated in the
statement by commas.

Granting the Privilege to Reference a Primary Key
You can allow users to reference the primary key in a table you have created.
Users can have access to the data in your table through a GRANT SELECT but
they may not reference your table in a referential constraint without the
REFERENCES privilege. Grant the REFERENCES privilege to Farley using the
following statement:

grant references -

on students -
to farley

This privilege allows Farley to define a referential constraint for a table being
created or for an existing table that references STUDENTS as the parent table.

Granting the Privilege to Change Columns or Keys

You can allow other users either to add columns, a primary key, foreign keys, or a
unique constraint to a table, or to drop a primary key, foreign keys or a unique
constraint from a table. Grant this privilege on the CS110 table to Farley using the
following statement:

Chapter 11. Creating and Managing Tables 187

grant alter -
on csll0 -
to farley

The ALTER privilege is required to change the state of a referential constraint on a
table only if you are not the owner of that table. With this privilege, you can add a
referential constraint (and a foreign key), drop a referential constraint, deactivate an
existing primary or foreign key, or activate an inactive primary or foreign key. You
also have the privilege of manipulating unique constraints.

Note: Your ability to change the state of referential constraints depends on both
the ALTER and the REFERENCES privileges you have for the two tables
involved. For example, you cannot add a referential constraint unless you
have the ALTER privilege for the dependent table and the REFERENCES
privilege for the parent table. You require the ALTER privilege for both
parent and dependent tables if you want to drop a referential constraint.

Granting All Privileges to a User

You can grant all privileges that you have on the table by specifying ALL instead of
listing all the privileges individually. For example, if you want to grant all your
privileges on table EMPL to user Marcus, you type:

grant all -
on empl -
to marcus

This statement permits Marcus to perform the same grantable SQL operations on
your EMPL table as you can. It should be noted, however, that certain capabilities
are reserved for the owner of the table. One such capability is the DROP TABLE

function. The complete list of grantable SQL functions is shown in Figure 113.

Figure 113. Grantable Privileges

Grantable

Privilege Capability Granted

ALTER This lets another user add columns to the table or add, drop,
deactivate, or activate primary keys, foreign keys, and unique
constraints. To add a foreign key, you also need the
REFERENCES privilege on the parent table.

DELETE This lets another user delete rows from the table

INDEX This lets another user create an index on the table.

INSERT This lets another user add rows to the table.

REFERENCES This lets another user reference this parent table (table for which
REFERENCES is granted) when a foreign key is added,
dropped, activated, or deactivated. To alter a foreign key, you
also need the ALTER privilege on the dependent table.

SELECT This lets another user see data in the table.

UPDATE This lets another user update columns in the table.

ALL PRIVILEGES This lets another user have all the privileges that you have on the

or ALL table.

188 Interactive SQL Guide and Reference

Restricting the Update Privilege to Certain Columns

You may want to give a user responsibility for maintaining only certain types of
information in your table. That is, you want to give that person update capability
only on selected columns.

For example, if you wanted user Mona to keep the QUARTER column in the EMPL
table updated, you give her the authority by typing:

grant select,update(quarter) -
on empl -
to mona

You can grant update capability to multiple columns by including all the columns
within the parentheses and separating them with commas.

Granting Privileges to Multiple Users

If you want to grant the identical capabilities to a group of users, you use a single
GRANT statement. For example, assume Mona is part of a department responsible
for maintaining the quarter information. Users Jim, Dan, and Dee also need update
privileges on the QUARTER column of the EMPL table. You can extend the update
capability to all three by typing:

grant update(quarter) -

on empl -

to jim,dan,dee

You can also grant privileges to the public within a list of grantees as illustrated
below:

grant update(quarter) -
on empl -
to jim,public,dee

Revoking Granted Privileges

You can revoke any privilege that was assigned with the GRANT statement. For
example, if Dan changes jobs and is no longer responsible for maintaining quarter
information, you can revoke his privileges on the EMPL table by typing:

revoke update -
on empl -
from dan

Note that Dan’s entire (all table columns) update privilege is revoked. To revoke a
privilege on a specific column, you have to revoke that privilege entirely and then
grant it for the columns on which the privilege is to be retained.

Multiple users and privileges can be identified in a single REVOKE statement. The
ALL option can be used to revoke all privileges you have granted on a table (in the
same manner as used in the GRANT statement). You can include public only once
in a list of authorization names in a REVOKE statement.

Chapter 11. Creating and Managing Tables 189

Using a View to Restrict Privileges to Certain Rows

Views can be used to restrict a privilege to specific rows of your tables. For
example, assume Jim and Dee maintain quarter information for different groups of
employees based on level of education. The following view supplies the information
Jim needs for employees of education level 16 or less:

create view tol6 -

as select empno,lastname,edlevel,birthdate,quarter -
from empl -
where edlevel <= 16

Similarly, the following view supplies all the information needed by Dee:

create view pastlé -

as select empno,lastname,edlevel,birthdate,quarter -
from empl -
where edlevel > 16

The next step is to grant Jim and Dee privileges on the views. Type the following
GRANT statements:

grant select,update(quarter) -
on tol6 -
to jim

grant select,update(quarter) -
on pastlé -
to dee

Using a View to Restrict Privileges to Certain Columns

Views can also be used to restrict the columns on which a user can type SELECT
or INSERT statements. For example, you can give Jim and Dee the capability to
select salary information from the EMPLOYEE table, but restrict them from viewing
commission information simply by specifying the SALARY column and omitting the
COMM column when you create the view. Create the view using:

create view blindempl -
as select salary -
from employee

Now give Jim and Dee table privileges:

grant select -
on blindempl -
to jim,dee

Creating Tables That You Want to Share

190

In an earlier section of this chapter, a private dbspace as a section of the database
reserved for your tables was described. A private dbspace is suitable for your
personal tables and is not really appropriate for tables that are to be shared.

Instead, a public dbspace should be used. When a table is inserted into a public
dbspace, multiple users can update the table simultaneously. No two users,
however, can use the same row at the same time.

To insert a table into a public dbspace, provide the database manager with the
name of the dbspace using the IN clause of the CREATE TABLE statement. For

Interactive SQL Guide and Reference

example, the EMPL table can be created in a public dbspace named SAMPLEDB
by typing:

create table empl -

(empno char(6), -

lastname varchar(15), -

edlevel smallint, -

birthdate date, -

quarter integer) -

in sampledb

When the dbspace name is not supplied on the CREATE TABLE statement, the
table is created in one of your private dbspaces.

Accessing Tables Belonging to Other Users
When you refer to a table (or view) in an SQL statement, the database manager
assumes you are referring to a table that you own. If you want to access a table
that belongs to another user, you must identify the user and the table name. This is
done by inserting the owner’s authorization ID before the table name and
separating the two with a period.

For example, you can access the system copy of the EMPLOYEE table (created
during the installation of the database manager) by using the following query:

select * -
from sqldba.employee

This query retrieves the copy of the EMPLOYEE table that is owned by the sample
user, SQLDBA. Your personal copy of the EMPLOYEE table is ignored. Similarly,
other users have to use this method to access your EMPL table.

If an authorization ID does not begin with a letter, number, $, #, or @, you must
enclose it in double quotation marks. For example:

select * -
from "%A23C".payroll

For detailed information about identifier naming conventions, see the DB2 Server
for VSE & VM SQL Reference manual.

Using Synonyms

To avoid specifying an authorization ID for another user’s table or view that you
access frequently, you can create synonyms for their tables and views. For
example, you can assign a synonym to be used in place of SQLDBA.EMPLOYEE
by typing:

create synonym dbaemp -

for sqldba.employee
Now you can refer to SQLDBA.EMPLOYEE by the synonym DBAEMP. For
example, if you type:

select * -
from dbaemp

The database manager displays all information from the EMPLOYEE table.

Chapter 11. Creating and Managing Tables 191

You can also use the CREATE SYNONYM statement to assign a synonym to one
of your own tables. For example, if you are user JOHN, you can assign the
synonym ih to your EMPL table by typing:

create synonym ih -
for john.empl

When you finish using the table or view for which you have defined the synonym,
you should drop the synonym. To drop the synonym ih, for example, type:

drop synonym ih

The table or view on which the synonym was defined is not affected by this
command.

Note: Because the performance of a DROP TABLE or DROP VIEW statement
does not drop associated synonyms, you must drop the synonym(s)
yourself.

Improving Query Performance

There are several ways you can improve data-access performance. This section
describes three methods: indexing a table, updating statistics, and locking data.

Indexing a Table

192

The database manager uses an index to locate particular rows of a table.

Although you create these indexes, you do not use them directly. You simply enter
your query and the database manager searches for, and attempts to use, an
appropriate index to locate the information. The database manager finds the
information whether an index exists or not, but it may find the information faster
using an index.

A good table index is one that anticipates the kinds of queries to be used for the
table.

For example, if you typically look for departments in the DEPARTMENT table by
department name, create an index for the DEPTNAME column by typing the
following SQL statement:

create index dptnme -
on department -
(deptname)

You can delete an index by using the DROP INDEX statement. For example, drop
the DPTNME index by typing:

drop index dptnme

You can create a unique index when you create a table by using the CREATE
TABLE statement, or you can add a unique index to an already existing table by
using the ALTER TABLE statement. For more information about the UNIQUE
attribute of these statements, see the DB2 Server for VSE & VM SQL Reference
manual.

Interactive SQL Guide and Reference

A unique index is also automatically created for each primary key and dropped
automatically when the primary key is dropped. The primary key is dropped either
by using an ALTER TABLE statement or by dropping the table or dbspace.

You cannot create a unique index on a VARCHAR or VARGRAPHIC column that
has values that differ only by trailing blanks. Trailing blanks are ignored for values
with these data types. Therefore, 'Adm ' is the same as 'Adm’'.

If a VARCHAR or VARGRAPHIC column is not defined as unique, the trailing
blanks on values do not affect the index. The order of 'Adm ' and 'Adm’' is
unpredictable because they only differ in trailing blanks.

Maintaining Updated Statistics

Locking Data

Another performance consideration concerns data statistics that are kept in the
database manager catalogs. These statistics provide information about tables such
as the number of rows in a particular table, or the number of different values
contained in a particular column. This information is used by the database manager
to determine the best method to satisfy query requests.

It may be important to keep these statistics up to date. For example, some tables
are rarely updated, and their statistics change very little over the life of the table.
Other tables, however, are updated frequently, and their statistics should be
updated periodically.

You can update the statistics on a table by using an SQL UPDATE STATISTICS
statement. For example, update the statistics on the ACTIVITY table by typing:

update statistics -
for table activity

Updating statistics involves a scan of both the rows and indexes of a table. This
can be time-consuming for a large table; performing the update during off-peak
hours is a good idea. As a general rule, try to develop a rule of thumb for
determining when to update table statistics; for example, you might decide to
update a table when it has changed by 20% or more. The full description of the
UPDATE STATISTICS statement is shown in the DB2 Server for VSE & VM SQL
Reference manual.

When you update or delete data in a table, the table is considered unstable
because its data is changing. The database manager protects you and other users
from obtaining unreliable query results by limiting access to unstable tables. It also
prevents deadlocks when several users are trying to update the same data.

The database manager isolates the data by locking it. You can control the amount
of data locked from other users, as well as the length of time that the lock is
applied. Controlling the amount of locked data affects system performance. For
example, a small amount of locked data requires less processing time than a large
amount.

If you try to access an SQL object while another user is locking it, your processing
is suspended until the other user has finished with the object. If you do not want to
wait indefinitely, you can type the following to stop your transaction:

cancel

Chapter 11. Creating and Managing Tables 193

194

The database manager then rolls back any uncommitted work, and issues
messages ARI7043l and ARI7040l. You can find more information about the
CANCEL command under “CANCEL" on page 206.

Specifying the Isolation Level
You control locks by specifying the isolation level. The isolation-level setting affects
only those tables stored in public dbspaces.

The isolation level you set is related to the task you are performing. The selection,
insertion, updating, and deletion of table data are all affected by the isolation level.
Specifically, the isolation level determines how soon data you have read can be
changed by other users.

The isolation level has three settings: repeatable read (RR), cursor stability (CS),
and uncommitted read (UR).

You can use the SET ISOLATION command only when the target AS is a local
application server. Otherwise, the isolation level of CS is used and the SET
ISOLATION command will have no effect.

Using the Repeatable Read Setting: Use the RR setting when you are modifying
data. The RR setting ensures that data is completely isolated for your use. No
other user can update the data until your work has completed.

Using the Cursor Stability Setting: Use the CS setting when you are simply
guerying (selecting) committed data. The term cursor in this case refers to the
database manager cursor that points to the data in the table that you are using.
The data involved in a CS setting is unlocked as soon as possible by the database
manager for other users.

Using the Uncommitted Read Setting: Use the UR setting when you are
guerying (selecting) either committed or uncommitted data. With this setting, data
can be read without waiting for other logical units of work that are updating the data
and reading data will not prevent other application processes from updating it.
However, you should remember that data integrity may be compromised with this
setting and that UR should only be used when it is not necessary that the data you
are reading be committed.

Using the SET Command

You use the SET command to control the isolation level. The SET command format
is given on page 245, and an explanation of isolation level settings is found on
page 248. See Chapter 9, “Creating and Using Routines” on page 125 for
information on how to set the isolation level from a routine.

Note: Do not forget to change the isolation level back to the default isolation level
when you have completed the operation for which you changed it.

Handling Lock Contention

Use an RR setting unless lock contention is a significant problem on the application
server you are accessing. If lock contention is significant, use a CS setting
whenever you can. The UR setting minimizes lock contention but it should only be
used when it is not necessary that the data you are reading be committed.

Interactive SQL Guide and Reference

Determining the Isolation-Level Setting

Figure 114 and Figure 115 describe isolation level settings for various tasks. The
first table discusses cursor stability, and the second, repeatable read. There is no
table for the uncommitted read setting because this setting is not recommended for
regular use.

Figure 114. Guidelines for Using Cursor Stability

Activity

Description

Browsing a query
result

When you are simply displaying data, the isolation level cursor stability is sufficient. At this
time, do not plan to update the table or to print a formal report.

Preparing sample
reports

While you are preparing a draft of a report, which you are using to check format and
general content, use isolation level cursor stability.

Selecting or
printing read only
data

Read-only data resides in tables that are subject to controlled maintenance (insert, update,
or delete). That is, any maintenance is done on a known periodic basis (for example,
tables that are only updated overnight).

Browsing HELP

ISQL HELP text information is read-only data, and isolation level cursor stability is

information sufficient.

Using SQL data Read and update access to a catalog table during the performance of data definition
definition statements (CREATE, ACQUIRE, GRANT) is always done with an isolation level setting of
operations repeatable read. You do not have to set the isolation level to protect your definitions.

Using EXPLAIN

Using the EXPLAIN statement to access a catalog table is always performed with isolation
level repeatable read, regardless of your isolation level setting.

Accessing data in
private dbspaces

Accessing private dbspaces is effectively isolation level repeatable read, because locking
is only performed at the dbspace level. You do not need to adjust your setting for isolation
level.

Accessing data in
public dbspaces
with dbspace level
locking

For public dbspaces with dbspace locking, access is always effectively isolation level
repeatable read, because locking is only performed at the dbspace level. You need not
change your isolation level setting.

Working with
stored queries

Stored queries are always stored and recalled with an isolation level repeatable read.

You control the isolation level used for starting a stored query. Therefore, you must set
the isolation level to the desired value before starting the stored query.

Invoking routines

Retrieving from a routine is performed with an isolation level repeatable read.

You control the isolation level used for running a routine. You can change the isolation
level setting before running the routine or within the routine (as many times as needed).

Using ISQL
commands

For ISQL commands that access the application server, the isolation level used is
repeatable read.

For the ISQL commands RUN, START, and HELP, you can control the setting of the
isolation level.

Using the INSERT
statement and the
INPUT command

Using INSERT statements with values and INPUT commands are not affected by the
isolation level setting because no data is read from the application server.

Using INSERT statements with subselect are affected by the isolation level setting
because of the SELECT clause. You must follow the guidelines for selecting data given
above when you use INSERT through subselect statements.

Chapter 11. Creating and Managing Tables 195

Figure 115. Guidelines for Using Repeatable Read

Activity Description
Using DELETE, If you type a DELETE, INSERT, or UPDATE statement based on a SELECT statement
INSERT, or result, do not set the isolation level to repeatable read before you type the SELECT

UPDATE from a
display

statement. It is then impossible for the displayed data to change before you have typed
the DELETE, INSERT, or UPDATE statement.

Note: In addition, set AUTOCOMMIT OFF so the SELECT and data change statements
are contained in the same LUW.

You need not set AUTOCOMMIT OFF and isolation level repeatable read if any of the
following is true:

¢ Data selected is read-only.

¢ You are the only person authorized to modify the selected data.

¢ You have other ways of ensuring the data selected does not change.

¢ A command that changes the contents of the table is valid even if the selected data
does change.

Using DELETE or
UPDATE
statements

Use an isolation level repeatable read when you delete or update data unless:

¢ You are the only person authorized to modify the data.
¢ You have other ways of ensuring the data selected does not change.

Preparing formal
reports

To prevent data from changing, set the isolation level to repeatable read when you
prepare a formal report unless:

¢ Data selected is read-only.
¢ You are the only person authorized to modify the selected data.
¢ You have other ways of ensuring the data selected does not change.

EXERCISE 16

(Answers are in Appendix A, Answers to the Exercises, on page 268.)

Perform the following:

1. Create a table that has the following characteristics:

Table Name
OLD_ACTIVITY

Column Names

ANUMBER - a number column containing numbers from 1 to 999, do

not allow nulls.
AKEYWORD - a varying character (max=10) column, do not allow nulls.
ADESCR - a varying character (max=30) column, do not allow nulls.

2. Fill the table with the contents of the ACTIVITY tables owned by the
system (SQLDBA).

3. Add a fourth column to this table (call it STATUS) having a varying
character length not exceeding 8 characters.

4. Grant the update privilege, on the STATUS column only, to Mona and Lisa.

5. Grant the select privilege for those rows that contain inactive
in the STATUS column to Farley.

196 Interactive SQL Guide and Reference

Chapter 12. Using VM Functions

In this chapter, you progress beyond ISQL and learn some VM commands and
functions that can enhance your use of the database manager. Although this
chapter does not show you how to use VM, it does identify many of the VM
features that help you get the most out of ISQL and this RDBMS.

The commands described in this chapter are neither SQL statements nor ISQL
commands; they are CMS and CP commands that can be used to control the
characteristics of your virtual machine, direct printed output, and provide additional
VM facilities. As CMS and CP commands, they can only be used in CMS or CMS
subset mode.

CMS-Subset Processing
During your ISQL session, you can enter CMS or CP commands without
terminating your ISQL session. When finished you can return to ISQL.

To enter CMS-subset mode, type:
cms
You can now type CMS or CP commands, EXEC procedures, or user programs.

Note: Do not enter any EXEC procedure or program that accesses the application
server while you are in CMS subset mode.

Returning to ISQL from CMS Subset Mode
When you finish entering your CMS and CP commands and are ready to return to
ISQL, type:
return

Entering CP Commands
You can enter CP commands in three ways:

e A CP command can be typed at any time during ISQL processing by prefixing
the command with #CP. This procedure immediately interrupts the current ISQL
processing, enters CMS subset mode and performs the designated CP
command, and then returns to ISQL when the command is complete.

* You can press PAL at any time. CP READ appears in the status area and you
can type any CP commands.

If you are running with CP SET RUN ON, control automatically returns to ISQL
after each CP command is executed. ISQL resumes processing from the point

of interruption. If you are running with CP SET RUN OFF, you must type a B or
begin on the input line and press ENTER to resume processing in ISQL.

The SET FULLSCREEN ON command cancels the interrupt action of PAL.
Suspending the full-screen option or turning it off does not reset PA1 to the
original interrupt setting. If PA1 does not interrupt ISQL, you can reestablish it
as an interrupt key with the following command:

#cp terminal brkkey pal

© Copyright IBM Corp. 1987, 1998 197

e While in CMS subset mode, you can type CP commands (with or without the
CP prefix) in the same manner as that described above for CMS commands.

As a DB2 Server for VM user, you probably use CP commands only when you
want to change printer spooling or routing characteristics, or change PF key
definitions.

Obtaining Printed Reports on a Workstation Printer

Your printed output is automatically sent to the printer designated by your site. You
can change or redirect your printed output to another printer and specify other print
characteristics by using the CP commands TAG and SPOOL. The TAG command
identifies the receiving destination; the SPOOL command directs the printed output
to the network machine.

First, start the statement stored as DEPT in Chapter 8, “Storing SQL Statements”
on page 119 by typing:

start dept

Suppose that you want to print this information on a remote printer. You have to
know the node ID for that printer and the user ID of the network machine. You can
use the CMS IDENTIFY command for information about network identifiers
(NETIDs). For this example, assume that you want to send your output to a
3262-13 printer with a destination ID of RMT3262. Enter CMS subset mode by
typing the following:

cms

Then type the following CMS command:
identify
The results of this command give you the necessary information to use the SPOOL
and TAG commands. The format of the output produced by typing this command is:
user AT nodeid VIA netid

Now you would type the CP SPOOL and TAG commands to route your printed
output to the 3262 printer:

#cp spool printer to netid nohold
#cp tag dev printer RMT3262 system

To return to ISQL and print your report, type:

return
print

Specifying the Number of Copies of Printed Reports

You can use the CP SPOOL command to specify the number of copies for all
reports you print during the current terminal session.

For example, you can specify three copies by modifying the previous CP SPOOL
command example as follows:

#cp spool printer to netid copy 3

Interactive SQL Guide and Reference

All following PRINT commands use the quantity specified by the most recently
typed CP SPOOL command or ISQL PRINT command with the COPIES keyword.

Note: This section assumes your site is running with the Remote Spooling
Communications Subsystem (RSCS) Networking Program Product (Release
3 5748-XP1, or Version 2 Release 1 5664-188).

Using EXEC Files

An EXEC is a file with a file type of EXEC. It contains a series of commands and
statements that are executed when the file name of the EXEC file is typed.

You can use EXECs to stack SQL statements and ISQL commands before you
begin your ISQL session. As soon as you start ISQL, this information is read from
the stack and executed. By using EXEC processing in this way, you can predefine
all default settings to be used during your display session, establish PF key values,
and designate print specifications. This method can also be used to automatically
start procedures tailored to the needs of specific users.

The EXEC examples in this chapter do not include the CONNECT statement as
part of the stacked set; it is assumed that you are working with your own sample
tables. If you must gain access to another user ID to use ISQL, use a CONNECT
statement as the first stacked statement. See the DB2 Server for VSE & VM SQL
Reference manual for additional information on the CONNECT statement.

For information on creating CMS EXEC files, see the VM/ESA: CMS User’s Guide
manual. For information on the REXX language, see the VM/ESA REXX/VM User's
Guide and the VM/ESA REXX/VM Reference manuals.

Stacking Commands in an EXEC File
In the CMS environment, you can run EXECs that stack SQL statements and ISQL
commands to be processed automatically as soon as ISQL begins. If the EXEC
also starts 1ISQL, the user of the EXEC need not know anything about ISQL.

You can write specialized EXECs for your own use or for other users. Figure 116
shows an EXEC that is written in the REXX language:

/* this exec develops a report for project mean numbers x/
Queue 'SELECT * FROM PROJ_ACT ORDER BY PROJNO'
Queue 'FORMAT GROUP PROJNO'
Queue 'FORMAT SUBTOTAL ACSTAFF'
Queue "FORMAT TTITLE 'PROJECT MEAN EMPLOYEES'"
Queue 'PRINT'
Queue 'END'
Queue 'EXIT'
"EXEC ISQL'
Exit /* end of exec */

Figure 116. Example of Stacked ISQL Commands in a REXX EXEC

Chapter 12. Using VM Functions 199

Prompting by Using an EXEC File

200

To create a prompt environment for a casual SQL user, you can write an EXEC like
the one shown in Figure 117. The user would run the EXEC from the CMS
environment without starting ISQL.

/* This exec prompts for a table to be viewed or printed */
Trace Value 'OFF'
Say 'WHICH TABLE WOULD YOU LIKE TO SEE?'
Parse Upper Pull tablename
Say 'WOULD YOU LIKE TO HAVE THIS TABLE PRINTED? (Y OR N)'
Parse Upper Pull printoption
Say 'YOU MUST ENTER END TO LEAVE THE DISPLAY OF THE TABLE'
If printoption = 'Y' then Do
Queue 'SELECT * FROM' tablename
Queue 'DISPLAY'
Queue 'PRINT'
Queue 'END'
End
Else If printoption = 'N' then Do
Queue 'SELECT * FROM' tablename
Queue 'DISPLAY'
Queue 'END'
End
If printoption = 'Y' | printoption = 'N' then Do
Queue 'EXIT'
'"EXEC ISQL'
End
Exit /* End of exec */

Figure 117. Example of an EXEC That Prompts the User

When you run this EXEC, the following user/system dialog occurs. If the EXEC has
a file name of MYTABLES, you type:

mytables

The system prompts you with the message WHICH TABLE WOULD YOU LIKE TO SEE?.
You type:

department

The system prompts you with the message WOULD YOU LIKE TO HAVE THIS TABLE
PRINTED? (Y OR N). You type:

y

The system prompts you with the message YOU MUST ENTER END TO LEAVE THE
DISPLAY OF THE TABLE.

The ISQL startup messages immediately follow. Then the partial display in
Figure 118 on page 201 should appear.

Interactive SQL Guide and Reference

DEPTNO DEPTNAME MGRNO ADMRDEPT

A0O SPIFFY COMPUTER SERV< 000010 AOO

BO1 PLANNING 000020 A0O
co1 INFORMATION CENTER 000030 A0O
Dol DEVELOPMENT CENTER ? A0O

D11 MANUFACTURING SYSTEM< 000060 DO1
D21 ADMINISTRATION SYSTE< 000070 DO1

E01 SUPPORT SERVICES 000050 A0O
E11 OPERATIONS 000090 EO1
E21 SOFTWARE SUPPORT 000100 EO1

* End of Result #*x 9 Rows Displayed x*xCost Estimate is Lk

Figure 118. Query Result from an EXEC

You see the ISQL signoff messages when you end the display.

Starting ISQL from a Terminal

Because ISQL is a full-screen interactive program, it must be started from a display
terminal. When a user is automatically logged on using the CP AUTOLOG
command, or when a user tries to start ISQL while disconnected, ISQL is not
started. The user must be logged on to a display terminal to start ISQL.

Disconnecting after Starting 1ISQL

Although the restriction of a logged-on display terminal applies to the starting of
ISQL, it does not apply if a user disconnects after starting ISQL. For example, if
you have an EXEC that starts ISQL and then executes a number of ISQL SELECT
statements, you can disconnect your display terminal after ISQL is started and the
remainder of your SELECT statements are executed.

Avoid using commands and statements that result in the issuance of ISQL
decision-type messages. For example, stacking a SET AUTOCOMMIT OFF
command causes the following message to be issued:

ARI7602D You are in a logical unit of work. Type COMMIT to
have a COMMIT issued for you or ROLLBACK to
have a ROLLBACK issued for you.

Your response to this message cannot be accepted from the command stack
because of the interactive design of ISQL. You must type the response yourself.

Chapter 12. Using VM Functions 201

202 Interactive SQL Guide and Reference

Chapter 13. ISQL Commands

This chapter contains syntax diagrams, semantic descriptions, rules, and situations
where you would use ISQL or operator commands. The commands are organized
alphabetically.

© Copyright IBM Corp. 1987, 1998 203

BACKOUT

BACKOUT

A\
A

»»—BACKOUT

BACKOUT is an ISQL command that is meaningful only while you are using the
INPUT command with AUTOCOMMIT on. It nullifies all changes made since the
last SAVE command. If no SAVE command has been issued, all changes are
nullified since the start of the INPUT command.

With AUTOCOMMIT off, BACKOUT has no effect. You must enter a ROLLBACK
statement to nullify all input data. This also nullifies all changes made during the
current logical unit of work. You must end the INPUT command (by using the END
command) before issuing the ROLLBACK statement.

204 Interactive SQL Guide and Reference

BACKWARD

BACKWARD

\
A

rows_integer—

»>—BACKWARD i:
MAX

This ISQL display command displays the rows above or before those currently
being displayed.

rows_integer
is a humber that indicates the number of rows backward that you want to move
the display.

MAX
moves the display to the beginning of the query result.

If neither rows_integer nor MAX is specified, the display moves backward half a
display.

Moving backward through the query result is limited: you can go backward to a limit
of one full display from the last FORWARD command, or you can return to the
beginning of the query result by issuing BACKWARD MAX.

Scrolling backward a half display at a time can be done by pressing PF7 (or PF19).
Because you can reset your PF keys, you can assign the BACKWARD function to
any PF key. The default function key is PF7 (or PF19).

Note: You cannot receive a prompt response when you enter a BACKWARD MAX
command, because the query must be reexecuted to move the display back
to the first display.

Chapter 13. ISQL Commands 205

CANCEL

CANCEL

»—CANCEL

A\
A

CANCEL is an ISQL command that you can use to cancel a command, an SQL
statement, or logical unit of work in progress. CANCEL can be typed anytime you
are entering data, commands, or statements.

— DB2 Server for VSE

Canceling a command or statement also causes a ROLLBACK to be processed.

— DB2 Server for VM

Canceling a command or statement also causes a ROLLBACK RELEASE to be
processed. If you have previously issued an explicit CONNECT command, you
must reconnect to the database manager.

If AUTOCOMMIT is on and the previous statement was an SQL INSERT, UPDATE,
or DELETE statement that affected more than one row, all changes made by the
previous statement are rolled back.

If AUTOCOMMIT is off, all work since the last COMMIT, or since the beginning of
the logical unit of work performed by the following, is rolled back:

e SQL statements
¢ |SQL commands that cause changes to table data, stored SQL statements, or
routines.

—— DB2 Server for VSE

Except for long-running SQL statements, to start a cancel operation, type:

cancel

—— DB2 Server for VM

To start a cancel operation, type:

cancel

When canceling a command with AUTOCOMMIT off, you are prompted to verify if a
CANCEL should be performed. If you type NO, the CANCEL processing is not
performed. If you answer YES, all changes made to the data since the last
COMMIT, or since the start of the logical unit of work if there was no COMMIT, are
rolled back.

When you cancel an ISQL INPUT command with AUTOCOMMIT on, all changes
since the last SAVE command, or since the start of the INPUT command if there
was no SAVE command, are rolled back.

206 Interactive SQL Guide and Reference

CANCEL

— DB2 Server for VSE

Long-running SQL statements are those for which message ARI70441 is issued
to tell you that the terminal is free. These statements are cancelled by pressing
CLEAR and typing the CANCEL command prefixed by the ISQL transaction
identifier, ISQL. (If your location has redefined the ISQL transaction identifier,
prefix the CANCEL command with the transaction identifier that your location
has defined.)

The command looks like:

isql cancel

When canceling long-running SQL statements, a ROLLBACK is always
performed.

Chapter 13. ISQL Commands 207

CHANGE

CHANGE

»»—CHAnge—/—replaced_string—/ n

\
A

r'eplacing_str'ing—/J

CHANGE is an ISQL command that modifies the current SQL statement in the SQL
command buffer and displays the results. If data in the SELECT or FROM clauses
of a SELECT statement is changed, associated formatting information for that
statement is erased. However, if the changed information is contained in the
WHERE, GROUP BY, ORDER BY, or HAVING clauses, associated formatting
information for the statement is saved.

/ is any non-blank character that identifies the beginning and end of a string. The
slash is a good choice unless you are changing data that contains a slash. This
character must be separated from the command name by at least one blank
and must not occur in either string.

replaced_string
is the characters to be replaced in the current SQL statement. The string can
contain DBCS characters.

replacing_string
is the characters to replace the first occurrence of the characters in
replaced_string. If replacing_string is omitted, the first occurrence of
replaced_string is deleted. The string can contain DBCS characters.

Example: If the current SQL statement is:
select * from activity

and you type the following ISQL CHANGE command:
change /*/actno/

the result in the SQL command buffer is:

select actno from activity

208 Interactive SQL Guide and Reference

COLUMN

COLUMN

1

\4
A

»»—COLumn [
position_in_select_list—

COLUMN is an ISQL display command that displays the query result to be
formatted so that it begins with the specified column at the left edge of the display.

blank
causes column 1, or the first displayable column if column 1 is being excluded,
to be displayed at the left edge of the display.

position_in_select_list
is the number of the specified column.

The number refers to the columns provided by the SELECT statement, not
those currently displayed. You must choose a number that represents the
desired column’s position in the SELECT clause of the SELECT statement that
provided the query result.

If the value of position _in_select list represents a column being excluded, the
display starts at the next column to the right that is not being excluded. If there
are no more displayable columns to the right, a blank display is the result.

Specifying a value greater than the number of columns in the query result
displays the last column or a blank display if the last column is being excluded.

Chapter 13. ISQL Commands 209

COUNTER

COUNTER

»>—COUNTER *

name

\
A

210

COUNTER is an operator command that is used primarily to monitor system
activity. It is not allowed during a logical unit of work. Before typing COUNTER, you
must end any logical unit of work that is in progress.

The SHOW command can only be used when the target application server is a
local application server. It cannot be used when the application server is a remote
application server.

* specifies that all counters are to be displayed.

name
is the name of the counters to be specified. Valid names are:
BEGINLUW DBSSCALL LDIRBUFF PAGEREAD
CHKPOINT DEADLCK LOCKLMT PAGWRITE
DASDIO DIRREAD LOGREAD RDSCALL
DASDREAD DIRWRITE LOGWRITE ROLLBACK
DASDWRIT ESCALATE LPAGBUFF WAITLOCK

For an explanation of these counters, see the DB2 Server for VSE & VM
Operation manual.

The COUNTER command results in one or more displays. To proceed to the next
display, press CLEAR. It is not possible to move backward. You must first type the
END command, and then retype the COUNTER command. To exit from the
COUNTER command, type END. The COUNTER command is not available on a
non-DB2 Server for VSE & VM application server or if you are using DRDA
protocol.

Note: If the national language of the application server differs from the national
language that the user set for the ISQL session, the messages generated
by this operator command are issued in the national language of the
application server.

Interactive SQL Guide and Reference

DISPLAY

DISPLAY

»»—DISPLAY

\
A

DISPLAY is an ISQL display command that can only be used in a routine. When
encountered, DISPLAY causes its associated SELECT statement results to be
displayed at your display terminal.

Any ISQL display commands placed in the routine after the associated SELECT
statement and before the DISPLAY command affect the display at the terminal.
You can, in addition, format the display or print the query result by typing ISQL
display commands from the keyboard after the query result is displayed, or from the
routine after the display is ended and before the END statement that is associated
with the SELECT statement whose results are being displayed. To end the display
of the query result initiated by the DISPLAY command and to return to the routine,
type the ISQL END command from the keyboard.

Example: In the following routine, you select all the rows from the DEPARTMENT
table, specify the format commands to be performed on the rows, and display the
formatted results on the display terminal. You must type end to end the display.

select * from department
format separator ' | '
format ttitle 'departments'
display

end

To get the same result as the above routine, you can type these lines in a routine:

select * from department
display
end

to see the DEPARTMENT table. Next, type these commands from the keyboard:

format separator ' | '
format ttitle 'departments'

and you see the DEPARTMENT table with column separators and a title just like
the first example.

Chapter 13. ISQL Commands 211

END

END

A\
A

»»—END

END is an ISQL command that ends the display of a query result, an operator
command, a SELECT statement in a routine, or an ISQL INPUT command. Query
results, operator commands, or the INPUT command can also be ended by
pressing the PF3 key (or PF15 key). Because you can reset your PF keys, you can
assign the END function to any PF key. The default function key is PF3 (or PF15).

212 Interactive SQL Guide and Reference

ERASE

ERASE

»»—ERAS E—Ls tored_statement_name

\ 4
A

ERASE is an ISQL command that erases one or more stored SQL statements.

stored_statement_name
is the name of the stored SQL statement.

Chapter 13. ISQL Commands 213

EXIT

EXIT

»»—EXIT

\4
A

EXIT is an ISQL command that ends the current ISQL session. If AUTOCOMMIT is
on, the session ends immediately. If AUTOCOMMIT is off, you are prompted for a
response so that the current logical unit of work can be committed or rolled back
before you exit the session.

214 Interactive SQL Guide and Reference

FORMAT

FORMAT

\4
A

»—FORMAT—L—[BTITLEJ
TTITLE i:strinﬂ

ERASE
—COLumn—column_id DPLACes—integer
NAME—string
WIDTH—integer—j

OFF—
ZEROs E
ON—
—EXCLude column_id
AL BuT- L ¥ oy idL— J
(column_id)

GROUP column_id
SUBTotal— |—EXCEPTJ L m J
TOTal (column_id)

ERASE

—INCLude
column_id
ONLY I e
(column_id)

—NULL—string

ON—
—OUTLINE [5
OFF

2

BLANKSs

—SEParator

|—integer—
string

20
—VARChar [
integer—

FORMAT is an ISQL display command that controls the format of the query result
currently being displayed. Modifications made to the display format by a FORMAT
command are reflected on the current display and the printed output obtained from
any subsequent PRINT command.

You can perform formatting only on the first 45 columns of a query result.

Any formatting command containing the keywords EXCLUDE, GROUP, INCLUDE,
ON/OFF, OUTLINE, SUBTOTAL, or TOTAL, causes the query to be reexecuted.

Note: You can use DBCS characters in strings or column lists.

BTITle
specifies the bottom title to be printed on reports. This bottom title is centered
on the bottom line of the report. Unless specified, no bottom title is printed.

string
is the characters to use for the bottom title on a subsequent PRINT
command.

Chapter 13. ISQL Commands 215

FORMAT

The maximum length of the bottom title is that which fits on a line of the
page (up to a maximum of 100 characters). If the bottom title exceeds the
maximum, only those characters that fit on the line are printed.

Enclose the title in single quotation marks if it contains any blanks, but do
not include any single quotation marks in the title itself.

ERASE

causes the current bottom title to be deleted, resulting in no bottom title.

If FORMAT BTITLE is issued without either ERASE or a character string, the
current bottom title is displayed if it does not contain DBCS data. If the title
does contain DBCS data, message ARI79701 is issued.

specifies the top title to be printed on reports. This top title is centered on the
top line of the report between the date and page number. If no top title is
specified, the first 100 characters of the SELECT statement are used for the
top title on printed reports.

string

is the characters to use for the top title on a subsequent PRINT command.

The maximum length of the top title is that which fits on the top line
between the date and page number (to a maximum of 100 characters). If
the top title exceeds the maximum, only those characters that fit between
the date and page number are printed.

Enclose the title in single quotation marks if it contains any blanks, but do
not include any single quotation marks in the title itself.

ERASE

causes the current top title to be deleted and the default to be used. The
default TTITLE is the first 100 characters of the SELECT statement.

If FORMAT TTITLE is issued without ERASE or a character string, the current
top title is displayed if it does not contain DBCS data. If the title does contain
DBCS data, message ARI79701 is issued.

COLumn
provides display formatting for a particular column.

column_id

specifies the column to be formatted.

If a number n is specified, it identifies the column to be formatted as the nth
column of the query result. The number refers to the position of the
columns provided by the SELECT statement, not those currently displayed.
Therefore, you must choose a number that represents the position of the
desired column in the SELECT clause of the SELECT statement that
provided the query result.

If a number is not specified, column_id refers to the current column heading
of the column to be formatted. Enclose the name in single quotation marks
if it either contains a blank or refers to a column with a solely numeric
heading.

If the column_id represents a column being excluded, the formatting
specified is performed on the excluded column although you cannot see the
formatting until the column is included.

216 Interactive SQL Guide and Reference

FORMAT

The following keywords describe how the current display is to be formatted
for the column specified by column_id:

DPLACes
specifies the number of decimal places (integer) to be displayed for a
numeric field. Rounding is not performed. The DPLACes must be less
than the column width.

NAME
specifies a column heading to be used for the display.

string
is the actual column heading to be displayed.

A maximum of 30 characters can be used for the column heading. All
characters except single quotation marks are valid. Enclose the column
heading in single quotation marks if it contains a blank, but do not
include any single quotation marks in the column heading itself.

WIDth
specifies the display length attribute (integer) of the column.

integer
For character type columns, the leftmost integer characters are
displayed.

For numeric type columns, the leftmost integer significant digits
counting the sign and decimal marker, if any, are displayed. The
sign character for a positive number is a blank.

For VARCHAR type columns, characters up to the current setting
of VARCHAR (using a SET or FORMAT command) are displayed.
For GRAPHIC type columns, integer represents the number of
DBCS characters. Two bytes are reserved for the SO/SI
characters.

ZEROs
specifies whether leading zeros for numeric columns are displayed
(ON) or not (OFF).

EXCLude
specifies columns to be excluded (omitted) from the display. When SQL
processes a FORMAT command containing this keyword, it reexecutes the
qguery and repositions the display to the top of the query result.

ALL BUT
indicates that all columns except those specified are excluded. For
example:

format exclude all but (1 job 4)

includes the JOB column, and columns 1 and 4, but excludes all other
columns.

column_id
specifies the column to be formatted.

If a number is specified, it identifies the column to be formatted as the nth
column of the query result. The number refers to the position of the
columns provided by the SELECT statement, not those currently being

Chapter 13. ISQL Commands 217

FORMAT

displayed. Therefore, you must choose a number that represents the
position of the desired column in the SELECT clause of the SELECT
statement that provided the query result.

If a number is not specified, column_id refers to the current column heading
of the column to be formatted. Enclose the name in single quotation marks
if it contains a blank or refers to a column with a solely numeric heading.

When more than one column is specified, separate the column_ids with a
blank and enclose them in parentheses.

For example, the command:
format exclude (3 5)

causes the third and fifth column of the original position in the query result
to be excluded from the display. The command:

format exclude job

prevents the JOB column from being displayed during the current query
result. If JOB is selected two or more times, only the first occurrence of the
JOB column is excluded.

GROUP

specifies the columns to outline (when outlining is on) and the columns to use
for determining when subtotals are taken. Subtotals are taken whenever the
values change in the columns specified. When SQL processes a FORMAT
command containing this keyword, it reexecutes the query and repositions the
display to the top of the query result.

SUBTotal

specifies the columns in which subtotals are to be calculated. Subtotals are
taken whenever the values change in the columns being grouped. A (final) total
is also provided for the columns unless otherwise specified by a FORMAT
TOTAL command. When SQL processes a FORMAT command containing this
keyword, it reexecutes the query and repositions the display to the top of the
query result.

TOTal

specifies the columns in which (final) totals are to be calculated. If not
specified, totals are provided for all columns being subtotaled. When SQL
processes a FORMAT command containing this keyword, it reexecutes the
qguery and repositions the display to the top of the query result.

EXCEPT
specifies the columns to be grouped or totalled or subtotaled except those
specified by column_id.

column_id
is the name or position of each column in the query result to be grouped for
outlining, subtotals, or totals.

When used with the SUBTOTAL and TOTAL keywords, column_id specifies
the columns on which subtotals or totals are to be calculated.

If a number is specified, it identifies the column to be formatted as the nth
column of the query result. The number refers to the position of the
columns provided by the SELECT statement, not those currently displayed.
Therefore, you must choose a humber that represents the position of the

218 Interactive SQL Guide and Reference

FORMAT

desired column in the SELECT clause of the SELECT statement that
provided the query result.

If a number is not specified, column_id refers to the current column heading
of the column to be formatted. Enclose the name in single quotation marks
if it contains a blank or refers to a column with a solely numeric heading.

When specifying more than one column, separate the column_ids with a
blank and enclose them in parentheses.

If the column represents one that you are excluding, ISQL groups the
columns using that excluded column, although you do not see the excluded
column.

Subtotals or totals are calculated on the excluded column. You cannot see
the subtotals or totals until the column is included. When arithmetic errors
occur, the value of the column in error is calculated as zero.

The usual use of GROUP is to first order the rows of the columns that you
want grouped. Use an ORDER BY clause in the SELECT statement issued
to obtain the query result. The left to right ordering of the columns
themselves depends on the order in which they appear in the SELECT
clause of the SELECT statement.

Rows containing arithmetic errors from an outer select are displayed
together at the end of the list, followed by rows containing NULL values.
Rows containing arithmetic errors are displayed as asterisks (*).

ERASE
deletes all the previous specifications of GROUP for the current query
result. When used with SUBTOTAL, ERASE suspends subtotals. When
used with TOTAL, ERASE suspends totals.

INCLude
reverses the effect of a previous FORMAT EXCLUDE command. When SQL
processes a FORMAT command containing this keyword, it reexecutes the
qguery and repositions the display to the top of the query result.

ONLY
indicates that only those columns specified are displayed; all others are
excluded.

Note: Do not use ONLY for a column name with an INCLUDE keyword. In
this case, use its column number.

column_id
specifies the column to be formatted.

If a number n is specified, it identifies the column to be formatted as the nth
column of the query result. The number refers to the position of the
columns provided by the SELECT statement, not those currently being
displayed. You must choose a number that represents the position of the
desired column in the SELECT clause of the SELECT statement that
provided the query result.

If a number is not specified, column_id refers to the current column heading
of the column to be formatted. Enclose the name in single quotation marks
if it contains a blank, or if it refers to a column with a solely numeric
heading.

Chapter 13. ISQL Commands 219

FORMAT

When more than one column is specified, separate the column IDs with a
blank and enclose them in parentheses.

When arithmetic errors occur, the value of the column in error is calculated
as zero.

The columns that are not mentioned in the INCLUDE command, and that
are not currently being excluded, continue to participate in the display. If
INCLUDE is issued by itself and with no options, all excluded columns are
restored.

NULL

specifies the characters to display for null fields.

string
specifies the actual characters to display (up to a maximum of 20). If blanks
are included, you must enclose the string in single quotation marks, but do
not use single quotation marks in the string itself.

For example, the following command,
format null empty
causes the word EMPTY to be displayed for all null fields.

A question mark (?) is displayed for null values unless otherwise specified with
a FORMAT or SET command.

OFF

controls the status of outlining, subtotals, and totals on query results. When
SQL processes a FORMAT command containing this keyword, it reexecutes
the query and repositions the display to the top of the query result. Until OFF is
specified, outlining, subtotals, and totals are active.

ON
permits outlining, subtotals, and totals. The ON status stays in effect for the
current query result until you type FORMAT OFF.

OFF
suspends outlining, subtotals, and totals.

OUTLINE

controls the outline report format for columns specified with FORMAT GROUP.
When SQL processes a FORMAT command containing this keyword, it
reexecutes the query and repositions the display to the top of the query result.

If OUTLINE is not specified, outlining is performed whenever GROUP is
specified unless you type FORMAT OFF.

ON
specifies that successive duplicate values in grouped columns are repeated
only when they are the first line at the top of the display or at the beginning
of each page on printed reports. If the first line is a subtotal line or a blank
line between groups, successive duplicate values are not displayed or
printed at the beginning of the next group.

OFF
specifies that successive duplicate values in grouped columns are to be
displayed wherever they occur.

220 Interactive SQL Guide and Reference

FORMAT

SEParator integer BLANKs
specifies the number of spaces (integer) to be displayed between columns. The
maximum number of blanks that can be specified is 254. Unless otherwise
specified with a FORMAT or SET command, the separation between columns
consists of two blanks.

SEParator string
specifies the characters to be displayed between columns. If blanks are
included, the string must be enclosed in single quotation marks, but do not
include any single quotation marks in the separator itself.

For example, if you want a vertical line between the columns, you type:
format separator ' | '

which places a blank, a vertical bar, and a blank between all columns. The
maximum number of characters that can be used for a separator is 254.

VARChar
specifies the display width of variable length columns.

integer
is the length desired up to 254. Unless otherwise specified with a SET
command, ISQL displays only the first 20 characters of a variable-length
column.

The SET command value for VARCHAR columns can be overridden for a
particular query by specifying the desired value with this keyword on the
FORMAT command.

When you type a FORMAT VARCHAR, the SELECT statement is reissued and
you are returned to the beginning of the query result.

Example: The following FORMAT commands used during a query exclude the
first column, change the name of the PRSTAFF column heading to ESTMEAN,
display all projected mean staff numbers in this column with three decimal places,
and display leading zeros:

format exclude 1

format column prstaff name estmean
format column estmean dplaces 3
format column estmean zeros on

Note: If you rename a column heading, further FORMAT commands that refer to
that column by name must use the new name. When referring to the
column by a number, you must specify its original position in the SELECT
clause of the SELECT statement.

You can specify more than one keyword in a FORMAT command. For example, the
FORMAT commands described above can be expressed with a single command:

format exclude 1 column prstaff name estmean dplaces 3 zeros on

By using more than one keyword in a single FORMAT command, you can reduce
the amount of data you must type and improve the performance of ISQL.

Chapter 13. ISQL Commands 221

FORWARD

FORWARD

\
A

»>—FORWARD i:

rows_integer—
MAX———

FORWARD is an ISQL display command that lets you move your display forward
through a query result.

rows_integer
is the number of rows you want to move forward.

MAX
causes the last display of the query result to be displayed along with an
indication of the number of rows in the query result and the Query Cost
Estimate (QCE) message. For query results that contain many rows, a
FORWARD MAX command can take a long time.

If nothing is specified, the display moves forward one-half of a display.

Scroll forward through the query result one-half of a display at a time by typing
FORWARD. (You can also press PF8 or PF20.) Because you can reset your PF
keys, you can assign the FORWARD function to another PF key.

You can activate FORWARD by pressing ENTER if it is the first display command

to be issued for a query result. The display moves forward one entire display each
time you press ENTER.

222 Interactive SQL Guide and Reference

HELP

HELP

»»—HELP

\
A

CONTENTs—
topic_name—

This 1ISQL command retrieves online HELP information. This online HELP
information is for ISQL users who need quick reference information at their display
for:

SQL statements
ISQL commands
Messages, codes, and SQLSTATEs.

Note: The online HELP information is not serviced by the IBM Support Center.
The information is extracted from this book, and from the DB2 Server for
VSE Messages and Codes and DB2 Server for VM Messages and Codes
manuals. Use the readers’ comment form in the back of these books to
express concerns and comments on this information.

You can view this information in the language of your choice if your site chose to
install different language versions of the online HELP information. See the SET
command later in this chapter for more information on setting the language of your
choice.

Online HELP information is stored as a table. After you retrieve a topic, you can
use any of the ISQL display commands, or PF keys that provide display
commands, to assist in viewing the text. You can also type SQL statements or
ISQL commands at this time. You can format retrieved topics with the ISQL
FORMAT command and print them with the ISQL PRINT command. A top title is
provided for printed topics.

CONTENTS
displays the available online topics and the correct names to use in retrieving
specific topics.

topic_name
is the name of the topic to be retrieved. It can be one or more words and can
be placed within quotation marks. Most topic_names are either a statement
name (such as SELECT or INSERT), a message number (such as ARI7399I or
ARI7307A), a message code (such as -205 or 100), or an SQLSTATE (such as
SQLSTATE 01512). For example, to retrieve online HELP information for the
UPDATE statement, type:

help update

If the HELP command is issued with no parameters, a description of how to use the
HELP command is returned along with a list of the available topics. The HELP
command without additional parameters can be invoked by pressing PF1 (or PF13).
Because you can reset your PF keys, you can assign the HELP function to any PF
key. The default function key is PF1 (or PF13).

You can type SQL statements while the online HELP information is displayed.

Chapter 13. ISQL Commands 223

HOLD

HOLD

»»—HOLD—sql_statement

\
A

HOLD is an ISQL command that prevents an SQL statement from being processed
when it is typed. The SQL statement is placed in the SQL command buffer and
remains there until it is replaced with another SQL statement. You can check the
SQL statement for typing errors before it is processed by a START command. You
can also type an SQL statement containing placeholders and substitute values for
the placeholders when the statement is started using a START command.

sql_statement
is the SQL statement to be held. (ISQL commands cannot be held).

The following example illustrates the use of a HOLD command to place an SQL
statement in the command buffer without executing it:

hold select * from employee

The HOLD command can also be invoked by pressing PF9 (or PF21) prior to,
during, or after typing. By pressing PF9 instead of ENTER, the SQL statement
typed is placed in the SQL command buffer without being processed. The HOLD
PF key does not store the command in the SQL command buffer; you must press
ENTER after pressing HOLD PF. The default key for the HOLD function is PF9 (or
PF21).

224 Interactive SQL Guide and Reference

IGNORE

IGNORE

A\
A

»—IGNORE

IGNORE is an ISQL command that nullifies a command, statement, or data that is
being typed on multiple input lines. Type it at the start of the input area.

The following example shows how the IGNORE command can be used to correct a
table-naming error:

select projno,actno,acstaff -
from emp_act -

ignore

select projno,actno,acstaff -
from proj_act -

where projno = 'MA2100'

Chapter 13. ISQL Commands 225

INPUT

INPU

T

»»—]

NPut—[table_name
view_name

\
A

L (—Eéo lumn_name—) 1

226

INPUT is an ISQL command that enables you to insert several rows of data into a
table or view.

INPUT is issued to identify the table, view, or column(s) where the data is inserted.

table_name
view_name

is the name of the table or view in which data is to be inserted. A view_name
can only be used if it applies to a single table. For more information, see
“Updating Tables on Which Views are Defined” on page 162. The names can
contain DBCS characters.

column_name

is one or more column names, separated by commas, into which data is to be
inserted. The order in which the column names are specified determines the
order in which the data must be typed. All columns of the new row that are not
listed receive a null value, and unlisted columns must have been defined to
accept null values or an error occurs. This is because the INPUT command is
essentially inserting a new row of data, and null values are inserted into any
columns not specified. Omitting the column_name is the same as naming all
the columns of the table in their created order. The names can contain DBCS
characters.

Successful execution of the INPUT command causes the column names and their
data types to be displayed in the order in which the data must be typed. Data can
then be typed one row at a time. Press the ENTER key after each row is typed.

When typing data:

Use commas to separate each data item of a row.

Enclose the data item in single quotation marks if it is a CHAR, VARCHAR,
DATE, TIME, or TIMESTAMP data type.

Do not enclose the keyword NULL, or any of the special registers, such as
CURRENT SERVER, in single quotation marks.

If your data includes a single quotation mark, type two single quotation marks.
When you type:

'julie's book shop'
JULIE'S BOOK SHOP is inserted into the table.
If you are typing graphic data, you type:

G'so...si

where so stands for shift-out character, si stands for shift-in character, and ...
is graphic data (a DBCS character string).

Interactive SQL Guide and Reference

INPUT

Note: You can use N' as a synonym for G'
e |f you are typing hexadecimal data, you type X'F140F2"'.

 |f all the data for a single row does not fit in the input area, type the
continuation character. Press ENTER to continue.

e Be sure to include a space before the continuation character, if required,
because the continuation character does not provide one.

¢ When null values are allowed, you can type NULL to insert a null value for the
data-item value.

After you press ENTER for a row of data, the data is moved to the output area of
the display and the input area is cleared so that another row of data can be typed.
When all the data has been typed, type the END command to signify the end of
input data.

With AUTOCOMMIT on, the data you type is not committed to the table until the
INPUT command is ended by the END command or the END PF key (usually PF3).
You can use the ISQL SAVE command to commit data in the table prior to typing
an END command.

The SAVE command stores all data typed since the previous SAVE command or, if
one had not been typed, since the start of the INPUT command. It has the same
effect as the END command but lets you continue to type data.

In addition to storing data prior to ending an INPUT command, you can also
prevent the storing of data typed since the last SAVE command or since the start of
the INPUT command if no SAVE has been issued. You type the ISQL BACKOUT
command instead of more data.

If AUTOCOMMIT is off, the data you type on an INPUT command is not committed
to the table until you type a COMMIT command after ending the INPUT command.
With AUTOCOMMIT off, the SAVE and BACKOUT commands have no effect. See
“Understanding Referential Integrity” on page 72 for more information about
maintaining the integrity of data in tables.

Example: The following illustrates how you can fill the ACTIVITY table by using
the INPUT command:

input activity

160, 'ADMDB', 'Adm databases'

100, 'TEACH', 'Teach classes'
end

Chapter 13. ISQL Commands 227

Interactive Select

Interactive Select

interactive-select-statement

»—| fullselect } 5 ><
L , WITH RRT
ASC CS
ORDER BY column_name [_|J UR
integer—I DESC
fullselect:
}—[subselect . ' | |
(fullselect) LEUNION—_]—EsubseZect
UNION ALL (fullselect)
subselect:

ALL
F—SELECT [

|—DISTINCT— s

expression
table_name. *
view_name. *

correlation_name. *—

»

>—FROM—£’[tabZe_name
view_name—I |—corre lat‘ion_nameJ |—WHERE—sear‘ch_condi 1,“z'onJ

v

t [’—_L |—HAVING—search_condi tionJ
GROUP BY column_name

The interactive-select statement retrieves data from a table or view. The data
retrieved can only be viewed; you cannot change it. For more information about the
terminology used in this diagram, refer to the DB2 Server for VSE & VM SQL
Reference manual.

If a SELECT statement contains a placeholder in the WHERE, GROUP BY,
ORDER BY, or HAVING clauses, FORMAT information is saved until the next
SELECT statement is entered. Formatting information is saved permanently if the
SELECT statement is stored. However, if the SELECT or FROM clauses contain
placeholders or parameters, FORMAT information is not saved. In addition,
FORMAT information is not saved if you change any data in the SELECT or FROM
clauses by using the CHANGE command.

When you enter a SELECT statement from a terminal, the row length of the
information you can see at one time is limited by the terminal screen size.

The number of bytes per row includes the bytes used as column separators.

UNION
combines two or more queries into a single query by merging the rows returned
by each query. Duplicate rows are eliminated.

ALL
combines the results of two or more queries without eliminating the
duplicate rows.

228 Interactive SQL Guide and Reference

Interactive Select

ALL
specifies that duplicate values are to be selected. If ALL is specified when you
select all department numbers from the PROJECT table, each and every
department number listed in the department number column is selected. This is
the default.

DISTINCT
specifies that duplicate values are not to be selected. DISTINCT can be used
only once for each SELECT statement. You can use it to eliminate duplicates
from the SELECT result:

select distinct deptno from project

You can also use it to eliminate duplicates from a column function:
select count (distinct deptno) from project

If you specify DISTINCT, the maximum number of columns you can put in the
expression list is 16. In addition, the length of the encoded key derived from the
expression list must not exceed 255 characters. That is, the sum of the lengths
of the columns in the expression list, plus approximately 25% of the lengths of
those columns that are of varying-length character type, must not exceed 255
EBCDIC or 127 DBCS characters.

* indicates that the data in all the columns is to be selected.

Note: If the table contains more than 45 columns, only the first 45 columns
will be displayed. To see the other columns in the table, you can create
a view. A view may contain no more than 140 columns. If more columns
are needed, you can create additional views.

expression
is a definition of the data desired. An expression may be a column name, a
constant, a character expression, a special register, a column function, a scalar
function, an arithmetic expression, or a labeled duration.

You can specify a list of expressions, separating each with a comma, and the
items are retrieved in the same left-to-right order as they appear in the list. The
value of USER is interpreted as a CHAR(8) string whose value is the user ID of
the user currently connected. The maximum number of columns that you can
specify in the list is 45.

You can use the following operators to connect numeric data types:

+ (plus, add)
- (minus, subtract)
* (times, multiply)
/ (divided by)

If you use these operators for numeric data types, see the DB2 Server for VSE
& VM SQL Reference manual for information about data conversion. See
“Selecting Information Using Datetime Arithmetic” on page 42 for information
on arithmetic operations for date and time values.

You can use the concatenation operator, CONCAT, to join two or more
compatible operands to form a string. An operand may be a column, a name, a
constant, or an expression.

An operand can be the result of an expression. For example, if the USER
special register is used, it is treated as CHAR(8). If the CURRENT DATE,
CURRENT TIME, CURRENT TIMESTAMP, or CURRENT TIMEZONE special

Chapter 13. ISQL Commands 229

Interactive Select

registers are used, the values are treated as the character representation of the
value in the format defined by the system. A datetime value can be
concatenated with a character string because the datetime data types are
compatible with character data types.

When varying-length operands are concatenated, only the actual length of the
operand is concatenated.

The result of the expression is the concatenation of the operand expressions.
The resulting data type is null if either operand is nullable. The resulting data
type is character if both operands are CHARACTER. If both operands are
GRAPHIC, the result data type is GRAPHIC. If both operands are fixed length,
the resulting data type is fixed length. If either operand is varying length, the
resulting data type is a varying length string. The associated defined length is
the sum of the defined lengths not exceeding 254 bytes.

In the following example, the employee number and the first name of the
employee are concatenated with a hyphen between them:

select empno concat '-' concat
firstnme from employee

If a column function is used in an expression, all expressions in the list must
contain a column function unless grouping is being performed. An example is:

select min(edlevel),avg(bonus) from employee

To use constants in the list of expressions of union operations, see “Combining
Multiple Queries” on page 151.

table_name.*
view_name.*
correlation_name.*

identifies the table or view to which the column belongs. The asterisk (*) can be
replaced with a column name. These prefixes are especially useful for
differentiating columns that have the same name, but that belong to different
tables or views. The correlation_name can be used to simplify a query, or to
join a table to itself. See “correlation_name” below for more information.

FROM table_name
FROM view_name

identifies the table or view from which data is to be selected.

table_name
view_name
is the name of the table or view.

You can further qualify the table or view by specifying the owner of the table or
view. You must separate the owner’'s name from the table name or view name
with a period. The owner’s hame is unnecessary for tables or views that you
own. You must have the SELECT privilege or DBA authority to select
information from tables or views owned by other users.

correlation_name

is the name you define as an alternative nhame for the table or view to be
selected. It can be any string up to 18 characters long, and must begin with a
letter.

WHERE search_condition

is one or more conditions to apply in selecting data.

230 Interactive SQL Guide and Reference

Interactive Select

GROUP BY column_name
A query can have the column functions SUM, AVG, MAX, MIN, and COUNT
applied to groups of rows that have matching values in a column. Rows can
also be grouped by matching values in more than one column. The definition of
the groups is specified with a GROUP BY clause.

column_name
is the name of one or more columns, separated by commas, to be used
when forming a group.

For example, the maximum, minimum, and average activity staff for each
project in the PROJ_ACT table could be selected by the following query:

select projno,max(acstaff),min(acstaff),avg(acstaff) -
from proj_act -
group by projno

When a query uses the grouping feature, it returns only one result row for each
group. Therefore, the items selected by such a query must be properties of the
groups, not properties of individual rows. The expression list may contain
columns that are also in the GROUP BY clause together with column functions
on any columns. It may not contain any non-grouped column without a column
function. If the column function COUNT(*) is used, it evaluates to the number of
rows in the group.

If any rows have a null value in a grouped column, ISQL groups the null values
in those columns together. The null values returned may be due either to
unknown column values or to arithmetic exception errors.

A grouping query may have a standard WHERE clause that serves as a filter,
keeping only those rows which satisfy the search_condition. The WHERE
clause filters out the non-qualifying rows before the groups are formed and the
column functions are computed.

The following example query finds the average and minimum activity staff for
each project, considering only activities whose starting date is 1 January 1982:

select projno,avg(acstaff),min(acstaff) -
from proj_act -

where acstdate = '1982-01-01' -

group by projno

HAVING search_condition
is one or more conditions that apply to groups. ISQL returns a result only for
those groups that satisfy the condition. The HAVING clause may contain one or
more group-qualifying conditions connected by ANDs and ORs. Each
group-qualifying condition compares some property of the group, such as
AVG(ACSTAFF), with another group property or with a constant.

The following example query lists the maximum and minimum activity staff for
various projects in the PROJ_ACT table, considering only projects that have
more than three activities:

select projno,max(acstaff),min(acstaff) -
from proj_act -

group by projno -

having count(*) > 3

One of the functions in a HAVING clause may specify DISTINCT (for example,
COUNT(DISTINCT PROJNO)). However, DISTINCT may be used only once in

Chapter 13. ISQL Commands 231

Interactive Select

a query. It may not be used in both the expression list and the HAVING
clause.

It is possible, though unusual, for a query to contain a HAVING clause but no
GROUP BY clause. In this case, the entire table is treated as one group. If the
HAVING condition is true for the table as a whole, the selected result, which
must consist entirely of column functions, is returned.

ORDER BY
orders, or sorts, the rows to be retrieved by the column(s) specified. A
maximum of 16 columns may be specified in the ORDER BY clause.

column_name
refers to a column name in the expression list. For example, to order a
query primarily by the values in the ACTNO column and secondarily by the
values in the PROJNO column, you would type:

select actno,projno,acstdate,acendate -
from proj_act -
order by actno,projno

integer
refers to the items in the expression list. For example, to order a query

primarily by the first item and secondarily by the third item of the list, you
would type:

select projno,acstdate,acendate,acstaff -
from proj_act -
order by 1,3

These items may be columns or more complex expressions such as
BONUS+COMM.

ASC

DESC
indicates the order in which results are returned: either ascending (ASC) or
descending (DESC). The default is ASC. For example, to indicate
ascending order on item 3 and descending order on item 5, you could type:

order by 3,5 desc
because ASC is the default.

In contrast, to indicate descending order on item 3 and item 5, you would
type:
order by 3 desc,5 desc

Blanks sort first in ascending order, last in descending order, and are
ignored if the data type is VARCHAR or VARGRAPHIC.

232 Interactive SQL Guide and Reference

ISQLTRACE

ISQLTRACE

\
A

»»—ISQLTrace DUMP
EDISPLAY
integer

The ISQLTRACE command traces activity within ISQL. This ISQL command traces
calls to and returns from other ISQL modules, SQL return codes, and ISQL
messages. Trace information is saved in storage for dump debugging.

DUMP

specifies that the trace information is to be printed. ISQL creates an
unformatted storage dump hardcopy of the trace table.

— DB2 Server for VM

ISQL uses the CP DUMP command to dump to the lowest priority virtual
printer defined.

—— DB2 Server for VSE

ISQL issues a CICS dump to the CICS dump data set.

You must run a job to print the dump data set.

DISPLAY
specifies that the formatted trace table is to be displayed on the display. If more
than 50 entries or more than the specified integer number of entries have been
made in the trace table, the entries wrap. The more recent entries are written
over the earlier entries. As a result, only the last 50 entries or integer number
of entries in the table are displayed. The entries are displayed in reverse order
of the order that they were put into the trace table.

integer
changes the size of the trace table. Replace integer with the number of trace

entries that are to be contained in the trace table. integer must be a number
from 50 to 1000.

Chapter 13. ISQL Commands 233

LEFT

LEFT

R

\4
A

»»—LEFT

l—integer‘—

LEFT is an ISQL display command that causes the display to start integer columns
to the left, counting from the leftmost column on the display and as long as no
columns are being excluded. The number refers to the columns provided by the
SELECT statement, not those currently displayed. You must use the order of the
columns specified in the SELECT clause of the SELECT statement that provided
the query result to determine the value to specify for integer. If the value of integer
represents a column being excluded, the display starts at the next displayable
column to the right of the excluded column.

Specifying a value greater than the number of columns remaining to the left, starts
the display at column 1 or at the first displayable column if column 1 is excluded.

If no number is specified, the display moves one column to the left. No change in
the display occurs if that column is excluded.

234 Interactive SQL Guide and Reference

LIST

LIST

\ 4
A

»—LIST—l:SQL stored-statement-name |

SET v . |
—AUTOCommit—

—CASE————
—CLAss——
—CONTInue
—COPies——
—COSTest
—DECimal
—ISOLation
—LANGuage
—NULL

—PAGEsize
—PRINTRoute—1
—RUNMode
—SEParator
—VARChar—————

Note:
1 The parameters CLAss, COPies, and PRINTRoute are not applicable to VM.

LIST is an ISQL command that lists information about stored SQL statements or
the settings of operational characteristics set by the SET command.

SQL
lists stored SQL statement(s) on the display. See “STORE” on page 257 for
more information.

stored_statement_name
is the name of the stored SQL statement to be listed. The entire statement
stored with the specified name is displayed.

* specifies that all your stored SQL statements are to be listed. The name of
each statement and its first 50 characters are displayed.

SET
lists the current operational characteristics in effect for the specified function of
the SET command. For example, if you type:

list set continue

the current continuation character is displayed. Valid functions are any of those
functions performed by the SET command.

If *is specified, the current operational characteristics in effect for all SET
command functions are listed. For a description of the SET characteristics, see
“SET” on page 245. for more information.

Examples: The LIST command can be used with more than one keyword option
in a single command. For example, if you want to display more than one
operational characteristic, you can type:

list set page case null

Chapter 13. ISQL Commands 235

LIST

If you want to display more than one stored SQL statement, you can type:

list sql myquery queryl

Stored SQL statements and operational characteristics may not be listed at the
same time.

236 Interactive SQL Guide and Reference

PRINT

PRINT

»»—PRInt

\4
A

?—_l
—CLAs s—Echaracter

1
| COPies—Linteger——

—TERMid—termid———
—DESTid—wkstat———
—SYStem

—TOUSER
LuseridJ

— DB2 Server for VSE

PRINT is an ISQL display command that requests printed copies of a query
result by sending it to the system printer, POWER remote printer, or CICS/VSE
terminal.

— DB2 Server for VM

PRINT is an ISQL display command that requests printed copies of a query
result by sending it to the system printer.

The data that is printed is based on the query result obtained by the SELECT
statement.

All the rows of the query result, as modified by FORMAT commands, are printed
regardless of the position of your display of the result. A query result that is longer
than what can be viewed on one display, can be printed with one PRINT command.
The printed report starts with the column and the character position within the
column that is at the left edge of the display when the PRINT command is typed.
The number of characters of each row that is printed depends on the setting of the
PAGESIZE WIDTH value specified by the SET command. You receive a message
if the width of the row of data exceeds the WIDTH setting.

The output class to use can be obtained from the people responsible for data
processing at your location.

— DB2 Server for VSE

Note: CLASS and COPIES cannot be specified for a CICS/VSE terminal
printer.

—— DB2 Server for VM

Note: You must use the CP TAG and CP SPOOL commands to direct printed
output.

Chapter 13. ISQL Commands 237

PRINT

CLAss
specifies the output class.

character
is the output class desired. For DB2 Server for VSE, the output class can
be a letter (A to Z).

For DB2 Server for VM, the CLASS value can be an integer (0 to 9) or a
letter (A to Z). The default is class A.

? (DB2 Server for VSE only)
specifies that the default printer class of the system is to be used.

For DB2 Server for VSE, if CLASS is not included in the PRINT command
at all, the current class set by the SET command is used. If no class has
been set by a SET command, the default printer class for the system is
used.

For DB2 Server for VM, there is no SET command for CLASS. You can set
the CLASS value by a CP SPOOL command.

COPies
specifies the number of copies.

integer
is the number of copies desired. For DB2 Server for VSE, you can request
up to 99 copies. For DB2 Server for VM, you can specify a COPIES value
from 1 to 255.

If this keyword is not specified, one copy is the default unless otherwise
determined by a SET command (in DB2 Server for VSE).

— DB2 Server for VM

You can also use the CP SPOOL command to specify the humber of
copies. The value for copies that is specified on the CP SPOOL
command remains in effect until another value is specified by another
CP SPOOL command.

Note: If you specify the number of copies on the PRINT command
after you specified it using a CP SPOOL command, the PRINT
command quantity is used for that print operation. All following
PRINT commands use the quantity specified by the CP SPOOL
command, unless you specify it using the COPIES keyword.

Because you can reset your PF keys, you can assign the PRINT
function to any PF key. The default function key is PF4 or PF16.

TERMid (DB2 Server for VSE only)
specifies that printed output is to be directed to the designated CICS/VSE
terminal.

termid
is the terminal identifier of the CICS/VSE terminal that you want. termid
must be from one to four alphanumeric characters.

DESTIid (DB2 Server for VSE only)
specifies that the printed output is to be directed to the designated POWER
remote workstation.

238 Interactive SQL Guide and Reference

PRINT

wkstat
is the ID of the desired remote workstation. wkstat can be any number from
0 to 250. When wkstat is 0, the printed output is to be directed to the
system printer.

SYStem (DB2 Server for VSE only)
specifies that the printed output is to be directed to the system printer.

TOUSER (DB2 Server for VSE only)
specifies that the printed output is to be directed to a user identified by userid.

userid
is the VSE POWER user identifier of the user to whom the output is being
spooled. An identifier cannot be longer than 8 alphanumeric characters.

If you enter the PRINT TOUSER command without specifying a userid,
ISQL spools the output to the ISQL user ID used at time of log on.

The PRINT TOUSER nnn command has the same effect as the PRINT
DESTid nnn command, where nnn is the ID of the remote workstation to
which you want to direct your printed output. This ID can be any number
from 1 to 250.

—— DB2 Server for VSE

Any TERM, DEST, or SYS indication on the PRINT command applies for that
particular PRINT operation only.

The PRINT command can be started by pressing PF4.

Each printed page is numbered and dated at the top. A title is automatically
provided at the top of each printed page. This title consists of the first 100
characters of the SELECT statement issued unless you specified your own title with
an ISQL FORMAT command.

You can specify more than one keyword option on a single PRINT command. For
example, the following command specifies both the class and number of copies:

print copies 3 class a

—— DB2 Server for VM

If there is an error in the command, all valid changes are made until the mistake
is determined. For example, in the following command, you type a $ sign
instead of the letter a:

print copies 3 class $

The command sets the number of print copies to 3. However, the class remains
at the default class A, because $ is an incorrect output class. This output class
error does not change the number of copies to the original value. Neither does
the number of copies or the class change from their current settings if the
following command is issued:

print class $ copies 3

The output class value is again incorrect, so processing stops when this error is
detected.

Chapter 13. ISQL Commands 239

RECALL

RECALL

\
A

stored_statement_name—

»»—RECALL i:
PREVIOUS

RECALL is an ISQL command that retrieves a stored SQL statement. The stored
statement is inserted into the SQL command buffer and is shown in your display.
You must enter the START command before the statement is started.

stored_statement_name
is the name of the stored SQL statement to be recalled.

PREVIOUS
specifies that the previous SQL statement (the one typed prior to the current
SQL statement) is to be recalled. The current SQL statement is then saved with
the name PREVIOUS.

Entering RECALL with no name specified, or pressing the appropriate PF key,
displays the statement currently contained in the SQL command buffer. The
RECALL command can be invoked by pressing PF5. You can assign the RECALL
function to any PF key; the default is PF5 or PF17.

240 Interactive SQL Guide and Reference

RENAME

RENAME

»—RENAME—o1d_stored_statement_name

v

»—new_stored_statement_name

A\
A

RENAME is an ISQL command that changes the name of a stored SQL statement.

old_stored_statement_name

is the current name of the stored SQL statement. The name PREVIOUS should
not be used.

new_stored_statement_name

is the new name for the stored SQL statement. It can be up to 8 characters. Do
not use the name PREVIOUS.

Chapter 13. ISQL Commands 241

RIGHT

RIGHT

»>—RIGHT

—

|—integer—

\4
A

RIGHT is an ISQL display command that causes the display to start integer
columns to the right, counting from the leftmost column of the display, provided no
columns are being excluded. The number refers to the columns provided by the
SELECT statement, not those currently displayed. You must use the order of the
columns specified in the SELECT clause of the SELECT statement that provided
the query result to determine the value for integer. If the value of integer represents
a column being excluded, the display starts at the next displayable column to the
right of the excluded column. If no more columns to the right can be displayed, a
blank display results.

Specifying a value greater than the number of columns remaining to the right
displays the last column or a blank display if the last column is excluded.

If no number is specified, the display moves one column to the right or to the next
displayable column to the right if that column is excluded.

The RIGHT 1 command can be invoked by pressing PF11. Because you can reset
your PF key values, you can assign the RIGHT 1 function to any PF key. The
default function key is PF11 or PF23.

242 Interactive SQL Guide and Reference

RUN

RUN

\
A

»»—RUN—routine_name

L(_LpamTer_l_)J

RUN is an ISQL command that starts the processing of a routine.

You can run another user's routine if you have obtained the SELECT privilege by a
GRANT statement on that user's ROUTINE table. Once you have the SELECT
privilege on the user's ROUTINE table, you can run those routines by qualifying the
routine name with the owner's authorization ID. For example, to run a routine called
REPORTS that is owned by a user whose authorization ID is MIKE, you use:

run mike.reports

You do not have to identify the table name, ROUTINE, because the name of
everyone's routine table is the same. Care must be taken in running another user's
routine because any stored SQL statements or synonyms used in a routine are not
recognized unless you have also defined them.

Parameters can also be passed to the routine by including them on the RUN
command.

routine_name
is the name of the routine to be run.

parameter
is the parameter to be substituted for placeholders in the commands contained
in the named routine. If more than one parameter is used, separate them by
blanks.

Enclose a parameter in single quotation marks if it contains a blank. Any
characters between the terminating single quotation mark and the next blank
are ignored.

If there are more placeholders in the routine than there are parameters on the
RUN command, the extra placeholders are replaced by null characters. Extra
parameters on the RUN command are ignored.

Example: The following command executes your routine named SAMPLE and
provides three parameters:

run sample (BLUE RED,GREEN 'WHITE BLACK')
The placeholders (indicated by &) in the routine are replaced by:

¢ BLUE to be substituted for all occurrences of &1
e RED,GREEN to be substituted for all occurrences of &2
e WHITE BLACK to be substituted for all occurrences of &3.

Chapter 13. ISQL Commands 243

SAVE

SAVE

»—SAVE

A\
A

SAVE is an ISQL command that is only meaningful while using the INPUT
command with AUTOCOMMIT on. If AUTOCOMMIT is on, it saves all changes
made since the last SAVE command or since the start of the INPUT command if no
SAVE command has been typed.

SAVE has no effect with AUTOCOMMIT off. With AUTOCOMMIT off, a COMMIT is
necessary to save all input. This also commits all changes made during the current
logical unit of work. The COMMIT must be typed after the INPUT command is
ended.

244 Interactive SQL Guide and Reference

SET

SET

1

2

3

4

»»—SET—] Group_1 — Group_2 |
Group_1:

oN—
}—L—AUTOCommi t [.
OFF

}—L—ISOLati on ERRT

\4
A

| cast |—UPper‘—|
- L J
STRing

?

—CLAss—L) I—blass 2)
hyphen—‘

—CONTinue [

l—characterJ
1
—COPies—L [
inzteg;ler—@J
0.
—COSTest
—integer—
—OFF

//'/—l
“—DECimal [

|—/thousands /decimal /—J

Notes:
1 The parameters CLAss, COPies, and PRINTRoute are not applicable to VM.

2 Qutput class wanted (letters from A to Z).
3 Number of copies to be printed.
4 A maximum of 20 characters can be used for null values.

Group_2:

CS
UR:

—LANGuage—EZanguage_namc
langi]
?
L I
NULL B
string—(f*JJ
I—

132—\
—PAGEsize—WIDth [LENgth n u
integer integer

—PRINTRoute DESTid—wkstat
TERMid—termid—
TOUser—userid—
SYSTem—

|—CONTInue—

—RUNMode:

STOP:

CANCEL—
2

—SEParator [o BLANKs
integer-
string

20—|
—VARChar- []
integer

Notes:

The parameters CLAss, COPies, and PRINTRoute are not applicable to VM.
Output class wanted, (letters from A to Z).

Number of copies to be printed.

A maximum of 20 characters can be used for null values.

SET is an ISQL command that controls a number of functions.

When ISQL is started, the following operational characteristics are in force:

Chapter 13. ISQL Commands

245

SET

e AUTOCOMMIT is ON.

e CASE is UPPER.

e CLASS is a question mark (?). (DB2 Server for VSE only)

¢ CONTINUE is a hyphen (-).

e COPIES is 1. (DB2 Server for VSE only)

e COSTEST is zero.

e DECIMAL is /I.1.

¢ |SOLATION is repeatable read.

* LANGUAGE is the default language as defined in the SYSOPTIONS catalog.
e NULL is a question mark (?).

e PAGESIZE is LENGTH=66 WIDTH=132.

¢ PRINTROUTE is to the system printer. (DB2 Server for VSE only)
¢ RUNMODE is CONTINUE.

e SEPARATOR is two blanks.

e VARCHAR is 20.

The current setting of these functions can be listed with the LIST command. Some
of these settings may already have been changed by a PROFILE routine, or you
may want to change the settings for your session in your PROFILE routine, which
is run automatically when you start ISQL.

Notes:

1. In the VM environment, the user must use the CP commands SPOOL and TAG
to change the routing of the print output.

2. When you are using DRDA protocol in the VSE or VM environment, the
isolation level is set to CS.

AUTOCommit
specifies if commands are to be committed automatically. Unless otherwise
specified, commands are committed automatically.

ON
specifies that changes to tables resulting from an SQL statement are
committed automatically when the statement is processed. This is the
default.

There is an exception to the automatic committing of changes. If the SQL
statement is INSERT, UPDATE, or DELETE, and it affects more than one
data row, the changes are not immediately committed. Instead, the system
issues a message that lets you either commit the work, or cancel or
rollback the changes. If you type CANCEL or ROLLBACK, the changes are
not committed; if you type any other statement, the changes are committed.

OFF
specifies that changes are not to be committed to a table until a COMMIT
statement is typed.

CASE
specifies if characters enclosed in single quotation marks are to be converted
to uppercase. Unless otherwise specified, all characters typed from the
keyboard are converted to uppercase.

246 Interactive SQL Guide and Reference

SET

If you specify that the characters are to be converted, SQL uses the conversion
information from the SYSCHARSETS system catalog to handle the conversion.

UPper
specifies that all characters typed from the keyboard or a routine are
converted to uppercase characters. This is the default.

STRing
specifies that all characters enclosed in single quotation marks typed from
the keyboard or a routine are not converted to uppercase characters.

CLAss (DB2 Server for VSE only)
specifies the printer output class.

class
is the output class desired (a letter from A to Z).

? specifies the default printer class of the system.
Unless otherwise specified, the default printer class for the system is used.

Note: Class cannot be specified for a CICS/VSE terminal printer.

CONTlInue
specifies the continuation character.

character
is the continuation character to use for continuation of input lines.

Choose a character that is not normally the last character of a statement. Also,
do not use a single or double quotation mark, a semicolon, or a blank. Unless
otherwise set, the continuation character is the hyphen (-).

COPies (DB2 Server for VSE only)
specifies the number of copies for printed reports.

integer
is the number of copies that are to be printed when subsequent PRINT
commands are issued.

Unless otherwise specified, the number of copies for printed reports is one.
A maximum of 99 copies can be specified.

Note: The number of copies cannot be specified for a CICS/VSE terminal
printer.

COSTest
specifies when the ISQL Query Cost Estimate (QCE) is displayed. Unless OFF
is specified, the QCE message is always displayed.

OFF
specifies that the ISQL QCE message should not be displayed.

integer
specifies that the ISQL QCE message should be displayed. Replace integer
with any number from 0 to 9999. The QCE is displayed if it is greater than
integer.

While you cannot specify any number greater than 9999, the QCE
message displays ‘>9999’ to indicate the cost is greater than 9999.

Chapter 13. ISQL Commands 247

For additional information about the ISQL Query Cost Estimate, refer to the
DB2 Server for VSE Database Administration and DB2 Server for VM Database
Administration manuals.

DECimal

specifies the type of punctuation to use when displaying a decimal column.

/thousands/

is the thousands separator character. Valid characters are a period, a
comma, and a blank.

/decimal/

is the decimal separator character. Valid characters are a period and a
comma.

The slash distinguishes the thousands separator character from the decimal
separator character.

Unless otherwise specified, no thousands separator is used, and the decimal
separator is a period.

Valid combinations of t and d are:

Thousands Separator Decimal Separator Example
(nothing) . 1234.56

, . 1,234.56

- , 1.234,56

(a blank) , 1 234,56

For example, assume the value 123456 is contained in a decimal column that
was created with two decimal places. Then, specifying:

set decimal /,/./

provides the following punctuation when this field is displayed:
1,234.56
The DECIMAL keyword does not change how input is specified, only how

output is displayed. For example, to reference the above number (1,234.56) in
a column called SALES in a WHERE clause, you use:

where SALES=1234.56

ISOLation

specifies the isolation level placed on data when you read information from the
application server. You specify the type of lock that the system places on the
data. This is specifying the isolation level. The isolation level specified sets the
degree of independence one terminal user has from another terminal user.

For guidelines on using this setting, see “Specifying the Isolation Level” on
page 194.

RR
requests the isolation level repeatable read. This setting holds locks on the
data you are using until a COMMIT or ROLLBACK is performed. These
locks isolate the data from other users. No one can modify any rows you
have read until your work has been committed or rolled back. Use this

Interactive SQL Guide and Reference

SET

setting when it is important to keep data completely isolated. This is the
default.

Note: For DB2 Server for VSE & VM, if you are using the DRDA protocol,
the default isolation level is set to CS. If you specify any other
setting, it will be ignored.

CS
requests the isolation level cursor stability. Isolation level cursor stability
has meaning only for data in public dbspaces with row and page level
locking. The system locks individual rows or pages depending on the lock
specified in ACQUIRE DBSPACE, ALTER DBSPACE, and LOCK
statements. Use the CS setting to free the data you are reading as soon as
possible.

UR
requests the isolation level uncommitted read. Isolation level uncommitted
read has meaning only for data in public dbspaces with row and page level
locking. This setting applies only to read-only operations (SELECTS). For
other operations (UPDATE, DELETE, and INSERT), the rules of CS apply.
This setting reduces lock contention on data being read; however, data
integrity may be compromised because read-only access to uncommitted
data is allowed. Use the UR setting only when it is not necessary that the
data you are reading be committed.

The isolation level specification affects the UPDATE, DELETE, INSERT
with subselect form, and SELECT statements. The correct value to specify
depends on what activity you are performing. Locking problems can be
reduced if the isolation level can be set to cursor stability in your system.

Note: Read and update access to the catalog is performed with a
repeatable read setting, regardless of how you set the isolation
level. This access is activated by dynamic preprocessing of SQL
statements and by SQL data definition statements such as
CREATE, ACQUIRE, and GRANT. Your selects (and updates and
deletes, if you are a DBA) against the catalog are performed
according to the isolation level you set.

SET ISOLATION is acceptable only when the target application server is a
local application server. Otherwise the isolation level of CS is assumed and
the SET ISOLATION command will have no effect.

LANGuage
specifies the language in which online HELP and error messages are
displayed. Operator messages are displayed in the national language of the
application server.

language_name
is the language being specified; for example, French. The description of the
language can be either the IBM-supplied description or the description
chosen by your site. For example, your site may prefer to use Francais
instead of French. Language-name can be up to 40 characters long.

langid
is a 5-character language identifier that can be specified instead of the
language name. The language identifiers are:

AMENG Mixed Case American English

Chapter 13. ISQL Commands 249

SET

UCENG Uppercase American English
FRANC French

GER German

KANJI Japanese

KOR Korean

HANZI Simplified Chinese

If the language you specify is not supported, the current language remains
unchanged.

NULL
specifies the characters to be displayed in null fields. Unless otherwise
specified, a question mark (?) is used.

string
specifies the characters (up to a maximum of 20) to use for null fields.
Enclose the string in single quotation marks if it contains a blank.

For example, the following command:
set null empty
causes the word EMPTY to be displayed in all null fields.

PAGEsize
specifies the page size for printed output.

WIDth
specifies the width of the paper being used.

integer
is the number of characters that can fit on a line of the output paper.
Unless otherwise specified, the page width is 132. You can specify
values from 19 to 204.

Note: If you are sending your output to the terminal printer, you should set
the page width to the printer width-1 to avoid spacing problems. For
example, if the terminal printer width is 132, then set the width to
131 with the command SET PAGE WID 131.

LENgth
specifies the length of the page being used.

integer
is the number of printed lines that can fit on the output paper. Unless
otherwise specified, the page length is 66. You can specify values from
9 to 32767. The maximum number of lines that can actually be printed
on a page is 8 less than the length. Eight lines are reserved for top and
bottom titles and margins.

PRINTRoute (DB2 Server for VSE only)
specifies where print output is to be sent.

DESTid
specifies that printed output is to be directed to the designated POWER
remote workstation.

250 Interactive SQL Guide and Reference

SET

wkstat
is the ID of the desired remote workstation. wkstat can be any number

from 0 to 250. When wkstat is 0, the printed output is to be directed to
the system printer.

TERMid
specifies that printed output is to be directed to the designated CICS/VSE

terminal.

termid
is the terminal identifier of the desired CICS/VSE terminal. The termid

must be from one to four alphanumeric characters.

TOUser
spools the print output the same way it will spool the print output when the

user enters PRINT TOUser userid

userid
is the VSE POWER user identifier of the user to whom the output is being

spooled. An identifier cannot be longer than eight alphanumeric characters.
If the userid is any number from 1 to 250, ISQL will spool the print output to
the POWER remote workstation whome ID is the number specified.

SYStem
specifies that printed output is to be directed to the system printer.

RUNMode
specifies whether processing should continue when an error is detected in a

routine. Unless otherwise specified, processing continues.

CONTlInue
specifies that processing is to continue to the next command even if errors

are detected in the routine. This is the default.

STOP
specifies that processing is to stop if an error is detected in the routine. No

rollback is performed, and processing is terminated.

CANCEL
specifies that an internal CANCEL is to be issued if an error is detected. A

rollback is issued internally.

SEParator
specifies the separation between columns. Unless otherwise specified, two

blanks are used.

integer BLANKs
specifies the number of spaces to be displayed between columns. Replace

integer with the number of blanks desired. The maximum number of blanks
that can be specified is 254.
string
specifies the characters to be displayed between columns. Enclose the
string in single quotation marks if it contains a blank. For example, if you
want to draw a vertical line between columns, you type:
set separator ' | '

which places a blank, a vertical bar, and a blank between all columns. The
string can be up to 254 characters long.

Chapter 13. ISQL Commands 251

SET

VARChar
specifies the display width of variable length columns.

integer
is the length desired. The maximum width that can be specified is 254.
Unless otherwise set, the VARCHAR length is 20. Since only the first 20
characters of a variable length column are displayed, this command or a
FORMAT VARCHAR is necessary to view those columns that are wider
than 20 characters.

The SET command can be used with more than one keyword option, allowing you
to set several operational characteristics with a single SET command. These
characteristics are effective for the duration of your terminal session. In the
following example, a single SET command sets operational characteristics for
AUTOCOMMIT, NULL, and SEPARATOR:

set autocommit on null 'no data' separator 2 blanks

252 Interactive SQL Guide and Reference

SHOW

SHOW

»>—SHOW—

—ACTIVE
—ADDRESS—module-name
—BUFFERS

—CONNECT

—DBCONFIG
—DBEXTENT
—DBSPACE—dbspace-number
—INVALID

—ALL

—L—_l—useridl—
USERID

—AGENT—agent-no
—LUWID—luwid]l——
—ACTIVE
—INACTIVE

—WAITING

—LOG

—LOGHIST

ALL—
|_

—MATRIX

|—integer— l—SERVICEJ

—LOCK

—POOL

—ACTIVE

—DBSPACE——ALL
L]

dbspace_number

—GRAPH

—USER

thorization_name
LL T -
USERID

AGENT—agent_number
—ALL

|—ALL—

—L—_l—authorization_name—
USERID

—WANTLOCK:

—AGENT—agent_number
—ALL

—AGENT—agent_number

—m—authorization_name—
USERID

—STORAGE
—SYSTEM

Note:

1 The parameters WAITING and USERS are not applicable to DB2 Server for VSE

SUMMARY———
DELETED

pool_number—

—USERS—®

A\
A

SHOW is an operator command used primarily to monitor system activity. It is not
allowed during an LUW, and you must end an LUW that is in progress before
issuing SHOW.

The SHOW command can only be used when the target application server is a
local application server. It cannot be used when the application server is a remote
application server.

Chapter 13. ISQL Commands 253

SHOW

See the DB2 Server for VSE & VM Operation manual for a description of the
keywords used on this command and for a description of the information displayed.

This command results in one or more displays.

— DB2 Server for VSE

Instructions for proceeding to the next display of data or ending the display are
provided in the status area.

— DB2 Server for VM

Instructions for proceeding to the next display of data or ending the display are
provided in the output area.

When using the SHOW DBSPACE command, replace dbspace-number with the
number of the particular dbspace for which you want information.

The SHOW command is not available on non-DB2 Server for VSE & VM
application servers or if you are using the DRDA protocol.

Note: If the national language of the application server differs from the national
language that the user has set for the ISQL session, the messages
generated by this operator command are issued in the national language of
the application server.

254 Interactive SQL Guide and Reference

START

START

»—START B
S

tor‘ed_stat‘ement_name—l L m J
(parameter)

START is an ISQL command that causes a stored SQL statement or the current
SQL statement to be processed.

The START command can be invoked by pressing PF2. The START command can
be invoked by pressing PF2 (or PF14). Because you can reset your PF keys, you
can assign the START function to any PF key.

stored_statement_name
is the name of the stored SQL statement to be started. The name PREVIOUS
is not allowed. To start the previous SQL statement, you must first recall it to
the command buffer and enter START without supplying a name. If
stored _statement_name is not specified, or START PF is pressed, the current
SQL statement is started.

parameter
is the parameter to be substituted for the placeholders in the SQL statement. If
you use more than one parameter, separate them with blanks. Enclose a
parameter in single quotation marks if it contains a blank. Any characters
between the terminating single quotation mark and the next blank are ignored.

All placeholders in the SQL statement that do not have a corresponding
parameter on the START command are replaced by null characters or are
erased. Extra parameters on the START command are ignored.

The parameter can contain DBCS characters.

Example: Assume you have the following SQL statement stored as SELPD:

select &1,&2,83 -

from emp_act -

where actno = &4 -
or emstdate = '&5'

You could type the START command as:
start selpd (empno actno emptime 90 '1982-06-01")

The resulting statement started is:

select empno,actno,emptime -
from emp_act -
where actno = 90 -

or emstdate = '1982-06-01'

Notice that single quotation marks are needed around the &5 placeholder in the
stored SQL statement because that placeholder stands for a character data item.
Single quotation marks are not needed around &4 because &4 stands for a numeric
data item. Single quotation marks are not needed for &1, &2, and &3 because they
do not contain any blanks.

Chapter 13. ISQL Commands 255

START

In a stored SQL statement, you can only use the ampersand (&) to create
placeholders.

In the above example, the formatting information is not saved because placeholders
are used in the SELECT clause.

256 Interactive SQL Guide and Reference

STORE

STORE

\
A

»»—STORE—stored_statement_name |_ J
REPLACE

STORE is an ISQL command that causes the current SQL (only) statement to be
saved for later use. SQL statements remain stored until erased. When storing an
SQL statement, you must associate a name with it. Use this name to recall the
SQL statement when you want to execute it. The SQL statement, when stored, also
remains as the current SQL statement.

Stored statements can be started, listed, renamed, erased, or recalled. When a
stored statement is started, renamed, or recalled, it becomes the current SQL
statement.

Stored_statement_name
is the name you want to use to refer to the stored statement. Names can be up
to 8 characters long. The name PREVIOUS is not allowed because ISQL
always stores the current statement under that name when a new SQL
statement is typed.

REPLACE
specifies that the current statement is to replace any existing stored SQL
statement with the same name. If REPLACE is not specified and there is an
existing stored SQL statement with the same name, a warning message is
issued. This message gives you three options to select from:

e REPLACE, to replace the existing stored SQL statement with the current
SQL statement

¢ END, to end the processing of the STORE command.

¢ Type a different name to be used as the name for the current SQL
statement being stored.

When you store a SELECT statement, related display formatting information is also
stored. Formatting is defined by FORMAT commands or current DB2 Server for
VSE & VM formatting defaults. This information, which cannot be “seen”, remains
stored with the SELECT statement and formats the display when the statement is
recalled and executed. However, the following exceptions exist:

e Formatting information is not saved when SELECT statements are stored that
contain placeholders in the SELECT or FROM clauses. Formatting information
is saved when the placeholders occur in clauses other than the SELECT and
FROM clauses.

e |f a stored SELECT command is changed by a CHANGE command, formatting
information is saved only when the change occurs in the WHERE, GROUP BY,
ORDER BY, or HAVING clauses (that is, when the change does not occur in
the SELECT or FROM clauses).

e |f a table referenced by a stored query is dropped and later created with
different column characteristics (such as DECIMAL instead of INTEGER),
existing formatting information is not used.

Chapter 13. ISQL Commands 257

STORE

The notation SELECT * FROM table_name is not recommended for use in stored
SELECT statements. It is possible that someone can add a new column to the
table, which causes any stored format information for the SELECT statement to be
erased. By explicitly naming the columns required, or by referring to a view instead
of a table (the view can have SELECT *), you can avoid this problem.

The steps necessary to store FORMAT command information along with an SQL
statement are:

1. Execute a SELECT statement to retrieve data.

2. Type one or more FORMAT commands to format the display.
3. Type an END command to end the display.
4

. Type a STORE command to store the statement (which is still the current SQL
statement) and any formatting information.

258 Interactive SQL Guide and Reference

TAB

TAB
1—_
»»—TAB [>«
integer—
TAB is an ISQL display command that enables you to view all the characters of a
column that is too wide to fit on the display. It lets you display any adjacent
characters of the column; the number of characters displayed is equal to the width
of your display. Before issuing TAB, place the desired column at the left edge of
the display.
integer
is the number that represents the character's position where the display is to
start. If no number is specified, the display starts at the first character position
of the column.
The TAB command is valid only for CHAR or VARCHAR columns.
Example

Suppose you are viewing a column whose length attribute is 100 characters. If you
are using a 24 x 80 display and you want to view the characters beyond the 80th,

you type:
tab 81

This displays the column, starting with the 81st character at the left edge of the
display.

Chapter 13. ISQL Commands 259

TAB

260 Interactive SQL Guide and Reference

Appendix A. Answers to the Exercises

The following answers are shown with each clause on a separate line so that you
can easily check your commands. You can, of course, put the entire command on
one line if it fits. Or, you can use several lines and break each line at a different
place than shown here. It is your choice. Just follow the rules for using the
continuation character.

Exercise 1:

(page 24)

1. select actno -
from activity

(Remember to type an END command to end the query.)

2. select deptno,respemp,prstaff -
from project

3. select * -
from proj_act

Exercise 2:

(page 30)

1. select Tastname,workdept,phoneno -
from employee -
where salary>50000.00

2. select * -
from department -
where admrdept="'A00"
OR
select deptno,deptname,mgrno,admrdept -
from department -
where admrdept="'A00"

3. select actno -
from proj_act -
where acstaff>=0.75

4, select * -
from proj_act -
where projno='ad3100' or projno='ifl000' or projno='ma2lll’
OR
select projno,actno,acstaff,acstdate,acendate -
from proj_act -
where projno='ad3100' or projno='if1000' or projno='ma2lll'

Exercise 3:

(page 37)

1. select actno -
from proj_act -
where acstaff between 0.75 and 1.25

© Copyright IBM Corp. 1987, 1998 261

2. select projno,acstdate -
from proj_act -
where projno in ('ad3100','if1000','ma2111")

3. select actno -
from activity -
where actdesc Tike '%data%'

Exercise 4 :

(page 43)

1. select empno,lastname,salary*1.10 -
from employee -
where bonus>=1000

2. select projno,actno -
from proj_act -
where acstaff+0.5<1.5

Exercise 5:

(page 56)

1. select sum(acstaff*0.75) -
from proj_act -
where actno=20

2. select count(distinct deptno) -
from project

3. select min(salary) -
from employee -
where workdept='D11"

Exercise 6 :

(page 59)

1. select * -
from proj_act -
where projno='op2010' -
order by acstaff,actno
OR
select projno,actno,acstaff,acstdate,acendate -
from proj_act -
where projno='op2010' -
order by 3,2

2. select projno,projname,'ends Feb 1, 1983' -
from project -
where prendate='1983-02-01' -
order by projno desc

Exercise 7.

(page 69)

262 Interactive SQL Guide and Reference

1. forward 39
2. forward max
3. right 1 or column 2
4, Teft 1 or column 1
5. backward max
6. print
7. end
Exercise 8
(page 85)
1. set autocommit off
2. insert into activity (actno,actkwd,actdesc) -
values (190, -
'market', -
'marketing')
3. rollback
4, select * -
from project -
where majproj is null
5. update project -
set prstaff=prstaff+0.5,prendate=prendate-7 days
OR
update project -
set prstaff=prstaff+0.5
AND
update project -
set prendate=prendate-7 days
6. update project -
set prstdate='1982-03-01" -
where deptno='e21' and majproj='op2010'
7. input department
'fOl1', 'personnel’,'000110', 'a00'
'g0l', 'marketing and sales','000120','a00'
end
8. delete from department -
where deptno='f01' or deptno='fll' or deptno='f21'
OR
delete from department -
where deptno in ('f01','f11','f21"')
9. a. select * -

from department -
order by deptno

b. select * -

from project -
order by projno

Appendix A. Answers to the Exercises

263

10. insert into employee -
values ('000060','IRVING','F','STERN','D11', -
'6423','1973-09-14", 'manager',20,'m', -
'1953-01-01"',45000.00,2000.00,800.00)

11. delete from project -
where projno='MA2114'
OR

delete from project -
where projname='Expert Systems'

12. a. select » from employee
b. select * from project

13. a. rollback

b. set autocommit on
Exercise 9:
(page 94)
1. hold select * from department

2. change /*/&1,82/;
3. a. start (deptno deptname)
b. end
4. change /nt/nt where &3/;
5. start (deptname mgrno admrdept='e01')

Exercise 10

(page 102)

1. select empno,projno,emptime -
from emp_act -
where projno='if1000' or projno='if2000' -
order by projno,empno

2. format separator ' * !

3. format exclude empno
OR
format exclude 1
OR
format include only (projno emptime)
OR
format include only (2 3)

4, a. format column emptime name proptn
OR
format column 3 name proptn

b. format column proptn width 8
OR
format column 3 width 8

Note: You can also do items 2 through 4 using a single FORMAT command:

format separator ' * ' exclude 1 -
column emptime name proptn width 8

Exercise 11 :

264 Interactive SQL Guide and Reference

(page 117)

—— DB2 Server for VSE

1. set copies 2
2. list set *

3. select * -
from proj_act -
where projno='ad3112' -
order by acendate

4, format group acendate

AND
format exclude (acstdate)
OR
format group acendate exclude (4)
5. format ttitle 'personnel programming deadlines'
6. print

— DB2 Server for VM

1. list set =

2. select * -
from proj_act -
where projno='ad3112' -
order by acendate

3. format group acendate
AND
format exclude (acstdate)
OR
format group acendate exclude (4)

4. format ttitle 'personnel programming deadlines'

5. print copies 2

Exercise 12

(page 124)

1. recall myquery
2. change /&1/salary between 25000 and 30000 order by 2/
3. start
4 format exclude (3)

OR
format exclude (midinit)
format separator ' || '
format column edlevel name 'school years'
7. a. end

b. store EXER11

8. Tist sql =
9. help store

o o1

Exercise 13

Appendix A. Answers to the Exercises 265

(page 133)

This answer assumes you have a REMARKS column in your ROUTINE table.

1. input routine
a. ‘'exerl3',10,'select actno,actdesc -',null
'exerl3',20,'from activity',null

b. 'exerl3',30,'format separator 3 blanks',null
c. ‘'exerl3',40,'display',null

d. ‘'exerl3',50,'print copies 3',null

e. 'exerl3',60,'end',null

end

Note: Any sequence numbers are valid as long as they are in ascending order.
Exercise 14 :

(page 150)

1. select ea.actno,empno,projno,emptime,actdesc -
from emp_act ea,activity a -
where ea.actno=a.actno -
order by actno

2. select actno,sum(emptime) -
from emp_act -
group by actno -
order by actno

3. create view empls (activity,fraction_time,surname) -
as select actno,emptime,lastname -
from emp_act emac,employee em -
where emac.empno=em.empno

4, select » -
from empls -
where activity=100

5. select * -
from empls -
order by activity,fraction_time

6. format group activity ttitle 'who is doing what'
OR
format group activity
format ttitle 'who is doing what'

7. select » -
from proj_act -
where projno = 'AD3113' -
order by actno

8. select actno,acstaff -
from proj_act -
where acendate='1983-01-01"' -
and actno > (select max(actno) -
from proj_act -
where projno="'1f2000")

266 Interactive SQL Guide and Reference

9. select lastname,salary -
from employee -
where job='designer' -
and salary > (select avg(salary) -
from employee)

Exercise 15

(page 173)

1. select pa.projno,projname,prstaff,actno,acstaff -
from proj_act pa,project p -
where pa.projno=p.projno -
and 0.5%prstaff < (select sum(acstaff) -
from proj_act -
where pa.actno=actno) -
order by pa.projno

2. select p.projno,p.actno,acstaff,emptime,empno -
from proj act p,emp_act e -
where 2xemptime < (select avg(acstaff) -
from proj_act -
where projno=p.projno) -
and 3 <= (select count(*) -
from proj_act -
where projno=p.projno)

3. select sum(comm),'manufacturing systems' -
from employee -
where workdept='dll' -
union -
select sum(comm),'administration systems' -
from employee -
where workdept="'d21'

4. select empno,actno,emptime -
from emp_act -
where projno = (select projno -
from project -
where projname='w 1 programming') -
union -
select empno,actno,emptime -
from emp_act -
where projno='ma2112'

5. create view managers -
as select * -
from employee -
where job='manager'

6. select lastname,projno,actno -
from managers m,emp_act e -
where m.empno=e.empno

7. select avg(salary),max(salary), -
min(salary), 'managers' -
from managers -
union -
select avg(salary),max(salary), -
min(salary), 'employees' -
from employee

Appendix A. Answers to the Exercises 267

8. drop view managers

9. select viewname -
from system.sysviews -
where vcreator=user
OR
select tname -
from system.syscatalog -
where creator=user and tabletype='v'

10. drop view actl0
drop view act60
drop view projl
drop view proac
drop view proj3

11. delete from proj act -
where (actno=50 -
and projno in ('ma2110','ad3112','if1000'))

Exercise 16 :

(page 196)

1. create table old activity -
(anumber smallint not null, -
akeyword varchar(10) not null, -
adescr varchar(30) not null)

2. insert into old activity (anumber,akeyword,adescr) -
select * from sqldba.activity

3. alter table old_activity -
add status varchar(8)

4, grant update(status) -
on old_activity -
to mona,lisa

5. a. create view farleyview -
as select * -
from old_activity -
where status='inactive'

b. grant select -

on farleyview -
to farley

268 Interactive SQL Guide and Reference

Appendix B. Sample Tables

The sample tables illustrated in this appendix are used in examples throughout the
library. These tables simulate a database created for use in organization or project
management applications. As a group, the tables include information that describes
employees, departments, projects, and activities. Figure 119 shows the
relationships among the tables. These relationships are established by referential
constraints, where a foreign key in the dependent table references a primary key in
the parent table. In the figure, the referential constraint is symbolized by lines
joining the keys; the arrowheads point from the primary key to the foreign key. Only
those columns named as foreign or primary keys are listed in the figure. All tables
have additional columns. You can easily review the contents of any table by
executing an SQL statement, such as SELECT * FROM SQLDBA.DEPARTMENT.

DEPARTMENT PROJECT
DEPTNO . PROJINO
»MGRNO RESTRICT————>DEPTNO
e >RESPEMP
RESTRICT
SET
NULL SET NULL—
SET
NULL
EMPII.OYEE ACTIVITY
f
EMPNO ACTNO
>WORKDEPT cee
CASCADE
RESTRICT
EMP_ACT PROJ_ACT
»>EMPNO r—PROJNO=

C

PROJNO RESTRICT+—ACTNO<
ACTNO:EL——' +—ACTSTDATE
EMSTDATE ...

Figure 119. Relationships among Tables in the Sample Application

DEPARTMENT Table

The DEPARTMENT table describes each department in the business and identifies
its manager and the department to which it reports. The table contents are shown
in Figure 120 on page 270; a description of the columns is shown in Figure 121.

© Copyright IBM Corp. 1987, 1998 269

DEPTNO DEPTNAME MGRNO ADMRDEPT
AOO0 SPIFFY COMPUTER SERVICE DIV. 000010 AOO0
BO1 PLANNING 000020 A0O
co1 INFORMATION CENTER 000030 A00
DO1 DEVELOPMENT CENTER ? AOO0
EO1 SUPPORT SERVICES 000050 A00
D11 MANUFACTURING SYSTEMS 000060 Do1
D21 ADMINISTRATION SYSTEMS 000070 D01
Ell OPERATIONS 000090 EO1
E21 SOFTWARE SUPPORT 000100 EO1

Figure 120. DEPARTMENT Table Contents

Column Name Description

DEPTNO Department number, the primary key

DEPTNAME A name describing the general activities
of the department

MGRNO Employee number (EMPNO) of the
department manager

ADMRDEPT Number of the department to which this
department reports; the department at the
highest level reports to itself

Figure 121. Columns of the DEPARTMENT Table

The DEPARTMENT table is created with:
CREATE TABLE DEPARTMENT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
PRIMARY KEY (DEPTNO))

After the EMPLOYEE table has been created, a foreign key is added to the
DEPARTMENT table with this statement:

ALTER TABLE DEPARTMENT ADD
FOREIGN KEY R_EMPLY1 (MGRNO) REFERENCES EMPLOYEE
ON DELETE SET NULL

Relationship to Other Tables

270

DEPARTMENT is a parent of the EMPLOYEE and PROJECT tables.

The DEPARTMENT table is a dependent of the EMPLOYEE table; the MGRNO
column is the foreign key in the DEPARTMENT table and references EMPNO, the
primary key in the EMPLOYEE table.

Interactive SQL Guide and Reference

EMPLOYEE Table

The EMPLOYEE table identifies all employees by an employee number and lists
basic personnel information. The table in Figure 122 shows the contents of the
EMPLOYEE table; Figure 123 on page 274 shows a description of the columns.

Appendix B. Sample Tables 271

10.T 005 OvETZ 12-20-676T | T ¥3INOIS3A 10-L0-€L6T 2891 11d N3LLNODS S NATIHVA | 08T000
v.6T 005 0892 GO-TO-TS6T W 9T ¥3INOIS3A GT-60-86T 0682 11d VINNIHSOA r IHSOLVSVYN | 0.T000
08.T 00v 05222 ZT-70-GS6T | 1T ¥3aNOIS3A TT-0T-L6T 28.€ 11d WYNVI o H13gvzin3 | 091000
220z 005 08252 LT-G0-L¥6T W 9T ¥3ANOIS3A 21-20-2.61 0TSV 11d NOSWvav 30Nd¥9 | 0ST000
vlee 009 0zv8z 6T-T0-9Y6T 4 8T 1SATYNY GT-2T-9261 €611 100 STIOHOIN v Y3HLVIH | 0vT000
06T 005 008€2 GT-60-G26T | 9T 1SATYNY 82-10-TL6T 8.SY 100 VNVININO W S340170a | 0€T000
ovez 009 05262 8T-0T-2¥6T W T NEERTe) G0-2T-€96T 1912 00v TI13INNOD.O NV3S | 021000
0zLe 006 0059% GO-TT-626T W 6T d34s3vs 9T-G0-8S6T 06%€ 0oV ISSIHOONT 9 OZNIONIA | 0TT000
2602 005 0ST9Z 8T-2T-9S6T W 7T HIOVNVYIN 67-90-086T 2.60 123 EESNEEN] e} 3¥0dO3HL | 00T000
08€Z 009 06262 GT-GO-TV6T E| 9T HIOVNVYIN GT-80-0L6T 8675 e NOSY3IANIH M N333 | 060000
€682 00/ 0LT9E 92-G0-€S6T | 9T HIOVNVYIN 0€-60-086T TE8L 12a IMSYINd a VA3 | 0.0000
0852 005 0Geee L0-L0-Gv6T W 9T HIDOVNVYIN ¥1-60-€L6T €279 11d NY3LS | ONIAYI 090000
14743 008 GLTOY GT-60-G26T W 9T HIDOVNVYIN LT-80-676T 6829 103 ISEVED) g NHOC | 0S0000
090€ 008 0628€ TT-G0-Tv6T | 0z HIADOVNYIN G0-70-GL6T 8eLY 100 NVMM v ATIVS | 0£0000
00€€ 008 052ty 20-20-876T W 8T HIADVYNYIN 0T-0T-€.6T 9.¥€ 109 NOSdWOHL 1 JAVHOIA | 020000
ozzy 000T 06225 ¥2-80-€€6T | 8T S34d T0-T0-G96T 816€ 0oV SVYVH I 3ANILSIYHO | 0T0000
IInu Inu Inu
jou Inu jou |Inu jo0u
(¢'6)09p | (2'6)29p | (2'6)o9p ayep (T)eys | unrews (8)reyd ajep ()reyd (e)reyo 1ou (gT)reyasen (T)reyd 10U (gT)seyasen (9)reydp
WWNOD | SNNOEG | AYVIVS 31vaH.idig X3s REVER aor 31va3diH ON 1d3a ANVYNLSYT LINI ANNLSHIA ONdW3
a3 3INOHdJ MHOM ain

sa0) 8|qel IFA0TINT (2 o T abed) zzT ainbiH

Interactive SQL Guide and Reference

272

L06T 00S 0ov8ee LT-S0-9¢6T N 9T d3da131d G0-S0-Lv6T 8699 Tc3 1ONNOS o NOSVC 0r€000
0€0¢C 00S 0.€5¢ 8T-L0-Tv6T N 14 d3da1314 €¢-¢0-9.6T €0T¢ Tc3 331 ONIM 0€€000
9651 ooy 05661 TT-80-¢E61 N 9T d3dan3id 10-20-9961 0666 Te3 V1IH3IN A IVIAVY 02¢€000
clet 00€ 006ST T¢-¥0-TE6T 4 ct d401vyd3do ¢1-60-7961 [A%% T13 1HOI413S 4 Ianvin 0T€000
0cvT (0074 0G..T 12-0T-9€61 N v 401vyd3do 61-90-¢L61 G60¢ T13 HLINS X dIMHd 00€000
leet 00€ oveST 60-20-9161 N ct 401vyd3do 0€-G0-0861 0S¥ T14 d3IMHvd o NHOC 062000
00T¢ 00§ 0G¢9¢ 8¢-€0-9€61 4 LT 401vyd3do ¥¢-€0-2961 1668 T13 H3AIANHOS <] 13H13 082000
06T¢ 00§ 08€L¢c 9¢-G0-€56T 4 ST X430 0€-60-086T T006 Tca Z343d 1 VIdVIN 0,¢000
08€T 00€ 0G¢/T G0-0T-9€6T 4 9T M43710 T1-60-GL61 €568 Tca NOSNHOC d TgAS 092000
VEST (0014 08T6T C¢T1-T1-6€6T N 2 M43710 0€-0T-6961 T960 Tca HLINS S 13INvVd 052000
T0€C 009 09.8¢ TE-€0-VS6T N LT MH43710 G0-CT-6L6T 08.€ Tca ONIdVIN N JHOLVAIVS 0%7¢000
VLLT (004 08Tce 0€-G0-GE6T N 14 M43710 TC-T1-9961 ¥60¢ Tca NOSY3443ar r S3INVC 0€2000
18€¢ 009 0v86¢ 6T-€0-816T | 8T H3INOIS3A 6¢-80-896T ¢.90 11a zZ1in1 A H34INNIC 022000
vt oov 04281 €¢-20-€S6T N LT H3INOIS3A TT-70-6L6T ¢v60 11a S3INOC 1 WVITIIM 0T2000
11¢¢ 009 ovile 6¢-S0-Tv61 N 9T H3INOIS3A €0-€0-9961 T0SY T1a NMOdd dinva 00¢000
9€91 ooy 0S¥0¢ G¢-90-¢S6T N 9T H3ANOIS3A 9¢-10-v.61 986¢ T1a HIMTVM H S3INVC 06T000
ANWNOD SNNOG | AYVIVS J1lvaHldig X3s 13Aa a0r 31va3diH ON 1d3a ANVNLSV LINI JANLSHIH ONdW3
[€E] 3INOHd HHOM ain

sa0) 8|qel IFA0TINT (Z Jo g abed) zzT ainbiH

273

Appendix B. Sample Tables

Figure 123. Columns of the EMPLOYEE Table

Column Name Description

EMPNO Employee number (the primary key)

FIRSTNME First name of the employee

MIDINIT Middle initial of the employee

LASTNAME Last name of the employee

WORKDEPT Number of department in which the
employee works

PHONENO Employee telephone number

HIREDATE Date of hire

JOB Job held by the employee

EDLEVEL Number of years of formal education

SEX Sex of the employee (M or F)

BIRTHDATE Date of birth

SALARY Yearly salary

BONUS Yearly bonus

COMM Yearly commission

The EMPLOYEE table has a foreign key referencing the primary key in the

DEPARTMENT table. The DEPARTMENT table must, therefore, be created first.

The EMPLOYEE table is then created with:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6)
FIRSTNME VARCHAR(12)
MIDINIT CHAR(1)
LASTNAME VARCHAR(15)
WORKDEPT ~CHAR(3)
PHONENO CHAR(4)
HIREDATE DATE

JOB CHAR(8)
EDLEVEL ~ SMALLINT
SEX CHAR(1)

BIRTHDATE DATE

SALARY DECIMAL(9,2)
BONUS DECIMAL(9,2)
COMM DECIMAL(9,2)
PRIMARY KEY (EMPNO)

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

NOT NULL,

FOREIGN KEY R DEPT1 (WORKDEPT) REFERENCES DEPARTMENT

ON DELETE SET NULL

)

Relationship to Other Tables

The EMPLOYEE table is a parent of the DEPARTMENT table, the PROJECT table,
and the EMP_ACT table.

The EMPLOYEE table is a dependent of the DEPARTMENT table; the foreign key

on the WORKDEPT column in the EMPLOYEE table references the primary key on
the DEPTNO column in the DEPARTMENT table.

274 Interactive SQL Guide and Reference

PROJECT Table

The PROJECT table describes each project that the business is currently

undertaking. Data contained in each row includes the project number, name,
person responsible, and schedule dates as shown in Figure 124; Figure 125 on
page 276 describes the columns.

Figure 124. PROJECT Table Contents

PROJNO| PROJNAME DEPTNO| RESPEMP| PRSTAFF | PRSTDATE PRENDATE | MAJPROJ

AD3100 | ADMIN Do1 000010 6.5 1982-01-01 1983-02-01 ?
SERVICES

AD3110 | GENERAL ADMIN D21 000070 6 1982-01-01 1983-02-01 AD3100
SYSTEMS

AD3111 PAYROLL D21 000230 2 1982-01-01 1983-02-01 AD3110
PROGRAMMING

AD3112 PERSONNEL D21 000250 1 1982-01-01 1983-02-01 AD3110
PROGRAMMING

AD3113 | ACCOUNT D21 000270 2 1982-01-01 1983-02-01 AD3110
PROGRAMMING

IF1000 QUERY Cco1 000030 2 1982-01-01 1983-02-01 ?
SERVICES

IF2000 USER Co1 000030 1 1982-01-01 1983-02-01 ?
EDUCATION

MA2100 | WELD LINE D01 000010 12 1982-01-01 1983-02-01 ?
AUTOMATION

MA2110 | WL D11 000060 9 1982-01-01 1983-02-01 MA2100
PROGRAMMING

MA2111 | W L PROGRAM D11 000220 2 1982-01-01 1982-12-01 MA2110
DESIGN

MA2112 | W L ROBOT D11 000150 3 1982-01-01 1982-12-01 MA2110
DESIGN

MA2113 | W L PROD CONT D11 000160 3 1982-02-15 1982-12-01 MA2110
PROGS

OP1000 | OPERATION EO1 000050 6 1982-01-01 1983-02-01 ?
SUPPORT

OP1010 | OPERATION El1 000090 5 1982-01-01 1983-02-01 OP1000

OP2000 | GEN SYSTEMS EO1 000050 5 1982-01-01 1983-02-01 ?
SERVICES

OP2010 | SYSTEMS E21 000100 4 1982-01-01 1983-02-01 OP2000
SUPPORT

OP2011 | SCP SYSTEMS E21 000320 1 1982-01-01 1983-02-01 OP2010
SUPPORT

OP2012 | APPLICATIONS E21 000330 1 1982-01-01 1983-02-01 OP2010
SUPPORT

OP2013 | DB/DC SUPPORT E21 000340 1 1982-01-01 1983-02-01 OP2010

PL2100 WELD LINE BO1 000020 1 1982-01-01 1982-09-15 MA2100
PLANNING

Appendix B. Sample Tables 275

Figure 125. Columns of the PROJECT Table

Column Name Description

PROJNO Project number (the primary key)

PROJNAME Project name

DEPTNO Number of department responsible for the
project

RESPEMP Number of employee responsible for the
project

PRSTAFF Estimated mean project staffing (mean

number of persons) needed between
PRSTDATE and PRENDATE to achieve
the whole project, including any
subprojects

PRSTDATE Estimated project start date
PRENDATE Estimated project end date
MAJPROJ Number of any major project of which the

subject project may be a part

The PROJECT table has foreign keys referencing DEPARTMENT and EMPLOYEE.
The EMPLOYEE and DEPARTMENT tables must be created before the PROJECT
table. Once EMPLOYEE and DEPARTMENT are created, the following statement
creates the PROJECT table:

CREATE TABLE PROJECT

(PROJNO CHAR(6) NOT NULL,
PROJNAME VARCHAR(24) NOT NULL,
DEPTNO CHAR(3) NOT NULL,

RESPEMP CHAR(6) R

PRSTAFF DECIMAL(5,2) s

PRSTDATE DATE s

PRENDATE DATE R

MAJPROJ CHAR(6) s

PRIMARY KEY (PROJNO) ,

FOREIGN KEY R _DEPT2 (DEPTNO) REFERENCES DEPARTMENT
ON DELETE RESTRICT R

FOREIGN KEY R_EMPLY2 (RESPEMP) REFERENCES EMPLOYEE
ON DELETE SET NULL)

Relationship to Other Tables
PROJECT is a parent of the PROJ_ACT table.

PROJECT is a dependent of:

e The DEPARTMENT table; the foreign key on the DEPTNO column in
PROJECT references the primary key in the DEPARTMENT table.

e The EMPLOYEE table; the foreign key on the RESPEMP column in PROJECT
references the primary key in the EMPLOYEE table.

276 Interactive SQL Guide and Reference

ACTIVITY Table

The ACTIVITY tables describes the activities that can be performed during a

project. The table acts as a master list of possible activities, identifying the activity

number, and providing a description of the activity. Figure 126 shows table
contents; Figure 127 shows a description of the columns.

ACTNO ACTKWD ACTDESC
160 ADMDB Adm databases
170 ADMDC Adm data comm
90 ADMQS Adm query system
150 ADMSYS Adm operating sys
70 CODE Code programs
110 COURSE Develop courses
30 DEFINE Define specs
180 DOC Document
20 ECOST Estimate cost
40 LEADPR Lead program/design
60 LOGIC Describe logic
140 MAINT Maint software sys
10 MANAGE Manage/advise
130 OPERAT Oper computer sys
50 SPECS Write specs
120 STAFF Pers and staffing
100 TEACH Teach classes
80 TEST Test programs

Figure 126. ACTIVITY Table Contents

Column Name

Description

ACTNO Activity number (the primary key)
ACTKWD Activity keyword (up to six characters)
ACTDESC Activity description

Figure 127. Columns of the ACTIVITY Table

The ACTIVITY table is created with:

CREATE TABLE ACTIVITY
(ACTNO SMALLINT NOT
ACTKWD CHAR(6) NOT
ACTDESC VARCHAR(20) NOT
PRIMARY KEY (ACTNO)

NULL,
NULL,
NULL,

)

Appendix B. Sample Tables

Relationship to Other Tables
ACTIVITY is a parent of the PROJ_ACT table.

PROJ_ACT Table

The PROJ_ACT table lists the activities performed for each project. The table
contains information on the start and completion dates of the project activity as well
as staffing requirements as shown in Figure 128. Figure 129 on page 279 shows a
description of the columns.

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE
AD3100 10 0.50 1982-01-01 1982-07-01
AD3110 10 1.00 1982-01-01 1983-01-01
AD3111 60 0.80 1982-01-01 1982-04-15
AD3111 70 1.50 1982-02-15 1982-10-15
AD3111 80 1.25 1982-04-15 1983-01-15
AD3111 180 1.00 1982-10-15 1983-01-15
AD3112 60 0.75 1982-01-01 1982-05-15
AD3112 60 0.75 1982-12-01 1983-01-01
AD3112 70 0.75 1982-01-01 1982-10-15
AD3112 80 0.35 1982-08-15 1982-12-01
AD3112 180 0.50 1982-08-15 1983-01-01
AD3113 60 0.75 1982-03-01 1982-10-15
AD3113 70 1.25 1982-06-01 1982-12-15
AD3113 80 1.75 1982-01-01 1982-04-15
AD3113 180 0.75 1982-03-01 1982-07-01

IF1000 10 0.50 1982-01-01 1983-01-01

IF1000 90 1.00 1982-01-01 1983-01-01

IF1000 100 0.50 1982-01-01 1983-01-01

IF2000 10 0.50 1982-01-01 1983-01-01

IF2000 100 0.75 1982-01-01 1982-07-01

IF2000 110 0.50 1982-03-01 1982-07-01

IF2000 110 0.50 1982-10-01 1983-01-01
MA2100 10 0.50 1982-01-01 1982-11-01
MA2100 20 1.00 1982-01-01 1982-03-01
MA2110 10 1.00 1982-01-01 1983-02-01
MA2111 40 1.00 1982-01-01 1983-02-01
MA2111 50 1.00 1982-01-01 1092-06-01
MA2111 60 1.00 1982-06-01 1983-02-01
MA2112 60 2.00 1982-01-01 1982-07-01
MA2112 70 1.50 1983-02-01 1983-02-01

Figure 128. Partial Contents of PROJ_ACT Table

278 Interactive SQL Guide and Reference

Column Name Description

PROJNO Project number

ACTNO Activity number

ACSTAFF Estimated mean number of employees
needed to staff the activity

ACSTDATE Estimated activity start date

ACENDATE Estimated activity completion date

Figure 129. Columns of the PROJ_ACT Table

The table has a composite primary key and was created with:
CREATE TABLE PROJ_ACT

(PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
ACSTAFF DECIMAL(5,2) s
ACSTDATE DATE NOT NULL,

ACENDATE DATE s

PRIMARY KEY (PROJNO, ACTNO, ACTSTDATE),

FOREIGN KEY R_PROJ2 (PROJNO) REFERENCES PROJECT
ON DELETE RESTRICT,

FOREIGN KEY R_ACTIV (ACTNO) REFERENCE ACTIVITY
ON DELETE RESTRICT)

Relationship to Other Tables
PROJ_ACT is a parent of the EMP_ACT table.

It is a dependent of:

e The ACTIVITY table; the foreign key on ACTNO in the PROJ_ACT table
references the primary key, ACTNO, in the ACTIVITY table.

e The PROJECT table; the foreign key on PROJNO in the PROJ_ACT table
references the primary key, PROJNO, in the PROJECT table.

EMP_ACT Table

The EMP_ACT table identifies the employee performing each activity listed for each
project. The table in Figure 130 on page 280 shows some of the rows in this table.
Figure 131 on page 280 shows a description of the columns.

Appendix B. Sample Tables 279

280

EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE
000130 IF1000 90 1.00 1982-01-01 1982-10-01
000130 IF1000 100 .50 1982-10-01 1983-01-01
000140 IF1000 90 .50 1982-10-01 1983-01-01
000030 IF1000 10 .50 1982-06-01 1983-01-01
000030 IF2000 10 .50 1982-01-01 1983-01-01
000140 IF2000 100 1.00 1982-01-01 1982-03-01
000140 IF2000 100 .50 1982-03-01 1982-07-01
000140 IF2000 110 .50 1982-03-01 1982-07-01
000140 IF2000 110 .50 1982-10-01 1983-01-01
000010 MA2100 10 .50 1982-01-01 1982-11-01
000110 MA2100 20 1.00 1982-01-01 1982-03-01
000020 PL2100 30 1.00 1982-01-01 1982-09-15
000010 MA2110 10 1.00 1982-01-01 1983-02-01
000220 MA2111 40 1.00 1982-01-01 1983-02-01
Figure 130. Partial Contents of EMP_ACT Table
Column Name Description
EMPNO Employee number
PROJNO Project number of the project to which the
employee is assigned
ACTNO Activity number within a project to which
an employee is assigned
EMPTIME A proportion of the employee's full time
(between 0.00 and 1.00) to be spent on
the project from EMSTDATE to
EMENDATE
EMSTDATE Date the activity starts
EMENDATE Completion date of the activity

Figure 131. Columns of the EMP_ACT Table

Since the table has foreign keys referencing EMPLOYEE and PROJ_ACT, those
tables must be created first.

This table was created with:

Interactive SQL Guide and Reference

IN_TRAY Table

CREATE TABLE EMP_ACT

(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,

EMPTIME DECIMAL(5,2)

EMSTDATE DATE

EMENDATE DATE s

FOREIGN KEY R_PROACT (PROJNO,ACTNO,EMSTDATE)
REFERENCES PROJ_ACT ON DELETE RESTRICT,

FOREIGN KEY R_EMPLY3 (EMPNO) REFERENCES EMPLOYEE
ON DELETE CASCADE)

L]

2

Relationship to Other Tables
The EMP_ACT table is a dependent of:

e The EMPLOYEE table; the foreign key on EMPNO in the EMP_ACT table
references the primary key, EMPNO, in the EMPLOYEE table.

e The PROJ_ACT table; the foreign key on the set of PROJNO, ACTNO,
EMSTDATE in the EMP_ACT table references the primary key, PROJNO,
ACTNO, ACSTDATE, in the PROJ_ACT table.

IN_TRAY Table

The IN_TRAY table contains a person’s note log. The table contents are shown in
Figure 132; a description of the columns is shown in Figure 133.

RECEIVED SOURCE SUBJECT NOTE_TEXT

1965-01-01-07.00.00 SQLDBA English Here is a note
from your DBA.

Figure 132. IN_TRAY Table Contents

Column Name Description

RECEIVED Date and time note was received
SOURCE User id of person sending note
SUBJECT Brief description

NOTE_TEXT The text of the note

Figure 133. Columns of the IN_TRAY Table

This table was created with:

CREATE TABLE IN_TRAY
(RECEIVED TIMESTAMP NOT NULL,

SOURCE CHAR(8) NOT NULL,
SUBJECT CHAR(64) ,
NOTE_TEXT VARCHAR(4000))

Appendix B. Sample Tables 281

CL_SCHED Table

CL_SCHED Table

The CL_SCHED table describes a classroom schedule. The table contents are
shown in Figure 134; a description of the columns is shown in Figure 135.

CLASS_CODE DAY STARTING ENDING
101:KAR 2 14.10.00 16.10.00
202:LMM 14.40.00 16.40.00
303:RAR 4 09.00.00 09.40.00

Figure 134. CL_SCHED Table Contents
Column Name Description
CLASS_CODE Class Code (room:teacher)
DAY Day number of four day schedule
STARTING Class start time
ENDING Class end time

Figure 135. Columns of the CL_SCHED Table

This table was created with:

CREATE TABLE CL_SCHED
(CLASS_CODE
DAY
STARTING
ENDING

CHAR(7) NOT NULL,
SMALLINT NOT NULL,

TIME
TIME

NOT NULL,
NOT NULL)

Note: For more information about data types, refer to the DB2 Server for VSE
Application Programming or the DBZ2 Server for VM Application
Programming manuals.

282 Interactive SQL Guide and Reference

Appendix C. Summary of ISQL PF Keys

Listed below is a summary of the default PF key functions:

PF1, PF13

PF2, PF14

PF3, PF15
PF4, PF16

PF5, PF17

PF6, PF18
PF7, PF19

PF8, PF20

PF9, PF21
PF10, PF22

PF11, PF23

PF12, PF24

Issues a HELP command, which retrieves an explanation of how to
use HELP information and a list of the topics available.

Issues a START command, which starts the statement in the SQL
command buffer (the current SQL statement).

Issues an END command.

Issues a PRINT command, which requests the currently displayed
query result to be printed on the designated printer.

Issues a RECALL command, which displays the contents of the
SQL command buffer.

Not assigned.

Issues a BACKWARD command, which moves your view of the
query result backward one-half display.

Issues a FORWARD command, which moves your view of the
query result forward one-half display.

Issues a HOLD command.

Issues a LEFT 1 command, which moves your view of the query
result one column to the left.

Issues a RIGHT 1 command, which moves your view of the query
result one column to the right.

Issues a RETRIEVE command, which displays the last input line
from the SQL command buffer and places it in the input area. Each
successive use of RETRIEVE retrieves an earlier input line. When
there are no more lines in the SQL command buffer to be retrieved,
the newest line (the last one entered in the buffer) is again
retrieved.

Using PF Keys in CMS FULLSCREEN Mode (DB2 Server for VM)

If you are using ISQL in CMS FULLSCREEN mode, you may want to reset the
functions of some PF keys. You can reset your keys by executing a routine. The
routine can be a PROFILE routine which is executed automatically every time you
start ISQL. To reset the PF key functions, you can include the following example
commands in the routine:

CMS

SET LINEND OFF

SET CMSPF 07 BACKWARD NOECHO #WM SCROLL BACKWARD CMS 1
SET CMSPF 08 FORWARD NOECHO #WM SCROLL FORWARD CMS 1
SET LINEND ON

RETURN

This addition to your routine lets you use PF7 and PF8 in ISQL command mode to
scroll forward and backward in a manner similar to the CMS FULLSCREEN mode.

© Copyright IBM Corp. 1987, 1998

283

For information about creating and running routines, see Chapter 9, “Creating and
Using Routines” on page 125.

You can also reset the PF keys every time you use ISQL. For more information on
resetting the PF keys, see “Routines to Which Parameters Can Be Passed (DB2

Server for VM)” on page 125.

284 Interactive SQL Guide and Reference

Appendix D. Summary of SQL Statements for Interactive Use

For syntax diagrams, semantic descriptions, rules, and situations where you would
use the following SQL statements, refer to the DB2 Server for VSE & VM SQL
Reference manual.

* ACQUIRE DBSPACE

e ALTER DBSPACE

e ALTER TABLE

e COMMENT ON

e COMMIT

e CONNECT

e CREATE INDEX

e CREATE SYNONYM

e CREATE TABLE

e CREATE VIEW

e DELETE (searched DELETE only)

e DROP DBSPACE

e DROP INDEX

e DROP PROGRAM

 DROP SYNONYM

e DROP TABLE

e DROP VIEW

e EXPLAIN

¢ GRANT PROGRAM PRIVILEGES

e GRANT SYSTEM AUTHORITIES

e GRANT TABLE OR VIEW PRIVILEGES

e INSERT

* Interactive select (see SELECT in the DB2 Server for VSE & VM SQL
Reference manual)

e LABEL ON

e LOCK DBSPACE

e LOCK TABLE

* REVOKE

e ROLLBACK

e UPDATE (searched UPDATE only)

e UPDATE STATISTICS

© Copyright IBM Corp. 1987, 1998 285

286 Interactive SQL Guide and Reference

Appendix E. Suppressing the ISQL Sign-On Display for DB2
Server for VSE

In addition to typing isgl at a CICS terminal, to start ISQL, you can type the
following command at a CICS terminal. This command suppresses the ISQL signon
display and related terminal messages.

v

»—ISQL—#r_id#—[userid/password
userid/password/server_name—l

»
| 2

\
A

|—routine_name |_ J |
(parameter_list)

Where:

r_id Is a 1-4 character CICS transaction identifier or 1
to 4 blanks.

Stands for a hexadecimal byte X'FF' positioned
immediately before and after r_id to mark the
beginning and end of r_id.

userid/password Is the ISQL signon user ID and password. You

must type the slash (/). Since the server_name is
not specified, the userid/password will be used to
connect to the default server.

userid/password/server_name Is the ISQL signon user ID, password, and the
server-name. You must type the slash (/). The
userid/password will be used to connect to the
specified server.

routine_name Is optional. Refer to “Using the ISQL Transaction
Identifier (DB2 Server for VSE)” on page 126.

(parameter_list) Is optional. Refer to “Using the ISQL Transaction
Identifier (DB2 Server for VSE)” on page 126.

This method of invoking ISQL is primarily designed for VSE system programs:

e Enter into an ISQL session directly from another interactive session. The ISQL
signon display is suppressed so that the user of the interactive session can
enter an ISQL session without doing the formal ISQL signon steps. The user ID
and password supplied in the command are processed as if they were supplied
by the signon display.

¢ Return to the interactive session when the ISQL session ends, passing any
ISQL ending message to the interactive session. Before ISQL is ended, it starts
the CICS transaction identified by r_id (provided r_id is not all blank characters)
using the CICS START command. Ending messages from ISQL are passed as
data in the START command. ISQL returns to CICS if r_id is blank.

© Copyright IBM Corp. 1987, 1998 287

288

The hexadecimal byte X'FF' is usually not available with terminal keyboards. The
sample program, as shown in Figure 136 on page 288, illustrates one method of
displaying the command on the terminal and prompting the user to start ISQL.

TITLE 'STARTING ISQL WITHOUT THE SIGN-ON SCREEN'
B R b o b b b b b b b b b b b o b e b b b b b b b e b b
* THIS PROGRAM WRITES 2 LINES TO THE USER TERMINAL (24X80): =
% - LINE 1 IS FOR SETTING UP THE INVOCATION OF ISQL WITHOUT =
% DISPLAYING THE SIGN-ON SCREEN. *
« - LINE 2 PROMPTS THE USER TO EXECUTE LINE 1 WITH THE ENTER =
% KEY, OR QUIT WITH THE CLEAR KEY. *
AR AR R I A KR A R I AR A A I AR I AR AR I AR A A h A h A hhhkhhhhhkhdhhhhdhhhdhhdhhhdhhdhdkddx
PRINT GEN
DFHEISTG DSECT
INSTRUCT CSECT
SPACE
EXEC CICS SEND FROM(ISQLSTR) FLENGTH(SENDLEN) ERASE
EXEC CICS RETURN
ISQLSTR EQU =
LINEL DC X'l1140401D4D' LINE 1: INVISIBLE, MDT ON,
* UNPROTECTED.
DC C'ISQL'
DC X'FF' DELIMITER BYTE
DC C'TRXO' TRANS-ID TO BE INVOKED AT ISQL
* EXIT.
DC X'FF' DELIMITER BYTE
DC C'SQLDBA/SQLDBAPW' USER-ID/PASSWORD TO ISQL
*
LINE2 ~ DC X'11C1501D40' LINE 2: VISIBLE, MDT OFF,
* UNPROTECTED.
DC C'PRESS ENTER KEY TO INVOKE ISQL,"
DC C' OR CLEAR KEY TO QUIT'
STRLEN EQU *-ISQLSTR
SENDLEN DC A(STRLEN)
LTORG
END

Figure 136. Starting ISQL Without the Sign-on Display

Interactive SQL Guide and Reference

Bibliography

This bibliography lists publications that are referenced in

this manual or that may be helpful.

DB2 Server for VM Publications

e DB2 Server for VM Application Programming,
SC09-2661

e DB2 Server for VM Database Administration,
SC09-2654

e DB2 Server for VSE & VM Database Services
Utility, SC09-2663

e DB2 Server for VM Diagnosis Guide and Reference,

LC09-2672
e DB2 Server for VSE & VM Overview, GC09-2806

e DB2 Server for VSE & VM Interactive SQL Guide
and Reference, SC09-2674

e DB2 Server for VM Master Index and Glossary,
SC09-2666

e DB2 Server for VM Messages and Codes,
GC09-2664

e DB2 Server for VSE & VM Operation, SC09-2668

e DB2 Server for VSE & VM Quick Reference,
SC09-2670

e DB2 Server for VM System Administration,
SC09-2657
DB2 Data Spaces Support Publications
e DB2 Server Data Spaces Support for VM/ESA,
SC09-2675
DB2 Server for VSE Publications

e DB2 Server for VSE Application Programming,
SC09-2662

e DB?2 Server for VSE Database Administration,
SC09-2655

e DB?2 Server for VSE & VM Database Services
Utility, SC09-2663

e DB2 Server for VSE Diagnosis Guide and
Reference, LC09-2673

e DB?2 Server for VSE & VM Overview, GC09-2806
e DB2 Server for VSE Installation, GC09-2656

e DB2 Server for VSE & VM Interactive SQL Guide
and Reference, SC09-2674

e DB2 Server for VSE Master Index and Glossary,
SC09-2667

e DB2 Server for VSE Messages and Codes,
GC09-2665

© Copyright IBM Corp. 1987, 1998

DB2 Server for VSE & VM Operation, SC09-2668

DB2 Server for VSE System Administration,
SC09-2658

DB2 Server for VSE & VM Performance Tuning
Handbook, GC09-2669

DB2 Server for VSE & VM SQL Reference,
SC09-2671

Related Publications

DB2 Server for VSE & VM Data Restore,
SC09-2677

DRDA: Every Manager's Guide, GC26-3195

IBM SQL Reference, Version 2, Volume 1,
SC26-8416

IBM SQL Reference, SC26-8415

VM/ESA Publications

VM/ESA: General Information, GC24-5745

VM/ESA: VMSES/E Introduction and Reference,
GC24-5837

VM/ESA: Installation Guide, GC24-5836
VM/ESA: Service Guide, GC24-5838
VM/ESA: Planning and Administration, SC24-5750

VM/ESA: CMS File Pool Planning, Administration,
and Operation, SC24-5751

VM/ESA: REXX/EXEC Migration Tool for VM/ESA,
GC24-5752

VM/ESA: Conversion Guide and Notebook,
GC24-5839

VM/ESA: Running Guest Operating Systems,
SC24-5755

VM/ESA: Connectivity Planning, Administration, and
Operation, SC24-5756

VM/ESA: Group Control System, SC24-5757
VM/ESA: System Operation, SC24-5758
VM/ESA: Virtual Machine Operation, SC24-5759
VM/ESA: CP Programming Services, SC24-5760

VM/ESA: CMS Application Development Guide,
SC24-5761

VM/ESA: CMS Application Development Reference,
SC24-5762

VM/ESA: CMS Application Development Guide for
Assembler, SC24-5763

VM/ESA: CMS Application Development Reference
for Assembler, SC24-5764

289

VM/ESA: CMS Application Multitasking, SC24-5766

VM/ESA: CP Command and Utility Reference,
SC24-5773

VM/ESA: CMS Primer, SC24-5458

VM/ESA: CMS User’s Guide, SC24-5775
VM/ESA: CMS Command Reference, SC24-5776
VM/ESA: CMS Pipelines User’s Guide, SC24-5777
VM/ESA: CMS Pipelines Reference, SC24-5778
VM/ESA: XEDIT User’s Guide, SC24-5779

VM/ESA: XEDIT Command and Macro Reference,
SC24-5780

VM/ESA: Master Index and Glossary, SC09-2398
VM/ESA: Quick Reference, SX24-5290

VM/ESA: Performance, SC24-5782

VM/ESA: Dump Viewing Facility, GC24-5853

VM/ESA: System Messages and Codes,
GC24-5841

VM/ESA: Diagnosis Guide, GC24-5854
VM/ESA: CP Diagnosis Reference, SC24-5855

VM/ESA: CP Diagnosis Reference Summary,
SX24-5292

VM/ESA: CMS Diagnosis Reference, SC24-5857

VM/ESA: CMS Data Areas and Control Blocks,
SC24-5858

VM/ESA: CP Data Areas and Control Blocks,
SC24-5856

IBM VM/ESA: CP Exit Customization, SC24-5672
VM/ESA REXX/VM User's Guide, SC24-5465
VM/ESA REXX/VM Reference, SC24-5770

C for VM/ESA Publications

IBM C for VM/ESA Diagnosis Guide, SC09-2149

IBM C for VM/ESA Language Reference,
SC09-2153

IBM C for VM/ESA Compiler and Run-Time
Migration Guide, SC09-2147

IBM C for VM/ESA Programming Guide, SC09-2151
IBM C for VM/ESA User's Guide, SC09-2152

Virtual Storage Extended/Enterprise Systems
Architecture (VSE/ESA) Publications

290

IBM VSE/ESA Administration, SC33-6505
IBM VSE/ESA Diagnosis Tools, SC33-6514
IBM VSE/ESA General Information, GC33-6501

IBM VSE/ESA Guide for Solving Problems,
SC33-6510

Interactive SQL Guide and Reference

IBM VSE/ESA Guide to System Functions,
SC33-6511

IBM VSE/ESA Installation, SC33-6504

IBM VSE/ESA Messages & Codes, SC33-6507
IBM VSE/ESA Networking Support, SC33-6508
IBM VSE/ESA Operation, SC33-6506

IBM VSE/ESA Planning, SC33-6503

IBM VSE/ESA System Control Statements,
SC33-6513

IBM VSE/ESA System Macros User's Guide,
SC33-6515

IBM VSE/ESA System Macros Reference,
SC33-6516

IBM VSE/ESA System Ultilities, SC33-6517

IBM VSE/ESA Unattended Node Support,
SC33-6512

IBM VSE/ESA Using IBM Workstations, SC33-6509

CICS/VSE Publications

CICS/VSE Application Programming Reference,
SC33-0713

CICS/VSE Application Programming Guide,
SC33-0712

CICS Application Programming Primer (VS COBOL
1), SC33-0674

CICS/VSE CICS-Supplied Transactions, SC33-0710
CICS/VSE Customization Guide, SC33-0707

CICS/VSE Facilities and Planning Guide,
SC33-0718

CICS/VSE Intercommunication Guide, SC33-0701
CICS/VSE Performance Guide, SC33-0703

CICS/VSE Problem Determination Guide,
SC33-0716

CICS/VSE Recovery and Restart Guide, SC33-0702
CICS/VSE Release Guide, GC33-0700

CICS/VSE Report Controller User's Guide,
SC33-0705

CICS/VSE Resource Definition (Macro), SC33-0709
CICS/VSE Resource Definition (Online), SC33-0708

CICS/VSE System Definition and Operations Guide,
SC33-0706

CICS/VSE System Programming Reference,
SC33-0711

CICS/VSE User's Handbook, SX33-6079
CICS/VSE XRF Guide, SC33-0704

CICS/ESA Publications

e CICS/ESA General Information, GC33-0155
VSE/Virtual Storage Access Method (VSE/VSAM)
Publications

* VSE/VSAM Commands and Macros, SC33-6532

e VSE/VSAM Introduction, GC33-6531

e VSE/VSAM Messages and Codes, SC24-5146

e VSE/VSAM Programmer's Reference, SC33-6535
VSE/Interactive Computing and Control Facility
(VSE/ICCF) Publications

e VSE/ICCF Administration and Operation,
SC33-6562

e VSE/ICCF Primer, SC33-6561
e VSE/ICCF User's Guide, SC33-6563

VSE/POWER Publications

e VSE/POWER Administration and Operation,
SC33-6571

¢ VSE/POWER Application Programming, SC33-6574

¢ VSE/POWER Installation and Operations Guide,
SH12-5329

¢ VSE/POWER Networking, SC33-6573

¢ VSE/POWER Remote Job Entry, SC33-6572
Distributed Relational Database Architecture (DRDA)
Library

e Application Programming Guide, SC26-4773

e Architecture Reference, SC26-4651

e Connectivity Guide, SC26-4783

e DRDA: Every Manager's Guide, GC26-3195

e Planning for Distributed Relational Database,
SC26-4650

* Problem Determination Guide, SC26-4782

C/370 for VSE Publications
e |[BM C/370 General Information, GC09-1386

e IBM C/370 Programming Guide for VSE,
SC09-1399

e |BM C/370 Installation and Customization Guide for
VSE GC09-1417

e |IBM C/370 Reference Summary for VSE,
SX09-1246

e IBM C/370 Diagnosis Guide and Reference for VSE
LY09-1805
VSE/REXX Publication
* VSE/REXX Reference, SC33-6642

Other Distributed Data Publications

e |IBM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 3,
SC21-9526

¢ |IBM Distributed Data Management (DDM)
Architecture, Implementation Programmer’'s Guide,
SC21-9529

e VM/Directory Maintenance Licensed Program
Operation and User Guide Release 4, SC23-0437

e |BM Distributed Relational Database Architecture
Reference, SC26-4651

e |BM Systems Network Architecture, Format and
Protocol

* SNA LU 6.2 Reference: Peer Protocols

¢ Reference Manual: Architecture Logic for LU Type
6.2

e |IBM Systems Network Architecture, Logical Unit 6.2
Reference: Peer Protocols

e Distributed Data Management (DDM) List of Terms

e |BM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 3,
SC21-9526

e IBM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 3,
SC21-9526

e |IBM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 3,
SC21-9526

CCSID Publications

e Character Data Representation Architecture,
Executive Overview, GC09-2207

e Character Data Representation Architecture
Reference and Registry, SC09-2190
C/370 Publications

e |BM C/370 Installation and Customization Guide,
GC09-1387

e |IBM C/370 Programming Guide, SC09-1384

Communication Server for OS/2 Publications
e Up and Running!,GC31-8189

o Network Administration and Subsystem
Management Guide SC31-8181

e Command Reference, SC31-8183
e Message Reference, SC31-8185
e Problem Determination Guide, SC31-8186

Distributed Database Connection Services (DDCS)
Publications

Bibliography 291

e DDCS User's Guide for Common Servers,
S20H-4793

e DDCS for OS/2 Installation and Configuration Guide

S20H-4795

VTAM Publications
¢ VTAM Messages and Codes, SC31-6493
* VTAM Network Implementation Guide, SC31-6494
e VTAM Operation, SC31-6495
e VTAM Programming, SC31-6496
e VTAM Programming for LU 6.2, SC31-6497
e VVTAM Resource Definition Reference, SC31-6498
e VTAM Resource Definition Samples, SC31-6499

CSP/AD and CSP/AE Publications
¢ Developing Applications, SH20-6435

e CSP/AD and CSP/AE Installation Planning Guide,
GH20-6764

e Administering CSP/AD and CSP/AE on VM,
SH20-6766

e Administering CSP/AD and CSP/AE on VSE,
SH20-6767

e CSP/AD and CSP/AE Planning, SH20-6770

e Cross System Product General Information,
GH23-0500

Query Management Facility (QMF) Publications

e QMF General Information, GC26-4713

¢ QMF VSE/ESA Setup and Usage Guide,
GG24-4196

e Managing QMF for VSE/ESA, SC26-3252

¢ Installing QMF on VSE/ESA, SC26-3254

e QMF Learner's Guide, SC26-4714

e QMF Advanced User's Guide, SC26-4715

¢ QMF Reference, SC26-4716

e Installing QMF on VM, SC26-4718

¢ QMF Application Development Guide, SC26-4722
¢ QMF Messages and Codes, SC26-4834

e Using QMF, SC26-8078

e Managing QMF for VM/ESA, SC26-8219

DL/I DOS/VS Publications

292 Interactive SQL Guide and Reference

DL/I DOS/VS Application Programming, SH24-5009

COBOL Publications

VS COBOL Il Migration Guide for VSE, GC26-3150

VS COBOL Il Migration Guide for MVS and CMS,
GC26-3151

VS COBOL Il General Information, GC26-4042
VS COBOL Il Language Reference, GC26-4047

VS COBOL Il Application Programming Guide,
SC26-4045

VS COBOL Il Application Programming Debugging,
SC26-4049

VS COBOL Il Installation and Customization for
CMS SC26-4213

VS COBOL Il Installation and Customization for
VSE SC26-4696

VS COBOL Il Application Programming Guide for
VSE SC26-4697

Data Facility Storage Management Subsystem/VM
(DFSMS/VM) Publications

DFSMS/VM User's Guide, SC26-4705

Systems Network Architecture (SNA) Publications

SNA Transaction Programmer's Reference Manual
for LU Type 6.2, GC30-3084

SNA Format and Protocol Reference: Architecture
Logic for LU Type 6.2, SC30-3269

SNA LU 6.2 Reference: Peer Protocols, SC31-6808

SNA Synch Point Services Architecture Reference
SC31-8134

Miscellaneous Publications

IBM 3990 Storage Control Planning, Installation,
and Storage Administration Guide, GA32-0100

Dictionary of Computing, ZC20-1699

APL2 Programming: Using Structured Query
Language, SH21-1056

ESA/390 Principles of Operation, SA22-7201

Related Feature Publications

Control Center Installation and Operations Guide for
VM, GC09-2678

Control Center Installation and Operations Guide for
VSE, GC09-2679

IBM Replication Guide and Reference, S95H-0999

Index

ARI7040l message 194

Numerics ARI7043 message 194

3270 display terminal 1 ARI7044] message 12, 172, 207
ARI7061l message 92

A ARI7601l message 8

accessing ARI7960l message 22

. arithmetic
table belonging to other users 191 datetime and timestamp 38, 41
activating exception '

foreign key 185
primary key 185
unique constraint 185
ACTIVITY sample table 277
adding
column to a table 182
data to a table 226
datetime value 41
foreign key 185
null value to a column 82, 227
primary key 184
referential constraint 185
row to a table
data from another table 181
INPUT command 81
INSERT command 83

formatting with an arithmetic error 110
grouping 140
interpreting an error 41
operator 25, 38
arithmetic operator
in syntax diagrams Xxix
authority
DBA (database administrator) 4
resource 175
AUTOCOMMIT
AUTOCOMMIT OFF 71, 246
AUTOCOMMIT ON 71, 246
CANCEL command 71, 72, 172
LIST command 235
SET command 115, 246
automatically committing data 72, 246

ALL AVG column function 44, 45

GRANT statement 188
granting to multiple users 189

modifier 144 B
SELECT statement 229 BACKOUT 82, 204
ALL BUT BACKWARD 63, 205, 283
FORMAT command 98 before starting ISQL 5
ALTER beginning a DB2 Server for VSE & VM session 6
GRANT statement 188 beginning a DB2/VM session 4
privlege 187 BETWEEN predicate
ALTER TABLE 182 search condition 33
altering BLANKS
SQL line 90 SET command 115
SQL statement 91 bottom title for printed report 107, 215
table BTITLE
adding foreign key 185 FORMAT command 107, 215

adding primary key 184
deactivating foreign key 185

deactivating primary key 185 C
deactivating unique constraint 185 calculated
AND operator 28 column heading 99
answers to the exercises 261 columns 54
ANY 144 ORDER BY clause 54
ARIO503E message 11 query result 41
ARI0504] message 11 search condition 38, 142
ARIO505] message 11 values
ordering rows 52
view 149

© Copyright IBM Corp. 1987, 1998 293

CANCEL command clause (continued)

command in progress 171 WHERE (continued)
description 71 EXISTS clause 160
locked data 193 general 24
reference 206 SELECT statement 24, 230
cancelling a command in progress 206 UPDATE statement 75
CASE keyword CMS
LIST command 235 commands
SET command 246 use of 197
catalog subset mode 197
read and update access 249 entering 197
catalog table leaving 197
isolation level setting 195 CMS subset 197
SYSCHARSETS 247 coded character set identifier (CCSID)
using 175 description 180
view 166 column
CHANGE command adding to a table 182
current statement 90, 91, 121 command 67
reference 208 description 1
stored statement 122 displayed
changing decimal place, changing 100, 217
case default 26 heading for a calculated value 41
current SQL statement 90, 208 heading for an expression 41
decimal places displayed for a numeric column 217 heading, changing 99, 217
displayed length attribute, changing 101
column heading 99, 217 sequence 22,24
length attribute of a column 101 width, changing 217
width of a column 217 displaying more than 45 columns 229
number of decimal places displayed 100 excluding from a display 97, 217
separation displayed between columns 96, 113, FORMAT command 99
221 function 44, 46
stored SQL statement 122 AVG 44, 45
CHAR COUNT 44, 45
character string evaluation 33 MAX 44, 45
data type 33, 177 MIN 45
scalar function 46, 50 SUM 45
character using 45
combination selection 33 heading
constant in SELECT clause 152 See also column, name
data 26, 177 calculated values 99
choose including
in syntax diagrams xix excluded columns 98, 219
CL_SCHED sample table 282 keyword in FORMAT command 102
CLASS keyword leading zeros 217
LIST command 235 name
PRINT command 238 calculated values 41
SET command 247 changing 99
clause containing a constant 55
FROM 21, 230 creating 177
GROUP BY 139, 231 displayed for COUNT column function 46
HAVING 141, 231 expressions 41
ORDER BY 52, 232 prefix 135
SELECT 21, 228 UNION result 161
SET 75 view 149
VALUES 83 number 161
WHERE UNION with ORDER BY clause 161

DELETE statement 79

294 Interactive SQL Guide and Reference

column (continued)
ORDER BY clause
name 53, 54
number 54
UNION 161
order of display 22, 229
selecting
all columns 23
expression 229
more than 45 columns 229
specific column 21
separator
setting for a session 113, 251
setting for current query result 96, 221
updating 77
variable character

setting width displayed for a session 252

setting width displayed for current query
result 221
COLUMN command 209
column function
description 44
COLUMN option of FORMAT command
changing heading 109, 217
changing width 102
reference 216
combining
data stored in different tables 135
combining multiple queries 151
See also UNION
command
CMS 197
correcting typing error
description 16
IGNORE command 91
START command 87
CP (control program)
SPOOL 198
TAG 198
DISPLAY 131
entering
description 11
while executing another command 14
while processing routine 14, 18
while viewing query result 14, 18
erasing one previously stored 213

ISQL
BACKOUT 82
CANCEL 171

CHANGE 90, 122
description 2
END 23
ERASE 124
HELP 56, 57
HOLD 92
IGNORE 91
INPUT 81

command (continued)

ISQL (continued)
LIST 116, 123
RECALL 121
RENAME 123
RUN 130
SAVE 82
SET 71,72,115
START 120
STORE 119
ISQL display
BACKWARD 63, 205
COLUMN 67, 209
DISPLAY 211
END 23, 212
FORMAT 95, 111, 215
FORWARD 62, 222
LEFT 67, 234
PRINT 67, 237
RIGHT 65, 242
TAB 67, 259
listing a stored SQL statement 235
maximum length 15
preventing immediate processing 224
protecting existing stored 119
recalling a stored SQL statement 240
renaming stored SQL statement 241
reusing 90, 91
SQL
ALTER TABLE 182
changing 90
COMMENT 176
COMMIT 71,76
CREATE INDEX 192
CREATE SYNONYM 191
CREATE TABLE 177, 181
CREATE VIEW 148, 164
DELETE 79
DROP INDEX 192
DROP SYNONYM 192
DROP TABLE 181
DROP VIEW 167
GRANT 187, 189
INSERT 83, 181
placeholder 92
preventing immediate processing 92
previous 119, 121
recalling 121
reusing 87
REVOKE 189
ROLLBACK 71
SELECT 21
starting stored statement 120
storing 119
UPDATE 75, 77
UPDATE STATISTICS 193

Index

295

command (continued) copy

SELECT clause 155
SELECT clause 152, 155
selecting 55
UNION 161

continuation character

setting 247
using 15

CONTINUATION keyword

LIST command 235
SET command 247

controlling

changes to your table 71
display of data
description 2
larger than one display 62, 67

stacking 14 data from one table to another 181
typing 223 of printed reports 114, 247
command buffer printed report 68, 238
how used 87 specifying 198
COMMENT 176 correcting typing error
COMMIT CHANGE command 90
using 71, 76 IGNORE command 91
committing RETRIEVE facility 87
changes correlated
automatically 72 function 147
logical units of work 71 subquery 145
data correlation_name
automatically 246 query 138
comparison operator subquery 150
evaluating character string expressions 33 table
list of 25 combining information 138
modified 144 description 138
unmodified 145 example 145
using 25 COST ESTIMATE 22
computing percentage 167, 171 COSTEST keyword
example SET command 247
aggregate percentage 169 COUNT column function 46
simple percentage 168 description 44, 45
concatenation example 45
operator 54 COUNTER 210
constant CP
column 161 commands 197
CURRENT special register 30 entering 197
datetime 30 SPOOL 198
expression 38, 75 TAG 198
rules CREATE INDEX 128, 192

CREATE SYNONYM 191
CREATE TABLE statement
dbspace 180
effect on stored query 186
example 177
NOT NULL option 181
public dbspace 190
share 190
CREATE VIEW statement
defined on another view 164
example 148, 158
limit access to table 156
restrict access to table 156
simplify query 156
WITH CHECK OPTION 165

report format 95, 113 creating
query format characteristics 111 foreign key 184
conventions index 192

highlighting in this book xxiii
syntax diagram notation xviii

COPIES keyword

ina SET command 114
PRINT command 68, 238
SET command 247

296 Interactive SQL Guide and Reference

primary key 183

referential constraint 184
referential structure 184

report from query results 102, 215
routine 125, 128

ROUTINE table 127

creating (continued)

synonym 191

table 177, 190

view on another view 148, 164
CURRENT DATE special register 30
CURRENT SERVER 30, 31
current SQL statement

changing 90, 208

description 87

displaying 121, 240

reentering 87

starting

placeholder in statement 92
START command 87, 255

storing 119, 257
CURRENT TIME 30
CURRENT TIMESTAMP 30
CURRENT TIMEZONE 30, 31
cursor

movement key 12, 13
cursor stability

guidelines for using 195

isolation level 194, 248

SET command 249

D

data integrity
defining a foreign key 73
data type
description 177
database administrator (DBA)
See DBA (database administrator)
DATE
data type 179
scalar function 47, 50
datetime
data type formats 179
scalar function 31, 50
special registers 30
updating 30
datetime arithmetic expression
example 42
DAY scalar function 47, 50
DAYS scalar function 47, 50
DB2 Server for VSE & VM system
See also SQL
description 1
display terminal 3
session 4
signingon 7
DBA (database administrator)
authority 4, 175
DBCS (double-byte character set)
data type 177
full-screen requirements 177

dbspace
locking 195
private
description 190
isolation level repeatable read 248
setting isolation level 195
storing table 180
public
description 190
isolation level cursor stability 249
isolation level repeatable read 248
isolation level uncommitted read 249
setting isolation level 194, 195
storing table 180
deactivating
foreign key 185
primary key 185
unique constraint 185
DEC 177
See also decimal
decimal
data type 177
scalar function 52
separator 248
specifying number of places to display 217
DECIMAL keyword
description 47
LIST command 235
SET command 112, 248
decimal place
changing the number displayed 100
decimal separator 112
default
data type 177
in syntax diagrams xx
DELETE option
GRANT statement 188
delete rule
referential constraint 74
table with a primary key 72
table with foreign keys only 73, 80
DELETE statement
isolation level setting 196
subqueries 143
table data 79
deleting
data in a routine 129
data in a table 79
from a dependent table 80
from a parent table 80
indexes 192
portions of an SQL statement 91, 208
row with a foreign key value 80
row with a primary key value 80
synonym 192
table 181

Index

297

deleting (continued)
view 167
DEPARTMENT sample table 269
dependent row
deleting 80
inserting 83
updating 78
dependent table
deleting 80
description 74, 75
inserting 83
updating 78
DESTID keyword 238
DESTINATION (in PRINT command) 116
determining
information on your view 166
name of column in a table 176
name of table or view 175
DIGITS scalar function 47, 52
display 11
clearing 12, 15
ISQLTRACE command 233
DISPLAY command 131, 211
display commands
BACKWARD 63, 205
COLUMN 67, 209
definition 23
DISPLAY 131
END 23, 212
FORMAT 102, 111, 215
FORWARD 62, 222
LEFT 67,234
PRINT 67, 237
RIGHT 65, 242
TAB 67, 259
display format information
storing 119, 257
display mode 14, 89
display screen
format 11
VM 11
display terminal 3
large display support 1
support 3
displayed column
heading (name)
calculated value 41
changing 99
containing a constant 55
COUNT column function 46
expression 41
UNION result 161
length, changing 101
displaying
current SQL statement 121, 240
more than 45 columns 229

298 Interactive SQL Guide and Reference

displaying (continued)
name
column in table 176
table 166, 175
view 166
operational characteristics 235
query format characteristics 111
query result
21 or more rows 62
description 61, 67
from a routine 131, 211
LEFT command 234
RIGHT command 242
too long for the display 205, 222
too wide for the display 64
sequence of columns 22, 24
stored SQL statement
LIST command 123, 235
RECALL command 121
width for variable character field 221, 252
DISTINCT
AVG column function 44
COUNT column function 44, 46
reference 229
SELECT clause 27
SUM column function 45
double-byte character set (DBCS)
See DBCS (double-byte character set)
DPLACES (FORMAT command)
description 100
multiple keyword 102, 109
DRDA protocol
CONNECT 3
SQLQRY 172
DROP INDEX statement 192
DROP SYNONYM statement 192
DROP TABLE statement
description 181
DROP SYNONYM statement 192
effect on stored query 186
DROP VIEW statement 167, 192
DUMP keyword 233
duplicate
rows
preventing selection 26, 229
duration
date 39
labeled 38, 39, 40
time 39
timestamp 39

E

EMP_ACT sample table 279
EMPLOYEE sample table 271

END
input 82
PF key 283
query 23
reference 212
ending
INPUT 82, 212
logical unit of work 71
operator command 212
query result
END command 23, 212
PF3 26
entering
commands 11
description 11
multiple input lines 15
while viewing online help information 57
CP commands 197
data in a table
INPUT command 81, 226
INSERT command 83
introduction 2
null value in a table 82
your user ID and password 7
ERASE command 124
ERASE keyword
FORMAT command 105, 107
ERASE statement 124, 213
erasing
duplicate values in report 103
more than one stored command 124
stored SQL statement 124, 213
error mode processing 130
errors
See also correcting typing error
arithmetic 41
multi-row operations 72
routine 130, 251
SQL statements 11
escape character
using 36
estimating resource usage 247
evaluating
character string expression 33
padding character string expression 33
example
starting a DB2 Server for VSE & VM terminal
session 4
EXCLUDE keyword (FORMAT command)
description 97
example 97
multiple keywords 109
reference 217
excluded columns
including 98, 219

excluding column from the display 97, 217
EXEC
example 199
using 199
existence
testing 159
EXISTS keyword 147, 159
EXIT command 18, 214
EXPLAIN option, setting isolation level 195
expression
arithmetic 38
column function 45
description 25
evaluating character strings 33
in a select statement 229
labeled duration 38

F

field procedure
description 53
establishing 53
index order 53
ORDER BY clause 53, 136
final totals 104, 218
finding names
column in table 176
table 175
view 166
fixed character data type 177
FLOAT
data type 177
scalar function 47, 52
floating point
data type 177
foreign key
activating 185
adding 185
creating 184
creating a referential constraint 184
deactivating 185
deleting a row with a foreign key value 80
description 73
inserting a row with a foreign key value 83
null value 74, 78
privilege required 183
referential constraint 74
updating a foreign key value 78
FORMAT 96, 111, 215
format information for a display
changed because of table change 186
saving 121, 123
stored SQL statement 123
storing 119, 122
formatting
report from a query result 102, 111, 215

Index

299

FORWARD command
description 62
PF key 283
reference 222
fragment of syntax
in syntax diagrams xxi
FROM clause
SELECT statement 21, 230
FULLSCREEN 4
function
column 44, 45
datetime
description 50
timestamp 31
updating 30
description 44, 46
GROUP BY 139
restriction 45
scalar 50
timestamp 31
view 149

G
GRANT 187, 189
granting privilege 187
table 187, 189
GRAPHIC data type 55, 177
group
search condition 141, 231
GROUP BY clause
description 139
SELECT statement 231
subquery restriction 145
GROUP option of FORMAT command
multiple keywords 109
outline report 103
reference 218
total 105
grouped query result 139, 231
grouping
subtotal 105, 218
guidelines
See also rules
cursor stability isolation level 195
repeatable read isolation level 196
uncommitted read isolation level 195

H
HAVING clause
description 141
reference 231
subquery 145
restrictions 145

300 Interactive SQL Guide and Reference

heading for column
See name, column
heading for column in UNION result 161
HELP
alternate language 56, 115
command
isolation level setting 195
information viewing
setting isolation level 195
isolation level setting 195
online 56
PF keys 283
reference 223
typing command 57
HEX scalar function 52
HOLD command
description 92
PF9 283
reference 224
host variable
in syntax diagrams xviii
HOUR scalar function 50

IGNORE command
example 16
reference 225
SQL line 91
usage 16
improving query performance 192
IN predicate
search condition 32
subqueries 143
in-progress command, cancelling 172
IN_TRAY sample table 281

INCLUDE keyword (FORMAT command) 98, 219
including excluded columns in a display 98, 219

indexing
table 192
input area 12, 13
INPUT command
data in a table 81, 226
deleting information while using 82
saving information while using 82

inputting
data in a table 81
ending 212

isolation level setting 195

null value in a table 82

nullifying input 204

routine 131

saving a portion of input 244
INSERT

data from another table 181

isolation level setting 195, 196

INSERT (continued)
option of GRANT statement 188
privilege of GRANT statement 187
single row 83
insert rule
description 74
table with a foreign key 83
table with a primary key 83
inserting data
referential constraint 83
row with a foreign key value 83
row with a primary key value 83
several rows 81
single row 83
INT 177
See also INTEGER
INTEGER
data type 177
scalar function 52
interactive SELECT statement 228
Interactive Structured Query Language (ISQL)
See ISQL
IS NULL predicate
search condition 37
ISOLATION keyword
LIST command 235
SET command 248
isolation level
cursor stability
guidelines 195
description 248
locking data 193
repeatable read
guidelines 196
specifying 194, 248
uncommitted read
guidelines 195
ISQL
commands
BACKOUT 82, 204
CANCEL 171, 206
CHANGE 90, 208
description 2
END 23, 212
ERASE 124, 213
EXIT 18,214
HELP 56, 58, 223
HOLD 92, 224
IGNORE 91, 225
INPUT 81, 226
ISQLTRACE 233
LIST 123, 235
LIST SET 116
LIST SQL 123
RECALL 121, 240
RENAME 123, 241
RUN 130, 243

ISQL (continued)

commands (continued)
SAVE 82, 244
SET 71, 72, 115, 245
START 120, 255
STORE 119, 257

description 2

DISPLAY 131

display commands
BACKWARD 63, 205
COLUMN 67, 209
description 23
DISPLAY 211
END 23, 212
FORMAT 95, 111, 215
FORWARD 62, 222
LEFT 67,234
PRINT 67, 237
RIGHT 65, 242
TAB 67, 259

END 212

ERASE 213

EXIT 18,214

HELP 223

HOLD 224

IGNORE 16, 225

INPUT 226

isolation level setting 195

ISQLTRACE 233

leaving from signon display 8

LIST 235

mode 14
display 14
wait 14

RECALL 240

RENAME 241

RUN 243

SAVE 244

SET 245

START 255

starting 4,6, 8

stopping 17, 214

STORE 257

transaction identifier 126

ISQL EXEC 8, 125
ISQL session manager 4
ISQLTRACE 233

join

condition 136
tables 135
variable 136

joining

a table to itself 136, 138

Index

301

joining (continued)
tables 135
views 157

K

key
foreign
adding 185
creating 184
description 73
null value 74
primary
adding 184
creating 183
description 73
keyboard, unlocked 14
keyword 30
in syntax diagrams xviii
using more than one
ERASE command 124
FORMAT command 102, 108
LIST command 123, 235
PRINT command 69, 239
SET command 115, 252

L

labeled duration
description 38
language for message and HELP text 115
large display support 1
leading zeros
controlling 100, 217
LEFT command
example 67
PF key 283
reference 234
LENGTH (SET command) 114
length attribute of column
changing 101
LIKE predicate
search condition 34, 35
limiting
privilege by using a view 190
update privilege 189
LIST
examples 123
obtaining printed reports 116
reference 235
selecting rows 32
setting more than one characteristic 115
listing
format characteristics 116
more than one stored command 123
name
column in table 176

302 Interactive SQL Guide and Reference

listing (continued)
name (continued)
stored SQL statement 123
table 166, 175
view 166, 175

operational characteristics 235

stored SQL statement 235
locking

data 193

isolation level 193, 248
logical unit of work (LUW)

See LUW (logical unit of work)
LONG VARCHAR data type 177
LONG VARGRAPHIC data type 177
long-running commands, canceling 172
lowercase characters

input 91, 246
LUW (logical unit of work)

AUTOCOMMIT setting 71, 72

canceling 171

M

main query 142
managing your own table 175
master profile routine 125
MAX column function 44, 45
message

alternate language 115

description 8, 10

ISQL status 13
MICROSECOND scalar function 50
MIN column function 45
minimum

content of a table 181
MINUTE scalar function 50
mixed case support 26

mode
display 14, 89
wait 14, 89

modified comparison operator 144
modifier

ALL 144

ANY 144

modifying the separation between columns 96, 113

MONTH scalar function 50
more than one keyword with FORMAT
command 108
moving
data with INSERT command 83, 181
through a query result
backward 63, 205
forward 62, 222
left 67, 234
right 65, 242

multiple
queries
combining 151
search conditions 28
multiple language HELP text 56

N

name
column
changing display 99
containing constant 55
description 1
displayed for COUNT column function 46
UNION result 161
table 2
NAME option of FORMAT command
description 99
using several keywords 102, 109
NOT modifier
BETWEEN predicate 33
EXISTS predicate 160
IN predicate 32
LIKE predicate 34
NULL predicate 37
NOT NULL option 181
NOT operator 28
null
description 81
NULL function in search condition 83
NULL option
FORMAT command 111, 220
LIST command 235
SET command 115
description 113
displayed character 113
reference 250
null value
controlling what is displayed 110, 113
description 81
effect on query result 37
entering in a table 82
for added column 182
formatting field 110
formatting with null field 110
found in grouped column 231
grouping rows 140
in calculating
average 44
maximum 44
minimum 45
sum 45
join condition 136
preventing occurrences of in a table 181
searching 37, 83
selecting data from table
example 37

null value (continued)
selecting data from table (continued)
IS NULL predicate 37, 83
representation 37
setting characters displayed
query result 220
terminal session 113, 250
using table containing 83
nullifying input
BACKOUT 82, 204
IGNORE 225
numeric
field punctuation 112
see DECIMAL 177

O

omitting column from a display 97, 217
online
reference information
HELP command 223
HELP text 56
introduction 2
setting isolation level 195
ONLY option
FORMAT command 98
operational characteristic
listing 116, 235
setting 245
operational characteristics
See query format characteristics
operator
AND 28
arithmetic
description 25
example 38
query result 38
comparison
character string 33
modified 144
concatenate 54
multiple queries 151
OR 28
UNION
description 151
ORDER BY 161
subquery 155
view 160
operator commands
COUNTER 210
ending 212, 213
SHOW 253
option of GRANT statement 188
optional
default parameter
in syntax diagrams xx

Index

303

optional (continued)
item
in syntax diagrams xix
keyword
in syntax diagrams xx
order
calculated column 54
displayed column 22
displayed row 52, 54
ORDER BY clause 232
creating a view 157
field procedure 53, 136
SELECT statement 52, 148
UNION 161
ordering
columns of a query result 229
rows of a query result 232
OUTLINE keyword 220
outlining
columns 218
controlling 220
report 103
output area
correcting line 87
description 13
output class
for printed reports 238
setting for a session 247
owner of table 186

P
PAl key 197
padding character string
during expression evaluation 33
page
locking 249
size of printed report 250
PAGESIZE keyword
LIST command 235
SET command 114, 250
parameter
RUN command 243
START command
description 93
example 120
reference 255
parent row
deleting 80
updating 78
parent table
deleting 80
description 74
inserting 83
updating 78

304 Interactive SQL Guide and Reference

parentheses
in syntax diagrams xix
parenthesis
column function 45
function 45
in UNION 154
search condition 28, 29
password 4
percent character 34, 35
percentage, computing
example
aggregate percentage 169
simple percentage 168
performance, query 192
PF key
description 3
FULLSCREEN 283
resetting 283
summary 283
template 3
using 203, 259
PF keys 283
PF1 key 57
PF10 key 67
PF11 key 67
PF12 key 88
PF2 key 87
PF3 key 26
PF4 key 67
PF7 key 63
PF8 key 62
PF9 key 92
placeholder
See also variable
profile routine 125
routine 128
RUN command 243
START command 255

used in
current SQL statement 92
routine 130
stored SQL statement 120
predicate
BETWEEN 33
IN 32
LIKE 34
NULL 37
prefix
column name 135
preventing

selection of duplicate row 26, 229

SQL statement from being processed
previous SQL statement

recalling 121, 240

storing restriction 119

primary key
activating 185
adding 184
creating 183
deactivating 185
deleting a row with a primary key value 80
description 72, 73
inserting a row with a primary key value 83
privilege required 183
referenced in a referential constraint 74
updating a primary key value 78
PRINT 67, 237, 283
print characteristics 198
printed reports
bottom title 107, 215
date 67, 239
introduction 2
multiple copies
CP SPOOL command 198
PRINT command 68, 238
page number 67, 239
page size, specifying 250
printing 2, 237
remote printer 198
routine 239
routing 116, 239, 250
routing to alternate printer 198
SET command 114, 247
top title
example 106
TTITLE option of FORMAT command 216
PRINTROUTE keyword
LIST command 235
SET command 250
private dbspace
description 190
isolation level repeatable read 248
setting isolation level 195
storing table 180
privilege
ALL 188
ALTER 187, 188
DELETE 188
granting 187
INDEX 188
INSERT 188
REFERENCES 187, 188
restricting
specific column 189, 190
specific row 190
revoking 189
SELECT 188
table 188
UPDATE 188
processing
current SQL statement 87, 255

processing (continued)
routine 130
stored SQL statement 255
profile routine 125
Program Function key (PF key)
See PF key
PROJ_ACT sample table 278
PROJECT sample table 275
protecting
existing stored commands 119
public dbspace
creating tables in 190
isolation level
cursor stability 249
repeatable read 248
uncommitted read 249
setting isolation level 194, 195
storing tables in 180
punctuation
for display of a numeric column 112, 248
punctuation mark
in syntax diagrams Xix

QCE (Query Cost Estimate)
description 22
how to display 247
qualifying names 137
query
description 1, 21
main query 142
simplifying using views 148
subquery 142
terminal settings 228
using view 156
Query Cost Estimate (QCE)
See QCE (Query Cost Estimate)
query format characteristics
listing 116
setting 111, 115
query result
calculated 41
column heading in UNION 161
description 22
displaying 61, 67
ending 23, 26, 212
formatting 95, 116, 215
grouping rows 231
moving
backward 205
display to a particular column 209
forward 222
left 234
right 242
ordering rows
calculated result 54

Index

305

query result (continued) report (continued)

ordering rows (continued) printed (continued)
description 52 date 67, 239
ORDER BY clause 232 page number 67, 239
printing 67, 237 page size 114, 250
viewing columns too wide for the display 259 setting output class 247
setting output class for a particular report 238
setting the number of copies 247
R setting the number of copies for a particular
RECALL command report 238
description 121 top title 106, 216
PF5 283 printing 67, 237
reference 240 required item
recalling a stored SQL statement in syntax diagrams xix
description 121 reserved words
isolation level 195 SQL xxi
RECALL command 240 resource authority 175, 180
reference information restricting
online 56, 223 privilege by using a view 190
REFERENCES option of GRANT statement 188 update privilege 189
REFERENCES privilege 187 RETRIEVE facility
referential constraint CHANGE command 91
description 72, 74 description 87
updating values introduction 16, 17
dependent table 78 PF12 90, 283
parent table 78 retrieving
referential integrity data 21
delete rule 80 RETURN 197
description 72 REVOKE 189
foreign key 73 revoking
insert rule 83 privileges 189
update rule 78 RIGHT command
referential structure example 65
example 74 PF11 283
structure 74 reference 242
RENAME command 123, 241 ROLLBACK
renaming use of 71
stored SQL statement 123, 241 rolling back
repeat symbol changes 71, 206
in syntax diagrams xx routine
repeatable read creating 128
guidelines 196 description 125
isolation level 194, 248 DISPLAY commands 131
SET command 248 displaying query result 211
REPLACE keyword entering data into table 128
introduction 119 error mode processing 130, 251
message 120 INPUT command 131
reference 257 profile 125
saving format information 122 running 130, 243
report SELECT statements 131
formatting 102, 111, 215 setting isolation level 195
isolation level setting 195 sharing 130
formal reports 196 storing 128
obtaining multiple copies 68, 114 table 127
page size 114 updating 129
printed where they are stored 127

bottom title 107, 215

306 Interactive SQL Guide and Reference

ROUTINE table 127
routing
printed output
to POWER remote workstation 116
to terminal 116
printed reports 116
row
deleting 79
description 1
granting privilege 190
inserting
data from another table 181
multiple rows 81
single row 83
locking 249
ordering for display
calculated result 54
description 52
ORDER BY clause 232
selecting 24, 54, 228
updating 75
rules
comparison of character strings 33
evaluating search conditions 33
RUN command
description 130, 243
example 130
isolation level setting 195
RUNMODE keyword
LIST command 131, 235
SET command 130, 251
running
routines
description 130
isolation level 195
RUN command 243

S

sample table
ACTIVITY 277
CL_SCHED 282
DEPARTMENT 269
EMP_ACT 279
EMPLOYEE 271
IN_TRAY 281
PROJ_ACT 278
PROJECT 275
SAVE command 82, 244
saving format information
CHANGE 208
reference 228
START 256
STORE 121, 257
saving input
on an INPUT command 244

saving SQL statements

See stored SQL statements

scalar function

CHAR 50
DATE 50

DAY 50

DAYS 50
DECIMAL 52
description 46
DIGITS 52
FLOAT 52
HEX 52
HOUR 50
INTEGER 52
MICROSECOND 50
MINUTE 50
MONTH 50
SECOND 50
STRIP 51
SUBSTR 51
TIME 50
TIMESTAMP 50
TRANSLATE 51
VARGRAPHIC 52
YEAR 50

scalar functions

description 50

scrolling through a query result

backward 205
description 62
forward 222
left 234
right 242

search condition

BETWEEN predicate 33
calculated 38
containing
correlated subquery 145
subquery 142
correlated subquery 145
group 141, 231
IN predicate 32
LIKE predicate 34
multiple 28
NULL predicate 37
parentheses in 29
row 24
rules 33
subqueries 142
subquery 142
table containing null value 83
USER special register 31

SECOND scalar function 50
SELECT privilege

GRANT statement 187
routine 130

Index

307

SELECT statement 228 SET command

creating a view 157 AUTOCOMMIT option 72
data and isolation level setting 195 description 112, 116
isolation level setting 196 reference 245
online reference information 223 SET keyword of LIST command 235
routine 131 setting
table containing null value 37 autocommit of changes to tables 72
using 21 autocommit of data 246
selecting characters displayed
calculated data 41 FORMAT command 221
column 21, 23 FORMAT NULL command 220
constant 55 SET command 113, 251
data from SET NULL command 113, 250
another user's table or view 191 continuation character 247
table with null value 83 displayed width for variable character field 221
two or more tables 135 language for message and HELP text 115
view 148 number of copies for printed reports 114, 247
data from a table 228 operational characteristics 245
online help information 56 output class for printed reports 247
row 24,54 page size for printed report 114
summary information by group 139 punctuation displayed for numeric column 112, 248
typing a command while viewing a HELP display 57 routing printed output
separation between columns, modifying 96, 113 to POWER remote workstation 116
separator to terminal 116
column RUNMODE option 130
character displayed 113 uppercase input 246
modify 96 sharing
setting for a session 251 routines 130
setting for current query result 221 table with another user 186, 190
decimal 112, 248 shift-in character
thousands 112, 248 representing graphic constants 55
SEPARATOR keyword shift-out character
FORMAT command representing graphic constants 55
description 96 SHOW 253
multiple keywords 102, 109 signing on
reference 221 to ISQL 7
STORE 119 to ISQL from another CICS task 287
LIST command 116, 235 signon screen
SET command description 7
character displayed 113 suppressing 287
example 115 simplifying query 148
reference 251 single quotation mark
session all character data in SQL statements 26
DB2 Server for VSE & VM terminal size
definition 4 printed page for reports 250
starting 4, 6 SMALLINT data type 177
DB2/VM terminal SOME modifier 144
starting 4 sorting in join 137
session manager special register
support 4,9 datetime 30, 38
SET description 30
clause 75 timestamp 38
isolation level 194, 248 updating using special registers 77
LIST command 116, 131 specifying
SET CASE 26 search conditions 24

308 Interactive SQL Guide and Reference

SQL
command buffer 87
command line buffer 87, 91
description 1
keyword
LIST command 123, 235
statements
ALTER TABLE 182
COMMENT 176
COMMIT 71,76
CREATE INDEX 192
CREATE SYNONYM 191
CREATE TABLE 177, 181
CREATE VIEW 148, 164
current 119, 121
DELETE 79
DROP INDEX 192
DROP SYNONYM 192
DROP TABLE 181
DROP VIEW 167
GRANT 187, 189
INSERT 83, 181
listing more than one stored 123
listing those previously stored 123
preventing immediate processing 92
previous 119, 121
recalling one previously stored 121
renaming one previously stored 123
replacing 119
REVOKE 189
ROLLBACK 71
SELECT 21
starting stored statement 120
UPDATE 75, 77
UPDATE STATISTICS 193
SQLCODE 11
SQLINIT EXEC 5
SQLQRY 172
stacking SQL and ISQL commands 199
START command
correcting errors 91
description 87
isolation level setting 195
no parameter 120
parameter 93
PF key 283
reference 255
starting
current SQL statement 87, 255
ISQL 3,4,6,8
stored queries and isolation level setting 195
stored SQL statement 120, 255
statistics 193
status
area 12,13

stopping
ISQL 17, 214
logical units of work 171
running command 171
STORE command 119, 257
stored SQL statements
changing 122
effect of table changes 186
erasing 124, 213
isolation level setting 195
listing 123, 235
protecting 119
recalling 121, 240
renaming 123, 241
routine 130
starting 120, 255
storing
current SQL statement 119, 257
display format information 119, 257
isolation level setting 195
routine 128
STRIP scalar function 51
Structured Query Language (SQL)
See SQL
subqueries 142
subquery
build search condition 142
correlated 145
correlated function 147
correlation 145
CREATE VIEW command 190
DELETE statement 143
in DELETE statement 147
in HAVING clause 147
in join 146
in UPDATE statement 147
INSERT command 181
modified comparison operator 144
search condition 142
testing existence 159
UNION 155, 161
unmodified comparison operator 145
UPDATE statement 143
using 144, 150
SUBSTR scalar function 51

subtotal
creating 105
report 104

specifying when to subtotal 218
specifying which columns to subtotal 218
SUBTOTAL keyword (FORMAT command)
multiple keyword 109
reference 218
report total 104, 106
subtracting datetime value 41

Index

309

SUM column function 45
synonym

creating 191
dropping 192
routine 130

syntax diagram

notation conventions xviii

SYSTEM

T

(in PRINT command) 116
(in SET command) 116
keyword 239

TAB 67, 259
table

accessing those belonging to other users 191

adding
column 182
data 226
foreign key 185
primary key 184
referential constraint 185
altering 184, 185
column 1
copying data from another table 181
correlation name
combine information 138
correlated subquery 145
join table to itself 136
query 138
creating
description 177
foreign key 184
primary key 183
share 190
deleting 181
description 1
determining name 166, 175

example 1
granting privilege 187
index

creating 192

dropping 192
joining 135

with views 135, 157
listing name 166, 175
minimum content 181
naming conventions 2
null values 83
owner 186
revoking privilege 189
ROUTINE

creating 127

entering data 128
row 1

310 Interactive SQL Guide and Reference

table (continued)
selecting data 228
sharing with another user 186, 190
synonym
creating 191
dropping 192
trace 233
updating and views 162
using another user's 191
value 1
TERMID keyword 238
terminal
display 1,3
session 4
starting ISQL 4, 6
testing
existence 159
thousands separator 112, 248
TIME
data type 178
scalar function 50
time-of-day clock 31
TIMESTAMP
data type 177
scalar function 50
timestamp function 31
title for printed report 106, 215, 216
TOD clock 31
total for report
erasing 105
TOTAL keyword 104
TOTAL option of FORMAT command
create total 104
erasing 105
reference 218
total, final 218
TOUSER keyword 239
tracing 233
TRANSLATE scalar function 49, 51
TTITLE option of FORMAT command
creating top title 106
example 107
reference 216
typing errors
CHANGE 90
correcting 16
IGNORE 16, 91
RETRIEVE 87

U

uncommitted read
guidelines for using 195
isolation level 194, 249
SET command 249

underscore character 34, 35
UNION
character constant in SELECT 152
column heading 161
comparing with UNION ALL 153
multiple queries 155, 161
operator for multiple queries 151
tables 151
used in creating a view 157
using a subquery 155, 161
using parenthesis 154
views 160
UNION ALL
comparing with UNION 153
using 154
UNION operator for multiple queries 151
unique constraint
activating 185
deactivating 185
privilege required 183
updating 78
unmodified comparison operator 145
UPDATE option of GRANT statement
description 187
restricting privilege 189
summary 188
update rule
dependent table 78
parent table 78
primary key 73
referential constraint 74
UPDATE statement
description 75
isolation level setting 196
multiple rows 77
subquery 143
UPDATE STATISTICS statement 193
updating
column 77
data
dependent table 78
parent table 78
routine 129
row 75
uppercase characters, input 246
user ID
for ISQL session 4
USER special register 31, 176

Vv

value

description 1
VALUES clause 83
VARCHAR data type 33, 178

VARCHAR keyword
FORMAT command 221
LIST command 235
SET command 252
VARGRAPHIC data type 33, 177
VARGRAPHIC scalar function 52
variable
See also placeholder
current SQL statement 92
routines 130
stored SQL statements 120
variable character column
current query result 221
session 252
view
creating 148
a view defined on another view 148, 164
description 148
determining name 166, 175
dropping 167
joining with a table 157
joining with another view 158
listing name 166, 175
naming column 149
privilege, restricting 190
restricting privilege 190
simplify query 148
synonym
creating 191
dropping 192
UNION 160
updating underlying table 162
using another user's 191
using in query 148
viewing columns too wide for the display 259
VM
commands 197
functions 197

W

wait mode 14, 89
WHERE clause
DELETE statement 79
EXISTS clause 160
general 24
SELECT statement 24, 230
UPDATE statement 75
width displayed
changing
any column 101, 217
VARCHAR columns 252
WIDTH option
FORMAT command 101, 102
SET command 114

Index

311

WITH GRANT OPTION clause 187

Y

YEAR scalar function 50

Z

ZEROS option of FORMAT command 100, 102

312 Interactive SQL Guide and Reference

Communicating Your Comments to IBM

DB2® Server for VSE & VM
Interactive SQL Guide and
Reference

Version 6 Release 1

Publication No. SC09-2674-00

If there is something you like—or dislike—about this book, please let us know. You can use
one of the methods listed below to send your comments to IBM. If you want a reply, include
your name, address, and telephone number. If you are communicating electronically, include
the book title, publication number, page number, or topic you are commenting on.

The comments you send should only pertain to the information in this book and its
presentation. To request additional publications or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM representative
or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the United
States, you can give it to the local IBM branch office or IBM representative for postage-paid
mailing.

 If you prefer to send comments by mail, use the RCF at the back of this book.
¢ If you prefer to send comments by FAX, use this number:

— United States and Canada: 416-448-6161

— Other countries: (+1)-416-448-6161

¢ If you prefer to send comments electronically, use the network ID listed below. Be sure
to include your entire network address if you wish a reply.

— Internet: torrcf@ca.ibm.com

— IBMLink: toribm(torrcf)

— IBM/PROFS: torolab4(torrcf)
— IBMMAIL: ibmmail(caibmwt9)

Readers' Comments — We'd Like to Hear from You

DB2® Server for VSE & VM
Interactive SQL Guide and
Reference

Version 6 Release 1

Publication No. SC09-2674-00

Overall, how satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Overall satisfaction O O O m] u}
How satisfied are you that the information in this book is:
Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Accurate O O O m] O
Complete O O O m] m]
Easy to find O O O m] O
Easy to understand O O O m] O
Well organized O O O m] m]
Applicable to your tasks O O O m] O

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? O Yes O No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments

in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers' Comments — We'd Like to Hear from You

SC09-2674-00

Fold and Tape

Please do not staple

[

i
<.||
ML
®

Fold and Tape

Cut or Fold
Along Line

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR

1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA

PLACE
POSTAGE
STAMP
HERE

M3C 1H7

Fold and Tape

SC09-2674-00

Please do not staple

Fold and Tape

Cut or Fold
Along Line

File Number: S370/4300-50
Program Number: 5648-A70

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

Spine information:

Interactive SQL Guide and
==F% DB2® Server for VSE & VM Reference Version 6 Release 1

