

DB2 Server for VSE & VM IBM

Database Services Utility
Version 6 Release 1

 SC09-2663-00

DB2 Server for VSE & VM IBM

Database Services Utility
Version 6 Release 1

 SC09-2663-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

This book is also available as an online book that can be viewed with the IBM BookManager READ and IBM Library Reader
licensed programs.

| First Edition (December 1998)

This edition SC09-2663, applies to Version 6 Release 1, of the IBM DATABASE 2 Server for VSE & VM Program 5648-A70, and
to all subsequent releases of this product until otherwise indicated in new editions. Make sure you are using the correct edition for
the level of the product.

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change or addition.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments to:
IBM Canada Ltd. Laboratory, Information Development, 2G/345/1150/TOR, 1150 Eglinton Ave East, North York, Ontario, Canada.
M3C 1H7.

You can also send your comments by facsimile to (416) 448-6161 addressed to the attention of the RCF Coordinator. If you have
| access to Internet, you can send your comments electronically to torrcf@ca.ibm.com ; IBMLink, to toribm(torrcf) ; IBM/PROFS,
| to torolab4(torrcf) ; IBMMAIL, to ibmmail(caibmwt9) ; or through our home page at http://www.software.ibm.com/data/db2/vse-vm

If you choose to respond through Internet, please include either your entire Internet network address, or a postal address.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring obligation to you.

 Copyright International Business Machines Corporation 1987, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Programming Interface Information vii
Trademarks . vii

About This Manual ix
Who Should Use This Manual ix
How to Use This Manual ix

Utilization . ix
Organization ix

Components of the Relational Database
Management System x

Prerequisites xiii
Knowledge xiii

Highlighting Conventions xiii
Syntax Notation Conventions xiv
SQL Reserved Words xvii

| Summary of Changes for DB2 Version 6
| Release 1 xix
| Enhancements, New Functions, and New
| Capabilities xix

| DRDA RUOW Application Requestor for
| VSE (Online) xix
| Stored Procedures xix
| TCP/IP Support for DB2 Server for VM . xx
| New Code Page and Euro Symbol Code
| Page Support xx
| DataPropagator Capture xx
| QMF for VM, QMF for VSE, and QMF for
| Windows xxi
| RDS Above the Line xxi
| Combining of NLS Feature Installation
| Tapes with Base Product Installation Tape xxi
| Control Center Feature xxii
| Data Restore Feature xxii
| DB2 REXX SQL Feature xxii
| Reliability, Availability, and Serviceability
| Improvements xxii
| Migration Considerations xxii
| Library Enhancements xxiii

Part 1. User's Guide . 1

Chapter 1. Getting Started 3
Introducing the Database Services Utility . . . 3

Loading Data into a Database 4
Starting and Using the Database Services

Utility . 7
Multiple User Mode 7
Single User Mode 8
Overview of Database Services Utility Files 8

Working with an Input Control Card File in DB2
Server for VSE 9

Creating a Control Card File 9
Working with a Report 9

Working with a Control File in DB2 Server for
VM . 13

Using a Control File 13
Creating a Control File 13

Defining Input and Output Requirements . . 14
Using File Definitions 14
Using the SQLDBSU EXEC 15

Working with a Message File 17
Using the DBS Utility on non-DB2 Server for

VM Application Servers 19
Using SQL Statements within the Database

Services Utility 19
CONNECT 20

SELECT 22
COMMIT 24
Using SQL Comments 24

Querying the Current Status in DB2 Server for
VM . 25

Canceling a DB2 Server for VM Command . 26
Exiting from the Database Services Utility . 26

Chapter 2. Loading Data with the Database
Services Utility 27

DATALOAD Command Components 27
DATALOAD Procedures 31

Using the DATALOAD Command with a
Separate Data Input File 31

Using the DATALOAD Command with
Embedded Data 32

Data Format Support 35
JCL for the DB2 Server for VSE

DATALOAD Command 35
Using File Definitions with the DB2 Server

for VM DATALOAD Command 36
General Loading Procedures 37

Comparison Operators 37
Loading Null Values 37

 Copyright IBM Corp. 1987, 1998 iii

Loading CURRENT DATE, CURRENT
TIME, and CURRENT TIMESTAMP
Values . 38

Loading Data into Multiple Tables 39
Combining Records to Load Multiple Table

Rows . 43
Committing Work While Loading Data . . 46
Restarting the Loading Process 49
Statistics Collection 50

Chapter 3. Unloading Data with the
Database Services Utility 53

DATAUNLOAD Procedures 53
Unloading Data in System-Defined Format 54
Unloading Data in User-Specified Format 58
Unloading NULL Values 60
Unloading a View 62
Using File Definitions with the DB2 Server

for VM DATAUNLOAD Command 63
UNLOAD Procedures 64

Unloading Data in System-Defined Format 64
Using the UNLOAD DBSPACE Command 66
Using the UNLOAD TABLE Command . . 67
Using File Definitions with the DB2 Server

for VM UNLOAD DBSPACE and UNLOAD
TABLE Commands 68

Chapter 4. Reloading Data with the
Database Services Utility 71

RELOAD Procedures 71
Reloading Data in System-Defined Format 71
Using the PURGE Parameter 75
Using the NEW Parameter 76
Using the RELOAD DBSPACE Command 76
Using the RELOAD TABLE Command . . 78
Using File Definitions with DB2 Server for

VM RELOAD DBSPACE and RELOAD
TABLE Commands 81

FILEDEFs Supporting RELOAD Command
Processing 82

Statistics Collection 82

Chapter 5. Unloading and Reloading
Packages with the Database Services
Utility . 83

Package Procedures 83
Preprocessing 83
Using the UNLOAD PACKAGE Command 85
Using the RELOAD PACKAGE Command 87

Authorizing the Use of Packages 91
Preprocessing and Distributing an

Application 92
 Using File Definitions with DB2 Server for VM

UNLOAD and RELOAD PACKAGE
Commands 92

FILEDEFs Supporting UNLOAD and
RELOAD PACKAGE 93

Chapter 6. Interpreting the Output of the
Database Services Utility 95

Understanding the Report and Message File
Output . 95

Command Input (DB2 Server for VSE &
VM) . 95

System Output (DB2 Server for VSE & VM) 95
Inclusion of Data in a Report (DB2 Server

for VSE) 95
Inclusion of Data in a Message File (DB2

Server for VM) 96
Using the LIST Parameter on a DATALOAD

Command 99
Reading Report and Message-File Output

in Error Recovery 100

Part 2. Reference . 103

Chapter 7. Using the Database Services
Utility from Application Programs 105

In DB2 Server for VSE 105
Single User Mode Job Control 106
Multiple User Mode Job Control 108

In DB2 Server for VM 110
Names and Identifiers 110

General Rules for Naming Data Objects . 110
Qualifying Object Names 111
Using Special Characters and Blanks

within Identifiers 111
Reserved Words 111

SQL Reserved Words 112
Database Services Utility Reserved Words 112
Using Reserved Words as Identifiers . . . 112

Using the Database Services Utility from
Programming Languages 112

In DB2 Server for VSE 112
In DB2 Server for VM 113
Addressing Mode 113
Register Contents for Database Services

Utility Dynamic Startup 113
Using the Database Services Utility from

an Assembler Program 114

iv DBS Utility

Using the Database Services Utility from a
C Program 114

Using the Database Services Utility from a
COBOL Program 114

Using the Database Services Utility from a
PL/I Program 115

Using the Database Services Utility
Application Program Interface 115

Control Parameters 116
Using the Database Services Utility

Interface Conventions 119
Sample Programs 122
Running the DB2 Server for VM Database

Services Utility with Multiple User Mode 131
Running the Database Services Utility with

Single User Mode 131
Using the SQLDBSU EXEC 132

Chapter 8. Command Reference 139
Command Processing 139
COMMENT 141

COMMENT Format 141
REORGANIZE INDEX 142

REORGANIZE INDEX Format 142
SCHEMA . 144

SCHEMA Format 144
SQL Statement Processing 147

SELECT and Arithmetic Exceptions . . . 147
Processing Summary 147

Load-Data Commands 149
DATALOAD TABLE 149
DATALOAD TABLE Format 149
Table_Column_Id_Subcommand 153
INFILE Subcommand 164
ENDDATA Subcommand 169
DATAUNLOAD 172
DATAUNLOAD Format 172
Data_Field_Id_Subcommand 174
OUTFILE Subcommand 181
RELOAD DBSPACE 194
RELOAD DBSPACE Format 194
RELOAD TABLE 198
RELOAD TABLE Format 198
UNLOAD DBSPACE 201
UNLOAD DBSPACE Format 201
UNLOAD TABLE 204
UNLOAD TABLE Format 204

Load-Package Commands 206
Processing for the Load-Package

Commands 206
RELOAD PACKAGE 206
RELOAD PACKAGE Format 206
UNLOAD PACKAGE 211
UNLOAD PACKAGE Format 211
REBIND PACKAGE 213
REBIND PACKAGE Format 213

Set-Item Commands 213
SET AUTOCOMMIT 214
SET AUTOCOMMIT Format 214
SET ERRORMODE 214
SET ERRORMODE Format 215
SET FORMAT 217
SET FORMAT Format 217
SET ISOLATION 218
SET ISOLATION Format 218
SET LINECOUNT, SET LINEWIDTH . . . 219
SET LINECOUNT (LINEWIDTH) Format . 219
SET UPDATE STATISTICS 221
SET UPDATE STATISTICS Format . . . 221

Chapter 9. Error Handling and Debugging 223
Types of Errors 223
Return Codes 224
Storage Dumps 225

Dumps Initiated by the DBS Utility 225
Debugging 226

Chapter 10. Improving Performance . . . 227
Nonrecoverable Storage Pool 227
Tape-File Support in DB2 Server for VM . . 227

Tape File Support Considerations 227
Locking Considerations 227

DATALOAD and RELOAD Locking
Considerations 228

SELECT, DATAUNLOAD, and UNLOAD
Locking Considerations 228

UNLOAD and RELOAD PACKAGE
Considerations 229

Update Statistics Considerations 229
Reorganizing Indexes 230
Double-Byte Character Set 230

Basic Support 230
Extended Support 231

Part 3. Appendixes . 233

Appendix A. Sample Tables 235
DEPARTMENT Table 235

Relationship to Other Tables 236

EMPLOYEE Table 237
Relationship to Other Tables 240

PROJECT Table 241

 Contents v

Relationship to Other Tables 242
ACTIVITY Table 243

Relationship to Other Tables 244
PROJ_ACT Table 244

Relationship to Other Tables 245
EMP_ACT Table 245

Relationship to Other Tables 247
IN_TRAY Table 247
CL_SCHED Table 248

Appendix B. FILEDEF Command Syntax
and Notes 249

Specifying ddname 251
Specifying Device Type 252

Bibliography 255

Index . 257

vi DBS Utility

 Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent product, program or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of

| Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Canada Ltd., Department 071,
1150 Eglinton Avenue East, North York, Ontario Canada M3C 1H7. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain services of DB2 Server for VSE & VM.

 Trademarks
| The following terms are trademarks of International Business Machines Corporation
| in the United States and/or other countries:

IBM BookManager
PROFS IBMLink
VSE/ESA CICS
SQL/DS DataPropagator
AIX OS/2
DB2 DATABASE 2

DFSMS/VM
DRDA Distributed Relational Database Architecture
C/370 System/370
QMF VTAM
VM/ESA
VM/XA SP
CICS/ESA
CICS/VSE Windows

 Copyright IBM Corp. 1987, 1998 vii

| Lotus and Lotus Notes are trademarks of Lotus Development Corporation in the
| United States and/or other countries.

| Other company, product, and service names may be trademarks or service marks
| of others.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

| Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
| Microsoft Corporation in the United States and/or other countries.

viii DBS Utility

About This Manual

This manual is intended to help DB2 Server for VSE & VM users use the Database
Services (DBS) utility; it contains descriptions of the tasks connected with the use
of the DBS Utility in a Virtual System Extended/Enterprise Systems Architecture
(VSE/ESA) environment and in a Virtual Machine/Enterprise Systems Architecture
(VM/ESA) environment. It also contains a reference section for database users or
application programmers who need more information about the DBS Utility. This
manual follows the convention that VM refers to the VM/ESA system unless
otherwise specified and VSE refers to the VSE/ESA system unless otherwise
specified.

Who Should Use This Manual
This manual is a guide and reference for users of the DBS Utility. Any user of the
DB2 Server for VSE & VM product is a potential user of this manual; it is, however,
particularly useful to database users who want to use batch processing in their
database operations.

How to Use This Manual
This manual describes and explains what the Database Services Utility is, how it
functions, and when to use it.

 Utilization
This manual contains two parts. Each chapter in Part 1 has a task area, for
example, loading data or interpreting output. Within each task area, member
subtasks are grouped according to their importance or in order of performance.

To use the user-guide part of this manual, select the chapter that corresponds to
the general type of Database Services Utility activity that you want to perform.
Within that chapter, find the procedure that provides specific instructions for the
subtask that you want. Supplementary information, alternative procedures, and
examples are in boxes within the text. Perform the procedure’s numbered steps
and refer to the supplementary text within frames, figures, and examples as
necessary.

To use the reference part of this manual, find the general or specific topic of
interest in the table of contents or index and refer directly to its listed page or
pages.

 Organization
The Summary of Changes summarizes the technical and library changes made to
DB2 Server for VSE & VM Version 6 Release 1.

Part 1 contains the following chapters:

Chapter 1, “Getting Started” on page 3, introduces the DBS Utility and explains
its use. It also provides an example of a DBS Utility job.

 Copyright IBM Corp. 1987, 1998 ix

Chapter 2, “Loading Data with the Database Services Utility” on page 27,
shows how to load tables with data specified by the user.

Chapter 3, “Unloading Data with the Database Services Utility” on page 53,
shows how to unload tables in a format specified by the user or in a
format provided by the DBS Utility.

Chapter 4, “Reloading Data with the Database Services Utility” on page 71,
shows how to reload tables with data in a format provided by the DBS
Utility.

Chapter 5, “Unloading and Reloading Packages with the Database Services
Utility” on page 83, shows how to unload and reload packages.

Chapter 6, “Interpreting the Output of the Database Services Utility” on
page 95, describes VSE report output or VM message-file output, how
to read it, and how to understand it.

Part 2 contains the following chapters:

Chapter 7, “Using the Database Services Utility from Application Programs”
on page 105, contains rules for naming objects, lists reserved words,
describes the procedures required to initiate DBS Utility processing from
application programs, and describes how to use the Database Services
Utility application program interface.

Chapter 8, “Command Reference” on page 139, describes command processing
and contains complete descriptions of all DBS Utility commands.

Chapter 9, “Error Handling and Debugging” on page 223, describes the
processing undertaken by the DBS Utility whenever errors are
encountered and supplies information on the processing of debug-type
errors.

Chapter 10, “Improving Performance” on page 227, describes measures that
could help improve the DBS Utility's processing speed or efficiency.

Appendix A, “Sample Tables” on page 235, shows the contents of the sample
tables supplied with the DB2 Server for VSE & VM product.

Appendix B, “FILEDEF Command Syntax and Notes” on page 249, presents a
syntax diagram and usage notes on the Conversational Monitor System
(CMS) FILEDEF command as it relates to the Database Services Utility.

The Bibliography lists the publications that are related to this book.

Components of the Relational Database Management System
Figure 1 on page xi depicts a typical configuration with one database and two
users.

Figure 2 on page xii depicts a typical configuration with one database, one batch
partition user, and a CICS partition with several interactive users.

x DBS Utility

Storage
Pool

Database

Application Server

Communication Link (IUCV or APPC/VM)

MDISK LINK

Database Manager

Database
Machine

User
Machine

Applications

Application Requester

Interactive SQL

Resource AdapterData System Control

Relational Data System

Database Storage
Subsystem

Preprocessors

DBS Utility

User
Machine

Applications

Application Requester

Interactive SQL

Preprocessors

DBS Utility

Resource Adapter

Figure 1. Basic Components of the RDBMS in VM/ESA

 About This Manual xi

Storage
Pool

Database

Database Manager

Applications

Application Requester

Application Requester

Data System Control

Interactive SQL

Relational Data System

CICS Application

Database Storage
Subsystem

Online Resource Adapter

Batch Resource Adapter

Dbextent

ent

ent

Log
Directory

VSE Batch
Partition

Application
Program

Application Server

Database
Partition

VSE

CICS Partition

DB2
for VSE
Library

VSAM

Figure 2. Basic Components of the RDBMS in VSE

The database is composed of :

� A collection of data contained in one or more storage pools, each of which in
turn is composed of one or more database extents (dbextents). A dbextent is a
VM minidisk.

� A directory that identifies data locations in the storage pools. There is only one
directory per database.

� A log that contains a record of operations performed on the database. A
database can have either one or two logs.

The database manager is the program that provides access to the data in the
database. In VM it is loaded into the database virtual machine from the production
disk. In VSE it is loaded into the database partition from the DB2 Server for VM
library.

The application server is the facility that responds to requests for information from
and updates to the database. It is composed of the database and the database
manager.

The application requester is the facility that transforms a request from an
application into a form suitable for communication with an application server.

xii DBS Utility

 Prerequisites

 Knowledge
This manual assumes the following:

� You have read the manuals listed under the heading “Publications” that follows
and understand the way the database manager works.

� You have a working knowledge of the IBM VSE/ESA environment and are
acquainted with job control language (JCL).

� You have a working knowledge of the VM Conversational Monitor System and
are acquainted with CMS commands.

� You know basic terms and concepts used in the DB2 Server for VSE System
Administration and DB2 Server for VM System Administration manuals.

� You have access to the manuals listed in the Bibliography.

 Publications
This manual assumes that you are familiar with the information in the following
manuals:

DB2 Server for VSE & VM Interactive SQL Guide and Reference, SC09-2674
DB2 Server for VSE & VM Overview, GC09-2806
DB2 Server for VSE System Administration, SC09-2658
DB2 Server for VM System Administration, SC09-2657.

 Highlighting Conventions
This manual observes the following text highlighting conventions:

Convention Meaning

Italics Italic type denotes command variables, parameter
values and their symbolic equivalents, titles of
stand-alone documents, and strings of characters
referred to as such.

Boldface Bold type is used for emphasis or for an important
term that is being defined.

Monospace Type Monospace type indicates material that is entered at
a display station, displayed on a screen, coded, or
printed on a computer printing device.

 About This Manual xiii

Convention Meaning

ALL CAPS Capital letters indicate keytop nomenclature, for
example, PFn, ENTER, CLEAR, INSERT, and
DELETE. In addition, the following situations call for
all caps:

� Acronyms and other all-cap abbreviations
� Names of programs and other coded entities
� Names of files, tables, libraries, logs, and so forth
� Command, statement, and parameter names or

constants
� Keyword and option names
� Data area and storage names.

“Quotation Marks” Quotation marks (double) enclose the headings of
parts, chapters, and lesser sections of stand-alone
documents when they are referenced; to designate
specific, lengthy passages of text (at least a sentence
in length); and to denote figurative and other special
usage, such as jargon.

As Displayed Panel names, menu titles, and other display headers
are shown in uppercase or mixed case, as displayed.

Syntax Notation Conventions
Throughout this manual, syntax is described using the structure defined below.

� Read the syntax diagrams from left to right and from top to bottom, following
the path of the line.

The >>─── symbol indicates the beginning of a statement or command.

The ───> symbol indicates that the statement syntax is continued on the next
line.

The >─── symbol indicates that a statement is continued from the previous line.

The ───>< symbol indicates the end of a statement.

Diagrams of syntactical units that are not complete statements start with the
>─── symbol and end with the ───> symbol.

� Some SQL statements, Interactive SQL (ISQL) commands, or database
services utility (DBS Utility) commands can stand alone. For example:

55──SAVE──5%

Others must be followed by one or more keywords or variables. For example:

55──SET AUTOCOMMIT OFF──5%

xiv DBS Utility

� Keywords may have parameters associated with them which represent
user-supplied names or values. These names or values can be specified as
either constants or as user-defined variables called host_variables
(host_variables can only be used in programs).

55──DROP SYNONYM──synonym───5%

� Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be present;
you can omit those in lowercase.

� Parameters appear in lowercase and in italics (for example, synonym).

� If such symbols as punctuation marks, parentheses, or arithmetic operators

 are shown, you must use them as indicated by the syntax diagram.

� All items (parameters and keywords) must be separated by one or more blanks.

� Required items appear on the same horizontal line (the main path). For
example, the parameter integer is a required item in the following command:

55──SHOW DBSPACE──integer───5%

This command might appear as:

SHOW DBSPACE 1

� Optional items appear below the main path. For example:

55─ ─CREATE─ ──┬ ┬──────── ─INDEX───5%
 └ ┘ ─UNIQUE─

This statement could appear as either:

 CREATE INDEX

or

CREATE UNIQUE INDEX

� If you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item appears on the main path. For
example:

55──SHOW LOCK DBSPACE─ ──┬ ┬─ALL───── ───────────────────────────────────5%
 └ ┘─integer─

Here, the command could be either:

SHOW LOCK DBSPACE ALL

 About This Manual xv

or

SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the
main path. For example:

55─ ─BACKWARD─ ──┬ ┬───────── ──5%
 ├ ┤─integer─
 └ ┘─MAX─────

Here, the command could be:

 BACKWARD

or

 BACKWARD 2

or

 BACKWARD MAX

� The repeat symbol indicates that an item can be repeated. For example:

 ┌ ┐────────
55─ ─ERASE─ ───6 ┴─name─ ──5%

This statement could appear as:

 ERASE NAME1

or

ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

 ┌ ┐─,────────────────────
55─ ─VALUES──(─ ───6 ┴┬ ┬─constant─────────── ─)────────────────────────────5%
 ├ ┤─host_variable_list─
 ├ ┤─NULL───────────────
 └ ┘─special_register───

� If an item is above the main line, it represents a default, which means that it will
be used if no other item is specified. In the following example, the ASC
keyword appears above the line in a stack with DESC. If neither of these
values is specified, the command would be processed with option ASC.

 ┌ ┐─ASC──
55─ ──┼ ┼────── ───5%
 └ ┘─DESC─

xvi DBS Utility

� When an optional keyword is followed on the same path by an optional default
parameter, the default parameter is assumed if the keyword is not entered.
However, if this keyword is entered, one of its associated optional parameters
must also be specified.

elIn the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you do not
enter PCTFREE =, the database manager will set it to the default value of 10.

┌ ┐──PCTFREE = 1ð ─────
55─ ──┼ ┼─────────────────── ──5%
 └ ┘──PCTFREE = integer

� Words that are only used for readability and have no effect on the execution of
the statement are shown as a single uppercase default. For example:

 ┌ ┐─PRIVILEGES─
55─ ─REVOKE ALL─ ──┴ ┴──────────── ───────────────────────────────────────5%

 Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means
the same thing.

� Sometimes a single parameter represents a fragment of syntax that is
expanded below. In the following example, fieldproc_block is such a fragment
and it is expanded following the syntax diagram containing it.

55─ ──┬ ┬─────────────────────────── ─┤ fieldproc_block ├────────────────5%
 └ ┘ ─NOT NULL─ ──┬ ┬─────────────
 ├ ┤─UNIQUE──────
 └ ┘─PRIMARY KEY─

fieldproc_block:
├─ ─FIELDPROC──program_name─ ──┬ ┬──────────────────── ────────────────────┤
 │ │┌ ┐─,────────
 └ ┘ ─(─ ───6 ┴─constant─ ─)─

SQL Reserved Words
The following words are reserved in the SQL language. They cannot be used in
SQL statements except for their defined meaning in the SQL syntax or as host
variables, preceded by a colon.

 About This Manual xvii

In particular, they cannot be used as names for tables, indexes, columns, views, or
dbspaces unless they are enclosed in double quotation marks (").

ACQUIRE
ADD
ALL
ALTER
AND
ANY
AS
ASC
AVG

BETWEEN
BY

CHAR
CHARACTER
COLUMN
COMMENT
COMMIT
CONCAT
CONNECT
COUNT
CREATE
CURRENT

DBA
DBSPACE
DELETE
DESC
DISTINCT
DOUBLE
DROP

EXCLUSIVE
EXECUTE
EXISTS
EXPLAIN

FIELDPROC
FOR
FROM

GRANT
GRAPHIC
GROUP

HAVING

IDENTIFIED
IN
INDEX
INSERT
INTO
IS

LIKE
LOCK
LONG

MAX
MIN
MODE

NAMED
NHEADER
NOT
NULL

OF
ON
OPTION
OR
ORDER

PACKAGE
PAGE
PAGES
PCTFREE
PCTINDEX
PRIVATE
PRIVILEGES
PROGRAM
PUBLIC

RESOURCE
REVOKE
ROLLBACK
ROW
RUN

SCHEDULE
SELECT
SET
SHARE
SOME
STATISTICS
STORPOOL
SUM
SYNONYM

TABLE
TO

UNION
UNIQUE
UPDATE
USER

VALUES
VIEW

WHERE
WITH
WORK

xviii DBS Utility

| Summary of Changes for DB2 Version 6 Release 1

| This is a summary of the technical changes to the DB2 Server for VSE & VM
| Version 6 Release 1 database management system. All manuals are affected by
| some or all of the changes discussed here. This summary does not list
| incompatibilities between releases of the DB2 Server for VSE & VM product; see
| either the DB2 Server for VSE & VM SQL Reference, DB2 Server for VM System
| Administration, or the DB2 Server for VSE System Administration manuals for a
| discussion of incompatibilities. Version 6 Release 1 of the DB2 Server for VSE &
| VM database management system is intended to run on the Virtual
| Machine/Enterprise Systems Architecture (VM/ESA) Version 2 Release 2 or later
| environment and on the Virtual Storage Extended/Enterprise Systems Architecture
| (VSE/ESA) Version 2 Release 2 or later environment.

| Enhancements, New Functions, and New Capabilities

| DRDA RUOW Application Requestor for VSE (Online)
| DRDA Remote Unit of Work Application Requestor provides read and update
| capability in one location in a single unit of work.

| This support provides CICS/VSE online application programs with the ability to
| execute SQL statements to access and manipulate data managed by any remote
| application server that implements the DRDA architecture. Online application
| programs that access remote application servers need to be preprocessed to create
| a bind file and then bound (using CBND) to the remote application server. Online
| application programs that access a local application server are preprocessed as in
| previous releases.

| See the following DB2 Server for VSE & VM manuals for further information:

| � DB2 Server for VSE System Administration

| � DB2 Server for VSE & VM SQL Reference

| � DB2 Server for VSE Database Administration

| � DB2 Server for VSE Application Programming

| � DB2 Server for VSE Installation

| Stored Procedures
| The ability to use stored procedures provides distributed solutions that let more
| people access data faster.

| A stored procedure is a user-written application program compiled and stored at the
| server. When the database is running in multiple user mode, local applications or
| remote DRDA applications can invoke the stored procedure. SQL statements are
| local to the server and issued by a stored procedure so they do not incur the high
| network costs of distributed statements. Instead, a single network send and receive
| operation is used to invoke a series of SQL statements contained in a stored
| procedure.

| See the following DB2 Server for VSE & VM manuals for further information:

 Copyright IBM Corp. 1987, 1998 xix

| � DB2 Server for VM System Administration

| � DB2 Server for VM Database Administration

| � DB2 Server for VSE & VM SQL Reference

| � DB2 Server for VSE & VM Operation

| TCP/IP Support for DB2 Server for VM
| TCP/IP support allows:

| � VM applications to use SQLDS-private protocol to connect to VM databases
| over TCP/IP.

| � VM applications to use DRDA protocol to connect to DB2 family databases
| (and any other database that supports DRDA connections) over TCP/IP.

| � non-VM applications to use DRDA-protocol to access VM database over
| TCP/IP.

| TCP/IP support for DB2 Server for VM integrated with the DB2 Server for VM
| application server means a system easier to configure and maintain.

| The database manager will optionally secure TCP/IP connections using any
| external security manager that supports the RACROUTE interface.

| New Code Page and Euro Symbol Code Page Support
| The following CCSIDs are now supported:

| � 1112: Latvian/Lithuanian

| � 1122: Estonian

| � 1123: Ukrainian

| � 1130: Vietnamese

| � 1132: Lao

| � 1148: E-International

| � 1140: E-English

| � 1141: E-German

| � 1144: E-Italian

| � 1147: E-French

| Additional support has been added for conversions from Unicode (UCS-2) to host
| CCSIDs.

| For a complete list of CCSIDs supported refer to the DB2 Server for VM System
| Administration and DB2 Server for VSE System Administration manuals.

| DataPropagator Capture
| DataPropagator Capture is part of the DB2 Family of DataPropagator products.
| DataPropagator Capture is updated for Version 6 Release 1 compatibility.

xx DBS Utility

| QMF for VM, QMF for VSE, and QMF for Windows
| IBM Query Management Facility (QMF) is now an separately priced feature of
| DB2 Server for VSE & VM. QMF is a tightly integrated, powerful, and reliable tool
| that performs query and reporting for IBM's DB2 relational database Management
| System Family. It offers an easy-to-learn, interactive interface. Users with little or no
| data processing experience can easily retrieve, create, update, insert, or delete
| data that is stored in DB2.

| QMF offers a total solution that includes accessing large amounts of data and
| sharing central repositories of queries and enterprise reports. It also allows you to
| implement tightly-controlled, distributed, or client-server solutions. In addition, you
| can use QMF to publish reports to the World Wide Web that you can view with your
| favorite web browser.

| Using QMF, users can access a wide variety of data sources, including operational
| or warehouse data from many platforms: DB2 for VSE, VM, OS/390 and
| Windows. Via IBM Data Joiner, you can access non-relational data, such as IMS
| and VSAM, as well as data from other vendor platforms.

| RDS Above the Line
| The RDS component will load and execute above the 16 megabyte line. This
| support frees up approximately 1.5 megabytes of storage below the 16 megabyte
| line (or approximately 2.5 megabytes, if DRDA is installed) when compared to
| Version 5 Release 1. No installation or migration changes are required for this
| support to be used (except for the definition of VM Shared Segments and for users
| who execute the database server with AMODE(24)). If sufficient storage is
| available, the RDS component will be automatically loaded above the 16 megabyte
| line. When using VM Shared Segments, the RDS Segment should be defined
| above the 16 megabyte line.

| VM users who wish to run the database server in 24-bit addressing mode (i.e. use
| the AMODE(24) parameter) must use a virtual storage size no greater than 16
| megabytes. See the DB2 Server for VM System Administration or DB2 Server for
| VSE System Administration for release to release incompatibility information.

| Combining of NLS Feature Installation Tapes with Base Product
| Installation Tape
| All available NLS features for DB2 Server for VSE, DB2 Server for VM, Control
| Center for VSE and REXX SQL for VM have been combined with the respective
| base product installation tape. Customers interested in an NLS feature language
| will no longer need to order an additional NLS feature tape because all NLS
| languages will be available to all customers. In all cases, the default language as
| shipped is American English. The installation and migration processes have been
| changed to allow you to choose the default language. Refer to the DB2 Server for
| VM Program Directory, DB2 Server for VSE Installation, DB2 for VSE Control
| Center Installation and Operations Guide, and DB2 REXX SQL for VM/ESA
| Installation for the details of how these changes affect the installation process and
| how you can choose to have a different default language.

 Summary of Changes for DB2 Version 6 Release 1 xxi

| Control Center Feature
| DB2 Server for VSE & VM Version 6 Release 1 enhances the new Control Center
| feature as follows:

| For both VM/ESA and VSE/ESA:

| � Access to the Query Management Facility (QMF)

| For VM/ESA:

| � Compatibility with DB2 Server for VM Version 6 Release 1 initialization
| parameters and operator commands

| � Shared File System Support (SFS) in a VM/ESA environment

| � CA-DYNAM/T Interface Support in a VM/ESA environment

| � Data Restore Incremental Backup Support in a VM/ESA environment

| For VSE/ESA:

| � Control Center code installation on any library

| � Ability to use while viewing a list of tables online

| � Ability to create, reorganize, unload, reload, move and copy tables in batch
| mode

| � Ability to update table statistics in batch mode

| � Ability to drop tables online

| Data Restore Feature
| The Data Restore feature provides archiving and recovery functions in addition to
| those provided in DB2 for VSE & VM. Data Restore is enhanced in Version 6
| Release 1 with incremental database archiving support. The support allows you to
| archive only the areas of the database that have been updated since the last
| database archive, instead of having to archive the entire database. This can
| provide significant savings for customers with large databases which are updated
| infrequently, or where only a small fraction of the database is updated frequently.

| DB2 REXX SQL Feature
| The DB2 REXX SQL feature provides a REXX interface for VM customers to allow
| SQL calls to be executed from REXX programs. The DB2 REXX SQL feature is
| updated for Version 6 Release 1 compatibility.

| Reliability, Availability, and Serviceability Improvements

| Migration Considerations
| Migration is supported from SQL/DS Version 3 and DB2 Server for VSE & VM
| Version 5. Migration from SQL/DS Version 2 Release 2 or earlier releases is not
| supported. Refer to the DB2 Server for VM System Administration or DB2 Server
| for VSE System Administration manual for migration considerations.

xxii DBS Utility

| Library Enhancements
| Some general library enhancements include:

| � The following books have been removed from the library:
| – DB2 Server for VM Operation
| – DB2 Server for VSE Operation
| – DB2 Server for VM Interactive SQL Guide and Reference
| – DB2 Server for VSE Interactive SQL Guide and Reference
| – DB2 Server for VM Database Services Utility
| – DB2 Server for VSE Database Services Utility
| � The following books have been added to the library:
| – DB2 Server for VSE & VM Operation
| – DB2 Server for VSE & VM Interactive SQL Guide and Reference
| – DB2 Server for VSE & VM Database Services Utility

| Refer to the new DB2 Server for VSE & VM Overview for a better understanding of
| the benefits DB2 Server for VSE & VM can provide.

 Summary of Changes for DB2 Version 6 Release 1 xxiii

xxiv DBS Utility

 Part 1. User's Guide

This part of the manual presents procedures for performing the tasks provided by
the Database Services Utility, which is a part of the DB2 Server for VSE & VM
product. The major task areas covered are as follows:

� Familiarizing yourself with the DBS Utility

� Loading data into a DB2 Server for VSE & VM database

� Unloading data stored in a DB2 Server for VSE & VM database

� Reloading data into a DB2 Server for VSE & VM database in a format provided
by the DBS Utility

� Interpreting the output of the DBS Utility

� Unloading and reloading packages.

Examples and reference material necessary to perform these tasks are framed in
boxes with the procedures themselves. For additional reference information, see
Part 2, Reference.

Usual operation of the Database Services Utility is accessing the database in
multiple user mode; therefore, the task descriptions and procedures in this part of
the manual mainly address operation of the Database Services Utility with multiple
user mode.

 Copyright IBM Corp. 1987, 1998 1

2 DBS Utility

 Chapter 1. Getting Started

This chapter gives a brief overview of the Database Services (DBS) Utility and
explains how to start it. The fundamentals of using the utility are also described,
such as defining input and output requirements, working with a report in VSE, a
message file in VM, and using SQL statements within the utility. Finally, this
chapter describes how to exit from the utility.

Introducing the Database Services Utility
The Database Services Utility is an application program that supplies a user
interface to the IBM DB2 Server for VSE & VM product and that, with some
limitations, also works with other relational databases in VM that use DRDA
protocol. Consider using it to load or reload data into, or unload data from, a
database. If the amount of data to be processed is large, or if exact sequences of
database commands are to be used on a periodic basis, consider using the utility.

You usually employ the DBS Utility for DB2 Server for VSE large-scale processing
of relational databases; DB2 Server for VM batch processing in its operations upon
relational databases; input to the utility, as well as its output, is in the form of
sequential files. Although DB2 Server for VM batch processing is the utility's usual
operating mode, you can also use it interactively by specifying a terminal as its
input file. You can also direct its output to a terminal instead of storing the output
as a physical file.

In addition to loading data into and unloading it from a database, you can use the
utility to process SQL statements and to transfer packages into or out of databases.
You can do these operations in either single or multiple user mode.

The four primary DBS Utility control commands are DATALOAD, DATAUNLOAD,
UNLOAD, and RELOAD. The UNLOAD and RELOAD commands are qualified by
the object they manipulate:

UNLOAD RELOAD
__
UNLOAD DBSPACE RELOAD DBSPACE
UNLOAD TABLE RELOAD TABLE
UNLOAD PACKAGE RELOAD PACKAGE

The DATALOAD command inserts data from a sequential file into a DB2 Server for
VSE & VM table. You specify the format of the sequential file.

The DATAUNLOAD command selects data from tables and copies it to a sequential
file. You specify the format of the sequential file.

The UNLOAD commands provide a backup function for existing tables, dbspaces,
and packages. These control commands are also useful for distributing copies of
data to other sites that use the database manager. The output of each UNLOAD
command is a sequential file formatted for the use of its corresponding RELOAD
command.

The RELOAD commands restore information previously backed up with UNLOAD
commands. The RELOAD commands are also useful for reorganizing database

 Copyright IBM Corp. 1987, 1998 3

tables or dbspaces and for receiving tables and packages from other sites. With the
RELOAD TABLE command, you can create new tables from logical views
previously unloaded from existing tables. You can then build an index for each
newly created table. The RELOAD package can be used to distribute packages to
other sites that use the DB2 Server for VSE & VM application server or other
application servers that support the DRDA protocol.

The Database Services Utility provides other commands for your convenience:

� A COMMENT command documents your Database Services Utility command
input.

� A REBIND PACKAGE command preprocesses existing packages.

� A REORGANIZE INDEX command efficiently reorganizes a table's index in one
step.

� A SCHEMA command executes the SQL statements CREATE TABLE,
CREATE VIEW, and GRANT in a schema file. A schema file contains an
authorization ID and a list of table, view, and privilege definitions.

� A number of SET commands control various processing, environmental, and
formatting characteristics. The SET commands turn on or regulate certain SQL
statements.

Loading Data into a Database
You can use the DBS Utility DATALOAD command to load or add rows from a
user-defined sequential file. The input to DATALOAD processing consists of a set
of Database Services Utility commands and input data records. The utility
commands identify:

� tables to be loaded
� Location of tabular column data in an input record
� Format of input-record fields
� Sequential file containing the input records.

You can specify how often DATALOAD processing commits insertions to the
database. Specify a number of input data records, and the insertions are committed
each time the DATALOAD command processes the specified number of records. If
a subsequent error occurs, the database manager only has to undo the database
changes made since the last commit point. The committing and restarting
capabilities of the database manager are useful when you are loading large
amounts of data with the utility.

Referential constraints (rules that require all values in dependent tables to match
corresponding values in parent tables) are enforced during DATALOAD processing.
This means that primary key rows must be loaded before their foreign key rows.
You can improve the utility's performance by deactivating the constraints before
loading the data and activating them again afterwards. For descriptions and
instructions on DATALOAD processing, see Chapter 2, Loading Data with the
Database Services Utility.

4 DBS Utility

Unloading Data from a Database
The DATAUNLOAD command allows you to selectively unload data from a
database to a sequential access method (SAM) output file. You can:

� Create a file for transporting data from a DB2 Server for VSE & VM to a
non-DB2 Server for VSE & VM processing environment

� Create a sequential file, modify it, and reload it into tables with the DATALOAD
command.

You can use the other DBS Utility unload-data commands (UNLOAD DBSPACE
and UNLOAD TABLE) to:

� Create a backup for specific data
� Move data to another DB2 Server for VSE & VM database manager.

You can also use these UNLOAD commands, immediately followed by their
RELOAD counterparts, to:

� Reclaim fragmented disk space
� Reorder data records to match indexes.

The main difference between the DATAUNLOAD and UNLOAD commands is that
DATAUNLOAD allows you to specify more about the data you unload than the
UNLOAD commands allow. Consequently, the UNLOAD commands are simpler,
but it is easier to work with output data from a DATAUNLOAD command. For
descriptions and instructions on DATAUNLOAD and UNLOAD processing, see
Chapter 3, Unloading Data with the Database Services Utility.

Reloading Data into a Database
DATALOAD and RELOAD are essentially the same kind of operation: they both
insert data into databases; however, RELOAD inserts data that was previously
unloaded using the UNLOAD command while DATALOAD uses a user-defined file
of data, or the output file of a DATAUNLOAD command.

RELOAD processing can purge existing tables before reloading them (from
previously unloaded information). Similarly, you can unload a view as if it were a
table and reload it as a new table. When RELOAD creates a new table, it does not
automatically re-create all the entities associated with the old table; you must
specify views, indexes, keys, and access privileges. For descriptions and
instructions on RELOAD processing, see Chapter 4, Reloading Data with the
Database Services Utility.

Unloading Packages from a Database
You can use the DBS Utility to unload a package from a DB2 Server for VSE & VM
database to a portable file. A package consists of the internally optimized
application SQL statements stored in (bound to) the database at preprocessing time
and used by the database with the application at execution time. A portable file is
one that contains an unloaded DB2 Server for VSE & VM package that is ready for
distribution to another application server. You can unload a package to a file to:

� Create a backup of the package before making changes to it
� Reload a package to another application server.

The UNLOAD PACKAGE command unloads the package, along with information
about the way it was created, to a portable file. You can then send the file to the
application server that requires it. It is unnecessary to distribute source programs or

 Chapter 1. Getting Started 5

to preprocess and compile source code at the receiving location. For descriptions
and instructions on unloading packages, see Chapter 5, “Unloading and Reloading
Packages with the Database Services Utility” on page 83.

Reloading Packages into a Database
You can use the DBS Utility to load a package from a file into a DB2 Server for
VSE & VM database. You can do this to achieve the following:

� Restore a previous version of a package
� Install an application that is distributed in a portable file.

The database manager preprocesses reloaded packages to ensure that all
dependencies are satisfied on the installing system.

When a RELOAD PACKAGE command loads a package into an application server,
the module can replace another package with the same name. The new package
can carry over the run-privileges previously granted to users of the replaced
version. You can reload a package created and unloaded on a VM system, and use
it on on a VSE system; or you can reload a package created and unloaded on a
VSE system, and use it on a VM system. For descriptions and instructions on
reloading packages, see Chapter 5, Unloading and Reloading Packages with the
Database Services Utility.

Processing SQL Statements with the Database Services Utility
The DBS Utility executes SQL statements against the database. In VM, this is done
in a batch mode. You can use most SQL statements in a VM utility control file or a
VSE utility input control card file. SQL statements not supported by the DBS Utility
are those used only in application programs (SELECT statements with INTO
clauses, cursor management commands, DESCRIBE, EXECUTE, INCLUDE,
PREPARE, and WHENEVER).

A Database Services Utility Job

DB2 Server for VM Components
A basic job has five components that control the input and output of data. All five
are discussed in more detail later in this chapter:

Control File
The control file contains Database Services Utility commands and
SQL statements that the utility processes. The control file must
have a fixed format and a record length of 80 characters.

Message File
This output file contains a list of all commands executed, as well as
the results of these commands. These results can be messages to
indicate whether the command was executed successfully, as well
as data that was obtained by a SELECT statement.

Input/Output File
Either this file contains data to be loaded or copied to a database,
or it is the file to which data is written. Its use depends on the
Database Services Utility command you are using.

File Definitions
File definitions specify input and output requirements for the above
three files.

6 DBS Utility

SQLDBSU EXEC
This EXEC starts a Database Services Utility job. You can also use
the SQLDBSU EXEC to specify the input and output requirements
for the control and message files.

DB2 Server for VSE Files
A basic job has three components that control the input and output of data. All
three are discussed in more detail later in this chapter:

Input Control Card File
The input control card file contains Database Services Utility
commands and SQL statements that the utility processes. The
input control card file must have a fixed format and a record length
of 80 characters.

Report
The report contains a list of all commands executed, as well as the
results of these commands. These results can be messages to
indicate whether the command was executed successfully, as well
as data that was obtained by a SELECT statement.

Input/Output File
Either this file contains data to be loaded or copied to a database,
or it is the file to which data is written. Its use depends on the
Database Services Utility command you are using.

Starting and Using the Database Services Utility
The DBS Utility can be started to access the database in either multiple user mode
or single user mode.

Multiple User Mode
Multiple user mode is the usual way of running the application server. It permits
multiple users to access a DB2 Server for VSE & VM application server
simultaneously. Unless you have database maintenance to perform or another task
requiring a dedicated database, run the utility with multiple user mode. For more
information about starting the Database Services Utility with multiple user mode,
see “Multiple User Mode Job Control” on page 108.

The DB2 Server for VM Database Services Utility with multiple user mode cannot
run either in the CMS/DOS environment, or in CMS subset.

In preparation for running the Database Services Utility with multiple user mode,
initialize the user machine by specifying defaults using the SQLINIT EXEC. On the
CMS command line, type:

SQLINIT DBNAME(server-name)

where server-name is the name of the application server to be accessed. Press
ENTER.

For more information on the SQLINIT EXEC in multiple user mode, see “Running
the DB2 Server for VM Database Services Utility with Multiple User Mode” on
page 131.

 Chapter 1. Getting Started 7

Single User Mode
Run the Database Services Utility with single user mode to prevent concurrent
access of a DB2 Server for VSE & VM application server by other users. Unless
you have database maintenance to perform, are the sole user of an application
server, or are performing a task requiring a dedicated database, run the utility with
multiple user mode. For more information on running the Database Services Utility
with single user mode, see “Single User Mode Job Control” on page 106. In DB2
Server for VM single user mode, the SQLINIT EXEC is unnecessary; the Database
Services Utility and the application server are executed in the same virtual
machine, and you specify the desired application server with the DBNAME
parameter of the SQLDBSU EXEC.

For more information on using the SQLDBSU EXEC with single user mode, see
Chapter 7, “Using the Database Services Utility from Application Programs” on
page 105 and “SQLDBSU EXEC Format” on page 132.

Note: Because usual operation of the Database Services Utility is with multiple
user mode, the task descriptions and procedures in this part of the manual
largely address operation of the utility with multiple user mode.

Overview of Database Services Utility Files
The Database Services Utility is a general purpose utility that requires two or three
files to run: one for Database Services Utility command or SQL statement input,
one for message output, and one for data output or input.

The required DB2 Server for VSE input file is the input control card file, and it is
assigned to SYSIPT. The input control card file contains utility control commands,
which are described in the following section.

The Database Services Utility creates a report; it is assigned to SYSLST. The
report lists the input control card file records, messages, and results.

The DB2 Server for VM control file and message file are usually CMS files. You
can define the control file to any sequential tape or DASD file supported by CMS
OS/QSAM, to a virtual reader file, or to the terminal. You can define the message
file to any sequential tape file supported by CMS OS/QSAM, to a virtual print file, or
to the terminal.

Often you require an additional file for Database Services Utility input or output.
The Database Services Utility commands that use additional files for input or output
contain a data definition name (ddname) parameter that you must specify to identify
the additional input or output file. In DB2 Server for VSE, the ddname refers to the
file name specified in the applicable DLBL or TLBL system control statement. In
DB2 Server for VM, this parameter refers to the ddname defined in a CMS
FILEDEF command. A ddname can be from one to eight characters. The first
character of a ddname must be alphabetic (or a national character). For more
information about file definition, see the relevant command description or refer to
Appendix B, “FILEDEF Command Syntax and Notes” on page 249.

The required DB2 Server for VM input file is the control file (or command file), and
it is assigned to the ddname SYSIN. The control file contains utility control
commands, which are described in the following section.

8 DBS Utility

The required DB2 Server for VM output file is the message file; it is assigned to the
ddname SYSPRINT. The utility lists the control file records, writes messages, and
prints results in the message file.

Note: You do not need an additional file when you use the DATALOAD command
if you place the data input information in the command file. You do require
an additional input or output file with all other commands that have a
ddname parameter.

The Database Services Utility supports the use of multiple-volume tape files and
variable-length, spanned records in either environment. For additional information
on tape support, refer to the DB2 Server for VM System Administration manual.

Working with an Input Control Card File in DB2 Server for VSE

Creating a Control Card File
Create a control file as follows.

1. Provide the following commands and statements shown in Figure 3 with the
JCL statements needed to run the job.

// JOB DBS UTILITY EXAMPLE VSE MULTIPLE USER MODE JOB CONTROL
// EXEC PROC=ARIS61PL <──DB2 Server for VSE Production Library Definition
// EXEC ARIDBS,SIZE=AUTO <──invoke DBS Utility
 CONNECT your user ID IDENTIFIED BY your password;
 SELECT \ FROM SQLDBA.DEPARTMENT;
 SELECT \ FROM SQLDBA.PROJECT;
/\
/&

Figure 3. Example of a Simplified Input Control Card File

The following statement runs the Database Services Utility:

// EXEC ARIDBS,SIZE=AUTO

2. Ensure that the input control card file has a fixed record length.

3. Store the input control card file.

Working with a Report
The Database Services Utility creates a report on the device that your installation
assigned to SYSLST.

After you submit the Database Services Utility job that you created in “Working with
a Control File in DB2 Server for VM” on page 13, and it finishes processing the
input control card file, look at the results in the report shown in Figure 8 on
page 18.

Note: The report may contain error messages if errors occurred when the
Database Services Utility was processing the commands in the input control
card file.

 Chapter 1. Getting Started 9

 ARIð8ð1I DBS Utility started: ð7/18/89 16:1ð:31. <────────────.1/
AUTOCOMMIT = OFF ERRORMODE = OFF <────┬────.2/
ISOLATION LEVEL = REPEATABLE READ <────┘

 ──────> CONNECT "SQLDBA " IDENTIFIED BY \\\\\\\\;
 ARI8ðð4I User SQLDBA connected to database SQLDBA.
 ARIð5ððI SQL processing was successful.
 ARIð5ð5I SQLCODE = ð SQLSTATE = ððððð ROWCOUNT = ð
 ──────>
 ──────> SELECT \ FROM SQLDBA.DEPARTMENT; <────────────.3/
 SELECT \ FROM SQLDBA.DEPARTMENT PAGE 1
 DEPTNO DEPTNAME MGRNO ADMRDEPT ───┐
 ────── ───────────────────────────── ────── ──────── │
 Aðð SPIFFY COMPUTER SERVICE DIV. ðððð1ð Aðð │
 Bð1 PLANNING ðððð2ð Aðð │
 Cð1 INFORMATION CENTER ðððð3ð Aðð │
 Dð1 DEVELOPMENT CENTER Aðð ├─────.4/
 D11 MANUFACTURING SYSTEMS ðððð6ð Dð1 │
 D21 ADMINISTRATION SYSTEMS ðððð7ð Dð1 │
 Eð1 SUPPORT SERVICES ðððð5ð Aðð │
 E11 OPERATIONS ðððð9ð Eð1 │
 E21 SOFTWARE SUPPORT ððð1ðð Eð1 │
 ARIð85ðI SQL SELECT processing successful: Rowcount = 9 ───┘
 ──────> SELECT \ FROM SQLDBA.PROJECT; <────────────.5/

Figure 4 (Part 1 of 2). Database Services Utility: Example Report Output

10 DBS Utility

 SELECT \ FROM SQLDBA.PROJECT PAGE 2
 PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE ──┐
 ────── ─────────────────── ────── ─────── ─────── ────────── ────────── │
 AD31ðð ADMIN SERVICES Aðð ðððð1ð 6.5ð 1982─ð1─ð1 1983─ð2─ð1 │
 MA21ðð WELD LINE AUTOMATIO Dð1 ðððð1ð 12.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 AD3111 PAYROLL PROGRAMMING Bð1 ðððð2ð 2.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 PL21ðð WELD LINE PLANNING Bð1 ðððð2ð 1.ðð 1982─ð1─ð1 1982─ð9─15 │
 IF1ððð QUERY SERVICES Cð1 ðððð3ð 2.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 IF2ððð USER EDUCATION Cð1 ðððð3ð 1.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 OP1ððð OPERATION SUPPORT Eð1 ðððð5ð 6.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 OP2ððð GEN SYSTEMS SERVICE Eð1 ðððð5ð 5.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 MA211ð W L PROGRAMMING D11 ðððð6ð 9.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 AD311ð GENERAL AD SYSTEMS E11 ðððð9ð 6.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 OP1ð1ð OPERATION E11 ðððð9ð 5.ðð 1982─ð1─ð1 1983─ð2─ð1 ├──.6/
 OP2ð1ð SYSTEMS SUPPORT E21 ððð1ðð 4.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 MA2112 W L ROBOT DESIGN D11 ððð15ð 3.ðð 1982─ð1─ð1 1982─12─ð1 │
 MA2113 W L PROD CONT PROGS D11 ððð16ð 3.ðð 1982─ð2─15 1982─12─ð1 │
 MA2111 W L PROGRAM DESIGN D11 ððð22ð 2.ðð 1982─ð1─ð1 1982─12─ð1 │
 AD3112 PERSONNEL PROGRAMMG D21 ððð25ð 1.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 AD3113 ACCOUNT.PROGRAMMING D21 ððð27ð 2.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 OP2ð11 SCP SYSTEMS SUPPORT E21 ððð32ð 1.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 OP2ð12 APPLICATIONS SUPPOR E21 ððð33ð 1.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 OP2ð13 DB/DC SUPPORT E21 ððð34ð 1.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 ARIð85ðI SQL SELECT processing successful: Rowcount = 2ð ──┘
 ARIð8ð2I End of command file input. <────────────.7/
 ARI8997I ...Begin COMMIT processing. ─xxxxx┐
 ARIð811I ...COMMIT of any database changes successful. |
 ARIð8ð9I ...No error(s) occurred during command processing. ├──.8/
 ARIð8ð8I DBS processing completed: ð7/18/89 16:1ð:33. ─xxxxx┘

Figure 4 (Part 2 of 2). Database Services Utility: Example Report Output

Notes for Figure 8 on page 18:

.1/ The Database Services Utility start message.

.2/ The Database Services Utility default values. See “Set-Item Commands” on
page 213 in Chapter 8, “Command Reference” on page 139 for details on
changing these defaults.

.3/ The first SELECT statement that the Database Services Utility is to
process.

.4/ Results of the Database Services Utility processing the SELECT statement
show the rows retrieved from the table, a message to indicate that the
SELECT statement was successful, and the number of rows retrieved.

.5/ The next SELECT statement that the Database Services Utility is to
process.

.6/ Results of the Database Services Utility processing the SELECT statement
show the rows retrieved from the table, a message to indicate that the
SELECT statement was successful, and the number of rows retrieved.

.7/ Database Services Utility has processed all commands in the input control
card file.

.8/ Database Services Utility completion messages.

If you encounter the following message, look at the report to find the error or errors:

ARIð8ð7E ...Error(s) occurred during command processing.

 Chapter 1. Getting Started 11

Error types are listed and discussed in Chapter 9, “Error Handling and Debugging”
on page 223. Item .6/ in Figure 5 on page 12 shows an example of an error
found in a report.

 ARIð8ð1I DBS Utility started: ð7/18/89 16:1ð:47. <────────────.1/
AUTOCOMMIT = OFF ERRORMODE = OFF <────┬────.2/
ISOLATION LEVEL = REPEATABLE READ <────┘

 ──────> CONNECT "SQLDBA " IDENTIFIED BY \\\\\\\\;
 ARI8ðð4I User SQLDBA connected to database SQLDBA.
 ARIð5ððI SQL processing was successful.
 ARIð5ð5I SQLCODE = ð SQLSTATE = ððððð ROWCOUNT = ð
 ──────>
 ──────> SELECT \ FROM SQLDBA.DEPARTMENT; <────────────.3/
 SELECT \ FROM SQLDBA.DEPARTMENT PAGE 1
 DEPTNO DEPTNAME MGRNO ADMRDEPT ───┐
 ────── ───────────────────────────── ────── ──────── │
 Aðð SPIFFY COMPUTER SERVICE DIV. ðððð1ð Aðð │
 Bð1 PLANNING ðððð2ð Aðð │
 Cð1 INFORMATION CENTER ðððð3ð Aðð │
 Dð1 DEVELOPMENT CENTER Aðð ├─────.4/
 D11 MANUFACTURING SYSTEMS ðððð6ð Dð1 │
 D21 ADMINISTRATION SYSTEMS ðððð7ð Dð1 │
 Eð1 SUPPORT SERVICES ðððð5ð Aðð │
 E11 OPERATIONS ðððð9ð Eð1 │
 E21 SOFTWARE SUPPORT ððð1ðð Eð1 │
 ARIð85ðI SQL SELECT processing successful: Rowcount = 9 ───┘
 ──────> SELECT \ FROM SQLDBA.PROJJECT; <────────────.5/
 ARIð5ð3E An SQL error has occurred. ──┐

SQLDBA.PROJJECT was not found in the system catalogs. │
 ARIð5ð5I SQLCODE = ─2ð4 SQLSTATE = 52ðð4 ROWCOUNT = ð ├──.6/
 ARIð5ð4I SQLERRP: ARIXOCA SQLERRD1: ─1ðð SQLERRD2: ð │
 ARIð851E SQL SELECT processing unsuccessful: Rowcount = ð ──┘
 ARI8998I ...Begin ROLLBACK processing. ────┐
 ARIð811I ...ROLLBACK of any database changes successful. |
 ARIð813I ...Suspend command execution: ├─────.7/

AUTOCOMMIT = OFF ERRORMODE = ON │
 ARIð8ð2I End of command file input. ────┘
 ARIð8ð7E ...Error(s) occurred during command processing. <───┬─────.8/
 ARIð8ð8I DBS processing completed: ð7/18/89 16:1ð:47. <───┘

Figure 5. Example of a Database Services Utility Error

Notes for Figure 5:

.1/ The Database Services Utility start message.

.2/ The Database Services Utility default values. See “Set-Item Commands” on
page 213 in Chapter 8, “Command Reference” on page 139 for details on
changing these defaults.

.3/ The first SELECT statement that the Database Services Utility is to
process.

.4/ Results of the Database Services Utility processing the SELECT statement
shows the rows retrieved from the table, a message to indicate that the
SELECT statement was successful, and the number of rows retrieved.

.5/ The next SELECT statement that the Database Services Utility is to
process.

12 DBS Utility

.6/ Messages indicating that the SELECT statement could not be successfully
processed. The message indicates that the SQLDBA.PROJJECT table
could not be found in the database; PROJJECT is misspelled. You should
now correct the spelling in the input control card file and run the job again.

.7/ Indicates that the Database Services Utility encountered an error and
cannot process any commands that follow. This message is not relevant to
the present example because no more commands follow. If commands
followed this one in error, they would not be processed.

Note: This command suspension can be controlled by the user; see “SET
ERRORMODE” in Chapter 8, “Command Reference” on page 139.

.8/ Completion messages.

Working with a Control File in DB2 Server for VM

Using a Control File
The control file contains a group of SQL statements and Database Services Utility
commands to be executed. Grouping these commands in one file gives you the
option of saving the file for periodic execution of the sequence of commands in it;
you do not have to retype these commands. Use a control file when running a
batch job, testing statements or commands, or when you expect to use the same or
similar utility commands again.

Creating a Control File
Create a control file by using an editor program as follows.

1. Give your control file a file name, file type, and file mode and start the editor. If
you are doing this exercise to learn about the Database Services Utility, call
your control file COMMANDS DBSU A (if you are using your A-disk), and set
the width of the file to 80.

2. Type the desired utility commands and SQL statements. You must use
uppercase; for example, you can type:

SELECT \ FROM SQLDBA.DEPARTMENT;
SELECT \ FROM SQLDBA.PROJECT;

Note: Always end SQL statements with a semicolon.

3. If your editor program is set to variable length record format, set it to a fixed
length record format.

Note: This step sets the record length of the control file to a fixed length. If
the default of the editor is set to variable length record format, you must
repeat this step each time you edit the file.

4. Store the control file and leave the editor.

For more information on Database Services Utility commands, see Chapter 8,
“Command Reference” on page 139. For more information on SQL statements, see
the DB2 Server for VSE & VM SQL Reference.

 Chapter 1. Getting Started 13

Defining Input and Output Requirements
You must define I/O requirements to the Database Services Utility for the control
file, the message file, and any input or output data files.

You define your input and output requirements to the Database Services Utility by
using FILEDEF commands. The SQLDBSU EXEC generates standard FILEDEF
statements for the control and message files; if you are using an additional file for
data input or output, or need parameters not supplied by the SQLDBSU EXEC, you
must use a FILEDEF statement to supplement the EXEC. When you specify
options other than the SQLDBSU EXEC default options, the EXEC defaults are
overridden.

Because you use a data file for input or output with the RELOAD, DATAUNLOAD,
UNLOAD and SCHEMA commands, you must write a FILEDEF statement for these
commands. The DATALOAD command does not require a FILEDEF statement
when the input data is in the command file. For further details about command
specific FILEDEF information, see the section about using file definitions for the
particular command.

You should use a FILEDEF statement as an addition to the FILEDEF statements
issued by the SQLDBSU EXEC, not as a replacement. When you do use
customized FILEDEF statements in addition to the SQLDBSU EXEC, the FILEDEFs
precede the SQLDBSU EXEC.

Using File Definitions
Use a FILEDEF command to identify a CMS file, a virtual reader file, a virtual
printer file, or any sequential tape or DASD file supported by CMS/QSAM. The
FILEDEF command assigns a name to the file and specifies the file's device type
and file options.

Figure 6 illustrates the syntax of a FILEDEF statement:

Format:

55─ ─FIledef──ddname─ ──┬ ┬─Terminal─────── ──┬ ┬─────────────────── ───────────────────────────5%
 ├ ┤─PRinter──────── └ ┘ ─(──Options─ ──┬ ┬───
 ├ ┤─Reader───────── └ ┘─)─
 ├ ┤ ─DISK──fn_ft_fm─
 └ ┘ ─TAPn───────────

Figure 6. FILEDEF Statement Syntax

ddname (data definition name)
Identifies the name of the input or output file that you are defining.

Device type can be one of the following parameters:

Terminal Your workstation

PRinter The spooled printer available to you

Reader The spooled reader available to you

14 DBS Utility

DISK fn ft fm Virtual direct access storage device (DASD) CMS file

TAPn Magnetic tape drive, where n can be 1, 2, 3, or 4, representing
virtual units 181, 182, 183, and 184, respectively.

Options: To avoid error messages, specify only those options that are valid for a
particular device. Figure 129 on page 250 shows valid options for each device
type.

The message ARI0868I (in the message file) identifies the file characteristics used
by Database Services Utility processing.

The following shows a FILEDEF statement that defines an input data file. In this
example, DBSFILE is the name of the input file as it is referred to in your Database
Services Utility command.

FILEDEF DBSFILE DISK DBSFILE DATA A (RECFM F LRECL 8ðð

DBSFILE is a file on DASD called DBSFILE DATA A. It has a fixed record length of
800.

For an explanation of FILEDEF parameters and options, see Appendix B,
“FILEDEF Command Syntax and Notes” on page 249.

Using the SQLDBSU EXEC
If you have simple, straightforward I/O needs for the control and message files, the
SQLDBSU EXEC, without supplementary FILEDEF commands, is probably all you
need. You can choose only one of the following input control file options:

� A named CMS file for which SQLDBSU issues this FILEDEF:

FILEDEF SYSIN DISK file-name file-type file-mode
(RECFM FB LRECL 8ð BLOCK 8ðð

� A virtual reader file for which SQLDBSU issues this FILEDEF:

FILEDEF SYSIN READER (RECFM F LRECL 8ð

� A workstation as control file for which SQLDBSU issues this FILEDEF:

FILEDEF SYSIN TERMINAL (RECFM F LRECL 8ð

You can choose only one of the following output message file options with the
SQLDBSU EXEC.

� A named CMS file for which SQLDBSU issues this FILEDEF:

FILEDEF SYSPRINT DISK file-name file-type file-mode
(RECFM FBA LRECL 121 BLOCK 121ð

� A virtual printer for which SQLDBSU issues this FILEDEF:

FILEDEF SYSPRINT PRINTER (RECFM FA LRECL 121

� A workstation as message file for which SQLDBSU issues this FILEDEF:

FILEDEF SYSPRINT TERMINAL (RECFM F LRECL 12ð

If, for example, your control file is COMMANDS DBSU and you want to have the
message file displayed on your terminal, your SQLDBSU EXEC statement is:

SQLDBSU SYSIN (COMMANDS DBSU A) SYSPRINT (T)

Note: When the control file is assigned as TERMINAL, do the following:

 Chapter 1. Getting Started 15

� Use the same character positions and same command syntax as if
entering commands or data into a CMS file; end all commands with a
semicolon.

� Use uppercase or lowercase because CMS converts your input to
uppercase. If your input entered from the terminal must contain
lowercase values, you must issue the following FILEDEF before issuing
the SQLDBSU EXEC without the SYSIN parameter specification:

FILEDEF SYSIN TERMINAL (RECFM F LRECL 8ð LOWCASE

If this FILEDEF is issued, all the Database Services Utility command
and SQL statement keywords must be entered in uppercase.

� Do not submit command records with sequence numbers in positions
73–80 when you are using the READ FILE command. (When
SYSIN=TERMINAL, positions 73–80 are used for command
information.)

Note: With single user mode, the SQLDBSU statement has additional parameters.

For detailed information on the SQLDBSU EXEC and startup of the Database
Services Utility, see Chapter 7, “Using the Database Services Utility from
Application Programs” on page 105. For usage notes and syntax of the CMS
FILEDEF command, see Appendix B, “FILEDEF Command Syntax and Notes” on
page 249.

 Sample Startup
This procedure uses the control file you created in “Using the SQLDBSU EXEC” on
page 15 to startup the Database Services Utility with the SQLDBSU EXEC.

Note: Consider using the same file name for both the control and message files to
identify the input and output as belonging to the same job. Use different file
types for the control and message files to prevent the output data and
messages from overwriting the control file contents.

On the CMS command line, type:

SQLDBSU SYSIN (COMMANDS DBSU A) SYSPRINT (COMMANDS RESULT A)

Press ENTER to start the Database Services Utility. The commands in your
COMMANDS DBSU A file are now executed. The utility processes the commands
and displays the results as shown in Figure 7 on page 17.

16 DBS Utility

ARIð717I Start SQLDBSU EXEC: ð7/18/89 16:ð9:52 EST<──────────.1/
ARIð662I EMSG function value reset to: ON.
ARIð659I Line─edit symbols reset:

LINEND=# LINEDEL=OFF CHARDEL=OFF ESCAPE=OFF TABCHAR=OFF
ARIð655I Input file (SYSIN): COMMANDS DBSU A <──────┐
ARIð656I Message file (SYSPRINT): COMMANDS RESULT A │
ARIð32ðI The default database name is SQLDBA. │
ARIð663I FILEDEFS in effect are: ├────.2/
ARISQLLD DISK ARISQLLD LOADLIB Q1 │
SYSIN DISK COMMANDS DBSU A1 │
SYSPRINT DISK COMMANDS RESULT A1 <──────┘
ARIð8ð9I ...No errors occurred during command processing.<───────────.3/
ARIð8ð8I DBS processing completed: ð7/18/89 16:ð9:55.<──────────┐
ARIð66ðI Line─edit symbols restored: │

LINEND=# LINEDEL=OFF CHARDEL=OFF ESCAPE=¢ TABCHAR=ON │
ARIð657I EMSG function value restored to: TEXT. │
ARIð796I End SQLDBSU EXEC: ð7/18/89 16:ð9:56 EST<───────────────┴────.4/

Figure 7. Messages Displayed during Processing

Notes for Figure 7:

.1/ Informs the user that the Database Services Utility started.

.2/ Shows the input (or control) file name, the message file name, the
database being accessed, and the FILEDEFs in effect.

.3/ Identifies any errors that occur when Database Services Utility processes
the commands in the control file.

.4/ Indicates that the Database Services Utility is finished processing.

You may receive the following message instead of the message displayed at .3/:

ARIð8ð7E ...Error(s) occurred during command processing.

This message indicates that an error occurred when the Database Services Utility
was processing the commands in the control file. Error types are listed and
discussed in Chapter 9, “Error Handling and Debugging” on page 223.

Working with a Message File
The Database Services Utility automatically creates a message file with the name
you supplied in the SQLDBSU EXEC parameter. If a file already exists with the
same name, it is overwritten.

After the utility is run and finishes its processing, view the message file to see the
results of processing the control file commands. Figure 8 on page 18 shows the
contents of message file COMMANDS RESULT A.

 Chapter 1. Getting Started 17

1ARIð8ð1I DBS Utility started: ð7/18/89 16:1ð:31. <────────────.1/
AUTOCOMMIT = OFF ERRORMODE = OFF <────┬────.2/
ISOLATION LEVEL = REPEATABLE READ <────┘

ð──────> SELECT \ FROM SQLDBA.DEPARTMENT; <────────────.3/
1SELECT \ FROM SQLDBA.DEPARTMENT PAGE 1
ðDEPTNO DEPTNAME MGRNO ADMRDEPT ───┐
 ────── ───────────────────────────── ────── ──────── │
 Aðð SPIFFY COMPUTER SERVICE DIV. ðððð1ð Aðð │
 Bð1 PLANNING ðððð2ð Aðð │
 Cð1 INFORMATION CENTER ðððð3ð Aðð │
 Dð1 DEVELOPMENT CENTER Aðð ├─────.4/
 D11 MANUFACTURING SYSTEMS ðððð6ð Dð1 │
 D21 ADMINISTRATION SYSTEMS ðððð7ð Dð1 │
 Eð1 SUPPORT SERVICES ðððð5ð Aðð │
 E11 OPERATIONS ðððð9ð Eð1 │
 E21 SOFTWARE SUPPORT ððð1ðð Eð1 │
ðARIð85ðI SQL SELECT processing successful: Rowcount = 9 ───┘
1──────> SELECT \ FROM SQLDBA.PROJECT; <────────────.5/
1SELECT \ FROM SQLDBA.PROJECT PAGE 2
ðPROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE ──┐
 ────── ─────────────────── ────── ─────── ─────── ────────── ────────── │
 AD31ðð ADMIN SERVICES Aðð ðððð1ð 6.5ð 1982─ð1─ð1 1983─ð2─ð1 │
 MA21ðð WELD LINE AUTOMATIO Dð1 ðððð1ð 12.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 AD3111 PAYROLL PROGRAMMING Bð1 ðððð2ð 2.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 PL21ðð WELD LINE PLANNING Bð1 ðððð2ð 1.ðð 1982─ð1─ð1 1982─ð9─15 │
 IF1ððð QUERY SERVICES Cð1 ðððð3ð 2.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 IF2ððð USER EDUCATION Cð1 ðððð3ð 1.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 OP1ððð OPERATION SUPPORT Eð1 ðððð5ð 6.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 OP2ððð GEN SYSTEMS SERVICE Eð1 ðððð5ð 5.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 MA211ð W L PROGRAMMING D11 ðððð6ð 9.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 AD311ð GENERAL AD SYSTEMS E11 ðððð9ð 6.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 OP1ð1ð OPERATION E11 ðððð9ð 5.ðð 1982─ð1─ð1 1983─ð2─ð1 ├──.6/
 OP2ð1ð SYSTEMS SUPPORT E21 ððð1ðð 4.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 MA2112 W L ROBOT DESIGN D11 ððð15ð 3.ðð 1982─ð1─ð1 1982─12─ð1 │
 MA2113 W L PROD CONT PROGS D11 ððð16ð 3.ðð 1982─ð2─15 1982─12─ð1 │
 MA2111 W L PROGRAM DESIGN D11 ððð22ð 2.ðð 1982─ð1─ð1 1982─12─ð1 │
 AD3112 PERSONNEL PROGRAMMG D21 ððð25ð 1.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 AD3113 ACCOUNT.PROGRAMMING D21 ððð27ð 2.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 OP2ð11 SCP SYSTEMS SUPPORT E21 ððð32ð 1.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 OP2ð12 APPLICATIONS SUPPOR E21 ððð33ð 1.ðð 1982─ð1─ð1 1983─ð2─ð1 │
 OP2ð13 DB/DC SUPPORT E21 ððð34ð 1.ðð 1982─ð1─ð1 1983─ð2─ð1 │
ðARIð85ðI SQL SELECT processing successful: Rowcount = 2ð ──┘
1ARIð8ð2I End of command file input. <────────────.7/
 ARI8997I ...Begin COMMIT processing. ──────┐
 ARIð811I ...COMMIT of any database changes successful. │
 ARIð8ð9I ...No error(s) occurred during command processing. ├──────.8/
 ARIð8ð8I DBS processing completed: ð7/18/89 16:1ð:33. ──────┘

Figure 8. Database Services Utility: Sample Message File Output

Notes for Figure 8:

.1/ The Database Services Utility start message.

.2/ The Database Services Utility default values. See Set-Item Commands in
Chapter 8, Command Reference for details on changing these defaults.

.3/ The first SELECT statement that the Database Services Utility processes.

.4/ Results of the Database Services Utility processing the SELECT statement
show the rows retrieved from the table, a message indicating that the
SELECT statement was successful, and the number of rows retrieved.

18 DBS Utility

.5/ The next SELECT statement that the Database Services Utility processes.

.6/ Results of the Database Services Utility processing the SELECT statement
show the rows retrieved from the table, a message indicating that the
SELECT statement was successful, and the number of rows retrieved.

.7/ Database Services Utility has processed all commands in the control file.

.8/ Database Services Utility completion messages.

Using the DBS Utility on non-DB2 Server for VM Application Servers
With the implementation of the Distributed Relational Database Architecture
(DRDA), you can use the DBS Utility on non-DB2 Server for VM application servers
which support the DRDA protocol. Before you can use the DBS Utility on an unlike
application server, the Utility must be preprocessed on the application server using
the ERROR preprocessing option, and the table SQLDBA.DBSOPTIONS must also
exist on the non-DB2 Server for VM application server. Refer to the DB2 Server for
VM System Administration for more information on using the DBS Utility on a
non-DB2 Server for VM application server using DRDA protocol.

To access a non-DB2 Server for VSE & VM application server, you can use the
SQLINIT EXEC with the PROTOCOL options set to AUTO or DRDA. (You can also
access a DB2 Server for VSE & VM application server with the protocol option set
to DRDA).

Only the following DBS Utility commands are supported when the DRDA protocol is
used:

 � DATAUNLOAD
 � DATALOAD
 � RELOAD PACKAGE
� SET commands except SET ISOLATION and SET UPDATE STATISTICS.

Using SQL Statements within the Database Services Utility
Figure 9 on page 20 is a sample Database Services Utility file that executes SQL
statements. It illustrates some of the principles described so far.

Note: You must always end SQL statements with a semicolon.

 Chapter 1. Getting Started 19

┌──┐
│ 1 ┌───────────────┐ col 72 8ð │
│ │───────────────────── │ INPUT RECORDS │ ──────────────────────────│ │ │
│ │ └───────────────┘ │ │ │
│ V V V │
│ CONNECT MICHAEL IDENTIFIED BY MFB29ð1; MFBðð1 │
│ SELECT \ FROM PROJECT ORDER BY PROJNO; MFBðð2 │
│ INSERT INTO PROJECT (PROJNO, PROJNAME, MFBðð3 │
│ DEPTNO) VALUES MFBðð4 │
│ ('AD31ð1','PERSONNEL SERVICES','Dð1'); MFBðð5 │
│ INSERT INTO PROJECT (PROJNO, PROJNAME, MFBðð6 │
│ DEPTNO) VALUES ('OP3ððð','USER SUPPORT', MFBðð7 │
│ 'Eð1'); MFBðð8 │
│ SELECT EMPNO,WORKDEPT,EDLEVEL MFBðð9 │
│ FROM EMPLOYEE MFBð1ð │
│ WHERE EDLEVEL > 12 MFBð11 │
│ ORDER BY WORKDEPT; MFBð12 │
└──┘

Figure 9. Database Services Utility Example File

 CONNECT
The Database Services Utility supports the SQL CONNECT statement so that you
can:

� Identify yourself as an SQL user
� Identify and switch to another application server

Identifying Yourself as a Particular SQL User
You can use the CONNECT statement to identify yourself as a particular DB2
Server for VSE & VM user for the current application server. To identify yourself to
the database manager, enter the following:

CONNECT authorization-id IDENTIFIED BY password;

where authorization-id is either your SQL identifier (if you have one) or your user
ID, and password is your database-access password.

You cannot use the authorization-id IDENTIFIED BY password clause on a
non-DB2 Server for VM application server or if you are using DRDA PROTOCOL. If
you use the clause while using DRDA protocol, an error occurs and the previous
connection remains intact.

The ID specified in the last CONNECT statement processed by the database
manager is the user ID on which the database manager bases its authorization
checking for all subsequent Database Services Utility processing.

You can use the CONNECT statement to identify yourself as a user of another
application server. To do so, use:

CONNECT authorization-id IDENTIFIED BY password TO server-name;

where authorization-id is your SQL identifier, password is your database-access
password, and server-name is the name of the target application server.

20 DBS Utility

CONNECT Information Shown in Message Files

The authorization ID specified in the last CONNECT statement processed by
the database manager is the authorization ID on which the database manager
bases its authorization checking for subsequent Database Services Utility
processing. When the Database Services Utility displays the CONNECT
statement in the message file, the password is suppressed. The authorization
ID is shown in double quotation marks ("); for example:

CONNECT "ANNETTE" IDENTIFIED BY \\\\\\\\

If the Database Services Utility detects an error in the CONNECT statement,
the original input line is not displayed. Instead, the Database Services Utility
displays the following in the message file:

CONNECT ? IDENTIFIED BY ?

Note that you must supply an SQL CONNECT statement in the DB2 Server for
VSE input control card file before any other SQL or Database Services Utility
command, unless you invoke the Database Services Utility from an application
program that has already executed an SQL CONNECT. (“Using the Database
Services Utility from Programming Languages” on page 112 describes how to
invoke the Database Services Utility from an application program.) Refer to the DB2
Server for VSE Database Administration manual for additional information on SQL
CONNECT processing.

DRDA protocol does not support the authorization-id IDENTIFIED BY password
clause.

Suppose you have ACTIVITY tables in two databases, RDB1 and RDB2. To query
both of them, type in your control file:

CONNECT TO RDB1;
SELECT \ FROM ACTIVITY;
COMMIT;
CONNECT authorization-id IDENTIFIED BY
password TO RDB2;
SELECT \ FROM ACTIVITY;

You would replace authorization-id with your SQL identifier and replace password
with your database-access password.

Identifying and Switching to Another Application Server
To use the SQL CONNECT statement to switch to another application server, type:

CONNECT TO server-name;

where server-name is the name of the application server to which you want to
connect.

DB2 Server for VSE

If the CONNECT statement is issued without the identify clause (for example,
CONNECT TO RDB1), and the previous LUW ends with a COMMIT or
ROLLBACK statement, you are connected to the application server with the
same user ID and password that was used in the previous LUW.

 Chapter 1. Getting Started 21

DB2 Server for VM

If a CONNECT is not explicitly issued, or is issued without the identify clause
(for example, CONNECT TO RDB1), the DB2 Server for VM application
requester does an implicit connection when you execute your first SQL
statement. The database manager uses the entry in the CMS communications
directory file (COMDIR) to give you connect authorization to the application
server. If the authorization ID is not resolved from the CMS COMDIR, the
database manager uses the VM user ID. In some situations, the user ID
received at the target application server is different from your VM user ID. For
example, an entry in the CMS COMDIR might change the user ID, or the target
system might change it. Refer to the DB2 Server for VM Database
Administration for additional information on SQL CONNECT processing.

Identifying the Current User ID and Application Server
When you do not specify options with the CONNECT statement, the system
displays the current SQL user ID and application server name. This is a null
CONNECT. To enter a null CONNECT, use:

CONNECT;

If a null CONNECT is issued before a server connection is established by a
previous CONNECT statement, a blank user ID and a blank application
server-name is returned. If a null CONNECT is issued before a valid user ID is
established by a previous CONNECT statement, a blank user ID and the connected
server-name is returned.

For further information on the CONNECT statement, refer to the DB2 Server for
VSE & VM SQL Reference.

 SELECT

Output of Query Results
The Database Services Utility writes the results of an SQL SELECT statement (an
SQL query) to the DB2 Server for VSE report (SYSLST) or the DB2 Server for VM
message file (SYSPRINT).

Specifying a Multiple-Row Query
The use of the SQL SELECT statement is often called a query because SELECT
statements are the means of extracting information from a database.

The Database Services Utility automatically handles multiple-row query results; you
do not have to declare a cursor. Figure 10 on page 23 is an example of
pseudocode showing how a query is coded in an application program to return
many rows using a cursor. Figure 11 on page 23 shows how the DBS Utility
handles the same multiple-row query.

22 DBS Utility

EXEC SQL DECLARE C1 CURSOR FOR
 SELECT PROJNO,PROJNAME

FROM PROJECT WHERE DEPTNO = 'E21'
ORDER BY PROJNO

EXEC SQL OPEN C1
EXEC SQL FETCH C1 INTO :NUMBER, :NAME
DO WHILE (SQLCODE=ð)

DISPLAY (NUMBER, NAME)
EXEC SQL FETCH C1 INTO :NUMBER, :NAME

END-DO
EXEC SQL CLOSE C1

Figure 10. Sample Multiple-Row Query in an Application Program

SELECT PROJNO,PROJNAME
FROM PROJECT WHERE DEPTNO = 'E21'
ORDER BY PROJNO;
 ^
 │ ┌───────────────────┐

│ │Required delimiter │
└─────┤for the DBS Utility│

 └───────────────────┘

Figure 11. Multiple-Row Query

Specifying a Single Value Query
The Database Services Utility does not support INTO clauses. Figure 12 shows
how an application program uses the INTO clause to return a single value.
Figure 13 shows how to specify the same single value query in the DBS Utility.

SELECT AVG(BONUS)
INTO :EXTRA
FROM EMPLOYEE
WHERE JOB = 'MANAGER'

Figure 12. Sample Single Value Query in an Application Program

SELECT AVG(BONUS)
FROM EMPLOYEE
WHERE JOB = 'MANAGER';

Figure 13. Single Value Query

SELECT Output Is Identified by Column Name

Column data appearing in SELECT output produced by Database Services
Utility processing is identified by column name. Column labels are ignored by
Database Services Utility processing.

 Chapter 1. Getting Started 23

 COMMIT
The Database Services Utility handles logical units of work in almost the same way
as application programs. Most Database Services Utility commands or SQL
statements implicitly begin a logical unit of work. The following commands and
statements, however, do not:

Database Services Utility Commands SQL Statements

 COMMENT CONNECT
 SET AUTOCOMMIT COMMIT [RELEASE]
 SET ERRORMODE ROLLBACK [RELEASE]
 SET FORMAT
 SET ISOLATION
 SET LINECOUNT
 SET LINEWIDTH

SET UPDATE STATISTICS

A logical unit of work continues until you issue an SQL COMMIT statement or a
ROLLBACK statement. After the COMMIT or ROLLBACK is processed, another
Database Services Utility command or SQL statement begins a new logical unit of
work.

If you do not include a COMMIT statement or a ROLLBACK statement, the
Database Services Utility treats all the control commands as a single logical unit of
work. If all processing is error-free during this single logical unit of work, the
changes are committed to the database; if errors occurred, no changes are
committed to the database.

Committing Logical Units of Work
The Database Services Utility provides the command SET AUTOCOMMIT ON or
OFF. When AUTOCOMMIT is on, the utility performs a COMMIT operation after the
successful execution of each command that accesses the database. When
AUTOCOMMIT is off (the default mode of processing) or is not specified in your
(input) control file, logical units of work are processed as described previously in
“COMMIT.”

If you want the utility to commit logical units of work, include the following in your
(input) control file:

SET AUTOCOMMIT ON;

Using SQL Comments
SQL comments can be included within SQL statements used in the DBS Utility and
within DBS Utility commands wherever a separator is valid, as long as the existing
Database Services Utility syntax rules are followed. SQL comments are identified
by two consecutive hyphens (--) on the same line. The hyphens must not be
separated by a space. SQL comments must not be part of a literal, double-byte
character set (DBCS) string or quoted identifier. Each SQL comment must be
contained on a single line. In the DBS Utility, an SQL statement must be terminated
by a semicolon (;). If a semicolon appears in an SQL comment, however, it does
not end the SQL statement. For example,

24 DBS Utility

SELECT \ FROM T1 --this does not end the SQL statement;

SELECT \ FROM T1; -- this ends the SQL statement

The following restrictions apply when using SQL comments within DBS Utility
commands:

� SQL comments are not supported in the data portion of a DBS Utility
command. SQL comments that are used improperly are treated as part of the
data.

� SQL comments are not allowed in the DBS Utility COMMENT command or in
the ENDDATA subcommand of the DATALOAD command.

Note: The ENDDATA subcommand of the DATALOAD command should not
contain any other information.

Querying the Current Status in DB2 Server for VM
To query the current status of a job that is running, use the CMS immediate
command SQLQRY by typing #SQLQRY directly from the terminal. The SQLQRY
command cannot be used from a DBS Utility control file.

You can use SQLQRY to determine the application server you are currently
connected to. The output you receive from SQLQRY will be similar to that shown in
Figure 14. For more information on the SQLQRY command, see the DB2 Server
for VM Database Administration manual.

Note: The output from SQLQRY varies depending on the operating environment.

à ð
15:54:48 \ MSG FROM SQLUSER6: Status of Database Conversations on 1991-ð6-3ð
15:54:48 \ MSG FROM SQLUSER6: EXTNAME = SQLUSER6.1
15:54:48 \ MSG FROM SQLUSER6: RDBMS = SQLRDB1 SQLDS/VM V3.3.ð
15:54:48 \ MSG FROM SQLUSER6: STATUS = COMM TIME = 1991-ð6-3ð.15:54:38
15:54:48 \ MSG FROM SQLUSER6: LUWID = IBMNETð1.\IDENT.45F2ABCD236D42
15:54:48 \ MSG FROM SQLUSER6:
15:54:48 \ MSG FROM SQLUSER6: EXTNAME = SQLUSER6.2
15:54:48 \ MSG FROM SQLUSER6: RDBMS = IBMSTLDB2 DB2 V2.3.ð
15:54:48 \ MSG FROM SQLUSER6: STATUS = APPL TIME = 1991-ð6-3ð.15:3ð:25
15:54:48 \ MSG FROM SQLUSER6: LUWID = IBMNETð1.TORLUðð1.45F2ABCD236DFE
15:54:48 \ MSG FROM SQLUSER6: LU = STLMVSð4
15:54:48 \ MSG FROM SQLUSER6: TPN = "6DB (X'ð7F6C4C2')

| 15:54:48 \ MSG FROM SQLUSER6:
| 15:54:48 \ MSG FROM SQLUSER6: EXTNAME = SQLUSER6.2
| 15:54:48 \ MSG FROM SQLUSER6: RDBMS = SQLMACGM DB2/VM n/a
| 15:54:48 \ MSG FROM SQLUSER6: STATUS = VRA TIME = 1991-ð6-3ð.15:3ð:25
| 15:54:48 \ MSG FROM SQLUSER6: TCP/IP = 9.21.4.194 PORT 61ðð

á ñ

Figure 14. Sample Output from SQLQRY

 Chapter 1. Getting Started 25

Canceling a DB2 Server for VM Command
In interactive mode, you can cancel a command before it is completed by typing:

SQLHX

For example, you can cancel a query that is running and has not returned a query
result. The SQLHX command drops the connection to the application server, thus
canceling the current command and rolling back the current logical unit of work. If
you issued an explicit CONNECT before the SQLHX command, the authorization ID
and the name of the application server revert back to those defined by an implicit
CONNECT: your VM ID and default application server.

Note: If you are using synchronous APPC/VM communications with the
application server (by specifying the SYNCHRONOUS (YES) option when
invoking the SQLINIT EXEC), the SQLHX command does not cancel the
Database Services Utility command that is running.

Exiting from the Database Services Utility
You exit from the utility automatically after all the commands in the DB2 Server for
VSE input control card file have been processed.

If you use the Database Services Utility and supply a control file with the SYSIN
option in DB2 Server for VM, you exit from the utility automatically after all the
commands in the control file have been processed. If you use the utility by typing
SQLDBSU and do not supply a control file, you are using the utility interactively. To
exit, type the command EXIT. Any uncommitted work is committed, and you exit
from the utility. You then return to CMS.

26 DBS Utility

Chapter 2. Loading Data with the Database Services Utility

This chapter explains how to load data into a DB2 Server for VSE & VM table with
the DATALOAD command. The data you are loading can be separate from the
DATALOAD command or embedded in the command. You can also load data of
different formats, such as DECIMAL, GRAPHIC, or CHARACTER.

This chapter also describes general loading procedures, such as how to load null
values or special register values. Moreover, you can work more efficiently by
loading data into multiple tables, combining records to load several table rows, or
committing work while loading data. If an error stops the DATALOAD processing,
you can restart the loading process. Finally, this chapter describes how statistics
are collected during or after the utility has loaded the data.

DATALOAD Command Components
The DATALOAD command allows you to load rows into existing DB2 Server for
VSE & VM tables from data contained in a sequential input file that was created by
processing external to the database manager or by the Database Services Utility’s
DATAUNLOAD processing. You can load data into DB2 Server for VM application
servers, as well as into other application servers that support the DRDA protocol.

In general, each input data record used for DATALOAD processing contains data
for a row of a table. Input data records can reside in a sequential file or can be
embedded within the (input) control file. The DB2 Server for VM input data file is
typically a CMS file, but it can be a virtual reader file or any tape or DASD file
supported by CMS OS/QSAM.

Note: You should not use a sequential access method (SAM) file produced by
Database Services Utility UNLOAD processing as input to DATALOAD
processing. An error condition can result. Use the RELOAD command
instead to load a file produced by the UNLOAD command.

The DATALOAD command and its subcommands can:

� Identify the tables to be loaded
� Describe the data fields in the input records
� Relate table column names to the input record data fields
� Identify the source of the input records.

You must complete the DATALOAD command on a single record; do not continue it
on a second input record. The record immediately following a DATALOAD
command must contain a Table Column Identification (TCI) subcommand. If, for
example, you want to load data into 10 columns of a table, the first input record
would contain the DATALOAD command, and the next 10 input records would
contain TCI subcommands.

The other subcommands used with the DATALOAD command are INFILE and
ENDDATA. The INFILE subcommand identifies the input data file or, when followed
by an asterisk (*), identifies that the data is in the (input) control file and
immediately follows the subcommand. You use the ENDDATA command to signal
the end of user-supplied data; you do not need it if the input data is in a separate
file.

 Copyright IBM Corp. 1987, 1998 27

Figure 15 illustrates a DATALOAD command followed by three TCI subcommands
and an INFILE subcommand. Because the input data is contained in the file
NEWACT, the ENDDATA command is not used in this example.

 ┌────────────────┐
DATALOAD TABLE (ACTIVITY) %─────┤DATALOAD Command│
 ACTNO 1-3 └────────────────┘ ┌──────────────┐

ACTKWD 7-12 %──────────────────────────┤TCI Subcommand│
 ACTDESC 18-37 ┌─────────────────┐ └──────────────┘
INFILE (NEWACT) %───────────────┤INFILE Subcommand│
 └─────────────────┘

Figure 15. DATALOAD Command with Subcommands

The DATALOAD command identifies the table that you want to load the data into
(ACTIVITY). This table is sometimes referred to as the target table.

The next three records identify the names of the columns in the ACTIVITY table
into which you want to insert data. These records are TCI subcommands. The
numbers in the subcommands represent the positions where the data exists on the
input records (that is, they identify the input data fields).

Note: If you are not loading data into the column to the extreme right of the table,
add a TCI subcommand for that column and set it to null. By identifying the
last table column, you avoid space problems in the future when you update
the rows loaded into the table. Enough space is allocated in the table to
include the column farthest to the right that you specified with the TCI
subcommands.

INFILE identifies the file where the input data is located (NEWACT). Figure 16 on
page 29 and Figure 17 on page 30 illustrate how the above DATALOAD command
sequence relates to the target table and the input file.

28 DBS Utility

Table to be loaded

Input file of data to load

Record Position:

Notes:

Identifies the input file

DATALOAD command

identifies the table to be loaded

DATALOAD subcommands

identify the names of the table

columns to be loaded

DATALOAD subcommands

identify the location of the data

on the records of the input file

INFILE subcommand
specifies the input file

DATALOAD TABLE (SMITH.ACTIVITY)

ACTNO

ACTKWD

ACTDESC

ACTIVITY

ACTDESCACTKWDACTNO

1-3

7-12

18-37

190

200

25

55

MARKET

CUSTOM

RSRCH

TRAIN

MARKETING

CUSTOMER SUPPORT

RESEARCH

TRAINING

INFILE (NEWACT)

1 3 7 12 18 37

ACTIVITY.DATA

1
1

2

2

3

3

4

4

5

5

// TLBL NEWACT, 'ACTIVITY.DATA', 0

Input Control Card File

Figure 16. Schematic Representation of the DB2 Server for VSE DATALOAD Command

 Chapter 2. Loading Data with the Database Services Utility 29

Table to be loaded

Control File

CONTROL DBSINPUT A1

CMS FILEDEF Command

Input file of data to load

Record Position:

Notes:

DATALOAD command

identifies the table to be loaded

DATALOAD subcommands

identify the names of the table

columns to be loaded

DATALOAD subcommands

identify the location of the data

on the records of the input file

INFILE subcommand

specifies the input file

CMS FILEDEF

fully identifies the input file

ACTNO

ACTKWD

ACTDESC

ACTIVITY

ACTDESCACTKWDACTNO

FILEDEF NEWACT DISK ACTIVITY DATA A (RECFM F LRECL 80

ACTIVITY DATA A1

1-3

7-12

18-37

190

200

25

55

MARKET

CUSTOM

RSRCH

TRAIN

MARKETING

CUSTOMER SUPPORT

RESEARCH

TRAINING

1 3 7 12 18 37

INFILE (NEWACT)

DATALOAD TABLE (SMITH.ACTIVITY)

1
1

2

2

3

5

4

4

5

3

Figure 17. Schematic Representation of the DB2 Server for VM DATALOAD Command

As with SQL INSERT statements, all columns of a table do not have to be specified
for DATALOAD processing. Specifying the last column of a table is recommended
to avoid problems when updating the rows in the future. If a table column is
omitted, however, the column must be defined to permit nulls. If this rule is violated,
SQL and Database Services Utility error messages are generated, and DATALOAD
processing is not performed.

DB2 Server for VSE

NEWACT is a tape file, because that is the default device type. You must
specify INFILE (NEWACT PDEV(DASD) BLKSZ(2048)) if NEWACT is located
on a direct access storage device (DASD).

30 DBS Utility

 DATALOAD Procedures
You cannot mix other Database Services Utility commands or SQL statements
within the DATALOAD command and its subcommands. The input data file for this
utility is a general-use programming interface. See “Programming Interface
Information” on page vii for a definition of general-use programming interfaces.

 Authorization

DB2 Server for VSE & VM authorization checking prevents you from loading a
table if you do not have proper authority. You must have INSERT and SELECT
privileges on the tables affected by the DATALOAD command.

Using the DATALOAD Command with a Separate Data Input File

(Input) Control File and Separate Data File
Use the following procedure as a standard method of constructing and
implementing the DATALOAD command. Variations on this procedure appear
throughout this chapter.

Assume that you have a separate (input) control file and data file. Your sequential
access method (SAM) data file exists already, but you want to issue a DATALOAD
command to insert rows into a certain table.

Proceed as follows for DB2 Server for VSE:

1. Provide the following Database Services Utility command:

DATALOAD TABLE (table-name)

where table-name is the name of the table that you want to load with data.

2. Put a TCI subcommand on the next record:

column-name startpos-endpos data-type

where column-name is the name of the table column, startpos is the first
character position in the input record, endpos is the last position in the input
record, and data-type is the data format of the input values. The default data
type is character (CHAR).

3. Repeat the preceding step for each table column into which data is to be
inserted. Any table column that you are not loading data into must allow null
values.

4. On the next record, put:

INFILE (ddname)

where ddname identifies the input file. Use the same ddname in a TLBL or
DLBL statement, depending on whether the data is stored on tape or in a
DASD file.

5. Submit the job to run.

Proceed as follows for DB2 Server for VM:

1. Issue the SQLINIT command to initialize the user machine. If you have already
done this, proceed to Step 2.

 Chapter 2. Loading Data with the Database Services Utility 31

2. Create a control file to contain the DATALOAD command, which you construct
in the following steps. See “Working with a Control File in DB2 Server for VM”
on page 13 for detailed information on creating a control file.

3. Type the command name:

DATALOAD TABLE (table-name)

where table-name is the name of the table.

4. Enter the first TCI subcommand. On a new line, type:

column-name startpos-endpos data-type

where column-name is the name of the table column, startpos is the first
character position in the input record, endpos is the last position in the input
record, and data-type is the data format of the input values. The default data
type is character (CHAR).

5. Repeat the preceding step for each table column into which data is to be
inserted. Any table column that you are not loading data into must allow null
values.

6. On a new line, type:

INFILE (ddname)

where ddname identifies the input file.

7. Store the control file.

8. In CMS, specify the necessary FILEDEF statements. When you specify the
FILEDEF statement for the input data file, use the same ddname that you
assign to the INFILE in this procedure. For general information about
FILEDEFs, see “Using File Definitions” on page 14. For command-specific
information, see “Using File Definitions with the DB2 Server for VM DATALOAD
Command” on page 36.

9. Issue the SQLDBSU EXEC command to run the DBS Utility. If you did not
specify FILEDEFs for the control and message files, use the default values in
the SQLDBSU EXEC. For more information on the SQLDBSU EXEC, see
“Using the SQLDBSU EXEC” on page 15.

Using a Workstation as a DB2 Server for VM Control File: You can also insert
rows into a table by using your workstation as a control file. To do so, follow the
standard procedure given in “(Input) Control File and Separate Data File” on
page 31 for constructing a DATALOAD command, but enter the information in the
following order:

1. In CMS, specify the necessary FILEDEFs.

2. Specify an SQLDBSU EXEC statement that defines SYSIN as T.

3. When the DB2 Server for VSE & VM command entry panel appears, enter the
DATALOAD command, TCI subcommands, and INFILE subcommand.

Using the DATALOAD Command with Embedded Data

32 DBS Utility

(Input) Control File with Embedded Data
The data to load need not be in a separate file; you can include it with the
Database Services Utility commands in the (input) control file. Figure 18 shows a
DATALOAD command with data following the INFILE subcommand.

DATALOAD TABLE (ACTIVITY)
 ACTNO 1-3
 ACTKWD 5-1ð
 ACTDESC 12-31
INFILE (\)
19ð MARKET MARKETING
2ðð CUSTOM CUSTOMER SUPPORT
25 RSRCH RESEARCH
55 TRAIN TRAINING
ENDDATA

Figure 18. DATALOAD Command with Embedded Data

The asterisk parameter (*) of the INFILE subcommand indicates that input data
immediately follows. When such input data is included with a DATALOAD
command, mark the end of it with an ENDDATA subcommand.

The ENDDATA subcommand is valid only when the previous Database Services
Utility command statement processed is INFILE (*).

 Chapter 2. Loading Data with the Database Services Utility 33

Match TCI and Data Positions

Enter records following an INFILE(*) subcommand so that the character
positions of the data correspond to the startpos and endpos parameter
specifications of the applicable TCI subcommand.

The following example shows that data inserted in the ACTNO column is
specified as occupying positions 1 through 3 of the input data records.
Because INFILE begins at position 1, you can align position 1 of each data
record under the I of INFILE. The INFILE does not have to begin in position 1,
but because it does in this example, you can use it as a guide to position your
data records.

┌───────────┐ DATALOAD TABLE (ACTIVITY) ┌───────────────────────┐
│ TCI │ │ ACTNO 1-3 │ │ STARTPOS and ENDPOS │
│Subcommands├─────>│ ACTKWD 5-1ð │<────┤ parameters show where │
└───────────┘ │ ACTDESC 12-31 │ │ ACTIVITY data is │

INFILE (\) │ located in the input │
 ^ │ records. │
 │ └───────────────────────┘
 ┌┴──────────────────────────────┐

│This character marks position 1│
│of the following input records:│

 └┬──────────────────────────────┘
 │
 V

19ð MARKET MARKETING
2ðð CUSTOM CUSTOMER SUPPORT
25 RSRCH RESEARCH
55 TRAIN TRAINING ┌──────────────────────────────┐
ENDDATA <────────────┤The ENDDATA subcommand follows│

│the last embedded data record.│
 └──────────────────────────────┘

Use a column scale or ruler when entering DB2 Server for VM embedded data
to align data fields.

To load embedded data, follow the standard procedure in “(Input) Control File and
Separate Data File” on page 31, but construct the INFILE subcommand as follows:

1. On a new (VSE) record or (VM) line, type:

INFILE (\)

where (\) indicates that data follows immediately.

2. On the next record or line, enter the first data record. Align the character
positions to match the positions of the startpos-endpos values. Repeat this step
for each succeeding data record.

3. When you have finished providing data records, type the following on a new
record or line:

ENDDATA

34 DBS Utility

Data Format Support
You can store data in sequential files in different data formats. A file created using
a file editor is usually stored in CHARACTER data format. When a file is produced
by a program, it is possible for the program to store data in one or more of the
following data formats: DECIMAL, FIXED, FLOAT, ZONED, CHARACTER, DATE,
TIME, TIMESTAMP, or GRAPHIC data formats.

The Database Services Utility supports data stored in any of the previously
mentioned data formats. When loading data, the utility automatically converts the
input data to the data type of the particular column of the target table.

Sometimes, rather than using character data, an application program generates
fixed-point binary, floating-point binary, or packed decimal data. You still use the
utility to load the data into a table, but you need to specify that the input data is no
longer CHAR data type. The TCI subcommand has the optional data type
parameter for this purpose. The following example illustrates the use of the TCI
subcommand's data type parameter FIXED, which indicates that the input data type
is fixed-point binary.

DATALOAD TABLE (ACTIVITY)
 ACTNO 1-3 FIXED
 ACTKWD 4-9
 ACTDESC 1ð-29
INFILE (NEWACT PDEV(DASD) BLKSZ) <------DB2 Server for VSE
INFILE (NEWACT) <------DB2 Server for VM

DATALOAD converts the fixed-point binary data in columns 1-3 to SMALLINT data
type in the table because the corresponding column is defined as SMALLINT. The
data you are loading can be only one or 2 bytes; DATALOAD cannot convert 4-byte
fixed data to SMALLINT. If you have 4-byte data, the table column you load has to
be defined as INTEGER.

For further qualifying information, see “DATALOAD Data Conversion Summary” on
page 170.

JCL for the DB2 Server for VSE DATALOAD Command
When you use a separate data input file with the DATALOAD command, you need
to define that file through JCL statements. Use the information in this section when
you construct a job for a Database Services Utility command that requires a data
definition name (ddname). See Figure 19 on page 36 for an example of JCL
statements that define an input data file.

 Chapter 2. Loading Data with the Database Services Utility 35

// JOB DBS Utility Dataload Example
// EXEC PROC=ARIS61PL
// DLBL NEWACT, 'ACT.DATA',ð
// EXTENT SYSðð6,SQLWK1,1,ð,57,76
// ASSGN SYSðð6,15ð
// EXEC PGM=ARIDBS,SIZE=AUTO
DATALOAD TABLE (ACTIVITY)
 ACTNO 1-3 FIXED
 ACTKWD 4-9
 ACTDESC 1ð-29
INFILE (NEWACT PDEV(DASD) BLKSZ)
/\
/&

Figure 19. Example of JCL Statements to Define an Input Data File

The DATALOAD command uses the ddname NEWACT, which refers to the input
data file ACT.DATA in the DLBL statement.

Using File Definitions with the DB2 Server for VM DATALOAD
Command

When you use a separate data input file with the DATALOAD command, you need
to define that file with a FILEDEF statement. Even if you want to type in a few rows
of data from your terminal, you must use the FILEDEF statement to specify that the
input is coming from your terminal. If the data is in a virtual reader file, you can use
the FILEDEF to specify the spooled reader. The only situation where you do not
need a supplementary FILEDEF statement is if the input data is in the control file.

Use the information in the following section when you construct the FILEDEF
statement for the input data file.

FILEDEFs Supporting DATALOAD Command Processing
In the CMS FILEDEF command that defines the Database Services Utility's
DATALOAD command input data file, all record format specifications are supported
except for carriage-control characters and undefined format. (Do not use A, M, or U
in your RECFM specification.)

If you define CMS input files with variable-length spanned records (RECFM=VS or
VBS), you must use the file mode number 4. For example:

FILEDEF ddname DISK filename filetype A4 (options

If the DATALOAD input data file contains records with more than 32 760 positions
of data, you must use variable-length, spanned records (RECFM=VS or VBS).
Specify as options only the RECFM and block size (BLOCK or BLKSIZE)
parameters in the FILEDEF command defining the data file. (The LRECL
specification does not apply and would be overridden if specified.) For spanned
record segments, use a maximum length of BLKSIZE−4.

A sample FILEDEF command defining a CMS file for DATALOAD command
processing is:

FILEDEF DBSFILE DISK DBSFILE DATA A (RECFM F LRECL 8ð

36 DBS Utility

where DBSFILE is the name of the data input file as it is referred to in your
program. For more information on FILEDEF parameters and options, see
Appendix B, “FILEDEF Command Syntax and Notes” on page 249.

Use the Same File Definition for DATALOAD as for DATAUNLOAD

If the input data file was created by DATAUNLOAD processing, then the CMS
FILEDEF command that defines the DATALOAD input data file should be
identical to the information in the FILEDEF command used when the file was
created by DATAUNLOAD processing.

General Loading Procedures

 Comparison Operators
In the procedures that follow, you specify a comparison operator. The following
comparison operators are supported by the Database Services Utility:
Comparison Operators

 = Equal to
 ¬= Not equal to
 <> Not equal to
 > Greater than
 >= Greater than or equal to
 < Less than
 <= Less than or equal to

Loading Null Values
Suppose that you are loading data to a table named DEPARTMENT in columns
DEPTNO, DEPTNAME, MGRNO, and ADMRDEPT, but you do not have a
manager for every department. You still want to insert the DEPTNO, DEPTNAME,
and ADMRDEPT into the database. For those departments that do not have a
manager, you want to insert a null value. Use the TCI subcommand's
null-current-clause. Figure 20 illustrates one way to code the MGRNO TCI to load
null values.

DATALOAD TABLE (DEPARTMENT)
 DEPTNO 1─3
 DEPTNAME 5─4ð

MGRNO 42-47 NULL IF POS (42-47)=' '
 ADMRDEPT 49-51 ──┬───
INFILE (NEWDEPT) │
 ┌───────────┐ │

│ 6 blanks. ├────────┘
 └───────────┘

Figure 20. TCI Subcommand with a Null Clause

A translation of this clause is: make the corresponding table field null if input-record
positions 42 through 47 are blank.

To specify a null condition in the TCI subcommand, do the following:

 Chapter 2. Loading Data with the Database Services Utility 37

1. Leave one or more spaces after the TCI subcommand's endpos (or data type)
parameter, and include:

NULL IF POS (startpos-endpos) operator constant

where startpos is the first character position in the input record that contains
the comparison string, endpos is the last position of the string, constant is the
value against which the string at position startpos-endpos is to be compared,
and operator is a comparison operator. (See “Comparison Operators” on
page 37 for a list of comparison operators.) Do not put spaces within the
brackets.

2. Proceed to the next DATALOAD subcommand.

Note: The positions checked for the null value need not be in the same positions
occupied by the data field for the column. You can assign the null value to a
column depending on any convention you choose. For example, to set the
MGRNO column to NULL whenever a blank exists in position 11 of the
DEPTNAME column, code the MGRNO TCI as follows:

MGRNO 42-47 NULL IF POS (11) = ' '

However, if the positions of the data fields and the positions specified by the
startpos and endpos in the subcommand’s null-current-clause overlap, your data
may be overlaid. For more information on the null-current-clause, see page 161.

 Alternative Method

Another way to insert null values into the database for new rows is by omitting a
TCI subcommand for that column:

DATALOAD TABLE (DEPARTMENT)
 DEPTNO 1-3
 DEPTNAME 5-4ð
 ADMRDEPT 49-51
INFILE (NEWDEPT)

In the above example, there is no TCI subcommand for the MGRNO column of
the DEPARTMENT table. For each new row inserted, the MGRNO field is null.
The columns that the utility loads null values into must permit nulls.

Loading CURRENT DATE, CURRENT TIME, and CURRENT TIMESTAMP
Values

The database manager supports the following date and time formats: International
Standards Organization (ISO) form, IBM Standard for Europe form (EUR), IBM
Standard for the U.S. form (USA), Japanese Industrial Standard Christian Era form
(JIS), and an installation-defined form (LOCAL).

Suppose that someone created the following table with the SQL CREATE TABLE
statement and you want to load data into the table.

CREATE TABLE PAYABLE
 (COMPANY CHAR(2ð),
 PAYMENT_DUE DATE,
 AMOUNT DEC(9,2));

38 DBS Utility

Some of the companies in the PAYABLE table are in arrears with their payments.
For these organizations, you want the payment due date to be today's date. Use
the TCI subcommand's null-current-clause. Figure 21 on page 39 shows one way
to code the TCI subcommand PAYMENT_DUE to load the current date. (This
example does not use the sample tables; therefore, do not attempt to process it.)

DATALOAD TABLE (PAYABLE)
 COMPANY 1-2ð
 PAYMENT_DUE 22-31 CURRENT DATE IF POS(22-3ð) = 'IMMEDIATE'
 AMOUNT 35-45
INFILE(\)
VESUVIUS, INC. 1987-ð5-ð1 5ððð.ðð
ATLANTIS CO. 28.ð5.1986 382ð.ðð
TITANIC LTD. IMMEDIATE 725ð.ðð
SKY INC. ð5/22/1986 3ðð.ðð
ENDDATA

Figure 21. TCI Subcommand with a Current-Date Clause

A translation of the current date clause is: load the corresponding table field with
the current date if input-record positions 22 through 30 contain the string
IMMEDIATE.

To specify a current date in the TCI subcommand, proceed as follows:

1. Leave one or more spaces after the TCI subcommand's ENDPOS (or
DATATYPE) parameter, and include:

CURRENT DATE IF POS (startpos-endpos) operator constant

where startpos is the first character position in the input record that contains
the comparison string, endpos is the last position of that string, constant is the
value against which the string startpos-endpos is to be compared, and operator
is a comparison operator. See “Comparison Operators” on page 37 for a list of
comparison operators.

2. Proceed to the next DATALOAD subcommand.

To load current times and timestamps, replace CURRENT DATE with CURRENT
TIME or CURRENT TIMESTAMP in Step 1 of this procedure. For example, in
Figure 21 on page 39, you could replace CURRENT DATE with CURRENT TIME
if the PAYMENT_DUE column were TIME data type.

Note: The current date, current time, and current timestamp value is acquired by
Database Services Utility at the start of the DATALOAD command
processing, and will not change throughout the DATALOAD command
processing.

Loading Data into Multiple Tables
You can load the same data records into more than one table, or load different data
records in the same input file into their respective tables. When you are loading
data into more than one table, the Database Services Utility automatically performs
an UPDATE STATISTICS (unless a SET UPDATE STATISTICS OFF command
has been issued) after the DATALOAD command processing is completed
successfully.

 Chapter 2. Loading Data with the Database Services Utility 39

Loading Mixed INFILE Records into the Correct Tables
If you had to load data into two tables, you would probably prepare two
DATALOAD commands that could be run either separately or consecutively in the
same (input) control file. This is shown in Figure 22.

DATALOAD TABLE (ACTIVITY)
 ACTNO 1-3
 ACTKWD 5-1ð
 ACTDESC 12-31
INFILE (\)
19ð MARKET MARKETING
2ðð CUSTOM CUSTOMER SUPPORT
25 RSRCH RESEARCH
55 TRAIN TRAINING
ENDDATA
DATALOAD TABLE (DEPARTMENT)
 DEPTNO 1-3
 DEPTNAME 5-23
 MGRNO 25-3ð
 ADMRDEPT 32-34
INFILE (\)
Fð1 PERSONNEL ððð11ð Aðð
Gð1 MARKETING AND SALES ððð12ð Aðð
ENDDATA

Figure 22. Separate DATALOAD Commands Run Successively

If, for some reason, the input data records for two tables were mixed in one data
group, you could run the single data group against multiple DATALOAD commands.
This is possible with the use of the DATALOAD statement's input-record-id clause.
Figure 23 on page 41 shows two DATALOAD commands that share one INFILE(*)
subcommand. Both DATALOAD commands have input-record-id clauses that
specify the records that belong to each table.

40 DBS Utility

DATALOAD TABLE (ACTIVITY) IF POS (54)='1'
 ACTNO 1-3 ───────┬───────
 ACTKWD 5-1ð │
 ACTDESC 12-31 └────────────────────┐
DATALOAD TABLE (DEPARTMENT) IF POS (54)='2' │

DEPTNO 1-3 ───────┬─────── ┌───────┴───────┐
 DEPTNAME 5-23 └──────────┤INPUT-RECORD-ID│

MGRNO 25-3ð │ Clauses │
 ADMRDEPT 32-34 └───────────────┘
INFILE (\)
19ð MARKET MARKETING 1
Fð1 PERSONNEL ððð11ð Aðð 2
2ðð CUSTOM CUSTOMER SUPPORT 1
Gð1 MARKETING AND SALES ððð12ð Aðð 2
25 RSRCH RESEARCH 1
55 TRAIN TRAINING 1
ENDDATA
 ^
 │
 ┌─────────────┐ │
 │Column 54, ├────┘
 │Control Field│
 └─────────────┘

Figure 23. DATALOAD Commands Sharing a Data File

Translations of the input-record-id clauses are:

� ACTIVITY Table. If position 54 of an input data record contains a 1, load the
ACTIVITY table with that record.

� DEPARTMENT Table. If position 54 of an input data record contains a 2, load
the DEPARTMENT table with that record.

To load separate tables with mixed input data from a single file, proceed as follows:

1. Leave one or more spaces after the DATALOAD command's table-name
parameter, and include:

IF POS (startpos-endpos) operator constant

where startpos is the first character position in the control field, endpos is the
last position in that field, constant is the value against which the string
startpos-endpos is to be compared, and operator is a comparison operator. See
“Comparison Operators” on page 37 for a list of comparison operators.

2. Enter each TCI subcommand on a new line by including:

column-name startpos-endpos data-type

where column-name is the name of the table column; startpos is the starting
position of the input record; endpos is the last position in the input record; and
data-type is the data format of the column values. If the data type is character
(CHAR), you can omit it.

3. Repeat the previous two steps for each table to be loaded (that is, for each
DATALOAD command).

4. Continue with command and data entry.

Note: Ensure that the control field occupies the same position or positions in each
of the data records of the input file.

 Chapter 2. Loading Data with the Database Services Utility 41

Loading a Single Record into Several Tables
When the Database Services Utility loads records from a mixed input file into
multiple tables, each data record is inserted into a particular table only. You can
also write DATALOAD commands so that a single input data record can be a
source of rows in more than one table. For example, suppose that you want to
expand your activities for each project. Each activity number added to the
ACTIVITY table has a corresponding activity number added to the PROJ_ACT
table. To use a single input data record to make entries in these two tables, you
could code utility commands as shown in Figure 24.

DATALOAD TABLE(ACTIVITY)
 ACTNO 1-3
 ACTKWD 5-1ð
 ACTDESC 12-27
DATALOAD TABLE(PROJ_ACT)
 PROJNO 29-34
 ACTNO 36-38
 ACSTAFF 4ð-43
 ACSTDATE 45-54
 ACENDATE 56-65
INFILE (\)
19ð MARKET MARKETING AD31ðð 19ð ð.5ð 1989-ð1-ð2 1989-ð4-3ð
2ðð CUSTOM CUSTOMER SUPPORT OP2ððð 2ðð 1.5ð 1989-ð3-ð1 1995-12-31
55 TRAIN TRAINING IF2ððð 55 1.ðð 1989-ð2-ð1 1989-ð9-ð5
ENDDATA

Figure 24. Individual Records Supplying the Same Activity Number to Two Tables

In Figure 24, each DATALOAD command has its own set of TCI subcommands
that point to unique positions on the same input record.

Sixteen DATALOADs Sharing One INFILE

When more than one DATALOAD command (without input-record-id clauses)
precedes an INFILE subcommand, the input data identified by the INFILE
subcommand is used for all tables identified in the DATALOAD commands. A
maximum of 16 DATALOAD commands can precede an INFILE subcommand.
You can load 16 tables at the same time.

In Figure 24, the activity number is repeated twice (once for the ACTIVITY table
and once for the PROJ_ACT table) in each input data record. Eliminate the need
for duplicate fields by using TCI subcommands for each of the tables that point to
the same physical location in the input record, as shown in Figure 25 on page 43.

42 DBS Utility

DATALOAD TABLE(ACTIVITY) ┌────────────────────────┐
 ACTNO 1-3 <─────────────┤ │

ACTKWD 5-1ð │ These two subcommands │
ACTDESC 12-27 │ point to the same │

DATALOAD TABLE(PROJ_ACT) | physical location in |
PROJNO 29-34 │ the input data records.│

 ACTNO 1-3 <─────────────┤ │
 ACSTAFF 4ð-43 └────────────────────────┘
 ACSTDATE 45-54
 ACENDATE 56-65
INFILE (\)
19ð MARKET MARKETING AD31ðð ð.5ð 1989-ð1-ð2 1989-ð4-3ð
2ðð CUSTOM CUSTOMER SUPPORT OP2ððð 1.5ð 1989-ð3-ð1 1995-12-31
55 TRAIN TRAINING IF2ððð 1.ðð 1989-ð2-ð1 1989-ð9-ð5
ENDDATA

Figure 25. TCIs in Individual DATALOADs That Point to the Same Location

To use similar TCI subcommands in multiple DATALOAD TABLE commands,
proceed as follows:

1. Find the correct startpos-endpos value for each TCI subcommand that is
common to more than one table.

2. Include the TCI statement in each affected DATALOAD command, and give the
same startpos-endpos value for each.

Combining Records to Load Multiple Table Rows
Usually, one input data record provides information for one table row. This is
illustrated in Figure 26.

DATALOAD TABLE(ACTIVITY)
 ACTNO 1-3
 ACTKWD 5-1ð
 ACTDESC 12-27
INFILE (\)
19ð MARKET MARKETING
2ðð CUSTOM CUSTOMER SUPPORT
25 RSRCH RESEARCH
55 TRAIN TRAINING
ENDDATA

Figure 26. Normal Relationship: One Record for One Row

Using multiple DATALOAD commands, however, you can load more than one table
row with each input data record. Figure 27 on page 44 presents a way of using
multiple DATALOAD statements to load combined records into the same table.

 Chapter 2. Loading Data with the Database Services Utility 43

DATALOAD TABLE(ACTIVITY)
 ACTNO 1-3
 ACTKWD 5-1ð
 ACTDESC 12-27
DATALOAD TABLE(ACTIVITY)
 ACTNO 29-31
 ACTKWD 33-38
 ACTDESC 4ð-55
INFILE(\)
19ð MARKET MARKETING 2ðð CUSTOM CUSTOMER SUPPORT
25 RSRCH RESEARCH 55 TRAIN TRAINING
ENDDATA

Figure 27. Combined Records: Each for Two Rows

In the above example, two rows are inserted into the ACTIVITY table for each data
record that is read.

To load combined records into the same table, proceed as follows:

1. Decide how many simple data records the combined record should contain; this
is the number of DATALOAD statements needed. Provide the required number
of DATALOAD TABLE commands, each with the same table name.

2. Provide each DATALOAD TABLE command with a set of identical TCI
subcommands.

3. Determine the correct startpos-endpos values for each DATALOAD command
set; provide the appropriate value to each TCI statement.

4. In VSE, provide the INFILE(*) data as combined records. In VM, enter the
INFILE(*) data as combined records—with each record on a separate line.
Ensure that this data is positioned to correspond to the startpos-endpos values
in the TCI subcommands.

Processing Data That Spans More Than One Input Record
You can load data that is continued onto the next physical record. Figure 28 on
page 45 illustrates the command sequence necessary to load data from 80-byte
input data records into the columns ACTNO and ACTDESC in the table named
SQLDBA.ACTIONS where:

� The column ACTNO is defined with the data type CHAR(10).
� The column ACTDESC is defined with the data type VARCHAR(100).

44 DBS Utility

 ┌─────────────────────────┐
│Activity description that│

DATALOAD TABLE(SQLDBA.ACTIONS) │is 77 positions long and │
ACTNO 1─1ð │cannot fit on one record.│

 ACTDESC 11─11ð └─────────────────────┬───┘
INFILE(\ CONTINUED(YES)) │
C123456789ðTHIS ACTIVITY DESCRIPTION FILLS IN THE ENTIRE LOGICAL RECORD LENGTH│<──────┘
 AND MORE │
C1234567891THIS DESCRIPTION DOES NOT USE THE WHOLE RECORD│<───────────────────────────┐
 │ │
^ . │
│ ┌─────────────────────┴───┐
│ . │Activity description that│
│ │is 46 positions long. │
│ . ┌────────────────────────┐ │The next record is blank │
│ │ Position 1 of the input│ │to fill in the rest of │
└─────────────────────┤ data record contains a │ │the 1ðð positions. │

│ continuation character.│ └─────────────────────────┘
 └────────────────────────┘
ENDDATA

Figure 28. Specifying Continued Input Records

The CONTINUED parameter of the INFILE subcommand indicates that continued
records are in the input data. If position 1 of an input data record contains a
character, the input data is continued onto the next physical input data record. The
above example uses a C as a continuation character, but you can use any
character. The first position of each input file data record is not included in the
actual input data, so character positions begin numbering from the second position.
Therefore, the physical position 2 of an input data record is referred to as position 1
in the TCI subcommand.

If position 1 of the input data record is blank, the input data is contained on a single
logical input record, or it is the terminating row of a continued record. All actual
input data records must be at least as long as the highest end-position value
specified in a TCI subcommand. In this situation, the ACTDESC field must be 100
characters in length. Therefore, a second physical input line containing all blanks is
necessary to extend the ACTDESC field of the second logical input record
(beginning with ACTNO=1234567891) to the maximum length value of 100.

If the highest TCI endpos value exceeds the input record length, you need to use
continued input records. To construct a Database Services Utility command to load
continued physical input records into a table, proceed as follows:

For DB2 Server for VSE

1. Define the DATALOAD TABLE and TCI statements in the usual way.

2. Put the INFILE statement with the CONTINUED parameter on the next record:

INFILE (\ CONTINUED(YES))

The CONTINUED parameter must be on the same record as INFILE.

3. Provide the data records:

C ...data...

where C can be the character C or any other character, and ...data... is the
actual input-record data to a maximum of 79 characters .

 Chapter 2. Loading Data with the Database Services Utility 45

4. Depending on the length of the physical input record, do one of the following:

� If the physical record length exceeds the logical record length (LRECL=80),
continue entering the data, beginning in position 2 of the following input
record. Do not put a continuation character on the second record.

� If the physical record length is less than the logical record length
(LRECL=80), leave the following input record blank.

If you have to enter more than two records for a physical input record, put a
continuation character at the beginning of each record except the last one. The
blank in position 1 terminates that input record.

5. For each data record, repeat the preceding two steps.

6. Indicate the end of input data. On a new record, put:

ENDDATA

For DB2 Server for VM

1. Define the DATALOAD TABLE and TCI statements in the usual way.

2. Type the INFILE statement as far as the asterisk:

INFILE (\

3. Enter the CONTINUED parameter. On the same line, leave one space; then
type:

CONTINUED(YES))

4. Enter the data records. Type:

C ...data...

where C can be the character C or any other character, and ...data... is the
actual input-record data to a maximum of 79 characters .

5. Depending on the length of the physical input record, do one of the following:

� If the physical record length exceeds the logical record length (LRECL=80),
continue entering the data, beginning in position 2 of the following input
line. Do not put a continuation character on the second line.

� If the physical record length is less than the logical record length
(LRECL=80), leave the following input line blank.

If you have to enter more than two lines for a physical input record, put a
continuation character at the beginning of each line except the last one. The
blank in position 1 terminates that input record.

6. For each data record, repeat the preceding two steps.

7. Indicate the end of input data. On a new line, type:

ENDDATA

Committing Work While Loading Data
If the SET AUTOCOMMIT ON command has been issued, the DATALOAD
command can specify that the utility issue SQL COMMIT statements periodically
during processing. The interval is specified in terms of a specific number of input
records processed by DATALOAD. A record is considered to be processed by
DATALOAD when it is read and appropriate action is taken. The action is one of
the following:

46 DBS Utility

� Skip the record because input record selection criteria are not met
� Insert data from the record into one or more tables.

You indicate the number of records by specifying the COMMITCOUNT(ccount)
parameter on the INFILE subcommand. Each time that COMMIT processing is to
begin, a message (ARI0800I) is written to the message file containing the number
of input records processed up to this point. The message is written as a result of
COMMITCOUNT processing. You also receive a message (ARI0811I) to inform you
that the changes were committed successfully.

When to Use the COMMITCOUNT Parameter
You can use COMMITCOUNT to minimize lock interface with other users of a
dbspace or a table. If you set the value of ccount low enough, escalation is
avoided.

The COMMITCOUNT parameter also helps reduce log space requirements during
execution with multiple user mode.

To cause the Database Services Utility to commit work during processing, proceed
as follows:

1. On the same record as the INFILE subcommand, leave one or more spaces,
then include:

COMMITCOUNT(ccount)

 where ccount is a number from 1 to 2,147,483,647.

2. Specify the rest of the DATALOAD TABLE command set.

Specifying a COMMITCOUNT value commits that number of input records to the
database as soon as the Database Services Utility has processed them.

 Error-Processing Example

Assume that an error occurs in a job for which a COMMITCOUNT value of
1000 has been specified. If the error occurs during the processing of record
99 501 in a 100 000-record file, a ROLLBACK (implicit) command is processed
only for the database row inserts performed for the last 500 records (records
99 001 to 99 500).

If any INSERT commands are processed during DATALOAD processing of the
first 99 000 records, they have already been committed to the database.
Specifying a COMMITCOUNT of 1000 causes COMMIT processing to be done
after every 1000 input data records are processed. The last messages in the
(VSE) report or (VM) message file are:

ARIð8ððI ...Begin COMMIT. Input Record Count = 99ððð
ARIð811I ...COMMIT of any database changes was successful.

Determining the Number of Records Processed
During DATALOAD processing of files containing more than 15,000 data records, a
message (ARI8995I) is written to either the VSE operator console or your VM
terminal after every 15,000 records to let you know that the job is running normally
and that n input records have been processed. These messages appear unless:

 Chapter 2. Loading Data with the Database Services Utility 47

� You used the INFILE subcommand's COMMITCOUNT parameter and assigned
the report or message file to your terminal.

� The number of records is fewer than 15,000.

Skipping Bad Records
A bad data record is one that:

� Contains a data field that cannot be converted to the data type of its target
column

� Contains a data value that causes an SQL INSERT data-conversion or a
nonunique-column-value error.

If the COMMITCOUNT parameter is specified with AUTOCOMMIT ON, and
ERRORMODE CONTINUE processing is in effect, DATALOAD processing skips
bad data records. Processing continues under the following circumstances:

� An error identified by ARI0866E occurs.

� An SQL INSERT error identified by SQLCODE -405, -424, -530, -802, or -803
occurs followed by message ARI0862E, and insert blocking is not in effect.

Insert blocking is not in effect under the following conditions:

� Database Services Utility is running with single user mode.

� Database Services Utility is running with multiple user mode but was
preprocessed with the NOBLOCK option.

� Insert blocking is suppressed by the database manager.

A bad data record is not skipped, and DATALOAD processing is terminated under
the following conditions:

� The first 256 records of data are bad.

� Multiple DATALOAD commands are used preceding an INFILE subcommand
when an insert error occurs, and the record or a portion of the record has
already been used for a successful insert by any of the DATALOAD
commands.

� An error, other than an SQL INSERT error identified by SQLCODE -405, -424,
-530, -802, or -803, occurs.

Tables in Nonrecoverable Storage Pools

A nonrecoverable storage pool is a pooled storage area for which there is no
automatic recovery action to restore data to the condition it was in before a
system failure or a failed operation. The message:

ARI899ðI The table tablename is in a
nonrecoverable storage pool.

is written before DATALOAD table insert processing begins if one of the tables
you are loading resides in a nonrecoverable storage pool. This message
indicates that changes made to this table by the DATALOAD command are not
deleted by a ROLLBACK statement if an error occurs.

48 DBS Utility

Restarting the Loading Process
The Database Services Utility is designed to run despite minor errors. If, however,
an error is serious enough to halt the utility, you must rerun your particular
Database Services Utility command and reprocess all your files; you cannot simply
restart the Database Services Utility from the point of failure.

The COMMITCOUNT parameter, introduced in the preceding section, saves
processed data at intervals that you specify. This saves you processing time
because, although you must rerun jobs from the beginning, you do not have to
reprocess data that has already been committed to the database. The part of the
DATALOAD TABLE command that lets you bypass records is the
RESTARTCOUNT parameter.

In general, you want to skip any records that have been successfully processed
and also any bad input records. To run a job that has errors, proceed as follows:

1. Prepare the DB2 Server for VSE job and commands for the Database Services
Utility and submit the job to run; or prepare the necessary DB2 Server for VM
files and invoke the Database Services Utility.

2. When the job cancels or halts (in VM) with an error, determine (from the
messages sent) the number of records, if any, committed and the number of
records processed up to the start of the error condition.

Note: If you were running the Database Services Utility without SET
AUTOCOMMIT protection, or with too high a COMMITCOUNT value,
you could rerun the job with SET AUTOCOMMIT ON and an
appropriately low COMMITCOUNT value to save the successfully
processed records. If you choose this course of action, return to step 1.

3. Before rerunning the job, add the following parameter to the DATALOAD
TABLE command:

RESTARTCOUNT(rcount)

where rcount specifies the number of input records to be skipped. In general,
start processing from the last COMMIT action.

4. Remove the error condition, if possible.

5. Rerun the job.

If a DATALOAD job is canceled or halted repeatedly by errors, or if bad records are
causing the errors, consider using the following:

1. Specify as the RESTARTCOUNT value the input record count of the last
ARI0800I message. A sample ARI0800I message looks like this:

ARIð8ððI ...Begin COMMIT. Input Record Count = 1ðð

2. Specify the COMMITCOUNT value again to equal the number of records
between the value found in the preceding step and the bad record.

3. Rerun DATALOAD up to the point of failure. This skips the previously
committed records and commits the remainder up to the bad record.

4. Specify as a new RESTARTCOUNT value the input record count of the latest
ARI0800I message plus n, where n is the number of bad records. (You can
also specify the COMMITCOUNT parameter again to its original value.)

 Chapter 2. Loading Data with the Database Services Utility 49

5. Rerun the job. DATALOAD processing begins at a point beyond the bad
records and the previously committed work.

If you were running a DATALOAD job with the COMMITCOUNT set to 100, but the
job was unsuccessful at record 151, you could run DATALOAD again with a new
COMMITCOUNT value and restart after the number of records that were
committed:

DATALOAD TABLE(SMITH.DEPARTMENT)
IF POS (5ð) = 'X'
INFILE(SOMEDEPT) COMMITCOUNT(5ð) RESTARTCOUNT(1ðð)

Now you have committed all the records up to the bad record. To skip the bad
record, change the RESTARTCOUNT value, and restore the COMMITCOUNT
parameter to its original value:

DATALOAD TABLE(SMITH.DEPARTMENT)
IF POS (5ð) = 'X'
INFILE(SOMEDEPT) COMMITCOUNT(1ðð) RESTARTCOUNT(151)

 Alternative Method

You can specify that the Database Services Utility ignore certain error
conditions and continue processing records:

1. Immediately before the DATALOAD command set in the (input) control file,
include:

SET ERRORMODE CONTINUE

2. On the same line as INFILE, add:

COMMITCOUNT(ccount)

where ccount is the number of input records to be processed before a
COMMIT action is taken.

3. Run the job.

Although this procedure skips bad records, it does not pinpoint them. After a job
is finished, compare the loaded table with source input documents to locate
missing table rows.

For more information on Database Services Utility's error handling, see
Chapter 9, “Error Handling and Debugging” on page 223.

 Statistics Collection
The database manager generates table statistics while loading the data and
calculates index statistics while creating an index. This method of creating statistics
avoids doing a dbspace scan and a separate scan of the index pages, which are
done when you issue an UPDATE STATISTICS statement.

The database manager generates table statistics while the Database Services
Utility DATALOAD, RELOAD TABLE, and RELOAD DBSPACE commands are
loading data only if the SET UPDATE STATISTICS command is set to ON. Other
rules that must be met if statistics are to be collected for DATALOAD processing
are:

� The DATALOAD command is loading data into only one table.

50 DBS Utility

� No indexes exist on the table. If indexes do exist, the Database Services Utility
issues an UPDATE STATISTICS after the load is complete to generate index
and table statistics.

� The table being loaded currently contains no data; statistics are accumulated
only for rows that are being loaded. If the table already contains data and
statistics are generated when more rows are loaded, the statistics would not
accurately describe the entire table. For example, to load 5000 rows into a
500000-row table, and have the table's statistics describe only the 5000 rows
that were loaded, would not be accurate. For this reason, statistics are not
generated when you specify the RESTARTCOUNT option. The use of
RESTARTCOUNT implies that a DATALOAD with the COMMITCOUNT option
had already loaded rows into the table, a failure occurred, and the DATALOAD
is being restarted at the point of the most recent COMMIT. Clearly, there are
already rows in the table.

The database manager determines that rows are already in the table when the
ROWCOUNT column of the SYSCATALOG table is a positive number for the
table you are loading. Generally, a positive number in the ROWCOUNT column
indicates that the table contains rows, but if you delete all the data from the
table without updating the statistics, ROWCOUNT still contains a positive
number. You must update the statistics to set the ROWCOUNT to zero before
loading data into that table.

If, for any of the above reasons, table statistics were not generated while data was
being loaded, the Database Services Utility executes an SQL UPDATE
STATISTICS statement for each table loaded after DATALOAD or RELOAD
command processing successfully ends. Statistics are neither updated automatically
nor is an UPDATE STATISTICS statement executed under either one of the
following conditions:

� A SET UPDATE STATISTICS OFF command was issued before the
DATALOAD or RELOAD command.

� A view name was specified instead of a table name.

 Chapter 2. Loading Data with the Database Services Utility 51

52 DBS Utility

Chapter 3. Unloading Data with the Database Services Utility

This chapter describes the DATAUNLOAD command first, and then describes the
UNLOAD commands, beginning with “UNLOAD Procedures” on page 64.

To selectively unload data from tables and views, use the DATAUNLOAD
command. The DATAUNLOAD command creates a sequential file of data that you
can modify and reload into a table with the DATALOAD command.

If you want to create a backup for specific dbspaces or tables, use the UNLOAD
command. The UNLOAD command also allows you to move data in units of tables
(one table or all the tables in a dbspace) to another database manager. If you
want to reclaim fragmented disk space or reorder data records to match indexes,
use the UNLOAD command followed by the RELOAD command.

Refer to the appropriate sections of the earlier chapters for details about invoking
the Database Services Utility and defining files.

 DATAUNLOAD Procedures
Database Services Utility DATAUNLOAD processing enables you to unload data
from tables and views to a user-defined sequential access method (SAM) file
record format. You can also unload data from other DB2 Server for VM application
servers that support the DRDA protocol. The data to be unloaded is selected from
the database with an SQL SELECT statement that you supply. The output data file
for this utility is a general-use programming interface. See “Programming Interface
Information” on page vii for a definition of general-use programming interfaces.

In general, each output record resulting from DATAUNLOAD processing contains
data for a row of a table. These output data records reside in a sequential file. In a
VM system, you must define this file using the CMS FILEDEF command.

The sequential output file can contain fixed, variable-length, or
variable-length-spanned records. The records can be blocked or unblocked. A
standard SELECT statement in its SQL syntax is used in the DATAUNLOAD
command set as a mandatory subcommand. The DATAUNLOAD command and its
subcommands can:

� Identify the tables to be unloaded
� Describe the data fields in the output records
� Relate table column names to output record data fields
� Identify the source of the output records.

A DATAUNLOAD command contains four elements, as shown in Figure 29 on
page 54.

 Copyright IBM Corp. 1987, 1998 53

┌─────────────────┐
│The DATAUNLOAD │
│command statement├─────────5 DATAUNLOAD
└─────────────────┘ │ SELECT EMPNO,PROJNO,ACTNO,EMPTIME
┌─────────────┐ │ FROM EMP-ACT
│An SQL SELECT├────────────5│ WHERE EMPTIME>ð.5
│statement │ │ ORDER BY ACTNO;
└─────────────┘
┌──────────────┐ │ EMPNO 1-6
│DATA FIELD │ │ PROJNO 8-14 CHAR
│IDENTIFICATION├───────────5│ ACTNO 16-18 INTEGER
│subcommands │ │ EMPTIME 2ð-25 DECIMAL
└──────────────┘
┌──────────────────┐
│OUTFILE subcommand├────────5 OUTFILE(INVOUT)
└──────────────────┘

Figure 29. DATAUNLOAD Command Sequence

The DATAUNLOAD command statement consists of a single word and occupies
the first record of the command set in the Database Services Utility (input) control
file.

The SQL statement, the second element in the command set, occupies one or
more control file input records. Its syntax and sequence of keywords are the same
as they would be if used outside the Database Services Utility.

Entering Commands from a Workstation

Most Database Services Utility commands and all SQL statements must end
with a semicolon (;) when the control file is assigned to TERMINAL. In general,
use a semicolon to terminate all commands entered through your workstation.

Data Field Identification (DFI) subcommands, element three of DATAUNLOAD
commands, identify the location in the output records for the data of columns
specified in the select-list parameter. DFI subcommands are optional; if they are
omitted, the resulting output data fields are sequenced according to system
defaults. See “Unloading Data in System-Defined Format” for more information. If
DFI subcommands are included, each must occupy a single record of the DB2
Server for VSE input control card file or DB2 Server for VM command-file input
record.

The OUTFILE subcommand, the final element in the DATAUNLOAD command set,
identifies the sequential output file that is to contain the data unloaded by the
preceding DATAUNLOAD command sequence. It tells the Database Services Utility
to start unloading data to the file identified by the corresponding ddname
parameter. In a VM system, this parameter is defined in the FILEDEF command.

Unloading Data in System-Defined Format
The DATAUNLOAD command and subcommands are contained on more than one
input record. If you want to unload all the data from a table in a system-determined
sequence and with the default output data field format, the three parts of the
Database Services Utility command are:

� The DATAUNLOAD command

54 DBS Utility

� An SQL SELECT statement ended with a semicolon
� An OUTFILE subcommand.

Default Output Data Field Formats

If you do not supply DFI subcommands in a DATAUNLOAD command set and if
the source table column contains double-byte character set (DBCS) data, the
default data type for the output data fields is CHARACTER or GRAPHIC data
type. The overall format of the output data depends on the data type and length
(actual or maximum) of the column from which the data is taken. Figure 30 and
Figure 31 show the default output data field sequence.

If you do not supply DFI subcommands, the data fields appear in the output records
in the order of occurrence of columns in the SELECT statement's select-list
parameter. Each field is separated from the next by a blank position (hex 40).

For fixed-length output records, the data field associated with the first select-list
column starts in position 1 of the record, as shown in Figure 30.

┌─────────────┬───────┬──────────────┬───────┬───────┬──────────────┐
│ data from │ blank │ data from │ blank │ ... │ data from │
│ select-list │ │ select-list │ │ ... │ select-list │
│ column 1 │ │ column 2 │ │ ... │ column n │
└─────────────┴───────┴──────────────┴───────┴───────┴──────────────┘
 .
 .
 .
 Position 1

Figure 30. Default Data Field Sequence—Fixed-Length Output Records

For variable-length output records, the data field associated with the select-list
column starts in position 5 of the record because the first 4 bytes are the record
length control field. Figure 31 shows the data fields for variable-length output
records.

┌──────────┬─────────────┬───────┬─────────────┬────────┬─────┬───────┬─────────────┐
│ Record │ data from │ blank │ data from │ blank │ ... │ blank │ data from │
│ Length │ select-list │ │ select-list │ │ ... │ │ select-list │
│ Control │ column 1 │ │ column 2 │ │ ... │ │ column n │
│ Field │ │ │ │ │ │ │ │
└──────────┴─────────────┴───────┴─────────────┴────────┴─────┴───────┴─────────────┘
 . .
 . .
 . .
 . Position 5
 .
 Position 1

Figure 31. Default Data Field Sequence—Variable-Length Output Records

In DB2 Server for VSE , proceed as follows to unload data in the default
output-field format.

1. Provide the following Database Services Utility command:

DATAUNLOAD

 Chapter 3. Unloading Data with the Database Services Utility 55

2. Put an SQL SELECT statement on the next record. (SQL statement syntax is
beyond the scope of this manual. See the DB2 Server for VSE & VM SQL
Reference for information about SQL statement syntax.) Figure 33 shows a
sample DATAUNLOAD command that uses system formatting defaults.

DATAUNLOAD
SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME
FROM EMP_ACT,EMPLOYEE
WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
ORDER BY EMP_ACT.EMPNO;
OUTFILE(OUTPUT1)

Figure 32. DATAUNLOAD Command without DFI Subcommands

3. To cause default formatting of data fields, do not supply DFI subcommands.

4. On the next record, put:

OUTFILE (ddname)

where ddname identifies the output file. Use the same ddname in a TLBL or
DLBL statement, depending on whether you want to store the data on tape or
in a DASD file.

5. Submit the job for processing.

In DB2 Server for VM , proceed as follows to unload data in the default output-field
format.

1. Issue the SQLINIT command to initialize the user machine. If you have already
done this, proceed to Step 2.

2. Create a control file to contain the command you construct in the following
steps. See “Working with a Control File in DB2 Server for VM” on page 13 for
detailed information on creating a control file.

3. Enter the command name. Type:

DATAUNLOAD

4. On a new line, enter the SQL SELECT statement. (SQL statement syntax is
beyond the scope of this manual. See the DB2 Server for VSE & VM SQL
Reference for information about SQL statement syntax.) Figure 33 shows a
sample DATAUNLOAD command that uses system formatting defaults.

DATAUNLOAD
SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME
FROM EMP_ACT,EMPLOYEE
WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
ORDER BY EMP_ACT.EMPNO;
OUTFILE(OUTPUT1)

Figure 33. DATAUNLOAD Command without DFI Subcommands

5. To cause default formatting of data fields, do not supply DFI subcommands.

6. Enter the OUTFILE subcommand. On a new line, type:

OUTFILE(ddname)

56 DBS Utility

where ddname identifies the output data file. You need to use the same
ddname when you specify the FILEDEF statement for the output file.

7. Store the control file.

8. In CMS, specify the necessary FILEDEF statements. For general information
about FILEDEF statements, see “Using File Definitions” on page 14. For
command-specific information, see “Using File Definitions with the DB2 Server
for VM DATAUNLOAD Command” on page 63.

9. Issue the SQLDBSU command to run the DBS Utility. If you did not specify
FILEDEFs for the control and message files, use the default values in the
SQLDBSU EXEC. For more information on the SQLDBSU EXEC, see “Using
the SQLDBSU EXEC” on page 15.

As the DATAUNLOAD command is executed, the actual command sequence, the
default data-field sequence, and messages are written to the report or message file.
Figure 34 and Figure 35 on page 58 show output that results from running the
DATAUNLOAD command shown in Figure 33 on page 56.

 ARIð8ð1I DBS Utility started: ð7/24/89 1ð:26:44.
AUTOCOMMIT = OFF ERRORMODE = OFF
ISOLATION LEVEL = REPEATABLE READ

 ------> CONNECT "SQLDBA " IDENTIFIED BY \\\\\\\\;
 ARI8ðð4I User SQLDBA connected to database SQLDBA.
 ARIð5ððI SQL processing was successful.
 ARIð5ð5I SQLCODE = ð SQLSTATE = ððððð ROWCOUNT = ð
 ------>
 ------> DATAUNLOAD
 ------> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME
 ------> FROM EMP_ACT,EMPLOYEE
 ------> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
 ------> ORDER BY EMP_ACT.EMPNO;
 ------> OUTFILE(OUTPUT1)
 ARIð852I DATAUNLOAD processing started. ┌──────────┐
 ARIð868I DNAME=OUTPUT1 RECFM=F RECSZ=8ð BLKSIZE=8ð <─────┤ See Note │
 ARIð836I Default output record data field positions: └──────────┘
 ARIð837I EMPNO 1-6
 ARIð837I PROJNO 8-13
 ARIð837I EMPTIME 15-21
 ARIð835I 74 record(s) written to the output data file.
 ARIð855I DATAUNLOAD processing successful.
 ARIð8ð2I End of command file input.
 ARI8997I ...Begin COMMIT processing.
 ARIð811I ...COMMIT of any database changes successful.
 ARIð8ð9I ...No error(s) occurred during command processing.
 ARIð8ð8I DBS processing completed: ð7/24/89 1ð:26:45.

Figure 34. Database Services Utility DB2 Server for VSE Report Output: Default Data Fields

 Chapter 3. Unloading Data with the Database Services Utility 57

1ARIð8ð1I DBS Utility started: ð7/24/89 1ð:26:44.
AUTOCOMMIT = OFF ERRORMODE = OFF
ISOLATION LEVEL = REPEATABLE READ

ð------> DATAUNLOAD
 ------> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME
 ------> FROM EMP_ACT,EMPLOYEE
 ------> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
 ------> ORDER BY EMP_ACT.EMPNO;
 ------> OUTFILE(OUTPUT1)
 ARIð852I DATAUNLOAD processing started. ┌──────────┐
 ARIð868I DNAME=OUTPUT1 RECFM=F RECSZ=8ð BLKSIZE=8ð <─────┤ See Note │
 ARIð836I Default output record data field positions: └──────────┘
 ARIð837I EMPNO 1-6
 ARIð837I PROJNO 8-13
 ARIð837I EMPTIME 15-21
 ARIð835I 74 record(s) written to the output data file.
 ARIð855I DATAUNLOAD processing successful.
 ARIð8ð2I End of command file input.
 ARI8997I ...Begin COMMIT processing.
 ARIð811I ...COMMIT of any database changes successful.
 ARIð8ð9I ...No error(s) occurred during command processing.
 ARIð8ð8I DBS processing completed: ð7/24/89 1ð:26:45.

Figure 35. Database Services Utility DB2 Server for VM Message File Output: Default Data
Fields

Note: The RECFM, RECSZ, and BLKSIZE information displayed in the message
ARI0868I depends on either the JCL data definition statement or the CMS
FILEDEF command specifications for the output file with
ddname=OUTPUT1.

The records in the output data file are formatted according to system-determined
(default) criteria. Figure 36 shows the data field format resulting from the
DATAUNLOAD command specification given in Figure 33 on page 56.

Figure 36. Output Record Format That is System Determined

Record
Position

Data Value Source (Column
or Other)

Output Record Field Data
Type

1-6 EMPNO CHAR

7 (blank) CHAR

8-13 PROJNO CHAR

14 (blank) CHAR

15-21 EMPTIME CHAR

Unloading Data in User-Specified Format
If you want to unload all the data from a table in a specific sequence and with
user-specified output data record field formats, the four parts of the Database
Services Utility command are:

� The DATAUNLOAD command
� An SQL SELECT statement ended with a semicolon
� DFI subcommands for each column to be unloaded
� The OUTFILE subcommand.

58 DBS Utility

The data for a DFI-referenced column is in the same positions in all the output data
records.

Provide DFIs for All Table Columns—or None

A DFI subcommand identifies the location in the output record where you want
to place the unloaded data. For example, suppose TABLE1 has five columns
and you enter the following SELECT statement:

SELECT \ FROM TABLE1

 or

SELECT colname1,colname2,colname3,colname4,colname5 FROM TABLE1

If you supply only three DFI subcommands, the Database Services Utility only
unloads the three table columns identified in the subcommands. If you want to
unload data for all five columns and you want to specify your own output record
format for any of the columns, you must supply five DFI subcommands.

The difference between unloading data in system-defined and user-defined format
is the presence of DFI subcommands. A DFI subcommand identifies the location in
the output records where the data for a column specified in the select-list parameter
should be placed. The DFI also identifies the data type of its data field in the output
record.

Whereas the DATAUNLOAD default output field sequence uses the order of
presentation in the select-list parameter, you choose the order of fields in the output
records when you supply DFI subcommands. In choosing positions for the output
data-record fields, you should leave a blank position between each field for clarity,
but this is not mandatory. Do not, however, use character positions 1 through 4 for
output data if you have specified variable-length output records for the output file.
Record positions 1–4 are reserved for the record length control field.

Figure 37 shows a DATAUNLOAD command sequence using DFI subcommands.
The EMPNO field is to occupy positions 1 through 6 in the output records. The
PROJNO field goes in positions 8 through 13. The EMPTIME field is to take
positions 15 through 21 as data type DECIMAL.

DATAUNLOAD
SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB
FROM EMP_ACT,EMPLOYEE
WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
ORDER BY EMP_ACT.EMPNO;
EMPNO 1-6
PROJNO 8-13
EMPTIME 15-21 DECIMAL
OUTFILE(OUTPUT1)

Figure 37. DATAUNLOAD Command with DFI Subcommands

To unload data in user-specified output-file format, supply DFI subcommands. Use
the standard method for unloading data in “Unloading Data in System-Defined
Format” on page 64, but supply a DFI subcommand for each column that you want
to unload. To construct a DFI subcommand, use the following format:

 Chapter 3. Unloading Data with the Database Services Utility 59

column-reference startpos-endpos data-type set-null-clause

� column-reference is usually the name of the table column in the select-list
parameter, but it might be an integer. For more information, see
“Data_Field_Id_Subcommand” on page 174.

� startpos-endpos gives the first and last positions of the named table-column
data in the output record. You can omit endpos if the output data is one
character long.

� data-type is the data format to be used in the data field of the output record.
For more information, refer to the sections starting on page 176 in Chapter 8,
“Command Reference” on page 139.

� set-null-clause is a conditional expression that tells the Database Services
Utility to provide a particular flag, control character, or string in the output
record if the value of the output data is null. The set-null-clause also specifies
the start and end positions in the output record for the flag or string.

Unloading NULL Values
You can use the set-null-clause to instruct the utility to insert a particular value
whenever a null value occurs in a table that you are unloading. In the following
example, you instruct the DBS Utility to write a question mark in position 22 of the
output record whenever a null field occurs in the table that is being unloaded.

DATAUNLOAD
SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB
FROM EMP_ACT,EMPLOYEE
WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
ORDER BY EMP_ACT.EMPNO;
EMPNO 1-6
PROJNO 8-13
EMPTIME 15-21 DECIMAL IF NULL SET POS(22) = '?'
OUTFILE(OUTPUT1)

Figure 38. Unloading NULL Values with DATAUNLOAD Command

As is shown in Figure 38 on page 60, if the value of an EMPTIME column is null,
the utility puts a ? value in output record position 22. For more information about
using the set-null-clause, see page 180 under “Data_Field_Id_Subcommand” on
page 174 in Chapter 8, “Command Reference” on page 139.

Periodic Reports during the Processing of Long Jobs

During DATAUNLOAD processing of a file containing more than 15,000 data
records, the message ARI8995I is written every 15,000 records to inform you
that the job is running normally and that n records have been unloaded. In a
VM system, these messages are written to your workstation, and in a VSE
system, they are written to the system operator's console. If the number of
records being read from the database is less than 15,000, you do not receive
message ARI8995I.

As the DATAUNLOAD command is executed, the actual command sequence and
messages are written to the report or message file. Figure 39 on page 61 and

60 DBS Utility

Figure 40 on page 61 show report results from running the DATAUNLOAD
command as shown in Figure 37 on page 59.

1ARIð8ð1I DBS Utility started: 1ð/ð5/89 14:54:41.
AUTOCOMMIT = OFF ERRORMODE = OFF
ISOLATION LEVEL = REPEATABLE READ

ðARI8ðð3I ...Extended DBCS (DBCS=YES) processing now in effect.
ð------> DATAUNLOAD
 ------> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB
 ------> FROM EMP_ACT,EMPLOYEE
 ------> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
 ------> ORDER BY EMP_ACT.EMPNO;
 ------> EMPNO 1-6
 ------> PROJNO 8-13
 ------> EMPTIME 15-21 DECIMAL IF NULL SET POS(22) = '?'
 ------> OUTFILE(OUTPUT1)
 ARIð852I DATAUNLOAD processing started.
 ARIð831I Column JOB data will not be unloaded. ┌──────────┐
 ARIð868I DNAME=OUTPUT1 RECFM=F RECSZ=8ð BLKSIZE=8ð <─────┤ See Note │
 ARIð835I 74 record(s) written to the output data file. └──────────┘
 ARIð855I DATAUNLOAD processing successful.
 ARIð8ð2I End of command file input.
 ARI8997I ...Begin COMMIT processing.
 ARIð811I ...COMMIT of any database changes successful.
 ARIð8ð9I ...No error(s) occurred during command processing.
 ARIð8ð8I DBS processing completed: 1ð/ð5/89 14:54:44.

Figure 39. Database Services Utility Report Output with User-Specified Data Fields

 ARIð8ð1I DBS Utility started: 1ð/ð5/89 14:54:41.
AUTOCOMMIT = OFF ERRORMODE = OFF
ISOLATION LEVEL = REPEATABLE READ

 ------> CONNECT "SQLDBA " IDENTIFIED BY \\\\\\\\;
 ARI8ðð4I User SQLDBA connected to database SQLDBA.
 ARIð5ððI SQL processing was successful.
 ARIð5ð5I SQLCODE = ð SQLSTATE = ððððð ROWCOUNT = ð
 ------>
 ARI8ðð3I ...Extended DBCS (DBCS=YES) processing now in effect.
 ------> DATAUNLOAD
 ------> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB
 ------> FROM EMP_ACT,EMPLOYEE
 ------> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
 ------> ORDER BY EMP_ACT.EMPNO;
 ------> EMPNO 1-6
 ------> PROJNO 8-13
 ------> EMPTIME 15-21 DECIMAL IF NULL SET POS(22) = '?'
 ------> OUTFILE(OUTPUT1)
 ARIð831I Column JOB data will not be unloaded.
 ARIð868I DNAME=OUTPUT1 RECFM=F RECSZ=8ð BLKSIZE=8ð
 ARIð835I 74 record(s) written to the output data file.
 ARIð855I DATAUNLOAD processing successful.
 ARIð8ð2I End of command file input.
 ARI8997I ...Begin COMMIT processing.
 ARIð811I ...COMMIT of any database changes successful.
 ARIð8ð9I ...No error(s) occurred during command processing.
 ARIð8ð8I DBS processing completed: 1ð/ð5/89 14:54:44.

Figure 40. Database Services Utility Message File Output with User-Specified Data Fields

 Chapter 3. Unloading Data with the Database Services Utility 61

Note: The RECFM, RECSZ, and BLKSIZE information displayed in the message
ARI0868I depends on the CMS FILEDEF command specifications for the
output file OUTPUT1.

The Database Services Utility does not unload data for which no DFI subcommand
exists (unless all DFIs are omitted), but the report or message file does show you
the columns that are not unloaded.

The records in the output data file are formatted according to your specifications.
Figure 41 shows the data field format resulting from the DATAUNLOAD command
specification shown in Figure 37 on page 59.

Figure 41. Output Record Format That is User Determined

Record
Position

Data Value Source (Column
or Other)

Output Record Field Data
Type

1-6 EMPNO CHAR

7 (blank) CHAR

8-13 PROJNO CHAR

14 (blank) CHAR

15-21 EMPTIME DECIMAL

22 EMPTIME
(null indicator)

CHAR

Unloading a View
A view is a virtual table that is derived from one or more tables, from other views,
or from combinations of views and tables. When views are processed and
displayed or printed, they are indistinguishable from tables; they have rows and
columns and, like tables, views have no inherent order of rows.

You can use the DATAUNLOAD command to unload views as if they were tables.
Once unloaded, the output data of a view is the same as the data from a table.

To use the DATAUNLOAD command to unload a view, use the same procedure
that you use to unload a table, but specify a view name instead of a table name in
the SQL SELECT statement. You can select all the columns of the view (SELECT
*), or use the select-list parameter. If you use this parameter, specify the names of
view columns.

Suppose you create a view such as this:

CREATE VIEW TOSPIFFY (NUMBER,NAME,MANAGER)
AS SELECT DEPTNO,DEPTNAME,MGRNO
FROM DEPARTMENT
WHERE ADMRDEPT = 'Aðð'

To unload the view, construct a DATAUNLOAD command like this:

DATAUNLOAD
SELECT \ FROM TOSPIFFY;
NUMBER 1-3
NAME 6-42
MANAGER 45-5ð IF NULL SET POS (45-5ð) = ' '
OUTFILE(SUBSPIF)

62 DBS Utility

The DATAUNLOAD command uses the view column names, not the column names
of the founding table, and null entries in the MANAGER column are represented by
6 blanks in the output data file.

Using File Definitions with the DB2 Server for VM DATAUNLOAD
Command

The DATAUNLOAD command uses three files: the control file, the message file,
and the data output file. You must define all three files, either with the SQLDBSU
EXEC or a FILEDEF command. Figure 42 on page 63 shows the relationship of
the three files and the appropriate definition facility (FILEDEF or SQLDBSU) for
each.

┌─────────────┐ ┌────────────────┐ ┌────────────────┐
│Control File │ │DATAUNLOAD │ │Message │
│ Input │ │ │ │File Output │
│(Use the ├───>│Processing ├───>│(Use the SQLDBSU│
│SQLDBSU EXEC)│ │ │ │EXEC) │
└─────────────┘ └────────────┬───┘ └────────────────┘
 │
 │ ┌─────────────────┐

│ │ Data File │
 │ │ Output │

└───────>│ (Use a CMS │
│ FILEDEF Command)│

 └─────────────────┘

Figure 42. DATAUNLOAD Files

For more information on FILEDEF parameters and options, see Appendix B,
“FILEDEF Command Syntax and Notes” on page 249.

FILEDEFs Supporting DATAUNLOAD Command Processing
In the FILEDEF command defining the Database Services Utility DATAUNLOAD
command output data file, all record format (RECFM) values are supported except
for undefined (U) or carriage controls (A or M). If you define CMS output files with
variable-length spanned records (RECFM=VS or VBS), you must use the file-mode
number 4.

A sample CMS FILEDEF command defining a CMS file for DATAUNLOAD
command processing is:

FILEDEF DBSFILE DISK DBSFILE DATA A (RECFM FB LRECL 8ðð BLOCK 16ðð

where DBSFILE is the ddname used in the DATAUNLOAD command, and it refers
to the output file DBSFILE DATA A.

If you want to print some of the data in a table, use the FILEDEF statement to
specify the printer as the output device:

FILEDEF PRINTOUT PRINTER

where PRINTOUT is the ddname that you use in the DATAUNLOAD command.

 Chapter 3. Unloading Data with the Database Services Utility 63

 UNLOAD Procedures
This section describes the UNLOAD commands provided by the Database Services
Utility.

Unloading Data in System-Defined Format
Database Services Utility UNLOAD TABLE and UNLOAD DBSPACE processing
allows you to unload tables and views to a sequential file. You can later use this file
as input to Database Services Utility RELOAD TABLE and RELOAD DBSPACE
processing (described in Chapter 4, “Reloading Data with the Database Services
Utility” on page 71). With the UNLOAD commands, you cannot unload data in a
user-defined format.

Note: You cannot use the UNLOAD DBSPACE and UNLOAD TABLE commands
on a non-DB2 Server for VM application server or if you are using DRDA
protocol.

The following is a brief description of the two UNLOAD commands:

� UNLOAD DBSPACE unloads all tables in a particular dbspace to an output file.

� UNLOAD TABLE is more specific than UNLOAD DBSPACE; it unloads a
specific table into an output file.

Unloading a Dbspace or Table That You Do Not Own

To unload dbspaces and tables that you do not own, concatenate the owner's
user ID to the dbspace name (for example, SMITH.PERSONNEL). You must
have the SELECT privilege on all tables in the dbspace you want to unload.

Figure 43 shows how the parts of an UNLOAD DBSPACE command relate to the
dbspace and output file. In the figure, the command:

UNLOAD DBSPACE (SMITH.PERSONNEL) OUTFILE (SAVE)

unloads the dbspace called SMITH.PERSONNEL to the file SAVE.

UNLOAD DBSPACE (SMITH.PERSONNEL) OUTFILE (SAVE)

SMITH.PERSONNEL

EMPLOYEE DEPARTMENT
SAVE

(DBSPACE)

PROJECT

Figure 43. Diagram of the UNLOAD DBSPACE Command

64 DBS Utility

The format of the UNLOAD TABLE command is the same as UNLOAD DBSPACE,
but instead of a dbspace, specify a table name. In Figure 44 on page 65, the
UNLOAD TABLE command unloads a single table called SMITH.DEPARTMENT to
the output file SAVE.

OUTFILE (SAVE)

SAVE

(DBSPACE)

UNLOAD TABLE

SMITH.PERSONNEL

EMPLOYEE DEPARTMENT

PROJECT

(SMITH.DEPARTMENT)

Figure 44. Diagram of the UNLOAD TABLE Command

The Database Services Utility UNLOAD processing writes all rows from a table or
all rows from all tables in a dbspace as individual records to the sequential output
file. Before producing these records, the utility writes records that contain
information supporting the RELOAD function. The Database Services Utility
RELOAD processing with the NEW parameter uses this information for creating the
table(s).

Attention:

In RELOAD processing with the parameter NEW, the Database Services Utility
must create the table. The table is not created if the CREATE TABLE statement
used by the Database Services Utility is greater than 8192 bytes. If the statement is
greater than 8192 bytes, you can use the RELOAD command only with the PURGE
parameter and only if the table already exists.

The CREATE TABLE statement used by the Database Services Utility will be
longer than the statement that you initially issue if:

� You do not specify the column clauses in the column definition of the table.

� You use the ALTER TABLE statement to add columns to the table.

 Chapter 3. Unloading Data with the Database Services Utility 65

UNLOAD Processing Uses Indexes

The Database Services Utility unloads table data in the sequence identified by
the first index created for the table. This first index is also known as the
clustering index. The CLUSTER column of the SYSINDEXES catalog table
indicates the index for a given table that is the first, or clustering, index. (The
CLUSTER column contains an F or W value. See DB2 Server for VM Database
Administration for more information on SYSINDEX and clustering indexes.) The
data is ordered by the clustering index before it is selected for unloading.

If a table has no indexes, the data is not put in order before it is unloaded; table
rows are unloaded in a system-determined order.

The UNLOAD command does not unload any indexes, primary or foreign keys, or
constraint definitions. Additionally, a package (preprocessed program) that depends
on the unique constraint indexes is invalidated when unique constraints are
dropped. All packages dependent on the table are invalidated when a unique
constraint is added to the table because they might have UPDATE statements that
cause multiple-row updates. Packages are also invalidated when unique constraints
are activated or deactivated. When using the Database Services Utility RELOAD
command with PURGE OPTION, however, you should ACTIVATE the unique
constraints (in the ALTER TABLE statement) rather than re-create them because it
is more efficient.

Furthermore, the Database Services Utility is sensitive to the tagging of character
and graphic data (single byte, double byte, and mixed), which identify the format of
the data, such as US or Kanji. The tags are maintained when you use the UNLOAD
and RELOAD commands.

Attention:

Operate under isolation level repeatable read (the default Database Services Utility
processing mode) when you use the UNLOAD command to ensure a consistent
state of the database during backup or migration.

Using the UNLOAD DBSPACE Command
The command statements UNLOAD DBSPACE and UNLOAD TABLE are much
simpler than the DATAUNLOAD statement because the UNLOAD commands do
not specify the output fields. The lack of specifications leads to very long output
records.

Such long output records make it difficult to locate specific data or to edit the output
file. The UNLOAD commands are designed to provide output files for backup or
subsequent reloading at remote sites (or locally, for purposes of reorganizing DB2
Server for VSE & VM data structures). Consequently, unloaded data should be
used only for reloading purposes. The following UNLOAD DBSPACE command
unloads all tables in a dbspace named PERSONNEL. The tables are placed in an
output file called SAVE:

UNLOAD DBSPACE (PERSONNEL) OUTFILE (SAVE)

The syntax is simple, requiring only:

� The command name

66 DBS Utility

� The name of the dbspace to be unloaded
� The name of the output file. (In VM this is specified in the FILEDEF command.)

To unload an entire dbspace for backup or subsequent reloading, follow the
procedure in “Unloading Data in System-Defined Format” on page 54, but use the
UNLOAD DBSPACE command instead of the DATAUNLOAD command. The
UNLOAD DBSPACE command uses the following structure:

UNLOAD DBSPACE (dbspace-name)

where dbspace-name is the name of the dbspace.

Using the UNLOAD TABLE Command
You can use UNLOAD TABLE to specify the one table you want to unload.
UNLOAD DBSPACE unloads all the tables in a dbspace.

For example, if you make regular backups of the inventory table of a small
company, you unload the table frequently. The table is in a dbspace with other
tables that you do not need to backup as often. Use the UNLOAD TABLE
command to backup only the inventory table. If your system fails, you can reload
the table by using the RELOAD TABLE command, which is discussed in the next
chapter.

The syntax of the UNLOAD TABLE command is similar to that of the UNLOAD
DBSPACE command, requiring only:

� The command name
� The name of the table to be unloaded
� The name of the output file. (Specified in the FILEDEF command in VM.)

To unload a table for backup or subsequent reloading, use the same procedure
given in “Unloading Data in System-Defined Format” on page 54, but use the
UNLOAD TABLE command instead of the DATAUNLOAD command. The UNLOAD
TABLE command has the following structure:

UNLOAD TABLE (table-name)

where table-name is the name of the table.

 Unloading Views

You can unload a view (virtual table) with UNLOAD TABLE processing. The
Database Services Utility processes views in the same manner as a table
without indexes.

In DB2 Server for VSE

Each file of a multiple-file tape volume must be identified with the correct file name
and file sequence number of the TLBL statement for each tape file. Tape rewind
processing is controlled by the VSE job control statements.

In DB2 Server for VM

 Chapter 3. Unloading Data with the Database Services Utility 67

If you want to do a simple Database Services Utility command, such as unload one
table to a DASD file, and you are not going to repeat this command regularly, use
the utility interactively to avoid creating a control file and specifying a message file.

If you have to execute several UNLOAD TABLE commands or use the same
command again, use message and control files. For example, to unload the
organization tables that are in the same dbspace as personnel tables, you need
several UNLOAD TABLE commands to specify each organization table. To unload
project activity tables for managers who have different dbspaces, you again need
several UNLOAD TABLE commands. Putting the Database Services Utility
commands in a control file enables you to use the commands again. Also, if any
command fails, you can refer to the message file repeatedly to deal with each error
message and correct the mistake in the control file without retyping all of the
UNLOAD commands.

Using File Definitions with the DB2 Server for VM UNLOAD DBSPACE
and UNLOAD TABLE Commands

The UNLOAD DBSPACE and UNLOAD TABLE commands use at least three files:
the control file, the message file, and one or more data output files.

Multiple Output-File Possibilities

You can have more than one UNLOAD TABLE or UNLOAD DBSPACE
command within a single invocation of the utility; each command must unload
data to a separate file, or the data is lost.

You can unload data to a multiple-volume tape file. You can also unload data to
multiple files on a single tape volume in one execution of the Database Services
Utility. Each UNLOAD operation must unload to a separate file. The Database
Services Utility does not rewind the tape when each file is opened for output.

Figure 45 on page 68 shows the relationship between the UNLOAD files and the
appropriate definition facility (FILEDEF or SQLDBSU) for each.

┌─────────────┐ ┌──────────────┐ ┌────────────────┐
│Control File │ │ UNLOAD │ │Output │
│ Input │ │ │ │Message File │
│(Use the ├──────>│ Processing ├─────────>│(Use the SQLDBSU│
│SQLDBSU EXEC)│ │ │ │EXEC) │
└─────────────┘ └───────────┬──┘ └────────────────┘
 │
 │
 │ ┌─────────────────┐
 │ │Output │
 │ │Data File │

└────────────>│(Use a CMS │
│FILEDEF command) │

 └─────────────────┘

Figure 45. UNLOAD Files

Each file of a multiple-file tape volume must be identified with the correct ddname
and label specification in the CMS FILEDEF command issued for it. Tape rewind

68 DBS Utility

processing is controlled by FILEDEF command specifications and performed by
CMS OS/QSAM.

Specify VBS Record Format in the UNLOAD FILEDEFs

Always specify a record format (RECFM) of variable-length blocked, spanned
(VBS) for UNLOAD processing. UNLOAD processing changes the record format
to variable-length, spanned (VS) if the system required logical record length is
greater than the specified block size (BLOCK) value minus 4.

A block size (BLOCK) greater than 8244 is recommended for tape output files
created by UNLOAD processing.

An example of a FILEDEF statement defining a tape output file is:

FILEDEF SAVE2 TAP1 (RECFM VBS BLOCK 8244

where SAVE2 is the ddname that you used in the UNLOAD command.

FILEDEFs Supporting UNLOAD Command Processing
The FILEDEF command defining the UNLOAD output data file can identify a CMS
file with 4 appended to the file mode letter (for example, A4) or a sequential tape
file supported by CMS OS/OSAM. Always specify a record format of VBS or a
block size value (or both) in the FILEDEF command defining the data file.

Note: The message ARI0868I identifies the file characteristics used in the
Database Services Utility's processing. If this message indicates
RECFM=VS for a tape output file, you can obtain significant performance
improvements by increasing the block size value specified in the FILEDEF
command that defines the ddname.

An example of a FILEDEF command defining a CMS file for UNLOAD processing
is:

FILEDEF DBSFILE DISK DBSFILE DATA A4 (RECFM VBS BLOCK 2ð48

where DBSFILE is the ddname used in your UNLOAD command, and DBSFILE
refers to the output file DBSFILE DATA A4.

For more information on FILEDEF parameters and options, see Appendix B,
“FILEDEF Command Syntax and Notes” on page 249.

 Chapter 3. Unloading Data with the Database Services Utility 69

70 DBS Utility

Chapter 4. Reloading Data with the Database Services Utility

The Database Services Utility RELOAD commands work in conjunction with the
UNLOAD commands. You can reload a dbspace or a table, and you can reload the
data into tables that already exist or create new tables as you reload. This chapter
explains how to use RELOAD DBSPACE and RELOAD TABLE and describes the
table information that is preserved after the data is reloaded.

Refer to the appropriate sections of the earlier chapters for details about invoking
the Database Services Utility and defining files.

 RELOAD Procedures

Reloading Data in System-Defined Format
The RELOAD commands, like their UNLOAD counterparts, do not support
user-defined data formats. System-defined format is the only option. You must use
the OUTFILE output of the UNLOAD DBSPACE or UNLOAD TABLE commands as
input to the RELOAD DBSPACE and RELOAD TABLE commands.

Note: You cannot use the RELOAD DBSPACE and RELOAD TABLE commands
on a non-DB2 Server for VM application server or if you are using the
DRDA protocol.

Assuming that you have output from UNLOAD processing, and you want to use it
as input to a DB2 Server for VSE & VM database, you must now decide whether to
use the RELOAD DBSPACE or the RELOAD TABLE command.

Note: Use the UNLOAD command, not the DATAUNLOAD command. The unit of
output of the DATAUNLOAD command is the table row whereas the
UNLOAD commands have the table as their unit of output.

RELOAD DBSPACE is usually associated with UNLOAD DBSPACE, and RELOAD
TABLE is associated with UNLOAD TABLE. In practice, this is the most frequent
pairing, but all four commands use identical data formatting. Sometimes changing
the object when you go from UNLOAD to RELOAD is appropriate. Briefly, the
objects that each command manipulates are:

� UNLOAD DBSPACE unloads an entire dbspace.
� UNLOAD TABLE unloads just one table.
� RELOAD DBSPACE reloads an entire dbspace.
� RELOAD TABLE reloads just one table.

You might want to use RELOAD DBSPACE with UNLOAD TABLE if you unload a
single table and want to reload it into a dbspace. If you do not want to specify
where the table goes in the dbspace, the RELOAD DBSPACE command achieves
the same result as the RELOAD TABLE command. RELOAD DBSPACE is even
more convenient because it has fewer parameters to specify.

You might want to use RELOAD TABLE with UNLOAD DBSPACE if you unload an
entire dbspace and want to reload just one of its tables into another dbspace.
Using the RELOAD DBSPACE command reloads the entire UNLOAD output file,
not just the desired table.

 Copyright IBM Corp. 1987, 1998 71

Processing Multiple Tables or Multiple Files

The Database Services Utility's RELOAD processing does not support the
concurrent loading of multiple tables. Sequential loading, however, is
supported, as long as the tables are in the same file.

During one invocation of the Database Services Utility, you can reload data
from a multiple-volume tape file or from a multiple-file tape volume.

In DB2 Server for VSE, to reload data from a multiple-file tape volume, you
must specify the correct file name and file sequence number on the TLBL
statement for each tape file. Because the Database Services Utility rewinds the
tape when each file is opened for input, this information is necessary to locate
the correct file on the tape.

RELOAD DBSPACE processing loads tables serially in the order that they appear
in the input file. Use the RELOAD DBSPACE command to supply four pieces of
information to the Database Services Utility:

� The name of the command
� The identity of the dbspace to be loaded
� The replacement method (NEW or PURGE) to use
� The identity of the data input file.

Figure 46 shows the command flow.

RELOAD DBSPACE NEW INFILE (HISTORY)

HISTORY

(DBSPACE)

(RESOURCES)

RESOURCES

EMPLOYEE ACTIVITY

EMP_ACT

Figure 46. Diagram of the RELOAD DBSPACE Command

This figure shows a RELOAD DBSPACE operation on the RESOURCES dbspace,
and the creation of new tables from the input file called HISTORY.

The RELOAD TABLE command is more precise than the RELOAD DBSPACE
command. RELOAD TABLE specifies that you want to reload only one table no
matter how many exist in the input file. In the RELOAD TABLE command, you give
the following five pieces of information to the Database Services Utility:

� The name of the command
� The identity of the target table to be loaded

72 DBS Utility

� The replacement method (NEW or PURGE) to use

– If NEW, the identity of the dbspace in which the table is to be created.

� Optionally, the identity of the source table being loaded
� The identity of the data input file.

Figure 47 shows the command flow.

(DBSPACE)

RELOAD TABLE (SMITH.DEPARTMENT)

SMITH.PERSONNEL

EMPLOYEE DEPARTMENT

PROJECT

SAVE

PURGE INTABLE (DEPARTMENT) INFILE (SAVE)

Figure 47. Diagram of the RELOAD TABLE Command

This figure shows a RELOAD TABLE operation on Smith's DEPARTMENT table,
which must be purged first. The SAVE file is used as input.

If the UPDATE STATISTICS setting is ON, the RELOAD command automatically
causes table statistics to be generated while the data is being reloaded.

 Indexing Notes

With the PURGE Parameter:

When a table is purged, the default clustering rules are used because all
indexes for the purged table are dropped.

With the NEW Parameter:

When a new table is created, the column definitions are identical to the
definitions of the table contained in the input file, except the keys and unique
constraints are not reproduced. The new table also does not have any indexes
defined for it. You must construct them yourself by issuing subsequent SQL
CREATE INDEX statements.

| With the NEW Parameter:

| When a new table is created, the field procedures are not reproduced. Thus,
| using the reload 'NEW' parameter is not recommended for tables with field
| procedures. To reload tables with field procedures, use the 'PURGE' parameter.

When reloading a dbspace or a table, you must either create new tables for the
RELOAD input or purge old tables before reloading them. A particular table in the

 Chapter 4. Reloading Data with the Database Services Utility 73

input file replaces the like-named table in the target dbspace if the PURGE
parameter is specified, but it remains unloaded if the NEW parameter is in effect.
Similarly, under the NEW option, a particular table in the input file remains
unloaded when a like-named table with that name exists in any dbspace of the
entire database; if no table with that name exists, however, the Database Services
Utility creates a table into which the given input is loaded.

Referential Integrity and the RELOAD Commands

Referential integrity might affect the RELOAD commands. Specifically, if you
create an unloaded file when there is no primary key, and there is a primary key
on the target table at the time of RELOAD PURGE, the primary key becomes
active after the RELOAD PURGE operation. If you do not want the primary key
active, you must drop the primary key manually by using the ALTER TABLE
statement.

If the table being reloaded has an active primary key, the Database Services Utility
records this fact and issues an ALTER TABLE table-name DEACTIVATE PRIMARY
KEY command. The Database Services Utility also saves the active foreign key
names, unique constraints, and their owner's name, before issuing an ALTER
TABLE table-name DEACTIVATE FOREIGN KEY or DEACTIVATE UNIQUE KEY
command. After the data has been loaded, the Database Services Utility reactivates
the keys.

For more information about referential integrity, see the DB2 Server for VM
Database Administration or the DB2 Server for VSE Database Administration
manual.

The Database Services Utility also preserves the tags for character and graphic
data (single byte, double byte, and mixed) that identify the data format, such as US
or Kanji. The tags are reloaded with the data when you use the RELOAD
command.

A user is allowed to use a DBSU module from one release to connect to a
database server containing a DBSU package at a different release. Specifically, in
an UNLOAD TABLE/DBSPACE and RELOAD TABLE/DBSPACE scenario, there
are 4 objects being used that may all be at different releases. For Data Capture, it
is only necessary to consider whether the R610 release of the object is being used
or a pre-R610 release is being used. Pre-R610 refers to currently supported
releases: R350 and R340. In the chart below, "Unload Module" refers to the release
of the DBSU module which the user is accessing when performing the unload
operation. This may not be the same as the release of the database server which
the user is connecting to. Similarly, "Reload Module" refers to the release of the
DBSU module which the user is accessing when performing the reload operation.
This may not be the same as the release of the database server which the user is
connecting to. "Unload P/S" refers to the release of the database server and the
release of the DBSU package contained in the database server in which the table
is being unloaded. Similarly, "Reload P/S" refers to the release of the database
server and the release of the DBSU package contained in the database server in
which the table is being reloaded. The release of the DBSU package must be equal
to the release of the database server where it is contained. Mixed releases are not
supported.

74 DBS Utility

In the most general case, a user can use a DBSU module at release A to unload a
table from a database server which is at release B. Then, the user can use a
DBSU module at release C to reload the table to another database server at
release D. The chart below can be used to determine whether the DATA
CAPTURE setting for the table will be restored.

Figure 48. DATA CAPTURE settings and DBSU RELOAD and UNLOAD

Unload P/S
Unload
Module Reload P/S

Reload
Module Comments

pre-R610 n/a n/a n/a Tables in a pre-R610 server do not contain
a Data Capture setting.

R610 pre-R610 n/a n/a The pre-R610 unload module does not
save the Data Capture setting so the
setting will not be restored on the reload.

R610 R610 pre-R610 n/a Data Capture setting will be saved in the
unload file but pre-R610 servers do not
allow a Data Capture setting for tables so
the setting will not be restored on the
reload.

R610 R610 R610 pre-R610 Data Capture setting will be saved in the
unload file but the pre-R610 reload module
does not restore the Data Capture setting
so the setting will not be restored on the
reload.

R610 R610 R610 R610 Data Capture setting will be saved in the
unload file and will be restored by the
reload module.

Using the PURGE Parameter
The PURGE keyword tells the Database Services Utility that the target table exists,
and that all rows must be deleted from it before RELOAD TABLE processing
begins. (If the target table does not exist, you receive an error message.) Of
course, the column definitions of the target table must be identical to those of the
source table.

The Database Services Utility, as part of PURGE processing, drops the clustering
index, deactivates any active primary keys, active foreign keys, and active unique
keys, and deletes all indexes on the target table before deleting and reloading the
data. Therefore, you must have DBA authority to do a RELOAD with the PURGE
option if the target table or any of its indexes are not yours. After all tables have
been reloaded, the Database Services Utility reactivates the clustering index,
primary key and unique keys, and re-creates the remaining indexes. It ensures that
the first index that was created for the table (as recorded at PURGE time) is also
the first index re-created. After all the tables are processed, the Database Services
Utility reactivates all the foreign keys that it deactivated. DB2 Server for VSE & VM
packages are invalidated because of table index deletions, but are automatically
preprocessed the next time someone attempts to execute the package.

The following example illustrates the PURGE parameter:

RELOAD DBSPACE (RESOURCES) PURGE INFILE(HISTORY)

PURGE tells the Database Services Utility to delete all the rows of the table before
loading the data. The table must, however, exist in the specified dbspace. Note

 Chapter 4. Reloading Data with the Database Services Utility 75

also that fully qualified table names are always used internally for RELOAD
DBSPACE. That is, if you unload JONES.EMP_ACT and use RELOAD DBSPACE
with a PURGE option, JONES.EMP_ACT is the only table affected by the reload.

Using the NEW Parameter
The specified dbspace must already exist before you can reload tables into it. The
NEW parameter causes the utility to create tables, not dbspaces. If you are using
UNLOAD and RELOAD processing to duplicate an existing dbspace (as for testing
application programs), first acquire an appropriate dbspace. The SQL ACQUIRE
DBSPACE statement is described in the DB2 Server for VSE & VM SQL
Reference. If the table you are reloading does not replace a table already in the
dbspace, the Database Services Utility can create the target table for you. In the
following example, the source table EMPTABLE is not in the target dbspace:

RELOAD TABLE(EMPTABLE) NEW(PRODUCTION)
 INTABLE(EMPLOYEE)
 INFILE(SAVE)

The NEW parameter in the above command tells the Database Services Utility that
the table (EMPTABLE) to be loaded does not exist and must be created. It also
identifies the dbspace (PRODUCTION) where you want the table created. The
Database Services Utility creates the EMPTABLE, finds the EMPLOYEE table on
the input file (SAVE), and loads the data. The new table is created in a private
dbspace, PRODUCTION, that the current user owns. If the current user does not
own a private dbspace with the specified name, the table is created in a public
dbspace with this name. If you want to have the new table created in a particular
dbspace, specify:

NEW (dbspace-name)

where dbspace-name is the name of the dbspace.

In another example, suppose that user ID BOB is the current Database Services
Utility user. BOB issues this command:

RELOAD DBSPACE (RESOURCES) NEW INFILE(HISTORY)

Suppose, also, that one of the tables in the HISTORY file is called
BOB.EMPLOYEE. If BOB already owns a table called BOB.EMPLOYEE in any
other dbspace, the table cannot be created and loaded in the RESOURCES
dbspace. The user ID concatenated to the table name uniquely identifies a table
within the database. Thus, if BOB.EMPLOYEE already exists, it is impossible for
the utility to create another BOB.EMPLOYEE anywhere else in the database.

Using the RELOAD DBSPACE Command

Percent Free Space
During RELOAD processing, the current percent free value for the dbspace being
loaded, or for the dbspace where the table being loaded resides, can be critical.
Before RELOAD processing begins, increase the percent free space value to
reserve free space for additional rows inserted after the RELOAD process is
completed. Immediately after RELOAD processing is completed, reduce the percent
free value to allow the reserved free space to be used for the new rows. Refer to
the DB2 Server for VSE Database Administration or the DB2 Server for VM

76 DBS Utility

Database Administration for more information on the dbspace percent free
specification.

Reloading Several Tables into a Dbspace Where They Are
Already Defined
To reload multiple tables into a dbspace where they already exist, proceed as
follows in VSE:

1. Provide the following Database Services Utility command:

RELOAD DBSPACE (dbspace-name)

where dbspace-name is the name of the dbspace.

2. On the same record as the RELOAD DBSPACE command, leave one space
and put the replacement method for existing tables:

PURGE

3. Also on the same record, leave one space and put:

INFILE(ddname)

where ddname identifies the input file. Use the same ddname in a TLBL or
DLBL statement, depending on whether the data is stored on tape or in a
DASD file.

4. Submit the job to run.

To reload multiple tables into a dbspace where they already exist, proceed as
follows in VM:

1. Issue the SQLINIT command to initialize the user machine. If you have already
done this, proceed to Step 2.

2. Create a control file to contain the command you construct in the following
steps. See “Working with a Control File in DB2 Server for VM” on page 13 for
detailed information on creating a control file.

3. Enter the command and dbspace name. Type:

RELOAD DBSPACE (dbspace-name)

where dbspace-name is the name of the dbspace.

4. On the same line as the RELOAD DBSPACE command, enter the replacement
method for existing tables. Leave one space; then type:

PURGE

5. On the same line, leave one space; then type:

INFILE(ddname)

where ddname identifies the input data file. You need to use the same ddname
when you specify the FILEDEF statement for the input file.

6. Store the control file.

7. In CMS, specify the necessary FILEDEF statements. For general information
about FILEDEF statements, see “Using File Definitions” on page 14. For
command specific information, see “Using File Definitions with DB2 Server for
VM RELOAD DBSPACE and RELOAD TABLE Commands” on page 81.

8. Specify an SQLDBSU EXEC statement; if you did not specify FILEDEFs for the
control and message files, use the default values in the SQLDBSU EXEC. For

 Chapter 4. Reloading Data with the Database Services Utility 77

more information on the SQLDBSU EXEC, see “Using the SQLDBSU EXEC”
on page 15.

Reloading Several Tables into a Dbspace Where They Do Not
Exist
To reload multiple tables into a database where they do not exist, follow the
procedure given in “Reloading Several Tables into a Dbspace Where They Are
Already Defined” on page 77, but substitute NEW for PURGE. NEW indicates the
replacement method for new tables.

Loading a Single Table with the RELOAD DBSPACE Command
If you have just one table to load into a dbspace (that was unloaded with an
UNLOAD TABLE command), use the RELOAD DBSPACE command. Follow the
procedure in “Reloading Several Tables into a Dbspace Where They Are Already
Defined” on page 77, and use the appropriate replacement method (PURGE or
NEW) for the table to be loaded.

Note: If your input file contains multiple tables but you do not want to reload all of
them, use the RELOAD TABLE command.

Using the RELOAD TABLE Command
The reason for using the RELOAD TABLE command rather than the RELOAD
DBSPACE command is to reload one particular table into a dbspace. The
RELOAD DBSPACE command loads an entire input file of table data into a
dbspace (subject to the constraints imposed by the NEW or PURGE parameters).
Although RELOAD processing follows the input order of the data, UNLOAD output
is unpredictable: you have no way of knowing the sequence of tables in the
UNLOAD DBSPACE output file. In general, if you use output from an UNLOAD
DBSPACE as input to RELOAD TABLE processing (meaning that you want to
reload a specific table), use the INTABLE parameter with the RELOAD TABLE
command.

Reloading a Single Table into a Dbspace Where It Is Already
Defined
To reload a single table into a dbspace where it already exists, proceed as follows
in VSE:

1. Provide the following Database Services Utility command:

RELOAD TABLE (table-name)

where table-name is the name of the table.

2. On the same record as the RELOAD TABLE command, leave one space and
put:

PURGE

3. Also on the same record, leave one space and put:

INFILE (ddname)

where ddname identifies the input file. Use the same ddname in a TLBL or
DLBL statement, depending on whether the data is stored on tape or in a
DASD file.

4. Submit the job to run.

78 DBS Utility

To reload a single table into a dbspace where it already exists, proceed as follows
in VM:

1. Issue the SQLINIT command to initialize the user machine to the application
server where the data is to be reloaded. If you have already done this, proceed
to Step 2.

2. Create a control file to contain the command you construct in the following
steps. See “Working with a Control File in DB2 Server for VM” on page 13 for
detailed information on creating a control file.

3. Enter the command and table name. Type:

RELOAD TABLE (table-name)

where table-name is the name of the table.

4. On the same line as the RELOAD TABLE command, enter the replacement
method for existing tables. Leave one space; then type:

PURGE

5. On the same line, leave one space; then type:

INFILE(ddname)

where ddname identifies the input data file. You need to use the same ddname
when you specify the FILEDEF statement for the input file.

6. Store the control file.

7. In CMS, specify the necessary FILEDEF statements. When you specify the
FILEDEF statement for the input data file, use the same ddname you assigned
to the INFILE in this procedure. For general information about FILEDEF
statements, see “Using File Definitions” on page 14. For command specific
information, see “Using File Definitions with DB2 Server for VM RELOAD
DBSPACE and RELOAD TABLE Commands” on page 81.

8. Specify an SQLDBSU EXEC statement; if you did not specify FILEDEFs for the
control and message files, use the default values in the SQLDBSU EXEC. For
more information on the SQLDBSU EXEC, see “Using the SQLDBSU EXEC”
on page 15.

Nonrecoverable Storage Pools

Before RELOAD PURGE table insert processing begins, the message:

ARI899ðI The table table-name is in a
nonrecoverable storage pool.

is written if one of the tables you are reloading is found in a nonrecoverable
storage pool. This message indicates that changes made to this table by the
RELOAD command are not deleted by a ROLLBACK statement if an error
occurs.

 Reloading Views
You can also reload views if the view meets the restrictions defined under the
RELOAD TABLE command description (see “RELOAD TABLE” on page 198). Use
the PURGE parameter to reload a view that was previously unloaded. Using
PURGE makes use of an existing view definition and does not violate the rule that
a view is a virtual table. The only difference between reloading a table and
reloading a view is that statistics are not collected for a view.

 Chapter 4. Reloading Data with the Database Services Utility 79

Reloading a Single Table into a Dbspace Where It Does Not Exist
To reload a single table into a dbspace where it is not defined, follow the procedure
in “Reloading a Single Table into a Dbspace Where It Is Already Defined” on
page 78, but use the following replacement method instead of PURGE:

NEW (dbspace)

where dbspace is the name of the dbspace where you want to create a new table.

Reloading a Specific Table from a Multitable Input Source
The multitable input source referred to in this section is the output file from an
UNLOAD DBSPACE command. If you do regular backups of a dbspace, and the
data in one table is lost or modified incorrectly, reload the one table with the
RELOAD TABLE command. Use the procedure in “Reloading a Single Table into a
Dbspace Where It Is Already Defined” on page 78, but with the following
differences:

� Use the appropriate replacement method, NEW or PURGE.

� After providing the replacement method, leave one space, and then put:

INTABLE(table)

where table is the name of the source table.

� Leave one space and put:

INFILE (ddname)

where ddname identifies the input data file.

If you are reloading DB2 Server for VSE data from magnetic tape, identify each file
of a multiple-file tape volume with the correct file name and file sequence number
on the TLBL statement for each tape file. Because the Database Services Utility
rewinds the tape when each file is opened for input, this information is necessary to
locate the correct file on the tape.

Notification of Records Reloaded

If you are reloading more than 15,000 data records, messages (ARI8995I) are
written to your terminal after every 15,000 records to inform you that a multiple
of 15,000 records has been loaded.

Suppose that a dbspace was unloaded and the dbspace contained two tables
named EMPLOYEE. One of these EMPLOYEE tables was originally created by
SCOTT, the other by MIKE. If you want to reload the EMPLOYEE table that was
created by SCOTT, you should identify the table by prefixing the table name
EMPLOYEE with the owner SCOTT in the INTABLE parameter:

RELOAD TABLE(EMPTABLE) NEW(PRODUCTION)
 INTABLE(SCOTT.EMPLOYEE)
 INFILE(SAVE)

If you do not, the Database Services Utility reloads the data of the first table it finds
in the input file that has the same name. If you omit the INTABLE parameter
completely, the utility uses the data of the first table it finds in the input file,
regardless of the table name and owner.

80 DBS Utility

Using File Definitions with DB2 Server for VM RELOAD DBSPACE and
RELOAD TABLE Commands

RELOAD processing requires a control file and a data file for input, and a message
file for output.

Use the Same File Definition for RELOAD As for UNLOAD

CMS FILEDEF command information for RELOAD command processing should
be identical to the information in the FILEDEF command you used when
UNLOAD command processing created the file.

Figure 49 shows the relationship of the RELOAD files and the appropriate definition
facility (FILEDEF or SQLDBSU) for each.

┌────────────────┐ ┌────────────────┐
│Control File │ │ Output │
│ Input │ │Message File │
│(Use the SQLDBSU├─────┐ ┌──5│(Use the SQLDBSU│
│EXEC) │ │ │ │EXEC) │
└────────────────┘ │ │ └────────────────┘
 │ ┌───────────────────┐ │
 └───5│ │ │

│ RELOAD Processing ├──┘
 ┌───5│ │
┌────────────────┐ │ └───────────────────┘
│ Input │ │
│ Data File │ │
│ (Use a FILEDEF ├─────┘
│ Command) │
└────────────────┘

Figure 49. RELOAD DBSPACE and RELOAD TABLE Files

The default record format for RELOAD processing is variable-length blocked
spanned (VBS). If you specify a RECFM value other than VBS or a LRECL value
with the CMS FILEDEF command, it is ignored and overridden. The message
ARI0868I identifies the file characteristics used by Database Services Utility
processing. A maximum length of BLKSIZE−4 is used for the spanned record
segments.

Isolation Level for RELOAD Operations

Set the isolation level to repeatable read when you reload data to ensure a
consistent state of the database during backup or migration.

Identify each file of a multiple-file tape volume with the ddname and label
specifications in the CMS FILEDEF command that you issue for each tape file. The
Database Services Utility does not perform any tape rewind processing. Tape
rewind processing is controlled by FILEDEF command specifications and performed
by CMS OS/QSAM.

Use the UNLOAD and RELOAD commands (RELOAD with the PURGE option) to
reorder the data records to match the indexes. Use the FILEDEF to specify a DISK

 Chapter 4. Reloading Data with the Database Services Utility 81

file for quick and easy unloading and reloading. This reordering improves the
efficiency of queries performed on your tables.

FILEDEFs Supporting RELOAD Command Processing
The FILEDEF command defining the Database Services Utility RELOAD output
data file identifies a CMS file with 4 appended to the file mode letter (for example,
A4) or a sequential tape file supported by CMS OS/QSAM. Always specify a record
format of VBS or a block size value (or both) in the FILEDEF command defining the
data file.

A sample of a FILEDEF command defining a CMS file for RELOAD processing is:

FILEDEF DBSFILE DISK DBSFILE DATA A4 (RECFM VBS BLOCK 2ð48

where DBSFILE is the ddname used in your RELOAD command and DBSFILE
DATA A4 is the name of the input file.

For more information on FILEDEF parameters and options, see Appendix B,
“FILEDEF Command Syntax and Notes” on page 249.

 Statistics Collection
If SET UPDATE STATISTICS is on, table statistics are automatically generated
while the data is reloading. This method of creating statistics avoids a dbspace
scan and a separate scan of the index pages, which occurs when an UPDATE
STATISTICS statement is issued. If SET UPDATE STATISTICS is off, the statistics
are not updated.

Note: Consider using SET UPDATE STATISTICS ON for all RELOAD processing
to update the table statistics while the data is reloading.

82 DBS Utility

Chapter 5. Unloading and Reloading Packages with the
Database Services Utility

This chapter explains how to use the UNLOAD and RELOAD PACKAGE
commands to distribute packages to connected application servers that use the
Database Services Utility. The two commands work together to transport a package
from one application server to another. When the package is reloaded, you have a
choice of purging the old package or creating a new one in the database. Finally,
the owner of the package has to authorize the people who will use the package.

Refer to the appropriate sections of the earlier chapters for details about invoking
the Database Services Utility and defining files.

 Package Procedures
This section describes SQL preprocessing the PACKAGE commands.

 Preprocessing
SQL statements in an application program are preprocessed (that is, analyzed and
converted) by the system before the program is compiled (or assembled).

DB2 Server for VSE & VM preprocessors do the following:

� Generate a modified version of the source code

� Convert SQL statements into a package and save the package in the
application server

� Verify that the current user has authority to access the data and, if so, grant the
user the privilege to use the package generated

� Update the database catalogs.

The preprocessor action is shown graphically below.

 Copyright IBM Corp. 1987, 1998 83

┌───────────────┐ ┌────────────────┐ ┌─────────────────┐
│Host language │ │Preprocessor │ │ Updates to the │
│source code ├────────>│routine for the ├───────>│ catalog in the │
│with embedded │ │host language │ │ SQL application │
│SQL statements │ │ ├───┐ │ server │
└───────────────┘ └───────┬────────┘ │ └─────────────────┘
 │ │
 │ │
 │ │
 V │
 ┌──────────────────┐ │ ┌────────────────┐

│Host language │ │ │Package in the │
│source code with │ └────>│database manager |

 │package │ │application │
│calls (in place of│<──────┤server │
│the embedded SQL) │ │ │

 └───────┬──────────┘ └────────────────┘
 │
 │
 │
 V
 ┌──────────────────┐ ┌────────────────┐
 │Normal compilation│ │Executable │

│(or assembly) for │ │code of the │
│the host language ├──────>│application │

 │ │ │ │
 └──────────────────┘ └────────────────┘

Figure 50. Preprocessing

A package contains code for the SQL statements used in the program. The access
path is based on available data statistics and applicable table indexes.

A package is available when its program needs it; moreover, because it is stored in
a database, a package is monitored by database manager security mechanisms
and change-management facilities.

You must preprocess an application program that switches between application
servers on every application server that it accesses. To avoid distributing the
program source code and preprocessing it on multiple systems, distribute packages
to the connected (local or remote) application servers using the Database Services
Utility.

To prevent you from unintentionally running an updated program against an old
package, when you preprocess the package, a consistency token is generated and
stored in both the program and the package. If the SQL request is to succeed when
you run the program, the consistency token, which is based on a timestamp, must
match the one in the package.

Each time that you preprocess a program, a consistency token is generated. You
can choose to generate a blank consistency token. If you are running the program
against multiple application servers, the package for that program, which is stored
in all the application servers, must have the same consistency token as the
program. If the consistency tokens do not match, the program cannot be run on the

84 DBS Utility

application server, or an error may occur. To ensure that the consistency tokens
match, preprocess the program once in a DB2 Server for VSE & VM environment
and distribute the package to other application servers using the UNLOAD
PACKAGE command and the RELOAD PACKAGE command.

The PROGRAM command is a synonym for PACKAGE. The RELOAD or UNLOAD
PROGRAM, and RELOAD or UNLOAD PACKAGE are therefore equivalent
commands.

The UNLOAD PACKAGE and RELOAD PACKAGE commands are complementary:
UNLOAD PACKAGE copies a package to a sequential file and RELOAD
PACKAGE reads the package back into an application server.

To ensure that only authorized users manipulate packages in the database, only
owners of programs and database administrators are entitled to unload or reload
packages.

Keep Interconnected Databases at the Same Level

If you move a package between application servers at different release levels,
and a facility of the database manager used by the reloaded package is not
available on the new application server, an error occurs. The error occurs when
the unloaded package is dynamically preprocessed again during the RELOAD.

When RELOAD processing is completed, the system updates the TIMESTAMP
column of the SYSACCESS catalog table to the date and time of the RELOAD.

Using the UNLOAD PACKAGE Command
The UNLOAD PACKAGE command generates output records that contain:

 � Preprocessing information
� Each SQL statement used in the associated program
� Information about its corresponding host variables.

In using the UNLOAD PACKAGE command, you must be either the owner of the
program whose package you are unloading or a database administrator. Supply the
following information to the Database Services Utility:

� Name of the command
� Identity of the package to be unloaded
� Optionally, the name of the application server containing the package
� Identity of the output file.

Note: The UNLOAD PACKAGE command is not supported on a non-DB2 Server
for VM application server or if you are using DRDA protocol.

Unloading a Package
Your system must have database switching capability to access other application
servers.

To unload a package for backup or to transfer to another application server,
proceed as follows in VSE:

1. Provide the following Database Services Utility command:

 Chapter 5. Unloading and Reloading Packages with the Database Services Utility 85

UNLOAD PACKAGE (owner.package-name)

where owner is the name of the owner of the associated package, and
package-name is the name of the package. If you omit owner, the database
manager uses your user ID but still checks to ensure that you have the RUN
privilege for the named package.

2. If the package resides in an application server other than the one you are
accessing, leave one space and type:

FROM (server-name)

where server-name is the name of the other application server.

3. On the same record, leave one space and type:

OUTFILE (ddname)

where ddname identifies the sequential output file on tape. Use the same
ddname in a TLBL statement. If the output file is on DASD, specify
PDEV(DASD) after the ddname and use the same ddname in a DLBL
statement. Do not use SYSPCH as the ddname, because the output file
content may be invalid and may cause the RELOAD PACKAGE command to
fail.

4. Submit the job for processing.

An example of the UNLOAD PACKAGE command is:

UNLOAD PACKAGE(MARCY.PROG3) OUTFILE(PROGOUT3) FROM(server-name)

where PROG3 is the name of the package, MARCY is the owner, PROGOUT3 is
the output data file, and server-name is the name of the other application server.

To unload a package for backup or to transfer to another application server,
proceed as follows in VM:

1. Issue the SQLINIT command to initialize the user machine to the application
server where the package to be unloaded resides. If you have already done
this, proceed to Step 2.

2. Create a control file to contain the command you construct in the following
steps. See “Working with a Control File in DB2 Server for VM” on page 13 for
detailed information on creating a control file.

3. Enter the command and the package name. Type:

UNLOAD PACKAGE (owner.package-name)

where owner is the name of the owner of the associated package, and
package-name is the name of the package. If you omit owner, the system uses
your user ID but still checks to ensure that you have the RUN privilege for the
named package.

4. If the package resides in an application server other than the one you are
logged on to, leave one space and type:

FROM(server-name)

where server-name is the name of the other application server.

Note: The use of FROM always ignores any preceding CONNECT operations
and uses the VM user ID as a default. In some situations, the user ID
received at the target application server is different from your VM user

86 DBS Utility

ID. For example, an entry in the COMDIR might change the user ID, or
the target system might change it. If you find this procedure
unacceptable, issue the explicit CONNECTs as required, and use the
UNLOAD command without the FROM parameter.

5. On the same line, leave one space and type:

OUTFILE(ddname)

where ddname identifies the output data file.

6. Store the control file.

7. In CMS, specify the necessary FILEDEF statements. When you specify the
FILEDEF statement for the output data file, use the same ddname you
assigned to the OUTFILE in this procedure. For general information about
FILEDEF statements, see “Using File Definitions” on page 14. For command
specific information, see “ Using File Definitions with DB2 Server for VM
UNLOAD and RELOAD PACKAGE Commands” on page 92.

8. Specify an SQLDBSU EXEC statement; if you did not specify FILEDEFs for the
control and message files, use the default values in the SQLDBSU EXEC. For
more information on the SQLDBSU EXEC, see “Using the SQLDBSU EXEC”
on page 15.

An example of the UNLOAD PACKAGE command is:

UNLOAD PACKAGE(MARCY.PROG3) FROM(PAYROLL) OUTFILE(PROGOUT3)

where PROG3 is the name of the package, MARCY is the owner, the package is in
the PAYROLL database, and the output data file is PROGOUT3.

Using the RELOAD PACKAGE Command
You can use RELOAD PACKAGE to reload a portable package to a DB2 Server for
VM application server or any non-DB2 Server for VM application server that uses
the DRDA protocol.

The following table shows the different package migration scenarios:

 Chapter 5. Unloading and Reloading Packages with the Database Services Utility 87

Figure 51. Different Reload Package Scenarios

Unloaded
From

Application
Server

Release

Unloaded
Using DBSU

Release

Reloading
Using DBSU

Release

Reloading To

Application
Server

Release
Using

Protocol Result

2.2 2.2, 3.1 or later 2.2, 3.1 or later 2.2, 3.1 or later SQLDS No Error

3.1 or later 2.2, 3.1 or later 2.2, 3.1 or later 2.2 SQLDS Error

3.1 or later 2.2 2.2 3.1 or later SQLDS No Error

3.1 or later 2.2 3.1 or later 3.1 or later SQLDS Error

3.1 or later 3.1 or later 2.2,3.1 or later 3.1 or later SQLDS No Error

3.1 or later 3.1 or later 3.1 or later 3.1 or later SQLDS No Error

2.2 2.2,3.1 or later 3.3 or later 3.3 or later DRDA Error

2.2 2.2,3.1 or later 3.3 or later Non DB2 for
VM

DRDA Error

3.1 or later 2.2 3.3 or later 3.3 or later DRDA Error

3.1 or later 2.2 3.3 or later Non DB2 for
VM

DRDA Error

3.1 or later 3.1 or later 3.3 or later 3.3 or later DRDA No Error

3.1 or later 3.1 or later 3.3 or later Non DB2 for
VM

DRDA No Error

2.2, 3.1 or later 2.2, 3.1 or later 3.3 or later 2.2, 3.1 or 3.2 DRDA Error

Notes:

1. You cannot reload a portable package created under SQL/DS Version 2
Release 2 using the DRDA protocol because it does not have the necessary
information required for RELOAD PACKAGE command processing using DRDA
flow.

2. Backward migration is also not possible; that is, you cannot reload DB2 Server
for VM Version 6 Release 1 or later portable package with SQL/DS Version 2
Release 2.

3. Modifiable packages created using Extended dynamic statements cannot be
reloaded using DRDA protocol.

4. FORTRAN, and any other packages created using Extended dynamic
statements that were originally preprocessed using SQLDS protocol, cannot be
reloaded using DRDA protocol.

5. FORTRAN, and any other packages created using Extended dynamic
statements that were originally preprocessed using DRDA protocol, cannot be
reloaded using SQLDS protocol.

In using the RELOAD PACKAGE command, you must be either the owner of the
program whose package you are trying to reload or a database administrator. DB2
Server for VSE & VM authorization checking grants the owner the RUN privilege
after the following information is supplied to the Database Services Utility:

� The name of the command

� The identity of the package to be reloaded

88 DBS Utility

� The replacement method (NEW or REPLACE) to use

– If REPLACE, the disposition of previous package user privileges (KEEP or
REVOKE)

� Optionally, in VSE only, the identity of additional application servers where the
package is to be reloaded

� The identity of the input file.

Reloading a Package into an Application Server in Which Its
Application Does Not Exist
To reload a package ported from another application server or from backup,
proceed as follows for VSE:

1. Provide the following Database Services Utility command:

RELOAD PACKAGE (ownerpackage-name)

where owner is the name of the owner of the associated package, and
package-name is the name of the package. If you omit owner, the database
manager uses your user ID but still checks to ensure that you have the RUN
privilege for the named package.

2. Specify the replacement method. Because the application associated with the
package to be loaded does not exist for the application server (or application
servers) being loaded, leave one space, and type:

NEW

3. On the same record, enter the names of any additional application servers onto
which the package is to be reloaded. Leave one space and put:

TO (server-name)

where server-name is the name of the other application server. If the package
is to be reloaded onto several application servers, leave one space, then type:

TO (application server1,application server2,application server3...)

4. On the same record, identify the input file. Leave one space, and type:

INFILE (ddname)

where ddname identifies the sequential input file on tape. Use the same
ddname in a TLBL statement. If the input file is on DASD, specify PDEV(DASD)
after the ddname and use the same ddname in a DLBL statement.

5. Submit the job to run.

An example of the RELOAD PACKAGE command is:

RELOAD PACKAGE(MARCY.PROG3) NEW INFILE(PROGOUT3) TO(server-name)

where PROG3 is the name of the package, MARCY is the owner, and server-name
is the name of the other application server. The input data file PROGOUT3 is on
tape.

To reload a package ported from another application server or from backup,
proceed as follows for VM:

1. Issue the SQLINIT command to initialize the user machine to the application
server where the package is to be reloaded. If you have already done this,
proceed to Step 2.

 Chapter 5. Unloading and Reloading Packages with the Database Services Utility 89

2. Create a control file to contain the command you construct in the following
steps. See “Working with a Control File in DB2 Server for VM” on page 13 for
detailed information on creating a control file.

3. Enter the command and package name. Type:

RELOAD PACKAGE (owner.package-name)

where owner is the name of the owner of the associated package, and
package-name is the name of the package. If you omit owner, the database
manager uses your user ID as the owner.

4. Indicate that you are loading a new package since the application associated
with the package does not exist on the application server (or application
servers) being loaded, by leaving one space and typing:

NEW

5. On the same line, enter the names of any additional application servers to be
reloaded. Leave one space; then type:

TO(server-name)

where server-name is the name of the other application server. If several
application servers are to be reloaded, leave one space; then type:

TO(application server1,application server2,application server3...)

Notes:

a. Your system must have database switching capability to access other
application servers.

b. The use of TO means that any preceding CONNECT operations are not
used, and TO uses the VM user ID as a default. In some situations, the
user ID received at the target database is different from your VM user ID.
For example, an entry in the COMDIR may change the user ID, or the
target system may change it. If you do not want to use the TO clause
procedure, issue the explicit CONNECT command as required, and use the
RELOAD command without a TO clause. If the TO clause is not specified,
the package is reloaded onto the currently connected application server
only.

6. On the same line, enter the identity of the input file. Leave one space; then
type:

INFILE(ddname)

where ddname identifies the input data file.

7. Store the control file.

8. In CMS, specify the necessary FILEDEF statements. When you specify the
FILEDEF statement for the input data file, use the same ddname you assigned
to the INFILE in this procedure. For general information about FILEDEF
statements, see “Using File Definitions” on page 14. For command specific
information, see “ Using File Definitions with DB2 Server for VM UNLOAD and
RELOAD PACKAGE Commands” on page 92.

9. Specify an SQLDBSU EXEC statement; if you did not specify FILEDEFs for the
control and message files, use the default values in the SQLDBSU EXEC. For
more information on the SQLDBSU EXEC, see “Using the SQLDBSU EXEC”
on page 15.

90 DBS Utility

An example of the RELOAD PACKAGE command is:

RELOAD PACKAGE(MARCY.PROG3) NEW TO(HOLIDAY) INFILE(PROGOUT3)

where PROG3 is the name of the package, and MARCY is the owner. The package
is created in the HOLIDAY database and the input data file is PROGOUT3.

Reloading a Package into an Application Server to Update an Existing
Application: Your system must have the capability to switch to other application
servers.

To reload a package into an application server where a package with the same
name already exists, proceed as in “Reloading a Package into an Application
Server in Which Its Application Does Not Exist” on page 89, but type:

REPLACE

or

REPLACE REVOKE

where REPLACE indicates that the existing package is to be replaced by the input
package with previous user privileges intact, and REPLACE REVOKE indicates that
the existing package is to be replaced by the input package with previous user
privileges revoked. An example of the RELOAD PACKAGE command is:

RELOAD PACKAGE(MARCY.PROG3) REPLACE REVOKE TO(PAYROLL) INFILE(PROGOUT3)

where PROG3 is the name of the package, and MARCY is the owner. The package
exists in the PAYROLL database; therefore, you use REPLACE to replace it and
REVOKE to revoke user privileges on the package. The input data file is
PROGOUT3.

Authorizing the Use of Packages
When a package is reloaded, the owner of the package is assigned the appropriate
run privilege. If NEW or REPLACE REVOKE is one of the RELOAD parameters,
the only privilege for the package is the owner's run privilege. The user ID for the
owner of the reloaded package must exist so that the necessary privileges can be
granted. A user with DBA authority can reload a package without being the owner
and can grant the RUN privileges to other users. For more information on package
privileges, see the DB2 Server for VSE Application Programming or the DB2 Server
for VM Application Programming manuals.

Errors with RELOAD

The Database Services Utility SET ERRORMODE CONTINUE command can
be used with the RELOAD PACKAGE command. If an error occurs during
reloading of the package on an application server, RELOAD processing ends on
that application server. RELOAD processing then continues on subsequent
application servers listed in the TO clause if ERRORMODE CONTINUE
processing is in effect and the error is not severe.

 Chapter 5. Unloading and Reloading Packages with the Database Services Utility 91

Example of Authorizing the Use of Packages

Gene writes an application program GENE.TTIME to display each employee's
working hours to date. The table containing this information is HOURS.TOTAL.
This program is to be distributed to all the offices and installed by a user with
DBA authority at each site.

When the DBA reloads this new package, only the owner (GENE) possesses
the RUN privilege. This privilege is granted during the RELOAD. The user ID
GENE must exist for the DBA to be able to grant the RUN privilege for the
package GENE.TTIME. GENE must also have the necessary table privileges to
run the package successfully.

Preprocessing and Distributing an Application
To preprocess and distribute the SQL application created by Gene in the above
example, the company proceeds as follows:

1. The person with the user ID HOURS grants the SELECT privilege on
HOURS.TOTAL to user ID GENE.

2. Gene creates the application program TTIME.

3. Gene unloads the package TTIME.

Setting Up to Run an Application
To set up and run the application described in “Preprocessing and Distributing an
Application,” the company proceeds as follows:

1. Tom, a DBA, grants the CONNECT privilege to user ID GENE.

2. Tom connects as HOURS.

3. Tom (connected as HOURS) grants the SELECT privilege on HOURS.TOTAL
to user ID GENE.

4. Tom connects as GENE.

5. Tom (connected as GENE) reloads the package GENE.TTIME.

6. Tom (connected as GENE) grants the RUN privilege on GENE.TTIME to
USERA, USERB, and USERC.

7. USERA, USERB, and USERC can now run the package GENE.TTIME to
display each employee's total working hours to date.

Using File Definitions with DB2 Server for VM UNLOAD and RELOAD
PACKAGE Commands

Use the Same File Definition for RELOAD as for UNLOAD

CMS FILEDEF command information for package RELOAD processing should
be identical to the information in the FILEDEF command used when the file was
created by the package's UNLOAD command processing.

Figure 52 on page 93 shows the relationship of the load-program files and the
appropriate definition facility (FILEDEF or SQLDBSU) for each.

92 DBS Utility

┌────────────────┐ ┌───────────┐ ┌───────────────────┐
│Control File │ │UNLOAD │ │Output "Data" File │
│ Input │ │Processing │ │(Use a FILEDEF │
│(Use the SQLDBSU├──>│ ├────────>│Command) │
│EXEC) │ │ ├────┐ │ │
└────────────────┘ └───────────┘ │ └───────────────────┘
 │
 │
 │ ┌───────────────────┐

│ │Message File Output│
│ │(Use the SQLDBSU │

 └───>│EXEC) │
 │ │
 └───────────────────┘

┌────────────────┐ ┌───────────┐ ┌───────────────────┐
│Control File │ │RELOAD │ │Message File Output│
│ Input │ │Processing │ │(Use the SQLDBSU │
│(use the SQLDBSU├──>│ ├────────>│EXEC) │
│EXEC) │ │ │ │ │
└────────────────┘ └───────────┘ └───────────────────┘
 ^
 │
┌──────────────┐ │
│Input "Data" │ │
│File ├────────┘
│(Use a FILEDEF│
│Command) │
└──────────────┘

Figure 52. File Definition Diagram—UNLOAD PACKAGE and RELOAD PACKAGE

FILEDEFs Supporting UNLOAD and RELOAD PACKAGE
CMS FILEDEF commands must be used to define the input or output data files
processed by these commands.

Except for the ddname, CMS FILEDEF command information for RELOAD
command processing should be identical to the information in the FILEDEF
command used when the file was created by the UNLOAD command processing.

If either a RECFM value other than FB or an LRECL value is specified by the CMS
FILEDEF command, the value is ignored and overridden.

A sample CMS FILEDEF command defining a CMS file for UNLOAD or RELOAD
command processing is:

FILEDEF DBSFILE DISK DBSFILE DATA A

For more information on FILEDEF parameters and options, see Appendix B,
“FILEDEF Command Syntax and Notes” on page 249.

 Chapter 5. Unloading and Reloading Packages with the Database Services Utility 93

94 DBS Utility

Chapter 6. Interpreting the Output of the Database Services
Utility

You can encounter two types of Database Services Utility output: the information
that the Database Services Utility feeds back to the report or message file, and the
data and control information that you unload for backup or eventual reloading. Most
often, you must understand the report output because it shows you what happened
during the Database Services Utility processing. This chapter describes report and
message file output.

This chapter builds on material presented in the foregoing chapters. Refer to the
appropriate sections of the earlier chapters for basic concepts and procedures.

Understanding the Report and Message File Output
The report is a log of Database Services Utility processing activity. You can use
JCL to assign the output to a variety of output devices: printer, tape, or disk.

The message file is a log of Database Services Utility processing activity. The
SQLDBSU EXEC or the CMS FILEDEF command can direct the message file to a
variety of output devices; you can display or print its contents in three distinct
forms.

Everything in a report or message file belongs in one of three categories:

 � Command input
 � System output
 � Data.

Command Input (DB2 Server for VSE & VM)
All parts of a set of commands, SQL or Database Services Utility, are considered
command input. Even the data embedded in a DATALOAD TABLE statement is
command input. Record for record or line for line, this type of output matches the
format of the (input) control file. A command-input record in the report starts with an
arrow (------>).

System Output (DB2 Server for VSE & VM)
Except when suppressed by a Database Services Utility control parameter in a
calling application program, all system messages, SQL and Database Services
Utility, are sent to either the report or message file. A system-output record or line
starts with a message identifier beginning with ARI.

Inclusion of Data in a Report (DB2 Server for VSE)
To include data in a report, use the LIST (YES) parameter in DATALOAD's INFILE
subcommand. You can identify data in the report by the absence of arrows
(------>) or message identifiers (ARI...). Figure 53 on page 96 shows a simulated
report printout.

 Copyright IBM Corp. 1987, 1998 95

Inclusion of Data in a Message File (DB2 Server for VM)
To include data in a message file, use the LIST (YES) parameter in DATALOAD's
INFILE subcommand. Through the SELECT statement, the Database Services
Utility allows a limited amount of system-user interaction. Do not use the utility as
an alternative to ISQL, but if you are in a Database Services Utility session, you
can enter SQL commands to query the database from your workstation (assigned
as control file) without leaving the utility. You can identify data in the message file
by the absence of arrows (------>) or message identifiers (ARI...). Figure 53
shows a simulated message-file printout.

┌──┐
│ ARIð8ð1I DBS Utility started: ð7/24/89 17:38:53. │
│ AUTOCOMMIT = OFF ERRORMODE = OFF │
│ ISOLATION LEVEL = REPEATABLE READ │
│ │
│ ------> CONNECT "TARA " IDENTIFIED BY \\\\\\\\; │
│ ARI8ðð4I User TARA connected to database SQLDBA. │
│ ARIð5ððI SQL processing was successful. │
│ ARIð5ð5I SQLCODE = ð SQLSTATE = ððððð ROWCOUNT = ð │
│ │
│ ------> ACQUIRE PRIVATE DBSPACE NAMED TARASPACE; │
│ ARIð5ððI SQL processing was successful. │
│ ARIð5ð5I SQLCODE = ð SQLSTATE = ððððð ROWCOUNT = ð │
│ │
│ ------> CREATE TABLE DEPARTMENT (DEPTNO CHAR(3) NOT NULL, │
│ ------> DEPTNAME VARCHAR(36) NOT NULL, │
│ ------> MGRNO CHAR(6) , │
│ ------> ADMRDEPT CHAR(3) NOT NULL, │
│ ------> PRIMARY KEY (DEPTNO)) IN TARASPACE; │
│ ARIð5ððI SQL processing was successful. │
│ ARIð5ð5I SQLCODE = ð SQLSTATE = ððððð ROWCOUNT = ð │
│ │
│ ------> DATALOAD TABLE (DEPARTMENT) │
│ ------> DEPTNO 1-3 │
│ ------> DEPTNAME 5-32 │
│ ------> MGRNO 34-39 NULL IF POS (34-39)=' ' │
│ ------> ADMRDEPT 41-43 │
│ ------> INFILE(\) │
│ ARIð852I DATALOAD TABLE processing started. │
│ ARI8981I Dynamic statistic accumulation was disallowed │
│ for table 'TARA'.'DEPARTMENT', │
│ reason code = ð1. │
│ ------> Aðð SPIFFY COMPUTER SERVICE DIV. ðððð1ð Aðð │
│ ------> Bð1 PLANNING ðððð2ð Aðð │
│ ------> Cð1 INFORMATION CENTER ðððð3ð Aðð │
│ ------> Dð1 DEVELOPMENT CENTER Aðð │
│ ------> Eð1 SUPPORT SERVICES ðððð5ð Aðð │
│ ------> D11 MANUFACTURING SYSTEMS ðððð6ð Dð1 │
│ ------> D21 ADMINISTRATION SYSTEMS ðððð7ð Dð1 │
│ ------> E11 OPERATIONS ðððð9ð Eðð │
│ ------> E21 SOFTWARE SUPPORT ððð1ðð Eðð │
│ ------> ENDDATA │
│ ARIð875I 9 row(s) loaded into table TARA.DEPARTMENT. │
│ ARI8996I ...Begin UPDATE STATISTICS for TARA.DEPARTMENT. │
│ ARIð855I DATALOAD processing successful. │
│ │
│ ------> SELECT \ FROM DEPARTMENT; │
│ │
└──┘

Figure 53. Sample Output

96 DBS Utility

In Figure 53, note that the arrows show command input. Each arrow corresponds
to either a record in the input control card file or a line in the control file. Note also
that the rest of the records or lines start with ARI, denoting messages.

Figure 54 illustrates the next part of the simulated report or message file printout.

┌──┐
│ SELECT \ FROM DEPARTMENT PAGE 1 │
│ │
│ DEPTNO DEPTNAME MGRNO ADMRDEPT │
│ ------ ------------------------------------ ------ -------- │
│ Aðð SPIFFY COMPUTER SERVICE DIV. ðððð1ð Aðð │
│ Bð1 PLANNING ðððð2ð Aðð │
│ Cð1 INFORMATION CENTER ðððð3ð Aðð │
│ Dð1 DEVELOPMENT CENTER Aðð │
│ Eð1 SUPPORT SERVICES ðððð5ð Aðð │
│ D11 MANUFACTURING SYSTEMS ðððð6ð Dð1 │
│ D21 ADMINISTRATION SYSTEMS ðððð7ð Dð1 │
│ E11 OPERATIONS ðððð9ð Eðð │
│ E21 SOFTWARE SUPPORT ððð1ðð Eðð │
│ │
│ ARIð85ðI SQL SELECT processing successful: Rowcount = 9 │
│ │
└──┘

Figure 54. Sample Output Containing Data

The output is formatted such that the data in columns and rows as a normal table.
Figure 54 is an example of the column (or tabular) form of output. No message- or
command-input designations appear at the start of data records. Figure 55 shows
the end of the simulated report printout.

┌──┐
│ ARIð8ð2I End of command file input │
│ ARI8997I ...Begin COMMIT processing. │
│ ARIð811I ...COMMIT of any database changes successful. |
│ ARIð8ð9I ...No error(s) occurred during command processing. │
│ ARIð8ð8I DBS processing completed: ð7/24/89/17:38:55. │
│ │
└──┘

Figure 55. Concluding Messages

Every Database Services Utility job ends with messages from the Database
Services Utility that summarize the errors, if any, that occurred and give the
completion timestamp, the system status, and a return code. For a complete listing
of messages, see the DB2 Server for VM Messages and Codes manual.

If either command-file input or query results data has record or line lengths too
wide for the page or screen, the Database Services Utility automatically switches to
a block-form presentation. Figure 56 on page 98 shows a simulated printout in
block form.

 Chapter 6. Interpreting the Output of the Database Services Utility 97

┌──┐
│ ARIð8ð1I DBS Utility started: 11/13/89 17:42:51 │
│ AUTOCOMMIT = OFF ERRORMODE = OFF │
│ ISOLATION LEVEL = REPEATABLE READ │
│ │
│ ------> COMMENT '\\\ │
│ ------> \\\ BLOCK FORMAT PRINTOUT EXAMPLE \\\ │
│ ------> \\\' │
│ │
│ ------> CONNECT "MIKE " IDENTIFIED BY \\\\\\\\; │
│ ARI8ðð4I User MIKE connected to database SQLDBA. │
│ ARIð5ððI SQL processing was successful. │
│ ARIð5ð5I SQLCODE= ð SQLSTATE = ððððð ROWCOUNT = ð │
│ │
│ ------> ALTER TABLE ACTIVITY ADD │
│ ------> "FULL DESCRIPTION" VARCHAR(25ð); │
│ ARIð5ððI SQL PROCESSING WAS SUCCESSFUL. │
│ ARIð5ð5I SQLCODE= ð SQLSTATE = ððððð ROWCOUNT = ð │
│ │
│ ------> UPDATE ACTIVITY SET "FULL DESCRIPTION" = 'A FULL DESCRIPTION │
│ ------> OF ACTIVITIES WOULD BE DISPLAYED HERE. THE DESCRIPTION COU │
│ ------> LD OVERFLOW TO THE NEXT DISPLAY LINE FOR THE COLUMN BECAUSE │
│ ------> THE COLUMN CAN CONTAIN UP TO 25ð DATA POSITIONS'; │
│ ARIð5ððI SQL processing was successful. │
│ ARIð5ð5I SQLCODE= ð SQLSTATE = ððððð ROWCOUNT = ð │
│ │
│ ------> SELECT \ FROM ACTIVITY WHERE ACTNO < 3ð │
│ SELECT \ FROM ACTIVITY WHERE ACTNO < 3ð PAGE 1 │
│ │
│ \\\\\ 1 \\\\\ │
│ ACTNO: 1ð ACTKWD: MANAGE ACTDESC: MANAGE/ADVISE │
│ FULL DESCRIPTION: A FULL DESCRIPTION OF ACTIVITIES WOULD BE DISPLAY │
│ ED HERE. THE DESCRIPTION COULD OVERFLOW TO THE N │
│ EXT DISPLAY LINE FOR THE COLUMN BECAUSE THE COLUM │
│ N CAN CONTAIN UP TO 25ð DATA POSITIONS │
│ │
│ \\\\\ 2 \\\\\ │
│ ACTNO: 2ð ACTKWD: ECOST ACTDESC: ESTIMATE COST │
│ FULL DESCRIPTION: A FULL DESCRIPTION OF ACTIVITIES WOULD BE DISPLAY │
│ ED HERE. THE DESCRIPTION COULD OVERFLOW TO THE N │
│ EXT DISPLAY LINE FOR THE COLUMN BECAUSE THE COLUM │
│ N CAN CONTAIN UP TO 25ð DATA POSITIONS │
│ │
│ ARIð85ðI SQL SELECT processing successful: Rowcount = 2 │
│ │
└──┘

Figure 56. Sample Printout of Block Output Format

As in a tabular format query result, the block format has a heading and page
number; from there on, however, differences appear. Each row of the query result
is presented in a separate block of lines preceded by a subheading that identifies
the number of the row in the answer set. Individual fields of a row are preceded by
their column names and are to be read from left to right, and top to bottom.

The list form of output is similar to block form. Figure 57 on page 99 shows an
example of the list output format.

98 DBS Utility

┌──┐
│ SELECT \ FROM DEPARTMENT PAGE 1 │
│ │
│ │
│ \\\ROW: 1 │
│ DEPTNO: Aðð │
│ DEPTNAME: SPIFFY COMPUTER SERVICES DIV. │
│ MGRNO: ðððð1ð │
│ ADMRDEPT: Aðð │
│ FULL DESCRIPTION: A FULL DESCRIPTION OF THE DEPARTMENT WOULD BE │
│ DISPLAYED HERE. THE DESCRIPTION COULD OVERFLOW TO │
│ THE NEXT DISPLAY LINE FOR THE COLUMN. │
│ │
└──┘

Figure 57. Sample Printout of List Output Format

The list output format resembles the block output format in that there is a heading
and page number. Each row of the query result is presented in a separate list of
records or lines preceded by a subheading that identifies the number of the row in
the answer set. Individual fields of a row are preceded by their column names and
are presented in separate records. The difference, however, is that with list output
format, the output for each selected row begins on a new page, and the column
name and data for each select-list column begins on a new output record or display
line.

You can specify the format used by the Database Services Utility for SQL SELECT
statement output by using either the SET FORMAT command or the FORMAT
control parameter. If you do not specify the format to be used, the Database
Services Utility uses column or block format as appropriate. For more information
on the SET FORMAT command, refer to “SET FORMAT” on page 217. For a
description of the control parameter FORMAT, see “Database Services Utility
Control Parameters” on page 116.

Using the LIST Parameter on a DATALOAD Command
The example in Figure 58 shows the output from a DATALOAD command that was
processed with the LIST(YES) option of the INFILE subcommand in effect.

 -------> DATALOAD TABLE (SQLDBA.ACTIVITY) IF POS(1)='Y'
 -------> ACTNO 2-11
 -------> ACTDESC 12-111 ┌─────────┐
 -------> INFILE (\ LIST(YES) CONTINUED(YES)) │Record 1.│
 ARIð852I DATALOAD PROCESSING STARTED. └──┬──────┘
N23456789ð1THE DATA IN THIS RECORD IS NOT LOADED INTO THE TABLE. %────────────────┘

 XY23456789ð2THIS DESCRIPTION OF AN ACTIVITY FILLS UP A WHOLE PHYSICAL INPUT %───┬─────────┐
RECORD AND CONTINUES. │Record 2.│

 XY23456789ð3THIS ACTIVITY DESCRIPTION DOES NOT FILL THE RECORD. %─────────────┐ └─────────┘
 %────────────────────────┐ │
 ------> ENDDATA ┌──┴───────────────┐ ┌─┴───────┐
ARIð875I 2 row(s) loaded into table SQLDBA.ACTIVITY. │This blank line │ │Record 3.│
ARIð855I DATALOAD processing successful. │contains positions│ └─────────┘

│8ð-111 of data │
 │record 3. │
 └──────────────────┘

Figure 58. Using YES in the LIST Parameter

 Chapter 6. Interpreting the Output of the Database Services Utility 99

With continued record processing, each field of the records must contain the
maximum number of characters. The second and third records' ACTDESC fields
are 100 characters in length because they are to be loaded (position 1 is Y). The
system does not check the length of the first record's ACTDESC field because this
record is not to be loaded (position 1 is N).

The example in Figure 59 shows output for a DATALOAD command that was
processed using the LIST(NO) option of the INFILE subcommand:

------> DATALOAD TABLE (SQLDBA.ACTIVITY) IF POS(1)='Y'
 ------> ACTNO 2-11
 ------> ACTDESC 12-111
------> INFILE (\ LIST(NO) CONTINUED(YES))
ARIð852I DATALOAD PROCESSING STARTED.

 ------> ENDDATA
ARIð875I 2 row(s) loaded into table SQLDBA.ACTIVITY.
ARIð855I DATALOAD processing successful.

Figure 59. Using NO in the LIST Parameter

Reading Report and Message-File Output in Error Recovery
Reading messages, command input, and data in output reports and message files
is an important task performed frequently by users of the Database Services Utility.

To read DB2 Server for VSE report output to recover from an error, proceed as
follows:

1. Check the messages at the end of the report to determine whether the utility
job ended without error. Message records begin with ARI.

2. If the job ran with errors, read all the messages, working backward from the
end until you reach the point of the (initial) error message. Note this spot in the
report so that you can easily return to it.

3. If data is included in the report, scan the query result to see how serious the
error is.

4. If you find the cause of the error, take corrective action and run the job again; if
you do not find the cause, inspect the command input for syntax errors.
Command-input lines begin with arrows (------>).

5. If the cause of the error is still unknown, determine whether it is a DB2 Server
for VSE error or a Database Services Utility error. Look up the error message
in the DB2 Server for VSE Messages and Codes manual and follow the
recommended recovery procedure, as applicable.

6. If the cause of the error appears to be related to the Database Services Utility,
review information in Chapter 9, “Error Handling and Debugging” on page 223,
and apply appropriate corrective action.

7. If the error persists, see your database administrator.

To read DB2 Server for VM message file output to recover from an error, proceed
as follows:

1. Print or display the message file to be read.

100 DBS Utility

2. Check the messages at the end of the file to determine whether the utility job
ended without error. Message lines begin with ARI.

3. If the job did not run without errors, read all the message lines, working
backward from the end until you reach the point of the (initial) error message.
Note this spot in the message file so that you can easily return to it.

4. If data is included in the message file, scan the query result to see how serious
the error is.

5. If you find the cause of the error, take corrective action and run the job again; if
you do not find the cause, inspect the command input for syntax errors.
Command-input lines begin with arrows (------>).

6. If the cause of the error is still unknown, determine whether it is a DB2 Server
for VM error or a Database Services Utility error. Look up the error message in
the DB2 Server for VM Messages and Codes, and follow the recommended
recovery procedure, as applicable.

7. If the cause of the error appears to be related to the Database Services Utility,
review information in Chapter 9, “Error Handling and Debugging” on page 223,
and apply appropriate corrective action.

8. If the error persists, see your database administrator.

 Chapter 6. Interpreting the Output of the Database Services Utility 101

102 DBS Utility

 Part 2. Reference

This part of the manual presents additional information on the calling and running of
the Database Services Utility. The material in this section is of primary interest to
database application programmers and system programmers; it includes the
following topics:

� Database Services Utility use from application programs
� Database Services Utility commands: reference
� Database Services Utility error handling and debugging
� Database Services Utility performance considerations.

For further reference material in the form of sample tables, see Appendix A,
Sample Tables. Refer to Appendix B, FILEDEF Command Syntax and Notes, for a
syntax diagram and usage notes about the CMS FILEDEF command.

 Copyright IBM Corp. 1987, 1998 103

104 DBS Utility

Chapter 7. Using the Database Services Utility from
Application Programs

This chapter describes the procedures required to initiate Database Services Utility
processing from application programs and how to use the Database Services Utility
application program interface. Rules for naming objects and lists of reserved words
are also provided.

In DB2 Server for VSE
The Database Services Utility is an application program; like any other program, it
must be preprocessed before you can run it. Usually, the utility is preprocessed
during database installation. At that time, the RUN privilege to use the utility is
granted to prospective users; you must possess the RUN privilege to use the utility.
Your system programmer can tell whether the Database Services Utility is properly
installed and whether you are authorized to use it.

The ddname parameter of a Database Services Utility command identifies an
EBCDIC, standard-label sequential data file needed by that command for input or
output. Magnetic tape with a fixed, unblocked record format and a logical record
length and block size of 2 048 bytes is used as a default for these sequential files.
(The record format required varies for each command.)

As indicated in the command descriptions, you can override the defaults and assign
files to a direct access storage device (DASD). A sequential file allocated to
magnetic tape can reside on any device supported by the VSE DTFMT macro; files
allocated to direct access storage can reside on any device supported by the VSE
DTFSD macro. An exception to this is VSAM managed SAM files, which do not
support spanned records. Spanned records are used by UNLOAD
TABLE/DBSPACE and RELOAD TABLE/DBSPACE processing and, in some
cases, by DATALOAD and DATAUNLOAD.

You can invoke the Database Services Utility in a VSE batch partition or in a
VSE/ICCF interactive partition. The Database Services Utility does not use VSE
dynamic device assignment. Logical units SYS004 and SYS005, respectively, must
be used for input and output files allocated to magnetic tape: SYS006 and SYS007,
respectively, must be used for input and output files allocated to direct access
storage. Under VSE, all magnetic tape files processed by the Database Services
Utility must be EBCDIC standard-label files, and only magnetic tape input files are
rewound.

Special consideration should be given to the database log when using the
Database Services Utility to load large amounts of data. The log must be large
enough to contain all the log data generated during DBS utility RELOAD
DBSPACE, RELOAD TABLE, or DATALOAD command processing. Log space
used as a result of Database Services Utility processing is not freed until an SQL
COMMIT or ROLLBACK is executed. If the log space is filled by Database Services
Utility processing, a Database Services Utility processing error occurs. Your system
programmer can tell whether there is enough log space to contain all the log data
generated during Database Services Utility command processing.

 Copyright IBM Corp. 1987, 1998 105

Single User Mode Job Control
A minimum 2000K byte virtual partition is recommended to execute the Database
Services Utility with single user mode. The sample VSE job control statements in
Figure 60 invoke the Database Services Utility in single user mode with DB2
Server for VSE & VM archive mode on:

.1/ // JOB DBSUTIL

.2/ // EXEC PROC=ARIS61PL
 // EXEC PROC=ARIS61DB
.3/ // TLBL file name,.......
.4/ // DLBL file name,.......
.5/ // ASSGN SYSðð4,.........
.6/ // ASSGN SYSðð5,.........
.7/ // ASSGN SYSðð6,.........
.8/ // ASSGN SYSðð7,.........
.9/ // EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,LOGMODE=A,PROGNAME=ARIDBS'
.1ð/....Database Services Utility control commands and optional user data
.11/ /\
.12/ /&

Figure 60. Single User Mode Job Control

Each job control statement is described below:

.1/JOB Statement

Identifies and initiates the job control.

.2/EXEC PROC=ARIS61PL and EXEC PROC=ARIS61DB

When the database manager is installed, your installations have the
option of generating a starter database as described in the DB2 Server
for VSE Installation. The procedure ARIS61PL contains the job control
statements that identify the DB2 Server for VSE & VM library. Procedure
ARIS61DB contains the job control statements that are required to
access the starter database. You must execute a different procedure to
access a different database. Alternatively, you can code the actual DB2
Server for VSE & VM database and library definition job control
statements in place of the EXECUTE PROCEDURE statements.

To determine the database and library definition statements required,
contact the person who installed the database or refer to the DB2
Server for VM Program Directory, which contains a description of the
starter database and library definition job control statements and
procedures.

.3/TLBL Statement

This job control statement is optional. It identifies a sequential (SAM)
magnetic tape file used for Database Services Utility input and/or output
data. The file can reside on any type of volume supported by the VSE
DTFMT macro.

Note: Tape files processed by the Database Services Utility under VSE
must be EBCDIC, standard-label files.

Any number of these commands (each having a unique file name) can
be included in the job control. Each file name defined is normally

106 DBS Utility

referenced by a ddname parameter in a Database Services Utility
command that is contained in the SYSIPT control command input. Input
magnetic tapes are rewound by Database Services Utility OPEN
processing, but output magnetic tapes are not rewound. For input files
other than the first file on a tape volume, a file sequence number must
be specified, corresponding to the original position of that file on the
tape.

.4/DLBL Statement

This job control statement is optional. It identifies a sequential (SAM)
DASD file used for Database Services Utility input or output data. The
file can reside on any type of volume supported by the VSE DTFSD
macro.

Any number of these statements (each having a unique file name) can
be included in the job control. Each file name defined is normally
referenced by a ddname parameter in a Database Services Utility
command contained in the SYSIPT control command input. Job control
EXTENT statements are required to complete the description of the file
identified by the DLBL statement.

.5/ASSGN SYS004 (Tape Input File)

This job control statement is required if a Database Services Utility
sequential (SAM) input data file is allocated to a magnetic tape device. It
defines the logical unit SYS004 for a tape input file.

.6/ASSGN SYS005 (Tape Output File)

This job control statement is needed if a Database Services Utility
sequential (SAM) output data file is allocated to a magnetic tape device.
It defines the logical unit SYS005 for a tape output file. A large block
size is recommended for a tape output file to improve performance.

.7/ASSGN SYS006 (DASD Input File)

This job control statement is needed if a Database Services Utility
sequential (SAM) input data file is allocated to a direct access device. It
defines the logical unit SYS006 for a DASD input file.

.8/ASSGN SYS007 (DASD Output File)

This job control statement is needed if a Database Services Utility
sequential (SAM) output data file is allocated to a direct access device.
It defines the logical unit SYS007 for a DASD output file.

.9/EXEC Statement for Single User Mode

This statement identifies the database entry point (ARISQLDS), and
contains the required SIZE=AUTO specification and the job control
parameters to execute the Database Services Utility program with single
user mode.

The job control parameters that you must specify are:

 � SYSMODE=S
 � PROGNAME=ARIDBS

SYSMODE=S indicates that you want single user execution mode.
PROGNAME=ARIDBS identifies the Database Services Utility program

 Chapter 7. Using the Database Services Utility from Application Programs 107

entry point. LOGMODE=A identifies that the database manager should
operate with archive and logging on.

All single user mode startup parameters and log mode considerations
are described in the DB2 Server for VM System Administration manual.
Consult a system programmer about the startup parameters; your
installation might specify additional parameters for performance reasons.

.1ð/SYSIPT Control Statement and User Data Input

Database Services Utility control commands and user data input.

.11/End SYSIPT Control Statement Input Indicator

Indicates the end of Database Services Utility SYSIPT input when
SYSIPT is assigned to the reader file.

.12/End of Job Indicator

Indicates the end of the job.

Single User Mode Job Control Example
The sample job control and commands shown in Figure 61 run the Database
Services Utility with single user mode to perform the following functions:

� Unload the table SQLDBA.DEPARTMENT to the first file on a scratch tape.
� Unload the table SQLDBA.ACTIVITY to the second file on the tape.

// JOB DBS UTILITY EXAMPLE VSE SINGLE USER MODE JOB CONTROL
// EXEC PROC=ARIS61PL <--DB2 Server for VSE Production Library Definition
// EXEC PROC=ARIS61DB <--DB2 Server for VSE Starter Database Definition
// TLBL TAPE1,'DBSU-FILE1',ð,SQLDAT,1,1 <--Tape File#1
// TLBL TAPE2,'DBSU-FILE2',ð,SQLDAT,1,2 <--Tape File#2
// ASSGN SYSðð5,28ð <--Tape output
// MTC REW,SYSðð5 <--Rewind tape
// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,LOGMODE=Y,PROGNAME=ARIDBS'
CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
UNLOAD TABLE(DEPARTMENT) OUTFILE(TAPE1)
UNLOAD TABLE(ACTIVITY) OUTFILE(TAPE2)
/\
/&

Figure 61. Single User Mode Job Control Example

Multiple User Mode Job Control
The VSE job control statements in Figure 62 on page 109 invokes the Database
Services Utility in multiple user mode:

108 DBS Utility

// JOB DBSUTIL
// EXEC PROC=ARIS61PL <--DB2 Server for VSE Production Library Definition
// TLBL file name,.......
// DLBL file name,.......
// ASSGN SYSðð4,.........
// ASSGN SYSðð5,.........
// ASSGN SYSðð6,.........
// ASSGN SYSðð7,.........
// EXEC PGM=ARIDBS,SIZE=AUTO,PARM='DBNAME(SQLDB1_TOR_INV)'
DBS control commands and optional user data
/\
/&

Figure 62. Multiple User Mode Job Control

The job control statements in Figure 62 do the same things as the corresponding
statements in Figure 60 on page 106. The database manager must already be
running when you invoke the Database Services Utility (or any other application
program) with multiple user mode. To execute the Database Services Utility with
multiple user mode, at least a 200K byte virtual partition is recommended.
DBNAME=SQLDB1_TOR_INV identifies the application server on which to process
the Database Services Utility job. If the DBNAME parameter is not specified, the
default application server is accessed.

Multiple User Mode Job Control Example
The example job control and commands shown in Figure 63 run the DBS utility
with multiple user mode to perform the following functions:

� Unload the dbspace PUBLIC.SAMPLE to a DASD file.

� Reload the dbspace PUBLIC.SAMPLE from the same DASD file to reorganize
the data for all tables in the dbspace.

// JOB DBS UTILITY EXAMPLE VSE MULTIPLE USER MODE JOB CONTROL
// EXEC PROC=ARIS61PL <--DB2 Server for VSE Production Library Definition
// DLBL DASDI,'DBSU-FILE',ð <--DASD input file
// EXTENT SYSðð6,sqlwkl,1,ð,57,76 <--DASD input file
// ASSGN SYSðð6,15ð <--DASD input
// DLBL DASDð,'DBSU-FILE',ð <--DASD output file
// EXTENT SYSðð7,sqlwkl,1,ð,57,76 <--DASD output file
// ASSGN SYSðð7,15ð <--DASD output
// EXEC PGM=ARIDBS,SIZE=AUTO,PARM='DBNAME(SQLDB1_TOR_INV)'
CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
UNLOAD DBSPACE(PUBLIC.SAMPLE) OUTFILE(DASDð PDEV(DASD))
RELOAD DBSPACE(PUBLIC.SAMPLE) PURGE INFILE(DASDI PDEV(DASD) BLKSZ(2ð48))
/\
/&

Figure 63. Multiple User Mode Job Control Example

 Chapter 7. Using the Database Services Utility from Application Programs 109

In DB2 Server for VM
The Database Services Utility operates in the user's virtual machine with the
application server in either single user mode or multiple user mode.

The IBM-supplied SQLDBSU EXEC invokes the utility. This EXEC accepts optional
parameters identifying the Database Services Utility input control file
(ddname=SYSIN) and the Database Services Utility output message file
(ddname=SYSPRINT). It also accepts other parameters necessary to run the
database system in single or multiple user mode.

If the optional parameters identifying the Database Services Utility SYSIN and
SYSPRINT files are not specified during startup of the SQLDBSU EXEC, the user
can either define these files by using the CMS FILEDEF commands or run the
utility with the SQLDBSU EXEC defaults, which assign the SYSIN and SYSPRINT
file to the terminal.

Other DASD or tape input or output data files referenced by the Database Services
Utility commands in the control file must be defined by the user with CMS FILEDEF
commands before the SQLDBSU EXEC command is issued. Tape file processing
and file definition restrictions apply to Database Services Utility input and output
data files. Refer to the DB2 Server for VM System Administration manual for a
description of tape file processing support. The VM/ESA: CMS Command
Reference manual describes the CMS FILEDEF command.

Notes:

1. VM/ESA system in ESA mode is supported in the Database Services Utility
only in XA-toleration mode. In this mode, the utility is always loaded and run
below 16MB.

2. CMS subset mode is not supported by the Database Services Utility.

Names and Identifiers

General Rules for Naming Data Objects
The DB2 Server for VSE Application Programming and the DB2 Server for VM
Application Programming manuals contain the formal definition of the SQL
language and naming conventions. Briefly, the names of data objects (such as
tables, columns, indexes, synonyms, or dbspaces) must be a particular kind of
character string called an identifier. SQL identifiers must begin with a letter or
number. They can contain up to 18 uppercase and lowercase letters, numbers, and
underscores.

Note: If you need national language character translation for lowercase terminal
input, the CMS SET INPUT xx yy command can be used. Refer to the
VM/ESA: CMS Command Reference manual for more information.

The preprocessor used by the Database Services Utility for dynamic SQL statement
processing converts DB2 Server for VSE & VM identifiers to uppercase if they are
not in double quotation marks. For example, these two identifiers are identical to
the system:

110 DBS Utility

department DEPARTMENT

If you want the system to recognize the lowercase letters in the identifier, enclose
the identifier in double quotation marks. For example:

"department"

Qualifying Object Names
If a data object (such as a table, dbspace, or view) is owned by another user, you
need to qualify references to the object by concatenating the owner's user identifier
as in the following figure:

 SMITH.DEPARTMENT
 ──┬── ─────────
 & & ┌──────────┐
 │ └────────┤table name│
 │ └──────────┘
 │ ┌────────────────────┐

└────────────────┤ owner of the table │
 └────────────────────┘

The period (.) is the concatenation symbol.

You can access another user’s table only if you know that person’s user identifier
and have the appropriate authorization to access that table.

When you concatenate a user ID to a table name, you fully qualify the table. That
is, owner.table-name uniquely identifies a table in the database. For example, there
can never be two SMITH.DEPARTMENT tables in the database at the same time.

Use fully qualified object names until you are an experienced DB2 Server for VSE
& VM user. By fully qualifying database object names, you avoid confusion and
errors.

Using Special Characters and Blanks within Identifiers
An identifier can contain blanks (but must not begin or end with blanks) or special
symbols if you enclose them in double quotation marks. For example:

"RESEARCH EMPLOYEES"

You should not, however, use double quotation marks within an SQL identifier. The
following is not a valid identifier:

"EMP"13"TABLE"

 Reserved Words

 Chapter 7. Using the Database Services Utility from Application Programs 111

SQL Reserved Words
A list of SQL reserved keywords can be found on “SQL Reserved Words” on
page xvii. Do not use these words in SQL statements except:

� With their defined meaning in the SQL syntax
� As host variables (preceded by a colon).

In particular, do not use them as names for tables, indexes, columns, views, or
dbspaces unless they are enclosed in double quotation marks (").

Database Services Utility Reserved Words
In addition to the SQL reserved keywords, do not use the following keywords in
Database Services Utility commands as the name for a table, view, column, or
dbspace unless you enclose the name in double quotation marks ("):

Figure 64. Names to Avoid Using

DATALOAD INMOD RELOAD SCHEMA

DATAUNLOAD OUTFILE REORGANIZE UNLOAD

INFILE REBIND

Using Reserved Words as Identifiers
If an identifier is the same as one of the SQL keywords listed in this chapter, you
must enclose the name in quotation marks. For example, you can use

"SELECT"

as a name, but if it is not delimited with quotation marks,

SELECT

is interpreted as a keyword.

Using the Database Services Utility from Programming Languages
You can invoke the Database Services Utility program from an assembler
language, PL/I, C, or COBOL program by using the Database Services Utility entry
point ARIDBS. (You cannot invoke the Database Services Utility from a FORTRAN
program.)

In DB2 Server for VSE
If the Database Services Utility program is link-edited with a user program, you
must link-edit these modules in addition to those required for a normal DB2 Server
for VSE application program:

ARISYSDD
ARIDSQLA
ARIDDFP

If you use an assembler language CDLOAD instruction in the calling program, you
need not link-edit the above modules. (See the following section “Using the
Database Services Utility from an Assembler Program” on page 114.)

112 DBS Utility

You need not have an SQL CONNECT statement in the input control card file if the
application that invokes the utility has already executed one. All authorization
checking is based on the user ID supplied in the last CONNECT statement that
was executed by the database manager.

ASSGN, TLBL, and DLBL commands required by the Database Services Utility
must be present in the job control, and SIZE=AUTO must be specified on the
EXEC command for the main program. The Database Services Utility processes all
input control card file records from SYSIPT before returning control to the routine
that invoked it.

In DB2 Server for VM
The application program must be link-edited with ARIDBS, a member in the
ARISQLLD LOADLIB, along with any other modules required for a normal DB2
Server for VM application program.

The application program can execute a CONNECT statement, supply a CONNECT
statement in the Database Services Utility control file input, or take advantage of
the implicit CONNECT support. All authorization checking is based on the
connected user ID.

The FILEDEF commands for the Database Services Utility input control file, the
output message file, and any input/output data files referenced by Database
Services Utility commands must be executed before the utility is invoked. The utility
processes all control file records from SYSIN before returning control to the
program that invoked it.

 Addressing Mode
Although the database manager can be run in 24-bit or 31-bit addressing mode,
you must run the DBS Utility in 24-bit mode.

In single user mode, if the database manager is being run in 31-bit mode, the
addressing mode is switched to 24-bit mode before the DBS Utility is started. When
you call the DBS Utility from an application program, the addressing mode is
switched to 24-bit mode and the addressing mode of the application program is
restored upon return. You must, however, ensure that any parameters passed by
the application program to the DBS Utility do not reside above the 16MB (MB
equals 1,048,576 bytes) line.

See the DB2 Server for VSE System Administration or the DB2 Server for VM
System Administration manuals for more information on addressing modes.

Register Contents for Database Services Utility Dynamic Startup
The Database Services Utility uses the following register content on entry:

� Register 0 is not used in DB2 Server for VSE, in DB2 Server for VM, it can
contain the same content as Register 1.

� Register 1 can contain the address of a standard parameter address list to
pass control parameters to the DBS Utility program.

� Registers 2–12 are ignored.

� Register 13 contains the address of an area of 18 full-words to be used as a
register-save area by the Database Services Utility program.

 Chapter 7. Using the Database Services Utility from Application Programs 113

� Register 14 contains the return address for the Database Services Utility
program.

� Register 15 contains the Database Services Utility entry point address.

When dynamically invoked, all registers except register 15 are restored by the
Database Services Utility before to returning by way of register 14 to the invoking
program. Register 15 contains the final return code from Database Services Utility
processing.

Using the Database Services Utility from an Assembler Program
You can invoke the Database Services Utility program from an assembler language
program.

If you include the Database Services Utility program in the load module with the
invoking program, the format of the CALL statement to invoke the Database
Services Utility is:

CALL ARIDBS

Note: You must include the Database Services Utility program in the load module
in a DB2 Server for VM system.

However, in DB2 Server for VSE, if you do not include the Database Services
Utility program in the load module with the invoking program, use the following
sequence of instructions to invoke the Database Services Utility program:

CDLOAD ARIDBS
LR 15,1
CALL (15)

When using the above sequence of instructions, do not specify SIZE=AUTO on the
EXEC command for the main program.

Using the Database Services Utility from a C Program
You can invoke the Database Services Utility program from a C program. ARIDBS
must be declared to the compiler as an external entry point. ARIDBS must also be
defined as having OS linkage using #pragma linkage (ARIDBS, OS);. The format of
the C CALL command is:

ARIDBS(CLTYPEID,PARMSTR);

where CLTYPEID and PARMSTR can be declared as:

static char CLTYPEID[7]="DBSUð1 ";

struct{short int PARMLEN;
 char PARMDATA [8ð];
 }PARMSTR;

Using the Database Services Utility from a COBOL Program
A main program written in COBOL can invoke the Database Services Utility
program by using the linkage conventions described for calling assembler programs
in the DOS Full American National Standard COBOL Compiler and Library, Version
3, Programmer's Guide. The Database Services Utility entry point name ARIDBS
must be used in the COBOL CALL command used to invoke the Database
Services Utility program. The format of the COBOL CALL command varies

114 DBS Utility

depending on whether the COBOL compiler was generated with single (') or
double (") quotes as delineators:

CALL 'ARIDBS' USING CALLTYPEID PARMSTRING.

or

CALL "ARIDBS" USING CALLTYPEID PARMSTRING.

where CALLTYPEID and PARMSTRING can be declared as:

ð1 CALLTYPEID PIC X(6) VALUE'DBSUð1'.
ð1 PARMSTRING.

49 PARMLEN PIC S9(4) COMP.
 49 PARMDATA PIC X(8ð).

Using the Database Services Utility from a PL/I Program
You can invoke the Database Services Utility program from a PL/I program by
using the facilities of the IBM PL/I Optimizing Compiler Program Product. ARIDBS
must be declared to the compiler as an external entry point with the ASSEMBLER
and INTER options. The format of the PL/I CALL command is:

CALL ARIDBS(CLTYPEID,PARMSTR);

where CLTYPEID and PARMSTR can be declared as:

DCL 1 CLTYPEID CHAR(6) INIT('DBSUð1');

DCL 1 PARMSTR,
 2 PARMLEN BINARY FIXED(15),
 2 PARMDATA CHAR(8ð);

Using the Database Services Utility Application Program Interface
The interface described in this section allows a calling program or EXEC (in VM) to
pass Database Services Utility control parameters or a single SQL statement or
both. These utility control parameters provide the caller with the means to:

� Suppress all or portions of the messages written by Database Services Utility
processing

� Identify the SQL SELECT statement output format
� Suppress SQL COMMIT and SQL ROLLBACK processing
� Determine the location where print data begins in the message file record
� Control the isolation level under which the Database Services Utility operates.

The calling program or EXEC can also pass a single SQL statement to the
Database Services Utility for immediate processing by means of the call parameter
list. Only SQL statements currently supported by Database Services Utility
processing can be supplied. If an invalid parameter or Database Services Utility
command is passed in the parameter list, it is processed as an SQL statement, and
an error occurs.

Figure 65 on page 116 shows the control parameters that can be used when
invoking the Database Services Utility.

 Chapter 7. Using the Database Services Utility from Application Programs 115

LINEWIDTH(www) or LW(www)PROMPTS(NO)
MESSAGES(SQLONLY)
MESSAGES(NONE)
FORMAT(CL)
FORMAT(LO)
PAGECTL(NO)
ENDLUW(NO)
ISOL(CS)
ISOL(UR)

Figure 65. Control Parameters

 Control Parameters

Database Services Utility Control Parameters
This section lists and describes the Database Services Utility control parameters.

LINEWIDTH(www) or LW(www)
specifies the maximum number of print data positions used in a message file
record containing SQL SELECT statement output. The default value for www is
120. In DB2 Server for VM, if the Database Services Utility message file
(ddname=SYSPRINT) is assigned to the terminal, the number of print data
positions used for the SQL SELECT statement defaults to 80. The value www
can range from 60 to 256 but must be less than the logical record length of the
report or message file. For example, if the logical record length is 100, the
widest line you can set is LINEWIDTH(99).

Notes:

1. The utility always supplies an American Standards Association (ASA)
control character in the first position of the print record. The second through
nth positions of the print record are the print data positions. If the value
www+1 is less than the print record length, all unused print data positions
in the print record contain a blank (hex 40).

2. The Database Services Utility report record length is always 121.

3. The minimum message file record length is 81. If the control parameter
PAGECTL(NO) is specified, the minimum message file record length is 80.

4. If the value www is equal to or greater than the print record length, an error
occurs.

PROMPTS(NO)
suppresses Database Services Utility write-to-operator (WTO) messages. The
WTO messages appear on the user's terminal or in a VSE, on the operator
console display.

MESSAGES(SQLONLY)
suppresses the messages normally generated by Database Services Utility
processing except for:

� SQL messages (ARI0500 through ARI0519)

� Message ARI0803E identifies an invalid command

� Message ARI0838E identifies an invalid CONNECT statement

116 DBS Utility

� Message ARI0850I is generated after an SQL SELECT statement is
successfully processed

� Message ARI0856E is generated when an error occurs during the
execution of an SQL statement initiated by Database Services Utility
processing

� Message ARI0884I indicates a command was processed

� Message ARI8999E: indicates an invalid control parameter or command
was passed by means of the Database Services Utility parameter list

� Other Database Services Utility messages normally written to the terminal,
or in VSE, to the operator console display device.

MESSAGES(NONE)
suppresses all Database Services Utility messages. Only the Database
Services Utility return codes indicate the status of the processing performed.

FORMAT(CB)
is not supported.

FORMAT(CL)
formats the output of an SQL SELECT statement in either column format or list
format.

FORMAT(LO)
formats the output of an SQL SELECT statement using only the list format.

PAGECTL(NO)
causes the Database Services Utility to:

� Use a default of 32767 lines per page for Database Services Utility report
or message file output instead of 60 lines per page

� Write display lines to the Database Services Utility report or message file
without a printer control character in position 1

� Suppress page number heading lines(s) in SQL SELECT statement output.

The SET LINECOUNT command can override the default lines per page used
by Database Services Utility processing.

DB2 Server for VM Only

A user-supplied FILEDEF command defining SYSPRINT to the terminal
should specify RECFM F or RECFM FB. If RECFM F or RECFM FB is not
specified, the first character of each Database Services Utility message file
display line is truncated.

The default FILEDEF SYSPRINT command issued by the SQLDBSU EXEC
defines the Database Services Utility message file record without a printer
control character. This default command is:

FILEDEF SYSPRINT TERMINAL (RECFM F LRECL 12ð

ENDLUW(NO)
indicates that the Database Services Utility should not end the logical unit of
work before returning to the calling program or, in VM, EXEC. The Database
Services Utility does not issue an SQL COMMIT statement at the end of
Database Services Utility processing if this parameter is specified.

 Chapter 7. Using the Database Services Utility from Application Programs 117

Only the end of Database Services Utility COMMIT processing is suppressed
by this control parameter. Other Database Services Utility COMMIT and
ROLLBACK processing is not suppressed. However, when the ENDLUW(NO)
control parameter is specified, and ERRORMODE CONTINUE is in effect, all
Database Services Utility COMMIT and ROLLBACK processing is suppressed.
In a VM system note that the SET ERRORMODE CONTINUE command is in
effect when the Database Services Utility input control file is assigned to a
terminal or a SET ERRORMODE CONTINUE command is processed. And, in a
VSE system, the SET ERRORMODE CONTINUE command is in effect when a
SET ERRORMODE CONTINUE command is processed.

Note: System-initiated COMMIT or ROLLBACK processing cannot be
suppressed by any means.

ISOL(CS), ISOL(UR)
indicates that the Database Services Utility should operate under cursor
stability or uncommitted read isolation level. The default mode of utility
processing is repeatable read isolation level; however, if you are accessing a
non-DB2 Server for VM application server, or if you are using the DRDA
protocol, the isolation level for the DBS Utility is always set to CS and the SET
ISOLATION command has no effect.

SQL Statement Parameter
If an SQL statement is supplied by means of the call parameter list, the Database
Services Utility does not read the (input) control file SYSIPT. Any SQL statement
currently supported by Database Services Utility processing can be supplied. This
includes all SQL statements except those restricted to use in SQL application
programs. One or more of the utility control parameters may precede the SQL
statement. Utility commands are not supported in the call parameter list.

If an invalid parameter or a Database Services Utility command is passed in the
parameter list, it is processed as an SQL statement, causing an error.

When an SQL statement is supplied in the Database Services Utility parameter list
and it is not preceded by the ENDLUW(NO) control parameter, Database Services
Utility processing ends the logical unit of work after the command is processed. An
SQL COMMIT statement is issued if the command is processed without errors. An
SQL ROLLBACK statement is issued if a command error occurs.

If the ENDLUW(NO) control parameter precedes the SQL statement, the Database
Services Utility issues neither an SQL COMMIT statement nor an SQL ROLLBACK
statement after the SQL statement is processed.

Using Control Parameters with DB2 Server for VM
Use control parameters in a calling program or an EXEC when you want to set up
the Database Services Utility environment and execute all the commands from one
file. Figure 66 on page 119 shows a REXX EXEC that directs the output messages
to the terminal, executes the Database Services Utility, and passes control
parameters and an SQL statement to the utility. You do not need to define the input
requirements because the SQL statement is in the EXEC.

118 DBS Utility

/\ Example DBS Utility Control Parameters in REXX EXEC \/
ADDRESS CMS
'FILEDEF ARISQLLD DISK ARISQLLD LOADLIB Q (NOCHANGE'
'FILEDEF SYSPRINT TERMINAL (NOCHANGE RECFM F LRECL 12ð'
'NUCXLOAD ARIDBS ARIDBS ARISQLLD'
'ARIDBS PROMPTS(NO) FORMAT(LO) ENDLUW(NO) SELECT \ FROM DEPARTMENT'
ADDRESS
EXIT RC

Figure 66. Using the Database Services Utility Control Parameters in DB2 Server for VM

Using the Database Services Utility Interface Conventions
Database Services Utility control parameters or an SQL statement or both can be
supplied using standard program (or in VM, EXEC interface) conventions.

Note: All system parameter string restrictions apply to Database Services Utility
processing. These restrictions are not overridden by Database Services
Utility parameter processing.

DB2 Server for VM Convention Formats
There are two format conventions; they are:

Format 1 - EXEC Program Interface Conventions: Your EXEC or program must
follow these register conventions:

Register ð The address of the parameter address list

Register 13 The address of the invoking program's 18 full-word save area

Register 14 The Database Services Utility return address

Register 15 The Database Services Utility entry point address on entry; the
Database Services Utility processing return code on exit.

Your EXEC or program Database Services Utility parameter address list is to follow
these conventions:

Register 0 Parameter List Considerations:

Database Services Utility processing determines whether startup parameters are
identified by register ð by interrogating the contents of register ð on entry to the
Database Services Utility. Register ð parameter processing is not performed if any
of the following conditions occurs:

� Register ð contains the address of the ARIDBS module.
� Content of register ð equals ð.
� Length of the parameter string is less than 1.

Position (per Byte) Contents

1–4 Address of command identifier (not
checked)

5–8 Address of PARAMETERSTRING

9–12 Address of PARAMETERSTRINGEND+1

 Chapter 7. Using the Database Services Utility from Application Programs 119

� Length of the parameter string is greater than 8192.

Note: EXEC parameter string restrictions must also be considered.

PARAMETERSTRING
identifies the start of the Database Services Utility parameter string. The
parameter string can contain Database Services Utility control parameters or an
SQL statement, or both. Blanks or commas can be used to separate Database
Services Utility control parameters from each other or from an SQL statement.
The first entry in the parameter can be the command name ARIDBS.

The parameter string format is:

PARAMETERSTRINGEND+1
identifies the position following the Database Services Utility parameter string.

Format 2 - Program Interface Conventions: Your program must follow these
register conventions:

Register 1 The address of the Database Services Utility parameter address list

Register 13 The address of the invoking program's 18 full-word save area

Register 14 The Database Services Utility return address

Register 15 The Database Services Utility entry point address on entry; the
Database Services Utility processing return code on exit.

Your program Database Services Utility parameter address list must follow these
conventions:

where:

CALLTYPEID
is the address of an area defined as CHAR(6) that contains the Database
Services Utility call type identifier. This area must contain the character string
value DBSU01.

PARAMETERSTRING
identifies the start of the Database Services Utility parameter string. The
parameter string can contain Database Services Utility control parameters or an
SQL statement, or both. Blanks or commas can be used to separate Database
Services Utility control parameters from each other or from an SQL statement.
The first entry in the parameter can be the command name ARIDBS.

The parameter string format is:

where:

<optional control parameters> <optional SQL statement>

Position (per Byte) Contents

1–4 Address of CALLTYPEID

5–8 Address of PARAMETERSTRING

 LL <optional control parameters> <optional SQL
statement>

120 DBS Utility

LL is defined as a FIXED(15) value representing the length of the following
parameter string. The maximum length of the parameter string passed to
the Database Services Utility is 8192 not including the length field.

Register 1 Parameter List Considerations:

Database Services Utility processing determines if startup parameters are identified
by register 1 by interrogating the contents of register 1 on entry to the Database
Services Utility. Register 1 parameter processing is not performed if any of the
following conditions occur:

� Register 1 contains the address of the ARIDBS module.

� Content of register 1 equals ð.

� A valid parameter list is passed by means of register ð.

� Content of register 1 addresses the character string value ARIDBS.

� First address in the Database Services Utility parameter address list equals ð.

� First address in the Database Services Utility parameter address list does not
address the character string value DBSU01.

� Length of the parameter string is less than 1 or greater than 8192.

DB2 Server for VSE Program Interface Conventions
Your program must follow these register conventions:

Register 1 The address of the Database Services Utility parameter address list

Register 13 The address of the invoking program's 18 full-word save area

Register 14 The Database Services Utility return address

Register 15 The Database Services Utility entry point address on entry; the
Database Services Utility processing return code on exit.

Your program Database Services Utility parameter address list must follow these
conventions:

where:

CALLTYPEID
is the address of an area defined as CHAR(6) that contains the Database
Services Utility call type identifier. This area must contain the character string
value DBSU01.

PARAMETERSTRING
identifies the start of the Database Services Utility parameter string. The
parameter string can contain Database Services Utility control parameters or an
SQL statement, or both. Blanks or commas can be used to separate Database
Services Utility control parameters from each other or from an SQL statement.

The parameter string format is:

Position (per Byte) Contents

1–4 Address of CALLTYPEID

5–8 Address of PARAMETERSTRING

 Chapter 7. Using the Database Services Utility from Application Programs 121

where:

LL is defined as a FIXED(15) value representing the length of the following
parameter string. The maximum length of the parameter string passed to
the Database Services Utility is 8192 not including the length field but you
must also consider VSE job control restrictions.

Register 1 Parameter List Considerations: Database Services Utility processing
determines if startup parameters are identified by register 1 by interrogating the
contents of register 1 on entry to the Database Services Utility. Register 1
parameter processing is not performed if any of the following conditions occur:

� Register 1 contains the address of the ARIDBS module.

� Content of register 1 equals ð.

� Content of register 1 addresses the character string value ARIDBS.

� First address in the Database Services Utility parameter address list equals ð.

� First address in the Database Services Utility parameter address list does not
address the character string value DBSU01.

� Length of the parameter string is less than 1 or greater than 8192.

 LL <optional control parameters> <optional SQL
statement>

 Sample Programs

Sample DB2 Server for VM EXEC Procedure: Invoke the
Database Services Utility
The sample EXEC in Figure 67 invokes the Database Services Utility against the
application server in multiple user mode. The example is written in the REXX
language.

/\ EXAMPLE DBS UTILITY REXX EXEC \/
ARG PARMS
ADDRESS CMS
'FILEDEF ARISQLLD DISK ARISQLLD LOADLIB Q (NOCHANGE'
'FILEDEF SYSPRINT TERMINAL (NOCHANGE RECFM F LRECL 12ð'
'FILEDEF SYSIN TERMINAL (NOCHANGE'
'NUCXLOAD ARIDBS ARIDBS ARISQLLD'
'ARIDBS MESSAGES(SQLONLY) FORMAT(CL)' PARMS
ADDRESS
EXIT RC

Figure 67. Sample REXX EXEC to Invoke the Database Services Utility

The EXEC performs the following functions:

� Unconditionally invokes the utility with the control parameters
MESSAGES(SQLONLY) and FORMAT(CL). These can be overridden by
control parameters specified as EXEC command parameters.

– If MESSAGES(NONE) is specified as an EXEC command parameter, it
overrides the MESSAGES(SQLONLY) parameter.

122 DBS Utility

– If the FORMAT(LO) control parameter is specified as an EXEC command
parameter, it overrides the FORMAT(CL) parameter.

� Accepts optional Database Services Utility control parameters as EXEC
command parameters and passes them to the utility for processing. Database
Services Utility control parameters must be specified as EXEC command
parameters before any SQL statement is issued.

� Accepts an optional SQL statement as the last EXEC command parameter
string and passes it to the Database Services Utility for processing. Any
Database Services Utility parameters must be specified as EXEC command
parameters before the SQL statement.

– If no SQL statement is specified as an EXEC command parameter, the
Database Services Utility processing invoked by the example EXEC allows
you to enter one or more SQL or Database Services Utility commands from
the CMS command line. You are prompted to enter the first or next
command.

� Displays the results of Database Services Utility processing to the terminal.

If you create the CMS file SQL EXEC fm (where fm is the file mode) containing the
sample EXEC in Figure 67 on page 122, SQL statements can then be run from the
CMS command line. Some examples of running one sample EXEC are in
Figure 68 on page 123.

Note: DB2 Server for VSE & VM user machine must identify the database to be
accessed by running the SQLINIT EXEC before running the sample EXEC
or a similar EXEC. Also, the VM terminal logical line-editing symbols
(character delete, line delete, line end, and escape) must not conflict with
the SQL language operators used in the SQL statements entered in the
CMS command line.

Enter--> sql select creator,tname from system.sysaccess
(SELECT output will be displayed in column format)

Enter--> sql format(lo) select creator,tname from system.sysaccess

(SELECT output will be displayed in list format)

Enter--> sql

 When prompted:

Enter--> select creator,tname from system.sysaccess
(SELECT output will be displayed in column format)

 When prompted:

Enter--> exit or another SQL statement

Figure 68. CMS Command Line Entries to Run a Sample EXEC

 Chapter 7. Using the Database Services Utility from Application Programs 123

DB2 Server for VM Sample User Program: Link-Edit User
Programs and the Database Services Utility
The following is a general example of the way to link-edit and run a user-written
program (VMUCALL) that invokes the Database Services Utility. In Figure 69 on
page 124 the example program is written in COBOL. The user program is run from
a user library (USERLOAD LOADLIB A). This example assumes that the user
program VMUCALL needs to be compiled first and that the VMUCALL TEXT A file
does not exist.

A sample link-edit REXX EXEC is shown in Figure 70 on page 124. The contents
of the user link-edit control file (VMULINK TEXT A) are shown in Figure 71 on
page 125. Note that for the COBOL program, you must also link edit the TEXT file
ARIPADR4. Figure 72 on page 125 shows a sample REXX EXEC for running the
user program with multiple user mode.

\\\
\ Example COBOL Program Calling the DBS Utility \
\\\
IDENTIFICATION DIVISION.
PROGRAM-ID. VMUCALL
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
ð1 CALLTYPEID PIC X(6) VALUE 'DBSUð1'.
ð1 PARMSTRING.

49 PARMLEN PIC S9(4) COMP VALUE 42.
49 PARMDATA PIC X(42) VALUE

'FORMAT(LO) SELECT \ FROM SYSTEM.SYSOPTIONS'.
PROCEDURE DIVISION.

CALL 'ARIDBS' USING CALLTYPEID PARMSTRING.
FINIS.
 STOP RUN.

Figure 69. Sample COBOL Program Calling the DBS Utility

/\ Example REXX EXEC to Link-Edit a COBOL program with DBS Utility \/
ADDRESS 'COMMAND'
'COBOL2 VMUCALL (APOST'
'FILEDEF SYSLIB DISK VSC2LTXT TXTLIB Y'
'FILEDEF ARISQLLD DISK ARISQLLD LOADLIB Q (RECFM U'
'FILEDEF VMUCALL DISK VMUCALL TEXT A (RECFM F LRECL 8ð'
'FILEDEF ARIRVSTC DISK ARIRVSTC TEXT Q (RECFM F LRECL 8ð'
'FILEDEF ARIPADR4 DISK ARIPADR4 TEXT Q (RECFM F LRECL 8ð'
'FILEDEF SYSLMOD DISK USERLOAD LOADLIB A (RECFM U'
'LKED VMULINK (LET RENT NAME VMUMOD LIST TERM PRINT'
EXIT

Figure 70. Sample EXEC to Link-Edit a User Program with the Database Services Utility

124 DBS Utility

INCLUDE VMUCALL
INCLUDE ARIRVSTC ┌────────────────────────────┐
INCLUDE ARIPADR4 <──────┤For user COBOL program only │
INCLUDE ARISSQLD(ARIDBS) └────────────────────────────┘
ENTRY VMUCALL

Note: Position 1 of each record must be blank.

Figure 71. Sample User Link-Edit Control File

/\ Example REXX EXEC to Run a User Program Calling DBS Utility \/
ADDRESS 'COMMAND'
'FILEDEF USERLOAD DISK USERLOAD LOADLIB A'
'FILEDEF SYSIN TERMINAL (RECFM F LRECL 12ð'
'FILEDEF SYSPRINT TERMINAL (RECFM F LRECL 12ð'
'NUCXLOAD VMUMOD VMUMOD USERLOAD'
'VMUMOD'
'NUCXDROP VMUMOD'
EXIT

Figure 72. Sample EXEC to Run a User Program Link-Edited with the Database Services
Utility

DB2 Server for VSE Sample COBOL Program: Call the Database
Services Utility
The following is a basic example of a user-written COBOL program and the job
control statements that call Database Services Utility to run SQL statements:

 Chapter 7. Using the Database Services Utility from Application Programs 125

// JOB CONTROL TO RUN A USER PROGRAM THAT CALLS THE DBS UTILITY
// OPTION CATAL
 PHASE COBDBSU,S
// EXEC IGYCRCTL
 CBL TRUNC(BIN) APOST
 \\\

\ Example COBOL program calling Database Services Utility \
 \\\
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBDBSU
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

ð1 CALLTYPEID PIC X(6) VALUE 'DBSUð1'.
 ð1 PARMSTRING.

ð2 PARMLEN PIC S9(4) COMP.
 ð2 PARMDATA PIC X(8ð).
 PROCEDURE DIVISION.

MOVE 49 TO PARMLEN.
MOVE 'ENDLUW(NO) CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;'

 TO PARMDATA.
CALL 'ARIDBS' USING CALLTYPEID PARMSTRING.

MOVE 32 TO PARMLEN.
MOVE 'SELECT \ FROM SYSTEM.SYSOPTIONS;'

 TO PARMDATA.
CALL 'ARIDBS' USING CALLTYPEID PARMSTRING.

 FINIS.
 STOP RUN.
/\
 INCLUDE ARIPRDID
 INCLUDE ARIPADR4
 INCLUDE ARISYSDD
 INCLUDE ARIDSQLA
 INCLUDE ARIDDFP
 INCLUDE ARITDSSD
// EXEC LNKEDT
// EXEC PGM=COBDBSU
/\
/&

Figure 73. Sample COBOL Program to Call the Database Services Utility

Sample Assembler Program: Load and Invoke the Database
Services Utility
The following are basic examples of user-written assembler language programs and
the job control statements that invoke the Database Services Utility to run SQL
statements. In DB2 Server for VSE these statements run with single user mode.

126 DBS Utility

// JOB CONTROL FOR USER PROGRAM THAT CDLOADS AND RUNS THE DBS UTILITY
// OPTION CATAL
 PHASE VSELOAD,S
// EXEC ASSEMBLY
VSELOAD CSECT
Rð EQU ð
R1 EQU 1
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

STM R14,R12,12(R13) STORE THE CALLER'S REGISTERS
 BALR R12,ð ESTABLISH ADDRESSABILITY

USING \,R12 REGISTER 12 WILL BE BASE REGISTER
LA R15,SAVE GET ADDRESS OF MY SAVE AREA
ST R15,8(R13) STORE FORWARD SAVE AREA POINTER
ST R13,4(R15) STORE BACKWARD SAVE AREA POINTER
LR R13,R15 MAKE MY SAVE AREA CURRENT
CDLOAD ARIDBS DBS ADDRESS RETURNED IN R1
ST R1,DBSADDR SAVE DBS UTILITY ADDRESS

MVI PSTRINGT,C' ' CLEAR PARAMETER AREA
MVC PSTRINGT+1(L'PSTRINGT-1),PSTRINGT CLEAR PARAMETER AREA
MVC PSTRINGT(L'PARMDAT1),PARMDAT1 MOVE FIRST COMMAND
LA Rð,L'PSTRINGT LOAD PARAMETER STRING LENGTH
STH Rð,PSTRINGL SET PARAMETER STRING LENGTH
LA R1,PARMLIST LOAD PARAMETER LIST ADDRESS
L R15,DBSADDR LOAD DBS ADDRESS
BALR R14,R15 CALL THE DBS UTILITY
MVI PSTRINGT,C' ' CLEAR PARAMETER AREA
MVC PSTRINGT+1(L'PSTRINGT-1),PSTRINGT CLEAR PARAMETER AREA
MVC PSTRINGT(L'PARMDAT2),PARMDAT2 MOVE SECOND COMMAND
LA R1,PARMLIST LOAD PARAMETER LIST ADDRESS
L R15,DBSADDR LOAD DBS ADDRESS
BALR R14,R15 CALL THE DBS UTILITY
L R13,4(R13) GET ADDRESS OF CALLER'S SAVE AREA
L R14,12(R13) RESTORE CALLER'S R14
LM Rð,R12,2ð(R13) RESTORE CALLER'S Rð-R12
BR R14 RETURN. R15=DBS RETURN CODE

SAVE DS 18F
DBSADDR DS F DBS ADDRESS SAVE AREA
PARMLIST DS ðF PARAMETER LIST

DC A(CTYPEID) \\ADDRESS OF CALL TYPE IDENTIFIER
DC A(PSTRING) \\ADDRESS OF PARAMETER STRING

 CTYPEID DC CL6'DBSUð1'
 PSTRING DS ðH PARAMETER LIST
PSTRINGL DS H \\ PARAMETER AREA LENGTH
PSTRINGT DS CL25ð \\ PARAMETER AREA
PARMDAT1 DC C'CONNECT SQLDBS IDENTIFIED BY SQLDBAPW'
PARMDAT2 DC C'FORMAT(LO) SELECT \ FROM SYSTEM.SYSOPTIONS'
 END VSELOAD
/\
// EXEC LNKEDT
// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,LOGMODE=N,PROGNAME=VSELOAD'
/\
/&

Figure 74. DB2 Server for VSE Sample Load-and-Invoke Assembler Program for the
Database Services Utility

 Chapter 7. Using the Database Services Utility from Application Programs 127

VMULOAD CSECT
Rð EQU ð
R1 EQU 1
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

STM R14,R12,12(R13) STORE THE CALLER'S REGISTERS
 BALR R12,ð ESTABLISH ADDRESSABILITY

USING \,R12 REGISTER 12 WILL BE BASE REGISTER
LA R15,SAVE GET ADDRESS OF MY SAVE AREA
ST R15,8(R13) STORE FORWARD SAVE AREA POINTER
ST R13,4(R15) STORE BACKWARD SAVE AREA POINTER
LR R13,R15 MAKE MY SAVE AREA CURRENT
LOAD EP=ARIDBS DBS ADDRESS RETURNED IN Rð
ST Rð,DBSADDR SAVE DBS ADDRESS
MVI PSTRINGT,C' ' CLEAR PARAMETER AREA
MVC PSTRINGT+1(L'PSTRINGT-1),PSTRINGT CLEAR PARAMETER AREA

 MVC PSTRINGT(L'PARMDATA),PARMDATA SET PARAMETER
LA Rð,L'PSTRINGT LOAD PARAMETER STRING LENGTH
STH Rð,PSTRINGL SET PARAMETER STRING LENGTH
SR Rð,Rð CLEAR REGISTER ð (R1=PARM ADDRESS)
LA R1,PARMLIST LOAD PARAMETER LIST ADDRESS
L R15,DBSADDR LOAD DBS ADDRESS
BALR R14,R15 CALL THE DBS UTILITY
L R13,4(R13) GET ADDRESS OF CALLER'S SAVE AREA
L R14,12(R13) RESTORE CALLER'S R14
LM Rð,R12,2ð(R13) RESTORE CALLER'S Rð-R12
BR R14 RETURN. R15=DBS RETURN CODE

SAVE DS 18F
DBSADDR DS F DBS ADDRESS SAVE AREA
PARMLIST DS ðF PARAMETER LIST

DC A(CTYPEID) \\ADDRESS OF CALL TYPE IDENTIFIER
DC A(PSTRING) \\ADDRESS OF PARAMETER STRING

CTYPEID DC CL6'DBSUð1'
PSTRING DS ðH PARAMETER LIST
PSTRINGL DS H \\ PARAMETER AREA LENGTH
PSTRINGT DS CL25ð \\ PARAMETER AREA
PARMDATA DC C'FORMAT(LO) SELECT \ FROM SYSTEM.SYSOPTIONS'
 END VMULOAD

Figure 75. DB2 Server for VM Sample Load-and-Invoke Assembler Program for the
Database Services Utility

Assuming that the DB2 Server for VM sample program is contained in the CMS file
VMULOAD ASSEMBLE A, you can run the program with multiple user mode by
entering the commands in Figure 76 on page 129:

128 DBS Utility

/\ Example DBS Utility to Run an ASSEMBLER Program Calling DBS Utility\/
ADDRESS 'COMMAND'
'GLOBAL MACLIB OSMACRO' ┌──────────────────┐
'GLOBAL LOADLIB ARISQLLD' <─────────────────┤Identifies │
'ASSEMBLE VMULOAD' │DB2 for VM load │
'LOAD VMULOAD' │library. │
'FILEDEF SYSPRINT TERMINAL (RECFM F LRECL 12ð' └──────────────────┘
'START'
EXIT

Figure 76. REXX EXEC to Run an Assembler Program That Loads the DBS Utility

Note: Before attempting to run the user program, identify the application server to
be accessed by using the SQLINIT EXEC.

Sample Assembler Program: Call the Database Services Utility
The following are examples of user-written assembler language programs that
invokes the Database Services Utility. In DB2 Server for VSE, the Utility is invoked
by means of a CALL macro to process commands in a file defined as SYSIPT. The
VSE job control statements to assemble, link-edit, and run the user program with
single user mode are shown in the example. In DB2 Server for VM, the Utility in
invoked, by means of a CALL macro to process commands in a file defined as
SYSIN. All necessary CMS FILEDEF commands must be entered before this
program is executed.

 Chapter 7. Using the Database Services Utility from Application Programs 129

// JOB CONTROL TO RUN A USER PROGRAM THAT CALLS THE DBS UTILITY
// OPTION CATAL
 PHASE VSECALL,S
// EXEC ASSEMBLY
VSECALL CSECT
Rð EQU ð
R1 EQU 1
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

STM R14,R12,12(R13) STORE THE CALLER'S REGISTERS
 BALR R12,ð ESTABLISH ADDRESSABILITY

USING \,R12 REGISTER 12 WILL BE BASE REGISTER
LA R15,SAVE GET ADDRESS OF MY SAVE AREA
ST R15,8(R13) STORE FORWARD SAVE AREA POINTER
ST R13,4(R15) STORE BACKWARD SAVE AREA POINTER
LR R13,R15 MAKE MY SAVE AREA CURRENT
LA Rð,ð CLEAR REGISTER ð
LA R1,ð INDICATE NO PARAMETER LIST PASSED

 CALL ARIDBS
L R13,4(R13) GET ADDRESS OF CALLER'S SAVE AREA
L R14,12(R13) RESTORE CALLER'S R14
LM Rð,R12,2ð(R13) RESTORE CALLER'S Rð-R12
BR R14 RETURN. R15=DBS RETURN CODE

SAVE DS 18F
 END VSECALL
/\
 INCLUDE ARISYSDD
 INCLUDE ARIDSQLA
 INCLUDE ARIDDFP
 INCLUDE ARIPRDID
 INCLUDE ARITDSSD
// EXEC LNKEDT
// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,LOGMODE=N,PROGNAME=VSECALL'
/\
/&

Figure 77. DB2 Server for VSE Sample Assembler Program to Call the Database Services
Utility

130 DBS Utility

VMUCALL CSECT
Rð EQU ð
R1 EQU 1
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

STM R14,R12,12(R13) STORE THE CALLER'S REGISTERS
 BALR R12,ð ESTABLISH ADDRESSABILITY

USING \,R12 REGISTER 12 WILL BE BASE REGISTER
LA R15,SAVE GET ADDRESS OF MY SAVE AREA
ST R15,8(R13) STORE FORWARD SAVE AREA POINTER
ST R13,4(R15) STORE BACKWARD SAVE AREA POINTER
LR R13,R15 MAKE MY SAVE AREA CURRENT
LA Rð,ð CLEAR REGISTER ð
LA R1,ð INDICATE NO PARAMETER LIST PASSED

 CALL ARIDBS
L R13,4(R13) GET ADDRESS OF CALLER'S SAVE AREA
L R14,12(R13) RESTORE CALLER'S R14
LM Rð,R12,2ð(R13) RESTORE CALLER'S Rð-R12
BR R14 RETURN. R15=DBS RETURN CODE

SAVE DS 18F
 END VMUCALL

Figure 78. DB2 Server for VM Sample Assembler Program to Call the Database Services
Utility

Running the DB2 Server for VM Database Services Utility with Multiple
User Mode

With multiple user mode, the Database Services Utility runs as an application
program in the user's virtual machine. It cannot run either in the CMS/DOS
environment or in CMS subset with multiple user mode.

Use the SQLINIT EXEC to specify the default database that you want to access.
For additional information on the SQLINIT EXEC, refer to the DB2 Server for VM
Database Administration manual.

Running the Database Services Utility with Single User Mode
When the Database Services Utility is run with single user mode, the database
manager is started by means of the SQLSTART EXEC, which is invoked by the
SQLDBSU EXEC. The database manager then loads the Database Services Utility
program and transfers control to the program ARIDBS. All startup and initialization
parameters cannot be directly supplied by means of the SQLDBSU EXEC. The
SQLDBSU EXEC parameters that can be supplied, however, and that are
applicable only to running the utility with single user mode are: DBNAME, DCSSID,
LOGMODE, and PARMID. These parameters are supplied to the SQLSTART
EXEC by the SQLDBSU EXEC when the database manager is started. The
SQLDBSU EXEC also supplies the initialization parameter, PROGNAME(ARIDBS),
to direct the database manager to execute the Database Services Utility program
ARIDBS. The IBM-supplied SQLSTART EXEC and the startup and initialization
parameters are described in the DB2 Server for VM System Administration manual.

 Chapter 7. Using the Database Services Utility from Application Programs 131

Single or Multiple User Mode
The sample commands shown below run the Database Services Utility with single
user mode and with multiple user mode to perform the following functions:

� Unload all tables in the SQLDBA database dbspace PUBLIC.SAMPLE to a
DASD file

� Reload the dbspace PUBLIC.SAMPLE from the DASD file to reorganize the
data for all tables in the dbspace.

The CMS file DBSU COMMANDS A contains the following DBS command input:

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
UNLOAD DBSPACE(PUBLIC.SAMPLE) OUTFILE(DASD1)
RELOAD DBSPACE(PUBLIC.SAMPLE) PURGE INFILE(DASD1)

To run the utility with single user mode, enter the following commands:

FILEDEF DASD1 DISK DBSUFILE DATA A4 (RECFM VBS BLOCK 2ð48
SQLDBSU DBNAME(SQLDBA) SYSIN(DBSU COMMANDS A) SYSPRINT(TERMINAL)

To run the utility with multiple user mode, enter the following commands:

 SQLINIT DBNAME(SQLDBA)
FILEDEF DASD1 DISK DBSUFILE DATA A4 (RECFM VBS BLOCK 2ð48
SQLDBSU SYSIN(DBSU COMMANDS A) SYSPRINT(TERMINAL)

Using the SQLDBSU EXEC

SQLDBSU EXEC Format
The following syntax diagrams show the format for invoking the Database Services
Utility with single or multiple user mode.

132 DBS Utility

Figure 79. SQLDBSU EXEC

Format :

Multiple User Mode Parameters

55─ ─SQLDBSU─ ──┬ ┬── ───────────────────────────────5
 └ ┘ ─sysIN──(─ ──┬ ┬─Reader────────────────────────────────── ─)─
 ├ ┤─Terminal────────────────────────────────
 └ ┘ ─file_name─ ──┬ ┬──────────────────────────
 └ ┘ ─file_type─ ──┬ ┬───────────
 └ ┘ ─file_mode─

5─ ──┬ ┬─── ─────────────────────────────────────5%
 └ ┘ ─sysPRint──(─ ──┬ ┬─Printer───────────────────────────────── ─)─
 ├ ┤─Terminal────────────────────────────────
 └ ┘ ─file_name─ ──┬ ┬──────────────────────────
 └ ┘ ─file_type─ ──┬ ┬───────────
 └ ┘ ─file_mode─

Multiple User Mode Examples : SQLDBSU SYSIN(T) SYSPRINT(PR) SQLDBSU

Notes:

1. When running the Database Services Utility in multiple user mode, you must
issue the SQLINIT EXEC before using the SQLDBSU EXEC. The SQLINIT
EXEC initializes the LASTING GLOBALV file and the database manager
bootstrap routines on your A-disk. These routines identify the application server
that you want to access and the method for loading the multiple user mode
support system routines.

The SQLINIT EXEC does not need to be run prior to each SQLDBSU
command. You need only to run the SQLINIT EXEC when you want to
establish access to a different application server, to vary the method of loading
the multiple user mode support system routines, or to change other
characteristics of the application requester.

An alternative method for connecting to another application server is to issue
the CONNECT command. See “CONNECT” on page 20, for more information
about using this command.

2. When the Database Services Utility (program ARIDBS) is run with multiple user
mode, it is loaded from load library ARISQLLD LOADLIB Q by using a CMS
NUCXLOAD command. Consequently, the SQLDBSU EXEC cannot be run in
the CMS/DOS environment with multiple user mode.

Notes:

1. In single user mode, the console and program stack buffers are purged by the
SQLSTART EXEC. If you use multiple-volume tape files for Database Services
Utility processing with multiple user mode, the console and program stack
buffers should not contain any information. Empty buffers ensure that any
prompts issued by the multiple tape volume tape support can be properly
processed.

The following is a description of the parameters for the Database Services Utility
SQLDBSU EXEC.

 Chapter 7. Using the Database Services Utility from Application Programs 133

sysIN (file_name file_type file_mode)
identifies the file name and optionally the file type and file mode of the CMS file
containing the Database Services Utility input commands. The file type defaults
to DBSINPUT and the file mode defaults to A.

If you supply this form of the SYSIN parameter, the SQLDBSU EXEC issues
the following CMS FILEDEF command for the Database Services Utility control
file:

FILEDEF SYSIN DISK file_name file_type file_mode . . .
(RECFM FB LRECL 8ð BLOCK 8ðð

sysIN (Reader)
specifies that the Database Services Utility input control file is a virtual reader
file. If you specify SYSIN(Reader), the SQLDBSU EXEC issues the following
CMS FILEDEF command for the Database Services Utility control file:

FILEDEF SYSIN READER (RECFM F LRECL 8ð

sysIN (Terminal)
specifies that the Database Services Utility input control file is the terminal. If
you specify SYSIN(Terminal), the SQLDBSU EXEC issues the following CMS
FILEDEF command for the Database Services Utility control file:

FILEDEF SYSIN TERMINAL (RECFM F LRECL 8ð

Notes:

1. The Database Services Utility control file is also assigned to the terminal if
you did not specify the SYSIN parameter, and you did not issue a CMS
FILEDEF command for the ddname=SYSIN before issuing the SQLDBSU
command.

2. If the Database Services Utility control file is assigned to the terminal:

a. Most Database Services Utility commands and all SQL statements
must be terminated by a semicolon. Database Services Utility
commands restricted to a single control file record (command line) do
not require a terminating semicolon. As a general rule, use a
semicolon to terminate all commands entered through the
terminal.

b. The end of Database Services Utility input is indicated by entering a
null line. Prompts are issued to you after you use the ENTER key to
enter a null line. Your response depends on whether or not a command
has been partially entered and on the type of command entered. This
way, you cannot end Database Services Utility processing by
mistakenly using the ENTER key. If prompted to quit and you want to
do so, enter QUIT or HX.

c. Positions 1–80 of the input record are checked for command
information. Therefore, command records contained in files identified by
READ FILE commands entered through the terminal cannot contain
sequence numbers in positions 73–80. The READ FILE command has
the format:

READ FILE file_name file_type file_mode

If you use the READ FILE command, it must be the first command after
you issued the EXEC SQLDBSU command. It must not be preceded by
any other commands.

134 DBS Utility

d. If Database Services Utility input entered from the terminal must
contain lowercase values, you must issue the following FILEDEF before
issuing the SQLDBSU EXEC without the SYSIN parameter
specification:

FILEDEF SYSIN TERMINAL (RECFM F LRECL 8ð LOWCASE

If you issue this FILEDEF command, all the Database Services Utility
command and SQL statement keywords must be entered in uppercase.

sysPRint (file_name file_type file_mode)
identifies the file name and optionally the file type and file mode of the CMS file
to be used for the Database Services Utility messages. The file type
specification defaults to DBSLIST and the file mode specification defaults to A.

If you specify this form of the SYSPRINT parameter, the SQLDBSU EXEC
issues the following CMS FILEDEF command for the Database Services Utility
message file:

FILEDEF SYSPRINT DISK file-name file-type file-mode . . .
(RECFM FBA LRECL 121 BLOCK 121ð

Note: Position 1 of the Database Services Utility message file
(ddname=SYSPRINT) print records contains American Standards
Association (ASA) control characters. If the message file is a CMS file
and is printed with the CMS PRINT command, the option CC should be
specified in the CMS PRINT command. Refer to the VM/ESA: CMS
Command Reference manual for a description of the CMS PRINT
command.

sysPRint (Printer)
specifies that the Database Services Utility message file should be assigned to
the virtual printer.

If you specify SYSPRINT (Printer), the SQLDBSU EXEC issues the following
CMS FILEDEF command for the Database Services Utility message file:

FILEDEF SYSPRINT PRINTER (RECFM FA LRECL 121

sysPRint (Terminal)
specifies that the Database Services Utility message file should be assigned to
the terminal.

If your specify SYSPRINT (Terminal), the SQLDBSU EXEC issues the following
CMS FILEDEF command for the Database Services Utility message file:

FILEDEF SYSPRINT TERMINAL (RECFM F LRECL 12ð

Note: The Database Services Utility message file is also assigned to the
terminal if the SYSPRINT parameter is not specified, and you did not
issue a CMS FILEDEF command for the ddname=SYSPRINT before
issuing the SQLDBSU EXEC.

Dbname(server_name)
indicates that the Database Services Utility should be run with single user
mode. It also identifies the name of the database to be accessed by the
commands contained in the Database Services Utility control file.

If you specify this parameter, the SQLSTART EXEC parameters
DBNAME(server_name) are specified. The initialization parameters
SYSMODE=S, and PROGNAME=ARIDBS are also supplied in the SQLSTART
EXEC PARM parameter.

 Chapter 7. Using the Database Services Utility from Application Programs 135

If you omit the DBNAME parameter, the Database Services Utility is run with
multiple user mode.

dcssID (dcss_id)
applies to running the Database Services Utility with single user mode. It
identifies the method by which all database manager modules are to be loaded
for execution. If you specify this paramter, you must also specify the DBNAME
parameter.

If you specify this parameter, it is supplied to the SQLSTART EXEC. The
SQLSTART EXEC then uses the database manager bootstrap routines with the
specified dcss-id to load the database manager code.

If you omit this parameter, it is not supplied as an SQLSTART EXEC
parameter.

LOGmode (A|L|N|Y)
applies only to running the Database Services Utility with single user mode.
This one-character field indicates how the logs are to be maintained:

A means maintain the logs and automatically archive the database.

L means maintain the logs and automatically archive the log when the specified
level has been reached.

N means do not maintain the logs for recovery.

Y means maintain the logs.

If you specify this parameter, you must also specify the DBNAME parameter. It
identifies the value to be used for the database initialization LOGMODE
parameter when the database manager is started in single user mode.

If you omit this parameter and you specify the DBNAME parameter, the
LOGMODE parameter is not supplied as an initialization parameter in the
SQLSTART EXEC.

PARMID (file_name)
applies only to running the Database Services Utility with single user mode. If
you specify this parameter, you must also specify the DBNAME parameter. It
identifies the file name of the CMS file that contains the database initialization
override parameters. The file type must be SQLPARM.

If you omit this parameter and you specify the DBNAME parameter, the
PARMID parameter is not supplied as an initialization parameter in the
SQLSTART EXEC.

For more information on the PARMID parameter, see the description of
SQLSTART in the DB2 Server for VM System Administration manual.

Notes:

1. If virtual console spooling is started and either SYSIN or SYSPRINT is
assigned to the terminal, the virtual console is spooled HOLD.

2. If the virtual printer is spooled NOHOLD, it is spooled HOLD, closed, and then
spooled NOHOLD.

3. When running the Database Services Utility, set the CP SET command EMSG
option to ON. The SQLDBSU EXEC checks the current EMSG option setting
and, if necessary, resets it to ON. If the EMSG option is reset, the original

136 DBS Utility

setting is restored during the SQLDBSU EXEC termination processing. The
original EMSG setting is not restored if SQLDBSU EXEC execution is
abnormally terminated. Refer to the VM/ESA: CP Command and Utility
Reference for a description of the SET command's EMSG option.

4. When running the Database Services Utility, the VM terminal logical line-editing
symbols (character delete, line delete, line end, and escape) must be defined
as follows:

LINEND # LINEDEL OFF CHARDEL OFF ESCAPE 1/2

The SQLDBSU EXEC checks the current settings for these symbols and, if
necessary, resets the symbols as described previously. If the symbols are
reset, the original symbols are restored during the SQLDBSU EXEC termination
processing. The symbols are not reset if SQLDBSU EXEC execution is
abnormally terminated. Refer to the VM/ESA: CP Command and Utility
Reference for a description of the TERMINAL command and the logical
line-editing symbols.

5. The Database Services Utility control file (ddname=SYSIN) logical record length
(LRECL) must be 80. The record format (RECFM) should be fixed or fixed
blocked.

6. The Database Services Utility message file (ddname=SYSPRINT) logical record
length (LRECL) must be at least 81. The record format (RECFM) should be
fixed or fixed blocked with ASA print control characters (F or FB).

If the Database Services Utility control parameter PAGECTL(NO) is specified,
the minimum message file record length is 80. The record format should be
fixed or fixed blocked (F or FB).

7. Database Services Utility and SQL statement information must be in positions
1-72 of the control file (ddname=SYSIN) records except when SYSIN defines
the input control file as the terminal. If the terminal is the control file, you can
put Database Services Utility and SQL statement information in positions 1-80
of a command line that you enter from the terminal. If you enter a DB2 Server
for VSE & VM READ FILE file_name file_type file_mode command from the
terminal, the CMS file containing SQL statements or Database Services Utility
commands cannot have sequence numbers in positions 73-80 because the
Database Services Utility searches positions 1-80 for command information. For
more information on the READ FILE command, see the DB2 Server for VM
Program Directory.

You can always reference all 80 positions of data records contained in the
Database Services Utility control file as data field positions.

8. You must define all input or output data file ddnames referenced in the
Database Services Utility commands supplied in the Database Services Utility
control file through the CMS FILEDEF commands before issuing the SQLDBSU
command.

If you define DASD CMS files with variable-length spanned records for
Database Services Utility command input/output, you must use the file mode
number 4.

9. If you do not specify the SYSIN information in the EXEC parameters, and you
do not define the Database Services Utility control file (ddname=SYSIN) with
the CMS FILEDEF command before issuing the SQLDBSU command, the
SQLDBSU EXEC issues the following default FILEDEF command:

 Chapter 7. Using the Database Services Utility from Application Programs 137

FILEDEF SYSIN TERMINAL (RECFM F LRECL 8ð

If you do not specify the SYSIN information in the EXEC parameters, but you
define the Database Services Utility control file (ddname=SYSIN) with a CMS
FILEDEF command before issuing the SQLDBSU command, the SQLDBSU
EXEC uses the user-defined Database Services Utility control file. Specify a
logical record length (LRECL) of 80 for a user-defined Database Services Utility
control file.

10. If you do not specify SYSPRINT information, and you do not define the
Database Services Utility message file (ddname=SYSPRINT) with a CMS
FILEDEF command before issuing the SQLDBSU command, the SQLDBSU
EXEC issues this FILEDEF command:

FILEDEF SYSPRINT TERMINAL (RECFM F LRECL 12ð

If you define the DBS Utility message file with a CMS FILEDEF command, the
minimum logical record length (LRECL) is 81. If you specify the Database
Services Utility control parameter as PAGECTL(NO), the minimum message file
record length is 80.

138 DBS Utility

 Chapter 8. Command Reference

The DBS Utility can process commands that are unique to the Database Services
Utility and SQL statements that are not restricted to use in user-written programs.
This chapter provides descriptions of the Database Services Utility commands and
general rules governing how you type the commands. (SQL statements are
described in the DB2 Server for VSE & VM SQL Reference.)

 Command Processing
Two kinds of commands that you can specify in the DBS Utility are DBS Utility
commands and SQL statements.

The difference between an SQL statement and a Database Services Utility
command is that a DBS command can only be issued within the Database Services
Utility. If you try to issue a DBS command outside of the utility itself, it fails. On the
other hand, an SQL statement can be issued in both ISQL and the Database
Services Utility.

Here is a summary of the Database Services Utility commands:

 DATALOAD
 DATAUNLOAD
 RELOAD
 UNLOAD
 SET
 COMMENT
 REORGANIZE INDEX
 SCHEMA
 REBIND PACKAGE

Control commands are entered by means of one or more 80-byte input records in
the (input) control file. The utility usually reads only the first 72 positions of these
command records; you can use positions 73 through 80 for sequence numbers.
When control command input is being read directly from a DB2 Server for VM
terminal, all 80 positions of the command record can contain command information.
Some Database Services Utility commands allow you to place data within the
(input) control file; these data records are not restricted to the first 72 positions and
can have information in all 80 positions.

In DB2 Server for VSE, lowercase information supplied in an input control card file
and read by the Database Services Utility is not converted to uppercase by
Database Services Utility processing. ISQL, on the other hand, converts lowercase
information to uppercase. Use uppercase in the input control card file to avoid a
case mismatch, especially for a table or dbspace name. In DB2 Server for VM,
lowercase information supplied in commands read by the utility is converted to
uppercase only when the control file (SYSIN) is assigned to the terminal. If you
require lowercase information and the utility reads commands from the terminal,
specify LOWCASE when you issue a CMS FILEDEF command to define the control
file (SYSIN). Alternatively, you can use the CMS SET INPUT xx yy command to
reset the hexadecimal code xx to the hexadecimal code yy. Refer to the VM/ESA:
CMS Command Reference manual for more information.

 Copyright IBM Corp. 1987, 1998 139

Except where noted, the control commands can span multiple 80-byte input
records. Individual keywords or parameter values must never span input records, or
a Database Services Utility processing error results. For example, these records
are correct:

┌──┐
│ 1 ┌───────────────┐ col 72 8ð │
│ │───────────────────── │ INPUT RECORDS │ ──────────────────────────│ │ │
│ │ └───────────────┘ │ │ │
│ 6 6 6 │
│ SELECT MFBðð1 │
│ EMPNO, LASTNAME FROM SQLDBA.EMPLOYEE; MFBðð2 │
│ │
│ ┌────────────┐ │
│ │ Correct. │ │
│ └────────────┘ │
└──┘

Figure 80. Example of Correct Records

MFB001 and MFB002 are sequence numbers that the Database Services Utility
ignores. Note that SELECT ends in position 72 in the above example.
Conceptually, the Database Services Utility inserts a single blank character
between input records; the above records are interpreted as:

SELECT EMPNO, LASTNAME FROM SQLDBA.EMPLOYEE;

The following input records are incorrect:

┌──┐
│ 1 ┌───────────────┐ col 72 8ð │
│ │───────────────────── │ INPUT RECORDS │ ──────────────────────────│ │ │
│ │ └───────────────┘ │ │ │
│ 6 6 6 │
│ SELE MFBðð1 │
│ CT EMPNO, LASTNAME FROM SQLDBA.EMPLOYEE; MFBðð2 │
│ ┌──────────────────────┐ │
│ │ Incorrect! │ │
│ │ Don't split keywords │ │
│ └──────────────────────┘ │
│ │
└──┘

Figure 81. Example of Incorrect Records

The Database Services Utility inserts a blank after column 72, and thus interprets
the input records as:

SELE CT EMPNO, LASTNAME FROM SQLDBA.EMPLOYEE;

The Database Services Utility does not recognize SELE as a Database Services
Utility command, and an error results.

There is an exception to the rule that individual keywords or parameter values must
not span input records. This exception occurs when a parameter is enclosed in
either single (') or double (") quotation marks. For these parameters, the Database
Services Utility does not insert a blank after position 72. Consider the following
example in which a character string constant spans multiple input records. The
character constant is delimited by a single quotation mark ('):

140 DBS Utility

┌──┐
│ 1 ┌───────────────┐ col 72 8ð │
│ │───────────────────── │ INPUT RECORDS │ ──────────────────────────│ │ │
│ │ └───────────────┘ │ │ │
│ 6 6 6 │
│ SELECT 'AVERA MFBðð1 │
│ GE', AVG(BONUS) FROM SQLDBA.EMPLOYEE; MFBðð2 │
│ ┌─────────────────┐ │
│ │ Correct. │ │
│ │ You can split │ │
│ │ quoted strings. │ │
│ └─────────────────┘ │
└──┘

Figure 82. Example of a Character String Constant Spanning Multiple Input Records

The Database Services Utility interprets the above records as:

SELECT 'AVERAGE', AVG(BONUS) FROM SQLDBA.EMPLOYEE;

Each Database Services Utility command or SQL statement must begin on a new
(input) control file input record.

DB2 Server for VM

Database Services Utility commands are terminated by a semicolon, by the start
of the next command, or by the end of the input control records. Terminate
Database Services Utility commands with a semicolon when Database Services
Utility control command input is being read directly from a terminal.

In the Database Services Utility environment, SQL statements must be
terminated with a semicolon. Do not use the SQL continuation character
(required by ISQL) in an SQL statement that spans record boundaries in either
a batch or an interactive environment.

Database Services Utility processing ends when all the input records are
processed.

 COMMENT
With the COMMENT command, you can document input by supplying Database
Services Utility COMMENT commands at appropriate points within the Database
Services Utility control command input stream. The utility displays the comments in
the report or message file listing. You cannot use SQL comments within DBS Utility
COMMENT commands.

 COMMENT Format

Format :

55──COMMENT─ ──'string_constant' ───5%

 Chapter 8. Command Reference 141

COMMENT
identifies a Database Services Utility COMMENT command. At least one blank
must appear after the command identifier.

'string-constant'
is the comment text delimited by single quotation marks. The string-constant
can span control command input records, but must begin in the same record
that contains the command identifier. All positions of a control command record
containing comment text are displayed. A COMMENT command is terminated
when a control command input record containing comment text ends with a
single quotation mark or a single quotation mark immediately followed by a
semicolon. All control command input record positions (normally positions
1-72) after the terminating single quotation mark or single quotation mark and
semicolon must be blank. Positions 73-80 of comment text records can still
contain sequence numbers (except in DB2 Server for VM when Database
Services Utility control command input is being read directly from a terminal).

 REORGANIZE INDEX
The REORGANIZE INDEX command allows you to correct index fragmentation,
and correct the skewing of index key values without having to drop the index and
then recreate it using the DROP INDEX and CREATE INDEX SQL statements.
REORGANIZE INDEX also revalidates an invalid index.

As with other Database Services Utility commands, you can use the REORGANIZE
INDEX command with both single user mode and multiple user mode.

Note: The REORGANIZE INDEX command is not supported on a non-DB2 Server
for VM application server or if you are using DRDA protocol.

REORGANIZE INDEX Format

Format :

55──REORGANIZE INDEX─ ──(index_name) ──┬ ┬──────────────────── ───────────────────────────────5%
 └ ┘ ─PCTFREE =──integer─

Example :

REORGANIZE INDEX(SMITH.INDEXINV) PCTFREE = 50

Authorization : You must own the index or have DBA authority.

Note: In DB2 Server for VSE, to reorganize a catalog index, you must start the database manager in
single user mode and specify STARTUP=I.

INDEX (index-name)
identifies the index to be reorganized. You can further identify the index by
specifying the owner and server-name of the index. For more information about
identifying the index, see “Qualifying Object Names” on page 111 for details.
When reorganizing an invalid index, the database manager uses a sort similar
to the one used for a CREATE INDEX statement.

142 DBS Utility

PCTFREE = integer
allows you to control the amount of free space that REORGANIZE reserves in
the index for later insertions and updates.

integer
is a number from ð to 99 representing a percentage of the total index space.
For practical purposes, it should not exceed 50.

If you do not specify PCTFREE, the amount of free space remains unchanged from
the previous PCTFREE value.

The REORGANIZE INDEX command consists of several separate internal steps.
Some steps might be completed even though the whole REORGANIZE INDEX
command is not completed successfully.

The following unusual situations can occur when rolling back or recovering from a
REORGANIZE INDEX command:

� Although a REORGANIZE INDEX command is successfully completed during
forward processing, it might not be completed during rollback or recovery
because the system has run out of physical or logical pages (or both).
Checkpoints for sufficient storage can interrupt only during forward processing.
As a result, the recovered index is marked invalid.

� If an index reorganization is rolled back or undone, the recovered index is
nevertheless reorganized. In REORGANIZE INDEX processing, the index is
effectively dropped and re-created, resulting in a reorganized index. If you
changed the PCTFREE value, however, that value is set back to the original
value defined before the REORGANIZE INDEX command.

� If the system ends abnormally after an index reorganization is interrupted by a
checkpoint and an attempt is made to restart the database manager without the
current log (because of a loss of the log or log reconfiguration), the reorganized
index will be marked as invalid. It must be recovered by dropping the dbspace
and re-creating it, or by restoring a previous database archive.

� The updating of index statistics is not supported during rollback or recovery.
The previous index statistics are recovered, but the recovered index (which is
nevertheless reorganized) may not match them.

DBSS prevents a REORGANIZE INDEX or CREATE INDEX command from
proceeding if the command can overflow the invalid index limit. During rollback or
recovery, if the maximum number of invalid indexes (30) is reached, the system
ends abnormally. When the system is brought up again for recovery, it is very likely
to end again for the same reason. If the large number of invalid indexes exists
because of a lack of physical pages, add a dbextent to the system before
attempting to recover again. If the large number of invalid indexes exists because
of a lack of logical index pages, use filtered log recovery to skip over the index
reorganizations that are causing the invalid indexes. For information about adding a
dbextent, see the DB2 Server for VM System Administration manual. To find out
more about using filtered log recovery, see the DB2 Server for VSE Diagnosis
Guide and Reference, or the DB2 Server for VM Diagnosis Guide and Reference
manual. Additional information on the REORGANIZE INDEX command is in the
DB2 Server for VSE Database Administration, and DB2 Server for VM Database
Administration manuals.

 Chapter 8. Command Reference 143

In VM, you can reorganize a catalog index only by using the utility SQLCIREO, and
you can only reorganize a primary key index or a unique index by using the ALTER
TABLE ACTIVATE PRIMARY KEY and ALTER TABLE ACTIVATE UNIQUE
statements.

 SCHEMA
A schema file specifies an authorization ID and a list of table, view, and privilege
definitions using the syntax of the CREATE TABLE, CREATE VIEW, and GRANT
statements. The SCHEMA command reads and processes the statements from a
schema file.

 SCHEMA Format

Figure 83. SCHEMA Command Syntax

Format :

55──SCHEMA INFILE──(──ddname──┤ option-c ├─ ─)─ ──┬ ┬──────────────────── ──────────────────────────────5%
 └ ┘─IN─ ──(dbspace_name)

option -c:
├─ ──┬ ┬─────────────────────── ──┬ ┬──────────────────────────────── ────────────────────────────────────┤
 │ │┌ ┐─2ððð─ │ │┌ ┐─REWIND───
 └ ┘ ─BLKSZ─ ─(─ ──┴ ┴─size─ ─)─ │ │┌ ┐ ─(TAPE)─ ──┴ ┴─NOREWIND─
 └ ┘ ─PDEV─ ──┴ ┴─(DASD)───────────────

Example :

SCHEMA INFILE(IN1 BLKSZ(800))

Authorization:

You must be connected as the AUTHORIZATION ID specified in the CREATE SCHEMA statement.

INFILE (ddname)
identifies the sequential input file containing the schema.

ddname
in DB2 Server for VSE: this is the TLBL or DLBL job control statement file
name for the sequential input file. The file must have a record format of
fixed-length blocked and a record length of 80.

Alternatively, SCHEMA can read its input from SYSIPT by using a READ
MEMBER. You use the READ MEMBER NOCONT option to properly close
the SYSIPT file. An example of using READ MEMBER with NOCONT is:

SCHEMA INFILE(SYSIPT)
READ MEMBER schema-member (NOCONT

If you do not specify the NOCONT option, the database manager reads in
the SYSIPT records following the READ MEMBER statement as part of the
SCHEMA file; then SYSIPT can provide additional input after the READ
MEMBER statement.

in DB2 Server for VM: this is the name of the sequential input file. It must
have records with a fixed length of 80 characters. The file characteristics
specified in the FILEDEF command or the default FILEDEF options are the

144 DBS Utility

source of the input record definition information for the Database Services
Utility. Do not specify SYSIN or SYSPRINT as the ddname.

dbspace-name
specifies the name of the dbspace where the table is to be placed if no
dbspace-name is given in the CREATE TABLE statement. If the CREATE
TABLE statement in the SCHEMA input file specifies a dbspace-name then
this overrides the name of the dbspace given in the SCHEMA command.

BLKSZ (size)
is a parameter that specifies the block size of the sequential input file. The
default block size is 2 000 bytes per block.

PDEV (TAPE or DASD)
is an optional parameter that specifies the device type (DASD or TAPE) of the
sequential (SAM) input file. If PDEV(DASD) is specified, the file resides on any
device supported by the VSE DTFSD macro. VSAM-managed SAM does not
support spanned records. If PDEV(TAPE) is specified, the file resides on any
device supported by the VSE DTFMT macro. The default is PDEV(TAPE).

NOREWIND or REWIND
controls tape file rewind processing performed during OPEN processing.
This parameter is valid only if you specify TAPE for PDEV. The default
processing is REWIND.

NOREWIND
specifies that the tape file is not to be rewound by OPEN processing. If
NOREWIND is specified for input tape files referenced by a series of
SCHEMA commands, you must ensure that the tape files being
referenced are in ascending sequence. For example, if NOREWIND is
specified in a sequence of two SCHEMA commands and the first
command reads tape file 2, then the second command must reference
tape file 3 or a higher number. If it references tape file 1, an OPEN
error occurs.

REWIND
specifies OPEN processing to rewind the tape file.

Figure 84. Contents of the Schema (in a Sequential Input File)

Format :

 ┌ ┐─;─ ┌ ┐─────────────────────────────
55──CREATE SCHEMA AUTHORIZATION──authorization_id─ ──┴ ┴─── ───6 ┴┬ ┬───────────────────────── ──5%
 │ │┌ ┐─;─
 └ ┘ ─schema_statement─ ──┴ ┴───

Example :

-- create table TAB1 and give Jones SELECT privilege
CREATE SCHEMA AUTHORIZATION SMITH
CREATE TABLE SMITH.TAB1 (COL1 CHAR(4))
GRANT SELECT ON TAB1 TO JONES

The first line of the above example is a comment line. To insert comments within
the schema file:

� Mark the beginning of a comment with two consecutive hyphens (--)

 Chapter 8. Command Reference 145

� Begin the comment anywhere on a record or line
� End the comment with the end of the record or line.

The sequential input file must contain only one CREATE SCHEMA statement,
which must be the first statement in the file (unless the preceding lines are
comments); otherwise, the Database Services Utility issues an error message and
stops processing the SCHEMA command.

AUTHORIZATION authorization id
You must be connected as the authorization id in the AUTHORIZATION clause.
If a schema statement does not specify an owner, the statement is processed
for the authorization ID. For example, in Figure 84 the SELECT privilege in the
GRANT statement is granted on SMITH.TAB1.

schema-statement
refers to every statement following the CREATE SCHEMA statement. Valid
schema statements are:

 � CREATE TABLE
 � CREATE VIEW
� GRANT (INSERT, SELECT, UPDATE, REFERENCES, ALL and DELETE

privileges).

The schema statements must be entered in uppercase. See the DB2 Server for
VSE & VM SQL Reference for the correct syntax of valid schema statements.
Successful statements are committed if the Database Services Utility
AUTOCOMMIT indicator is ON.

The Database Services Utility issues an error message if any invalid statement
is in the schema, and might or might not continue processing on the next
statement, depending on the setting of ERRORMODE.

You can change the setting of the ERRORMODE and AUTOCOMMIT
indicators before the SCHEMA command by issuing the Database Services
Utility SET ERRORMODE and SET AUTOCOMMIT commands. If
ERRORMODE is set to CONTINUE, processing continues on the next
statement following a minor error on any sequential input file statement other
than the CREATE SCHEMA statement. If AUTOCOMMIT is ON, the work is
committed after each successful statement. For a complete description of these
commands, see “SET ERRORMODE” on page 214 and “SET AUTOCOMMIT”
on page 214.

Using File Definitions with the DB2 Server for VM SCHEMA
Command
The schema file must have a fixed length of 80 characters. This format is used if
you do not specify any FILEDEF options when you define a schema file. For
example, you can create a FILEDEF such as this:

FILEDEF DBSFILE DISK DBSFILE SCHEMIN A

where DBSFILE is the name of the schema file as you refer to it in the SCHEMA
command.

For a procedure to construct a FILEDEF command, see “Using File Definitions” on
page 14. For more information about FILEDEF parameters and options, see
Appendix B, “FILEDEF Command Syntax and Notes” on page 249.

146 DBS Utility

SQL Statement Processing
The SQL statements that you can enter from the (input) control file are:

� SELECT statements (without an INTO clause or host variables)
� Data manipulation statements
� Data control statements
� Data definition statements

 � Authorization statements.

You cannot enter some SQL statements in the Database Services Utility (input)
control file. You receive an error message if you attempt to use these statements:

� SELECT statements with an INTO clause or host variables

� Cursor management statements (DECLARE, OPEN, FETCH, CLOSE)

� Commands that support dynamic SQL statement execution (PREPARE,
DESCRIBE, EXECUTE, EXECUTE IMMEDIATE)

� Exception handling statements (WHENEVER statements)

� INCLUDE statements (INCLUDE SQLCA or INCLUDE SQLDA).

SQL statements entered from a Database Services Utility (input) control file must
not be prefixed by EXEC SQL (as they are when embedded within application
programs). In DB2 Server for VM, no information should be placed in the input
record after the semicolon. This restriction does not apply to positions 73 through
80 of a control-file record when the Database Services Utility control file is assigned
as a CMS file. In DB2 Server for VSE, use a semicolon to indicate the end of each
SQL statement. Do not use the continuation character required by ISQL for SQL
statements that span record boundaries. Except for positions 73 through 80, no
information should be placed in the input record after the semicolon.

SELECT and Arithmetic Exceptions
Database Services Utility flags arithmetic exceptions in outer select-lists by filling
the corresponding fields with number (or pound) signs (#). When one or more of
these exceptions occur, (for example, when a number is divided by zero) a
Database Services Utility and an SQLCODE message are issued after the results
are retrieved. If more than one arithmetic exception occurs, only one
message—referring to the first exception—is issued. This is to alert you to any
warnings occurring during Database Services Utility (input) control file processing.

 Processing Summary
Figure 85 on page 148 summarizes the Database Services Utility processing that
you can perform on tables and views.

 Chapter 8. Command Reference 147

Table View Multiple
Tables

DATAUNLOAD
UNLOAD

TABLE
UNLOAD

DBSPACE

SAM File
1

SAM File
1

RELOAD TABLE NEW

RELOAD TABLE PURGE

DATALOAD TABLE

RELOAD DBSPACE
NEW OR PURGE

User Program
Table

View

One or
More

Tables

2

3

(Note that the SAM
files could also be
on magnetic tape.)

Figure 85. Database Services Utility Processing

Notes:

1. See Database Services Utility UNLOAD record format description in “UNLOAD
DBSPACE” on page 201 and “UNLOAD TABLE” on page 204.

2. View definitions must not violate any of the rules related to SQL INSERT
processing. In general, the view must be:

� Defined only on one table
� Defined to include all the NOT NULL columns of the underlying table
� Defined without using virtual column definitions.

3. If SAM files created by Database Services Utility UNLOAD processing are used
as input to Database Services Utility DATALOAD processing, the rules below
must be followed. (This description assumes that you are thoroughly familiar
with the Database Services Utility UNLOAD record formats and the contents of
each Database Services Utility UNLOAD record type.)

� All input data records selected for DATALOAD processing must contain
data fields in the same position in each data record up to the last position
of a data record type referenced by DATALOAD commands.

This rule implies that all input data record varying-length fields must have
the same length. Any fields that permit nulls must all be null or must all
contain data.

� The DATALOAD input-record-id-clause must be employed to select at least
the UNLOAD record type 60 for DATALOAD processing.

� The position of the column data in the input data record must be computed
from the following information:

– Order of column definition in source table or view

148 DBS Utility

– Actual length of column data at time of UNLOAD

– Fixed “overhead” in data records created by Database Services Utility
UNLOAD processing.

 Load-Data Commands

 DATALOAD TABLE
The DATALOAD command and subcommands are contained on more than one
input record. If, for example, you want to load data into 10 columns of a table, the
first input record contains the DATALOAD command, and the next 10 input records
contain the Table Column Identification (TCI) subcommands.

The DATALOAD command cannot be continued onto a second input record; it must
be completed on a single record. The record immediately following the DATALOAD
command must contain a TCI subcommand.

DATALOAD TABLE Format

 Chapter 8. Command Reference 149

Format:

55──DATALOAD──TABLE─ ──(table_name) ──┬ ┬──────────────────────── ───────────────────────────5
 └ ┘─input_record_id_clause─

5──table_column_id_subcommand──5

5─ ─infile_subcommand─ ──┬ ┬─────────────────────────────── ────────────────────────────────5%
 │ │┌ ┐─.────────────────
 └ ┘ ───6 ┴─user_data_record─ ─ENDDATA─

input-record-id-clause :

5─ ─IF POS──(──startpos─ ──┬ ┬───────── ─)─ ──┬ ┬─ = ── ─constant───────────────────────────────5
└ ┘─-endpos─ ├ ┤─ <> ─

├ ┤─ ¬= ─
├ ┤─ < ──
├ ┤─ > ──
├ ┤─ <= ─
└ ┘─ >= ─

table_column_id_subcommand:
 ┌ ┐─.──
 │ │┌ ┐─CHARacter─
├─ ───6 ┴ ─column_name──startpos─ ──┬ ┬───────── ──┼ ┼─────────── ──┬ ┬───────────────────────── ───┤

└ ┘─-endpos─ └ ┘─data_type─ └ ┘─┤ null_current_clause ├─

null_current_clause:
├─ ──┬ ┬─NULL────────────── ──5
 ├ ┤─CURRENT DATE──────
 ├ ┤─CURRENT TIME──────
 └ ┘─CURRENT TIMESTAMP─

5─ ──┬ ┬── ─────────────────────┤
 │ │┌ ┐─IF─
 └ ┘──┴ ┴──── ─POS──(──startpos─ ──┬ ┬───────── ─)─ ──┬ ┬─ = ── ─constant─

└ ┘─-endpos─ ├ ┤─ <> ─
├ ┤─ ¬= ─
├ ┤─ < ──
├ ┤─ > ──
├ ┤─ <= ─
└ ┘─ >= ─

5─ ─INFILE─ ──┬ ┬ ─(──\─ ──┬ ┬────────────────────────── ──┬ ┬───────────────────── ─)─ ───────────5
 │ ││ │┌ ┐─No── │ │┌ ┐─Yes─
 │ │└ ┘ ─CONTINUED──(─ ──┼ ┼───── ─)─ └ ┘ ─LIST──(─ ──┼ ┼───── ─)─
 │ │└ ┘─Yes─ └ ┘─No──
 └ ┘─(──ddname──┤ option_b ├──)─────────────────────────────────────

5─ ──┬ ┬─────────────────────── ──┬ ┬──────────────────────── ────────────────────────────────5
 └ ┘─COMMITCOUNT─ ──(ccount) └ ┘─RESTARTCOUNT─ ──(rcount)

Note:
1 Option B is valid in DB2 Server for VSE only.

option-b:

tape/disk options for DB2 Server for VSE:
├─ ──┬ ┬───────────────────── ──┬ ┬──────────────────────────────── ──┬ ┬───────────────── ─────5
 │ │┌ ┐─2ð48─ │ │┌ ┐─REWIND─── └ ┘─RECFM─ ──(format)
 └ ┘ ─BLKSZ─ ──(──┴ ┴─size─) │ │┌ ┐ ─(TAPE)─ ──┴ ┴─NOREWIND─
 └ ┘ ─PDEV─ ──┴ ┴─(DASD)───────────────

5─ ──┬ ┬─────────────── ──┤
 └ ┘─RECSZ─ ──(size)

Example:

 DATALOAD TABLE(SMITH.ACTIVITY)
 ACTNO 1-3
 ACTKWD 5-1ð
 ACTDESC 12-21
 INFILE(NEWACT) <------- in DB2 Server for VM
 INFILE(NEWACT BLKSZ (2ð48) PDEV (TAPE) NOREWIND RECFM(FB)) <--in DB2 Server for VSE

Authorization : You must have the INSERT and
SELECT privilege on the tables affected by the command.

150 DBS Utility

TABLE (table_name)
identifies the table (called table_name) to be loaded. (The table must already
exist.) You can further identify the table by specifying the owner of the table.
For more information about identifying tables see “Qualifying Object Names” on
page 111. A synonym cannot be used as table_name. You can specify a view
name instead of a table name if the view meets the following requirements:

� The view is defined on a single table.

� The view definition includes all NOT NULL columns in the table. That is, all
columns outside of the view definition must permit the insertion of nulls.

� The view does not contain a column that is a virtual column.

A virtual column is a column of a view that is not derived directly from a
column of a table. For example, view columns defined with expressions
such as BONUS+COMM, PRSTAFF*1.5, or AVG(BONUS) are virtual
columns.

When loading data into a view that was created using the WITH CHECK
OPTION clause, the database manager checks all inserts and updates to the
view against the view definition and rejects them if the row to be inserted or
updated does not conform to the view definition.

table_name
identifies the table to be loaded.

input_record_id_clause
is optional; it allows you to selectively load records into the table. Records are
used for DATALOAD processing only if they contain the value specified in the
input_record_id_clause. All input data records are loaded into the table if you
omit this parameter.

If multiple DATALOAD commands are supplied before an INFILE command and
an input_record_id_clause appears on one of them, all the DATALOAD
commands must have the clause. Database Services Utility error messages are
generated and no DATALOAD processing is performed if you break this rule.

The parameters of input_record_id_clause are:

startpos
identifies the starting position in the input record of the identification value.
Position 1 of the input record is the first position of the logical record. If
variable-length input records are used, startpos 1 to 4 refers to the record
length control field. As a result, startpos 5 refers to the first data position.

endpos
identifies the last position of the identification value. If the value occupies only
one position, you need only specify startpos. Blanks are not allowed between
the starting position, hyphen, or ending position values.

constant
identifies the identification value. If an input record contains this value in the
specified location, it is used for loading the specified table.

The value cannot be continued onto a second input record. It can be one of the
following:

� A character-string constant that satisfies both of these requirements:

 Chapter 8. Command Reference 151

– Must be enclosed in single quotation marks (')
– Has a value of maximum length equal to endpos−startpos+1.

� A one-position unsigned integer constant (range is ð to 255)

� A two-position optionally signed integer constant (default is a positive value)

� A four-position optionally signed integer constant (default is a positive
value).

Notice that one-, two-, or four-position refers to the length the value occupies in
the input record, not the length it occupies in the clause itself. See Figure 86
through Figure 89 on page 153 for examples to clarify this definition.

Examples of Input-Record-Id-Clause

IF POS (2ð─22) = 'RT1'%───────┬───────────────────────────┐
IF POS (2ð─21) ¬= 'ð1' │ To be used for DATALOAD, │

│ positions 2ð to 22 of the │
│ input data record must │
│ contain the character │
│ string RT1. │

 └───────────────────────────┘

Figure 86. Character-String Constant Value Used in the Input-Record-Id-Clause

IF POS (2ð) = 255%────────────┬───────────────────────────┐
IF POS (16) ¬= 25 │ To be used for DATALOAD, │
IF POS (35) > 3 │ position 2ð of the input │

│ record must contain a │
│ hex FF value. │

 └───────────────────────────┘

Figure 87. One-Position Integer Constant Value Used in the Input_Record_Id_Clause

IF POS (2ð─21) = 1<───────────┬───────────────────────────┐
IF POS (35─36) <> 5ð | To be used for DATALOAD, |
IF POS (5─6) >= +32767 │ positions 2ð through 21 │
IF POS (3─4) <= 32768 | of the input data record |

│ must contain a hex ððð1 │
 │ value. │
 └───────────────────────────┘

Figure 88. Two-Position Integer Constant Value Used in the Input_Record_Id_Clause

152 DBS Utility

IF POS (2ð─23) = 15%──────────┬───────────────────────────┐
IF POS (16─19) ¬= 5ð │ To be used for DATALOAD, │
IF POS (21─24) >= +2ððð123563 │ positions 2ð through 23 │
IF POS (2ð─23) <18391ð7489 | of the input data record |

│ must contain a │
│ hex ðððððððF value. │

 └───────────────────────────┘

Figure 89. Four-Position Integer Constant Value Used in the Input_Record_Id_Clause

 Table_Column_Id_Subcommand

Format:

5──column_name──startpos──┤ options ├──┤ null_current_clause ├─────────5

options:
 ┌ ┐─.───────────
 │ │┌ ┐─CHARacter─
├─ ──┬ ┬───────── ───6 ┴┼ ┼─────────── ───────────────────────────────────────┤
 └ ┘─-endpos─ └ ┘─data_type─

The next record following the DATALOAD command must contain a Table Column
Identification (TCI) subcommand. If it does not, the Database Services Utility issues
an error message. TCI subcommands identify the location in the input records of
the data for a table column. Only one TCI subcommand can appear in an input
record. The command parameters must not span input records, and the
column_name, startpos, and endpos parameters must be specified first in the
command and in that order.

The data must be in the same record positions in all records that relate to the table.

column_name
specifies the name of the table column where the input data is to be stored.

startpos
identifies the starting position of the data in each input data record. Position 1
of the input record corresponds to the first position of the logical input record. If
variable-length input records are used, startpos 1 to 4 will refer to the record
length control information. As a result, startpos 5 refers to the first data
position.

endpos
identifies the end position of the data in each input data record. You can omit
this parameter if the data occupies only one position in the input record. If you
specify this parameter, do not place blanks between the starting position and
the hyphen, or between the hyphen and the ending position.

data-type
identifies whether character, fixed-binary, floating-point, zoned, packed decimal,
or graphic data values are contained in the record positions specified. The data
type specification can appear either before or after null or current if both

 Chapter 8. Command Reference 153

parameters are entered. The data type parameter is optional, and the default
data type is character. The valid data type identifiers that you can specify are:

CHAR or CHARACTER
If the column-type is CHAR, an all-blank input record data field results in a
sequence of blanks being inserted in the table.

If the table column is defined with a column-type of VARCHAR, trailing
blanks are removed from the input record data field before the length of the
field is established. An all-blank input record data field targeted for a
varying-length character column results in a length of ð. (A sequence of
blanks is not inserted in the database.)

If extended DBCS is in effect for a database, character input data can
contain DBCS characters with shift-in and shift-out delimiters, but the
Database Services Utility does not ensure that shift-in and shift-out
delimiters are balanced.

If the table column is defined as numeric (SMALLINT, INTEGER,
DECIMAL, or FLOAT), character (EBCDIC) input data must be in the form
of an SQL INTEGER, DECIMAL, or FLOAT constant. The character input
data is then converted by Database Services Utility processing.

Note: If a data field contains an EBCDIC numeric value that is not in the
form of an SQL INTEGER, DECIMAL, or FLOAT constant, (or if it
contains an implied decimal point), the data field can meet the
requirements of a DATALOAD ZONED input data field.

The type of representation allowed for numeric values in character (CHAR
or CHARACTER) input data fields depends on the data type of the target
numeric column:

� A value in an SQL INTEGER constant format is valid for a SMALLINT
or INTEGER column.

� A value in an SQL INTEGER or DECIMAL constant format is valid for a
DECIMAL column.

� A value in an SQL INTEGER, DECIMAL, or FLOAT constant format is
valid for a FLOAT column.

The number is converted regardless of its position in the field, but leading
and trailing blanks are ignored. If you specify a data field in positions 1 to 5
and type a 2-character number in positions 4 and 5, the number is
recognized. In the example below, the TCI subcommand says that data for
ACTNO (which has a SMALLINT data type) is in record positions 1 through
5. Additionally, it identifies that the data within those record positions is
character. Thus, the Database Services Utility must convert the character
data on the input record to a SMALLINT value before it can insert it into the
ACTNO column shown in Figure 90 on page 155.

154 DBS Utility

DATALOAD TABLE(ACTIVITY)
ACTNO 1─5 CHAR

Input Record:
────────────
 1 5
 │ │
 │ │ ┌──┐
V V │ In both of these cases, the utility │

45 │ recognizes 45 and ignores the leading │
45 │ or trailing blanks when performing │

│ data conversion. │
 └──┘

Figure 90. Character Input Data Used in Data type-n

The precision and scale represented in the CHAR field targeted for a table
column with a data type of DECIMAL must be less than or equal to the
precision and scale defined for the column. Leading zeros after the optional
sign are ignored; thus, you can code:

+ððððððð11.1

on an input data record, and it fits into a column with a data type of
DECIMAL(3,1).

Character is the default data type for input records.

DATE
If the table column is defined with a column type of DATE, input data can
be in one of the following formats:

yyyy-mm-dd (ISO, JIS format)
dd.mm.yyyy (EUR format)
mm/dd/yyyy (USA format)
installation defined (Local format)

where:

 yyyy is the year
 mm is the month
 dd is the day

Local Date Format
A database administrator can change the date default format, which is
defined in the SYSTEM.SYSOPTIONS table, from ISO (which is the
system-supplied database default form) to any installation-defined
format. See the DB2 Server for VSE System Administration, or DB2
Server for VM System Administration manual for information about
installation-defined formats and their interface.

Note: You can omit leading zeros from months and days, but do not
replace them with blanks. For example, 1989-1-1 is valid while
1989-␣1-␣1 is not.

TIME
If the table column is defined with a column type of TIME, input data can
be in one of the following formats:

 Chapter 8. Command Reference 155

hh:mm AM or hh:mm PM (USA format)
hh.mm[.ss] (ISO, EUR format)
hh:mm[:ss] (JIS format)
installation defined (Local format)

where:

 hh is the hour
 ð <= hh <= 12 for USA format
 ð <= hh <= 24 for ISO, EUR, JIS format
 mm is the minutes
 ss is the seconds

In the USA time format, you can specify zero in the hh field only for 00:00
a.m.

Local Time Format
A database administrator can change the time default format, which is
defined in the SYSTEM.SYSOPTIONS table, from ISO (which is the
system-supplied database default form) to any installation-defined
format. See the DB2 Server for VSE System Administration or the DB2
Server for VM System Administration manual for information about
installation-defined formats and their interface.

Note: Leading zeros can be omitted from hours. The specification of
seconds is optional.

TIMESTAMP
If the table column is defined with a column type of TIMESTAMP, input
data must be in the following format:

yyyy-mm-dd-hh.mm.ss[.[nnnnnn]]

where

 yyyy-mm-dd is the date (see ISO DATE format)
 hh.mm.ss is the time (see ISO TIME format)
 nnnnnn is the microseconds

Notes:

1. Leading zeros can be omitted from the month, day, and hour.
2. The microsecond format is optional.

FIXED or INT or INTEGER
If the table column is defined with a data type of SMALLINT, the input can
be in a 1-byte or 2-byte binary data field. Table columns defined with a
data type of INTEGER can be loaded from a 1-byte, 2-byte, or 4-byte
binary input data field.

The value ranges for binary input data fields are:

� A 1-byte binary data field can contain an 8-bit binary integer with a
value range of ð to 255.

� A 2-byte binary data field can contain a 15-bit binary integer with the
value range described for a table column defined with the data type
SMALLINT.

156 DBS Utility

� A 4-byte binary data field can contain a 31-bit binary integer with the
value range described for a table column defined with the data type
INTEGER.

FLOAT or REAL
If FLOAT is specified for 4-byte floating-point binary input data, set startpos
and endpos so that (endpos−startpos+1) = 4. The table column identified
must be defined with a data type of REAL or FLOAT(n) where n is from 1
to 21.

FLOAT or DOUBLE PRECISION
If FLOAT is specified for 8-byte floating-point binary input data, set startpos
and endpos so that (endpos−startpos+1) = 8. The table column identified
must be defined with a data type of FLOAT, DOUBLE PRECISION, or
FLOAT(n) where n is from 22 to 53.

Note: If 8-byte floating-point binary data is loaded into a 4-byte
floating-point table column, a number of digits of precision are lost.

DECIMAL or DEC (scalevalue)
If you have packed decimal input data, the table column must be defined
with a DECIMAL data type. The precision of the input decimal data field
value must be equal to or less than the precision of the target decimal
column. The Database Services Utility takes the scale (number of positions
to the right of the implied decimal point) of an input record decimal data
value from the scale of the target column unless you specify the optional
DECIMAL(scalevalue) form of the command parameter.

The optional scalevalue is an integer value (ð through 31) identifying the
number of scale positions in the input record decimal data value. A
scalevalue equal to or less than the scale of the target DECIMAL column is
allowed. A Database Services Utility processing error occurs if the
scalevalue is greater than the scale of the target DECIMAL column.

If the DECIMAL(scalevalue) form of the parameter is used, no blanks are
allowed within the parameter specification.

Columns defined as NUMERIC are treated as DECIMAL data types.

ZONED (scalevalue)
If the input record data field has a zoned value, the target table column
must be defined as numeric (SMALLINT, INTEGER, DECIMAL, FLOAT).
See Figure 91 on page 160 for examples.

Three variations or types of zoned data input are supported (see
description below). The type of zoned data is identified by Database
Services Utility processing. Database Services Utility processing converts
the zoned data to the data type of the target numeric column.

Note: If a data field contains an EBCDIC numeric value with an explicit
decimal point, or otherwise does not meet the requirements of a
zoned input data field, the data field can meet the requirements of a
DATALOAD character (CHAR) input data field. DATALOAD
character input data is described in this section.

If the zoned field is for a DECIMAL column, it must contain a value with a
precision less than or equal to the precision of the target DECIMAL column.
The Database Services Utility uses the scale (number of positions to the
right of the implied decimal point) of the target DECIMAL column for the

 Chapter 8. Command Reference 157

scale of a zoned value in the input record unless the optional
ZONED(scalevalue) form of the command parameter is specified.

The optional scalevalue is an integer value (ð through 31) identifying the
number of scale positions in each input record zoned data field value. A
scalevalue equal to or less than the scale of the target DECIMAL column is
allowed. A Database Services Utility processing error occurs if scalevalue is
greater than the scale of the target DECIMAL column.

If the ZONED(scalevalue) form of the parameter is used, no blanks are
allowed within the parameter specification. Also, scalevalue is ignored if the
target column is defined as a SMALLINT, INTEGER, or FLOAT column.

The Database Services Utility zoned data support is based on the definition
of a zoned field that is described in the publication IBM System/370
Principles of Operation manual. It includes support for standard and
extended decimal items (zoned decimal items).

The following three variations of a zoned input data field are supported:

1. A standard zoned data field.

A numeric value within a standard zoned data field has the following
format:

� Each digit of a number is represented by a single byte.

� The 4 high-order bits of each byte are zone bits except for the 4
high-order bits of the low-order byte, which represent the sign of
the number.

� The 4 low-order bits of each byte contain the value of the digit.

The valid zone bit configuration for a standard zoned data field is:

1111 (hex F)

The valid plus-sign bit configurations for a standard zoned data field
are:

1010 (hex A)
1100 (hex C)
1110 (hex E)
1111 (hex F)

The valid minus-sign bit configurations for a standard zoned data field
are:

1011 (hex B)
1101 (hex D)

2. A zoned field with a leading sign .

A zoned data field value with a leading sign has a format identical to
the zoned data format described above except that the 4 high-order bits
of the high-order byte represent the sign of the number. The 4
high-order bits of the low-order bytes contain zone bits.

The valid plus-sign bit configuration for a zoned data field with a
leading sign is:

1100 (hex C)

158 DBS Utility

The valid minus-sign bit configuration for a zoned data field with a
leading sign is:

1101 (hex D)

The valid zone bit configurations for a zoned data field with a leading
sign is:

1111 (hex F)

3. A zoned field with a trailing sign in a separate position .

A numeric value within a zoned data field with a trailing sign in a
separate position has a format similar to the zoned data format
described above except that the high-order 4 bits of the high-order and
low-order numeric value bytes contain zone bits. The sign of the
numeric data value is contained in a separate low-order data value
byte.

The valid zone bit configuration for the numeric value bytes in a zoned
data field with a trailing sign in a separate position is:

1111 (hex F)

A plus-sign is represented in the separate low-order data field position
by an EBCDIC plus (+) sign (hex 4E) or by a blank (hex 40). A
minus-sign is represented in the low-order data field position by an
EBCDIC minus (−) sign (hex 60).

 Chapter 8. Command Reference 159

┌────────────────┬───┐
│ HEXADECIMAL │ DESCRIPTION OF VALUE LOADED INTO NUMERIC COLUMN │
│ CONTENTS OF ├───┤
│FIVE(5) POSITION├───────────┬───────────┬────────────────┬────────────┤
│ZONED DATA FIELD│ SMALLINT │ INTEGER │ DECIMAL(5,2) │ FLOAT │
├────────────────┼───────────┼───────────┼────────────────┼────────────┤
│ │ │ │ │ │
│ (...System/37ð\ Zoned Data Formats...) │ │ │
│ F1F1F1F1A1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+ð4 │
│ F1F1F1F1B1 │ ─11111 │ ─11111 │ ─111.11 │─1.1111E+ð4 │
│ F1F1F1F1C1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+ð4 │
│ F1F1F1F1D1 │ ─11111 │ ─11111 │ ─111.11 │─1.1111E+ð4 │
│ F1F1F1F1E1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+ð4 │
│ F1F1F1F1F1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+ð4 │
│ │ │ │ │ │
│ (...COBOL Standard Zoned Data...) │ │ │
│ F1F1F1F1F1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+ð4 │
│ F1F1F1F1C1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+ð4 │
│ F1F1F1F1D1 │ ─11111 │ ─11111 │ ─111.11 │─1.1111E+ð4 │
│ │ │ │ │ │
│ (...COBOL Zoned Data with Leading Sign...) │ │
│ F1F1F1F1F1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+ð4 │
│ C1F1F1F1F1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+ð4 │
│ D1F1F1F1F1 │ ─11111 │ ─11111 │ ─111.11 │─1.1111E+ð4 │
│ │ │ │ │ │
│ (...COBOL Zoned Data with Trailing Sign in Separate Position...) │
│ F1F1F1F14ð │ 1111 │ 1111 │ 11.11 │ 1.111E+ð3 │
│ F1F1F1F14E │ 1111 │ 1111 │ 11.11 │ 1.111E+ð3 │
│ F1F1F1F16ð │ ─1111 │ ─1111 │ ─11.11 │ ─1.111E+ð3 │
│ │ │ │ │ │
│ (...Miscellaneous Other Formats Accepted...) │ │
│ 4ð4ð4ð4ð4ð │ ð │ ð │ ð │ ð.ðEð │
│ 4ð4ð4ðFðF2 │ 2 │ 2 │ .ð2 │ 2.ðE+ðð │
│ 4ð4ðF24ð4ð │ 2 │ 2 │ .ð2 │ 2.ðE+ðð │
│ 4ðC1F1F1F1 │ 1111 │ 1111 │ 11.11 │ 1.111E+ð3 │
│ 4ðD1F1F1F1 │ ─1111 │ ─1111 │ ─11.11 │ ─1.111E+ð3 │
│ 4ð4ð4ðF24E │ 2 │ 2 │ .ð2 │ 2.ðE+ðð │
│ F24E4ð4ð4ð │ 2 │ 2 │ .ð2 │ 2.ðE+ðð │
│ 4ð4ð4ðF26ð │ ─2 │ ─2 │ ─.ð2 │ ─2.ðE+ðð │
│ F26ð4ð4ð4ð │ ─2 │ ─2 │ ─.ð2 │ ─2.ðE+ðð │
└────────────────┴───────────┴───────────┴────────────────┴────────────┘

Figure 91. Examples of Valid Zoned Data Input

GRAPHIC or GR or G
If the input field contains double-byte character set (DBCS) data, the table
columns must be defined with a data type of GRAPHIC, VARGRAPHIC, or
long fields.

One DBCS character is contained in 2 data-field bytes. The input data field
must be an even number (2, 4, 6...100, and so forth) of positions (bytes) in
length, or a Database Services Utility processing error occurs.

The shift-out and shift-in delimiters are optional in the input data field.

If the first position of the input data field contains a shift-out delimiter (hex
0E), the last position of the data field must contain a shift-in delimiter (hex
0F); if it does not, a Database Services Utility processing error occurs.

If the first position of the input data field does not contain a shift-out
delimiter, no shift-in delimiter is expected.

160 DBS Utility

See Figure 98 on page 170 for a summary of data type conversions.

.

null-current-clause
allows you to specify that a NULL, CURRENT DATE, CURRENT TIME, or
CURRENT TIMESTAMP is to be loaded in place of the input record data for a
table column. To determine when a null or current value is to be loaded, a
comparison is done between two values. The first value is taken from the input
record; you specify the positions of the input record that contain this value. The
second value is specified in the null or current clause.

No embedded blanks are allowed in the null or current clause within the left
and right parentheses enclosing the startpos and endpos values. The format of
the null or current clause is:

null-current-clause

5─ ──┬ ┬─NULL────────────── ──5
 ├ ┤─CURRENT DATE──────
 ├ ┤─CURRENT TIME──────
 └ ┘─CURRENT TIMESTAMP─

5─ ──┬ ┬── ───────────────────────5
 │ │┌ ┐─IF─
 └ ┘ ──┴ ┴──── ─POS──(──startpos─ ──┬ ┬───────── ─)─ ──┬ ┬─ = ── ─constant─

└ ┘─-endpos─ ├ ┤─ <> ─
├ ┤─ ¬= ─
├ ┤─ < ──
├ ┤─ > ──
├ ┤─ <= ─
└ ┘─ >= ─

where the following is true, as appropriate:

� NULL IF POS is for null columns.
� CURRENT DATE IF POS is for date columns.
� CURRENT TIME IF POS is for time columns.
� CURRENT TIMESTAMP IF POS is for timestamp columns.

These special registers identify the start of a null or current clause. Note that
IF is optional; for example, you can specify the keyword phrase NULL IF POS
or NULL POS.

Note: CURRENT TIMEZONE is not supported.

When CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP is to be
loaded, you must provide a value for the endpos parameter of the TCI
subcommand so that the correct length of the data field can be loaded. You
need a minimum of 10 bytes for CURRENT DATE, a minimum of 5 bytes for
CURRENT TIME, and a minimum of 19 bytes for CURRENT TIMESTAMP.
These values follow the rules for ISO formats. To ensure that each data field is
sufficiently large to accommodate the maximum value that can be entered for
the field, you should define 10 bytes for CURRENT DATE, 8 bytes for
CURRENT TIME, and 26 bytes for CURRENT TIMESTAMP. Refer to the input
data formats required for date, time, and timestamp.

 Chapter 8. Command Reference 161

startpos
identifies the starting position in the input data record of the value that identifies
a null or current table-column value. Position 1 of the input data record is the
first position of the logical record. If variable-length input records are used,
startpos 1 to 4 will refer to the record length control information. As a result,
startpos 5 refers to the first data position. The null or current identifier value
positions can be the same as, or different from, those specified for the
associated data field.

endpos
identifies the last input data record position of the null or current table column
identification value. If the value occupies only one input data record position,
this parameter is not required.

constant
specifies the null or current table column identification value. The value cannot
be continued to a second input record but can be one of the following:

� A character-string constant that:

– Must be enclosed in single quotation marks (')
– Has a value of maximum length equal to endpos−startpos+1.

See Figure 92 on page 163 for examples.

� A one-position unsigned integer constant (range ð to 255). See Figure 93
on page 164 for examples.

� A two-position optionally signed integer constant (default is a positive
value). See Figure 94 on page 164 for examples.

� A four-position optionally signed integer constant (default is a positive
value). See Figure 95 on page 164 for examples.

162 DBS Utility

Overlapping Column Position Specifications

The startpos and endpos in the null-current-clause need not depend on the
positions occupied by data fields in the sequential input file specified in the
INFILE subcommand; however, if the positions of the data fields and the
positions specified by startpos and endpos in the null-current-clause overlap,
data can be overlaid.

During DATALOAD processing, the database manager generates an input
buffer to hold one row of data for the table. When a TCI subcommand is
encountered, one row of the data, either embedded or in the specified input file,
is written to the input buffer. The TCI subcommand then writes the CURRENT
DATE, CURRENT TIME or NULL characters to the buffer as required. The data
from the specified positions in the input buffer is then written to the table. This
process is performed for every row in the table. If the positions of the data fields
and the positions specified by startpos and endpos in the null-current-clause
overlap, the data in the buffer may be overlaid and cause unexpected results or
errors. The following example illustrates how data may be overlaid.

CREATE TABLE TIMING
 (START_DATE DATE,
 START_TIME TIME);

DATALOAD TABLE(TIMING)
START_DATE 3-12 CURRENT DATE IF POS(1-1ð) = ' '
START_TIME 5-12 CURRENT TIME IF POS(4-11) = ' '

INFILE(\)
-- FIRST 12 COLUMNS ARE BLANK

ENDDATA;

In this example, the START_DATE, START_TIME and the startpos and endpos
of the IF POS clause overlap. The first row of the embedded data is loaded into
the input buffer. The first TCI subcommand in the DATALOAD command checks
column 1 to 10 in the buffer and determines that POS(1-10) = ' ' is
true. The CURRENT DATE is then written into positions 3 to 12 in the input
buffer. The second TCI subcommand checks positions 4 to 11 of the input
buffer; however, positions 3 to 12 contain part of CURRENT DATE; therefore
the IF POS(4-11) ' ' clause is not true. The data for START_TIME is
then taken from column 5 to 12 in the input buffer when the START_TIME
column is written to the TIMING table. Because positions 5 to 12 in the input
buffer were already overwritten by the first TCI command, those positions now
contain part of CURRENT DATE and the data for START_TIME is not in the
correct time format. A syntax error therefore occurs.

Examples of Null-Current-Clause

NULL IF POS(2ð-23) = 'SKIP'
CURRENT DATE IF POS(2ð-21) ¬= ' '
CURRENT TIME IF POS(2ð-21) >= 'ð1'
CURRENT TIMESTAMP IF POS(2ð-21) <> 'XX'

Figure 92. Character-String Constant Value Used in the Null-Current-Clause

 Chapter 8. Command Reference 163

NULL IF POS(2ð) = 255
CURRENT DATE IF POS(16) ¬= 25
CURRENT TIME IF POS(35) < 3
CURRENT TIMESTAMP IF POS(5ð) > 16

Figure 93. One-Position Integer Constant Value Used in the Null-Current-Clause

NULL IF POS (2ð-21) = 1
CURRENT DATE IF POS (35-36) ¬= 5ð
CURRENT TIME IF POS (5-6) <= +32767
CURRENT TIMESTAMP IF POS(9-1ð) >= 116
NULL IF POS (3-4) > -32768

Figure 94. Two-Position Integer Constant Value Used in the Null-Current-Clause

NULL IF POS (2ð-23) = 1
CURRENT DATE IF POS (16-19) ¬= 5ð
CURRENT TIME IF POS (21-24) <= +2ððð123563
CURRENT TIMESTAMP IF POS (2ð-23) >= -18391ð7489

Figure 95. Four-Position Integer Constant Value Used in the Null-Current-Clause

 INFILE Subcommand

5──INFILE──5

5─ ──┬ ┬─(──\─ ──┬ ┬────────────────────────── ──┬ ┬───────────────────── ─)─ ─5
 │ ││ │┌ ┐─No── │ │┌ ┐─Yes─
 │ │└ ┘ ─CONTINUED──(─ ──┼ ┼───── ─)─ └ ┘ ─LIST──(─ ──┼ ┼───── ─)─
 │ │└ ┘─Yes─ └ ┘─No──
 └ ┘─(──ddname──┤ option_b ├──)─────────────────────────────────────

5─ ──┬ ┬─────────────────────── ──┬ ┬──────────────────────── ──────────────5
 └ ┘─COMMITCOUNT─ ──(ccount) └ ┘─RESTARTCOUNT─ ──(rcount)

Note:
1 Option B is valid in DB2 Server for VSE only.

The INFILE subcommand identifies the sequential input file containing the data
referenced by the preceding DATALOAD and Table Column Identification
subcommands.

This INFILE subcommand not only tells the utility the file the data is in, but also
tells it to read that file and load the data into the table(s) identified by the previous
DATALOAD TABLE command(s).

The sequential input file can contain fixed, variable, or variable-length spanned
records. The records can be blocked or unblocked.

164 DBS Utility

* identifies that input data is embedded within the control statements immediately
following this control statement. Subsequent records are processed as user
data records until an ENDDATA statement is encountered. If the (input) control
file is exhausted before an ENDDATA statement is encountered, a Database
Services Utility processing error occurs, and the current logical unit of work is
rolled back.

Note: The CONTINUED and LIST parameters are applicable only if the *
parameter has been specified.

CONTINUED (No or Yes)
indicates whether or not the input data that is embedded within the control
statements can span more than one (input) control file record. Continued
record processing is supported only for data records embedded within the
(input) control file because data records in sequential tape or DASD are not
restricted to a maximum length of 80 positions. No blanks are allowed
between or within this parameter keyword and value specification.

No
indicates that the input data does not span (input) control file records.
Specify either NO or N. This is the default.

Yes
indicates that the input data can span (input) control file records. Specify
either YES or Y.

If you specify CONTINUED(YES), the actual input data is constructed from one or
more (input) control file data records. An input data record with a nonblank value in
position 1 indicates that the input data is continued in the next (input) control file
data record. An input data record with a blank (hex 40) in position 1 indicates that
the input data is not continued in the next (input) control file data record. The first
position (position 1) of each (input) control file data record is not included in the
actual input data. Data for a column can then be contained in more than one
(input) control file data record.

For example, if 10 input control card file data records are required to contain the
data for each row of a table, DATALOAD processing constructs a single input data
record from 10 consecutive input control card file data records. The relationship
between the positions of each of the 10 input control card file data records and the
positions of the actual input data record is:

 Chapter 8. Command Reference 165

 Control File Actual Input
 Data Data Record Data Record
 Record Positions Positions

 1 2-8ð 1-79
 2 2-8ð 8ð-158

3 2-8ð 159-237
4 2-8ð 238-316
5 2-8ð 317-395
6 2-8ð 396-474
7 2-8ð 475-553
8 2-8ð 554-632
9 2-8ð 633-711
1ð 2-8ð 712-79ð

Figure 96. Relationship of Data Records

The maximum possible length of the input data is calculated from the highest
endpos value specified in any DATALOAD command or TCI subcommand
comprising the DATALOAD command set. The endpos value specified for an input
record data field or the endpos value specified in an input-record-id-clause or null
or current clause is included in this consideration. The maximum length of the
actual input data (rounded to the next multiple of 80) is computed by the following
formula:

Maximum Length highest endpos value + 8ð
Actual Input = -------------------------------- X 8ð
Data Record 8ð

Figure 97. Formula

Notes:

1. Any continuation records that would cause the actual input data record length
to exceed the length computed by this formula are read and ignored by
DATALOAD processing.

2. Actual input data records containing data to be loaded into a table must be at
least as long as the highest endpos value specified in a TCI subcommand.

LIST (Yes or No)
indicates whether or not the input data that is embedded within the control
statements should be displayed in the report or message file. The LIST
parameter is applicable only if the data records are embedded within the (input)
control file. No blanks are allowed between or within this parameter keyword
and value specification.

Yes
indicates that the embedded data records should be displayed in the report
or message file. Specify either YES or Y as the parameter value. The
default is LIST(YES).

No
indicates that the embedded data records should not be displayed in the
report or message file. Specify either NO or N as the parameter value.

166 DBS Utility

If a data field error is detected in an input data record while the LIST(NO) and
CONTINUED(NO) are in effect, the input data record is displayed in the report
or message file before the message describing the error.

If LIST(NO) and CONTINUED(YES) are in effect, no input data is displayed in
the report or message file if a data field error occurs. A meaningful display of
the input data record might not be possible because the data for a record might
span multiple 80-byte data records or the data field in error might span input
data records. Also, it is likely that continued records contain unprintable data.
The commands and input data can be rerun with LIST(YES) specified if the
problem cannot be identified.

ddname
in DB2 Server for VM is the name of the sequential input file defined with a
CMS FILEDEF command. The file characteristics specified in the FILEDEF
command or the default FILEDEF specifications are the source of the input
record definition information for the Database Services Utility. Input files with
RECFM U, A, or M are not supported.

If you define DATALOAD CMS input files with variable-length spanned records
(RECFM=VS or RECFM=VBS), you must use the file-mode number 4.

If variable-length input records are used, the data fields referenced by the TCI
subcommands must be in the same position for each occurrence of the data
record type.

Do not specify SYSIN or SYSPRINT as the ddname.

in DB2 Server for VSE: is the TLBL or DLBL job control statement file name for
the sequential (SAM) input file or for SYSIPT if you are using the READ
member statement. For more information, refer to the DB2 Server for VSE
Installation manual.

You must specify the ddname parameter first; that is, you cannot specify
BLKSZ, PDEV, RECFM, and RECSZ before the ddname. You can specify the
other keyword parameters in any order.

BLKSZ (size)
is a parameter that specifies the block size of the sequential input file. The
default block size is 2048 bytes per block.

PDEV (TAPE or DASD)
is an optional parameter that specifies the device type (DASD or TAPE) of the
sequential (SAM) input file. If PDEV(DASD) is specified, the file resides on any
device supported by the VSE DTFSD macro. Managed SAM does not support
spanned records. If PDEV(TAPE) is specified, the file resides on any device
supported by the VSE DTFMT macro. The default is PDEV(TAPE).

NOREWIND or REWIND
controls tape file rewind processing performed during OPEN processing.
This parameter is valid only if you specify TAPE for PDEV. The default
processing is REWIND.

NOREWIND
specifies that the tape file will not be rewound by OPEN processing. If
NOREWIND is specified for input tape files referenced by a series of
DATALOAD commands, you must ensure that the tape files being
referenced are in ascending sequence. For example, if NOREWIND is
specified in a sequence of two DATALOAD commands and the first

 Chapter 8. Command Reference 167

command reads tape file 2, then the second command must reference
tape file 3 or a higher number. If it references tape file 1, an OPEN
error occurs.

REWIND
specifies OPEN processing to rewind the tape file.

RECFM (format)
is an optional parameter that specifies the format of the records in the input
data file. For format, substitute one of the following values:

 Value Meaning

 F fixed, unblocked
 FB fixed, blocked
 V variable, unblocked
 VB variable, blocked

S variable spanned, unblocked
SB variable spanned, blocked

The default is RECFM(F).

If variable-length input records are used, the data fields referenced by the TCI
subcommands must be in the same position for each occurrence of the data
record type.

RECSZ(size)
is a parameter that specifies the length of a logical record for the input data file.

Default record size values are specified as follows:

� If RECFM = F or FB, the default record size is the block size.

� If RECFM = V or VB, the default record size is the block size minus four.

� If RECFM = S or SB, the default record size is the block size minus four or
the highest input record position referenced, whichever is greater.

COMMITCOUNT (ccount)
identifies the frequency of COMMIT action during DATALOAD processing.

ccount
is a number from 1 to 2,147,483,647 indicating that a COMMIT statement
should be executed after the number of input data records equal to ccount
are processed by DATALOAD.

Database Services Utility AUTOCOMMIT ON processing must be in effect
when you use DATALOAD COMMITCOUNT processing. If AUTOCOMMIT is
OFF and the COMMITCOUNT parameter is used, an error message is written.
DATALOAD command processing is not performed.

If a SET ERRORMODE CONTINUE command is in effect during DATALOAD
COMMITCOUNT processing, input data records with incorrect data fields might
not be used. The incorrect input records are skipped if:

� Multiple DATALOAD commands were used preceding an INFILE
subcommand and the records were not used for successful inserts by any
other DATALOAD commands.

168 DBS Utility

� An SQL insert error occurs identified by SQLCODE -405, -424, -530, -802,
or -803, followed by message ARI0862E, and insert blocking is not in
effect.

Insert blocking is not in effect under the following conditions:

� Database Services Utility is running with single user mode.

� Database Services Utility is running with multiple user mode, but was
preprocessed with the NOBLOCK option.

� Insert blocking is suppressed by the database manager.

Note: For more information, refer to “Skipping Bad Records” on page 48.

If an invalid ccount value is specified, an error message is written, and
DATALOAD command processing is not performed.

For DATALOAD CONTINUED record processing, the ccount value refers to the
number of physical input data records, not the number of logical records
constructed from input records. A COMMIT statement is performed when the
number of physical input data records processed equals or exceeds the ccount
value.

RESTARTCOUNT (rcount)
identifies the restart point for DATALOAD processing.

rcount
is a number from 1 to 2147483647 that indicates the number of input data
records to be skipped before DATALOAD record processing begins.

If this parameter is omitted, no records are skipped and DATALOAD processing
begins with the first input data record.

If an invalid rcount value is specified, an error message is written and
DATALOAD processing is not performed.

If an end-of-file condition occurs before the number of records specified by the
rcount value are read, an error condition exists. Error message ARI0844E is
written to the message file before DATALOAD processing ends.

For DATALOAD CONTINUED processing, the rcount value refers to the
number of physical input data records, not the number of logical records
constructed from input records. If the rcount+1 input record is not the first
physical record of a set of physical records comprising a logical record, error
message ARI0887E is issued.

 ENDDATA Subcommand

Format:

5──ENDDATA───5

The ENDDATA subcommand identifies the end of user data embedded within the
(input) control file. This command is valid only if the previous Database Services
Utility command processed was an INFILE(*) subcommand.

 Chapter 8. Command Reference 169

No other information is allowed in this subcommand. If ENDDATA is not alone on
the input record, the utility reads it as data. If ENDDATA is terminated by a
semicolon (;), no blanks are permitted between the keyword and the semicolon.
SQL comments are not allowed on the ENDDATA subcommand.

During CONTINUED(YES) processing, an ENDDATA command is recognized only
if the previous (input) control file data record contains a blank (hex 40) in position 1.
If the previous (input) control file data record contains a nonblank in position 1, the
ENDDATA command is processed as a continuation data record.

DATALOAD Data Conversion Summary
Figure 98 summarizes the data conversion performed by DATALOAD processing.

YES means that the utility performs the conversion; NO means that the utility
cannot convert the input data into the data type of the target column. The numbers
in the chart refer to the notes below.

Figure 98. DATALOAD Data Conversion Table

Input Field
Data Type

Target Column Data Type

CHAR,
VAR-

CHAR,
or

LONG
VAR-
CHAR DECIMAL

SMALL-
INT INTEGER REAL11

DOUBLE
PRECI-
SION12

DATE,
TIME

or
TIME-

STAMP13

DBCS
GRAPHIC,

VAR-
GRAPHIC,
or LONG

VAR-
GRAPHIC

CHAR Yes1,4 Yes2 Yes2 Yes2 Yes2 Yes2 Yes No

1-Byte FIXED No No Yes Yes No No No No

2-Byte FIXED No No Yes Yes No No No No

4-Byte FIXED No No No Yes No No No No

4-Byte
FLOAT

No No No No Yes Yes10 No No

8-Byte
FLOAT

No No No No Yes9 Yes No No

DECIMAL No Yes3 No No No No No No

ZONED No Yes5,6 Yes5 Yes5 Yes5 Yes5 No No

GRAPHIC
(G)

No No No No No No No Yes7

DATE, TIME,
or
TIME-STAMP

No No No No No No Yes8 No

Notes for Figure 98 :

1. Character (CHAR) input data fields for VARCHAR or long field columns have
trailing (low-order) blanks truncated before the length of the varying column is
established. All-blank CHAR input data fields result in a length of ð.

2. The first trailing blank after the number within a character (CHAR) input data
field terminates the character string used for character-to-numeric data
conversion. An all-blank CHAR field or a CHAR field with only a sign (+ or –)

170 DBS Utility

results in a numeric value of ð. The data can be in the form of an integer,
decimal, or float constant.

3. Decimal (DECIMAL) input data fields should contain data with a precision less
than or equal to the precision of the target DECIMAL column. The Database
Services Utility uses the scale defined for the target column for the input data
unless a scale value equal to or less than that defined for the target column is
specified. A Database Services Utility processing error occurs if the scale
specified for the input data field is greater than that of the target column.

4. Character (CHAR) input data fields for CHAR columns are padded with trailing
blanks if they are less than the length of the target column. CHAR input data
fields with a length greater than the length of the target CHAR, VARCHAR, or
long field columns are not allowed.

5. Leading and trailing blank positions within a zoned input data field are ignored.
An all-blank zoned input data field results in a numeric (SMALLINT, INTEGER,
DECIMAL, or FLOAT) column value of ð. A zoned data input field containing
only an EBCDIC plus (+) sign or minus (–) sign is not valid.

6. A zoned (ZONED) data input field should contain a value with a precision less
than or equal to the precision of the target DECIMAL column. The Database
Services Utility uses the scale defined for the target column as the scale for the
zoned data value unless a scale value equal to or less than the scale of the
target column is specified. A Database Services Utility processing error occurs
if the scale specified for the input data field is greater than that of the target
column.

7. A DBCS input data field must be an even number (2, 4, 6,...100, and so forth)
of positions (bytes) in length. The shift-out (hex 0E) and shift-in (hex 0F)
delimiters can be in the first position (startpos) and last position (endpos) of
the data field. A two-position DBCS data field containing only the shift-out and
shift-in delimiter values is treated as a blank input data field.

If the shift-out and shift-in delimiters are present in the data field, the Database
Services Utility treats data field positions startpos+1 to endpos−1 as DBCS
data. The hex value 4040 is treated as a blank DBCS character.

A DBCS input data field for VARGRAPHIC or a long field has trailing
(low-order) DBCS blank characters truncated before the length of the varying
column is established. An all-blank DBCS input data field results in a column
value with a length = ð for columns defined with the data type VARGRAPHIC or
long field.

8. The datetime data type input and target type must match; for example, the
input data type of TIME is valid only for the target column data type of TIME.

9. When 8-byte floating-point data is loaded into a 4-byte floating-point table
column, a number of digits of precision are lost. The fraction (mantissa) is
reduced from 14 to 6 digits of precision. If an error occurs during the
conversion process, the message ARI0864E is generated, and processing of
the DATALOAD command stops.

10. 4-byte floating-point data is padded with hex ðððð ðððð.

11. The REAL input data field represents single-precision floating-point data and is
synonymous with FLOAT(N), where 1 is less than or equal to N, and N is less
than or equal to 21.

 Chapter 8. Command Reference 171

12. DOUBLE PRECISION represents double-precision floating-point data and is
synonymous with FLOAT or FLOAT(N), where 22 is less than or equal to N,
and N is less than or equal to 53.

13. When a current date, current time, or current timestamp value is to be loaded,
you must provide a value for the endpos parameter of the TCI subcommand so
that the correct length of the data field can be loaded. You need a minimum of
10 bytes for current date, a minimum of 5 bytes for current time, and a
minimum of 19 bytes for current timestamp. These values follow the rules for
ISO formats. To ensure that each data field is sufficiently large to
accommodate the maximum value that can be entered for the field, you should
define 10 bytes for current date, 8 bytes for current time, and 26 bytes for
current timestamp. Refer to the input data formats required for date, time, and
timestamp.

 DATAUNLOAD

 DATAUNLOAD Format

172 DBS Utility

Format :

55──DATAUNLOAD───5

5──select_statement──;───5

5─ ──┬ ┬────────────────────────────────── ───────────────────────────────5
 │ │┌ ┐─,────────────────────────────
 └ ┘───6 ┴─┤ data_field_id_subcommand ├─

5─ ─OUTFILE──(──ddname──┤ option_a ├──)───(1) ─────────────────────────────5%

Note:
1 Valid in DB2 Server for VSE only.

data_field_id subcommand (DFI)

 ┌ ┐─CHARacter─
5─ ──┬ ┬─column_reference─ ─startpos─ ──┬ ┬───────── ──┼ ┼─────────── ─────────5
 └ ┘─integer────────── └ ┘─-endpos─ └ ┘─data_type─

5─ ──┬ ┬───────────────────── ──5
└ ┘─┤ set_null_clause ├─

set_null_clause

 ┌ ┐─IF─ ┌ ┐─SET─
5─ ──┴ ┴──── ─NULL─ ──┴ ┴───── ─POS──(──startpos─ ──┬ ┬───────── ─) =──value────5
 └ ┘─-endpos─

data_field_id subcommand (DFI)

set_null_clause

option_a valid in DB2 Server for VSE only:
├─ ──┬ ┬─────────────── ──┬ ┬──────────────────────────────── ──────────────5
 └ ┘─BLKSZ─ ──(size) │ │┌ ┐─NOREWIND─
 │ │┌ ┐ ─(TAPE)─ ──┴ ┴─REWIND───
 └ ┘ ─PDEV─ ──┴ ┴─(DASD)───────────────

5─ ──┬ ┬───────────────── ──┬ ┬─────────────── ─────────────────────────────┤
 └ ┘─RECFM─ ──(format) └ ┘─RECSZ─ ──(size)

 Example 1:
 DATAUNLOAD
 SELECT AVG(BONUS) FROM EMPLOYEE;
 OUTFILE(EXTRA)
 Example 2:
 DATAUNLOAD
 SELECT SALARY FROM EMPLOYEE;
 SALARY 1-1ð CHAR
 OUTFILE(REGULAR)

Authorization :
 All normal SELECT privilege ground rules apply.

 Chapter 8. Command Reference 173

DATAUNLOAD
identifies the start of the DATAUNLOAD command sequence. A Database
Services Utility processing error occurs if other information is present in the
(input) control file record after the command identifier DATAUNLOAD.

select-statement
is any valid SQL SELECT statement without host variables. The SQL SELECT
statement must begin in the next (input) control file record following the one
containing the DATAUNLOAD command. A semicolon must be used to
terminate the SQL SELECT statement.

The results of the SQL SELECT statement supplied after a DATAUNLOAD
command are not written to the Database Services Utility report or message
file. An output file data record is written for each row (except those containing
data values that exceed the capacity of numeric output record data fields)
returned as a result of executing the SQL SELECT statement.

If the user-supplied SQL SELECT statement is not valid, or is not terminated by
a semicolon, a Database Services Utility processing error occurs.

If an arithmetic exception occurs, the DATAUNLOAD command handles it in a way
similar to arithmetic exceptions under the SELECT statement. (See “SELECT and
Arithmetic Exceptions” on page 147 for a description of the way arithmetic
exceptions are handled under the SELECT statement.) If an arithmetic exception
occurs when the data is to be placed into an output numeric data type field (FIXED,
FLOAT, DECIMAL, or ZONED), an error message is issued and processing is
terminated because the DB2 Server for VSE & VM system incorrectly reads the
number (or pound) symbols (#) used under SELECT as real data. Stopping the
processing prevents the arithmetic exception from generating incorrect output.

 Data_Field_Id_Subcommand

Format:

 ┌ ┐─CHARacter─
5─ ──┬ ┬─column_reference─ ─startpos─ ──┬ ┬───────── ──┼ ┼─────────── ──┬ ┬───────────────────── ────5

└ ┘─integer────────── └ ┘─-endpos─ └ ┘─data_type─ └ ┘─┤ set_null_clause ├─

The next record following the end of the SQL SELECT statement can contain one
or more Data Field Identification (DFI) subcommands or an OUTFILE subcommand.
If the OUTFILE subcommand is missing, a Database Services Utility processing
error occurs. If DFI subcommands are omitted, the default output record format
described in the section “DATAUNLOAD Output Data Field Defaults” on page 183
is used.

A DFI subcommand identifies the location in the output record where the data for a
column in the select-list should be placed. The subcommand also identifies the
output record data-field data type. If the output record data-field data type is
different from the select-list column data type, the Database Services Utility
converts the column data. The data conversions performed by DATAUNLOAD
processing are described in .

174 DBS Utility

Only one DFI subcommand can appear in an input record. The command
parameters must not span input records, and the column_reference, startpos, and
endpos parameters must be specified first in the command and in that order.

If DFI subcommands are specified, only the data for the select-list columns
referenced by these subcommands is unloaded to the output data record. The data
for a column in the select-list (explicitly specified, or implicitly specified by the *
specification in the SQL SELECT) not referenced by a DFI subcommand is not
unloaded. A Database Services Utility warning message identifies each select-list
column that is ignored by DATAUNLOAD processing.

The data for the same column in the select-list can be unloaded to more than one
output record data field by specifying two or more DFI subcommands that reference
the column.

column_reference
identifies the select-list column to be used as the source of the output data field
value. Column_reference can be any valid form of a table column name or
integer that refers to a select-list column. For example, the integer value 1 (hex
F1) refers to the first item in the select-list; the integer value 10 (hex F1F0)
refers to the 10th item in the select-list.

A Database Services Utility processing error occurs if:

� The column name specified in the DFI subcommand is not in the select-list.

� The integer value identifying the column name exceeds the number of
columns in the select-list.

Use the integer notation for column_reference to identify the column if:

� The select-list contains columns from different tables with the same column
name. For example:

SELECT...,EMPLOYEE.EMPNO,EMP_ACT.EMPNO,
 ...FROM EMPLOYEE,EMPLOYEE.ACTIVITY...;

� The select-list contains a column that is a constant or is derived from an
expression or function:

SELECT...,'SALARY(+6%)=',SALARY\1.ð6,MAX(SALARY)...
 ...FROM EMPLOYEE...;

startpos
identifies the starting position (byte) of the data in each output data record.
Position 1 of the output record corresponds to the first position of the logical
output record. If variable-length input records are used, startpos 1 to 4 refers to
the record length control field. As a result, startpos 5 refers to the first data
position.

endpos
identifies the end position (byte) of the data in each output data record. You
can omit this parameter if the data occupies only one position in the output
record. If you specify this parameter, do not place blanks between the starting
position and the hyphen, or between the hyphen and the ending position.

To unload a column defined with a double-byte character set (DBCS) data type,
the length of the output data field must be an even number (4, 6, ..., 100, ...) of
positions (bytes) other than 2. A Database Services Utility processing error

 Chapter 8. Command Reference 175

occurs if DBCS data is identified for an output record data field with an odd
number of positions, or with only two positions.

data-type
identifies whether character, graphic, fixed-binary, floating-point, packed
decimal, or zoned data values should be placed in the output data record
positions specified. The data type specification must appear after the
startpos-endpos values in the subcommand. The default data type is
character. The valid data type identifiers that you can specify are:

CHAR or CHARACTER
If the table column data type is anything but GRAPHIC, you can create a
CHAR output data field.

CHAR output data derived from a CHAR, VARCHAR, DATE, TIME,
TIMESTAMP, or long field select-list column is left-justified and padded on
the right with blanks (hex 40). Trailing (low-order) data is truncated if the
output data field length is less than the length of the column data except for
TIME, DATE, and TIMESTAMP. For TIME and DATE, an error occurs if the
output data field length is less than the length of the column data. For
TIMESTAMP, if the output data field length is less than 19 bytes, an error
occurs; if the output data field length is less than 26 but greater than or
equal to 19 bytes, trailing digits of the MICROSECONDS part of the
timestamp are truncated.

The CHAR output data can also be derived from select-list columns with
data type SMALLINT, INTEGER, DECIMAL, and FLOAT. See the section,
“DATAUNLOAD Data Conversion Summary” on page 191, for a description
of the content of CHAR output data fields derived from numeric column
data types.

If extended DBCS processing is in effect, character data can contain
DBCS/EBCDIC mixed data. See page 231 for a discussion of extended
DBCS support.

When an arithmetic exception occurs and the data is to be placed into an
output data type field, no error message is issued and processing
continues. Number (or pound) symbols (#) are used, as under SELECT, to
fill the data type field and to indicate that an exception occurred during
processing.

CHAR is the default data type specification.

GRAPHIC or GR or G
If the table column is defined with the data type GRAPHIC, VARGRAPHIC,
or long field, you can create a DBCS output data field.

The startpos and endpos for a DBCS output record data field reflect the
number of bytes the data field occupies in the data record; they do not
reflect the number of DBCS characters that the data field contains.

The startpos of the output data field contains a shift-out (hex 0E) delimiter.
The endpos of the output data field contains a shift-in (hex 0F) delimiter.
Two intervening positions are required for each DBCS character.

The DBCS output record data field must occupy an even number of bytes
in the data record, or a Database Services Utility processing error occurs.
DBCS column data is truncated if the length of the output record data field

176 DBS Utility

is less than the column data length plus 2. For a DBCS column, the column
data length equals the number of DBCS characters times 2.

A blank DBCS output data field contains the hex 40 value in all positions
except for the first and the last. A null source column value also results in a
blank output record data field.

DATE
If the table column is defined with a column type of DATE, output data is in
one of the following formats:

yyyy-mm-dd (ISO, JIS format)
dd.mm.yyyy (EUR format)
mm/dd/yyyy (USA format)
installation defined (Local format)

where:

yyyy is the year
mm is the month
dd is the day

The format is dependent on the SYSOPTIONS default format value or is
specified by the CHAR function in the SELECT statement.

Local Date Format
A database administrator can change the date default format, which is
defined in the SYSTEM.SYSOPTIONS table, from ISO (which is the
system-supplied database default form) to any installation-defined
format. See the DB2 Server for VM System Administration manual for
information about installation-defined formats and their interface.

Note: See page 174 for information on arithmetic error handling.

TIME
If the table column is defined with a column type of TIME, output data is in
one of the following formats:

hh:mm AM or hh:mm PM (USA format)
hh.mm[.ss] (ISO, EUR format)
hh:mm[:ss] (JIS format)
installation defined (Local format)

where:

hh is the hour
ð <= hh <= 12 for USA format
ð <= hh <= 24 for ISO, EUR, JIS format
mm is the minutes
ss is the seconds

The format is dependent on the SYSOPTIONS default format value or is
specified by the CHAR function in the SELECT statement.

Local Time Format
A database administrator can change the time default format, which is
defined in the SYSTEM.SYSOPTIONS table, from ISO (which is the
system-supplied database default form) to any installation-defined
format. See the DB2 Server for VSE System Administration, or DB2

 Chapter 8. Command Reference 177

Server for VM System Administration manual for information about
installation-defined formats and their interface.

Note: See page 174 for information on arithmetic error handling.

TIMESTAMP
If the table column is defined with a column type of TIMESTAMP, output
data is in the following format:

yyyy-mm-dd-hh.mm.ss[.[nnnnnn]]

where

yyyy-mm-dd is the date (see ISO DATE format)
hh.mm.ss is the time (see ISO TIME format)
nnnnnn is microseconds

If the output data field length is less than 19 bytes long, an error occurs. If
the output data field is less than 26 bytes, but greater than or equal to 19
bytes, trailing digits of the microseconds part of the timestamp are
truncated.

FIXED or INT or INTEGER
If the table column is defined with a data type of SMALLINT or INTEGER,
you can define a fixed-point binary-output data field. If a row selected from
the database by the SQL SELECT statement supplied for DATAUNLOAD
processing contains a column value that exceeds the capacity of a 1-byte
or 2-byte FIXED output data field, an error message is issued, and no
output data file record is written for the row.

The value ranges for binary-output data fields are:

� A 1-byte binary data field can contain an 8-bit binary integer with a
value range of ð to 255.

� A 2-byte binary data field can contain a 15-bit binary integer with the
value range described for a table column defined with the data type
SMALLINT.

� A 4-byte binary data field can contain a 31-bit binary integer with the
value range described for a table column defined with the data type
INTEGER.

Note: See page 174 for information on arithmetic error handling.

FLOAT or REAL
If the table column is defined with a data type of REAL or FLOAT(n), where
n is from 1 to 21, you can define 4-byte floating-point binary-output data,
where (endpos−startpos+1) = 4. If a row selected from the database by the
SQL SELECT statement supplied for DATAUNLOAD processing contains a
column value that exceeds the capacity of the FLOAT output data field, an
error message is issued, and no output data file record is written for the
row.

Note: See page 174 for information on arithmetic error handling.

FLOAT or DOUBLE PRECISION
If the table column is defined with a data type of FLOAT, DOUBLE
PRECISION, or FLOAT(n), where n is from 22 to 53, you can define 8-byte
floating-point binary-output data, where (endpos−startpos+1) = 8.

178 DBS Utility

Note: If 8-byte floating-point binary data is unloaded into a 4-byte
floating-point output data field, a number of digits of precision is
lost. If a row selected from the database by the SQL SELECT
statement supplied for DATAUNLOAD processing contains a
column value that exceeds the capacity of the FLOAT output data
field, an error message is issued, and no output data file record is
written for the row.

See page 174 for information on arithmetic error handling.

DECIMAL or DEC
If the table column is defined with a DECIMAL data type, you can specify
DECIMAL or DEC for packed decimal output data.

The length of the output data field must be large enough to accommodate
all significant digits of the column data value. The minimum length of an
output field derived from DECIMAL column data is (column scale/2)+1. The
implied scale of the output data field value is the same as that defined for
column.

If a row selected from the database by the SQL SELECT statement
supplied for DATAUNLOAD processing contains a column value that
exceeds the capacity of a decimal output data field, an error message is
issued, and no output data file record is written for the row.

Columns defined as NUMERIC are treated as DECIMAL data types.

Note: See page 174 for information on arithmetic error handling.

ZONED
If the table column is defined with a data type of SMALLINT, INTEGER, or
DECIMAL, you can specify ZONED for zoned output data. The length of a
zoned output record data field derived from a DECIMAL column must be
equal to or greater than the column scale.

Each digit of the table column value is represented by a single byte in the
zoned output data field. The 4 high-order bits of each byte are the zone
bits. The 4 high-order bits of the low-order byte are the sign of the value.
The 4 low-order bits of each byte contain the value of the digit.

The zone bits are 1111 (hex F). A plus-sign is represented by the bits 1100
(hex C), and a minus-sign is represented by the bits 1101 (hex D).

The output data field value is right-justified. Leading (high-order) zeros are
either added to, or truncated from, the column value depending on the
length of the output data field.

If a row selected from the database by the SQL SELECT statement
supplied for DATAUNLOAD processing contains a column value that
exceeds the capacity of a zoned output data field, an error message is
issued, and no output data file record is written for the row.

Examples of zoned output data fields:

The hexadecimal content of a 5-position zoned data field containing the
value +00011 is:

Hexadecimal Value F0 F0 F0 F1 C1

Field Position 1 2 3 4 5

 Chapter 8. Command Reference 179

Note: See page 174 for information on arithmetic error handling.

The hexadecimal content of a 5-position zoned data field containing the
value -00011 is:

See for a table summarizing the data conversion performed by DBS Utility
DATAUNLOAD processing.

set_null_clause
specifies the output data record position and value that identifies a null table
column value. The null identifier value can be a character or an integer value
(see below); it does not assume the data type specified for the output record
data field.

The set_null_clause must appear after the startpos-endpos values in the
subcommand. No embedded blanks are allowed in the set_null_clause within
the left and right parentheses enclosing the startpos and endpos values.

set_null_clause :

 ┌ ┐─IF─ ┌ ┐─SET─
5─ ──┴ ┴──── ─NULL─ ──┴ ┴───── ─POS──(──startpos─ ──┬ ┬───────── ─)─ ──= value ──────5
 └ ┘─-endpos─

The parameters are:

IF NULL SET POS
identifies the start of the set_null_clause. You can use either the keyword
phrase IF NULL SET POS or NULL POS.

startpos
identifies the starting position (byte) in the output data record of the value that
identifies a null table column value. The null identifier value positions can
overlap the positions assigned to an output record data field.

Position 1 of the output data record is the first position of the logical record. If
variable-length output records are used, startpos 1 to 4 refer to the record
length control information and the data begins at startpos 5.

endpos
identifies the last output data record position (byte) of the null table column
identification value. If the value occupies only one output data record position,
this parameter is not required.

value
specifies the null table column identification value. If an occurrence of the
column value is null, the value specified is placed in the output data record
positions specified after the data field value for the default output record is set.

If an occurrence of the column value is not null, no value is placed in the output
data record positions specified in the set_null_clause. These positions contain
blanks (hex 40) if they do not contain a default output record data field value
for null column data.

Hexadecimal Value F0 F0 F0 F1 D1

Field Position 1 2 3 4 5

180 DBS Utility

The set_null_clause value cannot be continued to a second output record. It
can be one of the following:

� A character-string constant that:

– Must be enclosed in single quotation marks (')
– Has a maximum length equal to endpos −startpos+1.

� A one-position unsigned integer constant (ð to 255)

� A two-position optionally signed integer constant (default is a positive value)

� A four-position optionally signed integer constant (default is a positive
value).

Examples of Set-Null-Clause:

 � Character-string constant:

IF NULL SET POS(2ð-23) = 'NULL'
IF NULL SET POS(2ð-22) = ' ? '

� One-position integer constant:

IF NULL SET POS(2ð) = 255

� Two-position integer constant:

IF NULL SET POS(2ð-21) = 32767

� Four-position integer constant:

IF NULL SET POS(2ð-23) = -18391ð7489

 OUTFILE Subcommand

VSE Format :

5──OUTFILE──(──ddname──5

5─ ──┬ ┬─────────────── ──┬ ┬──────────────────────────────── ──────────────5
 └ ┘─BLKSZ─ ──(size) │ │┌ ┐─NOREWIND─

│ │┌ ┐──(TAPE) ──┴ ┴─REWIND───
 └ ┘─PDEV─ ──┴ ┴──(DASD) ──────────────

5─ ──┬ ┬───────────────── ──┬ ┬─────────────── ─)───────────────────────────5
 └ ┘─RECFM─ ──(format) └ ┘─RECSZ─ ──(size)

VM Format :

5──OUTFILE─ ──(ddname) ───5%

The OUTFILE subcommand identifies the sequential output file that contains the
data referenced by the preceding DATAUNLOAD commands and subcommands. It
tells the utility the file in which to put the data and to begin to unload the data.

The sequential output file can contain fixed, variable-length, or variable-length
spanned records. The records can be blocked or unblocked. If you want variable
length records to be generated, variable-length spanned records must be used if
the total length of the column values to be unloaded exceeds 32752 bytes.

 Chapter 8. Command Reference 181

A blank (hex 40) is placed in all positions (bytes) of the output data record before
the data record field values are inserted.

ddname
in DB2 Server for VM: this is the name of the sequential output file defined with
a CMS FILEDEF command. If you define DATAUNLOAD CMS output files with
variable-length spanned records (RECFM=VS or RECFM=VBS), you must use
file-mode number 4. If a tape output file is used, performance can be improved
by using a large block size value (greater than 8244) on the FILEDEF.

The file characteristics specified in the FILEDEF command or the default
FILEDEF specifications are the source of the output record definition
information for the Database Services Utility. Output files with RECFM U, A, or
M are not supported.

The length of the output record supplied by the FILEDEF must be long enough
to contain column data selected for unload (including intervening data field
blanks if the default format is used). If it is not, a Database Services Utility
processing error occurs. If the length of the output record is greater than the
length required to unload the data, the remaining positions of the output record
are set to blanks (hex 40).

If variable length output records are used, the data fields referenced by DFI
subcommands appear in the same positions on each output data record.

Do not specify SYSIN or SYSPRINT as the ddname.

in DB2 Server for VSE: this is the TLBL or DLBL job control statement file name for
the sequential (SAM) output file. This parameter must be the first parameter
specified; you cannot specify BLKSZ before the ddname. The other keyword
parameters can be specified in any order.

BLKSZ (size)
is an optional parameter that specifies the block size of the sequential output
file.

If a tape output file is used, performance can be improved by using a large
block size value (greater than 8244).

The default block size values depend upon the output file record format:

� If RECFM = F or FB, the default block size is equal to the highest data field
end-position value

� If RECFM = V or VB, the default block size is equal to the highest data field
end-position value plus four

� If RECFM = S or SB, the default block size is 2048 bytes.

PDEV (TAPE or DASD)
is an optional parameter that specifies the device type (DASD or TAPE) of the
sequential (SAM) output file. If PDEV(DASD) is specified, the file resides on
any device supported by the VSE DTFSD macro. An exception to this is
VSAM-managed SAM files. VSAM-managed SAM does not support spanned
records. If PDEV(TAPE) is specified, the file resides on any device supported
by the VSE DTFMT macro. The default is PDEV(TAPE).

182 DBS Utility

NOREWIND or REWIND
controls tape file rewind processing performed during CLOSE processing.
This parameter is valid only if you specify TAPE for PDEV. The default is
NOREWIND.

NOREWIND
specifies that the tape file will not be rewound by CLOSE processing.

REWIND
specifies that the tape file is rewound by CLOSE processing.

RECFM (format)
is an optional parameter that specifies the format of the records in the output
data file. For format, substitute one of the following values:

 Value Meaning

 F fixed, unblocked
 FB fixed, blocked

V variable length, unblocked
VB variable length, blocked
S variable spanned, unblocked
SB variable spanned, blocked

If the length of the logical record (RECSZ) is equal to or less than 32760, the
default is RECFM(F). Otherwise, the default is RECFM(SB). The output record
format is identified in a Database Services Utility informational message.

Note: If variable-length output records are used, the data fields referenced by
the DFI subcommands will be in the same position for each occurrence
of a data record. Positions 1-4 of each variable-length record contain
record length control information.

RECSZ (size)
is an optional parameter that specifies the length of a logical record for the
output data file. The length of the output record must be long enough to contain
column data selected for DATAUNLOAD processing (including intervening data
field blanks if the default format is used). If it is not, a Database Services Utility
processing error occurs.

The default record size values depend upon the output file record format:

� If RECFM = F or FB, the default record size is the block size.

� If RECFM = V or VB, the default record size is the block size minus four.

� If RECFM = S or SB, the default record size is equal to the highest data
field end-position value.

DATAUNLOAD Output Data Field Defaults
If no DFI commands are supplied, the output data fields appear in the output record
in the same order as the associated columns in the select-list. The output data field
associated with the first select-list column starts in position 1 of the fixed length
output records or position 5 of variable length (or variable length spanned) output
records. Positions 1-4 of variable length or variable length spanned records are
reserved for the record length control field. In DB2 Server for VSE, if the record
format (RECFM) is not supplied by the OUTFILE subcommand, DATAUNLOAD
processing writes either fixed length or variable length spanned output records.

 Chapter 8. Command Reference 183

Fixed length records are written if the required logical record length is less than
32760 positions; otherwise, variable length spanned records (RECFM=S) are
written. In DB2 Server for VM, the DFI subcommand will refer to the first data
position as startpos 5. The FILEDEF command that defines the output file always
supplies the record format information.

One blank (hex 40) position separates each output record data field. The output
data field associated with the next select-list column starts two positions after the
trailing (low-order) position of the data field derived from the preceding select-list
column.

┌─────────────┬───────┬──────────────┬───────┬───────┬──────────────┐
│ data from │ blank │ data from │ blank │ ... │ data from │
│ select-list │ │ select-list │ │ ... │ select-list │
│ column 1 │ │ column 2 │ │ ... │ column n │
└─────────────┴───────┴──────────────┴───────┴───────┴──────────────┘
 .
 .
 .
 Position 1

Figure 99. Default Fixed-Length Output Logical Record Content

┌──────────┬─────────────┬───────┬─────────────┬────────┬─────┬───────┬─────────────┐
│ record │ data from │ blank │ data from │ blank │ ... │ blank │ data from │
│ length │ select-list │ │ select-list │ │ ... │ │ select-list │
│ control │ column 1 │ │ column 2 │ │ ... │ │ column n │
│ field │ │ │ │ │ │ │ │
└──────────┴─────────────┴───────┴─────────────┴────────┴─────┴───────┴─────────────┘
 . .
 . .
 . .
 . Position 5
 .
 Position 1

Figure 100. Default Variable-Length Spanned Logical Output Record Content

Default Output Data Field Formats: Figure 101 summarizes the default output
field formats generated by the DATAUNLOAD processing if no DFI subcommands
are supplied. The default data type of the output data field is CHAR (or GRAPHIC if
the source column contains DBCS data). The format of the data in the output data
field depends on the data type, length, or maximum length of the select-list column
from which the data is derived.

184 DBS Utility

Figure 101. Default Output Formats

Source Column Data Type
Default DBS DATAUNLOAD Output Data Fields
Default Data Type = CHAR

CHAR Length: Defined length of source column.

VARCHAR length <= 254 Length: Defined maximum length of column.

Note: If the actual length of an occurrence of the
column data is less than the defined maximum length
of the column, the data is left-justified in the output
data field and padded with trailing (low-order) blanks.

VARCHAR length > 254 or LONG VARCHAR Length: 512 positions (bytes).

Notes: If the actual length of an occurrence of the
column data is greater than 512, the column data is
truncated.

If the actual length of an occurrence of the column
data is less than 512, the column data is left-justified
and padded with trailing (low-order) blanks.

SMALLINT Length: 6 Format: snnnnn

INTEGER Length: 11 Format: snnnnnnnnnn

DECIMAL Length: Precision of source column + 2.

Format: Examples:
Column Precision=7, Scale=2: snnnnn.nn
Column Precision=5, Scale=5: s.nnnnn

Note: NUMERIC is a synonym for DECIMAL.

REAL or FLOAT (N) 1 <= N <= 21 Length: 12 (single precision float).

Format: sn.nEsnbbbbb (minimum value) sn.nnnnnEsnn
(maximum value)

Note: The value is left-justified and, if necessary,
padded with trailing (low-order) blanks in the output
data field.

FLOAT or DOUBLE PRECISION or FLOAT (N) 22 <=
N <= 53

Length: 20 (double precision float).

Format: sn.nEsnbbbbbbbbbbbbb (minimum value)
sn.nnnnnnnnnnnnnEsnn (maximum value)

Note: The value is left-justified and, if necessary,
padded with trailing (low-order) blanks in the output
data field.

Legend For FLOAT:
s = EBCDIC SIGN: Plus (+) sign (hex 4E)

Minus (-) sign (hex 60)
Blank (hex 40) if null value.

n = EBCDIC numeric character (hex F0–F9)
. = EBCDIC decimal point (hex 4B)
b = Blank (hex 40)

 Chapter 8. Command Reference 185

Source Column Data Type
Default DBS DATAUNLOAD Output Data Fields
Default Data Type = CHAR

DATE Default
DATE length format
ISO 10 yyyy-mm-dd
JIS 10 yyyy-mm-dd
EUR 10 dd.mm.yyyy
USA 10 mm/dd/yyyy
LOCAL installation defined

yyyy is the year
mm is the month
dd is the day

Note: The length and format of the output data field
depends on the default DATE for the database. You
can query the SYSTEM.SYSOPTIONS catalog to
determine the output format for DATE.

TIME Default
TIME length format
ISO 8 hh.mm.ss
JIS 8 hh:mm:ss
EUR 8 hh.mm.ss
USA 8 hh.mm AM (or hh.mm PM)
LOCAL Installation defined

hh is the hour
0 <= hh<= 24 for ISO, JIS, EUR formats
0 <= hh <= 12 for USA format

mm is the minute
ss is the second

Note: The length and format of the output data field
depends on the default TIME for the database. You
can query the SYSTEM.SYSOPTIONS catalog to
determine the output format for TIME.

TIMESTAMP Length: 26 Format: yyyy-mm-dd-hh.mm.ss.nnnnnn

yyyy-mm-dd is the date (ISO format)
hh.mm.ss is the time (ISO format)
nnnnnn is the microsecond

GRAPHIC Length: (Defined length of column * 2) + 2.

Note: The first position of the output record DBCS data
field contains an SO delimiter and the last position
contains an SI delimiter.

186 DBS Utility

Source Column Data Type
Default DBS DATAUNLOAD Output Data Fields
Default Data Type = CHAR

VARGRAPHIC with defined length <= 127 Length: (Defined maximum length of column * 2) + 2.

Notes: The first position of the output record DBCS
data field contains an SO delimiter and the last
position contains an SI delimiter.

If the actual length of an occurrence of the DBCS
column data is less than the defined maximum length
of the column, the data is left-justified and padded with
trailing blanks in the second through n-1 positions of
the output record field.

VARGRAPHIC with defined length >127 or LONG
VARGRAPHIC

Length: 512 positions.

Notes: The first position of the output record DBCS
field contains an SO delimiter and the last position
contains an SI delimiter.

If the actual length of an occurrence of the DBCS
column data is greater than 510 (255 DBCS
characters), the column data is truncated.

If the actual length of an occurrence of the DBCS
column data is less than 510 (255 DBCS characters),
the data is left-justified and padded with trailing blanks
in the second through n-1 positions of the output
record field.

DATAUNLOAD Default Output Record Format Example: This example unloads
data for the columns EMPNO, PROJNO, and EMPTIME in the tables EMP_ACT
and EMPLOYEE, based on the selection criteria specified in the WHERE clause.
The output records are generated in EMPNO value ascending sequence. Because
no DFI subcommands are present, the default DATAUNLOAD output record data
field format is used.

The DATAUNLOAD command sequence is:

DATAUNLOAD
SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME
FROM EMP_ACT,EMPLOYEE
WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
ORDER BY EMP_ACT.EMPNO;
OUTFILE(OUTPUT1)

Figure 102. DATAUNLOAD Command without DFI Subcommands

The Database Services Utility message file output that results is shown in the
following examples.

 Chapter 8. Command Reference 187

1ARIð8ð1I DBS Utility started: 11/13/89 16:48:16.
AUTOCOMMIT = OFF ERRORMODE = OFF
ISOLATION LEVEL = REPEATABLE READ

ð------> DATAUNLOAD
 ------> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME
 ------> FROM EMP_ACT,EMPLOYEE
 ------> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
 ------> ORDER BY EMP_ACT.EMPNO;
 ------> OUTFILE(OUTPUT1)
 ARIð852I DATAUNLOAD processing started. ┌──────────┐
 ARIð868I DNAME=OUTPUT1 RECFM=F RECSZ=8ð BLKSIZE=8ð %─────┤ See Note │
 ARIð836I Default output record data field positions: └──────────┘
 ARIð837I EMPNO 1-6
 ARIð837I PROJNO 8-13
 ARIð837I EMPTIME 15-21
 ARIð835I 74 record(s) written to the output data file.
 ARIð855I DATAUNLOAD processing successful.
 ARIð8ð2I End of command file input.
 ARI8997I ...Begin COMMIT processing.
 ARIð811I ...COMMIT of any database changes successful.
 ARIð8ð9I ...No error(s) occurred during command processing.
 ARIð8ð8I DBS processing completed: 11/13/89 16:48:2ð.

Figure 103. DB2 Server for VM Database Services Utility Message File Output

Note: The RECFM, RECSZ, and BLKSIZE information displayed in the message
ARI0868I depends on the CMS FILEDEF command specifications for the
output file with ddname=OUTPUT1.

 ARIð8ð1I DBS Utility started: 11/13/89 16:48:16.
AUTOCOMMIT = OFF ERRORMODE = OFF
ISOLATION LEVEL = REPEATABLE READ

 ------> CONNECT "SQLDBA " IDENTIFIED BY \\\\\\\\;
 ARI8ðð4I User SQLDBA connected to database SQLDBA.
 ARIð5ððI SQL processing was successful.
 ARIð5ð5I SQLCODE = ð SQLSTATE = ððððð ROWCOUNT = ð
 ------>
 ------> DATAUNLOAD
 ------> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME
 ------> FROM EMP_ACT,EMPLOYEE
 ------> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
 ------> ORDER BY EMP_ACT.EMPNO;
 ------> OUTFILE(OUTPUT1)
 ARIð852I DATAUNLOAD processing started.
 ARIð868I DNAME=OUTPUT1 RECFM=F RECSZ=8ð BLKSIZE=8ð
 ARIð836I Default output record data field positions:
 ARIð837I EMPNO 1-6
 ARIð837I PROJNO 8-13
 ARIð837I EMPTIME 15-21
 ARIð835I 74 record(s) written to the output data file.
 ARIð855I DATAUNLOAD processing successful.
 ARIð8ð2I End of command file input.
 ARI8997I ...Begin COMMIT processing.
 ARIð811I ...COMMIT of any database changes successful.
 ARIð8ð9I ...No error(s) occurred during command processing.
 ARIð8ð8I DBS processing completed: 11/13/89 16:48:2ð.

Figure 104. DB2 Server for VSE Database Services Utility Report Output

188 DBS Utility

The format of the records in the output file identified by the ddname OUTPUT1 is
shown in Figure 105:

DATAUNLOAD User-Specified Output Record Format Example: Figure 106
selects data for the columns EMPNO, PROJNO, and EMPTIME in the table
EMP_ACT, and data for the column JOB in the EMPLOYEE table based on the
selection criteria specified in the WHERE clause. Only data for the columns
EMPNO, PROJNO, and EMPTIME is unloaded because JOB does not have a DFI
subcommand. The output records are generated in EMPNO sequence.

The Database Services Utility DATAUNLOAD command sequence is:

Figure 105. Default Output Record Format

Record
Position

Data Value Source (Column or
Other)

Output Record Field Data
Type

1-6 EMPNO CHAR

7 blank CHAR

8-13 PROJNO CHAR

14 blank CHAR

15-21 EMPTIME CHAR

DATAUNLOAD
SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB
FROM EMP_ACT,EMPLOYEE
WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
ORDER BY EMP_ACT.EMPNO;
EMPNO 1-6
PROJNO 8-13
EMPTIME 15-21 DECIMAL IF NULL SET POS(22) = '?'
OUTFILE(OUTPUT1)

Figure 106. DATAUNLOAD Command with DFI Subcommands

The Database Services Utility report or message file output generated as a result of
these commands is shown in the following:

 Chapter 8. Command Reference 189

 ARIð8ð1I DBS Utility started: 1ð/ð5/89 14:54:41.
AUTOCOMMIT = OFF ERRORMODE = OFF
ISOLATION LEVEL = REPEATABLE READ

 ------> CONNECT "SQLDBA " IDENTIFIED BY \\\\\\\\;
 ARI8ðð4I User SQLDBA connected to database SQLDBA.
 ARIð5ððI SQL processing was successful.
 ARIð5ð5I SQLCODE = ð SQLSTATE = ððððð ROWCOUNT = ð
 ------>
 ARI8ðð3I ...Extended DBCS (DBCS=YES) processing now in effect.
 ------> DATAUNLOAD
 ------> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB
 ------> FROM EMP_ACT,EMPLOYEE
 ------> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
 ------> ORDER BY EMP_ACT.EMPNO;
 ------> EMPNO 1-6
 ------> PROJNO 8-13
 ------> EMPTIME 15-21 DECIMAL IF NULL SET POS(22) = '?'
 ------> OUTFILE(OUTPUT1)
 ARIð831I Column JOB data will not be unloaded.
 ARIð868I DNAME=OUTPUT1 RECFM=F RECSZ=8ð BLKSIZE=8ð
 ARIð835I 74 record(s) written to the output data file.
 ARIð855I DATAUNLOAD processing successful.
 ARIð8ð2I End of command file input.
 ARI8997I ...Begin COMMIT processing.
 ARIð811I ...COMMIT of any database changes successful.
 ARIð8ð9I ...No error(s) occurred during command processing.
 ARIð8ð8I DBS processing completed: 1ð/ð5/89 14:54:44.

Figure 107. DB2 Server for VSE Database Services Utility Report Output

1ARIð8ð1I DBS Utility started: 1ð/ð5/89 14:54:41.
AUTOCOMMIT = OFF ERRORMODE = OFF
ISOLATION LEVEL = REPEATABLE READ

ðARI8ðð3I ...Extended DBCS (DBCS=YES) processing now in effect.
ð------> DATAUNLOAD
 ------> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB
 ------> FROM EMP_ACT,EMPLOYEE
 ------> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO
 ------> ORDER BY EMP_ACT.EMPNO;
 ------> EMPNO 1-6
 ------> PROJNO 8-13
 ------> EMPTIME 15-21 DECIMAL IF NULL SET POS(22) = '?'
 ------> OUTFILE(OUTPUT1)
 ARIð852I DATAUNLOAD processing started.
 ARIð831I Column JOB data will not be unloaded. ┌──────────┐
 ARIð868I DNAME=OUTPUT1 RECFM=F RECSZ=8ð BLKSIZE=8ð %─────┤ See Note │
 ARIð835I 74 record(s) written to the output data file. └──────────┘
 ARIð855I DATAUNLOAD processing successful.
 ARIð8ð2I End of command file input.
 ARI8997I ...Begin COMMIT processing.
 ARIð811I ...COMMIT of any database changes successful.
 ARIð8ð9I ...No error(s) occurred during command processing.
 ARIð8ð8I DBS processing completed: 1ð/ð5/89 14:54:44.

Figure 108. DB2 Server for VM Database Services Utility Message File Output

Note: The RECFM, RECSZ, and BLKSIZE information displayed in the message
ARI0868I depends on the CMS FILEDEF command specifications for the
output file with ddname=OUTPUT1.

190 DBS Utility

The format of the records in the output file identified by the ddname OUTPUT1 is
shown in Figure 109.

Figure 109. User-Defined Output Record Format

Record Position Data Value Source (Column or Other) Output Record Field Data Type

1-6 EMPNO CHAR

7 blank CHAR

8-13 PROJNO CHAR

14 blank CHAR

15-21 EMPTIME DECIMAL

22 EMPTIME
null indicator

CHAR

DATAUNLOAD Data Conversion Summary
summarizes the data conversion performed by Database Services Utility
DATAUNLOAD processing. Yes means that the utility performs the conversion. No
means that the utility cannot convert the source column data type into the data type
specified for the output record data field and that any attempt to do so results in a
Database Services Utility processing error. The numbers in the chart refer to the
notes below the figure.

Notes for :

1. The CHAR, VARCHAR, and long field column data may be truncated if the
length of the source data is greater than the length of an output CHAR data
field. For TIME and DATE, an error occurs if the length of the source data is
greater than the length of an output CHAR data field. For TIMESTAMP, if the
output data field length is less than 19 bytes, an error occurs; if the output data
field length is less than 26 bytes but greater than or equal to 19 bytes, trailing
digits of the microseconds part of the timestamp is truncated. If the length of
the output record data field is greater than the length of the source column
data, all trailing (low-order) positions of the data field are padded with a blank
(hex 40) value. Occurrences of null character column data result in an all blank
output record data field.

2. If a CHAR output record data field is potentially too small to contain all
significant digits, the sign, and the decimal point for a value derived from a
column defined with a numeric (SMALLINT, INTEGER, DECIMAL, or FLOAT)
data type, then:

� An error message is written to the Database Services Utility message file
identifying the column name.

� The output record CHAR data field associated with a numeric column
contains asterisks (*) if a data overflow condition actually occurs.

3. A CHAR output data field derived from a column with a DECIMAL data type
contains an EBCDIC plus sign (hex 4E) or minus sign (hex 60) in the leading
(high-order) position. The data value is right-justified in the low-order positions
of the output data field and represented using the values hex F0 through hex
F9 in each position except for the decimal point position. A decimal point (hex
4B) precedes the low-order scale value positions in the output data field. The
leading (high-order) positions of the output data field (except for the first

 Chapter 8. Command Reference 191

position) contain zeros (hex F0) if the number of significant positions of the
data value is less than the length of the output data field minus 2.

Occurrences of null column data result in an unsigned output data field value of
ð. The leading position of the field contains a blank (hex 40) and the remainder
of the data field contains the value hex F0 (except for the decimal point
position).

For example, the hexadecimal values in each position of an eight-position
CHAR output record data field derived from a DECIMAL (5,2) column
containing the value +11.11 are:

Note: The minimum length of a CHAR output data field derived from a
DECIMAL select-list column is the column scale length plus 2.

4. A CHAR output data field derived from a column with a SMALLINT or
INTEGER data type contains a minus sign (hex 60) in the leading (high-order)
position for negative column values. If the column value is positive, the leading
(high-order) position of the data field contains a blank (hex 40). The data value
is right-justified in the low-order positions of the output data field and
represented using the values hex F0 through hex F9 in each position. The
leading (high-order) positions of the output data field (except for the first
position) contain zeros (hex F0) if the number of significant positions of the
data value is less than the length of the output data field minus 1.

Occurrences of null column data result in an unsigned output data field value of
ð. The leading position of the field contains a blank (hex 40) and the remainder
of the data field positions contains the value hex F0.

For example, the hexadecimal values contained in each position of an
eight-position CHAR output record data field derived from a SMALLINT column
containing the value +32767 are:

Note: The minimum length of a CHAR output data field derived from a
SMALLINT or INTEGER column is 2.

5. A CHAR output data field derived from a column with a FLOAT data type is
left-justified in the leading (high-order) positions of the output data field. The
format of the output data field value ranges from:

sn.nEsn to sn.nnnnnnnnnnnnnEsnn (for 8-byte float)

or

sn.nEsn to sn.nnnnnEsnn (for 4-byte float)

where:

Hexadecimal Value 4E F0 F0 F1 F1 4B F1 F1

EBCDIC Character + ð ð 1 1 . 1 1

Field Position 1 2 3 4 5 6 7 8

Hexadecimal Value 40 F0 F0 F3 F2 F7 F6 F7

EBCDIC Character ð ð 3 2 7 6 7

Field Position 1 2 3 4 5 6 7 8

192 DBS Utility

s = EBCDIC sign: Plus (+) sign (hex 4E)
Minus (-) sign (hex 6ð)

n = EBCDIC numeric character (hex Fð–F9)
. = EBCDIC decimal point (hex 4B)

E = EBCDIC character E (hex C5)

The trailing (low-order) positions of the output data field contain blanks
(hex 40) if the length of the field is greater than the EBCDIC representation of
the column value.

Occurrences of null column data result in an unsigned output data field value
(␣0.0E+ð). The leading position of the data field contains a blank (hex 40).

For example, the hexadecimal values contained in each position of a
10-position CHAR output record data field derived from an 8-byte FLOAT
column containing the value +1.11E+02 are:

Note: The minimum length of a CHAR output data field derived from a column
with FLOAT data type is 7.

6. Leading (high-order) zero-value positions of column data are truncated if the
length of a numeric (FIXED, DECIMAL, or ZONED) output data field is less
than the length of the numeric (SMALLINT, INTEGER, or DECIMAL) column
value. A null column value results in a numeric output record data field value of
ð.

If a numeric output record data field is too small to contain all significant digits
of the data value from a numeric column:

� The message ARI0833E is written to the Database Services Utility
message file identifying the column name and the SQL SELECT row count.

� No data for the row is written to the output data file.

7. A null column value results in a numeric output record data field value of ð.

An 8-byte float column unloaded into a 4-byte output record FLOAT data field
results in the loss of a number of digits of precision. The fraction (mantissa) is
reduced from 14 to 6 digits of precision. During the conversion process, if the
exponent value exceeds a value of +63, the message ARI0833E is generated
and no data for the row is unloaded.

8. The minimum length of an output data field derived from a DECIMAL column is
the (scale value/2+1). The scale of output data derived from a DECIMAL
column is the same as that for the source column.

If the length of the output data field is greater than the value of (column
precision/2)+1, the column value is extended with high-order zeros in the output
data field.

If the length of the output data field is less than the value of (column
precision/2)+1, nonsignificant high-order zeros to the left of the implied decimal
point are not reflected in the data field value.

Hexadecimal Value 4E F1 4B F1 F1 C5 4E F0 F2 40

EBCDIC Character + 1 . 1 1 E + ð 2

Field Position 1 2 3 4 5 6 7 8 9 10

 Chapter 8. Command Reference 193

9. Only fixed-length DBCS (data type of GRAPHIC) output data fields are
produced by DATAUNLOAD processing. The startpos of the output data field
contains a shift-out delimiter (hex 0E). The endpos of the output data field
contains a shift-in delimiter (hex 0F).

DBCS column data is truncated if the length of the column data plus 2 is
greater than the length of the output GRAPHIC data field. The length of the
column data is the number of DBCS characters times 2.

If the length of the output data field minus 2 is greater than the column data
length, the output data field is padded with trailing (low-order) DBCS blank (hex
4040) characters in the unused low-order data field positions. The last position
of the data field always contains a shift-in delimiter (hex 0F).

If the column data value is all blanks or null, startpos+1 to endpos−1 of the
output DBCS data field contains DBCS blank characters (hex 4040).

10. The datetime data type input and target type must match; for example, the
input data type of TIME is valid only for the target column data type of TIME.

11. A 4-byte float column unloaded into an 8-byte float data field is padded with
hex ðððð ðððð.

12. REAL represents single precision floating point data and is synonymous with
FLOAT(n) where 1 is less than or equal to n is less than or equal to 21.

13. DOUBLE PRECISION represents double precision floating point data and is
synonymous with FLOAT or FLOAT(n) where 22 is less than or equal to n is
less than or equal to 53.

14. If the length of the output record data field is greater than the length of the
source column data, all leading (high-order) positions of the data field are
padded with hex zeros.

 RELOAD DBSPACE

RELOAD DBSPACE Format

194 DBS Utility

VM Format:

55──RELOAD DBSPACE─ ──(dbspace_name) ──┬ ┬─NEW─── ─INFILE─ ──(ddname) ─────────────────────────5
 └ ┘─PURGE─

5─ ──┬ ┬─────────────────────────── ──┬ ┬──────────────────────────────── ────────────────────5
 └ ┘─COMMITCOUNT──(──ccount──)─ └ ┘─RESTARTTABLE──(──table_name──)─

5─ ──┬ ┬──────────────────────────── ──5%
 └ ┘─RESTARTCOUNT──(──rcount──)─

VSE Format:

55──RELOAD DBSPACE─ ──(dbspace_name) ──┬ ┬─NEW─── ───5
 └ ┘─PURGE─

5──INFILE──(──ddname─ ──┬ ┬─────────────────────── ──┬ ┬──────────────────────────────── ─────5
 │ │┌ ┐─2ð48─ │ │┌ ┐─REWIND───
 └ ┘ ─BLKSZ─ ─(─ ──┴ ┴─size─ ─)─ │ │┌ ┐ ─(TAPE)─ ──┴ ┴─NOREWIND─
 └ ┘ ─PDEV─ ──┴ ┴─(DASD)───────────────

5─ ─)─ ──┬ ┬─────────────────────────── ──┬ ┬──────────────────────────────── ─────────────────5
 └ ┘─COMMITCOUNT──(──ccount──)─ └ ┘─RESTARTTABLE──(──table_name──)─

5─ ──┬ ┬──────────────────────────── ──5%
 └ ┘─RESTARTCOUNT──(──rcount──)─

Examples:

RELOAD DBSPACE(JOHNS.SPACE1) PURGE INFILE(TEMP)
RELOAD DBSPACE(PUBLIC.SPACE2) NEW INFILE(TEMP)
RELOAD DBSPACE(DBS1) PURGE INFILE(IFILE) COMMITCOUNT(3ðð)
 RESTARTTABLE(EMPLOYEE) RESTARTCOUNT(6ðð)

Authorization:

You must have the INSERT privilege on the tables affected by the
command. Additional authority is required depending on the keywords
specified:

RESOURCE–if NEW is specified.
SELECT, DELETE, and INSERT– if
PURGE is specified.
DBA–if PURGE is specified, and if any indexes defined on
an affected table are owned by someone else. DBA authority is also required if
NEW is specified, and any tables are to be created for another user.

Before you reload tables into a dbspace, it must already exist.

Note: The RELOAD DBSPACE command is not supported on a non-DB2 Server
for VM application server or if you are using DRDA protocol.

DBSPACE (dbspace-name)
identifies a RELOAD DBSPACE request and identifies the dbspace to be
loaded. The Database Services Utility loads the tables into the dbspace in the
order that they occur in the input data. If you do not own a private dbspace with
the dbspace-name identified, the data is loaded into a public dbspace (if one
having that name exists). The owner of a public dbspace is PUBLIC.

NEW
instructs the Database Services Utility to create each table contained in the
input file before loading the data. Tables represented in the input data file that
already exist in the database are not processed. The tables are created for the
current Database Services Utility user. You must have RESOURCE
authorization to use this keyword.

If either the RESTARTCOUNT or RESTARTTABLE parameters appear on the
RELOAD DBSPACE command, the NEW parameter will not cause the restart
table to be created. The RESTARTCOUNT and RESTARTTABLE parameters

 Chapter 8. Command Reference 195

indicate that the RELOAD DBSPACE operation is being restarted, therefore,
NEW processing must have already occurred, so it is not required to create the
restart table again. Note that NEW processing is performed on all tables to be
reloaded before any rows are reloaded to any table. This means that NEW
processing will have already occurred for all tables to be reloaded.

PURGE
instructs the Database Services Utility that existing tables within the dbspace
are to be loaded. The rows for all dbspace tables to be processed are deleted
before the first table is loaded. The tables that are processed are those that are
in the input file; that is, if table JONES.PROJECT exists in the dbspace, but the
input file contains only JONES.EMPLOYEE and JONES.DEPARTMENT, then
JONES.PROJECT is unaffected by RELOAD processing. Even if the input file
contains SMITH.PROJECT, JONES.PROJECT is unaffected. The Database
Services Utility uses fully qualified table names when determining the tables to
reload. You must have the DELETE privilege to use this keyword if you do not
own the affected tables. You must also have DBA authority if any indexes
defined on an affected table are owned by someone else.

If either the RESTARTCOUNT or RESTARTTABLE parameters appear on the
RELOAD DBSPACE command, the PURGE parameter will not cause all rows
of the restart table to be deleted. The RESTARTCOUNT and RESTARTTABLE
parameters indicate that the RELOAD DBSPACE operation is being restarted,
therefore, PURGE processing must have already occurred, so it is not required
to delete all rows from the restart table again. Note that PURGE processing is
performed on all tables to be reloaded before any rows are reloaded to any
table. This means that PURGE processing will have already occurred for all
tables to be reloaded.

Note: You must specify either NEW or PURGE in the RELOAD DBSPACE
statement. Because existing tables might be greatly affected by the
choice of these parameters, there is no default specification.

INFILE (ddname)
in DB2 Server for VSE, this identifies and describes the sequential (SAM) file
containing the input dbspace data. The default record format in a DB2 Server
for VSE system is variable-length blocked, spanned (SB), with
LRECL=(BLKSIZE−4) for variable and spanned records or LRECL=BLKSIZE for
fixed and undefined records. The default record format in a DB2 Server for VM
system is variable-length blocked, spanned (VBS). Block size and record format
information is specified using a CMS FILEDEF command; the LRECL
parameter is not applicable.

ddname
In DB2 Server for VSE: this is the TLBL or DLBL job control statement file
name for the sequential input file. In DB2 Server for VM: this is the name of
the sequential input file defined with a CMS FILEDEF command. Except for
the ddname, use the same CMS FILEDEF command information for
RELOAD command processing that you used when UNLOAD command
processing created the file. Define the CMS file used for RELOAD
command input with the file-mode number 4. Do not specify SYSIN or
SYSPRINT as the ddname.

COMMITCOUNT (ccount)
identifies the frequency of COMMIT action during RELOAD processing.
ccount is a number from 1 to 2,147,483,647 indicating that a COMMIT

196 DBS Utility

statement should be executed after the number of input table rows equal to
ccount are processed by RELOAD for each table. A COMMIT statement
will also be executed after the last row of each table has been reloaded.

Note: DBS Utility AUTOCOMMIT ON processing must be in effect when
you use RELOAD COMMITCOUNT processing. If AUTOCOMMIT is
OFF and the COMMITCOUNT parameter is used, an error message
is written and RELOAD command processing is not performed.

RESTARTTABLE (table_name)
identifies at which table the RELOAD DBSPACE processing will be
restarted. If a RELOAD DBSPACE operation ended normally, and the
RELOAD DBSPACE statement included the COMMITCOUNT parameter,
the RELOAD DBSPACE operation can be restarted by using the
RESTARTTABLE and RESTARTCOUNT parameters. table_name
identifies the table where RELOAD processing should begin. If
RESTARTTABLE is omitted, RELOAD DBSPACE processing will begin
reloading the first table, and the RESTARTCOUNT parameter, if specified,
will apply to the first table.

Note: If the table does not exist in the database when RELOAD
DBSPACE with RESTARTCOUNT or RESTARTTABLE is issued,
an error message is displayed.

RESTARTCOUNT (rcount)
identifies the restart point for RELOAD processing. rcount is a number from
1 to 2,147,483,647 that identifies the number of input table rows in the
restart table to be skipped before RELOAD command processing begins. If
RESTARTCOUNT is omitted, no table rows are skipped and RELOAD
processing begins with the first table row of the restart table.

Note: If an end-of-table condition occurs before rcount rows of the restart
table are read, an error message is written before RELOAD
processing ends.

BLKSZ (size)
is an optional parameter that specifies the block size of the sequential
output file. The default block size is 2048 bytes per block.

PDEV (TAPE or DASD)
is an optional parameter that specifies the device type (DASD or TAPE) of
the sequential (SAM) input file. Specify PDEV(DASD) if the input file
resides on any device supported by the VSE DTFSD macro. An exception
to this is VSAM-managed SAM files. VSAM-managed SAM does not
support spanned records. Specify PDEV(TAPE) if the input file resides on a
device supported by the VSE DTFMT macro. The default is PDEV(TAPE).

BLKSZ and PDEV can be specified in any order but must occur after the
ddname parameter.

REWIND or NOREWIND
controls tape file rewind processing performed during OPEN
processing. This parameter is valid only if you specify TAPE for PDEV.
The default processing is REWIND.

REWIND
specifies that the tape file is rewound by OPEN processing.

 Chapter 8. Command Reference 197

NOREWIND
specifies that the tape file is not rewound by OPEN processing. If
NOREWIND is specified for input tape files referenced by a series
of RELOAD commands, you must ensure that the tape files being
referenced are in ascending sequence. For example, if NOREWIND
is specified in a sequence of two RELOAD commands and the first
command reads tape file 2, then the second command must
reference tape file 3 or higher number. If it references tape file 1,
an OPEN error occurs.

 RELOAD TABLE

RELOAD TABLE Format

VSE Format:

55──RELOAD TABLE─ ──(table_name) ──┬ ┬─PURGE─────────────── ──┬ ┬─────────────────────── ──────5
 └ ┘─NEW─ ──(dbspace_name) └ ┘─INTABLE─ ──(table_name)

5──INFILE──(──ddname─ ──┬ ┬─────────────────────── ──┬ ┬──────────────────────────────── ─────5
 │ │┌ ┐─2ð48─ │ │┌ ┐─REWIND───
 └ ┘ ─BLKSZ─ ─(─ ──┴ ┴─size─ ─)─ │ │┌ ┐ ─(TAPE)─ ──┴ ┴─NOREWIND─
 └ ┘ ─PDEV─ ──┴ ┴─(DASD)───────────────

5─ ─)─ ──┬ ┬─────────────────────────── ──┬ ┬──────────────────────────── ────────────────────5%
 └ ┘─COMMITCOUNT──(──ccount──)─ └ ┘─RESTARTCOUNT──(──rcount──)─

VM Format:

55──RELOAD TABLE─ ──(table_name) ──┬ ┬─PURGE─────────────── ──┬ ┬─────────────────────── ──────5
 └ ┘─NEW─ ──(dbspace_name) └ ┘─INTABLE─ ──(table_name)

5──INFILE─ ──(ddname) ──┬ ┬─────────────────────────── ──┬ ┬──────────────────────────── ─────5%
 └ ┘─COMMITCOUNT──(──ccount──)─ └ ┘─RESTARTCOUNT──(──rcount──)─

VSE Examples:

 RELOAD TABLE(SALARY)
 NEW(DBSPACE1)
 INTABLE(SMITH.SALARY)
 INFILE(CIPHER3 PDEV(TAPE))
 RELOAD TABLE(SALARY)
 NEW(DBSPACE1)
 INTABLE(SMITH.SALARY)
 INFILE(CIPHER3)
 COMMITCOUNT(3ðð)
 RESTARTCOUNT(6ðð)

VM Example :

 RELOAD TABLE(SALARY)
 NEW(DBSPACE1)
 INTABLE(SMITH.SALARY)
 INFILE(CIPHER3)
 COMMITCOUNT(3ðð)
 RESTARTCOUNT(6ðð)

Authorization:

 You must have the INSERT privilege on the "target" table. Additional authority is required
 depending on the keywords specified.

RESOURCE–if NEW is specified.
DELETE and INSERT–if PURGE is specified and the table is owned by another user.
DBA–if PURGE is specified, and if any indexes defined on an affected table are owned by

 someone else.

Note: The RELOAD TABLE command is not supported on a non-DB2 Server for
VM application server or if you are using DRDA protocol.

198 DBS Utility

TABLE (table_name)
identifies a RELOAD TABLE request and the table to be loaded. You can
further identify the table by specifying the owner of the table (see “Qualifying
Object Names” on page 111 for details). You cannot use a synonym for a
table_name. If you specify the NEW option, a table called table_name is
created for that user. If you specify the PURGE option, you can specify a view
name instead of a table name if the view meets the following requirements:

� The view is defined on a single table.

� The view definition includes all the NOT NULL columns in the table. That
is, all columns outside of the view definition must permit the insertion of
nulls.

� The view has no column definitions based on functions (virtual data
columns).

When reloading data into a view that was created using the WITH CHECK
OPTION clause, the database manager checks all inserts and updates to the
view against the view definition and rejects them if the row to be inserted or
updated does not conform to the view definition.

NEW (dbspace_name)
instructs the Database Services Utility that the table to be loaded does not exist
and must first be created. You can identify the dbspace by the owner. If you do
not specify the owner of the dbspace (see “Qualifying Object Names” on
page 111 for information about owner), a private dbspace that you own with
dbspace_name specified is loaded. If no such private dbspace exists, a public
dbspace with dbspace_name is loaded. The owner of a public dbspace is
PUBLIC, for example, NEW (PUBLIC.PRODUCTION). If owner is specified for
the table name and owner is not specified for the dbspace name, the Database
Services Utility does not use the owner specified for the table name to identify
the private dbspace.

If the RESTARTCOUNT parameter appears on the RELOAD TABLE command,
the NEW parameter will not cause the table to be created. The
RESTARTCOUNT parameter indicates that the RELOAD TABLE operation is
being restarted, therefore, NEW processing must have already occurred, so it is
not required to create the table again.

PURGE
identifies that the output table (table to be loaded) exists and that all existing
table rows should be deleted by RELOAD TABLE processing before loading.
You must have the DELETE privilege on the output table. If you are not the
owner of the output table, you require DELETE and INSERT authority for the
table. If any indexes for the table are owned by another user, you require DBA
authority.

If the RESTARTCOUNT parameter appears on the RELOAD TABLE command, the
PURGE parameter will not cause all row to be deleted. The RESTARTCOUNT
parameter indicates that the RELOAD TABLE operation is being restarted,
therefore, PURGE processing must have already occurred, so it is not required to
delete all rows from the table again.

Note: You must specify either NEW or PURGE in the RELOAD TABLE statement.
Because existing tables might be greatly affected by the choice of these
parameters, there is no default specification.

 Chapter 8. Command Reference 199

INTABLE (table_name)
is optional. If omitted, the Database Services Utility loads data from the first
table it finds in the input file. INTABLE identifies data in the input file to be used
for RELOAD TABLE processing. Because the input file must be created by
UNLOAD processing, the data is organized by the tables from which it was
unloaded. Thus, the table_name that you specify here is the name of a table
that was unloaded at an earlier time. This parameter is useful if your input file
was created by an UNLOAD DBSPACE command. The UNLOAD DBSPACE
command can unload many tables into a sequential file. The INTABLE
parameter merely identifies which of those tables you now want to reload.

You can use owner to specify the user ID of the person who created the table
in the input file. If you omit the owner (see “Qualifying Object Names” on
page 111 for more information about owner), the utility uses the data of the
first table encountered in the input file with the table_name specified. In this
instance, owner does not default to the user ID of the current Database
Services Utility user.

INFILE (ddname)
identifies and describes the sequential (SAM) input file containing the data to
be loaded into the table. The file must be created with UNLOAD processing.
The default record format in a DB2 Server for VSE system is variable-length
blocked, spanned (SB), with LRECL=(BLKSIZE−4) for variable and spanned
records or LRECL=BLKSIZE for fixed and undefined records. The default
record format in a DB2 Server for VM system is variable-length blocked,
spanned (VBS), with block size and record format information specified by a
CMS FILEDEF command; the LRECL parameter is not applicable.

COMMITCOUNT (ccount)
identifies the frequency of COMMIT action during RELOAD processing. ccount
is a number from 1 to 2,147,483,647 indicating that a COMMIT statement
should be executed after the number of input table rows equal to ccount are
processed by RELOAD TABLE.

Note: DBS Utility AUTOCOMMIT ON processing must be in effect when you
use RELOAD COMMITCOUNT processing. If AUTOCOMMIT is OFF
and the COMMITCOUNT parameter is used, an error message is
written and RELOAD command processing is not performed.

RESTARTCOUNT (rcount)
identifies the restart point for RELOAD processing. rcount is a number from 1 to
2,147,483,647 that identifies the number of input table rows to be skipped
before RELOAD command processing begins. Row rcount + 1 will be the first
row to be reloaded. If RESTARTCOUNT is omitted, no rows are skipped and
RELOAD processing begins with the first input row.

Note: If an end-of-table condition occurs before rcount rows are read from the
input UNLOAD file, an error message is written before RELOAD
processing ends.

ddname
in DB2 Server for VSE: this is the TLBL or DLBL job control statement file
name for the sequential input file.

In DB2 Server for VM: this is the name of the sequential input file defined
with a CMS FILEDEF command. Except for the ddname, CMS FILEDEF
command information for RELOAD command processing should be

200 DBS Utility

identical to the information in the FILEDEF command used when the file
was created by UNLOAD command processing. You must define a CMS
file used for RELOAD command input with the file-mode number 4. Do not
specify SYSIN or SYSPRINT as the ddname.

BLKSZ (size)
is an optional parameter that specifies the block size of the sequential
output file. The default block size is 2048 bytes per block.

PDEV (TAPE or DASD)
is an optional parameter that specifies the device type (DASD or TAPE) of
the sequential (SAM) input file. Specify PDEV(DASD) if the input file
resides on any device supported by the VSE DTFSD macro. An exception
to this is VSAM-managed SAM files. VSAM-managed SAM does not
support spanned records. Specify PDEV(TAPE) if the input file resides on a
device supported by the VSE DTFMT macro. The default is PDEV(TAPE).

BLKSZ and PDEV can be specified in any order but must occur after the
ddname parameter.

REWIND or NOREWIND
controls tape file rewind processing performed during OPEN processing.
This parameter is valid only if you specify TAPE for PDEV. The default
processing is REWIND.

REWIND
specifies that the tape file is rewound by OPEN processing.

NOREWIND
specifies that the tape file is not rewound by OPEN processing. If
NOREWIND is specified for input tape files referenced by a series of
RELOAD commands, you must ensure that the tape files being
referenced are in ascending sequence. For example, if NOREWIND is
specified in a sequence of two RELOAD commands and the first
command reads tape file 2, then the second command must reference
tape file 3 or higher. If it references tape file 1, an OPEN error occurs.

 UNLOAD DBSPACE

UNLOAD DBSPACE Format

 Chapter 8. Command Reference 201

VM Format:

55──UNLOAD DBSPACE─ ──(dbspace_name) ─OUTFILE─ ──(ddname) ────────────────5%

VSE Format:

55──UNLOAD DBSPACE─ ──(dbspace_name) ────────────────────────────────────5

5──OUTFILE──(──ddname─ ──┬ ┬─────────────────────── ──────────────────────5
 │ │┌ ┐─2ð48─
 └ ┘ ─BLKSZ─ ─(─ ──┴ ┴─size─ ─)─

5─ ──┬ ┬──────────────────────────────── ─)──────────────────────────────5%
 │ │┌ ┐─NOREWIND─
 │ │┌ ┐ ─(TAPE)─ ──┴ ┴─REWIND───
 └ ┘ ─PDEV─ ──┴ ┴─(DASD)───────────────

VM Example:

 UNLOAD DBSPACE(THOMPSON.SPACE1) OUTFILE(HISTORY)

VSE Example:

 UNLOAD DBSPACE(MIKE.SP2) OUTFILE(SAVE BLKSZ(2ð48))

Authorization:

You must have the SELECT privilege on the table(s) being
unloaded.

UNLOAD DBSPACE unloads all tables of the specified dbspace to a sequential
output file.

Note: The UNLOAD DBSPACE command is not supported on a non-DB2 Server
for VM application server or if you are using DRDA protocol.

Following are the descriptions for each portion of the command:

DBSPACE (dbspace_name)
identifies an UNLOAD DBSPACE request and the dbspace to be unloaded.
The utility unloads the tables of the dbspace in an unpredictable order. The
dbspace_name is the name of the dbspace to be unloaded. If you do not
specify owner, the utility unloads one of your dbspaces. See “Names and
Identifiers” on page 110 for more information about naming conventions for
data objects. If you do not own a dbspace called dbspace_name, the utility
unloads a public dbspace having that name. If there is no public dbspace
having that name, UNLOAD processing is unsuccessful, and an error message
is written to the Database Services Utility message file.

For example, suppose your user ID is GENE and you specify:

UNLOAD DBSPACE(SPACE1) ...

The Database Services Utility unloads the private dbspace named
GENE.SPACE1. If there is no such dbspace, the utility unloads the public
dbspace named PUBLIC.SPACE1. If there is no PUBLIC.SPACE1, no dbspace
is unloaded, and you receive an error message in the message file.

202 DBS Utility

If you own a private dbspace with the same name as a public dbspace, and
you want to unload the public dbspace, you must specify
PUBLIC.dbspace_name. If owner is omitted, the private dbspace is unloaded.

OUTFILE|OUTFILE (ddname)
identifies and describes the sequential (SAM) output file that is to contain the
data unloaded from the dbspace. The default record format is variable-length
blocked, spanned (VBS). A minimum logical record length (LRECL) of 8240
bytes is the default in DB2 Server for VSE. A block size greater than 8244 is
recommended for tape output files to improve performance.

ddname
in DB2 Server for VSE: this is the TLBL or DLBL job control statement file
name for the sequential output file.

Note: If the message ARI0868I generated during DBS UNLOAD
command processing identifies RECFM=VS for an output file
defined with RECFM VBS, the file can be read by DBS RELOAD
command processing using RECFM VBS.

In DB2 Server for VM: this is the name of the sequential output file defined
with a CMS FILEDEF command. The FILEDEF command should contain
the record format specification RECFM VBS or a block size (BLOCK or
BLKSIZE) value or both. You must define a CMS file used for UNLOAD
command output with the file mode number 4.

If the row length (sum of defined column lengths) for any table in the
dbspace being unloaded exceeds 8 240 bytes, the largest row length value
is used as the minimum logical record length.

Notes:

1. Always specify a record format (RECFM) of variable-length blocked,
spanned (VBS) for UNLOAD processing. UNLOAD processing changes
the record format to variable-length spanned (VS) if the required
minimum logical record length is greater than the specified block size
(BLOCK) value minus 4.

2. If the message ARI0868I generated during DBS UNLOAD command
processing identifies RECFM=VS for an output file defined with
RECFM=VBS, DBS RELOAD command processing can read the file by
using RECFM=VBS.

3. If the message ARI0868I indicates RECFM=VS for a tape output file,
significant performance improvements can be obtained by increasing
the block size (BLOCK) value for the file. A block size greater than
8244 bytes is recommended for tape output files created by UNLOAD
processing.

Do not specify SYSIN or SYSPRINT as the ddname.

BLKSZ (size)
is an optional parameter that specifies the block size of the sequential output
file. The default block size is 2048 bytes per block.

PDEV (TAPE or DASD)
is an optional parameter that specifies the device type (DASD or TAPE) for the
sequential output file. Specify PDEV(DASD) for files that reside on any device

 Chapter 8. Command Reference 203

supported by the VSE DTFSD macro. An exception to this is VSAM-managed
SAM files. VSAM-managed SAM does not support spanned records. Specify
PDEV(TAPE) for files that reside on any device supported by the VSE DTFMT
macro. The default is PDEV(TAPE).

BLKSZ and PDEV can be specified in any order but must occur after the
ddname parameter.

NOREWIND or REWIND
controls tape file rewind processing performed during CLOSE processing. This
parameter is valid only if you specified TAPE for PDEV. The default is
NOREWIND.

NOREWIND
specifies that the tape file will not be rewound by CLOSE processing.

REWIND
specifies that the tape file is rewound by CLOSE processing.

 UNLOAD TABLE

UNLOAD TABLE Format

VM Format:

55──UNLOAD TABLE─ ──(table_name) ─OUTFILE─ ──(ddname) ────────────────────5%

VSE Format:

55──UNLOAD TABLE─ ──(table_name) ──5

5──OUTFILE──(──ddname─ ──┬ ┬─────────────────────── ──────────────────────5
 │ │┌ ┐─2ð48─
 └ ┘ ─BLKSZ──(─ ──┴ ┴─size─ ─)─

5─ ──┬ ┬──────────────────────────────── ─)──────────────────────────────5%
 │ │┌ ┐─NOREWIND─
 │ │┌ ┐ ─(TAPE)─ ──┴ ┴─REWIND───
 └ ┘ ─PDEV─ ──┴ ┴─(DASD)───────────────

VSE Example:

 UNLOAD TABLE (EMPLOYEE) OUTFILE(SAVE13 PDEV(DASD))

VM Example:

 UNLOAD TABLE (EMPLOYEE) OUTFILE(SAVE13)

Authorization:

 You must have the SELECT privilege on the table being unloaded.

The UNLOAD TABLE command unloads a specific table or view to an output
file.

Note: The UNLOAD TABLE command is not supported on a non-DB2 Server for
VM application server or if you are using DRDA protocol.

204 DBS Utility

Following are descriptions of each portion of the command:

TABLE (table_name)
identifies an UNLOAD TABLE request and the table to be processed. You can
UNLOAD a view merely by specifying a view name instead of a table name.
You can further identify the table or view by specifying the owner of the table or
view (see “Qualifying Object Names” on page 111 for details). A synonym
cannot be used for table_name.

OUTFILE|OUTFILE (ddname)
identifies and describes the sequential (SAM) output file that is to contain the
data unloaded from the table. The default record format is variable-length
blocked, spanned (VBS). A minimum logical record length (LRECL) of 8240
bytes is the default in a VSE system. To improve performance, a block size
greater than 8244 bytes is recommended for tape output files.

ddname
in DB2 Server for VSE: this is the TLBL or DLBL job control statement file
name for the sequential output file.

Note: If the message ARI0868I generated during DBS UNLOAD command
processing identifies RECFM=VB for an output file defined with RECFM
VBS, the file can be read by DBS RELOAD command processing using
RECFM VBS.

In DB2 Server for VM: this is the name of the sequential output file defined with
a CMS FILEDEF command. The FILEDEF command should contain the record
format specification RECFM VBS or a block size (BLOCK or BLKSIZE) value or
both. You must define a CMS file used for UNLOAD command output with the
file mode number 4. UNLOAD processing writes variable-length spanned
records with a minimum logical record length (LRECL) of 8240 bytes.

Notes:

1. A record format (RECFM) of variable-length blocked, spanned (VBS)
should always be specified for UNLOAD processing. UNLOAD processing
changes the record format to variable-length spanned (VS) if the system
required logical record length is greater than the specified block size
(BLOCK) value minus 4.

2. If the message ARI0868I generated during DBS UNLOAD command
processing identifies RECFM=VS for an output file defined with
RECFM=VBS, the file can be read by DBS RELOAD command processing
using RECFM=VBS.

3. If the message ARI0868I indicates RECFM=VS for a tape output file,
significant performance improvements can be obtained by increasing the
block size (BLOCK) value for the file. A block size greater than 8244 is
recommended for tape output files created by UNLOAD processing.

Do not specify SYSIN or SYSPRINT as the ddname.

BLKSZ (size)
is an optional parameter that specifies the block size of the sequential output
file. The default block size is 2048 bytes per block.

PDEV (TAPE or DASD)
is an optional parameter that specifies the device type (DASD or TAPE) for the
sequential output file. Specify PDEV(DASD) for files that reside on any device

 Chapter 8. Command Reference 205

supported by the VSE DTFSD macro. An exception to this is VSAM-managed
SAM files. VSAM-managed SAM does not support spanned records. Specify
PDEV(TAPE) for files that reside on any device supported by the VSE DTFMT
macro. The default is PDEV(TAPE).

BLKSZ and PDEV can be specified in any order but must occur after the
ddname parameter.

NOREWIND or REWIND
controls tape file rewind processing performed during CLOSE processing.
This parameter is valid only if you specify TAPE for PDEV. The default is
NOREWIND.

NOREWIND
specifies that the tape file is not rewound by CLOSE processing.

REWIND
specifies that the tape file is rewound by CLOSE processing.

 Load-Package Commands

Processing for the Load-Package Commands
Figure 110 on page 207 indicates the data flow for the UNLOAD PACKAGE and
RELOAD PACKAGE commands.

Note: PROGRAM is a synonym for PACKAGE. Therefore, UNLOAD and RELOAD
PROGRAM are equivalent to UNLOAD and RELOAD PACKAGE.

 RELOAD PACKAGE

RELOAD PACKAGE Format

206 DBS Utility

File

File
Package

#1

Package
#2

RELOAD
PACKAGE

UNLOAD
PACKAGE

Figure 110. Database Services Utility Processing Diagram for UNLOAD and RELOAD
PACKAGE

 Chapter 8. Command Reference 207

VM Format:

55──RELOAD PACKAGE─ ──(package_name) ──┬ ┬─NEW───────────────── ───────────5
 │ │┌ ┐─KEEP───
 └ ┘ ─REPLACE─ ──┼ ┼────────
 └ ┘─REVOKE─

5─ ──┬ ┬─────────────────────────── ─INFILE─ ──(ddname) ───────────────────5%
 │ │┌ ┐─,───────────
 └ ┘ ─TO──(─ ───6 ┴─server_name─ ─)─

VSE Format:

55──RELOAD PACKAGE─ ──(package_name) ──┬ ┬─NEW───────────────── ───────────5
 │ │┌ ┐─KEEP───
 └ ┘ ─REPLACE─ ──┼ ┼────────
 └ ┘─REVOKE─

5─ ──┬ ┬─────────────────────────── ──────────────────────────────────────5
 │ │┌ ┐─,───────────
 └ ┘ ─TO──(─ ───6 ┴─server_name─ ─)─

5──INFILE──(──ddname─ ──┬ ┬─────────────────────── ───────────────────────5
 │ │┌ ┐─2ððð─
 └ ┘ ─BLKSZ─ ─(─ ──┴ ┴─size─ ─)─

5─ ──┬ ┬──────────────────────────────── ─)──────────────────────────────5%
 │ │┌ ┐─REWIND───
 │ │┌ ┐ ─(TAPE)─ ──┴ ┴─NOREWIND─
 └ ┘ ─PDEV─ ──┴ ┴─(DASD)───────────────

VM Example:

 RELOAD PACKAGE(JONES.PROG4) REPLACE KEEP TO(RDB2,RDB3)
 INFILE(IN1)

VSE Example:

 RELOAD PACKAGE(JONES.PROG4) REPLACE KEEP INFILE(IN1)

Authorization: You must be the owner of the package
that you want to reload. To reload another user’s package, you must have
DBA authority. In VM, you must also have CONNECT authority to all named
databases.

PACKAGE (package_name)
identifies a RELOAD PACKAGE request and the package to be loaded.

You can further qualify the package_name in DB2 Server for VSE with the
owner, separating the two names with a period. The name of the package is
package_name. If you do not specify the owner, owner defaults to the
connected authorization ID. (See “Qualifying Object Names” on page 111 for
details on accessing data objects that are owned by other users.) The
authorization ID is either:

� The authorization ID specified in a previous explicit connect (when TO is
not used)

� The VM user ID (when TO is used) because it is the user ID used to
connect to server_name.

208 DBS Utility

REPLACE
is specified if an existing package is to be replaced by the reload. If the
package does not exist, a new package is created without an error or warning
message.

NEW
instructs the Database Services Utility that the package to be loaded does not
exist and is to be created. If a package with the same name and owner already
exists in the database, the reload fails.

KEEP
causes the grants of RUN privilege to remain in effect when the package is
reloaded. The KEEP and REVOKE parameters apply if the package has
previously been created and the owner of the package has granted the RUN
privilege on the resulting package to other users. The KEEP and REVOKE
parameters are allowed only with REPLACE; KEEP is the default.

REVOKE
if the REVOKE parameter is specified, or if the owner of the package is not
entitled to grant all privileges embodied in the package, all existing grants of
the RUN privilege are revoked. The KEEP and REVOKE parameters are
allowed only with REPLACE; KEEP is the default.

TO (server-name)
in DB2 Server for VSE, this identifies the application server or servers onto
which the package is to be reloaded. The Database Services Utility connects to
each application server in turn, and if the connection is successful, the package
is reloaded. If an LUW is active when the RELOAD command begins,
processing is unsuccessful and an error occurs.

In DB2 Server for VM, this can be specified when you must load the package
onto more than one database. To reload the package, the Database Services
Utility connects to each specified server-name in turn (using database
switching, which requires APPC/VM in multiple user mode). If an LUW is active
when the RELOAD command begins, processing is unsuccessful and an error
occurs.

When the TO clause is specified, the CONNECT statement is processed with
no user ID or password. The attempted connection fails if implicit connections
are not allowed on server-name. After the RELOAD is performed on each
database, a COMMIT RELEASE (or ROLLBACK RELEASE) is done, releasing
the connection to that server-name. The default user ID (the VM user ID) and
the default database (as specified to SQLINIT) are reestablished for a new
LUW. Any explicit connections done before the RELOAD are therefore lost and
must be reissued if required.

If owner was not specified, the VM user ID is assumed, because it is the ID
used to connect to each server-name.

When you use TO, the Database Services Utility ignores preceding CONNECT
statements and uses the VM user ID as a default. If you do not want to use
your VM user ID, issue the explicit CONNECT statements as required, and use
the RELOAD command without a TO clause. If you do not specify the TO
clause, the Database Services Utility reloads the package onto only the
currently connected database.

 Chapter 8. Command Reference 209

There is no specific limit on the number of database names typed; however,
there is an implied limit in that the maximum length of a Database Services
Utility command is 8192 characters.

INFILE (ddname)
identifies and describes the sequential (SAM) tape or disk input file containing
the package to be loaded into the database. The file must be created by
UNLOAD PACKAGE processing, and its contents must not be changed in
any way. RELOAD package processing uses a record format of fixed-length
blocked (FB) and a record length of 80. The block size should be identical to
that used for UNLOAD processing; that is, it must be a multiple of 80.

ddname
in DB2 Server for VSE: this is the TLBL or DLBL job control statement file
name for the sequential input file.

Alternatively, RELOAD PACKAGE can read its input from SYSIPT by using a
READ MEMBER. You use the READ MEMBER NOCONT option to properly
close the SYSIPT file. An example of using READ MEMBER with NOCONT is:

RELOAD PACKAGE (package_name) REPLACE INFILE(SYSIPT);
READ MEMBER package_member (NOCONT

In DB2 Server for VM: this is the name of the sequential input file defined with
a CMS FILEDEF command. Do not specify SYSIN or SYSPRINT as the
ddname.

BLKSZ (size)
is an optional parameter that specifies the block size of the sequential output
file. It should be identical to that used for UNLOAD processing; that is, it must
be a multiple of 80. The default block size is 2000 bytes per block.

PDEV (TAPE or DASD)
is an optional parameter that specifies the device type (DASD or TAPE) of the
sequential (SAM) input file. Specify PDEV(DASD) if the input file resides on any
device supported by the VSE DTFSD macro. Specify PDEV(TAPE) if the input
file resides on a device supported by the VSE DTFMT macro. The default is
PDEV(TAPE).

REWIND or NOREWIND
controls tape file rewind processing performed during OPEN processing. This
parameter is valid only if you specify TAPE for PDEV. The default processing is
REWIND.

REWIND
specifies that the tape file is rewound by OPEN processing.

NOREWIND
specifies that the tape file is not rewound by OPEN processing. If NOREWIND
is specified for input tape files referenced by a series of RELOAD commands,
you must ensure that the tape files being referenced are in ascending
sequence. For example, if NOREWIND is specified in a sequence of two
RELOAD commands and the first command reads tape file 2, then the second
command must reference tape file 3 or higher. If it references tape file 1, an
OPEN error occurs.

210 DBS Utility

 UNLOAD PACKAGE

UNLOAD PACKAGE Format

Format:

55──UNLOAD PACKAGE─ ──(package_name) ──┬ ┬───────────────────── ───────────5
 └ ┘─FROM─ ──(server_name)

5──OUTFILE──(──ddname─ ──┬ ┬─────────────────────── ──────────────────────5
 │ │┌ ┐─2ððð─
 └ ┘ ─BLKSZ──(─ ──┴ ┴─size─ ─)─

5─ ──┬ ┬──────────────────────────────── ─)──────────────────────────────5%
 │ │┌ ┐─NOREWIND─
 │ │┌ ┐ ─(TAPE)─ ──┴ ┴─REWIND───
 └ ┘ ─PDEV─ ──┴ ┴─(DASD)───────────────

VM Example:
 UNLOAD PACKAGE(PROG1) FROM(DB1) OUTFILE(OUT1)

VSE Example:
 UNLOAD PACKAGE(PROG1) OUTFILE(OUT1)

Authorization:

You must be the owner of the package you want to unload. To unload another
user’s package, you must have DBA authority.

In VM, you must also have CONNECT authority to a specified database.

The UNLOAD PACKAGE command unloads a specific package to a file. You can
unload packages flagged as invalid in the database because RELOAD command
processing automatically preprocesses the package again, thus revalidating it. Any
unresolved dependencies in the package are then flagged when the RELOAD
command preprocesses it again.

Note: The UNLOAD PACKAGE command is not supported on a non-DB2 Server
for VM application server or if you are using DRDA protocol.

Following are descriptions of each part of the command:

PACKAGE (package_name)
identifies an UNLOAD PACKAGE request and the package to be processed.

In DB2 Server for VSE, you can further qualify the package_name with the
owner, separating the two names with a period.

The name of the package is package_name. If you do not specify the owner
(see “Qualifying Object Names” on page 111 for details), owner defaults to the
currently connected authorization ID. The DB2 Server for VM authorization ID is
either:

� The authorization ID specified in a previous explicit CONNECT (when
FROM is not used)

 Chapter 8. Command Reference 211

� The VM user ID (when FROM is used) because it is the user ID used to
connect to server_name.

FROM (server-name)
in DB2 Server for VSE, this identifies the application server against which the
UNLOAD PACKAGE command should be issued. If an LUW is active, the
UNLOAD command is unsuccessful and an error occurs.

In DB2 Server for VM, this identifies the application server containing the
package. To unload the package, the Database Services Utility connects to the
specified server_name (using application server switching, which requires
APPC/VM in multiple user mode). If an LUW is active, the UNLOAD command
fails with an error. When FROM is specified, the CONNECT is attempted with
no user ID or password. The attempted connection fails if implicit connects are
not allowed on server_name.

After the package is unloaded, a COMMIT (or ROLLBACK) RELEASE is done,
releasing the connection to server_name. The default user ID (the VM user ID),
and the default database (as specified to SQLINIT) are reestablished for a new
LUW. Any explicit CONNECT statements that you issued before the UNLOAD
command are therefore lost and must be reissued, if required. When you use
FROM, the Database Services Utility ignores any preceding CONNECT
statements and uses the VM user ID as a default. If you do not want to use
your VM user ID, issue the explicit CONNECT statements as needed, and use
the UNLOAD command without a FROM clause.

OUTFILE (ddname)
identifies and describes the sequential (SAM) tape or disk output file that is to
contain the unloaded package. UNLOAD program processing uses a record
format of fixed-length blocked (FB) and a record length of 80. The block size, in
a VM environment, must be a multiple of 80 and defaults to 80 if not specified.
This file contains only one unloaded package. If the file already exists, its
contents are replaced; otherwise, the file is created.

ddname
in DB2 Server for VM, this is the name of the sequential output file defined
with a CMS FILEDEF command. Do not specify SYSIN or SYSPRINT as
the ddname.

In DB2 Server for VSE, this is the TLBL or DLBL job control statement file
name for the sequential output file.

BLKSZ (size)
is an optional parameter that specifies the block size of the sequential output
file. It must be a multiple of 80. The default block size is 2000 bytes per block.

PDEV (TAPE or DASD)
is an optional parameter that specifies the device type (DASD or TAPE) for the
sequential output file. Specify PDEV(DASD) for files that reside on any device
supported by the VSE DTFSD macro. Specify PDEV(TAPE) for files that reside
on any device supported by the VSE DTFMT macro. The default is
PDEV(TAPE).

BLKSZ and PDEV can be specified in any order but must occur after the
ddname parameter.

212 DBS Utility

NOREWIND or REWIND
controls tape file rewind processing performed during CLOSE processing. This
parameter is valid only if you specify TAPE for PDEV. The default is
NOREWIND.

NOREWIND
specifies that the tape file is not rewound by CLOSE processing.

REWIND
specifies that the tape file is rewound by CLOSE processing.

 REBIND PACKAGE

REBIND PACKAGE Format

Format:

55──REBIND PACKAGE─ ──(package_name) ───────────────────────────────────5%

Example:

 REBIND PACKAGE(SMITH.PROG)

Authorization:

You must be the owner of the package you want to rebind. To rebind another
user’s package, you must have DBA authority.

The REBIND PACKAGE command allows you to repreprocess an existing package
immediately without unloading and reloading the package. You can use the
REBIND PACKAGE command with single or multiple user mode.

Note: The REBIND PACKAGE command is not supported on a non-DB2 Server
for VM application server or if you are using the DRDA protocol.

Following is the description of the command:

PACKAGE (package_name)
identifies the package that you want to rebind.

You can qualify the name of the package by specifying the owner of the
package; you must, however, have DBA authority to repreprocess a package
belonging to another user. If you do not specify the owner, owner defaults to
the connected authorization ID. See “Qualifying Object Names” on page 111
for details on accessing data objects that are owned by other users.

 Set-Item Commands

 Chapter 8. Command Reference 213

 SET AUTOCOMMIT

SET AUTOCOMMIT Format

Format:

┌ ┐─(─ ┌ ┐─OFF─ ┌ ┐─)─
55─ ─SET AUTOCOMMIT─ ──┴ ┴─── ──┴ ┴─ON── ──┴ ┴─── ────────────────────────────5%

The SET AUTOCOMMIT command allows you to activate or suppress the
execution of SQL COMMIT statements by the Database Services Utility. This
command cannot span input records.

OFF
identifies that you do not want the utility to commit database changes after
control commands are successfully processed. You must supply SQL COMMIT
statements in the Database Services Utility input stream at the points at which
you commit the changes.

In this mode of operation, the only execution of an SQL COMMIT by the utility
is at the end-of-program after all control commands have been successfully
processed.

ON or OFF must be specified in this command. If you do not supply a SET
AUTOCOMMIT command in the input records, the utility operates as if you had
issued SET AUTOCOMMIT OFF.

ON
identifies that you want the utility to run an SQL COMMIT command after the
successful processing of any control command (that is, Database Services
Utility commands or SQL statements) except those noted below. The utility
ensures that any database changes made before the receipt of the
AUTOCOMMIT ON command are committed before processing continues.

In AUTOCOMMIT ON mode, the Database Services Utility does not run an
SQL COMMIT command after the successful processing of these commands:

SQL Statements Database Services Utility Commands

 COMMIT COMMENT
CONNECT SET AUTOCOMMIT OFF

 LOCK SET ERRORMODE
 ROLLBACK SET FORMAT
 SET ISOLATION
 SET LINECOUNT
 SET LINEWIDTH

SET UPDATE STATISTICS

 SET ERRORMODE

214 DBS Utility

SET ERRORMODE Format

Format:

┌ ┐─(─ ┌ ┐─OFF────── ┌ ┐─)─
55─ ─SET ERRORmode─ ──┴ ┴─── ──┼ ┼─ON─────── ──┴ ┴─── ────────────────────────5%
 └ ┘─CONTINUE─

The SET ERRORMODE command allows you to:

� Suspend the normal Database Services Utility actions taken after a command
processing error is detected and cause the utility to continue processing
commands after an error has occurred.

� Force the Database Services Utility to enter error mode processing.

� Resume normal Database Services Utility command processing.

This command cannot span input records. If you do not supply a SET
ERRORMODE command in the input records, the utility operates as if you had
issued SET ERRORMODE OFF.

OFF
causes the utility to resume execution of Database Services Utility commands
and SQL statements after a command processing error has occurred or to
terminate error mode CONTINUE processing.

Any subsequent command processing errors cause the utility to execute an
SQL ROLLBACK statement and enter Database Services Utility error mode
processing.

Notes:

1. The SET ERRORMODE OFF command also terminates the processing
mode established by the Database Services Utility SET AUTOCOMMIT ON
command.

2. A SET ERRORMODE OFF command is not used:

a. If the error mode is already off.

b. If a serious database error has previously occurred. A serious error, by
definition, causes all subsequent SQL statements to terminate. Thus, a
SET ERRORMODE OFF command in this case has no effect.

ON
causes the utility to suspend execution of following Database Services Utility
commands and SQL statements. A SET ERRORMODE ON command
terminates:

� The normal command processing mode that was established by default
when the utility was run or by a previous SET ERRORMODE OFF
command

� The processing mode established by a SET ERRORMODE CONTINUE
command.

 Chapter 8. Command Reference 215

When a SET ERRORMODE ON command is processed, the utility initiates
error mode processing. While in error mode, the Database Services Utility
displays commands in the report or message file listing and performs syntax
checking on Database Services Utility commands. No SQL statements or
Database Services Utility commands (except SET ERRORMODE OFF or SET
ERRORMODE CONTINUE) are executed during error mode processing.
Therefore, any errors that result from command execution (for example, SQL
syntax errors and data file errors) are not detected.

Database Services Utility error mode processing is also entered when the utility
detects a command processing error, and the utility is operating in normal
command processing mode. If the processing mode established by a SET
ERRORMODE CONTINUE command is in effect, and a command processing
error is detected, Database Services Utility error mode processing is entered
only when the error is a serious database error.

Notes:

1. A SET ERRORMODE ON command also terminates the processing mode
established by the SET AUTOCOMMIT ON command.

2. A SET ERRORMODE ON command is not used if Database Services
Utility error mode processing is already in effect.

CONTINUE
suppresses the normal Database Services Utility error processing after an error
is detected; that is, Database Services Utility error mode processing is not
performed. An SQL ROLLBACK statement is not executed, and the utility
continues to process Database Services Utility commands and SQL statements
after a command processing error occurs. If any errors occur, and they occur
only while SET ERRORMODE CONTINUE is in effect, the Database Services
Utility issues error message ARI8007I when the DBS command processing
ends.

Notes:

1. If a serious database error occurs while the processing mode established
by a SET ERRORMODE CONTINUE command is in effect, an SQL
ROLLBACK is executed, and the utility enters error mode processing. A
serious database error, by definition, causes all subsequent SQL
statements to terminate.

2. After a SET ERRORMODE CONTINUE command is processed, because
the Database Services Utility does not execute an SQL ROLLBACK
command does not mean that the logical unit of work is always in progress.
Certain SQL statement errors cause the logical unit of work to be
terminated by the database manager. If one of these errors occurs, all
database changes made during the logical unit of work or since the last
SQL COMMIT statement are lost.

To control the logical unit of work after a SET ERRORMODE CONTINUE
command is processed, you can use SQL COMMIT statements or the
Database Services Utility SET AUTOCOMMIT ON command.

3. The SET ERRORMODE CONTINUE command is not used:

a. If the processing mode established by a previous SET ERRORMODE
CONTINUE command is still in effect

b. If a serious database error has previously occurred.

216 DBS Utility

4. If the Database Services Utility is not in error mode when a SET
ERRORMODE CONTINUE command is encountered, the Database
Services Utility AUTOCOMMIT processing status is not changed.

If the Database Services Utility is in error mode when a SET
ERRORMODE CONTINUE command is encountered, the Database
Services Utility AUTOCOMMIT processing status is set to off.

5. Database Services Utility end-of-program COMMIT processing is based on
the current status of the command processing. That is, if Database
Services Utility error mode processing and the SET AUTOCOMMIT ON
command processing mode are not in effect, Database Services Utility
end-of-program COMMIT processing is performed.

6. All SQL statements are treated as one LUW when running the database
with LOGMODE=N and DBS Utility with AUTOCOMMIT=OFF and
ERRORMODE=CONTINUE. If an error occurs, ALL statements are rolled
back.

Note: The ERRORMODE setting has an effect on the final Database Services
Utility return code. For more information, see Chapter 9, “Error Handling
and Debugging” on page 223.

 SET FORMAT

SET FORMAT Format

Format:

┌ ┐─(─ ┌ ┐─CB─ ┌ ┐─)─
55─ ─SET FORMAT─ ──┴ ┴─── ──┼ ┼─CL─ ──┴ ┴─── ─────────────────────────────────5%
 └ ┘─LO─

This command allows you to identify whether the Database Services Utility should
use column or block format, column or list format, or only list format for SQL
SELECT statement results. If the format is not specified, Database Services Utility
processing uses column or block format for SQL SELECT statement output. This
command cannot span input records.

The SET FORMAT command overrides the formats specified by either a parameter
list format control parameter or the default column or block format. This command
specification remains in effect until another SET FORMAT command is encountered
and successfully processed, or when Database Services Utility processing ends.

CB
identifies that either column or block format should be used. The column format
is used when a report or message file record can contain all column names or
column data for a selected row. The block format is used when a report or
message file record cannot contain all column names or column data for a
selected row. Column or block format is the default if you do not override it by
supplying either a format control parameter—FORMAT(CL) or
FORMAT(LO)—or a SET FORMAT command.

 Chapter 8. Command Reference 217

CL
identifies that either column or list format should be used. The column format is
used when a report or message file record can contain all column names or
column data for a selected row. The list format is used when a report or
message file record cannot contain all column names or column data for a
selected row.

LO
identifies that only list format is to be used. The list format is used even when
the report or message file record can contain all column names or column data
for a selected row.

 SET ISOLATION

SET ISOLATION Format

Format:

┌ ┐─(─ ┌ ┐─RR─ ┌ ┐─)─
55─ ─SET ISOLation─ ──┴ ┴─── ──┼ ┼─CS─ ──┴ ┴─── ──────────────────────────────5%
 └ ┘─UR─

This command allows you to control the isolation level used for Database Services
Utility processing. Every time the utility is run, the isolation level is initialized to
repeatable read (RR). SQL processing through the utility is performed at this
isolation level until a SET ISOLATION command is encountered. The utility sets the
isolation level to the value specified in the command and processes at this level
until another SET ISOLATION command is executed or Database Services Utility
processing ends. The other isolation level settings are cursor stability (CS) and
uncommitted read (UR). This command cannot span input records.

If you are accessing a non-DB2 Server for VM application server, or if you are
using DRDA protocol, the isolation level for the DBS Utility is always set to CS and
the SET ISOLATION command has no effect.

RR
is used to protect a logical unit of work from uncommitted updates of another
logical unit of work. Also, no other logical unit of work can modify any row that
has been read by this logical unit of work.

CS
is used to protect a logical unit of work from uncommitted updates of another
logical unit of work. After data is read, the data is freed for others to update
before the end of the logical unit of work.

Use this setting only when the data is read or when you are the only user
authorized to update the data.

UR
is used when protection from other logical units of work is not required. Data
can be read without waiting for other logical units of work that are updating the
data. Reading data will not prevent other application processes from updating
it.

218 DBS Utility

Note that data integrity may be compromised because read-only access to
uncommitted data is allowed.

This setting applies only to read-only operations (SELECTs, DATAUNLOAD
and UNLOAD) against data in public dbspaces with ROW or PAGE level
locking. For other operations (UPDATE, DELETE, INSERT, DATALOAD, and
LOAD), the rules of CS apply.

For dbspaces with DBSPACE level of locking, the rules of RR apply.

Recommended settings for Database Services Utility processing:

� Repeatable Read (RR)

– To ensure that the database is in a consistent state when using UNLOAD
and RELOAD TABLE/DBSPACE commands for database backup or
migration.

The isolation level used to perform DATALOAD commands or perform
RELOAD DBSPACE/TABLE commands with the NEW option is not important.

Regardless of your isolation level setting, all UNLOAD/RELOAD PACKAGE
functions are performed with isolation level repeatable read. This does not
affect your setting of isolation level when you are performing other functions.

� Cursor Stability (CS)

– To reduce the contention on the database when running the Database
Services Utility with multiple user mode

– To perform RELOAD DBSPACE/TABLE commands with the PURGE option

– To use the Database Services Utility in the terminal input mode with
AUTOCOMMIT OFF in DB2 Server for VM

– To perform UNLOAD DBSPACE/TABLE or DATAUNLOAD processing for
read only data

– To update data for which you are the only person with update authorization.

� Uncommitted Read (UR)

– To reduce the contention on the database when running the Database
Services Utility with multiple user mode

Note that data integrity may be compromised when using UR. UR should only
be used when it is not necessary that the data be committed.

SET LINECOUNT, SET LINEWIDTH

SET LINECOUNT (LINEWIDTH) Format

 Chapter 8. Command Reference 219

Format:

55─ ─SET─ ──┬ ┬─LineCount─ ──(ccc) ──┬ ┬────────────────────────── ──────────5%
 │ ││ │┌ ┐─12ð─
 │ ││ │├ ┤─8ð──
 │ │└ ┘ ─LineWidth──(─ ──┴ ┴─www─ ─)─
 └ ┘─LineWidth─ ──(www) ──┬ ┬──────────────────────────
 │ │┌ ┐─6ð──
 └ ┘ ─LineCount──(─ ──┴ ┴─ccc─ ─)─

Note: 80 is valid in DB2 Server for VM only.

The SET LINECOUNT/LINEWIDTH command allows you to:

� Define the number of lines per page for Database Services Utility report output
or message file output.

� Define the number of print data positions used in each Database Services
Utility report or message file record containing SQL SELECT statement output.

This command cannot span input records.

LINECOUNT(ccc) or LC(ccc)
If LINECOUNT(ccc) or LC(ccc) is specified, the value ccc is the number of lines
per page of printed output written to the Database Services Utility report or
message file. The value ccc can range from 10 to 32767; the default value is
60.

LINEWIDTH(www) or LW(www)
If LINEWIDTH(www) or LW(www) is specified, the value www is the maximum
number of print data positions used in a Database Services Utility report or
message file record containing SQL SELECT statement output. The default
value for www is 120. In DB2 Server for VM, if the Database Services Utility
message file (ddname=SYSPRINT) is assigned to the terminal, the number of
print data positions used for the SQL SELECT statement defaults to 80.

The value www can range from 60 to 256, but cannot be equal to or greater
than the logical record length of the Database Services Utility message file.

Notes:

1. The Database Services Utility always supplies an American Standards
Association (ASA) control character in the first position of the print record.
The second through nth positions of the print record are the print data
positions. If the value www+1 is less than the print record length, all unused
print data positions in the print record contain a blank (hex 40).

2. The DB2 Server for VSE Database Services Utility report record length is
always 121.

3. The minimum DB2 Server for VM Database Services Utility message file
record length is 81. If the Database Services Utility control parameter
PAGECTL(NO) is specified, the minimum message file record length is 80.

4. If the value www is equal to or greater than the print record length, an error
occurs.

220 DBS Utility

SET UPDATE STATISTICS

SET UPDATE STATISTICS Format

Format:

┌ ┐─UPDATE─ ┌ ┐─(─ ┌ ┐─ON── ┌ ┐─)─
55─ ─SET─ ──┴ ┴──────── ─STATISTICS─ ──┴ ┴─── ──┴ ┴─OFF─ ──┴ ┴─── ───────────────5%

The SET UPDATE STATISTICS command allows you to control the automatic
statistics collection performed during Database Services Utility RELOAD TABLE,
RELOAD DBSPACE, and DATALOAD TABLE command processing. This
command cannot span input records. If you do not supply a SET UPDATE
STATISTICS command in the input records, the utility operates as if you had
issued SET UPDATE STATISTICS ON.

The SET UPDATE STATISTICS command is not supported on a non-DB2 Server
for VM application server or if you are using DRDA protocol.

ON
causes the utility to automatically collect statistics for each table loaded during
Database Services Utility RELOAD TABLE, RELOAD DBSPACE, and
DATALOAD TABLE command processing. This is the default mode of
processing.

The Database Services Utility writes message ARI8980I for each table or
dbspace loaded by a RELOAD TABLE, RELOAD DBSPACE, or DATALOAD
TABLE command. The message informs you that the statistics were collected
while the data was loading.

The Database Services Utility writes message ARI8996I and issues an SQL
UPDATE STATISTICS statement for each table loaded if you are using the
DATALOAD command and when any one of the following is true:

� You are loading data into more than one table.
� Indexes exist on the table.
� The table that you are loading data into already contains rows.

The SQL UPDATE STATISTICS FOR TABLE statement issued by the
Database Services Utility must read the whole table to update the internal DB2
Server for VSE & VM statistics for the table. The statistics are updated based
on the current contents of the table and dbspace to which the table is assigned.
Refer to the DB2 Server for VSE Application Programming or DB2 Server for
VM Application Programming manual and the DB2 Server for VSE Database
Administration, or DB2 Server for VM Database Administration manual for a
description of the SQL UPDATE STATISTICS statement processing.

OFF
suppresses the Database Services Utility statistics collection performed during
RELOAD TABLE, RELOAD DBSPACE, and DATALOAD TABLE command
processing.

 Chapter 8. Command Reference 221

A SET UPDATE STATISTICS OFF remains in effect until a SET UPDATE
STATISTICS ON command is processed or until the Database Services Utility
is restarted.

Note: If tables are loaded by the Database Services Utility RELOAD TABLE,
RELOAD DBSPACE, and DATALOAD TABLE commands while SET
UPDATE STATISTICS OFF is in effect, you must issue an SQL
UPDATE STATISTICS statement for the table or dbspace to update the
internal statistics.

To avoid the processing overhead associated with an SQL UPDATE STATISTICS
statement processing, you can suppress the normal Database Services Utility
UPDATE STATISTICS when you are using the DATALOAD TABLE command to
load a few records into a table that currently contains a larger number of records.
See “Update Statistics Considerations” on page 229 for details.

222 DBS Utility

Chapter 9. Error Handling and Debugging

This chapter describes the types of errors you can encounter, return codes, and
storage dumps. The action you take depends on the message that you receive.
The Database Services Utility generates its own messages as well as displaying
DB2 Server for VSE & VM messages. All messages are explained in the DB2
Server for VSE Messages and Codes and DB2 Server for VM Messages and
Codes manuals.

Except for a report or message file processing error, all Database Services Utility
messages are written to the report or message file. If a report or message file error
occurs, a Database Services Utility message is generated on the operator console
describing the condition. In the report or message file, messages follow the
commands that caused them to be generated.

Types of Errors
The Database Services Utility takes different actions depending on the cause of the
error. The various kinds of errors are:

� Database Manager or Operating System Failure

If the database manager (or the operating system) is terminated abnormally
while the Database Services Utility is running, any database updates that
occurred during the in-process Database Services Utility logical unit of work are
rolled back by recovery processing when the database manager is restarted.
No rollback occurs if the tables reside in nonrecoverable storage pools.

� Database Services Utility Abnormal Termination Error Handling

If the Database Services Utility is terminated abnormally, database manager
processing restores any database updates that occurred during the in-process
logical unit of work unless updates are made to tables residing in
nonrecoverable storage pools.

� Database Services Utility Processing Errors

Database Services Utility processing errors are those errors that do not cause
abnormal terminations. If a processing error occurs, and SET ERRORMODE is
not reset to OFF, or SET ERRORMODE CONTINUE is not in effect, the
Database Services Utility performs these actions:

1. Writes SQL or Database Services Utility error messages to the report or
message file except when message output is suppressed by either of the
Database Services Utility control parameters MESSAGES(NONE) or
MESSAGES(SQLONLY).

2. Restores any database updates made during the in-process logical unit of
work by executing an SQL ROLLBACK command, unless the updates were
made to tables residing in nonrecoverable storage pools.

3. Performs all possible Database Services Utility syntax checking on the
remainder of the (input) control file. The utility does no further database
manager processing.

4. Writes a Database Services Utility message identifying the unsuccessful
termination of Database Services Utility processing.

 Copyright IBM Corp. 1987, 1998 223

5. Updates register 15 with a nonzero return code.

6. Returns control to the invoking program with register linkage processing.

 � Report Errors

In DB2 Server for VSE, if the Database Services Utility encounters problems
when it tries to open the report, it generates a message to the operator console
and terminates processing after performing steps 5 and 6 above. If the utility
encounters problems when it tries to write to the report, it generates a message
and terminates processing after performing steps 2, 5, and 6 above.

� Input Control Card File Errors

If the Database Services Utility encounters problems when it tries to open the
input control card file, it terminates processing after performing steps 4, 5, and
6 described above. If the utility encounters problems when it tries to read from
the input control card file, it terminates processing after performing steps 2, 4,
5, and 6 as described above.

� Message File Errors

In DB2 Server for VM, if the Database Services Utility encounters problems
when it tries to open the message file, it generates a WTO (write-to-operator)
message and terminates processing after performing steps 5 and 6 above. If
the utility encounters problems when it tries to write to the message file, it
generates a WTO message and terminates processing after performing steps
2, 5, and 6 above.

� Command File Errors

If the Database Services Utility encounters problems when it tries to open the
command file, it terminates processing after performing steps 4, 5, and 6
described above. If the utility encounters problems when it tries to read from
the command file, it terminates processing after performing steps 2, 4, 5, and 6
as described above.

� Tape or DASD Data File Errors

If an incorrect ddname is specified in a Database Services Utility command, or
incorrect data file job control or CMS FILEDEF statements are supplied,
Database Services Utility processing is terminated. Database manager
processing restores any database changes when the Database Services Utility
job abnormally terminates because of a data-file-open error.

 Return Codes
Although one or more of the following return codes may be encountered during
Database Services Utility processing, one final return code is provided at the end of
processing (the highest return code found). The following is a list of the return
codes:

ð All commands processed successfully.

4 All requested processing completed successfully, and all changes were
committed to the database. This return code indicates that an error
occurred during Database Services Utility termination; no SQL or Database
Services Utility commands need to be reprocessed.

224 DBS Utility

6 One or more errors have occurred in command processing while SET
ERRORMODE CONTINUE was in effect.

8 Database Services Utility processing error encountered. From the point of
error, no further commands were executed, but subsequent Database
Services Utility commands were checked for syntax errors.

If a Database Services Utility SET ERRORMODE OFF command is
encountered before the end of the (input) control file is reached, normal
Database Services Utility command processing is resumed.

12 Input control card or Control command file-open-error. No commands are
processed.

16 Report or Message file-open-error. No commands are processed.

20 Initialization error. Sufficient processor storage was not available for
Database Services Utility working storage areas. No commands are
processed.

The type of ERRORMODE processing in effect at the time of a command
processing error determines the final return code. If both ERRORMODE OFF and
ERRORMODE CONTINUE processing are used within one (input) control file
(either by default or through a SET ERRORMODE command), one of the following
scenarios can exist:

� If an error occurs during ERRORMODE CONTINUE, the final return code is 6.

� If an error occurs during ERRORMODE OFF, the final return code is 8.

� If an error occurs during both ERRORMODE CONTINUE and ERRORMODE
OFF, the final return code is 8.

 Storage Dumps

Dumps Initiated by the DBS Utility
The Database Services Utility initiates a storage dump if an illogical condition or
critical error arises during its execution. Before a Database Services Utility storage
dump of the partition or virtual machine is initiated, the message ARI804E is
normally generated, and register 15 is set to a hexadecimal dump identification
(DUMP ID) value. After a storage dump is generated, Database Services Utility
processing continues.

The message ARI0804E identifies:

� The Database Services Utility module initiating the dump
� The reason code for the dump.

In two instances, Database Services Utility storage dumps are not preceded by the
usual ARI0804E message. These are:

� The storage dump (DUMP ID = hex 811) is initiated as a result of the

� The storage dump (DUMP ID = hex 803) is initiated by the module ARIDBS
before Database Services Utility processing is terminated, and the final
Database Services Utility return code (register 15) value is 4 or is greater than
8.

 Chapter 9. Error Handling and Debugging 225

The Database Services Utility modules initiating storage dumps, the reasons for the
dumps, and the hexadecimal dump identification values are explained in the DB2
Server for VSE Messages and Codes and DB2 Server for VM Messages and
Codes.

 Debugging

Processing for Debug Mode
In debug mode, if the sequence of commands described below is supplied in the
DB2 Server for VSE Database Services Utility input control card file, a storage
dump of a partition is taken following the next SQL error that occurs. And in DB2
Server for VM, if this sequence of commands is supplied in the Database Services
Utility command file, a virtual machine dump is taken following the next SQL error
that occurs. An SQL error is identified by an SQLCODE less than ð or greater than
+100 received after the execution of an SQL statement. The resulting storage dump
reflects a register 15 value of hex 811 and is generated by a Database Services
Utility call to entry point ARISYSDA.

The command sequence necessary to initiate the storage dump is:

 .DEBUG
SET ERRORMODE OFF;

Note:

� .DEBUG must begin in command record column 1.
� An error condition occurs when the .DEBUG command is processed.
� A SET ERRORMODE OFF command must follow the .DEBUG command.

The storage dump is then taken after the next SQL error returned by the database
manager (in the SQLCA) after the execution of an SQL statement. Database
Services Utility processing continues after the dump is generated. If you want
subsequent storage dumps during the same execution of the Database Services
Utility, repeat the special command sequence described above.

Guidelines for DEBUG Storage Dump Analysis
Register 15 = X'811' Register 13 + 4 = ARIDSQLA register save area address
for last ARIPRDI CALL

ARIDSQLA save area address:

+ 12 = ARISYSDA (storage dump routine) return address within ARIDSQLA
+ 16 = ARISYSDA entry point
+ 32 = Address of SQLTIE (Register 3 contents at time of dump)
+ 36 = Contents of register 4 at time of dump.

Common processing area (CPA) address + X'0C' = the address of the special
save area containing the register ð through register 15 contents saved by the
Database Services Utility before executing the dump request call to ARISYSDA.

226 DBS Utility

 Chapter 10. Improving Performance

This chapter adds to the information in previous chapters by raising issues you
should consider to get the best performance from the Database Services Utility.
Refer to the appropriate sections of earlier chapters if you want more basic
information.

Note: All of the following UNLOAD and RELOAD command references apply to
TABLE and DBSPACE unless PACKAGE is specified.

Nonrecoverable Storage Pool
With the database manager, you can define nonrecoverable storage pools. It
provides limited recovery functions for dbspaces that are assigned to
nonrecoverable storage pools. A problem may arise when you are inserting or
updating tables stored in nonrecoverable storage pools, especially when you use
the DATALOAD and RELOAD commands. See the DB2 Server for VSE System
Administration or DB2 Server for VM System Administration manual for information
about nonrecoverable storage pools.

Tape-File Support in DB2 Server for VM

Tape File Support Considerations
You use the CMS FILEDEF command and an optional CMS LABELDEF command
to define input or output tape files processed by the Database Services Utility.
Refer to the DB2 Server for VM System Administration manual for a complete
description of the tape file support.

 Locking Considerations
When running the Database Services Utility with multiple user mode to load
(INSERT) or unload (SELECT) rows from a DB2 Server for VSE & VM database,
you may encounter lock escalation, particularly when using isolation level CS or
RR. Lock escalation reduces the ability to access the database and increases the
likelihood of deadlock conditions, which terminate processing. SQL LOCK
DBSPACE or LOCK TABLE statements override the database manager automatic
locking mechanism; they can be used to reduce deadlock conditions during
Database Services Utility processing. Using isolation level UR to unload rows from
a DB2 Server for VSE & VM database may also reduce lock escalation and
deadlock conditions; however, it is not recommended because it can cause data
integrity problems.

A user-issued SQL LOCK statement is useful only during multiple user mode
processing for table data in a public dbspace that is not defined with locking at the
dbspace level. A user-acquired database lock remains in effect until the end of the
logical unit of work in which it was issued. You cannot lock any database manager
catalog tables—regardless of the database authority you have. To lock an eligible
dbspace or table, you (the user connected to the database) must meet the
requirements in Figure 111:

 Copyright IBM Corp. 1987, 1998 227

Figure 111. Requirements to Lock a Dbspace or Table

To Lock: You Must

 DBSPACE � Be the owner of the dbspace
 or

� Have DBA authority

 Table � Be the owner of the TABLE
 or

� Have DBA authority
 or

� Have SELECT privilege on the table

DATALOAD and RELOAD Locking Considerations
If you insert many rows into the database with a RELOAD command or a
DATALOAD command without the COMMITCOUNT option specified, consider
using the SQL LOCK DBSPACE statement to eliminate or reduce lock escalation.
An exclusive lock on the dbspace where the tables being loaded are defined does
not appreciably increase lock contention and reduces the likelihood of deadlock
with another user.

Note: An exclusive lock on a table being loaded does not prevent lock escalation
and is not recommended.

To exclusively lock a dbspace, issue the following command before the DATALOAD
or RELOAD command:

You can also avoid lock escalation during multiple user mode DATALOAD
processing by issuing a SET AUTOCOMMIT ON command before the DATALOAD
command and specifying a sufficiently low COMMITCOUNT value in the
DATALOAD INFILE subcommand. Use of DATALOAD COMMITCOUNT processing
reduces the likelihood of the locking required by DATALOAD processing delaying
other users accessing the table being loaded or other tables in the same dbspace
where the table being defined resides. If the target table is in a dbspace defined
with ROW level locking, a COMMITCOUNT value of approximately 200 should be
sufficiently low. If the dbspace is defined with PAGE locking, the COMMITCOUNT
value can be higher (1000, for example) and lock escalation is still avoided. Do not
arbitrarily set the COMMITCOUNT value too low because frequent commit points
increase DATALOAD run time.

Format:

55──LOCK DBSPACE──dbspace_name──IN EXCLUSIVE MODE;────────────────────5%

SELECT, DATAUNLOAD, and UNLOAD Locking Considerations
If you are running the Database Services Utility with the isolation level setting of
repeatable read (the default Database Services Utility processing mode) and you
know that a particular SELECT, DATAUNLOAD, or UNLOAD operation is going to
access many rows from one or more tables in the database, lock escalation then
normally occurs. You should consider acquiring a SHARE lock on the table(s) being
accessed. If all the tables being accessed reside in the same dbspace, you should
consider acquiring a SHARE lock on the dbspace being accessed. This action can

228 DBS Utility

reduce lock contention and the likelihood that a SELECT, DATAUNLOAD, or
UNLOAD causes a deadlock with another user. Other users can modify other
tables in the same dbspace where the table being accessed resides.

To acquire a SHARE lock on a table or dbspace being accessed, issue the
following command before the SELECT, DATAUNLOAD, or UNLOAD statement:

Format:

55──LOCK TABLE──table_name──IN SHARE MODE;────────────────────────────5%

 or

55──LOCK DBSPACE──dbspace_name──IN SHARE MODE;────────────────────────5%

UNLOAD and RELOAD PACKAGE Considerations
To obtain the best performance when using the UNLOAD PACKAGE command and
the RELOAD PACKAGE command, consider doing the following:

� Unload or reload large numbers of packages in your system’s off-peak usage
time or with single user mode.

� If you are unloading or reloading packages with multiple user mode, use
blocking (by ensuring that the Database Services Utility was initialized with the
BLOCK option).

These actions improve performance by preventing interruptions by other users.

PROGRAM is a synonym for PACKAGE. Therefore, UNLOAD or RELOAD
PROGRAM, and UNLOAD or RELOAD PACKAGE are equivalent commands.

When unloading or reloading a modifiable package, an exclusive lock is held on the
catalog table SYSACCESS. This may cause a performance deterioration for other
users wanting to run the exclusively locked package.

See the DB2 Server for VM Database Administration manual for further information
on locking.

Update Statistics Considerations
If you suppress automatic statistics collection by specifying SET UPDATE
STATISTICS OFF in the (input) control file before issuing the DATALOAD
command, you must issue an UPDATE STATISTICS statement to collect statistics.
The UPDATE STATISTICS statement performs a dbspace scan, so it can be
time-consuming if the number of active data pages in that dbspace is large.
Consider suppressing statistics collection only if you know the statistics are not
going to change significantly (for example, a small amount of data is being added
to a large table). In this situation, you can postpone updating the statistics until
more substantial changes have occurred.

 Chapter 10. Improving Performance 229

 Reorganizing Indexes
The REORGANIZE INDEX command corrects index fragmentation and corrects the
skewing of index key values. REORGANIZE INDEX also revalidates an invalid
index.

REORGANIZE INDEX automatically updates statistics while the index is being
rebuilt. To calculate index statistics, the Database Services Utility has to have an
exact count of the pages in the dbspace which contain rows from the indexed table.
When the table is the only table in the dbspace, the database manager can find out
how many pages contain rows from the dbspace directory. In other words, the
number of used pages is the number of pages containing rows. If there is more
than one table in the dbspace, the database manager has to scan each page to
determine which ones are occupied by the indexed table. Hence, you get better
performance for the REORGANIZE INDEX command when the indexed table is the
only table in the dbspace. The DB2 Server for VSE & VM manuals recommend
allocating one table per dbspace if the tables are large.

To reorganize a valid index, the database manager uses an internal dbspace as
temporary storage to hold the keys of the index. The internal dbspace requirements
to perform a REORGANIZE INDEX operation are one third of that required to
perform the equivalent CREATE INDEX. If you do not have enough space, see the
DB2 Server for VSE System Administration or DB2 Server for VM System
Administration manual.

Packages that depend on an index are not invalidated when the index is
reorganized. Therefore, using the REORGANIZE INDEX command instead of
dropping and re-creating the index explicitly avoids the cost of the automatic
preprocessing that reoccurs the next time an invalidated package is run. This
benefit is realized whether the index you reorganize is valid or invalid.

Double-Byte Character Set
The database manager provides support for basic DBCS, while the Database
Services Utility provides support for extended DBCS.

 Basic Support
The Database Services Utility supports the use of all DB2 Server for VSE & VM
data types, including the GRAPHIC data type for double-byte character set (DBCS)
data. The following general rules apply to DBCS data in Database Services Utility
input or output:

� DBCS data in SQL statements processed by the Database Services Utility can
be supplied as a constant with the format:

G'SOxx-xxSI'

where:

G' is the required constant prefix.
SO is a shift-out delimiter (hex 0E).
xx is a DBCS character in paired bytes.
SI is a shift-in delimiter (hex 0F).
' is the character terminating the constant.

Note: N' can be used as a synonym for G'

230 DBS Utility

� DBCS data appearing in input data records is read into a graphic data type
column by the Database Services Utility DATALOAD command processing. The
DBCS data must be represented in paired bytes; the SO and SI delimiters are
optional.

� The paired bytes of a DBCS character cannot be split across Database
Services Utility (input) control file records, except for data records read by
Database Services Utility DATALOAD command processing. A DBCS data
string, as well as the paired bytes representing a DBCS character, can be split
across (input) control file data records processed using the DATALOAD
continued record support.

� GRAPHIC data appearing in Database Services Utility DATAUNLOAD
command output and GRAPHIC data in SELECT

command print records has the format:

SOxx-xxSI

where:

SO is a shift-out delimiter (hex 0E).
xx is a DBCS character in paired bytes.
SI is a shift-in delimiter (hex 0F).

The SO and SI delimiters result in blank print positions.

� A DBCS data string appearing in a Database Services Utility COMMENT
command must include shift-out and shift-in delimiters and cannot be continued
across (input) control file records.

 Extended Support
In DB2 Server for VSE, if the SQLOPTION column value is DBCS and the VALUE
column value is yes in the SYSOPTIONS catalog table, you can use the extended
DBCS support of the Database Services Utility.

The DB2 Server for VM Database Services Utility retrieves information about the
DBCS setting from the LASTING GLOBALV file on the database user machine.
Extended DBCS supports the following characteristics:

� Any SQL identifier or character string constant in a command can contain
DBCS/EBCDIC mixed data if the DBCS string and the shift-in or shift-out
delimiters reside on the same line.

� The SQL SELECT statement ensures that the data printed for CHAR,
VARCHAR, or long field columns contain matched pairs of shift-out and shift-in
delimiters for each data line. A long field is a field that is either a LONG
VARCHAR field, a LONG VARGRAPHIC field, a VARCHAR(n) field where n is
greater than 254 but less than or equal to 32767, or a VARGRAPHIC(n) field
where n is greater than 127 but less than or equal to 16383.

� The Database Services Utility assumes, when a command data record contains
a shift-out delimiter without a shift-in delimiter, that all trailing command data
positions within the command record contain DBCS data. The Database
Services Utility inserts a shift-in delimiter after the last assumed nonblank
DBCS character position before the record is written to the report or message
file.

 Chapter 10. Improving Performance 231

Omitting a shift-in or shift-out delimiter causes unreadable (input) control file
records in the report or message file. To suppress this display of unreadable
DBCS data, set the LIST parameter of the INFILE subcommand to no.

If an error occurs, in DB2 Server for VSE, during access of the SYSOPTIONS
catalog, or if an invalid DBCS option value is found, the Database Services Utility
continues processing the input control card file as if the extended DBCS feature
were not in effect.

232 DBS Utility

 Part 3. Appendixes

 Copyright IBM Corp. 1987, 1998 233

234 DBS Utility

 Appendix A. Sample Tables

The sample tables illustrated in this appendix are used in examples throughout the
library. These tables simulate a database created for use in organization or project
management applications. As a group, the tables include information that describes
employees, departments, projects, and activities. Figure 112 shows the
relationships among the tables. These relationships are established by referential
constraints, where a foreign key in the dependent table references a primary key in
the parent table. In the figure, the referential constraint is symbolized by lines
joining the keys; the arrowheads point from the primary key to the foreign key. Only
those columns named as foreign or primary keys are listed in the figure. All tables
have additional columns. You can easily review the contents of any table by
executing an SQL statement, such as SELECT \ FROM SQLDBA.DEPARTMENT.

 DEPARTMENT PROJECT
 ┌──────────────┐ ┌───────────────┐
 ┌──────┼───DEPTNO─────┼───────┐ │ PROJNO──────┼─────────┐
 │ ┌──┼──5MGRNO │ RESTRICT────┼──5DEPTNO │ │
 │ │ │ ... │ ┌──────┼──5RESPEMP │ │
 │ │ │ │ │ │ ... │ │
 │ │ └──────────────┘ │ │ │ │
 │ │ │ └───────────────┘ RESTRICT
 SET │ │ │
 NULL │ ┌────SET NULL────┘ │
 │ │ │ │
 │ SET │ │
 │ NULL │ │
 │ │ EMPLOYEE ACTIVITY │
 │ │ ┌──────┼───────┐ ┌─────────────┐ │
 │ └──┼───EMPNO──────┼──┐ │ ACTNO─────┼┐ │
 └──────┼──5WORKDEPT │ │ │ ... ││ │
 │ ... │ │ │ ││ │
 │ │ │ └─────────────┘│ │
 └──────────────┘ │ │ │
 CASCADE │ │
 │ │ │
 │ RESTRICT │
 ┌──────────────────┘ │ │
 │ │ │
 │ EMP_ACT PROJ_ACT │ │
 │ ┌───────────────────┐ ┌──────────────────┐ │ │
 └──┼─5EMPNO │ ┌┼──PROJNO%─────────┼───┼──┘
 │ PROJNO%──────┐ │RESTRICT┼──ACTNO%──────────┼───┘
 │ ACTNO%───────┼───┼───┘ └┼──ACTSTDATE │
 │ EMSTDATE%────┘ │ │ ... │
 │ │ │ │
 │ │ └──────────────────┘
 └───────────────────┘

Figure 112. Relationships among Tables in the Sample Application

 DEPARTMENT Table
The DEPARTMENT table describes each department in the business and identifies
its manager and the department to which it reports. The table contents are shown
in Figure 113 on page 236; a description of the columns is shown in Figure 114.

 Copyright IBM Corp. 1987, 1998 235

Figure 113. DEPARTMENT Table Contents

DEPTNO DEPTNAME MGRNO ADMRDEPT

A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00

B01 PLANNING 000020 A00

C01 INFORMATION CENTER 000030 A00

D01 DEVELOPMENT CENTER ? A00

E01 SUPPORT SERVICES 000050 A00

D11 MANUFACTURING SYSTEMS 000060 D01

D21 ADMINISTRATION SYSTEMS 000070 D01

E11 OPERATIONS 000090 E01

E21 SOFTWARE SUPPORT 000100 E01

Figure 114. Columns of the DEPARTMENT Table

Column Name Description

DEPTNO Department number, the primary key

DEPTNAME A name describing the general activities
of the department

MGRNO Employee number (EMPNO) of the
department manager

ADMRDEPT Number of the department to which this
department reports; the department at the
highest level reports to itself

The DEPARTMENT table is created with:

CREATE TABLE DEPARTMENT
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6) ,
 ADMRDEPT CHAR(3) NOT NULL,

PRIMARY KEY (DEPTNO))

After the EMPLOYEE table has been created, a foreign key is added to the
DEPARTMENT table with this statement:

ALTER TABLE DEPARTMENT ADD
FOREIGN KEY R_EMPLY1 (MGRNO) REFERENCES EMPLOYEE

ON DELETE SET NULL

Relationship to Other Tables
DEPARTMENT is a parent of the EMPLOYEE and PROJECT tables.

The DEPARTMENT table is a dependent of the EMPLOYEE table; the MGRNO
column is the foreign key in the DEPARTMENT table and references EMPNO, the
primary key in the EMPLOYEE table.

236 DBS Utility

 EMPLOYEE Table
The EMPLOYEE table identifies all employees by an employee number and lists
basic personnel information. The table in Figure 115 shows the contents of the
EMPLOYEE table; Figure 116 on page 240 shows a description of the columns.

 Appendix A. Sample Tables 237

 C
O

M
M

de
c(

9,
2)

42
20

33
00

30
60

32
14

25
80

28
93

23
80

20
92

37
20

23
40

19
04

22
74

20
22

17
80

19
74

17
07

 B
O

N
U

S

de
c(

9,
2)

10
00

80
0

80
0

80
0

50
0

70
0

60
0

50
0

90
0

60
0

50
0

60
0

50
0

40
0

50
0

50
0

 S
A

LA
R

Y

de
c(

9,
2)

52
75

0

41
25

0

38
25

0

40
17

5

32
25

0

36
17

0

29
75

0

26
15

0

46
50

0

29
25

0

23
80

0

28
42

0

25
28

0

22
25

0

24
68

0

21
34

0

 B
IR

T
H

D
A

T
E

da
te

19
33

-0
8-

24

19
48

-0
2-

02

19
41

-0
5-

11

19
25

-0
9-

15

19
45

-0
7-

07

19
53

-0
5-

26

19
41

-0
5-

15

19
56

-1
2-

18

19
29

-1
1-

05

19
42

-1
0-

18

19
25

-0
9-

15

19
46

-0
1-

19

19
47

-0
5-

17

19
55

-0
4-

12

19
51

-0
1-

05

19
49

-0
2-

21

S

E
X

ch
ar

(1
)

F M F M M F F M M M F F M F M F

E
D

LE
V

E
L

sm
al

lin
t

no
t

nu
ll

18 18 20 16 16 16 16 14 19 14 16 18 16 17 16 17

JO

B

ch
ar

(8
)

P
R

E
S

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

S
A

LE
S

R
E

P

C
LE

R
K

A
N

A
LY

S
T

A
N

A
LY

S
T

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

 H
IR

E
D

A
T

E

da
te

19
65

-0
1-

01

19
73

-1
0-

10

19
75

-0
4-

05

19
49

-0
8-

17

19
73

-0
9-

14

19
80

-0
9-

30

19
70

-0
8-

15

19
80

-0
6-

19

19
58

-0
5-

16

19
63

-1
2-

05

19
71

-0
7-

28

19
76

-1
2-

15

19
72

-0
2-

12

19
77

-1
0-

11

19
78

-0
9-

15

19
73

-0
7-

07

P
H

O
N

E
N

O

ch
ar

(4
)

39
78

34
76

47
38

67
89

64
23

78
31

54
98

09
72

34
90

21
67

45
78

17
93

45
10

37
82

28
90

16
82

W
O

R
K

D
E

P
T

ch
ar

(3
)

A
00

B
01

C
01

E
01

D
11

D
21

E
11

E
21

A
00

A
00

C
01

C
01

D
11

D
11

D
11

D
11

LA

S
T

N
A

M
E

va
rc

ha
r(

15
)

no
t

nu
ll

H
A

A
S

T
H

O
M

P
S

O
N

K
W

A
N

G
E

Y
E

R

S
T

E
R

N

P
U

LA
S

K
I

H
E

N
D

E
R

S
O

N

S
P

E
N

S
E

R

LU
C

C
H

E
S

S
I

O
'C

O
N

N
E

LL

Q
U

IN
T

A
N

A

N
IC

H
O

LL
S

A
D

A
M

S
O

N

P
IA

N
K

A

Y
O

S
H

IM
U

R
A

S
C

O
U

T
T

E
N

M
ID

IN
IT

ch
ar

(1
)

no
t

nu
ll

I L A B F D W Q G M A R J S

F

IR
S

T
N

M
E

va
rc

ha
r(

12
)

no
t

nu
ll

C
H

R
IS

T
IN

E

M
IC

H
A

E
L

S
A

LL
Y

JO
H

N

IR
V

IN
G

E
V

A

E
IL

E
E

N

T
H

E
O

D
O

R
E

V
IN

C
E

N
Z

O

S
E

A
N

D
O

LO
R

E
S

H
E

A
T

H
E

R

B
R

U
C

E

E
LI

Z
A

B
E

T
H

M
A

S
A

T
O

S
H

I

M
A

R
IL

Y
N

F
ig

ur
e

11
5

(P
ag

e
1

of
 2

).
 E

M
P

LO
Y

E
E

T
ab

le
C

on
te

nt
s

 E
M

P
N

O

ch
ar

(6
)

no
t

nu
ll

00
00

10

00
00

20

00
00

30

00
00

50

00
00

60

00
00

70

00
00

90

00
01

00

00
01

10

00
01

20

00
01

30

00
01

40

00
01

50

00
01

60

00
01

70

00
01

80

238 DBS Utility

 C
O

M
M

16
36

22
17

14
62

23
87

17
74

23
01

15
34

13
80

21
90

21
00

12
27

14
20

12
72

15
96

20
30

19
07

 B
O

N
U

S

40
0

60
0

40
0

60
0

40
0

60
0

40
0

30
0

50
0

50
0

30
0

40
0

30
0

40
0

50
0

50
0

 S
A

LA
R

Y

20
45

0

27
74

0

18
27

0

29
84

0

22
18

0

28
76

0

19
18

0

17
25

0

27
38

0

26
25

0

15
34

0

17
75

0

15
90

0

19
95

0

25
37

0

23
84

0

 B
IR

T
H

D
A

T
E

19
52

-0
6-

25

19
41

-0
5-

29

19
53

-0
2-

23

19
48

-0
3-

19

19
35

-0
5-

30

19
54

-0
3-

31

19
39

-1
1-

12

19
36

-1
0-

05

19
53

-0
5-

26

19
36

-0
3-

28

19
46

-0
7-

09

19
36

-1
0-

27

19
31

-0
4-

21

19
32

-0
8-

11

19
41

-0
7-

18

19
26

-0
5-

17

S

E
X

M M M F M M M F F F M M F M M M

E
D

LE
V

E
L

16 16 17 18 14 17 15 16 15 17 12 14 12 16 14 16

JO

B

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

C
LE

R
K

C
LE

R
K

C
LE

R
K

C
LE

R
K

C
LE

R
K

O
P

E
R

A
T

O
R

O
P

E
R

A
T

O
R

O
P

E
R

A
T

O
R

O
P

E
R

A
T

O
R

F
IE

LD
R

E
P

F
IE

LD
R

E
P

F
IE

LD
R

E
P

 H
IR

E
D

A
T

E

19
74

-0
7-

26

19
66

-0
3-

03

19
79

-0
4-

11

19
68

-0
8-

29

19
66

-1
1-

21

19
79

-1
2-

05

19
69

-1
0-

30

19
75

-0
9-

11

19
80

-0
9-

30

19
67

-0
3-

24

19
80

-0
5-

30

19
72

-0
6-

19

19
64

-0
9-

12

19
65

-0
7-

07

19
76

-0
2-

23

19
47

-0
5-

05

P
H

O
N

E
N

O

29
86

45
01

09
42

06
72

20
94

37
80

09
61

89
53

90
01

89
97

45
02

20
95

33
32

99
90

21
03

56
98

W
O

R
K

D
E

P
T

D
11

D
11

D
11

D
11

D
21

D
21

D
21

D
21

D
21

E
11

E
11

E
11

E
11

E
21

E
21

E
21

LA

S
T

N
A

M
E

W
A

LK
E

R

B
R

O
W

N

JO
N

E
S

LU
T

Z

JE
F

F
E

R
S

O
N

M
A

R
IN

O

S
M

IT
H

JO
H

N
S

O
N

P
E

R
E

Z

S
C

H
N

E
ID

E
R

P
A

R
K

E
R

S
M

IT
H

S
E

T
R

IG
H

T

M
E

H
T

A

LE
E

G
O

U
N

O
T

M
ID

IN
IT

H T K J M S P L R R X F V R

F

IR
S

T
N

M
E

JA
M

E
S

D
A

V
ID

W
IL

LI
A

M

JE
N

N
IF

E
R

JA
M

E
S

S
A

LV
A

T
O

R
E

D
A

N
IE

L

S
Y

B
IL

M
A

R
IA

E
T

H
E

L

JO
H

N

P
H

IL
IP

M
A

U
D

E

R
A

M
LA

L

W
IN

G

JA
S

O
N

F
ig

ur
e

11
5

(P
ag

e
2

of
 2

).
 E

M
P

LO
Y

E
E

T
ab

le
C

on
te

nt
s

 E
M

P
N

O

00
01

90

00
02

00

00
02

10

00
02

20

00
02

30

00
02

40

00
02

50

00
02

60

00
02

70

00
02

80

00
02

90

00
03

00

00
03

10

00
03

20

00
03

30

00
03

40

 Appendix A. Sample Tables 239

The EMPLOYEE table has a foreign key referencing the primary key in the
DEPARTMENT table. The DEPARTMENT table must, therefore, be created first.
The EMPLOYEE table is then created with:

CREATE TABLE EMPLOYEE
 (EMPNO CHAR(6) NOT NULL,
 FIRSTNME VARCHAR(12) NOT NULL,
 MIDINIT CHAR(1) NOT NULL,
 LASTNAME VARCHAR(15) NOT NULL,
 WORKDEPT CHAR(3) ,
 PHONENO CHAR(4) ,
 HIREDATE DATE ,
 JOB CHAR(8) ,
 EDLEVEL SMALLINT NOT NULL,
 SEX CHAR(1) ,
 BIRTHDATE DATE ,
 SALARY DECIMAL(9,2) ,
 BONUS DECIMAL(9,2) ,
 COMM DECIMAL(9,2) ,

PRIMARY KEY (EMPNO) ,
FOREIGN KEY R_DEPT1 (WORKDEPT) REFERENCES DEPARTMENT

ON DELETE SET NULL)

Figure 116. Columns of the EMPLOYEE Table

Column Name Description

EMPNO Employee number (the primary key)

FIRSTNME First name of the employee

MIDINIT Middle initial of the employee

LASTNAME Last name of the employee

WORKDEPT Number of department in which the
employee works

PHONENO Employee telephone number

HIREDATE Date of hire

JOB Job held by the employee

EDLEVEL Number of years of formal education

SEX Sex of the employee (M or F)

BIRTHDATE Date of birth

SALARY Yearly salary

BONUS Yearly bonus

COMM Yearly commission

Relationship to Other Tables
The EMPLOYEE table is a parent of the DEPARTMENT table, the PROJECT table,
and the EMP_ACT table.

The EMPLOYEE table is a dependent of the DEPARTMENT table; the foreign key
on the WORKDEPT column in the EMPLOYEE table references the primary key on
the DEPTNO column in the DEPARTMENT table.

240 DBS Utility

 PROJECT Table
The PROJECT table describes each project that the business is currently
undertaking. Data contained in each row includes the project number, name,
person responsible, and schedule dates as shown in Figure 117; Figure 118 on
page 242 describes the columns.

Figure 117. PROJECT Table Contents

PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

AD3100 ADMIN
SERVICES

D01 000010 6.5 1982-01-01 1983-02-01 ?

AD3110 GENERAL ADMIN
SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

AD3111 PAYROLL
PROGRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

AD3112 PERSONNEL
PROGRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

AD3113 ACCOUNT
PROGRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

IF1000 QUERY
SERVICES

C01 000030 2 1982-01-01 1983-02-01 ?

IF2000 USER
EDUCATION

C01 000030 1 1982-01-01 1983-02-01 ?

MA2100 WELD LINE
AUTOMATION

D01 000010 12 1982-01-01 1983-02-01 ?

MA2110 W L
PROGRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

MA2111 W L PROGRAM
DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

MA2112 W L ROBOT
DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

MA2113 W L PROD CONT
PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

OP1000 OPERATION
SUPPORT

E01 000050 6 1982-01-01 1983-02-01 ?

OP1010 OPERATION E11 000090 5 1982-01-01 1983-02-01 OP1000

OP2000 GEN SYSTEMS
SERVICES

E01 000050 5 1982-01-01 1983-02-01 ?

OP2010 SYSTEMS
SUPPORT

E21 000100 4 1982-01-01 1983-02-01 OP2000

OP2011 SCP SYSTEMS
SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

OP2012 APPLICATIONS
SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

OP2013 DB/DC SUPPORT E21 000340 1 1982-01-01 1983-02-01 OP2010

PL2100 WELD LINE
PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

 Appendix A. Sample Tables 241

The PROJECT table has foreign keys referencing DEPARTMENT and EMPLOYEE.
The EMPLOYEE and DEPARTMENT tables must be created before the PROJECT
table. Once EMPLOYEE and DEPARTMENT are created, the following statement
creates the PROJECT table:

CREATE TABLE PROJECT
 (PROJNO CHAR(6) NOT NULL,
 PROJNAME VARCHAR(24) NOT NULL,
 DEPTNO CHAR(3) NOT NULL,
 RESPEMP CHAR(6) ,
 PRSTAFF DECIMAL(5,2) ,
 PRSTDATE DATE ,
 PRENDATE DATE ,
 MAJPROJ CHAR(6) ,

PRIMARY KEY (PROJNO) ,
FOREIGN KEY R_DEPT2 (DEPTNO) REFERENCES DEPARTMENT

ON DELETE RESTRICT ,
FOREIGN KEY R_EMPLY2 (RESPEMP) REFERENCES EMPLOYEE

ON DELETE SET NULL)

Figure 118. Columns of the PROJECT Table

Column Name Description

PROJNO Project number (the primary key)

PROJNAME Project name

DEPTNO Number of department responsible for the
project

RESPEMP Number of employee responsible for the
project

PRSTAFF Estimated mean project staffing (mean
number of persons) needed between
PRSTDATE and PRENDATE to achieve
the whole project, including any
subprojects

PRSTDATE Estimated project start date

PRENDATE Estimated project end date

MAJPROJ Number of any major project of which the
subject project may be a part

Relationship to Other Tables
PROJECT is a parent of the PROJ_ACT table.

PROJECT is a dependent of:

� The DEPARTMENT table; the foreign key on the DEPTNO column in
PROJECT references the primary key in the DEPARTMENT table.

� The EMPLOYEE table; the foreign key on the RESPEMP column in PROJECT
references the primary key in the EMPLOYEE table.

242 DBS Utility

 ACTIVITY Table
The ACTIVITY tables describes the activities that can be performed during a
project. The table acts as a master list of possible activities, identifying the activity
number, and providing a description of the activity. Figure 119 shows table
contents; Figure 120 shows a description of the columns.

Figure 119. ACTIVITY Table Contents

ACTNO ACTKWD ACTDESC

160 ADMDB Adm databases

170 ADMDC Adm data comm

90 ADMQS Adm query system

150 ADMSYS Adm operating sys

70 CODE Code programs

110 COURSE Develop courses

30 DEFINE Define specs

180 DOC Document

20 ECOST Estimate cost

40 LEADPR Lead program/design

60 LOGIC Describe logic

140 MAINT Maint software sys

10 MANAGE Manage/advise

130 OPERAT Oper computer sys

50 SPECS Write specs

120 STAFF Pers and staffing

100 TEACH Teach classes

80 TEST Test programs

Figure 120. Columns of the ACTIVITY Table

Column Name Description

ACTNO Activity number (the primary key)

ACTKWD Activity keyword (up to six characters)

ACTDESC Activity description

The ACTIVITY table is created with:

CREATE TABLE ACTIVITY
 (ACTNO SMALLINT NOT NULL,
 ACTKWD CHAR(6) NOT NULL,
 ACTDESC VARCHAR(2ð) NOT NULL,

PRIMARY KEY (ACTNO))

 Appendix A. Sample Tables 243

Relationship to Other Tables
ACTIVITY is a parent of the PROJ_ACT table.

 PROJ_ACT Table
The PROJ_ACT table lists the activities performed for each project. The table
contains information on the start and completion dates of the project activity as well
as staffing requirements as shown in Figure 121. Figure 122 on page 245 shows a
description of the columns.

Figure 121. Partial Contents of PROJ_ACT Table

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

AD3100 10 0.50 1982-01-01 1982-07-01

AD3110 10 1.00 1982-01-01 1983-01-01

AD3111 60 0.80 1982-01-01 1982-04-15

AD3111 70 1.50 1982-02-15 1982-10-15

AD3111 80 1.25 1982-04-15 1983-01-15

AD3111 180 1.00 1982-10-15 1983-01-15

AD3112 60 0.75 1982-01-01 1982-05-15

AD3112 60 0.75 1982-12-01 1983-01-01

AD3112 70 0.75 1982-01-01 1982-10-15

AD3112 80 0.35 1982-08-15 1982-12-01

AD3112 180 0.50 1982-08-15 1983-01-01

AD3113 60 0.75 1982-03-01 1982-10-15

AD3113 70 1.25 1982-06-01 1982-12-15

AD3113 80 1.75 1982-01-01 1982-04-15

AD3113 180 0.75 1982-03-01 1982-07-01

IF1000 10 0.50 1982-01-01 1983-01-01

IF1000 90 1.00 1982-01-01 1983-01-01

IF1000 100 0.50 1982-01-01 1983-01-01

IF2000 10 0.50 1982-01-01 1983-01-01

IF2000 100 0.75 1982-01-01 1982-07-01

IF2000 110 0.50 1982-03-01 1982-07-01

IF2000 110 0.50 1982-10-01 1983-01-01

MA2100 10 0.50 1982-01-01 1982-11-01

MA2100 20 1.00 1982-01-01 1982-03-01

MA2110 10 1.00 1982-01-01 1983-02-01

MA2111 40 1.00 1982-01-01 1983-02-01

MA2111 50 1.00 1982-01-01 1092-06-01

MA2111 60 1.00 1982-06-01 1983-02-01

MA2112 60 2.00 1982-01-01 1982-07-01

MA2112 70 1.50 1983-02-01 1983-02-01
...

...
...

...
...

244 DBS Utility

Figure 122. Columns of the PROJ_ACT Table

Column Name Description

PROJNO Project number

ACTNO Activity number

ACSTAFF Estimated mean number of employees
needed to staff the activity

ACSTDATE Estimated activity start date

ACENDATE Estimated activity completion date

The table has a composite primary key and was created with:

CREATE TABLE PROJ_ACT
 (PROJNO CHAR(6) NOT NULL,
 ACTNO SMALLINT NOT NULL,
 ACSTAFF DECIMAL(5,2) ,
 ACSTDATE DATE NOT NULL,
 ACENDATE DATE ,

PRIMARY KEY (PROJNO, ACTNO, ACTSTDATE),
FOREIGN KEY R_PROJ2 (PROJNO) REFERENCES PROJECT

ON DELETE RESTRICT,
FOREIGN KEY R_ACTIV (ACTNO) REFERENCE ACTIVITY

ON DELETE RESTRICT)

Relationship to Other Tables
PROJ_ACT is a parent of the EMP_ACT table.

It is a dependent of:

� The ACTIVITY table; the foreign key on ACTNO in the PROJ_ACT table
references the primary key, ACTNO, in the ACTIVITY table.

� The PROJECT table; the foreign key on PROJNO in the PROJ_ACT table
references the primary key, PROJNO, in the PROJECT table.

 EMP_ACT Table
The EMP_ACT table identifies the employee performing each activity listed for each
project. The table in Figure 123 on page 246 shows some of the rows in this table.
Figure 124 on page 246 shows a description of the columns.

 Appendix A. Sample Tables 245

Figure 123. Partial Contents of EMP_ACT Table

EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000130 IF1000 90 1.00 1982-01-01 1982-10-01

000130 IF1000 100 .50 1982-10-01 1983-01-01

000140 IF1000 90 .50 1982-10-01 1983-01-01

000030 IF1000 10 .50 1982-06-01 1983-01-01

000030 IF2000 10 .50 1982-01-01 1983-01-01

000140 IF2000 100 1.00 1982-01-01 1982-03-01

000140 IF2000 100 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-10-01 1983-01-01

000010 MA2100 10 .50 1982-01-01 1982-11-01

000110 MA2100 20 1.00 1982-01-01 1982-03-01

000020 PL2100 30 1.00 1982-01-01 1982-09-15

000010 MA2110 10 1.00 1982-01-01 1983-02-01

000220 MA2111 40 1.00 1982-01-01 1983-02-01
...

...
...

...
...

...

Figure 124. Columns of the EMP_ACT Table

Column Name Description

EMPNO Employee number

PROJNO Project number of the project to which the
employee is assigned

ACTNO Activity number within a project to which
an employee is assigned

EMPTIME A proportion of the employee's full time
(between 0.00 and 1.00) to be spent on
the project from EMSTDATE to
EMENDATE

EMSTDATE Date the activity starts

EMENDATE Completion date of the activity

Since the table has foreign keys referencing EMPLOYEE and PROJ_ACT, those
tables must be created first.

This table was created with:

246 DBS Utility

 IN_TRAY Table

CREATE TABLE EMP_ACT
 (EMPNO CHAR(6) NOT NULL,
 PROJNO CHAR(6) NOT NULL,
 ACTNO SMALLINT NOT NULL,
 EMPTIME DECIMAL(5,2) ,
 EMSTDATE DATE ,
 EMENDATE DATE ,

FOREIGN KEY R_PROACT (PROJNO,ACTNO,EMSTDATE)
REFERENCES PROJ_ACT ON DELETE RESTRICT,

FOREIGN KEY R_EMPLY3 (EMPNO) REFERENCES EMPLOYEE
ON DELETE CASCADE)

Relationship to Other Tables
The EMP_ACT table is a dependent of:

� The EMPLOYEE table; the foreign key on EMPNO in the EMP_ACT table
references the primary key, EMPNO, in the EMPLOYEE table.

� The PROJ_ACT table; the foreign key on the set of PROJNO, ACTNO,
EMSTDATE in the EMP_ACT table references the primary key, PROJNO,
ACTNO, ACSTDATE, in the PROJ_ACT table.

 IN_TRAY Table
The IN_TRAY table contains a person’s note log. The table contents are shown in
Figure 125; a description of the columns is shown in Figure 126.

Figure 125. IN_TRAY Table Contents

RECEIVED SOURCE SUBJECT NOTE_TEXT

1965-01-01-07.00.00 SQLDBA English Here is a note
from your DBA.

Figure 126. Columns of the IN_TRAY Table

Column Name Description

RECEIVED Date and time note was received

SOURCE User id of person sending note

SUBJECT Brief description

NOTE_TEXT The text of the note

This table was created with:

CREATE TABLE IN_TRAY
 (RECEIVED TIMESTAMP NOT NULL,
 SOURCE CHAR(8) NOT NULL,
 SUBJECT CHAR(64) ,
 NOTE_TEXT VARCHAR(4ððð))

 Appendix A. Sample Tables 247

 CL_SCHED Table

 CL_SCHED Table
The CL_SCHED table describes a classroom schedule. The table contents are
shown in Figure 127; a description of the columns is shown in Figure 128.

Figure 127. CL_SCHED Table Contents

CLASS_CODE DAY STARTING ENDING

101:KAR 2 14.10.00 16.10.00

202:LMM 3 14.40.00 16.40.00

303:RAR 4 09.00.00 09.40.00

Figure 128. Columns of the CL_SCHED Table

Column Name Description

CLASS_CODE Class Code (room:teacher)

DAY Day number of four day schedule

STARTING Class start time

ENDING Class end time

This table was created with:

CREATE TABLE CL_SCHED
 (CLASS_CODE CHAR(7) NOT NULL,

DAY SMALLINT NOT NULL,
 STARTING TIME NOT NULL,
 ENDING TIME NOT NULL)

Note: For more information about data types, refer to the DB2 Server for VSE
Application Programming or the DB2 Server for VM Application
Programming manuals.

248 DBS Utility

Appendix B. FILEDEF Command Syntax and Notes

Whenever you run the Database Services Utility under CMS, first identify the files
to CMS with the FILEDEF command.

Note: Use the SQLDBSU EXEC, which generates standard FILEDEF statements,
to define the control and message files. Create a FILEDEF statement for all
additional input and output files.

The FILEDEF command in CMS performs the same functions as the data definition
(DD) record in OS job control language (JCL). When you enter a FILEDEF
command, specify:

 � A ddname
� The device type
� A file identification if the device type is DISK
� Options (as required).

The format of the FILEDEF command is:

Format:

55─ ─FIledef──ddname─ ──┬ ┬─Terminal─────── ──┬ ┬─────────────────── ───────────────────────────5%
 ├ ┤─PRinter──────── └ ┘ ─(──Options─ ──┬ ┬───
 ├ ┤─Reader───────── └ ┘─)─
 ├ ┤ ─DISK──fn_ft_fm─
 └ ┘ ─TAPn───────────

ddname (data definition name)
identifies the name used in your DBS Utility command that refers to the input or
output file.

Terminal
your workstation

PRinter
the spooled printer available to you

Reader
the spooled reader available to you

DISK fn ft fm
virtual direct access storage device (DASD) CMS file

TAPn
magnetic tape drive, where n can be 1, 2, 3, or 4, representing virtual units
181, 182, 183, and 184, respectively.

Options
to avoid error messages, specify only those options that are valid for a
particular device. Figure 129 on page 250 shows valid options for each device
type.

The following diagram illustrates the FILEDEF options available when the device is
a workstation or a tape drive:

 Copyright IBM Corp. 1987, 1998 249

Format:

5─ ─(─ ──┬ ┬────── ──┬ ┬────────── ──┬ ┬──────────────── ──┬ ┬───────────── ─────────────────────────5
 └ ┘─PERM─ ├ ┤─CHANGE─── └ ┘ ─RECFM─ ──┬ ┬───── └ ┘ ─LRECL──nnnn─
 └ ┘─NOCHANGE─ ├ ┤─F───
 ├ ┤─FB──
 ├ ┤─V───
 ├ ┤─VB──
 ├ ┤─FBS─
 └ ┘─VBS─

5─ ─BLOCK──nnnn─ ──┬ ┬─────────── ──┬ ┬────────── ──┬ ┬─── ──5
 ├ ┤─UPCASE───(1) ─ ├ ┤─7TRACK───(2) └ ┘─)─
 └ ┘─LOWCASE───(1) └ ┘─9TRACK───(2)

Notes:
1 Terminal only.
2 Tape only.

The following diagram illustrates the FILEDEF options available when the device
specified is DISK:

Format:

5─ ─(─ ──┬ ┬────── ──┬ ┬────────── ──┬ ┬──────────────── ──┬ ┬───────────── ──┬ ┬───────────── ────────5
 └ ┘─PERM─ ├ ┤─CHANGE─── └ ┘ ─RECFM─ ──┬ ┬─F─── └ ┘ ─LRECL──nnnn─ ├ ┤─\───────────
 └ ┘─NOCHANGE─ ├ ┤─FB── └ ┘ ─BLOCK──nnnn─
 ├ ┤─V───
 ├ ┤─VB──
 ├ ┤─FBS─
 └ ┘─VBS─

5─ ──┬ ┬───────────── ──┬ ┬────────── ──┬ ┬───────────────── ──┬ ┬──────── ──┬ ┬─────────────── ──────5
 ├ ┤─XTENT5ð───── └ ┘─DISP MOD─ └ ┘ ─MEMBER──mbrname─ └ ┘─CONCAT─ └ ┘ ─DSORG─ ──┬ ┬─PS─
 └ ┘ ─XTENT──nnnn─ ├ ┤─PO─
 └ ┘─DA─

5─ ──┬ ┬─── ──5
 └ ┘─)─

250 DBS Utility

Figure 129. FILEDEF Options and Parameters

OPTION NAME DISK READER/PRINTER TAPn TERMINAL

BLOCK,
BLOCKSIZE

X X X X

CHANGE,
NOCHANGE

X X X X

CONCAT X

DEN X

DISP MOD X X

DSORG X

LOWERCASE/
UPCASE

 X

LRECL X X X X

MEMBER X

PERM X X X X

RECFM X X X X

7TRACK/9TRACK X

Some guidelines for entering FILEDEF specifications are given below.

 Specifying ddname
If the FILEDEF command is issued for a program input or output file, the ddname
must be the same as the ddname or file name specified for the file in the source
program. For example, you have an Assembler language source program that
contains the line:

INFILE DCB ddname=INPUTDD,MACRF=GL,DSORG=PS,RECFM=F,LRECL=8ð

For a particular execution of this program, you want to use as your input file a CMS
file on your A-disk that is named MYINPUT FILE. You must issue a FILEDEF like
this before executing the program:

FILEDEF INPUTDD DISK MYINPUT FILE A1

CMS FILEDEF command information for RELOAD processing should be identical to
the information in the FILEDEF command used when the file was created by the
package's UNLOAD command processing.

If the input data file was created by DATAUNLOAD processing, then the CMS
FILEDEF command that defines the DATALOAD input data file should be identical
to the information in the FILEDEF command used when the file was created by
DATAUNLOAD processing.

 Appendix B. FILEDEF Command Syntax and Notes 251

Specifying Device Type
For input files, the device type you enter on the FILEDEF command indicates the
device from which you want records read. It can be DISK, TERMINAL, READER
(for input from real cards or virtual cards), or TAPn (for tape). Using the above
example, if your input file is to be read from your virtual card reader, the FILEDEF
command might be as follows:

FILEDEF INPUTDD READER

Or, if you were reading from a tape attached to your virtual machine at virtual
address 181 (TAP1):

FILEDEF INPUTDD TAP1

For output files, the device you specify can be DISK, PRINTER, TAPn (tape), or
TERMINAL.

Entering File Identifiers
If you are using a CMS disk file for your input or output, specify:

FILEDEF ddname DISK filename filetype filemode

Note: If an asterisk (*) is used for the file mode of an output file, the results are
unpredictable. The file mode field is optional; your A-disk is the default
assumed.

If you want an output file to be constructed in OS simulated data set format, you
must specify the file mode number as 4. For example, a program contains a
dbspace for an output file with the ddname OUTPUTDD, and you are using it to
create a CMS file named DTABSE OUTPUT on your B-disk:

FILEDEF OUTPUTDD DISK DTABSE OUTPUT B4

If you enter only the ddname and device type on the FILEDEF command, such as:

FILEDEF ddname DISK

where ddname is the name of the output file you assigned as the parameter of the
FILEDEF command, you have then created a file on your A-disk. For example, if
you assign a ddname of OSCAR to an output file and do not issue a FILEDEF
command before you execute the program, the CMS file FILE OSCAR A1 is
created when you execute the program.

Specifying CMS Tape Label Processing
You can use the label operands on the FILEDEF command to indicate that CMS
tape label processing is not desired. (This is the default.) If CMS tape label
processing is desired, you can use the label operands on the FILEDEF command
to indicate the types of labels on your tape.

 Specifying Options
The FILEDEF command has many options; those mentioned below are a sampling
only. For complete descriptions of all the options of the FILEDEF command, see
the VM/ESA: CMS Command Reference.

Note: If a SET ERRORMODE CONTINUE command is in effect during Database
Services Utility command processing, which requires tape file operation
involving multifile volume, the use of the LEAVE option in the FILEDEF may
cause a tape positioning error. If a Database Services Utility command

252 DBS Utility

processing involving tape file operation fails, the subsequent command
processing requiring access to the same tape will get a tape file open error.
This error results from the wrong tape positioning caused by the use of the
LEAVE option in the FILEDEF.

BLOCK, LRECL, RECFM, DSORG
If you are using the FILEDEF command to relate a data control block (DCB) in a
program to an input or output file, you need to supply some of the file format
information, such as the record length and block size, on the FILEDEF command
line. For example, you have coded a DCB macro for an output file as follows:

OUTFILE DCB ddname=OUT,MACRF=PM,DSORG=PS

When you are issuing a FILEDEF for this ddname, you must specify the format of
the file. To create an output file on disk, blocked in OS-simulated data set format,
you could issue:

FILEDEF OUT DISK fn ft A (RECFM FB LRECL 8ð BLOCK 16ðð

Note the following command-specific information for the RECFM, BLOCK, and
LRECL parameters:

 � DATALOAD

If the DATALOAD input data file contains records with more than 32 760
positions of data, variable-length, spanned records (RECFM=VS or VBS) must
be used. Specify as options only the RECFM and block size parameters in the
FILEDEF command defining the data file. For spanned record segments, use a
maximum length of BLKSIZE−4.

� UNLOAD DBSPACE and UNLOAD TABLE

You should always specify a record format of variable-length spanned, blocked
(VBS) for UNLOAD processing. UNLOAD processing changes the record
format to variable-length, spanned (VS) if the system required logical record
length is greater than the specified block size (BLOCK) value minus 4.

A block size greater than 8 244 is recommended for tape output files created
by UNLOAD processing.

� RELOAD DBSPACE and RELOAD TABLE

The record format used for RELOAD processing is variable-length blocked,
spanned (VBS). If a RECFM value other than VBS or an LRECL value is
specified, it is ignored. A maximum length of BLKSIZE−4 is used for the
spanned record segments.

� UNLOAD and RELOAD PROGRAM

If you specify a RECFM other than FB, or specify an LRECL value, the value is
ignored.

 � SCHEMA

If you specify a RECFM other than FB, or specify an LRECL value, the value is
ignored.

 Appendix B. FILEDEF Command Syntax and Notes 253

 PERM
Usually, when you execute one of the language processors, all existing file
definitions are cleared. If the development of a program requires you to recompile
and reexecute it frequently, you might want to use the PERM option when you
issue file definitions for your input and output files. For example:

CP SPOOL PUNCH TO \
FILEDEF INDD DISK TEST FILE A1 (LRECL 8ð PERM
FILEDEF OUTDD PUNCH (LRECL 8ð PERM

In this example, because you spooled your virtual punch to your own virtual card
reader, output files are placed in your virtual reader. You can either read or delete
them.

All file definitions issued with the PERM option stay in effect until you log off;
therefore, specifically clear those definitions or redefine them:

FILEDEF INDD CLEAR
FILEDEF OUTDD TAP1 (LRECL 8ð

In the above example, the definition for INDD is cleared; OUTDD is redefined as a
tape file.

When you issue the command:

FILEDEF \ CLEAR

all file definitions are cleared, except those you enter with the PERM option.

Note: When a program ends abnormally, or when you issue the HX immediate
command, all file definitions are cleared, including those entered with the
PERM option.

 DISP MOD
Suppose you issue a FILEDEF command for an output file and assign it a CMS file
identifier that is identical to that of an existing CMS file; then, when anything is
written to that ddname, the existing file is replaced by the new output file. If you
want, instead, to have new records added to the end of the existing file, you can
use the DISP MOD option as follows:

FILEDEF ddname DISK fn ft fm (DISP MOD

Note: To see the file characteristics used in the Database Services Utility's
processing, look at message ARI08681 in the message file.

254 DBS Utility

 Bibliography

This bibliography lists publications that are referenced in
this manual or that may be helpful.

Related Publications

� DB2 Server for VSE & VM Data Restore,
SC09-2677

� DRDA: Every Manager's Guide, GC26-3195

� IBM SQL Reference, Version 2, Volume 1,
SC26-8416

� IBM SQL Reference, SC26-8415

Other Distributed Data Publications

� IBM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 3,
SC21-9526

� IBM Distributed Data Management (DDM)
Architecture, Implementation Programmer's Guide,
SC21-9529

� VM/Directory Maintenance Licensed Program
Operation and User Guide Release 4, SC23-0437

� IBM Distributed Relational Database Architecture
Reference, SC26-4651

� IBM Systems Network Architecture, Format and
Protocol

� SNA LU 6.2 Reference: Peer Protocols

� Reference Manual: Architecture Logic for LU Type
6.2

� IBM Systems Network Architecture, Logical Unit 6.2
Reference: Peer Protocols

� Distributed Data Management (DDM) List of Terms

� IBM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 3,
SC21-9526

� IBM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 3,
SC21-9526

� IBM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 3,
SC21-9526

CCSID Publications

� Character Data Representation Architecture,
Executive Overview, GC09-2207

� Character Data Representation Architecture
Reference and Registry, SC09-2190

C/370 Publications

� IBM C/370 Installation and Customization Guide,
GC09-1387

� IBM C/370 Programming Guide, SC09-1384

Communication Server for OS/2 Publications

� Up and Running!,GC31-8189

� Network Administration and Subsystem
Management Guide SC31-8181

� Command Reference, SC31-8183

� Message Reference, SC31-8185

� Problem Determination Guide, SC31-8186

Distributed Database Connection Services (DDCS)
Publications

� DDCS User's Guide for Common Servers,
S20H-4793

� DDCS for OS/2 Installation and Configuration Guide
S20H-4795

VTAM Publications

� VTAM Messages and Codes, SC31-6493

� VTAM Network Implementation Guide, SC31-6494

� VTAM Operation, SC31-6495

� VTAM Programming, SC31-6496

� VTAM Programming for LU 6.2, SC31-6497

� VTAM Resource Definition Reference, SC31-6498

� VTAM Resource Definition Samples, SC31-6499

CSP/AD and CSP/AE Publications

� Developing Applications, SH20-6435

� CSP/AD and CSP/AE Installation Planning Guide,
GH20-6764

� Administering CSP/AD and CSP/AE on VM,
SH20-6766

� Administering CSP/AD and CSP/AE on VSE,
SH20-6767

� CSP/AD and CSP/AE Planning, SH20-6770

� Cross System Product General Information,
GH23-0500

Query Management Facility (QMF) Publications

� QMF General Information, GC26-4713

� QMF VSE/ESA Setup and Usage Guide,
GG24-4196

� Managing QMF for VSE/ESA, SC26-3252

 Copyright IBM Corp. 1987, 1998 255

� Installing QMF on VSE/ESA, SC26-3254

� QMF Learner's Guide, SC26-4714

� QMF Advanced User's Guide, SC26-4715

� QMF Reference, SC26-4716

� Installing QMF on VM, SC26-4718

� QMF Application Development Guide, SC26-4722

� QMF Messages and Codes, SC26-4834

� Using QMF, SC26-8078

� Managing QMF for VM/ESA, SC26-8219

DL/I DOS/VS Publications

� DL/I DOS/VS Application Programming, SH24-5009

COBOL Publications

� VS COBOL II Migration Guide for VSE, GC26-3150

� VS COBOL II Migration Guide for MVS and CMS,
GC26-3151

� VS COBOL II General Information, GC26-4042

� VS COBOL II Language Reference, GC26-4047

� VS COBOL II Application Programming Guide,
SC26-4045

� VS COBOL II Application Programming Debugging,
SC26-4049

� VS COBOL II Installation and Customization for
CMS SC26-4213

� VS COBOL II Installation and Customization for
VSE SC26-4696

� VS COBOL II Application Programming Guide for
VSE SC26-4697

Systems Network Architecture (SNA) Publications

� SNA Transaction Programmer's Reference Manual
for LU Type 6.2, GC30-3084

� SNA Format and Protocol Reference: Architecture
Logic for LU Type 6.2, SC30-3269

� SNA LU 6.2 Reference: Peer Protocols, SC31-6808

� SNA Synch Point Services Architecture Reference
SC31-8134

Miscellaneous Publications

� IBM 3990 Storage Control Planning, Installation,
and Storage Administration Guide, GA32-0100

� Dictionary of Computing, ZC20-1699

� APL2 Programming: Using Structured Query
Language, SH21-1056

� ESA/390 Principles of Operation, SA22-7201

Related Feature Publications

� IBM Replication Guide and Reference, S95H-0999

256 DBS Utility

 Index

A
ACTIVITY sample table 243
API (see Application Programming Interface) 115,

116
apostrophe

parameter value 140
Application Programming Interface (API)

calling program to DBSU 115
control parameters 116

Application server
identifying 21
switching 21

ARIDDFP 112
ARIDSQLA 112
ARIS61PL 106
ARISYSDD 112
arithmetic

exception 147, 174
arithmetic operator

in syntax diagrams xv
assembler calling program

example 129
assembler load program

example 126
authorization, checking 20, 21
AUTOCOMMIT

DATALOAD COMMITCOUNT processing 168
automatic

locking override 227

B
bad records skipping 48
basic DBCS support 230
binary-output data 178
blanks

within identifiers 111
building

control file 13
building an input control card file 9

C
C programming language

invoking the Database Services Utility 114
CALL assembler macro 114
CDLOAD instruction 112
CHAR data type 153
character subtype 66, 74
choose

in syntax diagrams xv

CL_SCHED sample table 248
clustering index 66
COBOL program example 125
COBOL, invoking the Database Services Utility 114
column

label 23
UNIQUE attribute 66

combining records to load multiple rows 43
command

processing
description 139
SQL 147
summary 147

specifications 139
command file

errors 224
command reference topics

blanks within identifiers 111
COMMENT reference 141
data object 110
Database Services Utility reserved words 112
DATALOAD TABLE reference 149
DATAUNLOAD reference 172
load-data commands 149
load-program command processing 206
loading data 149
loading programs 206
names and identifiers 110
naming data objects 110
object name 111
processing 139
program-load commands 206
qualifying object names 111
REBIND PACKAGE reference 213
RELOAD DBSPACE reference 194
RELOAD PACKAGE reference 206
RELOAD TABLE reference 198
REORGANIZE reference 142
reserved words 111
reserved words as identifiers 112
SCHEMA reference 144
SET AUTOCOMMIT reference 214
SET ERRORMODE reference 214
SET FORMAT reference 217
SET ISOLATION reference 218
SET LINECOUNT, SET LINEWIDTH reference 219
SET UPDATE STATISTICS reference 221
set-item commands 213
setting items 213
special character within identifier 111
SQL reserved words 112
UNLOAD DBSPACE reference 201

 Copyright IBM Corp. 1987, 1998 257

command reference topics (continued)
UNLOAD PACKAGE reference 211
UNLOAD TABLE reference 204

command-set sequence 54
commands and syntax, DBS Utility 139
commands, control 139
comment

DBS Utility COMMENT command 141
in SQL statements 24

COMMENT command 141
COMMIT operation

command processing 24
LUW determination by Database Services Utility 24
message example 47

COMMITCOUNT parameter
description 47
example 47
reference 168
RELOAD DBSPACE command 197
RELOAD TABLE command 200

committing
records while loading 46

committing changes
SET AUTOCOMMIT 24

components of the DB2 Server for VSE & VM
RDBMS, definitions x

concatenation
symbol for DB2 Server for VSE & VM 111

CONNECT
connecting to Database Services Utility 20
processing 20
user identification 20

connecting
another application server 21
database manager 21

connecting DB2 Server for VSE & VM 20
continuation of DBS Utility records 140
CONTINUED parameter

DATALOAD's INFILE subcommand 165
specifying input records 44

control commands, description 8, 139
control file

building task 13
SQL statements 147

control parameters
API (Application Programming Interface) 116
example 118
task 118

conventions
highlighting xiii
syntax diagram notation xiv

conversational monitor system (CMS)
files 8

conversion
data type 35, 170
DATAUNLOAD table 191

conversion (continued)
unloading 174
values on unloading 191

CREATE VIEW
WITH CHECK OPTION 151, 199

CS isolation level 219
cursor stability

isolation level 218
SET ISOLATION command 218

cursor stability (CS)
isolation level 219

D
data

embedded in control file 32
standard zoned 158

data conversion 35
data format support 35
data object

naming 110
data records in DBS Utility control files 140
data records in DBS Utility input control card

files 140
data type

DATE 155
DECIMAL 157, 179
FIXED 156, 178
FLOAT or DOUBLE PRECISION 157
FLOAT or REAL 157, 178
GRAPHIC 160
parameter 153
SMALLINT 156
TIME 155
TIMESTAMP 156
ZONED 157, 179

data unloading tasks 53
Data_Field_Id subcommand 174
Database Services Utility

reserved words 112
starting 3, 7

Database Services Utility command
definition 139

database, starter 106
DATALOAD and RELOAD locking

considerations 228
DATALOAD command

COMMITCOUNT processing 168
description 149
embedded data 32
file definition 36
procedures 31
separate input file 31

DATAUNLOAD command
conversion table 191
description 172

258 DBS Utility

DATAUNLOAD command (continued)
procedures 53
user-determined format 58

DATE
local 155, 177

date value in CHAR input data field 155
datetime

loading values 38
DBCS considerations

basic support 230
double-byte character data 230
extended support 231
rules 230

DBCS shift in/out delimiters 230
DBCS/EBCDIC mixed data 176
dbspace

unload 66, 68
debug mode processing 226
DEBUG storage dump analysis 226
debugging 223, 226
DECIMAL data type 157, 179
default

in syntax diagrams xvi
defining

files 36
definitions, terms x
DEPARTMENT sample table 235
determining

record count 47
DFI subcommand 174
displaying

comments 141
DOUBLE PRECISION data type 157, 178
double quotation marks

identifier 110
parameter value 140

double-byte character set (DBCS)
considerations

basic support 230
extended support 231

description 171
GRAPHIC data type 160

double-precision float 185
DRDA protocol

CONNECT statement 20, 21
DATALOAD command 27
DATAUNLOAD command 53
introduction 6
PACKAGE

reloading 87
preprocessing 19

dump, storage 225

E
embedded data

DATALOAD 32
ending 169
maximum length 166

embedded input data 165
EMP_ACT sample table 245
EMPLOYEE sample table 237
ENDDATA subcommand 169
ending embedded data 169
ENDLUW control parameter 117
error reference information

codes 224
types 223

errors
Database Services Utility error handling 223
debugging 223

exceptions, arithmetic 174
EXEC

examples 122
procedures 122

EXEC SQL
restriction 147

extended DBCS support 231

F
field defaults, output data 183
field procedure 51
FIELDPROC 51

See also field procedure
file definition

See also FILEDEF command
tasks 36

FILEDEF command
DATALOAD 36
DATAUNLOAD 63
RELOAD DBSPACE 81
RELOAD PACKAGE 92
RELOAD TABLE 81
syntax and notes 249
UNLOAD DBSPACE 68
UNLOAD PACKAGE 92
UNLOAD TABLE 68

files
CMS 8

FIXED data type 156, 178
FLOAT or DOUBLE PRECISION data type 157, 178
FLOAT or REAL data type 157, 178
floating point

unloaded data 193
format

&dbsu list output 99
default output data field 184
local date 155, 177

 Index 259

format (continued)
local time 156, 177

FORMAT control parameter 117
fragment of syntax

in syntax diagrams xvii
full qualification 111

G
GRAPHIC data type 160, 176

H
highlighting

text xiii
host variable

in syntax diagrams xv

I
identifier

blank 111
lowercase letter 110
reserved words 112
special character 111

identifying
self 20

improving performance 227
IN_TRAY sample table 247
index

invalid 142, 230
reorganization 142

INFILE's LIST parameter 166
INFILE parameter

RELOAD DBSPACE command 196
RELOAD TABLE command 200

INFILE subcommand 164
INFILE, RELOAD DBSPACE command 197
input control card file

building task 9
embedded data 32
errors 224
SQL statements 147

input data for DATALOAD 171
input record

limitations 153
skipping 49

input_record_id_clauses, example 152
INTABLE parameter

RELOAD TABLE command 200
interface conventions 119
introduction to Database Services Utility 3
invalid index 142, 230
invoking task

SQLDBSU 15

invoking the Database Services Utility from
application programs 112

ISOL control parameter 118
isolation level

setting 219
UNLOAD 66

J
job control example

multiple user mode 108, 109
single user mode 106, 108

job control example, invoking Database Services
Utility with single user mode 108

job control example, multiple user mode 109

K
keyword

in syntax diagrams xiv
spanning input records 140

knowledge prerequisites xiii

L
labels for columns 23
leading sign, zoned field 158
length of field

output 179
limitations on input records 149, 153
lines per page 219
LINEWIDTH control parameter 116
link-edit EXEC

example 124
list format Database Services Utility output 99
LIST parameter

description 166
unreadable DBCS data in message file 232

load-data
commands 149
committing while loading 46
into multiple tables 39
record-count determination 47
skipping bad records 48
spanning multiple records 44

loading
multiple table 39
multiple table rows 43
null values 37
procedures 37
record into several tables 42
user-specified format 32

loading commands
DATALOAD TABLE 149
program-load 206
RELOAD DBSPACE 194

260 DBS Utility

loading commands (continued)
RELOAD PACKAGE 206
RELOAD TABLE 198

local date 155, 177
local time 156, 177
lock escalation 227
locking

automatic override 227
catalog tables 227
considerations

DATALOAD and RELOAD 228
description 227
reducing lock escalation 228
SHARE lock 228
UNLOAD PACKAGE and RELOAD

PACKAGE 228
data 227
dbspace 227
escalation 227

log considerations 105
log space

requirements 47
logical unit of work (LUW)

determination 24
lowercase characters

identifiers 110

M
maximum number of DATALOAD commands per

INFILE 42
message file

errors 224
example 96
working with 17

message file display
embedded data 166

MESSAGES control parameter 116, 117
mixed data

DBCS and EBCDIC 176
mixed INFILE records to separate tables 40
multiple tables 42
multiple user job control 108
multiple user mode

running 7
multiple-row query 22

N
names and identifiers

command 110
NEW parameter

RELOAD DBSPACE command 195
RELOAD TABLE 199

nonrecoverable storage pool
DATALOAD 48

nonrecoverable storage pool (continued)
dbspace recovery 227
processing errors 223
RELOAD PURGE 79

NOREWIND parameter 145, 167
NOREWIND parameter, DATAUNLOAD 183
notification of records reloaded 80
null

DATALOAD 37
in omitted columns during DATALOAD 30
representation in unloaded data 191

null-clause
examples 181

null/current clause
example 163
TCI subcommand 161

numeric
representation in unloaded data 192
values in CHAR input data fields 154

NUMERIC data type 157
See also DECIMAL data type

O
object name

qualification 111
operator console messages 223
optional

default parameter
in syntax diagrams xvii

item
in syntax diagrams xv

keyword
in syntax diagrams xvii

order
input records 149

OUTFILE subcommand 181
output format 217
output record format example 187
overview of Database Services Utility 3

P
package

considerations 229
description 85
invalidation 66
performance considerations 229
portable package migration 87
preprocessing 83
RELOAD 87
tasks 83
UNLOAD 85

packed decimal
input data 157
output data 179

 Index 261

page width 219
PAGECTL control parameter 117
parameter values

spanning input records 140
parentheses

in syntax diagrams xv
percent free space 76
performance

considerations
package 229
reorganizing indexes 230

period
concatenation 111

PL/I, invoking the Database Services Utility 115
placement of SQL statements 139
precision

decimal input data 157
zoned data 157

procedure
DATALOAD 31
DATAUNLOAD 53
general loading 37
UNLOAD

unloading dbspaces 64
unloading tables 64

processing
debug mode 226
load-program commands 206

processing summary for the Database Services
Utility 147

program-load commands, reference 206
programming interfaces provided by the DBS

Utility vii
PROJ_ACT sample table 244
PROJECT sample table 241
PROMPTS control parameter 116
punctuation mark

in syntax diagrams xv
PURGE parameter

description 75
RELOAD DBSPACE command 75, 196
RELOAD TABLE command 199

Q
qualifying

object names 111
table name 111

query
multiple-row 22

quotation mark
double, in identifier 110
parameter value 140
single, in comment 142

R
READ FILE 134
REAL data type 157, 178
REBIND PACKAGE command

reference 213
RECFM V input 36
records reloaded 80
reducing

lock escalation 228
log space requirements 47

reference
command specification 139
Database Services Utility commands 139

reference material 226
Database Services Utility 105
DBCS considerations 230
debugging 226
double-byte character set 230
entering File Identifiers 252
FILEDEF command 249
ideographic character 230
improving performance 227
locking considerations 227
nonrecoverable storage pool 227
sample tables 233
specifying

CMS tape label processing 252
ddname 251
device type 252
options 252

storage dump, Database Services
Utility-initiated 225

storage pool, nonrecoverable 227
tables, example, DB2 Server for VSE & VM 233
usage considerations 229

referential integrity
RELOAD commands 74

register contents for dynamic startup 113
RELOAD command

description 81
errors 91
NEW parameter 195
PURGE parameter 76

RELOAD DBSPACE command
description 71, 194

RELOAD PACKAGE command
description 206
locking conditions 228
synonym 85
syntax diagram 206
task 87
TIMESTAMP 85
usage considerations 229

RELOAD TABLE command 198

262 DBS Utility

reload-data tasks
nonrecoverable storage pools affecting reloading 79
receiving reload-notification 80
updating statistics 82

remote unit of work
PACKAGE

description 85
unloading 85

unsupported commands
SET ISOLATION command 218
SET UPDATE STATISTICS command 221

REORGANIZE INDEX command 142
reorganizing indexes 142, 230
repeat symbol

in syntax diagrams xvi
repeatable read (RR)

isolation level 218
report

errors 224
example 95
working with 9

required item
in syntax diagrams xv

reserved words
DBSU 112
SQL xvii, 112
using as identifiers 112

RESTARTCOUNT option 169
RESTARTCOUNT parameter

RELOAD TABLE command 200
restarting

data load processing 49, 169
RESTARTTABLE parameter

RELOAD DBSPACE command 197
restriction

EXEC SQL 147
return code reference information

error codes 224
return codes 224

return codes from the Database Services
Utility 114

REWIND parameter 145, 167
REWIND parameter, DATAUNLOAD 183
RR isolation level 219
rules

naming data objects 110
running

Database Services Utility
multiple user mode 7
single user mode 7

S
sample table

ACTIVITY 243
CL_SCHED 248

sample table (continued)
DEPARTMENT 235
EMP_ACT 245
EMPLOYEE 237
IN_TRAY 247
PROJ_ACT 244
PROJECT 241

SCHEMA
command 144
input file 145

SELECT statement
arithmetic exception 147
command processing 22
multiple-row query 22
terminating 174
using with DATAUNLOAD 174

sequence numbers in input control card file
records 139

sequential file output 181
set-item commands 218

SET AUTOCOMMIT 214
SET ERRORMODE 214
SET FORMAT 217
SET ISOLATION 218
SET LINECOUNT, SET LINEWIDTH 219
SET UPDATE STATISTICS 221

set_null_clause
reference 180

setting
lines per page 219
output format 217
page width 219

SHARE lock 228
shift in/out delimiters, DBCS 230
single quotation mark

COMMENT command 142
option values 140

single record into several tables 42
single user mode

job control example 106
running 7
starting the Database Services Utility 106

single value queries 23
single-precision float 185
skipping bad records 48
SMALLINT data type 156
spanning records

control file records 165
input control card file records 165
multiple input records 44

special characters
identifiers 111

SQL
reserved words 112
statement processing 147

 Index 263

SQL comment
in DBS Utility commands 24

SQL statements
COMMIT 19
CONNECT 19
SELECT 19
using 19
within Database Services Utility 19

SQL system
user identification 20

SQLDBSU EXEC
description 110
invocation task 15
multiple user mode 133
single user mode 133
syntax diagram 132

SQLHX
canceling the DBS Utility 25

SQLQRY
querying the current status 25

starter database 106
starting

Database Services Utility 7
DATALOAD after an error 49

starting the Database Services Utility with single
user mode 106

statistics
generating 50
suppressing 221

statistics update tasks
receiving reload notification 80

storage dump analysis
DEBUG 226
guidelines 226

storage pool
nonrecoverable 227

strategy-of-reload tasks
nonrecoverable storage-pool effects 79

subcommands
DFI (Data Field Identification) 174
ENDDATA 169
INFILE 164
OUTFILE 181
TCI (Table Column Identification) 153

summary
Database Services Utility processing 147

suppressing statistics 221, 222
syntax diagram

COMMENT 141
DATALOAD 149
DATAUNLOAD 172
notation conventions xiv
REBIND PACKAGE 213
RELOAD DBSPACE 194
RELOAD PACKAGE 206
RELOAD TABLE 198

syntax diagram (continued)
REORGANIZE INDEX 142
SCHEMA 144
schema file 145
SET AUTOCOMMIT 214
SET ERRORMODE 215
SET FORMAT 217
SET ISOLATION 218
SET LINECOUNT 219
SET LINEWIDTH 219
SET UPDATE STATISTICS 221
SQLDBSU EXEC

multiple user mode 132
single user mode 133

UNLOAD DBSPACE 201
UNLOAD PACKAGE 211

system-determined format, DATAUNLOAD 54

T
table

name 111
target 28

TABLE unload 67, 68
tape

DASD data file errors 224
tape-file support 227
target table 28
tasks

command input 95
DB2 Server for VSE & VM preprocessing 83
FILEDEF

DATALOAD 36
DATAUNLOAD 63
RELOAD DBSPACE 81
RELOAD TABLE 81
UNLOAD DBSPACE 68
UNLOAD TABLE 68

including data in message file 96
including data in report 95
interpreting the output of the Database Services

Utility 95
loading data 27
message file output

error recovery 100
RELOAD PACKAGE command 87

file definition 92
reloading

data 71
package 83

report output 100
understanding 95

SQLDBSU EXEC 15
system output 95
understanding report output 95
UNLOAD PACKAGE command 85

file definition 92

264 DBS Utility

tasks (continued)
unloading

data 53
package 83, 85

TCI (Table Column Identification)
subcommand 153

terminal input mode 134
terminology x
text highlighting conventions xiii
TIME 155, 177
TIMESTAMP 156, 178
trailing sign, zoned field 159
truncation

DBCS data 176
during data unloading 193

type of error 223

U
uncommitted read (UR)

isolation level 219
unique constraints 66
UNLOAD data used as input 27
UNLOAD DBSPACE command

description 201
example 64
procedures 64
syntax diagram 201
task 66

UNLOAD PACKAGE command
locking conditions 228
performance considerations 229
reference 211
task 85

UNLOAD TABLE command
description 204
example 65
procedures 67
syntax diagram 204
task 67

unload-data tasks
using FILEDEFs

DATAUNLOAD 63
UNLOAD DBSPACE 68
UNLOAD TABLE 68

unloading
column to more than one output record 175
data

system-determined format 54
user-specified format 58

package 85
procedure

dbspace 64
table 64

program 85
view 62

unreadable data cause 232
UPDATE STATISTICS

REORGANIZE INDEX 230
statistics collection 82
usage considerations 229

updating statistics 82
UR isolation level 219
user-specified

data unloading 58
format, loading data 32
output record format example 189

using the Database Services Utility
application program 105
C program 114
COBOL program 114
PL/I program 115

V
value conversion on unloading 191
view

UNLOAD command 67
unloading 62

W
words, reserved

DBSU 112
SQL 112

write-to-operator (WTO) messages 223

Z
ZONED data type 157, 179
zoned input data

precision 157
scale 157

zoned output 179

 Index 265

Communicating Your Comments to IBM

DB2 Server for VSE & VM
Database Services Utility
Version 6 Release 1

Publication No. SC09-2663-00

If there is something you like—or dislike—about this book, please let us know. You can use
one of the methods listed below to send your comments to IBM. If you want a reply, include
your name, address, and telephone number. If you are communicating electronically, include
the book title, publication number, page number, or topic you are commenting on.

The comments you send should only pertain to the information in this book and its
presentation. To request additional publications or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM representative
or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the United
States, you can give it to the local IBM branch office or IBM representative for postage-paid
mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– United States and Canada: 416-448-6161

– Other countries: (+1)-416-448-6161

� If you prefer to send comments electronically, use the network ID listed below. Be sure
to include your entire network address if you wish a reply.

 – Internet: torrcf@ca.ibm.com
 – IBMLink: toribm(torrcf)
 – IBM/PROFS: torolab4(torrcf)
 – IBMMAIL: ibmmail(caibmwt9)

Readers' Comments — We'd Like to Hear from You

DB2 Server for VSE & VM
Database Services Utility
Version 6 Release 1

Publication No. SC09-2663-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC09-2663-00 IBM

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA M3C 1H7

Fold and Tape Please do not staple Fold and Tape

SC09-2663-00

IBM

File Number: S370/4300-50
Program Number: 5648-A70

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SCð9-2663-ðð

Spine information:

IBM DB2 Server for VSE & VM Database Services Utility Version 6 Release 1

