IBM DB2 Universal Database

SQL Getting Started

Version 6

SC09-2856-00

IBM DB2 Universal Database

SQL Getting Started

Version 6

SC09-2856-00

Before using this information and the product it supports, be sure to read the general information under

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Welcome
Related Documentatlon for ThIS Book
Highlighting Conventions.

Chapter 1. Relational Databases and SQL

Chapter 2. Organizing Data
Tables

Views

Schemas.

Data Types.

Chapter 3. Creating Tables and Views
Creating Tables
Inserting Data.
Changing Data
Deleting Data .
Creating Views
Using Views to Manlpulate Data

Chapter 4. Using SQL Statements to
Access Data S
Connecting to a Database
Investigating Errors .

Selecting Columns

Selecting Rows

Sorting Rows .

Removing Duplicate Rows

Order of Operations.

Using Expressions to Calculate Values
Naming Expressions

Selecting Data from More Than One Table

Using a Subquery
Using Functions .
Column Functions
Scalar Functions .
Grouping

Using a WHERE Clause Wlth a GROUP

BY Clause .

Using the HAVING Clause After the

GROUP BY Clause .

Chapter 5. Expressions and Subqueries
Scalar Fullselects .

© Copyright IBM Corp. 1993, 1998

1

a b~ Dbdoww

10
12
12
13
15

17
17
18
19
20
22
23
24

25
26
27
28
28
29
30

31

31

33

Casting Data Types .

Case Expressions.

Table Expressions .
Nested Table Expressmns
Common Table Expressions .

Correlation Names .

Correlated Subqueries .

Implementing a Correlated Subquery

Chapter 6. Using Operators and
Predicates in Queries . .
Combining Queries by Set Operators .
UNION Operator .o
EXCEPT Operator
INTERSECT operator
Predicates .
Using the IN Predlcate .
Using the BETWEEN Predicate .
Using the LIKE Predicate .
Using the EXISTS Predicate
Quantified Predicates

Chapter 7. Advanced SQL

Enforcing Business Rules with Constralnts

and Triggers
Keys . . .
Unique Constralnts .
Referential Integrity Constramts
Table Check Constraints
Triggers .

Joins .

Complex Querles .
ROLLUP and CUBE Querles
Recursive Queries

Chapter 8. Customizing and Enhancing
Data Manipulation
User-Defined Types .
User-Defined Functions
Large Objects (LOBs)
Manipulating Large Objects (LOBs)
Special Registers .
Introduction to Catalog Vlews

Selecting Rows from System Catalogs

33
34
35
36
36
38
39
41

45
45
45
46
47
48
48
48
49
49
50

51

51
51
52
52
53
54
58
62
63
63

65
65
66
67
67
68
69
69

Appendix A. Sample Tables
The Sample Database

Sample Files with BLOB and CLOB Data

To Install the Sample Databas
To Erase the Sample Database
CL_SCHED Table
DEPARTMENT Table
EMPLOYEE Table

EMP_ACT Table .
EMP_PHOTO Table .
EMP_RESUME Table
IN_TRAY Table

ORG Table .

PROJECT Table

SALES Table

STAFF Table

STAFFG Table.

Type .

iv

SQL Getting Started

71
72
72
72
73
73
73
75
77
78
78
79
79
80
81
82

83

Quintana Photo .
Quintana Resume
Nicholls Photo
Nicholls Resume .
Adamson Photo .
Adamson Resume
Walker Photo .
Walker Resume

Appendix B. Notices
Trademarks o
Trademarks of Other Companies

Index

Contacting IBM

83
84
85
85
87
87
88
88

91
92
92
95

99

Welcome

This book is intended for novice users of Structured Query Language (SQL)
and relational databases. It will:

* Discuss basic concepts of DB2 SQL.
« Explain how to perform database manipulation tasks.
* Demonstrate tasks through examples.

Before you try out any of the examples in this book, if you are the

administrator you should:

» Install and configure the server as outlined in the Quick Beginnings book for
your operating system. It is recommended that you do not put your own
data into the DB2 SAMPLE database.

* Create the DB2 administrator username following the instructions in the
Quick Beginnings book.

Otherwise, ensure that you have a valid user ID or username and the
appropriate authority and privileges.

This book’s focus is on providing a solid understanding of DB2 SQL.

Related Documentation for This Book

You may find the following publications useful:

Quick Beginnings Contains information required to install and use the database manager.

SQL Reference Contains SQL reference information.

Administration Contains information required to design, implement, and maintain a database

Guide to be accessed either locally or in a client/server environment.

Application Discusses the application development process and how to code, compile,

Development Guide and execute application programs that use embedded SQL to access the
database.

Highlighting Conventions

© Copyright 1BM Corp. 1993, 1998

The following conventions are used in this book.

Bold In examples, it indicates commands and keywords predefined by the system.

Italics Indicates one of the following:
¢ The introduction of a new term
« A reference to another source of information.

UPPERCASE Indicates one of the following:
* Commands and keywords predefined by the system
« Examples of specific data values or column names.

Vi SQL Getting Started

Chapter 1. Relational Databases and SQL

In a relational database, data is stored in tables. A table is a collection of rows
and columns. Structured Query Language(SQL) is used to retrieve or update data
by specifying columns, tables and various relationships between them.

SQL is a standardized language for defining and manipulating data in a
relational database. SQL statements are executed by a database manager. A
database manager is a computer program that manages the data.

A partitioned relational database is a relational database where the data is
managed across multiple partitions (also called nodes). In this book we will
focus our attention on single partition databases.

You can access the sample database and try out all the examples in this book

through interactive SQL by using an interface like the command line processor
(CLP) or the command centre.

© Copyright IBM Corp. 1993, 1998 1

2 SQL Getting Started

Chapter 2. Organizing Data

This chapter presents important conceptual descriptions of tables, views and
schemas. It’s a high level overview showing the connection between different
building blocks of a relational database. The last section provides a brief
discussion of some of the important and more commonly used data types.

Tables

Tables are logical structures made up of a defined number of columns and a
variable number of rows. A column is a set of values of the same data type.
The rows are not necessarily ordered within a table. To order the result set,
you have to explicitly specify ordering in the SQL statement which selects
data from the table. At the intersection of every column and row is a specific
data item called a value. In m ‘Sanders’ is an example of a value in the
table.

A base table is created with the CREATE TABLE statement and is used to hold
user data. A result table is a set of rows that the database manager selects or
generates from one or more base tables to satisfy a query.

m illustrates a section of a table. Columns and rows have been marked.

Row { 10 Sanders 20 M
20 Pernal 20
30 Marenghi 38
40 O'Brien 38
50 Hanes 15
\GQ\ Quigley 38
‘\“\

Figure 1. Visualization of a Table

© Copyright IBM Corp. 1993, 1998

Views

A view provides an alternate way of looking at the data in one or more tables.
It is a dynamic window on tables.

Views allow multiple users to see different presentations of the same data. For
example, several users may be accessing a table of data about employees. One
user may see data about some employees but not others, and another may see
some data about all employees but not their salaries. Each of these users is
operating on a view that is derived from the real table. Each view appears to
be a table and has a name of its own.

An advantage of using views is that you can use them to control access to
sensitive data. So, different people can have access to different columns or
rows of the data.

Schemas

A schema is a collection of named objects and provides a logical classification
of objects in the database. A schema may contain database objects such as
tables and views.

A schema itself is also considered to be an object in the database. It is created
implicitly when you create a table or a view. Or, you can create it explicitly
using the CREATE SCHEMA statement.

When you create an object, you can qualify its name with the name of the
particular schema. Named objects have two-part names, where the first part of
the name is the name of the schema to which the object is assigned. If you do
not specify a schema name, the object is assigned to the default schema whose
name is the authorization ID of the user executing the statement. For
interactive SQL, the method used to execute the examples in this book,
authorization ID is the userid specified with the CONNECT statement. For
example, if the name of the table is STAFF, and the userid specified in the
CONNECT statement is USERID, then the qualified name is USERID.STAFF.

See I‘Connecting to a Database” on page 17 for details on the CONNECT

statement.

Some schema names are reserved. For example, built-in functions are in the
SYSIBM schema while the preinstalled user-defined functions belong to the
SYSFUN schema. Refer to the SQL Reference for details on the CREATE
SCHEMA statement.

4 SQL Getting Started

Data Types

Data types define acceptable values for constants, columns, host variables,
functions, expressions and special registers. This section describes the data
types referred to in the examples. For a full list and complete description of
other data types refer to the SQL Reference.

Character String

A character string is a sequence of bytes. The length of the string is the
number of bytes in the sequence. If the length is zero, the value is
called the empty string.

Fixed-Length Character String

CHAR(X) is a fixed length string. The length attribute x must
be between 1 and 254, inclusive.

Varying-Length Character String

Varying-length character strings are of three types:
VARCHAR, LONG VARCHAR, and CLOB. VARCHAR(X)
types are varying-length strings, so a string of length 9 can be
inserted into VARCHAR(15) but will still have a string length

of 9. See [‘Large Qhjects (1 ORs)” on page &7 for details on
CLOB.

Graphic String
A graphic string is a sequence of double-byte character data.
Fixed-Length Graphic String

GRAPHIC(x) is a fixed length string. The length attribute x
must be between 1 and 127, inclusive.

Varying-Length Graphic String

Varying-length graphic strings are of three types:
VARGRAPHIC, LONG VARGRAPHIC, and DBCLOB. See

Large Objects (I OBs)” on page 67 for details on DBCLOB.

Binary String

A binary string is a sequence of bytes. It is used to hold nontraditional
data such as pictures. Binary Large OBject (BLOB) is a binary string.
See I‘Large Ohjects (1 OBs)” on page 67 for more information.

Numbers

All numbers have a sign and a precision. The precision is the number
of bits or digits excluding the sign.

Chapter 2. Organizing Data 5

SMALLINT
A SMALLINT (small integer) is a two byte integer with a
precision of 5 digits.

INTEGER
An INTEGER (large integer) is a four byte integer with a
precision of 10 digits.

REAL A REAL (single-precision floating-point number) is a 32 bit
approximation of a real number.

DOUBLE
A DOUBLE (double-precision floating-point number) is a 64 bit
approximation of a real number. DOUBLE is also referred to
as FLOAT.

DECIMAL(p,s)

A DECIMAL is a decimal number. The position of the decimal
point is determined by the precision (p) and the scale (s) of the
number. Precision is the total number of digits and has to be
less than 32. Scale is the number of digits in the fractional part
and is always smaller than or equal to the value of precision.
The decimal value defaults to precision of 5 and scale of 0 if
precision and scale are not specified.

Datetime Values

Datetime values are representations of dates, times, and timestamps.
Datetime values can be used in certain arithmetic and string
operations and are compatible with certain strings, however they are
neither strings nor numbers.:

Date A date is a three-part value (year, month, and day).

Time A time is a three-part value (hour, minute, and second)
designating a time of day using a 24-hour clock.

Timestamp
A timestamp is a seven-part value (year, month, day, hour,
minute, second, and microsecond) designating a date and
time.

The null value is a special value that is distinct from all non-null values. It
means the absence of any other value for that column in the row. The null
value exists for all data types.

1. In this book we refer to I1SO representations of datetime values.

6 SQL Getting Started

The following table highlights characteristics of data types used in the
examples. All numeric data types are defined in a certain range. The range of

numeric data types is also included in this table. You can use this table as a
quick reference for proper data type usage.

Data Type Type Characteristic Example or Range
CHAR(15) fixed- Maximum length of 254 'Sunny day
length character string
VARCHAR(15) varying- Maximum length of 4000 'Sunny day’
length character string
SMALLINT number 2 bytes in length range is -32768 to 32767
precision of 5 digits
INTEGER number 4 bytes in length range is -2147483648 to 2147483647
precision of 10 digits
REAL number single-precision range is
floating point -3.402E+38 to -1.175E-37
32 bit approximation or 1.175E-37 to -3.402E+38
or zero
DOUBLE number double-precision range is
floating point -1.79769E+308 to -2.225E-307
64 bit approximation or 2.225E-307 to 1.79769E+308
or zero
DECIMAL(5,2) number precision is 5 range is
scale is 2 -10**31+1 to 10%*31-1
DATE datetime three-part value 1991-10-27
TIME datetime three-part value 13.30.05
TIMESTAMP datetime seven-part value 1991-10-27-13.30.05.000000

See the data type compatibility table in the SQL Reference for more

information.

Chapter 2. Organizing Data

7

8 SQL Getting Started

Chapter 3. Creating Tables and Views

This chapter describes how you can create and manipulate tables and views
in DB2 Universal Database. The relationship of tables and views is explored
through diagrams and examples.

This chapter covers:

« Creating Tahled and [Creating Viewd
+ Inserting Datd

« Deleting Datd

. S - SOl l

Creating Tables

Create your own tables using the CREATE TABLE statement, specifying the
column names and types, as well as constraints. Constraints are discussed in

The following statement creates a table named PERS, which is similar to the
STAFF table but has an additional column for date of birth.

CREATE TABLE PERS

(ID SMALLINT NOT NULL,
NAME VARCHAR(9) ,
DEPT SMALLINT WITH DEFAULT 10,
JOB CHAR(5),
YEARS SMALLINT,
SALARY DECIMAL(7,2),
COMM DECIMAL(7,2),
BIRTH_DATE DATE)

This statement creates a table with no data in it. The next section describes
how to insert data into a new table.

As shown in the example, you specify both a name and a data type for each

column. Data types are discussed in I‘Data Types” on page 8. NOT NULL is

optional and may be specified to indicate that null values are not allowed in a
column. Default values are also optional.

There are many other options you can specify in a CREATE TABLE statement,
such as unique constraints or referential constraints. For more information about
all of the options, see the CREATE TABLE statement in the SQL Reference.

© Copyright IBM Corp. 1993, 1998 9

Inserting Data

When you create a new table, it does not contain any data. To enter new rows
into a table, you use the INSERT statement. This statement has two general
forms:

* With one form, you use a VALUES clause to specify values for the columns
of one or more rows. The next three examples insert data into tables using
this general form.

* With the other form, rather than specifying VALUES, you specify a fullselect
to identify columns from rows contained in other tables and/or views.

Fullselect is a select statement used in INSERT or CREATE VIEW statements,
or following a predicate. A fullselect that is enclosed in parenthesis is
commonly referred to as a subquery.

Depending on the default options that you have chosen when creating your
table, for every row you insert, you either supply a value for each column or
accept a default value. The default values for the various data types are
discussed in the SQL Reference.

The following statement uses a VALUES clause to insert one row of data into
the PERS table:

INSERT INTO PERS
VALUES (12, 'Harris', 20, 'Sales', 5, 18000, 1000, '1950-1-1'")

The following statement uses a VALUES clause to insert three rows into the
PERS table where only the IDs, the names, and the jobs are known. If a
column is defined as NOT NULL and it does not have a default value, you
must specify a value for it. The NOT NULL clause on a column definition in a
CREATE TABLE statement can be extended with the words WITH DEFAULT.
If a column is defined as NOT NULL WITH DEFAULT or a constant default
such as WITH DEFAULT 10, and you do not specify the column in the
column list, the default value is inserted into that column in the inserted row.
For example, in the CREATE TABLE statement, a default value was only
specified for DEPT column and it was defined to be 10. Hence, the
department number (DEPT) is set to 10 and all other columns to null.

INSERT INTO PERS (NAME, JOB, ID)
VALUES ('Swagerman', 'Prgmr', 500),
('Limoges', 'Prgmr', 510),
(‘Li', "Prgmr', 520)

The following statement returns the result of the insertions:

10 sQL Getting Started

SELECT *

FROM PERS

1D NAME DEPT JOB YEARS SALARY COMM BIRTH_DATE
12 Harris 20 Sales 5 18000.00 1000.00 01/01/1950
500 Swagerman 10 Prgmr - - - -
510 Limoges 10 Prgmr - - - -
520 Li 10 Prgmr - - - -

Note that, in this case, values were not specified for every column. NULL
values are displayed as a —. For this to work, the list of column names has to
correspond both in order and in data type to the values provided in the
VALUES clause. If the list of column names is omitted (as it was in the first
example), the list of data values after VALUES must be in the same order as
the columns in the table into which they are inserted, and the number of
values must equal the number of columns in the table.

Each value must be compatible with the data type of the column into which it
is inserted. If a column is defined as nullable and a value for that column is
not specified, then the value NULL is given to that column in the inserted
row.

The following example inserts the null value into YEARS, COMM and
BIRTH_DATE since values have not been specified for those columns in the
row.

INSERT INTO PERS (ID, NAME, JOB, DEPT, SALARY)
VALUES (410, 'Perna', 'Sales', 20, 20000)

The second form of the INSERT statement is very handy for populating a
table with values from rows in another table. As mentioned, rather than
specifying VALUES, you specify a fullselect to identify columns from rows
contained in other tables and/or views.

The following example selects data from the STAFF table for members of
department 38 and inserts it into the PERS table:

INSERT INTO PERS (ID, NAME, DEPT, JOB, YEARS, SALARY)
SELECT ID, NAME, DEPT, JOB, YEARS, SALARY
FROM STAFF
WHERE DEPT = 38

After this insertion, the following SELECT statement produces a result equal
to the fullselect in the INSERT statement.

SELECT ID, NAME, DEPT, JOB, YEARS, SALARY
FROM PERS
WHERE DEPT = 38

Chapter 3. Creating Tables and Views 11

The result is:

1D NAME DEPT JOB YEARS SALARY
30 Marenghi 38 Mgr 5 17506.75
40 0'Brien 38 Sales 6 18006.00
60 Quigley 38 Sales - 16808.30
120 Naughton 38 Clerk - 12954.75
180 Abrahams 38 Clerk 3 12009.75

Changing Data

Use the UPDATE statement to change the data in a table. With this statement,
you can change the value of one or more columns in each row that satisfies
the search condition of the WHERE clause.

The following example updates information on the employee whose ID is 410:

UPDATE PERS
SET JOB='Prgmr', SALARY = SALARY + 300
WHERE ID = 410

The SET clause specifies the columns to be updated and provides the values.

The WHERE clause is optional and it specifies the rows to be updated. If the
WHERE clause is omitted, the database manager updates each row in the
table or view with the values you supply.

In this example, first the table (PERS) is named, then a condition is specified
for row that is to be updated. The information for employee number 410, has
changed: the employee’s job title changed to Prgmr, and the employee’s salary
increased by $300.

You can change data in more than one row by including a WHERE clause that
applies to two or more rows. The following example increases the salary of
every salesperson by 15%:

UPDATE PERS

SET SALARY = SALARY =* 1.15
WHERE JOB = 'Sales'

Deleting Data

Use the DELETE statement to delete rows of data from a table based on the
search condition specified in the WHERE clause. The following example
deletes the row in which the employee ID is 120:

12 sQL Getting Started

DELETE FROM PERS
WHERE ID = 120

The WHERE clause is optional and it specifies the rows to be deleted. If the
WHERE clause is omitted, the database manager deletes all rows in the table
or view.

You can use the DELETE statement to delete more than one row. The
following example deletes all rows in which the employee DEPT is 20:

DELETE FROM PERS
WHERE DEPT = 20

When you delete a row, you remove the entire row, not specific column values
from it.

To delete the definition of a table as well as its contents, issue the DROP
TABLE statement as described in the SQL Reference.

Creating Views

As discussed in EViews” an page 4, a view provides an alternate way of
looking at data in one or more tables. Through creating views, you can restrict

the information you want various users to look at. The following diagram
shows the relationship between views and tables.

Chapter 3. Creating Tables and Views 13

14

Database

Table_A Table_B
Column
r— e,
RDW{ ABC
QRS
FCP
MLI
CJP
DJS
KMP
View_A v v View_AB
CREATE VIEW VIEW A CREATE VIEW VIEW_AB
AS SELECT AC1, AC2 AS SELECT AC3, BC2
FROM TABLE_A FROM TABLE_A, TABLE_B
WHERE. .. WHERE. ..

Figure 2. Relationship Between Tables and Views

In Eigure 4, View_A restricts access to only columns AC1 and AC2 of
TABLE_A. View_AB allows access to column AC3 in TABLE_A and BC2 in
TABLE_B. By creating View_A, you restrict the access users can have to
TABLE_A, and by creating VIEW_AB you restrict access to certain columns as
well as create an alternate way of looking at the data.

The following statement creates a view of the non-managers in department 20
in the STAFF table, where salary and commission do not show through from
the base table.

CREATE VIEW STAFF_ONLY
AS SELECT ID, NAME, DEPT, JOB, YEARS
FROM STAFF
WHERE JOB <> 'Mgr' AND DEPT=20

After creating the view, the following statement displays the contents of the
view:
SELECT =
FROM STAFF_ONLY

SQL Getting Started

This statement produces the following result:

1D NAME DEPT JOB YEARS
20 Pernal 20 Sales 8
80 James 20 Clerk -
190 Sneider 20 Clerk 8

Earlier, we joined the STAFF and ORG tables to produce a result that listed
the name of each department and the name of the manager of that
department. The following statement creates a view that can be repetitively
used for the same purpose:

CREATE VIEW DEPARTMENT_MGRS

AS SELECT NAME, DEPTNAME
FROM STAFF, ORG

WHERE MANAGER = ID

You can put additional constraints on inserts and updates of a table through a
view by using the WITH CHECK OPTION clause when you create a view.
This clause causes the database manager to validate that any updates of or
insertions into the view conform to the view definition, and to reject those
that do not. If you omit this clause, inserts and updates are not checked
against the view definition. For details on how WITH CHECK OPTION works
refer to the CREATE VIEW statement in the SQL Reference.

Using Views to Manipulate Data

Like the SELECT statement, INSERT, DELETE, and UPDATE statements can
be applied to a view just as though it were a real table. The statements
manipulate the data in the underlying base table(s). So when you access the
view again, it is evaluated using the most current base table(s). If you do not
use the WITH CHECK OPTION, data that you modify using a view may not
appear in the repeated accesses of the view, as the data may no longer fit the
original view definition.

The following is an example of an update applied to the view
FIXED_INCOME:

View Definition for FIXED_INCOME:

CREATE VIEW FIXED INCOME (LNAME, DEPART, JOBTITLE, NEWSALARY)
AS SELECT NAME, DEPT, JOB, SALARY
FROM PERS
WHERE JOB <> 'Sales' WITH CHECK OPTION

UPDATE FIXED_INCOME
SET NEWSALARY = 19000
WHERE LNAME = 'Li'

Chapter 3. Creating Tables and Views 15

16

The update in the previous view is equivalent to (except for the check option)
to updating the base table PERS:

UPDATE PERS
SET SALARY SALARY * 1.10
WHERE NAME 'Lt
AND JOB <> 'Sales'

Note that because the view is created using the WITH CHECK OPTION for

the constraint JOB <> 'Sales' in CREATE VIEW FIXED_INCOME, the

following update will not be allowed when Limoges moves over to sales:
UPDATE FIXED_INCOME

SET JOBTITLE = 'Sales'
WHERE LNAME = 'Limoges'

Columns defined by expressions such as SALARY + COMM or SALARY *
1.25 cannot be updated. If a view is defined containing one or more such
columns, the owner does not receive the UPDATE privilege on these columns.
INSERT statements are not permitted on views containing such columns, but
DELETE statements are.

Consider a PERS table with none of the columns defined as NOT NULL. You
could insert rows into the PERS table through the FIXED_INCOME view even
though it does not contain the ID, YEARS, COMM or BIRTHDATE from
underlying table PERS. Columns not visible through the view are set to NULL
or the default value, as appropriate.

However, the PERS table does have column ID defined as NOT NULL. If you
try to insert a row through the FIXED_INCOME view, the system attempts to
insert NULL values into all the PERS columns that are “invisible” through the
view. Because the ID column is not included in the view and does not permit
null values, the system does not permit the insertion through the view.

For rules and restrictions on modifying views refer to the CREATE VIEW
statement in the SQL Reference.

SQL Getting Started

Chapter 4. Using SQL Statements to Access Data

This section describes how to connect to a database, and retrieve data using
SQL statements.

In the examples, we present the statement to be entered followed in most
cases by the results that will be displayed when that statement is issued
against the sample database. Note that although we show the statements in
uppercase, you can enter them in any mixture of upper and lowercase
characters (except where they are enclosed in either single quotes (*) or quotes

)

The SAMPLE database, included with DB2 Universal Database, consists of
several tables, as listed in Appendix A. Create the database.

Depending on how your database has been set up, it may be necessary to
qualify the table names used, by prefixing them with the schema name and a
period. For examples in this book, the default schema is assumed to be
USERID. So you could refer to the table ORG as USERID.ORG. Ask your
administrator whether or not this is necessary.

This chapter covers:

+ Connecting to a Datahasd

+ Belecting Columnd and Selecting Rowsd

+ Borting Rowsd and Remaving Duplicate Rowsd
« Qrder of Operationd

Connecting to a Database

You need to connect to a database before you can use SQL statements to
guery or manipulate it. The CONNECT statement associates a database
connection with a user name.

© Copyright IBM Corp. 1993, 1998 17

For example, to connect to the SAMPLE database, type the following
command in the DB2 command line processor :

CONNECT TO SAMPLE USER USERID USING PASSWORD

(Be sure to choose values for USER and USING that are valid on the server
system.)

In this example, USER is USERID and USING is PASSWORD.

The following message tells you that you have made a successful connection:
Database Connection Information

DB2/6000 6.0.0
USERID
SAMPLE

Database product
SQL authorization ID
Local database alias

When a connection is set through the CONNECT statement an explicit
connection is established. In an implicit connection the default server has been
set. In this case you can use CONNECT or you can just start issuing
statements and a connection will automatically be established.

Once you are connected, you can start manipulating the database. For details
on implicit and explicit connections refer to the CONNECT statement in the
SQL Reference.

Investigating Errors

18

Whenever you make a mistake typing in any of the examples or if an error
occurs during execution of an SQL statement, the database manager returns
an error message. The error message consists of a message identifier, a brief
explanation, and an SQLSTATE.

SQLSTATES are error codes common to the DB2 family of products.
SQLSTATEs conform to the 1ISO/ANSI SQL92 standard.

For example, if the username or password had been incorrect in the
CONNECT statement, the database manager would have returned a message
identifier of SQL1403N and an SQLSTATE of 08004. The message is as follows:

SQL1403N The username and/or password supplied is
incorrect. SQLSTATE=08004

You can get more information about the error message by typing a question
mark (?) then the message identifier or the SQLSTATE:

SQL Getting Started

? SQL1403N
OR

? SQL1403
OR

? 08004

Note that the second last line in the description of the error SQL1403N states
that the SQLCODE is -1403. SQLCODE is a produce specific error code.
Message identifiers ending with N (Notification) or C (Critical) represent an
error and have negative SQLCODEs. Message identifiers ending with W
(Warning) represent a warning and have positive SQLCODEs.

Selecting Columns

Use the SELECT statement to select specific columns from a table. In the
statement specify a list of column names separated by commas. This list is
referred to as a select list.

The following statement selects department names (DEPTNAME) and
department numbers (DEPTNUMB) from the ORG table of the SAMPLE
database:

SELECT DEPTNAME, DEPTNUMB
FROM ORG

The above statement produces the following result:

DEPTNAME DEPTNUMB
Head Office 10
New England 15
Mid Atlantic 20
South Atlantic 38
Great Lakes 42
PTains 51
Pacific 66
Mountain 84

By using an asterisk (*) you can select all the columns from the table. The next
example lists all columns and rows from the ORG table:

SELECT *
FROM ORG

This statement produces the following result:
DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

10 Head Office 160 Corporate New York

Chapter 4. Using SQL Statements to Access Data 19

15 New England 50 Eastern Boston

20 Mid Atlantic 10 Eastern Washington

38 South Atlantic 30 Eastern Atlanta

42 Great Lakes 100 Midwest Chicago

51 Plains 140 Midwest Dallas

66 Pacific 270 Western San Francisco
84 Mountain 290 Western Denver

Selecting Rows

20

To select specific rows from a table, after the SELECT statement use the
WHERE clause to specify the condition or conditions that a row must meet to
be selected. A criterion for selecting rows from a table is a search condition.

A search condition consists of one or more predicates. A predicate specifies a
condition that is true or false (or unknown) about a row. You can specify
conditions in the WHERE clause by using the following basic predicates:

Predicate Function

X=y x is equal to y

X <>y X is not equal to y

X<y x is less than y

X >y X is greater than y

X <=y x is less than or equal to y

X >=vy X is greater than or equal to y
IS NULLZ1S NOT NULL tests for null values

When you construct search conditions, be careful to perform arithmetic
operations only on numeric data types, and to make comparisons only among
compatible data types. For example, you can’t compare strings to numbers.

If you are selecting rows based on a character value, that value must be
enclosed in single quotation marks (for example, WHERE JOB = 'Clerk') and
each character value must be typed exactly as it exists in the database. If the
data value is lowercase in the database and you type it as uppercase, N0 rows
will be selected. If you are selecting rows based on a numeric value, that
value must not be enclosed in quotation marks (for example, WHERE DEPT =
20).

The following example selects only the rows for department 20 from the
STAFF table:

SELECT DEPT, NAME, JOB
FROM STAFF
WHERE DEPT = 20

This statement produces the following result:

SQL Getting Started

DEPT NAME JOB

20 Sanders Mgr

20 Pernal Sales
20 James Clerk
20 Sneider Clerk

The next example uses AND to specify more than one condition. You can
specify as many conditions as you want. The example selects clerks in
department 20 from the STAFF table:

SELECT DEPT, NAME, JOB
FROM STAFF
WHERE JOB = 'Clerk’
AND DEPT = 20

This statement produces the following result:
DEPT NAME JOB

20 James Clerk
20 Sneider Clerk

A null value occurs where no value is entered and the column does not
support a default value. It can also occur where the value is specifically set to
null. It can occur only in columns that are defined to support null values.
Defining and supporting null values in tables are discussed in

Use the predicate IS NULL, and IS NOT NULL to check for a null value.

The following statement lists employees whose commission is not known:

SELECT ID, NAME
FROM STAFF
WHERE COMM IS NULL

This statement produces the following result:
1D NAME

10 Sanders
30 Marenghi
50 Hanes
100 Plotz
140 Fraye
160 MoTlinare
210 Lu
240 Daniels
260 Jones
270 Lea
290 Quill

Chapter 4. Using SQL Statements to Access Data 21

The value zero is not the same as the null value. The following statement
selects everyone in a table whose commission is zero:
SELECT ID, NAME

FROM STAFF
WHERE COMM = 0

Because there are no values of zero in the COMM column in the sample table,
the result set returned is empty.

The next example selects all rows where the value of YEARS in the STAFF
table is greater than 9:

SELECT NAME, SALARY, YEARS
FROM STAFF
WHERE YEARS > 9

This statement produces the following result:

NAME SALARY YEARS

Hanes 20659.80 10
Lu 20010.00 10
Jones 21234.00 12
Quill 19818.00 10

Graham 21000.00 13

Sorting Rows

You may want the information returned in a specific order. Use the ORDER
BY clause to sort the information by the values in one or more columns.

The following statement displays the employees in department 84 ordered by
number of years employed:
SELECT NAME, JOB, YEARS
FROM STAFF

WHERE DEPT = 84
ORDER BY YEARS

This statement produces the following result:

NAME JOB YEARS
Davis Sales 5
Gafney Clerk 5
Edwards Sales 7
Quill Mgr 10

22 SQL Getting Started

Specify ORDER BY as the last clause in the entire SELECT statement.
Columns named in this clause can be expressions or any column of the table.
The column names in the ORDER BY clause do not have to be specified in the
select list.

You can order rows in ascending or descending order by explicitly specifying
either ASC or DESC within the ORDER BY clause. If neither is specified, the
rows are automatically ordered in ascending sequence. The following
statement displays the employees in department 84 in descending order by
number of years employed:
SELECT NAME, JOB, YEARS
FROM STAFF

WHERE DEPT = 84
ORDER BY YEARS DESC

This statement produces the following result:

NAME JOB YEARS

Quill Mgr 10
Edwards Sales 7
Davis Sales 5
Gafney Clerk 5

You can order rows by character values as well as numeric values. The
following statement displays the employees in department 84 in alphabetical
order by name:
SELECT NAME, JOB, YEARS
FROM STAFF

WHERE DEPT = 84
ORDER BY NAME

This statement produces the following result:

NAME JOB YEARS

Davis Sales 5
Edwards Sales 7
Gafney Clerk 5
QuiTl Mgr 10

Removing Duplicate Rows

When using the SELECT statement, you may not want duplicate information
to be returned. For example, STAFF has a DEPT column in which several
department numbers are listed more than once, and a JOB column in which
several job descriptions are listed more than once.

Chapter 4. Using SQL Statements to Access Data 23

To eliminate duplicate rows, use the DISTINCT option on the SELECT clause.
For example, if you insert DISTINCT into the statement, each job within a
department is listed only once:
SELECT DISTINCT DEPT, JOB
FROM STAFF

WHERE DEPT < 30
ORDER BY DEPT, JOB

This statement produces the following result:
DEPT JOB

DISTINCT has eliminated all rows that contain duplicate data in the set of
columns specified in the SELECT statement.

Order of Operations

It is important to take into accout the order of operations. Output of one
clause is the input to the next one as stated in the list below. An example
where order of operations is a consideration is presented in

Also, note that this explanation allows for a more intuitive way of thinking
about queries. It is not necessarily the way the operations are performed
internally. The sequence of operations is as follows:

1. FROM clause

WHERE clause

GROUP BY clause

HAVING clause

SELECT clause

a s~ wDn

Using Expressions to Calculate Values
An expression is a calculation or function that you include in a statement. The

following statement calculates what the salaries for each employee in
department 38 would be if each received a $500 bonus:

24 SQL Getting Started

SELECT DEPT, NAME, SALARY + 500

FROM STAFF
WHERE DEPT = 38
ORDER BY 3
This result is:

DEPT NAME 3
38 Abrahams 12509.75
38 Naughton 13454.75
38 Quigley 17308.30
38 Marenghi 18006.75
38 0'Brien 18506.00

Note that the column name for the third column is a number. This is a system
generated number, since SALARY+500 does not specify a column name. Later
on this number is used in the ORDER BY clause to refer to the third column.

ENaming Expressions talks about how to give meaningful names to

expressions.

You can form arithmetic expressions using the basic arithmetic operators for
addition (+), subtraction (=), multiplication (*) and division (/).

The operators can operate on values from several different types of operands,
some of which are:

* Column names (as in RATE * HOURS)

» Constant values (as in RATE * 1.07)

+ Scalar functions (as in LENGTH(NAME) + 1).

Naming Expressions

The optional AS clause lets you assign a meaningful name to an expression,
which makes referring back to the expression easier. You can use an AS clause
to provide a name for any item in the select list.

The following statement displays all employees whose salary plus commission
is less than $13, 000. The expression SALARY + COMM is named PAY:

SELECT NAME, JOB, SALARY + COMM AS PAY
FROM STAFF
WHERE (SALARY + COMM) < 13000
ORDER BY PAY

This statement produces the following result:

Chapter 4. Using SQL Statements to Access Data 25

Yamaguchi Clerk 10581.50
Burke Clerk 11043.50
Scoutten Clerk 11592.80
Abrahams Clerk 12246.25
Kermisch Clerk 12368.60
Ngan Clerk 12714.80

By using the AS clause, you can refer to a particular column name rather than
the system generated number in the ORDER BY clause. In this example we
compare (SALARY + COMM) with 13000 in the WHERE clause, instead of
using the name PAY. This is a result of the order of operations. The WHERE
clause is evaluated before (SALARY + COMM) is given the name PAY. Hence,
PAY cannot be used in the predicate.

Selecting Data from More Than One Table

26

You can use the SELECT statement to produce reports that contain
information from two or more tables. This is commonly referred to as a join.
For example, you can join data from the STAFF and ORG tables to form a
new table. To join two tables, specify the columns you want to be displayed in
the SELECT clause, the table names in a FROM clause and the search
condition in the WHERE clause. The WHERE clause is optional.

The next example associates the name of each manager with a department
name. You need to select information from two tables since the employee
information (STAFF table) and the departmental information (ORG table) are
stored separately. The following query selects the NAME and DEPTNAME
columns for STAFF and ORG tables, respectively. The search condition
narrows down the selection to rows where the values in the MANAGER
column are the same as the values in the ID column:

SELECT DEPTNAME, NAME

FROM ORG, STAFF
WHERE MANAGER = ID

Eigure 3 on page 27 demonstrates how columns in two different tables are
compared. The boxed values indicate a match where the search condition has
been satisfied.

SQL Getting Started

ORG

10

15

20

38

42

51

DEPTNUMB

DEPTNAME |
Head Office 160 Sanders
New England 20 Pernal
Mid Atlantic Marenghi
South Atlantic 40 O'Brien
Great Lakes 100 Hanes
Plains 140 60 Quigley
270

20

20

38

38

15

38

15

MANAGER=ID ?

Figure 3. Selecting from STAFF and ORG tables

The SELECT statement produces the following result:

The result lists the name of each manager and his or her department.

DEPTNAME

Mid Atlantic
South Atlantic
New England
Great Lakes
PTains

Head Office
Pacific
Mountain

NAME
Sanders
Marenghi
Hanes
Plotz
Fraye
Molinare
Lea
Quill

Using a Subquery

When you write a SELECT statement, you can place another SELECT
statement within the WHERE clause. Each additional SELECT starts a

subquery.

A subquery can, in turn, include another subquery whose value is substituted
into its WHERE clause. In addition, a WHERE clause can include subqueries
in more than one search condition. The subquery can refer to tables and
columns that are different than the ones used in the main query.

The following statement selects the division and location from the ORG table

of the employee whose ID in the STAFF table is 280:

Chapter 4. Using SQL Statements to Access Data

SELECT DIVISION, LOCATION
FROM ORG
WHERE DEPTNUMB = (SELECT DEPT
FROM STAFF
WHERE ID = 280)

When processing this statement, DB2 first determines the result of the
subquery. The result is 66, since the employee with ID 280 is in department
66. Then the final result is taken from the row of the ORG table whose
DEPTNUMB column has the value of 66. The final result is:

DIVISION LOCATION

Western San Francisco

When you use a subquery, the database manager evaluates it and substitutes
the resulting value directly into the WHERE clause.

Subqueries are further discussed t‘Carrelated Subqueries” an page 39,

Using Functions

28

This section gives you a brief introduction to functions that will be used in
the examples throughout the book. A database function is a relationship
between a set of input data values and a result value.

Functions can be either built-in or user-defined. DB2 Universal Database
delivers many built-in and preinstalled user-defined functions. You can find
the built-in functions in the SYSIBM schema and the preinstalled user-defined
functions in the SYSFUN schema. SYSIBM and SYSFUN are reserved schemas.

The built-in and preinstalled user-defined functions will never satisfy all
requirements. So application developers may need to create their own suite of
functions specific to their applications. User-defined functions make this
possible, expanding the scope of DB2 Universal Database to include, for
example, customized business or scientific functions. This is further discussed

in the User-Defined Functions” on page 66.

Column Functions

Column functions operate on a set of values in a column to derive a single
result value. The following are just a few examples of column functions. For a
full list refer to the SQL Reference.

AVG Returns the sum of the values in a set divided by the number
of values in that set

SQL Getting Started

COUNT Returns the number of rows or values in a set of rows or

values
MAX Returns the largest value in a set of values
MIN Returns the smallest value in a set of values

The following statement selects the maximum salary from the STAFF table:

SELECT MAX(SALARY)
FROM STAFF

This statement returns the value 22959.20 from the STAFF sample table.

The next example selects the names and salaries of employees whose income
is more than the average income yet have been with the company less than
the average number of years.
SELECT NAME, SALARY
FROM STAFF

WHERE SALARY > (SELECT AVG(SALARY) FROM STAFF)
AND YEARS < (SELECT AVG(YEARS) FROM STAFF)

This statement produces the following result:
NAME SALARY

Marenghi 17506.75
Daniels 19260.25
Gonzales 16858.20

In the above example, in the WHERE clause, the column function is stated in
a subquery as opposed to being directly implemented (WHERE SALARY >
AVG(SALARY)). Column functions cannot be stated in the WHERE clause.
This is due to the order of operations. The WHERE clause can be thought of
as being evaluated before the SELECT clause. Consequently, when the
WHERE clause is being evaluated, the column function does not have access
to the set of values. This set of values are selected at a later time by the
SELECT clause.

You can specify DISTINCT as part of the argument of a column function to
eliminate duplicate values before a function is applied. Thus,
COUNT(DISTINCT WORKDEPT) computes the number of different
departments.

Scalar Functions
A scalar function performs some operation on a value to return another value.

The following are just a few examples of scalar functions provided by DB2
Universal Database.

ABS Return the absolute value of a number

Chapter 4. Using SQL Statements to Access Data 29

HEX Returns the hexadecimal representation of a value

LENGTH Returns the number of bytes in an argument (for a graphic
string it returns the number of double-byte characters.)

YEAR Extract the year portion of a datetime value

For a detailed list and description of scalar functions refer to the SQL
Reference.

The following statement returns the department names from the ORG table
together with the length of each of these names:

SELECT DEPTNAME, LENGTH(DEPTNAME)
FROM ORG

This statement produces the following result:

DEPTNAME 2

Head Office 11
New England 11
Mid Atlantic 12
South Atlantic 14
Great Lakes 11
PTains 6
Pacific 7
Mountain 8

Note that since the AS clause was not used to give a meaningful name to
LENGTH(DEPTNAME), a system generated number appears in the second
column.

Grouping

DB2 Universal Database has the capability of analyzing data based on
particular columns of a table.

You can group rows according to the group defined in a GROUP BY clause. In
its simplest form, a group consists of columns known as grouping columns. The
column names in the SELECT clause must be either a grouping column or a
column function. Column functions return a result for each group defined by
the GROUP BY clause. The following example produces a result that lists the
maximum salary for each department number:

SELECT DEPT, MAX(SALARY) AS MAXIMUM

FROM STAFF
GROUP BY DEPT

This statement produces the following result:

30 SQL Getting Started

DEPT MAXIMUM

Note that the MAX(SALARY) is calculated for each department, a group
defined by the GROUP BY clause, not the entire company.

Using a WHERE Clause with a GROUP BY Clause

A grouping query can have a standard WHERE clause that eliminates
non-qualifying rows before the groups are formed and the column functions
are computed. You have to specify the WHERE clause before the GROUP BY
clause. For example:
SELECT WORKDEPT, EDLEVEL, MAX(SALARY) AS MAXIMUM
FROM EMPLOYEE
WHERE HIREDATE > '1979-01-01'

GROUP BY WORKDEPT, EDLEVEL
ORDER BY WORKDEPT, EDLEVEL

The result is:
WORKDEPT EDLEVEL MAXIMUM

D11 17 18270.00
D21 15 27380.00
D21 16 36170.00
D21 17 28760.00
E11 12 15340.00
E21 14 26150.00

Note that every column name specified in the SELECT statement is also
mentioned in the GROUP BY clause. Not mentioning the column names in
both places will give you an error. The GROUP BY clause returns a row for
each unique combination of WORKDEPT and EDLEVEL.

Using the HAVING Clause After the GROUP BY Clause

You can apply a qualifying condition to groups so that the system returns a
result only for the groups that satisfy the condition. To do this, include a
HAVING clause after the GROUP BY clause. A HAVING clause can contain
one or more predicates connected by ANDs and ORs. Each predicate
compares a property of the group (such as AVG(SALARY)) with either:

* Another property of the group

Chapter 4. Using SQL Statements to Access Data 31

For example:

HAVING AVG(SALARY) > 2 % MIN(SALARY)
» A constant

For example:

HAVING AVG(SALARY) > 20000

For example, the following query finds the maximum and minumum salary of
departments with more than 4 employees:
SELECT WORKDEPT, MAX(SALARY) AS MAXIMUM, MIN(SALARY) AS MINIMUM
FROM EMPLOYEE
GROUP BY WORKDEPT

HAVING COUNT(x) > 4
ORDER BY WORKDEPT

This statement produces the following result:
WORKDEPT MAXIMUM MINIMUM

D11 32250.00 18270.00
D21 36170.00 17250.00
Ell 29750.00 15340.00

It is possible (though unusual) for a query to have a HAVING clause but no
GROUP BY clause. In this case, DB2 treats the entire table as one group.
Because the table is treated as a single group, you can have at most one result
row. If the HAVING condition is true for the table as a whole, the selected
result (which must consist entirely of column functions) is returned; otherwise
no rows are returned.

32 SQL Getting Started

Chapter 5. Expressions and Subqueries

DB2 provides flexibility in expressing queries. This chapter describes a few of
the important methods available in expressing more complex queries.

This chapter gives a comprehensive description of the following:
« Bealar Eullselectd
+ Correlation Named

Scalar Fullselects

A scalar fullselect is a fullselect within parentheses that returns one row
containing only one column value. Scalar fullselects are useful for retrieving
data values from the database for use in an expression.

» The following example lists names of employees who have a salary greater
than the average salary of all employees:

SELECT LASTNAME, FIRSTNME
FROM EMPLOYEE
WHERE SALARY > (SELECT AVG(SALARY)
FROM EMPLOYEE)

* This example finds the average salary of the employees in two different
tables:

SELECT AVG(SALARY) AS "Average Employee",
(SELECT AVG(SALARY) AS "Average Staff" FROM STAFF)
FROM EMPLOYEE

Casting Data Types

There may be times when you need to convert values from one data type to
another, for example, from a numeric value to a character string. To convert a
value to a different type, use the CAST specification.

Another possible use for a cast specification is to truncate a very long

character string. In the EMP_RESUME table the column RESUME is
CLOB(5K). You may want to display only the first 370 characters containing

© Copyright IBM Corp. 1993, 1998 33

the personal information of the applicant. To display the first 370 characters of
the ASCII format of the resumes from the table EMP_RESUME, issue the
following query:

SELECT EMPNO, CAST(RESUME AS VARCHAR(370))
FROM EMP_RESUME
WHERE RESUME_FORMAT = 'ascii'

A warning is issued informing you that values longer than 370 characters are
truncated.

You can cast NULL values to other data types that are more convenient for

manipulation in a query. ECommon Tahle Expressions” on page 36 is an

example of using casting for this purpose.

Case Expressions

34

You can use CASE expressions in SQL statements to easily manipulate the
data representation of a table. This provides a powerful conditional expression
capability that is similar in concept to CASE statements in some programming
languages.

* To change department numbers from the DEPTNAME column in ORG table
to meaningful words, enter the following query:

SELECT DEPTNAME,

CASE DEPTNUMB
WHEN 10 THEN 'Marketing'
WHEN 15 THEN 'Research'
WHEN 20 THEN 'Development'
WHEN 38 THEN 'Accounting'
ELSE 'Sales'

END AS FUNCTION

FROM ORG

The result is:
DEPTNAME FUNCTION

Head Office Marketing
New England Research
Mid AtTantic Development
South Atlantic Accounting
Great Lakes Sales

Plains Sales
Pacific Sales
Mountain Sales

SQL Getting Started

* You can use CASE expressions to protect against exceptions such as
division by zero. In the following example, if the employee has no bonus or
commission payment, the statement condition prevents an error by
avoiding the division operation:

SELECT LASTNAME, WORKDEPT FROM EMPLOYEE
WHERE (CASE
WHEN BONUS+COMM=0 THEN NULL
ELSE SALARY/(BONUS+COMM)
END) > 10
* You can use a CASE expression to produce a ratio based on the sum of a
subset of values from one column to the sum of all the values from that
column in a single statement. A statement using a CASE expression requires
only a single pass through the data. Without a CASE expression, at least
two passes are required to perform the same calculation.

The following example computes the ratio of the sum of the salaries of
department 20 to the total of all salaries using a CASE expression:
SELECT CAST(CAST (SUM(CASE
WHEN DEPT = 20 THEN SALARY
ELSE 0
END) AS DECIMAL(7,2))/
SUM(SALARY) AS DECIMAL (3,2))
FROM STAFF

The result is 0.11. Note that the CAST functions ensure that the precision of
the result is preserved.

* You can use a CASE expression to evaluate a simple function instead of
calling the function itself, which would require additional overhead. For
example:

CASE
WHEN X<0 THEN -1
WHEN X=0 THEN 0

WHEN X>0 THEN 1
END

This expression has the same result as the SIGN user-defined function in
the SYSFUN schema.

Table Expressions

If you just need the definition of a view for a single query, you can use a table
expression.

Table expressions are temporary and are only valid for the life of the SQL

statement; they cannot be shared, but they allow more flexibility than views.
View definitions can be shared by any authorized user.

Chapter 5. Expressions and Subqueries 35

36

This section describes how to use common table expressions and nested table
expressions in queries.

Nested Table Expressions

A nested table expression is a temporary view where the definition is nested
(defined directly) in the FROM clause of the main query.

The following query uses a nested table expression to find the average total
pay, education level and year of hire, for those with an education level greater
than 16:

SELECT EDLEVEL, HIREYEAR, DECIMAL(AVG(TOTAL_PAY), 7,2)
FROM (SELECT YEAR(HIREDATE) AS HIREYEAR, EDLEVEL,
SALARY+BONUS+COMM AS TOTAL_PAY
FROM EMPLOYEE
WHERE EDLEVEL > 16) AS PAY_LEVEL
GROUP BY EDLEVEL, HIREYEAR
ORDER BY EDLEVEL, HIREYEAR

The result is as follows:
EDLEVEL HIREYEAR 3

17 1967 28850.00
17 1973 23547.00
17 1977 24430.00
17 1979 25896.50
18 1965 57970.00
18 1968 32827.00
18 1973 45350.00
18 1976 31294.00
19 1958 51120.00
20 1975 42110.00

This query uses a nested table expression to first extract the year of hire from
the HIREDATE column so that it can subsequently be used in the GROUP BY
clause. You may not want to create this as a view, because you intend to
perform similar queries using different values for EDLEVEL.

The scalar built-in function DECIMAL is used in this example. DECIMAL
returns a decimal representation of a number or a character string. For more
details on functions refer to the SQL Reference.

Common Table Expressions

A common table expression is a named result table that is defined using the
WITH keyword prior to the beginning of a fullselect. It is a table expression
that you create to use throughout a complex query. Define and name it at the
start of the query using a WITH clause. Repeated references to a common

SQL Getting Started

table expression use the same result set. By comparison, if you used nested
table expressions or views, the result set would be regenerated each time,
with possibly different results.

The following example lists all the people in the company who have an
education level greater than 16, who make less pay on average than those
people who were hired at the same time and who have the same education.
The parts of the query are described in further detail following the query.

WITH
PAYLEVEL AS
(SELECT EMPNO, YEAR(HIREDATE) AS HIREYEAR, EDLEVEL,
SALARY+BONUS+COMM AS TOTAL_PAY
FROM EMPLOYEE
WHERE EDLEVEL > 16),
PAYBYED (EDUC_LEVEL, YEAR_OF HIRE, AVG_TOTAL_PAY) AS
(SELECT EDLEVEL, HIREYEAR, AVG(TOTAL_PAY)
FROM PAYLEVEL
GROUP BY EDLEVEL, HIREYEAR)

SELECT EMPNO, EDLEVEL, YEAR OF HIRE, TOTAL_PAY, DECIMAL(AVG_TOTAL_PAY,7,2)
FROM PAYLEVEL, PAYBYED
WHERE EDLEVEL=EDUC_LEVEL
AND HIREYEAR = YEAR_OF_HIRE
AND TOTAL_PAY < AVG_TOTAL_PAY

This is a common table expression with the name PAYLEVEL. This
result table includes the year that a person was hired, the total pay for
that employee, and his or her education level. Only rows for
employees with an education level greater than 16 are included.

2] This is a common table expression with the name PAYBYED (or PAY
by education). It uses the PAYLEVEL table that was created in the
previous common table expression to determine the education level,
hire year, and average pay of employees within each education level,
hired in the same year. The columns returned by this table have been
given different names (EDUC_LEVEL, for example) from the column
names used in the select list. This produces a result set named
PAYBYED that is the same as the result produced in the nested table
expression example.

Finally, we get to the actual query that produces the desired result.
The two tables (PAYLEVEL, PAYBYED) are joined to determine those
individuals who have total pay that is less than the average pay for
people hired in the same year. Note that PAYBYED is based on

Chapter 5. Expressions and Subqueries 37

PAYLEVEL. So PAYLEVEL is effectively accessed twice in the
complete statement. Both times the same set of rows are used in
evaluating the query.

The final result is as follows:
EMPNO EDLEVEL YEAR _OF HIRE TOTAL_PAY 5

000210 17 1979 20132.00 25896.50

Correlation Names

38

A correlation name is an identifier used for distinguishing multiple uses of an
object. A correlation name can be defined in the FROM clause of a query and
in the first clause of an UPDATE or DELETE statement. It can be associated
with a table, view, or a nested table expression but only within the context
that it is defined.

For example, the clause FROM STAFF S, ORG O establishes S and O as the
correlation names for STAFF and ORG, respectively.
SELECT NAME, DEPTNAME

FROM STAFF S, ORG O
WHERE O0.MANAGER = S.ID

Once you have defined a correlation name, you can only use the correlation
name to qualify the object. For example, in the example above had we stated
ORG.MANAGER=STAFF.ID the statement would have failed.

You can also use a correlation name as a shorter name for referring to a
database object. Typing just S is easier than typing STAFF.

By using correlation names, you can make duplicates of an object. This is
useful when you need to compare entries of a table with itself. In the
following example, table EMPLOYEE is compared with another instance of
itself to find the managers of all employees. It displays the name of the
employees who are not designers, nhame of their manager and the department
number.
SELECT E2.FIRSTNME, E2.LASTNAME,
E2.J0B, E1.FIRSTNME, E1.LASTNAME, E1.WORKDEPT
FROM EMPLOYEE E1, EMPLOYEE E2
WHERE E1.WORKDEPT = E2.WORKDEPT
AND E1.JOB = 'MANAGER'

AND E2.J0B <> 'MANAGER'
AND E2.J0B <> 'DESIGNER'

This statement produces the following result:

SQL Getting Started

FIRSTNME LASTNAME JoB FIRSTNME LASTNAME WORKDEPT

DOLORES QUINTANA ANALYST SALLY KWAN co1
HEATHER NICHOLLS ANALYST SALLY KWAN co1
JAMES JEFFERSON CLERK EVA PULASKI D21
MARIA PEREZ CLERK EVA PULASKI D21
SYBIL JOHNSON CLERK EVA PULASKI D21
DANIEL SMITH CLERK EVA PULASKI D21
SALVATORE MARINO CLERK EVA PULASKI D21
ETHEL SCHNEIDER OPERATOR EILEEN HENDERSON E1l
MAUDE SETRIGHT OPERATOR EILEEN HENDERSON Ell
PHILIP SMITH OPERATOR EILEEN HENDERSON E11
JOHN PARKER OPERATOR EILEEN HENDERSON Ell
RAMLAL MEHTA FIELDREP THEODORE SPENSER E21
JASON GOUNOT FIELDREP THEODORE SPENSER E21
WING LEE FIELDREP THEODORE SPENSER E21

Correlated Subqueries

A subquery that is allowed to refer to any of the previously mentioned tables
is known as a correlated subquery. We also say that the subquery has a
correlated reference to a table in the main query.

The following example is an uncorrelated subquery that lists the employee
number and name of employees in department 'A00’ with a salary greater
than the average salary of the department:

SELECT EMPNO, LASTNAME
FROM EMPLOYEE
WHERE WORKDEPT = 'AQO0'
AND SALARY > (SELECT AVG(SALARY)
FROM EMPLOYEE
WHERE WORKDEPT = 'A0O")

If you want to know the average salary for every department, the subquery
needs to be evaluated once for every department. You can do this by using
the correlation capability of SQL, which permits you to write a subquery that
is executed repeatedly, once for each row of the table identified in the
outer-level query. This type of correlated subquery is used to compute some
property of each row of the outer-level table that is needed to evaluate a
predicate in the subquery.

This example shows all the employees whose salary is higher than the
average salary of their department:

SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT
FROM EMPLOYEE E1

Chapter 5. Expressions and Subqueries 39

40

WHERE SALARY > (SELECT AVG(SALARY)

FROM EMPLOYEE E2

WHERE E2.WORKDEPT = E1.WORKDEPT)
ORDER BY E1.WORKDEPT

In this query, the subquery is evaluated once for every department. The result
is:

EMPNO LASTNAME WORKDEPT
000010 HAAS A0O
000110 LUCCHESSI A0O
000030 KWAN col
000060 STERN D11
000220 LUTZ D11
000200 BROWN D11
000170 YOSHIMURA D11
000150 ADAMSON D11
000070 PULASKI D21
000270 PEREZ D21
000240 MARINO D21
000090 HENDERSON E11
000280 SCHNEIDER E11
000100 SPENSER E21
000340 GOUNOT E21
000330 LEE E21

To write a query with a correlated subquery, use the same basic format of an
ordinary outer query with a subquery. However, in the FROM clause of the
outer query, just after the table name, place a correlation name. The subquery
may then contain column references qualified by the correlation name. For
example, if E1 is a correlation name, then E1L. WORKDEPT means the
WORKDEPT value of the current row of the table in the outer query. The
subquery is (conceptually) reevaluated for each row of the table in the outer

query.

By using a correlated subquery, you let the system do the work for you and
reduce the amount of code you need to write within your application.

Unqualified correlated references are allowed in DB2. For example, the table
EMPLOYEE has a column named LASTNAME and table SALES has a column
named SALES PERSON, but no column named LASTNAME.

SELECT LASTNAME, FIRSTNME, COMM
FROM EMPLOYEE
WHERE 3 > (SELECT AVG(SALES)
FROM SALES
WHERE LASTNAME = SALES_PERSON)

In this example, the system checks the innermost FROM clause for a
LASTNAME column. Not finding one, it then checks the next innermost

SQL Getting Started

FROM clause (which in this case is the outer FROM clause). While not always
necessary, qualifying correlated references is recommended to improve the
readability of the query and to ensure that you are getting the result that you
intend.

Implementing a Correlated Subquery

When would you want to use a correlated subquery? The use of a column
function is sometimes a clue.

Let’s say you want to list the employees whose level of education is higher
than the average for their department.

First, you must determine the select-list items. The problem says “List the
employees”. This implies that the EMPNO from the EMPLOYEE table should
be sufficient to uniquely identify employees. The problem also states the level
of education (EDLEVEL) and the employees’ departments (WORKDEPT) as
conditions. While the problem does not explicitly ask for columns to be
displayed, including them in the select-list will help illustrate the solution. A
part of the query can now be constructed:

SELECT LASTNAME, WORKDEPT, EDLEVEL
FROM EMPLOYEE

Next, a search condition (WHERE clause) is needed. The problem statement
says, “...whose level of education is higher than the average for that
employee’s department”. This means that for every employee in the table, the
average education level for that employee’s department must be computed.
This statement fits the description of a correlated subquery. Some property
(average level of education of the current employee’s department) is being
computed for each row. A correlation name is needed for the EMPLOYEE
table:

SELECT LASTNAME, WORKDEPT, EDLEVEL
FROM EMPLOYEE E1

The subquery needed is simple. It computes the average level of education for
each department. The complete SQL statement is:

SELECT LASTNAME, WORKDEPT, EDLEVEL
FROM EMPLOYEE E1
WHERE EDLEVEL > (SELECT AVG(EDLEVEL)
FROM EMPLOYEE E2
WHERE E2.WORKDEPT = E1.WORKDEPT)

The result is:
LASTNAME WORKDEPT EDLEVEL
HAAS A0O 18
KWAN co1 20

Chapter 5. Expressions and Subqueries 41

42

PULASKI D21 16

HENDERSON E11 16
LUCCHESSI A0O 19
PTANKA D11 17
SCOUTTEN D11 17
JONES D11 17
LUTZ D11 18
MARINO D21 17
JOHNSON D21 16
SCHNEIDER E11 17
MEHTA E21 16
GOUNOT E21 16

Suppose that instead of listing the employee’s department number, you list
the department name. The information you need (DEPTNAME) is in a
separate table (DEPARTMENT). The outer-level query that defines a
correlation variable can also be a join query (see L i

[Chan Qne Tahle” on page 24 for details).

When you use joins in an outer-level query, list the tables to be joined in the
FROM clause, and place the correlation name next to any of these table
names.

To modify the query to list the department’s name instead of its number,
replace WORKDEPT by DEPTNAME in the select-list. The FROM clause must
now also include the DEPARTMENT table, and the WHERE clause must
express the appropriate join condition.

This is the modified query:

SELECT LASTNAME, DEPTNAME, EDLEVEL
FROM EMPLOYEE E1, DEPARTMENT
WHERE E1.WORKDEPT = DEPARTMENT.DEPTNO
AND EDLEVEL > (SELECT AVG(EDLEVEL)
FROM EMPLOYEE E2
WHERE E2.WORKDEPT = E1.WORKDEPT)

The above examples show that the correlation name used in a subquery must
be defined in the FROM clause of some query that contains the correlated
subquery. However, this containment may involve several levels of nesting.

Suppose that some departments have only a few employees and therefore
their average education level may be misleading. You might decide that in
order for the average level of education to be a meaningful number to
compare an employee against, there must be at least five employees in a
department. So now we have to list the employees whose level of education is
higher than the average for that employee’s department, and only consider
departments with at least five employees.

SQL Getting Started

The problem implies another subquery because, for each employee in the
outer-level query, the total number of employees in that person’s department
must be counted:

SELECT COUNT(*)
FROM EMPLOYEE E3
WHERE E3.WORKDEPT = E1.WORKDEPT

Only if the count is greater than or equal to 5 is an average to be computed:

SELECT AVG(EDLEVEL)
FROM EMPLOYEE E2
WHERE E2.WORKDEPT = E1.WORKDEPT
AND 5 <= (SELECT COUNT ()
FROM EMPLOYEE E3
WHERE E3.WORKDEPT = E1.WORKDEPT)

Finally, only those employees whose level of education is greater than the
average for that department are included:

SELECT LASTNAME, DEPTNAME, EDLEVEL
FROM EMPLOYEE E1, DEPARTMENT
WHERE E1.WORKDEPT = DEPARTMENT.DEPTNO
AND EDLEVEL >
(SELECT AVG (EDLEVEL)
FROM EMPLOYEE E2
WHERE E2.WORKDEPT = E1.WORKDEPT
AND 5 <=
(SELECT COUNT (*)
FROM EMPLOYEE E3
WHERE E3.WORKDEPT = E1.WORKDEPT))

This statement produces the following result:

LASTNAME DEPTNAME EDLEVEL
PTANKA MANUFACTURING SYSTEMS 17
LUTZ MANUFACTURING SYSTEMS 18
JONES MANUFACTURING SYSTEMS 17
SCOUTTEN MANUFACTURING SYSTEMS 17
PULASKI ADMINISTRATION SYSTEMS 16
JOHNSON ADMINISTRATION SYSTEMS 16
MARINO ADMINISTRATION SYSTEMS 17
HENDERSON OPERATIONS 16
SCHNEIDER OPERATIONS 17

Chapter 5. Expressions and Subqueries 43

44 SQL Getting Started

Chapter 6. Using Operators and Predicates in Queries

In DB2 Universal Database you can combine queries with different set
operators and construct complex conditional statements with quantified
predicates.

This chapter explains how to:
* Combine different tables with UNION, EXCEPT and INTERSECT set
operators

* Construct complex conditions for queries with quantified predicates. Basic
predicates were discussed briefly in L i 2

Combining Queries by Set Operators

The UNION, EXCEPT, and INTERSECT set operators enable you to combine
two or more outer-level queries into a single query. Each of the queries
connected by these set operators is executed and the individual results are
combined. Depending on the operator, a different result is produced.

UNION Operator

The UNION operator derives a result table by combining two other result
tables (for example TABLE1 and TABLE?2) and eliminating any duplicate rows
in the tables. When ALL is used with UNION (that is, UNION ALL),
duplicate rows are not eliminated. In either case, each row of the derived
table is a row from either TABLE1 or TABLE2.

In the following example of the UNION operator, the query returns the names
of all persons that have a salary greater than $21, 000, or that have managerial
responsibilities and have been working for less than 8 years:

SELECT ID, NAME FROM STAFF WHERE SALARY > 21000
UNION

SELECT ID, NAME FROM STAFF WHERE JOB='Mgr' AND YEARS < 8
ORDER BY ID

The result of the individual queries are as follows:

© Copyright IBM Corp. 1993, 1998 45

46

140 Fraye
160 Molinare
260 Jones

10 Sanders
30 Marenghi
100 Plotz
140 Fraye
160 Molinare
240 Daniels

The database manager combines the results of both queries, eliminates the
duplicates, and returns the final result in ascending order.

10 Sanders
30 Marenghi
100 Plotz
140 Fraye
160 Molinare
240 Daniels
260 Jones

If you use the ORDER BY clause in a query with any set operator, you must
write it after the last query. The system applies the ordering to the combined
answer set. If the column name in the two tables is different, the combined
result table does not have names for the corresponding columns. Instead, the
columns are numbered in the order in which they appear. So, if you want the
result table to be ordered, you have to specify the column number in the
ORDER BY clause.

EXCEPT Operator

The EXCEPT operator derives a result table by including all rows that are in
TABLEL but not in TABLE2, and eliminating all duplicate rows. When you
use ALL with EXCEPT (EXCEPT ALL), the duplicate rows are not eliminated.

In the following example of the EXCEPT operator, the query returns the
names of all persons that earn over $21, 000 but do not have the position of a
manager and have been there 8 years or more.

SQL Getting Started

SELECT ID, NAME FROM STAFF WHERE SALARY > 21000
EXCEPT
SELECT ID, NAME FROM STAFF WHERE JOB='Mgr' AND YEARS < 8

The result of the individual queries is listed in the section on UNION. The
above statement produces the following result:

ID NAME

260 Jones
INTERSECT operator

The INTERSECT operator derives a result table by including only rows that
exist in both TABLE1 and TABLE2 and eliminating all duplicate rows. When
you use ALL with INTERSECT (INTERSECT ALL), the duplicate rows are not
eliminated.

In the following example of the INTERSECT operator, the query returns the
name and ID of employees that earn more than $21, 000, have managerial
responsibilites and have been working for fewer than 8 years.

SELECT ID, NAME FROM STAFF WHERE SALARY > 21000

INTERSECT
SELECT ID, NAME FROM STAFF WHERE JOB='Mgr' AND YEARS < 8

The result of the individual queries is listed in the section on UNION. The
outcome of the two queries with INTERSECT is:

ID NAME

140 Fraye
160 MoTlinare

When using the UNION, EXCEPT, and INTERSECT operators, keep the
following in mind:

» All corresponding items in the select-lists of the queries for the operators
must be compatible. See the data type compatibility table in the SQL
Reference for more information.

* An ORDER BY clause, if used, must be placed after the last query with a
set operator. The column name can only be used in the ORDER BY clause if
the column has the same name for the corresponding items in the select list
of the queries for every operator.

* Operations between columns that have the same data type and the same
length produce a column with that type and length. See rules for result data
types in the SQL Reference for the results of the UNION, EXCEPT, and
INTERSECT set operators.

Chapter 6. Using Operators and Predicates in Queries 47

Predicates

Predicates let you construct conditions so that only those rows that meet these
conditions are processed. Basic predicates are discussed in [‘Selecting Rows’]

. IN, BETWEEN, LIKE, EXISTS and quantified predicates are
discussed in this section.

Using the IN Predicate

Use the IN predicate to compare a value with several other values. For
example:
SELECT NAME

FROM STAFF
WHERE DEPT IN (20, 15)

This example is equivalent to:

SELECT NAME
FROM STAFF
WHERE DEPT = 20 OR DEPT = 15

You can use the IN and NOT IN operators when a subquery returns a set of
values. For example, the following query lists the surnames of employees
responsible for projects MA2100 and OP2012:
SELECT LASTNAME
FROM EMPLOYEE
WHERE EMPNO IN
(SELECT RESPEMP
FROM PROJECT
WHERE PROJNO = 'MA2100'
OR PROJNO = '0P2012')

The subquery is evaluated once, and the resulting list is substituted directly
into the outer-level query. For example, the subquery above selects employee
numbers 10 and 330, the outer-level query is evaluated as if its WHERE clause
were:

WHERE EMPNO IN (10, 330)

The list of values returned by the subquery can contain zero, one, or more
values.

Using the BETWEEN Predicate
Use the BETWEEN predicate to compare a value with a range of values. The

range is inclusive and it considers the two expressions in the BETWEEN
predicate for the comparisons.

48 sQL Getting Started

The following example finds the names of employees who earn between
$10, 000 and $20, 000:
SELECT LASTNAME

FROM EMPLOYEE
WHERE SALARY BETWEEN 10000 AND 20000

This is equivalent to:

SELECT LASTNAME
FROM EMPLOYEE
WHERE SALARY >= 10000 AND SALARY <= 20000

The next example finds the names of employees who earn less than $10, 000
or more than $20, 000:
SELECT LASTNAME

FROM EMPLOYEE
WHERE SALARY NOT BETWEEN 10000 AND 20000

Using the LIKE Predicate

Use the LIKE predicate to search for strings that have certain patterns. The
pattern is specified through percentage signs and underscores.

* The underscore character () represents any single character.
* The percent sign (%) represents a string of zero or more characters.
* Any other character represents itself.

The following example selects employee names that are seven letters long
starting with the letter ’S’:
SELECT NAME

FROM STAFF
WHERE NAME LIKE 'S

The next example selects names of employees that do not start with the letter
!Sl:
SELECT NAME

FROM STAFF
WHERE NAME NOT LIKE 'S%'

Using the EXISTS Predicate

You can use a subquery to test for the existence of a row that satisfies some
condition. In this case, the subquery is linked to the outer-level query by the
predicate EXISTS or NOT EXISTS.

When you link a subquery to an outer query by an EXISTS predicate, the
subquery does not return a value. Rather, the EXISTS predicate is true if the
answer set of the subquery contains one or more rows, and false if it contains
Nno rows.

Chapter 6. Using Operators and Predicates in Queries 49

The EXISTS predicate is often used with correlated subqueries. The example
below lists the departments that currently have no entries in the PROJECT
table:
SELECT DEPTNO, DEPTNAME
FROM DEPARTMENT X
WHERE NOT EXISTS
(SELECT =
FROM PROJECT

WHERE DEPTNO = X.DEPTNO)
ORDER BY DEPTNO

You may connect the EXISTS and NOT EXISTS predicates to other predicates
by using AND and OR in the WHERE clause of the outer-level query.

Quantified Predicates

A quantified predicate compares a value with a collection of values. If a
fullselect returns more than one value, you must modify the comparison
operators in your predicate by attaching the suffix ALL, ANY, or SOME. These
suffixes determine how the set of values returned is to be treated in the
outer-level predicate. The > comparison operator is used as an example (the
remarks below apply to the other operators as well):

expression > ALL (fullselect)
The predicate is true if the expression is greater than each individual
value returned by the fullselect. If the fullselect returns no values, the
predicate is true. The result is false if the specified relationship is false for
at least one value. Note that the <>ALL quantified predicate is equivalent
to the NOT IN predicate.

The following example uses a subquery and a > ALL comparison to find
the name and profession of all employees who earn more than all
managers:
SELECT LASTNAME, JOB
FROM EMPLOYEE
WHERE SALARY > ALL
(SELECT SALARY
FROM EMPLOYEE
WHERE JOB='MANAGER')

expression > ANY (fullselect)
The predicate is true if the expression is greater than at least one of the
values returned by the fullselect. If the fullselect returns no values, the
predicate is false. Note that the =ANY quantified operator is equivalent to
the IN predicate.

expression > SOME (fullselect)
SOME is synonymous with ANY.

For more information on predicates and operators, refer to the SQL Reference.

50 sQL Getting Started

Chapter 7. Advanced SQL

This chapter covers several features of DB2 Universal Database that allow you
to design queries more effectively, while customizing them to your needs.
Topics in this chapter are based upon your thorough understanding of the
material up to this point.

This chapter covers:

. Enfori - PRV - T |
+ loind

« RQLLUP and CUBRE Queried and Recursive Queried

Enforcing Business Rules with Constraints and Triggers

In the business world we quite often need to make sure certain rules are
always enforced. For instance, an employee working on a project has to be on
the payroll list. Or, we want certain events to happen systematically. For
instance, if a salesperson makes a sale, their commission should be increased.

DB2 Universal Database offers a useful suite of methods to this end. Unique
constraints is the rule that forbids duplicate values in one or more columns of
a table. Referential integerity constraints ensure the data consistency across the
specified tables. Table check constraints are conditions that are defined as part of
the table definition that restrict the values used in one or more columns.
Triggers allow you to define a set of actions that are executed, or triggered, by
a delete, insert, or update operation on a specified table. Triggers can be used
for writing to other tables, for modifying of input values, and for the issuing
alert messages.

The first section provides a conceptual overview of keys. Later, referential
integerity, constraints, and triggers are explored through examples and
diagrams.

Keys

A key is a set of columns that you can use to identify or access a particular
row or rows.

A key composed of more than one column is called a composite key. In a table

with a composite key, the ordering of the columns within the composite key is
not constrained by their ordering within the table.

© Copyright IBM Corp. 1993, 1998 51

Unique Keys

A unique key is defined to have no two of its values the same. The columns of
a unique key cannot contain null values. The constraint is enforced by the
database manager during the execution of INSERT and UPDATE statements.
A table can have mulitple unique keys. Unique keys are optional and can be
defined in CREATE TABLE or ALTER TABLE statements.

Primary Keys

A primary key is a unique key that is a part of the definition of the table. A
table cannot have more than one primary key, and the columns of a primary
key cannot contain null values. Primary keys are optional and can be defined
in CREATE TABLE or ALTER TABLE statements.

Foreign Keys

A foreign key is specified in the definition of a referential constraint. A table
can have zero or more foreign keys. The value of the composite foreign key is
null if any component of the value is null. Foreign keys are optional and can
be defined in CREATE TABLE statements or ALTER TABLE statements.

Unique Constraints

A unique constraint ensures that values of a key are unique within a table.
Unique constraints are optional, and you can define them using the CREATE
TABLE or ALTER TABLE statements by specifying the PRIMARY KEY or
UNIQUE clause. For example, you can define a unique constraint on the
employee number column of a table to ensure that every employee has a
unique number.

Referential Integrity Constraints

By defining unique constraints and foreign keys you can define relationships
between tables and consequently enforce certain business rules. The
combination of unique key and foreign key constraints is commonly referred
to as referential integrity constraints. A unique constraint referenced by a
foreign key is called a parent key. A foreign key refers to or is related to a
specific parent key. For example, a rule might state that every employee
(EMPLOYEE table) must belong to an existing department (DEPARTMENT
table). So, we define department number in the EMPLOYEE table as foreign
key, and department number in the DEPARTMENT table as the primary key.
The following diagram provides a visual description of referential integrity
constraints.

52 sSQL Getting Started

Employee Table

Foreign Key
——
Dept.
No. Employee Name
001 John Doe
002 Barb Smith Invalid Record
N 7
N 4
. N 4
003 Fred Vickers 027 Jand.Soe
sf_d 4—/ 7 L= N
4 ’ N N
Department Table

Dept.

No. Department Name

001 Sales

002 Training

003 Communications

015 Program Development

——
Primary Key

Figure 4. Foreign and Primary Constraints Define Relationships and Protect Data

Table Check Constraints

Table check constraints specify conditions that are evaluated for each row of a
table. You can specify check constraints on individual columns. You can add

them by using the CREATE or ALTER TABLE statements.

The following statement creates a table with the following constraints:
* The values of the department number must lie in the range 10 to 100
* The job of an employee can only be one of the following: “Sales”, “Mgr”, or

“Clerk”

* Every employee who was hired prior to 1986 must make more than

$40, 500

Chapter 7. Advanced SQL

53

CREATE TABLE EMP

(1D SMALLINT NOT NULL,

NAME VARCHAR(9) ,

DEPT SMALLINT CHECK (DEPT BETWEEN 10 AND 100),

JOB CHAR(5) CHECK (JOB IN ('Sales', 'Mgr', 'Clerk')),
HIREDATE DATE,

SALARY DECIMAL(7,2),

COMM DECIMAL(7,2),

PRIMARY KEY (ID),
CONSTRAINT YEARSAL CHECK (YEAR(HIREDATE) >= 1986 OR SALARY > 40500))

A constraint is violated only if the condition evaluates to false. For example, if
DEPT is NULL for an inserted row, the insert proceeds without error, even
though values for DEPT should be between 10 and 100 as defined in the
constraint.

The following statement adds a constraint to the EMPLOYEE table named
COMP that an employee’s total compensation must exceed $15, 000:

ALTER TABLE EMP
ADD CONSTRAINT COMP CHECK (SALARY + COMM > 15000)

The existing rows in the table will be checked to ensure that they do not
violate the new constraint. You can defer this checking by using the SET
CONSTRAINTS statement as follows:

SET CONSTRAINTS FOR EMP OFF

ALTER TABLE EMP ADD CONSTRAINT COMP CHECK (SALARY + COMM > 15000)
SET CONSTRAINTS FOR EMP IMMEDIATE CHECKED

First, the SET CONSTRAINTS statement is used to defer constraint checking
for the table. Then one or more constraints can be added to the table without
checking the constraints. Then the SET CONSTRAINTS statement is issued
again to turn constraint checking back on and to perform any deferred
constraint checking.

Triggers

A trigger defines a set of actions that is activated by an operation that modifies
the data in a specified base table.

You can use triggers to perform validation of input data, to automatically
generate a value for a newly inserted row, to read from other tables for
cross-referencing purposes, to write to other tables for audit-trail purposes, or
to support alerts through electronic mail messages. Using triggers results in
faster application development, global enforcement of business rules, and
easier maintenance of applications and data.

54 sSQL Getting Started

DB2 Universal Database supports several types of triggers. Triggers can be
defined to be activated either before or after a DELETE, INSERT, or UPDATE
operation. Each trigger includes a set of SQL statements called a triggered
action that can include an optional search condition.

After triggers can be further defined to perform the triggered action either for
each row or once for the statement, while before triggers always perform the
triggered action for each row.

Use a trigger before an INSERT, UPDATE, or DELETE statement to check for
certain conditions before performing a triggering operation or to change the
input values before they are stored in the table. Use an after trigger to
propagate values as necessary or perform other tasks, such as sending a
message, that may be required as a part of the trigger operation.

The following example illustrates a use of before and after triggers. Consider
an application that records and tracks changes to stock prices. The database
contains two tables, CURRENTQUOTE and QUOTEHISTORY defined as:

CREATE TABLE CURRENTQUOTE
(SYMBOL VARCHAR(10),
QUOTE DECIMAL(5,2),
STATUS VARCHAR(9))

CREATE TABLE QUOTEHISTORY
(SYMBOL VARCHAR(10),
QUOTE DECIMAL(5,2),
TIMESTAMP TIMESTAMP)

When the QUOTE column of CURRENTQUOTE is updated using a statement
such as:

UPDATE CURRENTQUOTE
SET QUOTE = 68.5
WHERE SYMBOL = 'IBM'

The STATUS column of CURRENTQUOTE should be updated to reflect
whether the stock is:

* Rising in value

* At a new high for the year
* Dropping in value

* At a new low for the year
» Steady in value.

This is done using the following before trigger:

Chapter 7. Advanced SQL 55

56

SQL Getting Started

CREATE TRIGGER STOCK_STATUS

NO CASCADE BEFORE UPDATE OF QUOTE ON CURRENTQUOTE
REFERENCING NEW AS NEWQUOTE OLD AS OLDQUOTE
FOR EACH ROW MODE DB2SQL

SET NEWQUOTE.STATUS =

CASE

WHEN NEWQUOTE.QUOTE >=
(SELECT MAX (QUOTE)
FROM QUOTEHISTORY
WHERE SYMBOL = NEWQUOTE.SYMBOL
AND YEAR(TIMESTAMP) = YEAR(CURRENT DATE))
THEN 'High'

WHEN NEWQUOTE.QUOTE <=
(SELECT MIN(QUOTE)
FROM QUOTEHISTORY
WHERE SYMBOL = NEWQUOTE.SYMBOL
AND YEAR(TIMESTAMP) = YEAR(CURRENT DATE))
THEN 'Low'

WHEN NEWQUOTE.QUOTE > OLDQUOTE.QUOTE
THEN 'Rising'
WHEN NEWQUOTE.QUOTE

THEN 'Dropping'
WHEN NEWQUOTE.QUOTE
THEN 'Steady'

A

OLDQUOTE.QUOTE

OLDQUOTE.QUOTE

END

This block of code defines a trigger named STOCK_STATUS as a
trigger that should be activated before the update of the QUOTE
column of the CURRENTQUOTE table. The second line specifies that
the triggered action is to be applied before any changes caused by the
actual update of the CURRENTQUOTE table are applied to the
database. It also means that the triggered action will not cause any
other triggers to be activated. The third line specifies the names that
must be used as qualifiers of the column name for the new values
(NEWQUOTE) and the old values (OLDQUOTE). Column names
qualified with these correlation names (NEWQUOTE and
OLDQUOTE) are called transition variables. The fourth line indicates
that the triggered action should be executed for each row.

This marks the start of the first and only SQL statement in the
triggered action of this trigger. The SET transition-variable statement
is used in a trigger to assign a value to a column in the row of the
table that is being updated by the statement that activated the trigger.
This statement is assigning a value to the STATUS column of the
CURRENTQUOTE table.

The expression that is used on the right hand side of the assignment
is a CASE expression. The CASE expression extends to the END
keyword.

The first case checks to see if the new quote (NEWQUOTE.QUOTE)
exceeds the maximum value for the stock symbol in the current
calendar year. The subquery is using the QUOTEHISTORY table that
is updated by the after trigger that follows.

The second case checks to see if the new quote
(NEWQUOTE.QUOTE) is less than the minimum value for the stock
symbol in the current calendar year. The subquery is using the
QUOTEHISTORY table that is updated by the after trigger that
follows.

The last three cases compare the new quote (NEWQUOTE.QUOTE) to
the quote that was in the table (OLDQUOTE.QUOTE) to determine if
it is greater, less or the same. The SET transition-variable statement
ends here.

In addition to updating the entry in the CURRENTQUOTE table, an audit
record needs to be created by copying the new quote, with a timestamp, to
the QUOTEHISTORY table. This is done using the following after trigger:

CREATE TRIGGER RECORD_HISTORY

AFTER UPDATE OF QUOTE ON CURRENTQUOTE
REFERENCING NEW AS NEWQUOTE

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

INSERT INTO QUOTEHISTORY
VALUES (NEWQUOTE.SYMBOL, NEWQUOTE.QUOTE, CURRENT TIMESTAMP);
END

This block of code defines a trigger named RECORD_HISTORY as a
trigger that should be activated after the update of the QUOTE
column of the CURRENTQUOTE table. The third line specifies the
name that should be used as a qualifier of the column name for the
new value (NEWQUOTE). The fourth line indicates that the triggere
action should be executed for each row.

Chapter 7. Advanced SQL

d

57

2] The triggered action of this trigger includes a single SQL statement
that inserts a row into the QUOTEHISTORY table using the data from
the row that has been updated (NEWQUOTE.SYMBOL and
NEWQUOTE.QUOTE) and the current timestamp.

CURRENT TIMESTAMRP is a special register containing the

timestamE. A list and explanation is provided in £

Joins

The process of combining data from two or more tables is called joining
tables. The database manager forms all combinations of rows from the
specified tables. For each combination, it tests the join condition. A join
condition is a search condition, with some restrictions. For a list of restrictions
refer to the SQL Reference.

Note that the data types of the columns involved in the join condition do not
have to be identical; however, they must be compatible. The join condition is

evaluated the same way as any other search condition, and the same rules for
comparisons apply.

If you do not specify a join condition, all combinations of rows from tables
listed in the FROM clause are returned, even though the rows may be
completely unrelated. The result is referred to as the cross product of the two
tables.

Examples in this section are based on the next two tables. They are
simplifications of the tables from the sample database but do not exist in the
sample database. They are used to outline interesting points about joins in
general. SAMP_STAFF lists the name of employees who are not employed as
contractors and their job descriptions, while SAMP_PROJECT lists the name
of employees (contract and full-time) and the projects that they are working
on.

The tables are as follows:

58 SQL Getting Started

Haas

AD3100

Thompson

PL2100

Walker

MA2112

Lutz

Figure 5. SAMP_PROJECT TABLE

Haas

PRES

MA2111

Thompson

MANAGER

Lucchessi

SALESREP

Nicholls

Figure 6. SAMP_STAFF TABLE

The following example produces the

SELECT SAMP_PROJECT.NAME,

ANALYST

cross product of two table. A join
condition is not specified, so all combination of rows is present:

SAMP_PROJECT.PROJ, SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT, SAMP_STAFF

This statement produces the following result:

NAME PROJ NAME JOB

Haas AD3100 Haas PRES

Thompson PL2100 Haas PRES

WaTker MA2112 Haas PRES

Lutz MA2111 Haas PRES

Haas AD3100 Thompson MANAGER
Thompson PL2100 Thompson MANAGER
Walker MA2112 Thompson MANAGER
Lutz MA2111 Thompson MANAGER
Haas AD3100 Lucchessi SALESREP
Thompson PL2100 Lucchessi SALESREP
Walker MA2112 Lucchessi SALESREP
Lutz MA2111 Lucchessi SALESREP
Haas AD3100 Nicholls ANALYST
Thompson PL2100 Nicholls ANALYST
WaTker MA2112 Nicholls ANALYST
Lutz MA2111 Nicholls ANALYST

Chapter 7. Advanced SQL

59

60

The two main types of joins are inner joins and outer joins. So far, in all of our
examples we have used the inner join. Inner joins keep only the rows from
the cross product that meet the join condition. If a row exists in one table, but
not the other, the information is not included in the result table.

The following example produces the inner join of the two tables. The inner
join lists the information full-time employees who are assigned to a project :

SELECT SAMP_PROJECT.NAME,
SAMP_PROJECT.PROJ, SAMP_STAFF.NAME, SAMP_STAFF.JOB
FROM SAMP_PROJECT, SAMP_STAFF
WHERE SAMP_STAFF.NAME = SAMP_PROJECT.NAME

Alternately, you can specify the inner join as follows:

SELECT SAMP_PROJECT.NAME,
SAMP_PROJECT.PROJ, SAMP_STAFF.NAME, SAMP_STAFF.JOB
FROM SAMP_PROJECT INNER JOIN SAMP_STAFF
ON SAMP_STAFF.NAME = SAMP_PROJECT.NAME

The result is:
NAME PROJ NAME JOB
Haas AD3100 Haas PRES

Thompson PL2100 Thompson MANAGER

Note that the result of the inner join consists of rows that have matching
values for the NAME column in the right and the left tables - both 'Haas’ and
"Thompson’ are included in the SAMP_STAFF table that lists all full-time
employee and in the SAMP_PROJECT table that lists full-time and contract
employee assigned to a project.

Outer joins are a concatentation of the inner join and rows from the left table,
right table, or both tables that are missing from the inner join. When you
perform an outer join on two tables, you arbitrarily assign one table as the left
table and the other one as the right table. There are three types of outer joins:

1. left outer join includes the inner join and the rows from the left table that
are not included in the inner join.

2. right outer join includes the inner join and the rows from the right table
that are not included in the inner join.

3. full outer join includes the inner join and the rows from both the left and
right tables that are not included in the inner join.

Use the SELECT statement to specify the columns to be displayed. In the
FROM clause, list the name of the first table followed by the keywords LEFT
OUTER JOIN, RIGHT OUTER JOIN or FULL OUTER JOIN. Next you need to

SQL Getting Started

specify the second table followed by the ON keyword. Following the ON
keyword, specify the join condition to express a relationship between the
tables to be joined.

In the following example, SAMP_STAFF is designated as the right table and
SAMP_PROJECT as the left table. By using LEFT OUTER JOIN, we list the
name and project number of all employees, full-time and contract, (listed in
SAMP_PROJECT) and their job title, if they are a full-time employee (listed in
SAMP_STAFF):
SELECT SAMP_PROJECT.NAME, SAMP_PROJECT.PROJ,
SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT LEFT OUTER JOIN SAMP_STAFF
ON SAMP_STAFF.NAME = SAMP_PROJECT.NAME

This statement produces the following result:

NAME PROJ NAME JoB
Haas AD3100 Haas PRES
Lutz MA2111 - -
Thompson PL2100 Thompson MANAGER

Walker MA2112 - -

Rows with values in all columns are the result of the inner join. These are
rows that satisfy the join condition: 'Haas’ and 'Thompson’ are listed in both
SAMP_PROJECT (left table) and SAMP_STAFF (right table). For rows that the
join condition was not satisfied, the null value appears on columns of the
right table: "Lutz’ and "Walker’ are contract employees listed in the
SAMP_PROJECT table and not in the SAMP_STAFF table. Note that all rows
from the left table are included in the result set.

In the next example, SAMP_STAFF is designated as the right table and
SAMP_PROJECT as the left table. By using RIGHT OUTER JOIN we list the
name and job title of all full-time employees (listed in SAMP_STAFF) and
their project number, if they are assigned to one (listed in SAMP_PROJECT):
SELECT SAMP_PROJECT.NAME,
SAMP_PROJECT.PROJ, SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMﬁ_PROJECT RIGHT OUTER JOIN SAMP_STAFF
ON SAMP_STAFF.NAME = SAMP_PROJECT.NAME

The result is:
NAME PROJ NAME JOB
Haas AD3100 Haas PRES
- - Lucchessi SALESREP
- - Nicholls ANALYST
Thompson PL2100 Thompson MANAGER

Chapter 7. Advanced SQL 61

As in the left outer join, rows with values in all columns are the result of the
inner join. These are rows that satisfy the join condition: 'Haas’ and
"'Thompson’ are listed in both SAMP_PROJECT (left table) and SAMP_STAFF
(right table). For rows that the join condition was not satisfied, the null value
appears on columns of the right table: 'Lucchessi’ and "Nicholls’ are full-time
employee that are not assigned to a project. While they are listed in
SAMP_STAFF, they are not in SAMP_PROJECT. Note that all rows from the
right table are included in the result set.

The next example uses FULL OUTER JOIN with the SAMP_PROJECT and
SAMP_STAFF tables. It lists the name of all full-time, including the ones that
are not assigned to a project, and contract employees:
SELECT SAMP_PROJECT.NAME, SAMP_PROJECT.PROJ,
SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT FULL OUTER JOIN SAMP_STAFF
ON SAMP_STAFF.NAME = SAMP_PROJECT.NAME

The result is:
NAME PROJ NAME JOB
Haas AD3100 Haas PRES
- - Lucchessi SALESREP
- - Nicholls ANALYST
Thompson PL2100 Thompson MANAGER
Lutz MA2111 - -

WaTker MA2112 - -

This result includes the left outer join, the right outer join and the inner join.
All full-time and contract employees are listed. Just like left outer join and
right outer join, for values that the join condition was not satisfied the null
value appears in the respective column. Every row from SAMP_STAFF and
SAMP_PROJECT is included in the result set.

Complex Queries

62

DB2 Universal Database allows you to group, consolidate, and view multiple
columns in a single result set through the use of ROLLUP and CUBE. This
new and powerful capability enhances and simplifies SQL based data
analysis.

There are various methods of extracting useful information from the database.
You can implement recursive queries to produce result tables from existing
data sets.

SQL Getting Started

ROLLUP and CUBE Queries

You specify ROLLUP and CUBE operations in the GROUP BY clause of a
qguery. ROLLUP grouping produces a result set containing the regular grouped
rows and sub-total rows. CUBE grouping produces a result set containing the
rows from ROLLUP and cross-tabulation rows. So for ROLLUP, you can get
the sales by person by month with monthly sales totals and an overall total.
For CUBE, additional rows would be included for total sales by person. See
the SQL Reference for further details.

Recursive Queries

A recursive query is a query that iteratively uses result data to determine
further results. You might think of this as traversing a tree or a graph.
Practical examples where this is useful include bill of materials applications,
reservation systems, network planning and scheduling. A recursive query is
written using a common table expression that includes a reference to its own
name. See the SQL Reference for examples of recursive queries.

Chapter 7. Advanced SQL 63

64 SQL Getting Started

Chapter 8. Customizing and Enhancing Data Manipulation

This chapter gives a brief introduction to object-oriented extensions in DB2
Universal Database. There are many advantages to using object oriented
extensions. User-defined Types (UDT) increase the set of data types available to
your applications while user-defined Functions (UDF) allow for creation of
application specific functions. UDFs act as methods for UDTs by providing
consistent behavior and encapsulation of the types.

Special registers and system catalogs are discussed next. Special registers provide
information about the connection. The system catalogs contain information
about the logical and the physical structure of database objects.

This chapter covers:

A detailed discussion of the above topics is beyond the scope of this book but
is presented in the SQL Reference and Administration Guide.

User-Defined Types

A distinct type is a user-defined data type that shares its internal representation
with an existing type (its “source” type), but is considered to be separate and
incompatible for most operations. For example, you might want to define an
age type, a weight type, and a height type, all of which have quite different
semantics, but which use the built-in data type INTEGER for their internal
representations.

The following example illustrates the creation of a distinct type named PAY:
CREATE DISTINCT TYPE PAY AS DECIMAL(9,2) WITH COMPARISONS

Although PAY has the same representation as the built-in data type
DECIMAL(9,2), it is considered to be a separate type that is not comparable to
DECIMAL(9,2) or to any other type. It is comparable only to the same distinct
type. Also, operators and functions that would work on DECIMAL will not

© Copyright IBM Corp. 1993, 1998 65

apply here. For example, a value with PAY data type cannot be multiplied
with a value of INTEGER data type. Therefore, you have to write functions
that only apply to the PAY data type.

Using distinct data types limits accidental mistakes. For instance, if the
SALARY column of table EMPLOYEE was defined as a PAY data type, it
could not be added to COMM even though their sourced types are the same.

Distinct data types support casting. A source type can be cast to a distinct
data type, and a distinct data type to a source type. For example, if the
SALARY column of the table EMPLOYEE were defined as a PAY data type,
the following example would not fail at the comparison operator.

SELECT » FROM EMPLOYEE
WHERE DECIMAL(SALARY) = 41250

DECIMAL(SALARY) returns a decimal data type. Inversely, a numeric data
type can be cast to a PAY type. For example, you can cast the number 41250
by using PAY(41250).

User-Defined Functions

66

As mentioned in FlUsing Functions” on page 28, DB2 Universal Database

provides built-in and user-defined functions (UDF). However, this set of
functions will never satisfy all requirements. Often, you need to create
customized functions for particular tasks. User-defined functions allow you to
create customized functions.

There are two types of user-defined functions: sourced and external.

Sourced user-defined functions allow for user-defined types to selectively
reference another built-in or user-defined function that is already known to
the database. You can use both scalar and column functions.

In the next example a user-defined function called MAX is created that is
based on the built-in MAX column function, which takes a DECIMAL data
type as input. The MAX UDF takes a PAY type as input and returns a PAY
type as output.

CREATE FUNCTION MAX(PAY) RETURNS PAY
SOURCE MAX(DECIMAL)

External user-defined functions are written by users in a programming
language. There are external scalar functions and external table functions and
both are discussed in the SQL Reference.

SQL Getting Started

Assuming that you have already written a function that counts the number of
words in a string, you can register it with the database using the CREATE
FUNCTION statement with the name WORDCOUNT. This function can then
be used in SQL statements.

For example, the following statement returns employee numbers and the
number of words in the ASCII form of their resumes. WORDCOUNT is an
external scalar function that has been registered with the database by the user
and is now being used in the statement.

SELECT EMPNO, WORDCOUNT (RESUME)
FROM EMP_RESUME
WHERE RESUME_FORMAT = 'ascii'

For more detailed information on writing user-defined functions, refer to the
Application Development Guide.

Large Objects (LOBS)

The term large object and its acronym LOB are used to refer to three data
types: BLOB, CLOB, or DBCLOB. These types can contain large amounts of
data, for objects such as audio, photos and documents.

A Binary Large OBject (BLOB) is a varying-length string, measured in bytes,
that can be up to 2 gigabytes long. A BLOB is primarily intended to hold
nontraditional data such as pictures, voice, and mixed media.

A Character Large OBject (CLOB) is a varying-length string, measured in bytes,
that can be up to 2 gigabytes long. A CLOB is used to store large single-byte
character set data such as documents. A CLOB is considered to be a character
string.

A Double-Byte Character Large OBject (DBCLOB) is a varying-length string of
double-byte characters that can be up to 2 gigabytes long (1 073 741 823
double-byte characters). A DBCLOB is used to store large double-byte
character set data such as documents. A DBCLOB is considered to be a
graphic string.

Manipulating Large Objects (LOBS)

Since LOB values can be very large, transferring them from the database
server to client application program can be time consuming. However,
typically LOB values are processed one piece at a time, rather than as a
whole. For those cases where an application does not need (or want) the
entire LOB value to be stored in application memory, it can reference this
value via a large object locator variable.

Chapter 8. Customizing and Enhancing Data Manipulation 67

Subsequent statements can then use the locators to perform operations on the
data without necessarily retrieving the entire large object. Locator variables
are used to reduce the storage requirements for the applications, and improve
the performance by reducing the flow of data between the client and the
server.

Another mechanism is file reference variables. They are used to retrieve a large
object directly to a file or to update a large object in a table directly from a
file. File reference variables are used to reduce the storage requirements for
the applications since they do not need to store the large object data. For more
information refer to the Application Development Guide and the SQL Reference.

Special Registers

68

A special register is a storage area that is defined for a connection by the
database manager and is used to store information that can be referenced in
SQL statements. Following are a few examples of the more commonly used
special registers. For a list of all the special registers and more detailed
information refer to the SQL Reference.

* CURRENT DATE: Holds the date according to the time-of-day clock at SQL
statement execution time.

e CURRENT FUNCTION PATH: Holds a value that specifies the function
path used to resolve function and data type references.

* CURRENT SERVER: Specifies the current application server.

« CURRENT TIME: Holds the time according to the time-of-day clock at the
SQL statement execution time.

e CURRENT TIMESTAMP: Specifies a timestamp according to the
time-of-day clock at SQL statement execution time.

* CURRENT TIMEZONE: Specifies the difference between Coordinated
Universal Time and local time at the application server.

* USER: Specifies the run-time authorization ID.

You can display the contents of a special register with the VALUES statement.
For example:

VALUES (CURRENT TIMESTAMP)

You could also use:
SELECT CURRENT TIMESTAMP FROM ORG

and this will return the TIMESTAMP for every row entry in the table.

SQL Getting Started

Introduction to Catalog Views

DB2 creates and maintains an extensive set of system catalog tables for each
database. These tables contain information about the logical and physical
structure of database objects such as tables, views, packages, referential
integrity relationships, functions, distinct types, and triggers. They are created
when the database is created, and are updated in the course of normal
operation. You cannot explicitly create or drop them, but you can query and
view their contents.

For more information, refer to the SQL Reference.
Selecting Rows from System Catalogs
The catalog views are like any other database view. You can use SQL

statements to look at the data, exactly in the same way that you would for
any other view in the system.

You can find very useful information about tables in the SYSCAT.TABLES
catalog. To find the names of existing tables that you have created, issue a
statement similar to the following:

SELECT TABNAME, TYPE, CREATE_TIME
FROM SYSCAT.TABLES
WHERE DEFINER = USER

This statement produces the following result:

TABNAME TYPE CREATE_TIME

ORG T 1997-05-22-11.15.27.850000
STAFF T 1997-05-22-11.15.29.470000
DEPARTMENT T 1997-05-22-11.15.30.850000
EMPLOYEE T 1997-05-22-11.15.31.310000
EMP_ACT T 1997-05-22-11.15.32.850000
PROJECT T 1997-05-22-11.15.34.410007
EMP_PHOTO T 1997-05-22-11.15.35.190000
EMP_RESUME T 1997-05-22-11.15.40.600000
SALES T 1997-05-22-11.15.43.000000

The following list includes catalog views pertaining to subjects discussed in
this book. There are many other catalog views, and they are listed in detail in
the SQL Reference and Administration Guide.

Description Catalog View

check constraints SYSCAT.CHECKS
columns SYSCAT.COLUMNS
columns referenced by check constraints SYSCAT.COLCHECKS

Chapter 8. Customizing and Enhancing Data Manipulation 69

70

Description Catalog View
columns used in keys SYSCAT.KEYCOLUSE
datatypes SYSCAT.DATATYPES
function parameters or result of a function SYSCAT.FUNCPARMS
referential constraints SYSCAT.REFERENCES
schemas SYSCAT.SCHEMATA
table constraints SYSCAT.TABCONST
tables SYSCAT.TABLES
triggers SYSCAT.TRIGGERS

user-defined functions

SYSCAT.FUNCTIONS

views

SQL Getting Started

SYSCAT.VIEWS

Appendix A. Sample Tables

This appendix shows the information contained in the sample tables, and how
to install and remove them. The sample tables are used in the examples that
appear in this manual and other manuals in this library. In addition, the data
contained in the sample files with BLOB and CLOB data types is shown.

The following sections are included in this appendix:.

© Copyright IBM Corp. 1993, 1998 71

Sample Tables

In the sample tables, a dash (-) indicates a null value.

The Sample Database

The examples in this book use a sample database. To use these examples, you
must install the SAMPLE database. To use it, the database manager must be
installed.

To Install the Sample Database

An executable file installs the sample database.2 To install a database you
must have SYSADM authority.

* When Using UNIX-based Systems
If you are using the operating system command prompt, type:
sql1ib/misc/db2sampl <path>

from the home directory of the database manager instance owner, where
path is an optional parameter specifying the path where the sample
database is to be created. Press Enter.3 The schema for DB2SAMPL is the
CURRENT SCHEMA special register value.

* When using OS/2, Windows 95 or Windows NT
If you are using the operating system command prompt, type:

db2sampl e

where e is an optional parameter specifying the drive where the database is
to be created. Press Enter.4

If you are not logged on to your workstation through User Profile
Management, you will be prompted to do so.

To Erase the Sample Database

If you do not need to access the sample database, you can erase it by using
the DROP DATABASE command:

db2 drop database sample

2. For information related to this command, see the DB2SAMPL command in the Command Reference.

3. If the path parameter is not specified, the sample tables are installed in the default path specified by the
DFTDBPATH parameter in the database manager configuration file.

4. If the drive parameter is not specified, the sample tables are installed on the same drive as DB2.

72 SQL Getting Started

CL_SCHED Table

Sample Tables

Name: CLASS_CODE DAY STARTING ENDING
Type: char(7) smallint time time
Desc: Class Code Day # of 4 day Class Start Time Class End Time
(room:teacher) schedule
DEPARTMENT Table
Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION
Type: char(3) not null varchar(29) not null char(6) char(3) not null char(16)
Desc: Department Name describing general Employee Department Name of the
number activities of department number (DEPTNO) to remote location
(EMPNO) of which this
department department
manager reports
Values: A00 SPIFFY COMPUTER SERVICE 000010 A00 -
DIV.
BO1 PLANNING 000020 A00 -
C01 INFORMATION CENTER 000030 A00 -
D01 DEVELOPMENT CENTER - A00 -
D11 MANUFACTURING SYSTEMS 000060 D01 -
D21 ADMINISTRATION SYSTEMS 000070 D01 -
EO1 SUPPORT SERVICES 000050 A00 -
E11 OPERATIONS 000090 EO1 -
E21 SOFTWARE SUPPORT 000100 EO1 -
EMPLOYEE Table
Names: EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE
Type: char(6) not varchar(12) char(l) not varchar(15) char(3) char(4) date
null not null null not null
Desc: Employee First name Middle Last name Department Phone Date of hire
number initial (DEPTNO) number
in which the
employee
works
JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM
char(8) smallint not null char(1) date dec(9,2) dec(9,2) dec(9,2)
Job Number of years of Sex (M Date of birth Yearly salary Yearly bonus Yearly
formal education male, F commission
female)

See the following page for the values

in the EMPLOYEE table.

Appendix A. Sample Tables

73

Sample Tables

965T 007 05667 TT-80-2€6T N 9T d3yaiaid 10-10-G96T 0666 T3 VIHINW A IVINVY 02€000
2Lzt 00 006ST T2-70-T€6T 4 T YO1VvHIdO Z1-60-96T zeee 113 LHOIY13S 4 3IANVINL 0TE000
ozvT 00v 0SLLT 12-0T-9€6T N T YO1VH3dO 6T1-90-226T G602 113 HLINS X dITIHd 00€000
12zt 00 OVEST 60-20-9%6T N T YO1VHIdO 0€-50-086T 205Y 113 ISENI o NHOr 062000
0012 005 05292 82-€0-9€6T 4 1T YO1VHIdO ¥2-€0-296T 1668 TT3 ”3AIINHOS o J3HL3 082000
0612 005 08E/Z 92-50-£56T 4 o1 NiEEnte) 0€-60-086T T006 rdal Z3¥ad l VIMVIN 0,2000
08€T 00 0SZ.T G0-0T-9€6T 4 9T NiEEnte) T1-60-G.6T €568 rdal NOSNHOC d TI9AS 092000
3 00v 08T6T ZT-TI-6€6T N o1 NiEEnte) 0€-0T-696T 7960 rdal HLINS S J3INVA 052000
10€2 009 09/82 T€-€0-7S6T N 1T NiiEnte) G0-ZT-6.6T 08.€ rdal ONIIVIA N JHOLVATVYS 0vZ000
VLT oov 08TZZ 0£-50-GE6T N T NiSEnte) TZ-T1-996T 7602 rdal NOSy3443r c SANVL 0£2000
1882 009 0v86Z 6T-€0-876T 4 8T ¥aNoIsaAa 62-80-896T 2190 11 yAlgn! M| Y34INNTC 022000
zovT 00v 0.Z8T £2-20-€56T N 1T YaNoIs3Aa TT-v0-6.6T zv60 11 saNor L NVITIIM 0TZ000
1122 009 0OvllZ 62-G0-Tv6T N o1 YaNoIsaAa £0-€0-996T T0SY T1a NMOU4 diAva 002000
9291 00v 0Sv0Z G2-90-256T N 9T ¥aNoIsaa 92-10-v26T 9862 11 SENR 7 H SANVL 06T000
10T 00S OFETZ 12-20-676T 4 1T Y3INoIS3A 10-20-€/6T 2891 11Q N3LLNODS S NATIEVIA - 081000
161 00S 089YC G0-TO-TS6T N 91 Y3INoIs3A GT-60-8/6T 0682 1A VINWIHSOA { IHSOLVSVIN 01000
08.1 00 05222 2T-70-GS6T 4 1T Y3INDIS3A T1-0T-226T z8L€ 11Q VYNVId o H139vZIT13 0971000
2202 005 08252 LT-50-L¥6T N 91 Y3aNoIS3A 21-20-2L6T 0TS 11Q NOSAVAV 30Ny 0ST000
12X44 009 0Zv8Z 6T-T0-9%6T 4 81 LISAIVNY GT-21-9/6T €617 700 STIOHDIN " Y3IHIV3IH 0¥T000
06T 005 008€Z GT-60-G26T 4 91 LISAIVNY 82-10-T.6T 8.Gt 700 VNVININO N $34070d 0€T000
ovee 009 05262 8T-0T-Zv6T N T N30 G0-2T-€96T 1912 00vY T1ANNOD.0 NV3S 021000
0zL€ 006 0059Y G0-TT-626T N 67 EERIERLAS 91-G0-856T 06v€ 00V 1ISS3IHOONT 9 OZN3ONIA 0TT000
2602 005 0ST9Z 81-21-956T N 12 HIADVNVIA 6T1-90-086T 2160 123 Y3ASNIdS O 3IJOAO3HL 007000
08¢ 009 0S.62 GT-G0-TV6T 4 91 YIOVNVIN GT-80-0/6T 8615 1713 NOSY3IANIH M N33TI3 060000
€682 00L OLT9E 92-50-€56T 4 9T HIADVNVIA 0£-60-086T T€8. 12a IMSY1Nd a VA3 00000
0852 005 0S2z€ 10-20-G¥6T N 91 YIAOVNVIN ¥1-60-€26T €2r9 114 NY3LS 4 ONIAYI 090000
443 008 S.T0V GT-60-G26T N 91 YIAOVNVIN 11-80-676T 68.9 703 Y3AID q NHOC 050000
090€ 008 0528¢ TT-GO-T¥6T 4 0z HIDVNVIA G0-70-GL6T 8elY 700 NVMM " ATIVS 020000
00€€ 008 0SZTY 20-20-8¥6T N 81 HIDVNVIA 0T-0T-€26T 9.¥€ 708 NOSAWOHL 1 JAVHOIN 020000
0zzy 000T 0525 ¥2-80-€€6T E! 81 S34d T0-10-G96T 816€ 00V SVYVH I IANILSIYHO 0T0000
||Inu 10U [Inu |jNnu j0uU [Inu |jnu j0U

(z'6)osp (z'6)29p (2'6)09p arep (T)deyd uljrews (8)reyd arep (p)reyo (g)reyo jou (§T)seyosen (T)reyd 1ou (zT)deyoren (9)Jeyd
ININOD SNNOE AYVIVS REVER ON 1d3a LINI ONdIN3

J1vaH1dlg X3s a3 aor JIVA3YIH - INOHd MYOM JNVNLSY] diInN JANLSHIA

SQL Getting Started

74

Sample Tables

T0-CT-286T GT-0T-¢861 09 08 crieav 052000

GT-0T-2¢861 G1-80-¢861 G¢ 08 crieav 052000

GT-0T-¢86T1 GT-80-¢86T S¢° 0L crieav 052000

GT-80-¢86T G1-€0-¢86T 00T 0L crieav 052000

GT-€0-2¢86T T0-¢0-¢86T1 09 0L crieav 052000

T0-¢0-€86T T0-T0-€86T 00T 09 crieav 052000

TO-TO-€86T T0-¢T-¢86T 05 09 crieav 052000

GT-€0-286T T0-¢0-¢86T 09 09 crieav 052000

T0-¢0-2¢86T T0-10-¢86T 00T 09 crieav 052000

T0-T0-€86T G1-60-¢86T 00T 08 1reav 0%72000

GT-60-¢86T GT-¢0-¢86T 00T 0L Treav 0%72000

TO-T0-€86T GT-0T-¢86T 00T 08T Treav 0€2000

GT-0T-286T GT-¥0-¢861 09 08 Treav 0€2000

GT-0T-2¢861 GT-€0-¢861 09 0L 1reav 0€2000

GT-70-¢86T GT-€0-¢86T 05 09 Treav 0€2000

GT-€0-286T T0-T0-¢86T 00T 09 Treav 0€2000

T0-20-€86T T0-10-¢86T 00T (0] orreav 020000
T0-L0-286T T0-10-¢861 0S (0] ooreav 0T0000 ‘SaNjeA

109(0ad
uo juads swn

spua suels s,a9holdwsa Jagquinu Jaquinu

AAnoe areq Aianoe areq o uoniodoid AIAndy Jaquinu 198(oid aakojdwi3 088
lInu
a1ep arep (z'g)osp 10U 1UljJews [|nu jou (9)Jeyd |nu jou (9)Jeyd :adAL
J1VAN3ING J1VvALSNT FNILAINT ONLOV ONrOdd ONdINZ ‘OWeN
3lgel 1OV dIN3
L06T 005 0v8ET L1-G0-9267T N 9T d3danaid G0-G0-L¥6T 8695 123 LONNOD] NOSV(0rE000
002 005 0.€SC 81-L0-TV6T N T d3dan3id €2-20-9267T €01 123 EER] ONIM 0£€000
INWOD SNNOE AYVIVS RELER ON 1d3a LINI ONdIAS
J1vaHlyig X3S a3 aor 31va3dIH - INOHd MYOM FNVNLSVY diN JANLSHIS

75

Appendix A. Sample Tables

Sample Tables

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE
000250 AD3112 180 .50 1982-08-15 1983-01-01
000260 AD3113 70 .50 1982-06-15 1982-07-01
000260 AD3113 70 1.00 1982-07-01 1983-02-01
000260 AD3113 80 1.00 1982-01-01 1982-03-01
000260 AD3113 80 .50 1982-03-01 1982-04-15
000260 AD3113 180 .50 1982-03-01 1982-04-15
000260 AD3113 180 1.00 1982-04-15 1982-06-01
000260 AD3113 180 .50 1982-06-01 1982-07-01
000270 AD3113 60 .50 1982-03-01 1982-04-01
000270 AD3113 60 1.00 1982-04-01 1982-09-01
000270 AD3113 60 .25 1982-09-01 1982-10-15
000270 AD3113 70 .75 1982-09-01 1982-10-15
000270 AD3113 70 1.00 1982-10-15 1983-02-01
000270 AD3113 80 1.00 1982-01-01 1982-03-01
000270 AD3113 80 .50 1982-03-01 1982-04-01
000030 IF1000 10 .50 1982-06-01 1983-01-01
000130 IF1000 90 1.00 1982-01-01 1982-10-01
000130 IF1000 100 .50 1982-10-01 1983-01-01
000140 IF1000 90 .50 1982-10-01 1983-01-01
000030 1F2000 10 .50 1982-01-01 1983-01-01
000140 IF2000 100 1.00 1982-01-01 1982-03-01
000140 IF2000 100 .50 1982-03-01 1982-07-01
000140 1F2000 110 .50 1982-03-01 1982-07-01
000140 1F2000 110 .50 1982-10-01 1983-01-01
000010 MA2100 10 .50 1982-01-01 1982-11-01
000110 MA2100 20 1.00 1982-01-01 1982-03-01
000010 MAZ2110 10 1.00 1982-01-01 1983-02-01
000200 MA2111 50 1.00 1982-01-01 1982-06-15
000200 MA2111 60 1.00 1982-06-15 1983-02-01
000220 MA2111 40 1.00 1982-01-01 1983-02-01
000150 MA2112 60 1.00 1982-01-01 1982-07-15
000150 MA2112 180 1.00 1982-07-15 1983-02-01
000170 MA2112 60 1.00 1982-01-01 1983-06-01
000170 MA2112 70 1.00 1982-06-01 1983-02-01
000190 MA2112 70 1.00 1982-02-01 1982-10-01
000190 MA2112 80 1.00 1982-10-01 1983-10-01
000160 MA2113 60 1.00 1982-07-15 1983-02-01

76 SQL Getting Started

Sample Tables

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE
000170 MAZ2113 80 1.00 1982-01-01 1983-02-01
000180 MAZ2113 70 1.00 1982-04-01 1982-06-15
000210 MAZ2113 80 .50 1982-10-01 1983-02-01
000210 MAZ2113 180 .50 1982-10-01 1983-02-01
000050 OP1000 10 .25 1982-01-01 1983-02-01
000090 OP1010 10 1.00 1982-01-01 1983-02-01
000280 OP1010 130 1.00 1982-01-01 1983-02-01
000290 OP1010 130 1.00 1982-01-01 1983-02-01
000300 OP1010 130 1.00 1982-01-01 1983-02-01
000310 OP1010 130 1.00 1982-01-01 1983-02-01
000050 OP2010 10 .75 1982-01-01 1983-02-01
000100 OP2010 10 1.00 1982-01-01 1983-02-01
000320 OP2011 140 .75 1982-01-01 1983-02-01
000320 OP2011 150 .25 1982-01-01 1983-02-01
000330 OP2012 140 .25 1982-01-01 1983-02-01
000330 OP2012 160 .75 1982-01-01 1983-02-01
000340 OP2013 140 .50 1982-01-01 1983-02-01
000340 OP2013 170 .50 1982-01-01 1983-02-01
000020 PL2100 30 1.00 1982-01-01 1982-09-15
EMP_PHOTO Table
Name: EMPNO PHOTO_FORMAT PICTURE
Type: char(6) not null varchar(10) not null blob(100k)
Desc: Employee number Photo format Photo of employee
Values: 000130 bitmap db200130.bmp
000130 gif db200130.gif
000130 xwd db200130.xwd
000140 bitmap db200140.bmp
000140 gif db200140.gif
000140 xwd db200140.xwd
000150 bitmap db200150.bmp
000150 gif db200150.gif
000150 xwd db200150.xwd
000190 bitmap db200190.bmp
000190 gif db200190.gif
000190 xwd db200190.xwd

Appendix A. Sample Tables

7

Sample Tables

« I‘Quintana Photo” on page 83 shows the picture of the employee, Delores

Quintana.

« I‘Nicholls Photo” on page 84 shows the picture of the employee, Heather
Nicholls.

 EAdamson Photo” on page 87 shows the picture of the employee, Bruce
Adamson.

o L i shows the picture of the employee, James
Walker.

EMP_RESUME Table

Name: EMPNO RESUME_FORMAT RESUME
Type: char(6) not null varchar(10) not null clob(5k)
Desc: Employee number Resume Format Resume of employee
Values: 000130 ascii db200130.asc
000130 script db200130.scr
000140 ascii db200140.asc
000140 script db200140.scr
000150 ascii db200150.asc
000150 script db200150.scr
000190 ascii db200190.asc
000190 script db200190.scr
+ I‘Quintana Resume” on page 84 shows the resume of the employee, Delores
Quintana.
« [Nicholls Resume” on page 85 shows the resume of the employee, Heather
Nicholls.
- ‘Adamson Resume” on page 87 shows the resume of the employee, Bruce
Adamson.
« MAalker Resume” on page 83 shows the resume of the employee, James
Walker.
IN_TRAY Table
Name: RECEIVED SOURCE SUBJECT NOTE_TEXT
Type: timestamp char(8) char(64) varchar(3000)
Desc: Date and Time User id of person Brief description The note
received sending note

78 SQL Getting Started

Sample Tables

ORG Table
Name: DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION
Type: smallint not null varchar(14) smallint varchar(10) varchar(13)
Desc: Department Department name Manager number Division of City
number corporation
Values: 10 Head Office 160 Corporate New York
15 New England 50 Eastern Boston
20 Mid Atlantic 10 Eastern Washington
38 South Atlantic 30 Eastern Atlanta
42 Great Lakes 100 Midwest Chicago
51 Plains 140 Midwest Dallas
66 Pacific 270 Western San Francisco
84 Mountain 290 Western Denver
PROJECT Table
Name: PROJNO PROINAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ]
Type: char(6) not varchar(24) char(3) not char(6) not dec(5,2) date date char(6)
null not null null null
Desc: Project Project name Department Employee Estimated Estimated Estimated Major
number responsible responsible mean staffing start date end date project, for a
subproject
Values: AD3100 ADMIN D01 000010 6.5 1982-01-01 1983-02-01 -
SERVICES
AD3110 GENERAL D21 000070 6 1982-01-01 1983-02-01 AD3100
ADMIN
SYSTEMS
AD3111 PAYROLL D21 000230 2 1982-01-01 1983-02-01 AD3110
PROGRAMMING
AD3112 PERSONNEL D21 000250 1 1982-01-01 1983-02-01 AD3110
PROGRAMMING
AD3113 ACCOUNT D21 000270 2 1982-01-01 1983-02-01 AD3110
PROGRAMMING
IF1000 QUERY Cco1 000030 2 1982-01-01 1983-02-01 -
SERVICES
IF2000 USER Co1 000030 1 1982-01-01 1983-02-01 -
EDUCATION
MAZ2100 WELD LINE D01 000010 12 1982-01-01 1983-02-01 -
AUTOMATION
MA2110 W L D11 000060 9 1982-01-01 1983-02-01 MA2100
PROGRAMMING
MA2111 WL D11 000220 2 1982-01-01 1982-12-01 MA2110
PROGRAM
DESIGN
MA2112 W L ROBOT D11 000150 3 1982-01-01 1982-12-01 MA2110

DESIGN

Appendix A. Sample Tables 79

Sample Tables

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ
MA2113 W L PROD D11 000160 3 1982-02-15 1982-12-01 MAZ2110
CONT
PROGS
OP1000 OPERATION EO01 000050 6 1982-01-01 1983-02-01 -
SUPPORT
OP1010 OPERATION E11 000090 5 1982-01-01 1983-02-01 OP1000
OP2000 GEN EO1 000050 5 1982-01-01 1983-02-01 -
SYSTEMS
SERVICES
OP2010 SYSTEMS E21 000100 4 1982-01-01 1983-02-01 OP2000
SUPPORT
OP2011 SCP E21 000320 1 1982-01-01 1983-02-01 OP2010
SYSTEMS
SUPPORT
OP2012 APPLICATIONE21 000330 1 1982-01-01 1983-02-01 OP2010
SUPPORT
0OP2013 DB/DC E21 000340 1 1982-01-01 1983-02-01 OP2010
SUPPORT
PL2100 WELD LINE B01 000020 1 1982-01-01 1982-09-15 MA2100
PLANNING
SALES Table
Name: SALES_DATE SALES_PERSON REGION SALES
Type: date varchar(15) varchar(15) int
Desc: Date of sales Employee’s last name Region of sales Number of sales
Values: 12/31/1995 LUCCHESSI Ontario-South 1
12/31/1995 LEE Ontario-South 3
12/31/1995 LEE Quebec 1
12/31/1995 LEE Manitoba 2
12/31/1995 GOUNOT Quebec 1
03/29/1996 LUCCHESSI Ontario-South 3
03/29/1996 LUCCHESSI Quebec 1
03/29/1996 LEE Ontario-South 2
03/29/1996 LEE Ontario-North 2
03/29/1996 LEE Quebec 3
03/29/1996 LEE Manitoba 5
03/29/1996 GOUNOT Ontario-South 3
03/29/1996 GOUNOT Quebec 1
03/29/1996 GOUNOT Manitoba 7
03/30/1996 LUCCHESSI Ontario-South 1
03/30/1996 LUCCHESSI Quebec 2
03/30/1996 LUCCHESSI Manitoba 1
03/30/1996 LEE Ontario-South 7
03/30/1996 LEE Ontario-North 3
03/30/1996 LEE Quebec 7

80 SQL Getting Started

Sample Tables

Name: SALES_DATE SALES_PERSON REGION SALES
03/30/1996 LEE Manitoba 4
03/30/1996 GOUNOT Ontario-South 2
03/30/1996 GOUNOT Quebec 18
03/30/1996 GOUNOT Manitoba 1
03/31/1996 LUCCHESSI Manitoba 1
03/31/1996 LEE Ontario-South 14
03/31/1996 LEE Ontario-North 3
03/31/1996 LEE Quebec 7
03/31/1996 LEE Manitoba 3
03/31/1996 GOUNOT Ontario-South 2
03/31/1996 GOUNOT Quebec 1
04/01/1996 LUCCHESSI Ontario-South 3
04/01/1996 LUCCHESSI Manitoba 1
04/01/1996 LEE Ontario-South 8
04/01/1996 LEE Ontario-North -
04/01/1996 LEE Quebec 8
04/01/1996 LEE Manitoba 9
04/01/1996 GOUNOT Ontario-South 3
04/01/1996 GOUNOT Ontario-North 1
04/01/1996 GOUNOT Quebec 3
04/01/1996 GOUNOT Manitoba 7
STAFF Table
Name: 1D NAME DEPT JOB YEARS SALARY COMM
Type: smallint not varchar(9) smallint char(5) smallint dec(7,2) dec(7,2)
null
Desc: Employee Employee Department Job type Years of Current Commission
number name number service salary
Values: 10 Sanders 20 Mgr 7 18357.50 -
20 Pernal 20 Sales 8 18171.25 612.45
30 Marenghi 38 Magr 5 17506.75 -
40 O’Brien 38 Sales 6 18006.00 846.55
50 Hanes 15 Magr 10 20659.80 -
60 Quigley 38 Sales - 16808.30 650.25
70 Rothman 15 Sales 7 16502.83 1152.00
80 James 20 Clerk - 13504.60 128.20
90 Koonitz 42 Sales 6 18001.75 1386.70
100 Plotz 42 Magr 7 18352.80 -
110 Ngan 15 Clerk 5 12508.20 206.60
120 Naughton 38 Clerk - 12954.75 180.00

Appendix A. Sample Tables 81

Sample Tables

Name: ID NAME DEPT JOB YEARS SALARY COMM
130 Yamaguchi 42 Clerk 6 10505.90 75.60
140 Fraye 51 Magr 6 21150.00 -
150 Williams 51 Sales 6 19456.50 637.65
160 Molinare 10 Mgr 7 22959.20 -
170 Kermisch 15 Clerk 4 12258.50 110.10
180 Abrahams 38 Clerk 3 12009.75 236.50
190 Sneider 20 Clerk 8 14252.75 126.50
200 Scoutten 42 Clerk - 11508.60 84.20
210 Lu 10 Magr 10 20010.00 -
220 Smith 51 Sales 7 17654.50 992.80
230 Lundquist 51 Clerk 3 13369.80 189.65
240 Daniels 10 Mgr 5 19260.25 -
250 Wheeler 51 Clerk 6 14460.00 513.30
260 Jones 10 Mgr 12 21234.00 -
270 Lea 66 Mgr 9 18555.50 -
280 Wilson 66 Sales 9 18674.50 811.50
290 Quill 84 Mgr 10 19818.00 -
300 Davis 84 Sales 5 15454.50 806.10
310 Graham 66 Sales 13 21000.00 200.30
320 Gonzales 66 Sales 4 16858.20 844.00
330 Burke 66 Clerk 1 10988.00 55.50
340 Edwards 84 Sales 7 17844.00 1285.00
350 Gafney 84 Clerk 5 13030.50 188.00

STAFFG Table
Note: STAFFG is only created for double-byte code pages.

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not vargraphic(9) smallint graphic(5) smallint dec(9,0) dec(9,0)
null

Desc: Employee Employee Department Job type Years of Current Commission
number name number service salary

Values: 10 Sanders 20 Mgr 7 18357.50 -
20 Pernal 20 Sales 8 18171.25 612.45
30 Marenghi 38 Mgr 5 17506.75 -
40 O’Brien 38 Sales 6 18006.00 846.55
50 Hanes 15 Magr 10 20659.80 -
60 Quigley 38 Sales - 16808.30 650.25

82 sQL Getting Started

Sample Tables

Name: ID NAME DEPT JOB YEARS SALARY COMM
70 Rothman 15 Sales 7 16502.83 1152.00
80 James 20 Clerk - 13504.60 128.20
90 Koonitz 42 Sales 6 18001.75 1386.70
100 Plotz 42 Magr 7 18352.80 -
110 Ngan 15 Clerk 5 12508.20 206.60
120 Naughton 38 Clerk - 12954.75 180.00
130 Yamaguchi 42 Clerk 6 10505.90 75.60
140 Fraye 51 Magr 6 21150.00 -
150 Williams 51 Sales 6 19456.50 637.65
160 Molinare 10 Magr 7 22959.20 -
170 Kermisch 15 Clerk 4 12258.50 110.10
180 Abrahams 38 Clerk 3 12009.75 236.50
190 Sneider 20 Clerk 8 14252.75 126.50
200 Scoutten 42 Clerk - 11508.60 84.20
210 Lu 10 Mgr 10 20010.00 -
220 Smith 51 Sales 7 17654.50 992.80
230 Lundquist 51 Clerk 3 13369.80 189.65
240 Daniels 10 Magr 5 19260.25 -
250 Wheeler 51 Clerk 6 14460.00 513.30
260 Jones 10 Magr 12 21234.00 -
270 Lea 66 Magr 9 18555.50 -
280 Wilson 66 Sales 9 18674.50 811.50
290 Quill 84 Mgr 10 19818.00 -
300 Davis 84 Sales 5 15454.50 806.10
310 Graham 66 Sales 13 21000.00 200.30
320 Gonzales 66 Sales 4 16858.20 844.00
330 Burke 66 Clerk 1 10988.00 55.50
340 Edwards 84 Sales 7 17844.00 1285.00
350 Gafney 84 Clerk 5 13030.50 188.00

Sample Files with BLOB and CLOB Data Type

This section shows the data found in the EMP_PHOTO files (pictures of
employees) and EMP_RESUME files (resumes of employees).

Quintana Photo

Appendix A. Sample Tables

83

Sample Tables

Figure 7. Delores M. Quintana

Quintana Resume
The following text is found in the db200130.asc and db200130.scr files.

Resume: Delores M. Quintana

Personal Information

Address: 1150 Eglinton Ave Mellonville, Idaho 83725
Phone: (208) 555-9933

Birthdate: September 15, 1925

Sex: Female

Marital Status: Married

Height: 52"

Weight: 120 Ibs.

Department Information

Employee Number: 000130

Dept Number: Cco1

Manager: Sally Kwan
Position: Analyst
Phone: (208) 555-4578
Hire Date: 1971-07-28
Education

84 sQL Getting Started

1965
1960

Work History
10/91 - present

12/85 - 9/91

1/79 - 11/85

Interests

« Cooking

* Reading

* Sewing

* Remodeling
Nicholls Photo

Figure 8. Heather A. Nicholls

Nicholls Resume

Sample Tables

Math and English, B.A. Adelphi University

Dental Technician Florida Institute of
Technology

Advisory Systems Analyst Producing
documentation tools for engineering
department.

Technical Writer Writer, text programmer, and
planner.

COBOL Payroll Programmer Writing payroll
programs for a diesel fuel company.

The following text is found in the db200140.asc and db200140.scr files.

Resume: Heather A. Nicholls

Appendix A. Sample Tables 85

Sample Tables

Personal Information

Address: 844 Don Mills Ave Mellonville, Idaho 83734

Phone: (208) 555-2310

Birthdate: January 19, 1946

Sex: Female

Marital Status: Single

Height: 58"

Weight: 130 lbs.

Department Information

Employee Number: 000140

Dept Number: co1

Manager: Sally Kwan

Position: Analyst

Phone: (208) 555-1793

Hire Date: 1976-12-15

Education

1972 Computer Engineering, Ph.D. University of
Washington

1969 Music and Physics, M.A. Vassar College

Work History

2/83 - present Architect, OCR Development Designing the
architecture of OCR products.

12/76 - 1/83 Text Programmer Optical character recognition
(OCR) programming in PL/1.

9/72 - 11/76 Punch Card Quality Analyst Checking punch

cards met quality specifications.

Interests

* Model railroading
* Interior decorating
* Embroidery

* Knitting

86 SQL Getting Started

Adamson Photo

VT

Figure 9. Bruce Adamson

Adamson Resume

Sample Tables

The following text is found in the db200150.asc and db200150.scr files.

Resume: Bruce Adamson

Personal Information
Address:

Phone:

Birthdate:

Sex:

Marital Status:
Height:

Weight:

Department Information
Employee Number:
Dept Number:

Manager:

Position:

Phone:

3600 Steeles Ave Mellonville, Idaho 83757
(208) 555-4489

May 17, 1947

Male

Married

6’0"

175 lbs.

000150

D11

Irving Stern
Designer
(208) 555-4510

Appendix A. Sample Tables

87

Sample Tables

88

Hire Date:

Education
1971

1968

Work History
8/79 - present

2[72 - 7179

9/71 - 1/72

Interests
* Racing motorcycles
* Building loudspeakers

1972-02-12

Environmental Engineering, M.Sc. Johns
Hopkins University

American History, B.A. Northwestern
University

Neural Network Design Developing neural
networks for machine intelligence products.

Robot Vision Development Developing
rule-based systems to emulate sight.

Numerical Integration Specialist Helping bank
systems communicate with each other.

* Assembling personal computers

» Sketching
Walker Photo

&

Figure 10. James H. Walker

Walker Resume

The following text is found in the db200190.asc and db200190.scr files.

Resume: James H. Walker

SQL Getting Started

Personal Information

Address:
Phone:
Birthdate:

Sex:

Marital Status:
Height:
Weight:

Department Information

Employee Number:

Dept Number:
Manager:
Position:
Phone:

Hire Date:

Education
1974

1972

Work History
6/87 - present

4/77 - 5187

9/74 - 3/77

Interests
* Wine tasting
» Skiing

Sample Tables

3500 Steeles Ave Mellonville, Idaho 83757
(208) 555-7325

June 25, 1952

Male

Single

511"

166 Ibs.

000190

D11

Irving Stern
Designer
(208) 555-2986
1974-07-26

Computer Studies, B.Sc. University of
Massachusetts

Linguistic Anthropology, B.A. University of
Toronto

Microcode Design Optimizing algorithms for
mathematical functions.

Printer Technical Support Installing and
supporting laser printers.

Maintenance Programming Patching assembly
language compiler for mainframes.

Appendix A. Sample Tables 89

Sample Tables

e Swimming
» Dancing

90 sQL Getting Started

Appendix B. Notices

Any reference to an IBM licensed program in this publication is not intended
to state or imply that only IBM’s licensed program may be used. Any
functionally equivalent product, program or service that does not infringe any
of IBM’s intellectual property rights may be used instead of the IBM product,
program, or service. Evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, is the user’s
responsibility.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the

IBM Director of Licensing

IBM CorporationNorth Castle Drive
Armonk, NY 10504-1785

US.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Department 071

1150 Eglinton Ave. East
North York, Ontario
M3C 1H7

CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

© Copyright IBM Corp. 1993, 1998 91

Trademarks

The following terms are trademarks or registered trademarks of the IBM

Corporation in the United States and/or other countries:

ACF/VTAM MVS/ESA
ADSTAR MVS/XA
AISPO NetView
AIX 0S/400
AlXwindows 0S/390
AnyNet 0s/2
APPN PowerPC
AS/400 QMF

CICS RACF

C Set++ RISC System/6000
C/370 SAA
DATABASE 2 SP
DatagLANCce SQL/DS
DataHub SQL~/400
DatalJoiner S/370
DataPropagator System/370
DataRefresher System/390
DB2 SystemView
Distributed Relational Database Architecture VisualAge
DRDA VM/ESA
Extended Services VSE/ESA
FFST VTAM
First Failure Support Technology WIN-OS/2
IBM

IMS

Lan Distance

Trademarks of Other Companies

The following terms are trademarks or registered trademarks of the

companies listed:

C-bus is a trademark of Corollary, Inc.

HP-UX is a trademark of Hewlett-Packard.

Java, HotJava, Solaris, Solstice, and Sun are trademarks of Sun Microsystems,
Inc.

Linux is a trademark of Linus Torvalds.

92 sQL Getting Started

Microsoft, Windows, Windows NT, Visual Basic, and the Windows logo are
trademarks or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by
IBM Corporation under license.

SCO is a trademark of The Santa Cruz Operation.
SINIX is a trademark of Siemens Nixdorf.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk (**), may be trademarks or service marks of others.

Appendix B. Notices

93

94 sQL Getting Started

Index

A

ADD CONSTRAINT statement 53
ALL, using in a query 50

ALTER TABLE statement 53

ANY keyword 50

arithmetic operators 24

AS clause 25

authorization ID 4

B

base table 3

BETWEEN predicate 48
binary integer, description 5
BLOB data type 67

BLOB string 67

C

case expression

description 34

SIGN function 34
casting data types

description 33
CHAR, data type 5
character string

as data type 5

fixed length 5

varying length 5
CL_SCHED sample table 73
CLOB data type 67
CLOB string 67
column

ASC, ascending order sort 23

definition of 3

DESC, descending order sort 23
column function 28

AVG 28

COUNT 28

MAX 28

MIN 28
column functions 28
combining, queries 45
command line processor 1
common table expression

description 36
comparison operator used in a

subquery 50

composite key 51
CONNECT statement 17

explicit 17

implicit 17

© Copyright IBM Corp. 1993, 1998

connecting queries 47
constraints
referential constraints 9
unique constraints 9
correlated reference, description 39
correlated subquery
description 39
when to use 41
correlation
description 38
name 40
subqueries using joins 42
subquery 39
correlation-name
qualified reference of column
name 38
rules for 38
CREATE DISTINCT TYPE 65
CREATE FUNCTION 66
CREATE TABLE statement 9
NOT NULL/NOT NULL WITH
DEFAULT value for column 9
CREATE TRIGGER 54
CREATE VIEW statement 13
WITH CHECK OPTION 13
cross product 58
cross-tabulation rows 63
CUBE 63
cross-tabulation rows 63
sub-total rows 63
CURRENT DATE special register
68
CURRENT FUNCTION PATH
special register 68
CURRENT SERVER special register
68
CURRENT TIME special register 68
CURRENT TIMESTAMP special
register 68
CURRENT TIMEZONE special
register 68

D

data conversion
join conditions 60
set operators 47
data structure
column 3
row 3
value 3

data type

distinct 65
data types

CHAR 5

DATE 5

DATETIME 5

DECIMAL 5

DOUBLE 5

FLOAT 5

INTEGER 5

REAL 5

SMALLINT 5

TIME 5

TIMESTAMP 5

VARCHAR 5
database manager 1
DATE, data type 5
DATETIME, data type 5
datetime values, descritption 5
DBLOB data type 67
DBLOB string 67
DECIMAL, data type 5
decimal, description 5
DELETE statement 12
DEPARTMENT sample table 73
distinct data type 65
DISTINCT keyword 23, 29
DOUBLE, data type 5

E

EMP_ACT sample table 75
EMP_PHOTO sample table 77
EMP_RESUME sample table 78
EMPLOYEE sample table 73
erasing the sample database 72
error messages

message identifier 18

SQLSCODE 18

SQLSTATE 18
EXCEPT ALL 46
EXCEPT operator 46

ordering results 47

usage restrictions involving 47

data types 47

EXISTS predicate 49
expressions 24
expressions, naming 25
external scalar function 66
external table function 66

95

F

FLOAT, data type 5
foreign key 52
FROM clause 19
FULL OUTER join 58
fullselect 33
ALL keyword 50
ANY keyword 50
subquery 10, 50
with INSERT statement 10
fullselect, defintion 10
function
built-in 28
column 28
description 28
scalar 28
user-defined 28

G

graphic string
fixed length 5
varying length 5
GROUP BY 24
GROUP BY clause
grouping column 30
with HAVING clause 31
grouping column, defintion 30

H

HAVING 24
HAVING clause
description 31

IN predicate 48
IN_TRAY sample table 78
inner join 58
INSERT statement 10
NOT NULL/NOT NULL WITH
DEFAULT value for column
10
installing the sample database 72
INTEGER, data type 5
interactive SQL, definition 1
INTERSECT ALL 47
INTERSECT operator 47
ordering results 47
usage restrictions involving 47
data types 47

J

join
correlated subqueries 42
cross product 58
data conversion 60
definition 26

96 SQL Getting Started

join (continued)
join conditions 58
without join conditions 58
join condition 58

K

key
composite 51
definition 51
foreign 52
primary 52
unique 52

L

large object location, definition 67
LEFT OUTER join 58
LIKE predicate 49
LOB
locator, definition 67
string, definition 67
locator 67

M

merging results of queries 45
modifying tables through a view 15
WITH CHECK OPTION 15

multiple node relational database,
definition 1

N

nested table expressions, description
36
nesting correlated subqueries 42
NOT BETWEEN predicate 48
NOT EXISTS predicate 49
NOT IN predicate 48
NOT LIKE predicate 49
null value 45
delete column value 12
null value, descritption 5
numbers, description 5

O

ORDER BY clause 22
set operators 47
order of operations 24, 28
ORG sample table 79
outer join
description 58
FULL OUTER join 58
LEFT OUTER join 58
RIGHT OUTER join 58
outer-level predicate 50
outer-level query, correlation 41

P

parent key, definition 52
partitioned relational database,
definition 1

precision, as a numeric attribute 5
predicate

IS NOT NULL 20

IS NULL 20
primary key 52
PROJECT sample table 79

qualifying objects 4, 17
queries, connecting 47

R

REAL, data type 5
recursive queries, description 63
referential integrity constraints
definition 51
description 52
foreign key 52
parent key 52
relational database, definition 1
relationship between tables and
views 13
removing duplicate rows 23
reserved schemas 4
restrictions
for set operators 47
result table 3
retrieving data 19
RIGHT OUTER join 58

ROLL-UP
sub-total rows 63
ROLLUP 63
row
definition of 3
selecting 20

S

SALES sample table 80
sample database
erasing 72
installing 72
sample tables 71, 91
scalar fullselects
description 33
scalar function 28
Scalar function
ABS 29
scalar function
DECIMAL 36
Scalar function
HEX 29
LENGTH 29

Scalar function (continued)

SIGN 29
YEAR 29
schema

definition of 4
search condition 20
select list 19
SELECT statement 19
SET clause
with UPDATE statement 12
SET CONSTRAINTS statement 53
sign, as a numeric attribute 5
SMALLINT, data type 5
SOME keyword 50
sorting rows 22
sourced function 66
special register 68
CURRENT DATE 68
CURRENT DEGREE 68
CURRENT FUNCTION PATH
68
CURRENT PATH 68
CURRENT SERVER 68
CURRENT TIME 68
CURRENT TIMESTAMP 68
CURRENT TIMEZONE 68
USER 68
STAFF sample table 81
STAFFG sample table 82
string
LOB 67
Structured Query Language (SQL),
definition 1
sub-total rows 63
subquery
definition 27
system catalogs 69

T

table 71
base table 3
combine data (join) 26
definition of 3
foreign key 52
primary key 52
qualifying a column name 38
result table 3
sample 71
unique constraint 52
unique key 52
table check constraints
deferred constraint checking 53
definition 51
description 53
table expressions
description 35

testing, existence 49
testing for existence 49
TIME, data type 5
TIMESTAMP, data type 5
triggers
after trigger 54
before trigger 54
CREATE TRIGGER 54
definition 51
description 54
transition variables 56

U

UNION ALL 45

UNION operator
description 45
ordering results 46
usage restrictions involving 47

data types 47

unique constraint 52

unique constraints
definition 51

unique key 52
unique constraint 52

UPDATE statement 12

user-defined functions 66
defining 66
external scalar function 66
external table function 66
sourced function 66

USER special register 68

Vv

value

definition of 3
value in SQL 5
VALUES clause

with INSERT statement 10
VARCHAR, data type 5
View

advantages 4

description 4
view

qualifying a column name 38

wW

WHERE clause 20

combine table data (join) in
SELECT statement 26
grouping considerations 31
WITH CHECK OPTION 15
WITH clause 36

45, 46

Index

97

98 SQL Getting Started

Contacting IBM

This section lists ways you can get more information from IBM.

If you have a technical problem, please take the time to review and carry out
the actions suggested by the Troubleshooting Guide before contacting DB2
Customer Support. Depending on the nature of your problem or concern, this
guide will suggest information you can gather to help us to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

Telephone

If you live in the U.S.A,, call one of the following numbers:
» 1-800-237-5511 to learn about available service options.

» 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to
order products or get general information.

» 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, see
Appendix A of the IBM Software Support Handbook. You can access this
document by selecting the "Roadmap to IBM Support” item at:
http://www.ibm.com/support/.

Note that in some countries, IBM-authorized dealers should contact their
dealer support structure instead of the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/
The DB2 World Wide Web pages provide current DB2 information about
news, product descriptions, education schedules, and more. The DB2 Product
and Service Technical Library provides access to frequently asked questions,
fixes, books, and up-to-date DB2 technical information. (Note that this
information may be in English only.)

Anonymous FTP Sites

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can find
demos, fixes, information, and tools concerning DB2 and many related
products.

© Copyright IBM Corp. 1993, 1998 99

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-I
These newsgroups are available for users to discuss their experiences with

DB2 products.

CompusServe
GO IBMDB?2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification Program for DB2 Universal
Database, go to http://www.software.ibm.com/data/db2/db2tech/db2cert.html

100 sQL Getting Started

Part Number: CT6N3NA

Printed in the United States of America
@ on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2856-00

CT6N3NA

