
IBM DB2 Universal Database

System Monitor Guide and Reference
Version 6

SC09-2849-00

IBM

IBM DB2 Universal Database

System Monitor Guide and Reference
Version 6

SC09-2849-00

IBM

Before using this information and the product it supports, be sure to read the general information under “Appendix F.
Notices” on page 411.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 1999. All rights reserved.
US Government Users Restricted Rights – Use duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book vii
Who Should Use This Book vii
How This Book is Structured. vii
Conventions ix

Chapter 1. Introducing the Database
System Monitor 1
Database System Monitor Capabilities. . . 1

Chapter 2. Using the Database System
Monitor 3
Database Manager Maintains Operation and
Performance Data 3

Monitor Switches Control Data Collected
by the Database Manager 4
Accessing Monitor Data 5

Snapshot Monitoring 5
Authority Required for Snapshot
Monitoring 8
Snapshot Monitor Interface 8
Information Available by Taking
Snapshots 9
Snapshot Uses an Instance Attachment or
a Database Connection 11
Dynamic SQL Snapshot 12
Availability of Snapshot Monitor Data 12

Event Monitors 12
Authority Required for Event Monitoring 18
Using Event Monitors 18
Querying the State of an Event Monitor 21
Information Available from Event
Monitors 21
Using Pipe Event Monitors 22

When Counters are Initialized 24
Resetting Monitor Data. 25
System Monitor Memory Requirements -
(mon_heap_sz) 27
Partitioned Database Considerations . . . 27

Taking a Snapshot on Multi-node
Systems 27
Using Event Monitors on Multi-node
Systems 29
Monitoring Subsections 30

Monitor Output Format 31
DB2 Productivity Tools 33

Chapter 3. Database System Monitor Data
Elements 35
How to Read the Data Element Tables . . 36

Element Types 37
Server Identification and Status 38

Start Database Manager Timestamp . . 39
Configuration NNAME at Monitoring
(Server) Node 39
Server Instance Name 40
Database Manager Type at Monitored
(Server) Node 40
Server Product/Version ID 41
Server Version. 41
Service Level 42
Server Operating System 42
Product Name 43
Product Identification 43
Status of DB2 Instance 44
Time Zone Displacement 44

Database Identification and Status 44
Database Name 45
Database Path 46
Database Activation Timestamp 46
Time of Database Connection 47
Database Deactivation Timestamp . . . 47
Status of Database 48
Catalog Node Network Name 48
Database Location 49
Catalog Node Number 49
Last Backup Timestamp 50

Application Identification and Status . . . 50
Application Handle (agent ID) 51
Application Status 52
ID of Code Page Used by Application 55
Application Status Change Time . . . 55
Application with Oldest Transaction 56
Application Name 56
Application ID 57
Sequence Number 59
Authorization ID 60
Configuration NNAME of Client . . . 60
Client Product/Version ID 61
Database Alias Used by Application 61
Host Product/Version ID 62
Outbound Application ID 62

© Copyright IBM Corp. 1993, 1999 iii

Outbound Sequence Number. 63
User Login ID. 64
DRDA Correlation Token 64
Client Process ID. 65
Client Operating Platform 65
Client Communication Protocol 66
Database Country Code 67
Application Agent Priority 67
Application Priority Type 68
User Authorization Level 68
Node Number 69
Coordinating Node 70
Connection Request Start Timestamp 70
Maximum Number of Concurrent
Connections 71
Connection Request Completion
Timestamp 71
Previous Unit of Work Completion
Timestamp 72
Unit of Work Start Timestamp 73
Unit of Work Stop Timestamp 74
Most Recent Unit of Work Elapsed Time 75
Unit of Work Completion Status . . . 75
Unit of Work Status 76
Previous Transaction Stop Time 76
Application Idle Time 77
DB2 Agent Information 77

Database Manager Configuration 78
Agents and Connections 78
Sort 94
Hash Join 101
Fast Communication Manager 104

Database Configuration 110
Buffer Pool Activity 110
Non-buffered I/O Activity 140
Catalog Cache. 146
Package Cache 150
Database Heap 156
Logging 157

Database and Application Activity 164
Locks and Deadlocks 164
Lock Wait Information 176
Rollforward Monitoring 184
Table Activity 186
SQL Cursors 197
SQL Statement Activity. 202
SQL Statement Details 215
Subsection Details 227
Dynamic SQL 234
Intra-query Parallelism 237

CPU Usage. 238
Snapshot Monitoring Elements 247
Event Monitoring Elements 250

DB2 Connect 254
DCS Database Name 255
Host Database Name 255
Database Alias at the Gateway 256
DB2 Connect Gateway First Connect
Initiated 256
Maximum Number of Concurrent
Connections 256
Total Number of Attempted Connections
for DB2 Connect 257
Current Number of Connections for DB2
Connect 257
Number of Connections Waiting for the
Host to Reply 258
Number of Connections Waiting for the
Client to Send Request 258
Elapsed Time Spent on DB2 Connect
Gateway Processing 259
Number of SQL Statements Attempted 259
Number of Open Cursors 259
DCS Application Status 260
Host Coded Character Set ID. 261
Outbound Communication Protocol . . 261
Outbound Communication Address . . 262
Inbound Communication Address . . . 262
Inbound Number of Bytes Received . . 263
Outbound Number of Bytes Sent . . . 263
Outbound Number of Bytes Received 264
Inbound Number of Bytes Sent 264
Transaction ID 265
Host Response Time 265
Most Recent Response Time for Connect 266
Most Recent Connection Elapsed Time 266
Communication Errors 266
Communication Error Time 267
Transaction Processor Monitoring . . . 267

Chapter 4. Event Monitor Output 271
Output Records 271
Matching Event Records with Their
Application 276
File Event Monitor Buffering 277

Blocked Event Monitors 278
Non-Blocked Event Monitors. 278
File Event Monitor Target 278

Reading an Event Monitor Trace 281
Reading the Log Stream Header. . . . 282

iv System Monitor Guide and Reference

Reading the Log Header 283
Reading the Data Stream 284
Swapping Bytes in Numerical Values 285
Printing Event Records 286

Chapter 5. Snapshot Monitor Output . . 287
Snapshot Requests 287
Snapshot Output 291
Snapshot Scenarios 292
Making a Snapshot Request 293

Setting Up the sqlma and Issuing the
Snapshot Call 294

Reading the Snapshot 295

Appendix A. Database System Monitor
Interfaces 299
CREATE EVENT MONITOR 300
db2ConvMonStream 310
db2eva - Event Analyzer 313
db2evmon - Event Monitor Productivity
Tool 315
db2GetSnapshot - Get Snapshot 317
DROP EVENT MONITOR Command and
SQL 321
EVENT_MON_STATE 322
FLUSH EVENT MONITOR 323
GET DATABASE MANAGER MONITOR
SWITCHES. 324
GET MONITOR SWITCHES 326
GET SNAPSHOT. 328
LIST ACTIVE DATABASES 342
LIST APPLICATIONS 344
LIST DCS APPLICATIONS 346
RESET MONITOR 349
SET EVENT MONITOR STATE 351
SQLCACHE_SNAPSHOT 353
sqlmon - Get/Update Monitor Switches 355

sqlmonsz - Estimate Size Required for
db2GetSnapshot() Output Buffer 358
sqlmrset - Reset Monitor 361
UPDATE MONITOR SWITCHES 364

Appendix B. Logical Data Groupings . . 367

Appendix C. Parallel Edition Version 1.2
Users 391
API Changes 392
Obsolete Commands 392

Appendix D. DB2 Version 1 sqlestat
Users 393

Appendix E. How the DB2 Library Is
Structured 395
Completing Tasks with SmartGuides . . . 395
Accessing Online Help 396
DB2 Information – Hardcopy and Online 398
Viewing Online Information 405

Accessing Information with the
Information Center 406

Setting Up a Document Server 407
Searching Online Information 408
Printing the PostScript Books. 408
Ordering the Printed Books 409

Appendix F. Notices 411
Trademarks 412
Trademarks of Other Companies 412

Index 415

Contacting IBM 425

Contents v

vi System Monitor Guide and Reference

About This Book

Your DB2 Database Manager is instrumented to gather data on its operation
and performance. You can use this data to:
v Monitor database activities
v Assist in problem determination
v Analyze performance
v Help configure the system.

The DB2 DBMS function that collects this data is called the database system
monitor. This book describes how to use the database system monitor.

Various tools allow users to exploit the strengths of the database system
monitor with minimal explicit knowledge of its associated commands, APIs,
or data formats. Some of these tools, for example the Control Center, are
described briefly, but for detailed information you should refer to the
Administration Guide.

Who Should Use This Book

This book is for any users who require an understanding of the operation of
the DB2 database system monitor, including how to program to its interface.

It is intended for database administrators, system administrators, security
administrators and system operators who are maintaining a database accessed
by local or remote clients. It is also for software developers who are interested
in building software tools that use the DB2 database system monitor to assist
in these administrative functions.

How This Book is Structured

This book starts with a description of the database system monitor and then
details the data that you can collect with it.

Chapter 1. Introducing the Database System Monitor, introduces the database
system monitor and describes its capabilities.

Chapter 2. Using the Database System Monitor, describes the information that
is available from the database system monitor: how to collect it and how to
work with it.

© Copyright IBM Corp. 1993, 1999 vii

Chapter 3. Database System Monitor Data Elements, provides details of the
information elements that you can collect with the database system monitor.

Chapter 4. Event Monitor Output, describes event monitor output and is
primarily for programmers who want to write applications that read records
from an event monitor trace.

Chapter 5. Snapshot Monitor Output, describes snapshot monitor output and
is primarily for programmers who want to write applications that read
snapshot records.

Appendix A. Database System Monitor Interfaces, contains detailed
descriptions of the commands, SQL statements, APIs, and tools that you can
use with the database system monitor.

Appendix B. Logical Data Groupings, lists all the structures in the
self-describing snapshot and event monitor data streams, and the data
elements associated with each.

Appendix C. Parallel Edition Version 1.2 Users, is intended for DB2 Parallel
Edition Version 1.2. users of database system monitor who are upgrading their
system to DB2 Version 6.

Appendix D. DB2 Version 1 sqlestat Users, is intended for DB2 Version 1
sqlestat users.

Appendix E. How the DB2 Library Is Structured describes the DB2 library;
including books and online help.

Appendix F. Notices contains notice and trademark information.

viii System Monitor Guide and Reference

Conventions

You will find this book easier to use if you look for these conventions:
v Boldface type indicates an important item or concept
v Italics type indicates new terms, data elements, configuration parameters, or

book titles.
v Monospace type indicates an example of text that is displayed on the screen

or contained in a file. It is also used for examples of sample code and
calculations that can be performed.

v UPPERCASE TYPE indicates a file name, command name, or acronym.

Text in examples can be black or a lighter type.

db2 commands and output associated with the
database system monitor are in black type
other db2 commands used are in lighter type

About This Book ix

x System Monitor Guide and Reference

Chapter 1. Introducing the Database System Monitor

This chapter gives you a brief overview of the database system monitor’s
capabilities. It also discusses the integral role that the database system
monitor plays in monitoring database activity and performance.

If you want to get started quickly, read this chapter and “Chapter 2. Using the
Database System Monitor” on page 3. The information in these two chapters,
combined with the reference material in “Appendix A. Database System
Monitor Interfaces” on page 299, provides the information required to use the
database system monitor.

“Chapter 3. Database System Monitor Data Elements” on page 35 provides
complete details on all the data available with the database system monitor.

Database System Monitor Capabilities

The capabilities of the database system monitor opens several possibilities:
v Activity monitoring

For example, using the database system monitor you can obtain:
– The list of database connections:

- The status of each connection.
- The SQL that each is executing.
- The locks that each holds.

– The tables being accessed and the number of rows read and written for
each.

You can also track the progression of a query or application using
information, such as:
– The cursors that are currently open for this application.
– The number of rows read or CPU consumed (if available from the

operating system) by this application.
– How long each query has been running.
– How long an application has been idle.

v Problem determination

You can collect data to help diagnose the cause of poor system and
application performance. For example:

© Copyright IBM Corp. 1993, 1999 1

– By tracing deadlocks you can determine conflicts between applications
that lead to poor overall system performance.

– By looking at the amount of time applications spent waiting for locks
and which application is holding these locks you can identify
applications that fail to commit their transactions, a common cause of
poor system performance.

v Performance analysis

You can use the information available to analyze the performance of
individual applications or SQL queries. For example, you can monitor for:
– The CPU consumed by each individual statement or application.
– The time it takes to run a statement.
– The number of rows read and returned.
– The use of database resources, such as buffer pool, prefetchers, and SQL

cache.
– The number of times a particular DB2 dynamic SQL package has been

executed.

These run-time metrics are useful in tuning queries for optimal utilization
of your database resources. Modifying a query or certain system parameters
can result in dramatic performance improvements. The impact of your
modifications can be measured with the database system monitor.

You can also track the usage of indexes and tables, and in a partitioned
database, the progression of a query on each partition. Adding indices or
repartitioning the data often results in significant performance
improvements.

Carrying out some these performance analysis tasks may also require input
that is obtained from the operating system, such as system load or the
amount of free storage, or from other DB2 tools such as the db2 explain
facility. For example, the db2expln application lets you analyze the access
plan generated by the SQL compiler, which can then be compared with the
run-time information available from the database system monitor.

v System configuration

You can assemble the information necessary to evaluate and tune the
effectiveness of your database manager and database configuration.

You can use the database system monitor to help monitor, tune, and manage
your databases whether they are local or remote.

2 System Monitor Guide and Reference

Chapter 2. Using the Database System Monitor

This chapter describes the data that is available from the DB2 Version 6
database system monitor. It explains how you can either take a snapshot of
this data, or request the database manager to log information when certain
events take place.

It describes the types of snapshots that you can take, and how they can be
taken using CLP (command line processor) commands or APIs (application
programming interfaces). It details the types of event monitors that can be
used for data collection, and how to collect that information using commands
and tools that come with DB2.

Database Manager Maintains Operation and Performance Data

Built into the database manager is the ability to collect data about its
operation and performance, and that of the applications using it. The database
manager maintains information at the following levels:
v Database manager
v Database
v DCS database
v Application (database connection)
v DCS application
v Table
v Table space
v Buffer pool
v Transaction
v DCS transaction
v Statement
v DCS statement
v Subsection
v Dynamic SQL package

Collecting some of this data introduces some processing overhead. For
example, in order to calculate the execution time of an SQL statement, the
database manager must make a call to the operating system to obtain
timestamps before and after statement execution. These types of system calls
are generally expensive. In order to minimize the overhead involved in

© Copyright IBM Corp. 1993, 1999 3

maintaining monitoring information, monitor switches control the collection
of potentially expensive data by the database manager.

Monitor Switches Control Data Collected by the Database Manager

The database system monitor will always collect some basic information, but
you can use the switches to govern the amount of expensive data collected.
Monitor switches can be set:
v Explicitly, this is usually done using the UPDATE MONITOR SWITCHES

command.
You can also set these switches in the database manager configuration file if
you want data collection to start from the moment the server is started.
Switches can be changed without stopping the database management
system. This dynamic updating of switches requires that the application
doing the update must be explicitly attached to the instance for the updates
to take effect.

Note: Any existing snapshot applications will not be affected by a dynamic
update. In order to pick up the new default values for the switches, a
monitoring application must terminate and re-establish its connection

Switches are explained in “Resetting Monitor Data” on page 25. For more
information on configuration see the dft_monswitches configuration
parameters in the Administration Guide.

Updating the switches in the database manager configuration file will
update the switches for all nodes in a partitioned database if the user is
attached to it.

v Implicitly, when an event monitor is activated. Event monitors are
explained in “Event Monitors” on page 12.

To see if your database manager is currently collecting any monitor data issue
the command:

db2 get database manager monitor switches

The resulting output indicates the database manager switch settings and the
time that they were turned on.

DBM System Monitor Information Collected

Buffer Pool Activity Information (BUFFERPOOL) = OFF
Lock Information (LOCK) = OFF
Sorting Information (SORT) = ON 04-18-1997 10:11:01.738400
SQL Statement Information (STATEMENT) = OFF
Table Activity Information (TABLE) = OFF
Unit of Work Information (UOW) = OFF

4 System Monitor Guide and Reference

In this example, in addition to collecting basic-level information, the database
manager is collecting all information under control of the sort switch.

Accessing Monitor Data

There are two ways to access the monitor data collected by the database
manager:
v Snapshot monitoring

Taking a snapshot gives you information for a specific point in time. A
snapshot is a picture of the current state of activity in the database manager
for a particular object or group of objects.

v Event monitors

You can request the database manager to automatically log monitor data to
files or a named pipe when specific events occur. This allows you to collect
information about transient events that are difficult to monitor through
snapshots, such as deadlocks and transaction completions.

Snapshot Monitoring

The snapshot monitor provides two categories of information for each level
being monitored:
v State

This includes information such as:
– the current status of the database
– information on the current or most recent unit of work
– the list of locks being held by an application
– the status of an application
– the current number of connections to a database
– the most recent SQL statement performed by an application
– run-time values for configurable system parameters.

v Counters
These accumulate counts for activities from the time monitoring started
until the time a snapshot is taken. Such as:
– the number of deadlocks that have occurred
– the number of transactions performed on a database
– the amount of time an application has waited on locks.

For example, you can obtain a list of the locks held by applications connected
to a database by taking a database lock snapshot. First, turn on the LOCK

Chapter 2. Using the Database System Monitor 5

switch (UPDATE MONITOR SWITCHES), so that the time spent waiting for
locks is collected.

Note: You can create and populate the sample database by running
sqllib/misc/db2sampl.

Issuing the GET SNAPSHOT command returns the following.
Database Lock Snapshot

Database name = SAMPLE
Database path = /home/bourbon/bourbon/NODE...
Input database alias = SAMPLE
Locks held = 5
Applications currently connected = 1
Applications currently waiting on locks = 0
Snapshot timestamp = 03-17-1999 15:40:29.976539

Application handle = 0
Application ID = LOCAL.bourbon.970411143813
Sequence number = 0001
Application name = db2bp_32
Authorization ID = BOURBON
Application status = UOW Waiting
Status change time = Not Collected
Application code page = 850
Locks held = 5
Total wait time (ms) = 0

List of Locks
Lock Object Name = 4
Object Type = Row
Tablespace Name = SYSCATSPACE Granted
Table Schema = SYSIBM
Table Name = SYSTABLES
Mode = NS
Status = Granted
Lock Escalation = NO

Lock Object Name = 2
Object Type = Table
Tablespace Name = SYSCATSPACE Granted
Table Schema = SYSIBM
Table Name = SYSTABLES
Mode = IS

db2 update monitor switches using LOCK on
db2 connect to sample

db2 +c list tables for all # this command will require locks
on the database catalogs

db2 get snapshot for locks on sample

6 System Monitor Guide and Reference

Status = Granted
Lock Escalation = NO

Lock Object Name = 259
Object Type = Row
Tablespace Name = SYSCATSPACE Granted
Table Schema = SYSIBM
Table Name = SYSTABLES
Mode = NS
Status = Granted
Lock Escalation = NO

Lock Object Name = 7
Object Type = Table
Tablespace Name = SYSCATSPACE Granted
Table Schema = SYSIBM
Table Name = SYSTABLES
Mode = IS
Status = Granted
Lock Escalation = NO

Lock Object Name = 0
Object Type = Internal P Lock
Tablespace Name =
Table Schema =
Table Name =
Mode = S
Status = Granted
Lock Escalation = NO

From this snapshot, you can see that there is currently one application
connected to the SAMPLE database, and it is holding five locks.

Locks held = 5
Applications currently connected = 1

Note that the time (Status change time) when the Application status
became UOW Waiting is returned as Not Collected, because the UOW switch is
OFF.

The lock snapshot also returns the total time spent waiting for locks (so far),
by applications connected to this database.

Total wait time (ms) = 0

This is an example of an accumulating counter. “Resetting Monitor Data” on
page 25 explains how counters can be reset to zero.

Chapter 2. Using the Database System Monitor 7

Authority Required for Snapshot Monitoring

To perform any of the snapshot monitor tasks, you must have SYSMAINT,
SYSCTRL, or SYSADM authority for the database manager instance that you
wish to monitor.

Snapshot Monitor Interface

Snapshot monitoring is invoked using the following application programming
interfaces (APIs):

db2GetSnapshot()
take a snapshot

sqlmon()
set or query monitor switch settings

sqlmonrset()
reset system monitor counters

sqlmonsz()
estimate the size of the data that would be returned for a particular
invocation of db2GetSnapshot()

db2ConvMonStream()
convert Version 6 self-describing data streams to pre-Version 6 fixed
size data structures

The Command Line Processor (CLP) provides a convenient command-based
front-end to the snapshot APIs. For example, the GET SNAPSHOT command
invokes the db2GetSnapshot() API.

Note: Starting in Version 6, the sqlmonss() - Get Snapshot API is replaced by
the db2GetSnapshot() API.

“Appendix A. Database System Monitor Interfaces” on page 299 contains
detailed information on the commands and APIs associated with the database
system monitor.

8 System Monitor Guide and Reference

Information Available by Taking Snapshots

The following table lists all the supported snapshot request types. For certain
request types, some information is returned only if the associated monitor
switch is set ON. See “Chapter 3. Database System Monitor Data Elements” on
page 35 to determine if a required counter is under switch control.

In the table, the API Request type column identifies the value that is supplied
as input to the SQLMA input structure in the db2GetSnapshot() Snapshot API
routine.

API request type CLP command Information returned

List of connections

SQLMA_APPLINFO_ALL list applications [show detail] Application identification information for all
applications currently connected to a database
that is managed by the DB2 instance on the node
where snapshot is taken.

SQLMA_DBASE_APPLINFO list applications for database
dbname [show detail]

Same as SQLMA_APPLINFO_ALL for each
application currently connected to the specified
database.

SQLMA_DCS_APPLINFO_ALL list dcs applications Application identification information for all
DCS applications currently connected to a
database that is managed by the DB2 instance on
the node where snapshot is taken.

Database manager snapshot

monitor
data

dbm
switches

Event
Monitor

Database
System
Monitor

DB2
Database Manager

Snapshot

Interface

Tools
db2gov
db2batch

APIS
sqlrset()
db2GetSnapshot()

GUI

sqlmon()
sqlmonsz()

Control
Center
Commands

reset monitor switches
get snapshot
list applications
list dcs application
list active databases
get dbm monitor switches
get monitor switches
update monitor switches

Figure 1. Snapshot Monitoring Interfaces

Chapter 2. Using the Database System Monitor 9

API request type CLP command Information returned

SQLMA_DB2 get snapshot for dbm Database manager level information, including
internal monitor switch settings.

get dbm monitor switches Returns internal monitor switch settings.

Database snapshot

SQLMA_DBASE get snapshot for database on
dbname

Database level information and counters for a
database. Information is returned only if there is
at least one application connected to the
database.

SQLMA_DBASE_ALL get snapshot for all databases Same as SQLMA_DBASE for each database
active on the node.

list active databases The number of connections to each active
database. Includes databases that were started
using the ACTIVATE DATABASE command, but
have no connections.

SQLMA_DCS_DBASE get snapshot for dcs database
on dbname

Database level information and counters for a
specific DCS database. Information is returned
only if there is at least one application connected
to the database.

SQLMA_DCS_DBASE_ALL get snapshot for all databases Same as SQLMA_DCS_DBASE for each database
active on the node.

Application snapshot

SQLMA_APPL get snapshot for application
applid appl-id

Application level information, includes
cumulative counters, status information, and
most recent SQL statement executed (if statement
switch is set).

SQLMA_AGENT_ID get snapshot for application
agentid appl-handle

Same as SQLMA_APPL.

SQLMA_DBASE_APPLS get snapshot for applications
on dbname

Same as SQLMA_APPL, for each application that
is connected to the database on the node.

SQLMA_APPL_ALL get snapshot for all
applications

Same as SQLMA_APPL, for each application that
is active on the node.

SQLMA_DCS_APPL get snapshot for dcs
application applid appl-id

Application level information, includes
cumulative counters, status information, and
most recent SQL statement executed (if statement
switch is set).

SQLMA_DCS_APPL_ALL get snapshot for all dcs
applications

Same as SQLMA_DCS_APPL, for each DCS
application that is active on the node.

SQLMA_DCS_APPL_HANDLE get snapshot for dcs
application agentid
appl-handle

Same as SQLMA_DCS_APPL.

SQLMA_DCS__DBASE_APPLS get snapshot for dcs
applications on dbname

Same as SQLMA_DCS_APPL, for each DCS
application that is connected to the database on
the node.

Table snapshot

10 System Monitor Guide and Reference

API request type CLP command Information returned

SQLMA_DBASE_TABLES get snapshot for tables on
dbname

Table activity information at the database and
application level for each application connected
to the database, and at the table level for each
table that was accessed by an application
connected to the database. Requires the table
switch.

Lock snapshot

SQLMA_APPL_LOCKS get snapshot for locks for
application applid appl-id

List of locks held by the application. Also, lock
wait information if any and the lock switch is
ON.

SQLMA_APPL_LOCKS_AGENT_ID get snapshot for locks for
application agentid
appl-handle

Same as SQLMA_APPL_LOCKS.

SQLMA_DBASE_LOCKS get snapshot for locks on
dbname

Lock information at the database level, and
application level for each application connected
to the database. Requires the lock switch.

Table space snapshot

SQLMA_DBASE_TABLESPACES get snapshot for tablespace
on dbname

Information about table space activity at the
database level, the application level for each
application connected to the database, and the
table space level for each table space that has
been accessed by an application connected to the
database. Requires the buffer pool switch.

Buffer pool snapshot

SQLMA_BUFFERPOOLS_ALL get snapshot for all
bufferpools

Buffer pool activity counters. Requires the buffer
pool switch.

SQLMA_DBASE_BUFFERPOOLS get snapshot for bufferpools
on dbname

Same as SQLMA_BUFFERPOOLS_ALL, but for
specified database only.

Dynamic SQL snapshot

SQLMA_DYNAMIC_SQL get snapshot for dynamic sql
on dbname

Point-in-time statement information from the
SQL statement cache for the database.

Snapshot Uses an Instance Attachment or a Database Connection

Snapshot monitoring requires an instance attachment or a database
connection. (An instance attachment is a connection between an application
and an instance of the DB2 database manager.)

If there is neither an attachment to an instance, nor a connection to a
database, a default instance attachment is created. The instance attachment is
usually done implicitly to the instance specified by the DB2INSTANCE
environment variable when the first database system monitor API is invoked
by the application. It can also be done explicitly, using the ATTACH TO
command.

Chapter 2. Using the Database System Monitor 11

If there is both an instance attachment and a database connection, the instance
attachment is used.

Once an application is attached or connected, all system monitor requests that
it invokes are directed to that instance. This allows a client to monitor a
remote server, by simply attaching to the instance, or connecting to one of the
databases on it.

Dynamic SQL Snapshot

The DB2 statement cache stores packages and statistics for frequently used
SQL statements. You can examine SQL activity by taking a snapshot of this
cache. Due to the volume of records that can be returned from such a
snapshot, a table function exists to view its contents (see
“SQLCACHE_SNAPSHOT” on page 353).

A snapshot of the statement cache can only be taken over a database
connection:

v GET SNAPSHOT FOR DYNAMIC SQL ON database-alias WRITE TO FILE
command

v db2GetSnapshot API with a request type of SQLMA_DYNAMIC_SQL and
iStoreResult set to TRUE

If write to file is attempted over an instance attachment, the request will be
rejected.

Availability of Snapshot Monitor Data

If all applications disconnect from a database and the database deactivates,
then the system monitor data for that database is no longer available. To
obtain monitor information for all database activity during a given period you
may want to use an event monitor. Alternatively, you can keep the database
active until your final snapshot has been taken, either by starting it with the
ACTIVATE DATABASE command, or by maintaining a permanent connection
to the database.

Event Monitors

In contrast to taking a point in time snapshot, an event monitor writes out
database system monitor data to either a file or a named pipe, when one of
the following events occurs:
v end of a transaction
v end of a statement
v a deadlock
v start of a connection

12 System Monitor Guide and Reference

v end of a connection
v database activation
v database deactivation
v end of a statement’s subsection (when a database is partitioned)
v flush event monitor statement issued.

An event monitor effectively provides the ability to obtain a trace of the
activity on a database.

For example, you can request that DB2 logs the occurrence of deadlocks
between connections to a database. First, you must create and activate a
DEADLOCK event monitor:

Now, two applications using the database enter a deadlock. That is, each one
is holding a lock that the other one needs in order to continue processing. The
deadlock is eventually detected and resolved by the DB2 deadlock detector
component, which will rollback one of the transactions. The following figures
illustrate this scenario.

db2 connect to sample

db2 connect to sample

db2 "create event monitor dlockmon for
deadlocks write to file '/tmp/dlocks'"

mkdir /tmp/dlocks
db2 "set event monitor dlockmon state 1"

db2 "create event monitor dlockmon for
deadlocks write to file 'c:\tmp\dlocks'"

mkdir c:\tmp\dlocks
db2 "set event monitor dlockmon state 1"

For UNIX systems

For OS/2 and Windows systems

Monitor Session

Monitor Session

Chapter 2. Using the Database System Monitor 13

Note: The +c option turns autocommit off for CLP.

Application 1 is now holding an exclusive lock on a row of the staff table.

Application 2 now has an exclusive lock on a row of the department table.

Assuming cursor stability, Application 1 needs a share lock on each row of the
department table as the rows are fetched, but a lock on the last row cannot be
obtained because Application 2 has an exclusive lock on it. Application 1
enters a LOCK WAIT state, while it waits for the lock to be released.

Application 2 also enters a LOCK WAIT state, while waiting for Application 1
to release its exclusive lock on the last row of the staff table.

These applications are now in a deadlock. This waiting will never be resolved
because each application is holding a resource that the other one needs to
continue. Eventually, the deadlock detector checks for deadlocks (see the

db2 +c "insert into staff values (1, 'Ofer',
1, 'Mgr', 0, 0, 0)"

DB20000I The SQL command completed
successfully.

db2 connect to sample

Application 1

db2 connect to sample
db2 +c "insert into department values ('1',

'System Monitor', '1', 'A00', NULL)"
DB20000I The SQL command completed
successfully.

Application 2

db2 +c select deptname from depar tment

Application 1

db2 +c select name from staff

Application 2

14 System Monitor Guide and Reference

dlchktime database manager configuration parameter in the Administration
Guide) and chooses a victim to rollback:

At this point the event monitor logs a deadlock event to its target. Application
1 can now continue:

Because an event monitor buffers its output and this scenario did not generate
enough event records to fill a buffer, the event monitor values are forced to
the event monitor output writer:

The event trace is written as a binary file. It that can now be formatted using
the db2evmon tool:

This will format and print to stdout, a trace similar to the following:

SQLN0991N The current transaction has been
rolled back because of a deadlock or timeout.
Reason code "2". SQLSTATE=40001

Application 2

DEPTNAME

PLANNING
INFORMATION CENTER
. . .

SOFTWARE SUPPORT
SYSTEM MONITOR

9 record(s) selected

Application 1

db2 "flush event monitor dlockmon buffer"
DB20000I The SQL command completed
successfully.

Monitor Session

db2evmon -path /tmp/dlocks

Reading /tmp/dlocks/00000000.evt . . .

Monitor Session

Chapter 2. Using the Database System Monitor 15

--
EVENT LOG HEADER

Event Monitor name: DLOCKMON
Server Product ID: SQL05000
Version of event monitor data: 6
Byte order: BIG ENDIAN
Number of nodes in db2 instance: 1
Codepage of database: 850
Country code of database: 1
Server instance name: bourbon

--

--
Database Name: SAMPLE
Database Path: /home/bourbon/bourbon/NODE0000/SQL00002/
First connection timestamp: 06-03-1997 13:31:13.607548
Event Monitor Start time: 06-03-1997 13:32:11.676071

--

3) Connection Header Event ...
Appl Handle: 0
Appl Id: *LOCAL.bourbon.970603173114 - Monitor session
Appl Seq number: 0001
DRDA AS Correlation Token: *LOCAL.bourbon.970603173113
Program Name : db2bp_32
Authorization Id: BOURBON
Execution Id : bourbon
Codepage Id: 850
Country code: 1
Client Process Id: 63590
Client Database Alias: sample
Client Product Id: SQL05000
Client Platform: AIX
Client Communication Protocol: Local
Client Network Name:
Connect timestamp: 06-03-1997 13:31:13.607548

4) Connection Header Event ...
Appl Handle: 1 - Application 1
Appl Id: *LOCAL.bourbon.970603173330
Appl Seq number: 0001
DRDA AS Correlation Token: *LOCAL.bourbon.970603173329
Program Name : db2bp_32
Authorization Id: BOURBON
Execution Id : bourbon
Codepage Id: 850
Country code: 1
Client Process Id: 119710
Client Database Alias: sample
Client Product Id: SQL05000
Client Platform: AIX
Client Communication Protocol: Local
Client Network Name:
Connect timestamp: 06-03-1997 13:33:29.518568

16 System Monitor Guide and Reference

5) Connection Header Event ...
Appl Handle: 2
Appl Id: *LOCAL.bourbon.970603173409 - Application 2
Appl Seq number: 0001
DRDA AS Correlation Token: *LOCAL.bourbon.970603173408
Program Name : db2bp_32
Authorization Id: BOURBON
Execution Id : bourbon
Codepage Id: 850
Country code: 1
Client Process Id: 33984
Client Database Alias: sample
Client Product Id: SQL05000
Client Platform: AIX
Client Communication Protocol: Local
Client Network Name:
Connect timestamp: 06-03-1997 13:34:08.972643

6) Deadlock Event ...
Number of applications deadlocked: 2 - Deadlock
Deadlock detection time: 06-03-1997 13:36:48.817786
Rolled back Appl Id: : *LOCAL.bourbon.970603173409
Rolled back Appl seq number: : 0001

7) Deadlocked Connection ...
Appl Id: *LOCAL.bourbon.970603173409
Appl Seq number: 0001
Appl Id of connection holding the lock: *LOCAL.bourbon.970603173330
Seq. no. of connection holding the lock:
Lock wait start time: 06-03-1997 13:36:43.251687
Deadlock detection time: 06-03-1997 13:36:48.817786
Table of lock waited on : STAFF
Schema of lock waited on : BOURBON
Tablespace of lock waited on : USERSPACE1
Type of lock: Row
Mode of lock: X
Lock object name: 39

8) Deadlocked Connection ...
Appl Id: *LOCAL.bourbon.970603173330
Appl Seq number: 0001
Appl Id of connection holding the lock: *LOCAL.bourbon.970603173409
Seq. no. of connection holding the lock:
Lock wait start time: 06-03-1997 13:35:32.227521
Deadlock detection time: 06-03-1997 13:36:48.817786
Table of lock waited on : DEPARTMENT
Schema of lock waited on : BOURBON
Tablespace of lock waited on : USERSPACE1
Type of lock: Row
Mode of lock: X
Lock object name: 15

This event monitor trace shows that there was 1 application connected to the
database when the event monitor was activated. This is indicated by the first

Chapter 2. Using the Database System Monitor 17

Connection Header Event record in the output (record number 3). A Connection
Event Header is generated for each active connection when an event monitor
is turned on, and for each subsequent connection, once it becomes active. The
other two Connection Headers, (records 4 and 5) were generated when the
two applications connected.

The trace also shows that a deadlock occurred (record number 6). It shows
which locks on which tables caused this deadlock (record numbers 7 and 8),
and which application the deadlock detector chose to roll back (record
number 6).

The db2eva graphical tool can also be used for formatting a trace. It is
particularly useful for handling file traces that are too large to be read with
db2evmon. It displays collected information in a tabular format. It includes a
number of different view options, which allows you to filter unwanted records
and drill down to the periods of interest in the trace. For instance, you can
decide to display only the transaction events for a given connection. It also
allows you to view the statement text for static SQL that it automatically
fetches from the DB catalog (the text is only available for dynamic SQL in the
event monitor trace).

You can invoke this tool with the db2eva command (see the Command
Reference).

Note: The files must be available on the machine where you invoked db2eva.

The db2eva tool is available on OS/2 and Windows systems.

Authority Required for Event Monitoring

To define and use an event monitor on a database, you must have at least
DBADM authority on that database.

Using Event Monitors

As illustrated in the sample scenario, collecting system monitor data with an
event monitor is a three step process:
1. Create the event monitor
2. Activate the event monitor
3. Read the trace produced.

Create the event monitor.

18 System Monitor Guide and Reference

Specify the events to be monitored. An event monitor is created and activated
by using SQL statements. Unlike snapshot monitoring, where data can be
collected at the database manager level, an event monitor only gathers data
for a single database.

Creating an event monitor stores its definition in the event monitor database
system catalogs:

SYSCAT.EVENTMONITORS event monitors defined for the database

SYSCAT.EVENTS events monitored for the database

It is necessary to connect to the database when defining an event monitor.

Activate the event monitor.

Activating an event monitor starts a process or thread, which records monitor
data to either a named pipe or a file as events occur. You may want an event
monitor to be activated as soon as the database is started, so that all activity is
monitored from start-up. This can be done by creating an AUTOSTART event
monitor:

This event monitor will be automatically started every time the database is
activated, either by using the ACTIVATE DATABASE command, or when the
first application connects. Note that creating an AUTOSTART event monitor
does not activate it. This event monitor will be activated the next time the
database is stopped and re-activated. An event monitor that has not been
automatically started must be manually started:

All event monitors for a database are stopped when the database is
deactivated.

Read the trace produced.

Reading a trace can be done using the db2evmon applet, or by writing your
own application (see “Chapter 4. Event Monitor Output” on page 271). The

db2 "create event monitor DLOCKMON
for deadlocks write to file '/tmp/dlocks'
AUTOSTART"

db2 set event monitor dlockmon state 1

Chapter 2. Using the Database System Monitor 19

Control Center and Event Analyzer (parts of the DB2 GUI) can be used to
create and activate event monitors, and to read the traces produced by FILE
event monitors.

Figure 2 illustrates the process and interface for using event monitors.

As illustrated in Figure 2, event monitors are created and manipulated using
the following SQL statements:

v CREATE EVENT MONITOR stores the event monitor definition in the
database system catalogs for event monitors.

v SET EVENT MONITOR activates the event monitor, starting an output
thread that will WRITE monitor data to either a file or named pipe. The
trace produced can be formatted by the db2evmon or db2eva tools.

v DROP EVENT MONITOR deletes the event monitor definition from the
database system catalogs for event monitors. An active event monitor
cannot be dropped.

v FLUSH EVENT MONITOR forces monitor values to the event monitor
output writer.

monitor
data

dbm
switches

event monitor
definitions

event
records

event
records

Database
System
Monitor

Event
Monitor

System
Catalog

DB2
Database Manager

file(s)

named pipe

db2evmon

db2evmon

Event Analyzer
(db2eva)

Control Center

GUI
SQL and CLP commands
create event monitor
set event monitor
drop event monitor
event_mon_state
flush event monitor

Figure 2. Event Monitoring Interfaces

20 System Monitor Guide and Reference

Querying the State of an Event Monitor

You can determine if an event monitor is active by using the SQL function
EVENT_MON_STATE:

A returned value of 0 indicates that the event monitor is inactive.

Information Available from Event Monitors

Event monitors return information that is similar to the information available
using the snapshot API. In these cases, it is an event that controls when the
snapshot is taken. For example, a connection event monitor basically takes an
application snapshot just before the connection is terminated.

Event Types

When you define an event monitor you must declare the event types that will
be monitored. The following table lists the event types supported and
indicates the information returned. Note: an event monitor can be defined for
more than one event type.

Event type When data is collected Information returned

Deadlock Detection of a deadlock The applications involved and locks in
contention.

Statements End of SQL statement Statement start/stop time, CPU used,
text of dynamic SQL, SQLCA (return
code of SQL statement), and other
metrics such as fetch count.

End of subsection For partitioned databases: CPU
consumed, execution time, table and
tablequeue information.

Transactions End of unit of work Unit of work start/stop time, previous
UOW time, CPU consumed, locking
and logging metrics.

Connections End of connection All application level counters.

db2 connect to sample
db2 "select evmonname, EVENT_MON_STATE(evmonname)
from syscat.eventmonitors"

NAME 2
-------------- -------
DLOCKMON 0

1 record(s) selected

Chapter 2. Using the Database System Monitor 21

Event type When data is collected Information returned

Database Database deactivation or
last connect reset

All database level counters.

Buffer pools Counters for buffer pool, prefetchers,
page cleaners and direct I/O for each
buffer pool.

Table spaces Counters for buffer pool, prefetchers,
page cleaners and direct I/O for each
table space.

Tables Rows read/written for each table.

Note: In addition to the above information, all event monitors trace the
establishment of connections to the database, by generating a connection
header record for each active connection when the event monitor is
turned ON, and for each subsequent connection, thereafter.

See “Output Records” on page 271 for a list of the records generated for each
event type.

Using Pipe Event Monitors

A pipe event monitor allows you to process event records in real time.
Another important advantage to using pipe event monitors is that your
application can ignore unwanted data as it reads it off the pipe, giving the
opportunity to considerably reduce storage requirements. It also allows an
application to store event monitor data, in real-time, into an SQL database.

When you direct data to a pipe, I/O is always blocked and the only buffering
is that performed by the pipe. It is the responsibility of the monitoring
application to promptly read the data from the pipe as the event monitor
writes the event data. If the event monitor is unable to write the data to the
pipe (for example, because the pipe is full), monitor data will be lost.

The steps for using pipe event monitors are essentially the same on all
operating systems. However, implementation can be different. The following
section describes the basic steps, and highlights the differences between UNIX
based systems, Windows NT, and OS/2.
1. Define the event monitor

db2 connect to sample
On AIX, and other UNIX platforms:
db2 create event monitor STMT2 for statements

write to PIPE '/tmp/evmpipe1'
On Windows NT:
db2 create event monitor STMT2 for statements

write to PIPE '\\.\pipe\evmpipe1'

22 System Monitor Guide and Reference

On OS/2:
db2 create event monitor STMT2 for statements

write to PIPE '\pipe\evmpipe1'

2. Create the named pipe
In UNIX (this includes AIX environments), use the mkfifo() function or
mkfifo command. In OS/2, use the DosCreateNPipe() function. In
Windows NT, use the CreateNamedPipe() function. The pipe name must
be the same as the target path specified on the CREATE EVENT
MONITOR statement.

3. Open the named pipe
In UNIX, use the open() function. In OS/2, use the DosConnectNPipe()
function. In Windows NT, use the ConnectNamedPipe() function.
You can also use the db2evmon application, specifying the database and
pipe name, for example:

db2evmon -db sample -evm STMT2

This will open the named pipe and wait for the event monitor to write to
it.

4. Activate the event monitor
If the event monitor is started automatically, you do not need to take any
specific action to start it unless the database is already active (however, the
pipe must already be opened).

db2 set event monitor stmt2 state 1

5. Read data from the named pipe
In UNIX, use the read() function. In OS/2, use the DosRead() function. In
Windows NT, use the ReadFile() function. Your application may stop
reading data from the pipe at any time. When it reads an EOF, there is no
more monitor data. See “Chapter 4. Event Monitor Output” on page 271
for how to read the event monitor data.

6. Deactivate the event monitor
db2 set event monitor stmt2 state 0

This statement can be used to stop any event monitor, even one that was
started automatically. If you do not explicitly stop an event monitor, it will
be stopped when:
v The last application disconnects from the database
v It experiences an error while writing to the named pipe: for example,

the monitoring application closes the pipe before deactivating the event
monitor. In this case, the event monitor will turn itself off and log a
system-error-level message in the diagnostic log, db2diag.log.

7. Close the named pipe.

Chapter 2. Using the Database System Monitor 23

In UNIX, use the close() function. In OS/2, use the DosDisConnectNPipe()
function. In Windows NT, use the DisconnectNamedPipe() function.

8. Delete the named pipe.
In UNIX, use the unlink() function. In OS/2, use the DosClose() function.
In Windows NT, use the CloseHandle() function.

For UNIX-based operating systems, named pipes are like files, so you do not
have to delete them and create them again before each use.

Pipe Overflows

In addition, there must be enough space in the named pipe. If the application
does not read the data fast enough from the named pipe, the pipe will fill up
and overflow. Pipe overflows can also occur on platforms (such as OS/2)
where the creator of the pipe can define the size of the named pipe buffer. The
smaller the buffer, the greater the chance of an overflow occurring. When a
pipe overflow occurs, the monitor creates overflow event records indicating
that an overflow has occurred. The event monitor is not turned off, but
monitor data is lost. If there are outstanding overflow event records when the
monitor is deactivated, a diagnostic message will be logged. Otherwise, the
overflow event records will be written to the pipe when possible.

If your operating system allows you to define the size of the pipe buffer, use a
pipe buffer of at least 32K. For high-volume event monitors, you should set
the monitoring application’s process priority equal to or higher (lower nice
value on AIX) than the agent process priority (see the section on Priority of
Agents in the Administration Guide).

When Counters are Initialized

The data collected by the database manager includes several accumulating
counters. These counters are incremented during the operation of the
database, for example, every time an application commits a transaction.

Counters are initialized when their applicable object becomes active. For
example, the number of buffer pool pages read for a database (a basic
element) is set to zero when the database is activated.

Counters under switch control are reset to zero when their associated switch
is turned on.

Counters returned by event monitors are reset to zero when the event monitor
is activated.

24 System Monitor Guide and Reference

Resetting Monitor Data

Each event monitor and any application using the snapshot monitor APIs has
its own logical view of the DB2 monitor data and switches. This means that
when counters are reset or initialized, it only affects the event monitor or
application that reset or initialized them.

Event monitor data cannot be reset, except by turning the event monitor off,
and then on again.

An application taking snapshots can reset its view of the counters at any time
by using the RESET MONITOR command.

When issuing its first snapshot API, an application inherits the default settings
from the database manager configuration. For example, assuming that the
statement switch was set in the database manager configuration file:

db2 update dbm cfg using DFT_MON_STMT on
db2start

Issuing a GET MONITOR SWITCHES command
db2 get monitor switches

will show that the statement switch is ON.

Monitor Recording Switches

Buffer Pool Activity Information (BUFFERPOOL) = OFF
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = ON 05-25-1997 10:44:34.820446
Table Activity Information (TABLE) = OFF
Unit of Work Information (UOW) = OFF

Turning OFF the statement switch from the command line will only affect the
application issuing the command. The statement switch will still be ON for
other applications (unless they have also turned it OFF). For example:

db2 update monitor switches using STATEMENT OFF
DB20000I The UPDATE MONITOR SWITCHES command completed successfully

Then query your application’s switches.
db2 get monitor switches

Chapter 2. Using the Database System Monitor 25

Querying the database manager switches will show that the update did not
affect its settings:

db2 get database manager monitor switches

When a monitoring application turns off a monitor switch or resets a data
element counter, the DB2 server does not reset its own internal counters.
Instead, it re-initialize the private logical view for that user. Other monitoring
applications or event monitors are not affected.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the
UPDATE MONITOR SWITCHES command. See Command Reference for
information on this command.

The database manager keeps track of all the applications using the snapshot
monitor APIs and their switch settings. If a switch is set in its configuration,
then the database manager always collects that monitor data. If a switch is
OFF in the configuration, then the database manager will collect data as long
as there is at least one application with this switch turned ON.

Internally, event monitors also use switches to instruct the engine as to which
data should be collected. However, this is an implementation issue, and the
switch settings for a particular event monitor cannot be queried.

An actual DBMS monitor switch is set as long as at least one application or
event monitor needs it, or if it is set in the configuration file.

Monitor Recording Switches

Buffer Pool Activity Information (BUFFERPOOL) = OFF
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = OFF
Table Activity Information (TABLE) = OFF
Unit of Work Information (UOW) = OFF

DBM System Monitor Information Collected

Buffer Pool Activity Information (BUFFERPOOL) = OFF
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = ON 05-25-1997 10:44:34
Table Activity Information (TABLE) = OFF
Unit of Work Information (UOW) = OFF

26 System Monitor Guide and Reference

System Monitor Memory Requirements - (mon_heap_sz)

The memory required for maintaining the private views of the database
system monitor system monitor data is allocated from the monitor heap. Its
size is controlled by the mon_heap_sz configuration parameter. The amount of
memory required for monitoring activity varies widely depending on the
number of monitoring applications and event monitors, the switches set, and
the level of database activity. The following formula provides an
approximation of the number of pages required for the monitor heap.

(number of monitoring applications + 1) *
(number of databases *
(800 + (number of tables accessed * 20) +
((number of applications connected + 1) *
(600 + (number of table spaces * 100)))))

/ 4096

You may need to experiment with this value, increasing it if monitor
commands occasionally fail with an SQLCODE of -973, when the database
manager switches are on.

Partitioned Database Considerations

The database system monitor interface is the same for all types of systems,
whether they use single partition or multiple partition databases and whether
intra-query parallelism is used. All the commands and APIs are exactly the
same. The only difference is the output; more complex systems generally
return more information.

Taking a Snapshot on Multi-node Systems

On systems that use inter-partition parallelism, taking a snapshot only returns
monitor data from the instance where the application is attached. For
example, assuming a table that is located in two database partitions, that is
some of its rows are stored on one node (Node 100) and others are stored on
another node (Node 200).

Taking a snapshot on Node 200 initially returns no data:

db2 connect to sample
db2 list applications

Auth Id Appl Appl Application Id DB # of
Name Handle Name Agents

BOURBON db2bp_32 6553638 *LOCAL.bourbon.970414221746 SAMPLE 1

Node 100

Chapter 2. Using the Database System Monitor 27

Note: The LIST APPLICATION command uses the database system monitor.
Invoking it actually calls the the snapshot API db2GetSnapshot() with a
request of type SQLMA_APPLINFO_ALL.

Now, issuing a query from Node 100 will result in a secondary connection to
Node 200 to fetch the rows that reside in that partition:

Now there is a subagent for the application running on Node 200:

And there are now two agents running on Node 100; the coordinator agent
and a subagent:

db2 list applications
SQL1611W No data was returned from Database System Monitor.

Node 200

db2 +c select lastname from employee

Huras
Ofer
Bourbonnais
Musker
Cartwright

Node 100

db2 list applications

Auth Id Appl Appl Application Id DB # of
Name Handle Name Agents

BOURBON db2bp_32 6553638 *LOCAL.bourbon.970414221746 SAMPLE 1

Node 200

db2 list applications

Auth Id Appl Appl Application Id DB # of
Name Handle Name Agents

BOURBON db2bp_32 6553638 *LOCAL.bourbon.970414221746 SAMPLE 2

Node 100

28 System Monitor Guide and Reference

On the non-coordinating node, you can determine where the coordinator
resides, and check if the application originated on the node that issued the
snapshot, using:

The Application Handle returned, 6553638 is unique across all nodes. The node
number corresponds to one of the nodes listed in the db2nodes.cfg configuration
file (see the Administration Guide).

Using the application handle, you can request monitor information on any
node by issuing a GET SNAPSHOT FOR APPLICATION, which will return
data if the application is connected on that node. You can also FORCE the
application, which will work from any node:

Using Event Monitors on Multi-node Systems

An event monitor uses an operating system process or a thread to write its
trace. The node where this process or thread runs is called the monitor node.
An event monitor can be monitoring events as they occur locally on the
monitor node, or globally as they occur on any node where the DB2 database
manager is running. A global event monitor writes a single trace that contains
activity from all nodes.

Whether an event monitor is local or global is referred to as its monitoring
scope. Both the monitor node and monitor scope are part of an event
monitor’s definition. For example:

db2 list application show detail

Appl Application Id Coordinating Coordinator
Handle Node Number pid/thread

6553638 *LOCAL.bourbon.970414221746 100 66204

Node 200

db2 force application (6553638)
DB20000I The FORCE APPLICATION command completed successfully.
DB221024I This command is asynchronous and may not be effective
immediately.

Node 200

Chapter 2. Using the Database System Monitor 29

This global event monitor will report deadlocks that involve any nodes in the
system. Its I/O component will physically run on Node 5, writing its records
to files in the /tmp/dlocks directory on that node.

You can look at the definition for this monitor in the system catalog:

The returned information shows event monitor DLOCKS is defined as global
and its monitor node is 5.

Note: Only deadlock event monitors can be defined as global, all other event
monitors must be defined as local.

Monitoring Subsections

On systems that use inter-partition parallelism, the SQL compiler partitions
the access plan for an SQL statement into subsections. Each subsection is
executed by a different DB2 agent.

The access plan for an SQL statement generated by the DB2 code generator
during compilation can be obtained using the db2expln or dynexpln
commands (see the Command Reference). As an example, selecting all the rows
from a table that is partitioned across several nodes might result in an access
plan having two subsections:
1. Subsection 0, the coordinator subsection, whose role is to collect rows

fetched by the other DB2 agents (subagents) and return them to the
application.

2. Subsection 1, whose role is to perform a table scan and return the rows to
the coordinating agent.

db2 connect to sample
db2 "create event monitor DLOCKS for

deadlocks write to file '/tmp/dlocks'
ON NODE 5 GLOBAL"

db2 "select evmonname,nodenum, monscope
from syscat.eventmonitors"

EVMONNAME NODENUM MONSCOPE
------------------ --------------- ----------------
DLOCKS 5 G

1 record(s) selected

30 System Monitor Guide and Reference

In this simple example, subsection 1 would be distributed across all the
database partitions. There would be a subagent executing this subsection on
each physical node of the nodegroup to which this table belongs. See
Administration Guide for more information on these concepts.

The database system monitor allows you to correlate run-time information
with the access plan, which is compile-time information. With inter-partition
parallelism, it breaks information down to the subsection level. For example,
when the statement monitor switch is ON, a GET SNAPSHOT FOR
APPLICATION will return information for each subsection executing on this
node, as well as totals for the statement.

The subsection information returned for an application snapshot includes:
v the number of table rows read/written
v CPU consumption
v elapsed time
v the number of tablequeue rows sent and received from other agents

working on this statement. This allows you to track the execution of a long
running query by taking a series of snapshots.

v subsection status. If the subsection is in a WAIT state, because it is waiting
for another agent to send or receive data, then the information also
identifies the node or nodes preventing the subsection from progressing in
its execution. You may then take a snapshot on these nodes to investigate
the situation.

The information logged by a statement event monitor for each subsection after
it has finished executing includes: CPU consumption, total execution, time,
and several other counters.

Monitor Output Format

Version 6 introduces a new output format for snapshot and event monitors.
Rather than returning a list of data structures, the system monitor now
returns a self-describing output data stream. The move to this new format
coincides with DB2 Universal Database’s added flexibility when it comes to
naming SQL objects. For example, in Version 6 table names grew from a
maximum of 18 bytes, to a maximum of 128 bytes. The static sized output
structures used in previous releases could not contain this change in size.

This self-describing data stream allows you to parse through the returned
data. It also means that any changes to existing data elements, or the addition
of new data elements will not require changes to existing applications.

The returned monitor data is in the following format:

Chapter 2. Using the Database System Monitor 31

size The size (in bytes) of the data stored in the data element or
logical data grouping. In the case of a logical data grouping,
this is the size of all data in the logical group (for example,
the database logical grouping (db) contains individual data
elements (for example, total_log_used) along with other logical
data groupings, such as rollforward information (rollforward).

type The type of element stored in the data (for example, variable
length string or signed 32 bit numeric value). An element type
of header refers to a logical data grouping for an element (see
“Output Records” on page 271 and “Snapshot Requests” on
page 287.)

element The name of the data element that was captured by the
monitor. In the case of a logical data grouping, this is the
name of the group (for example, collected, dbase, or db_event).

data The value collected by a monitor for a data element. In the
case of a logical data grouping, there is no data section.
Strings returned by DB2 are NOT NULL TERMINATED.

“Chapter 4. Event Monitor Output” on page 271 and “Chapter 5. Snapshot
Monitor Output” on page 287 provide examples of the event monitor and
snapshot data streams.

When a Version 6 snapshot request is made, but a lower version of snapshot
data is returned from the server (for example, from a down-level server),
SQLCODE +1627W is returned to the caller, and the monitor output is in the
pre-Version 6 format and must be parsed using the Version 5 method (see
Table 3 on page 293).

The db2ConvMonStream API can be used to convert the new monitor format
for a logical data grouping to the corresponding pre-Version 6 data structure.
“db2ConvMonStream” on page 310 describes this API and maps pre-Version 6
structures to the new Version 6 format. For more information on the data
returned by Version 6 snapshot monitors see “Chapter 5. Snapshot Monitor
Output” on page 287.

Event monitors write their data in the new monitor format by default. This
can be overridden for individual event monitors by setting the registry
variable DB2OLDEVMON=evmon1,evmon2,..., where evmon1 is an event
monitor that will write its data in the old format. For more information on the
data returned by Version 6 event monitors see “Chapter 4. Event Monitor
Output” on page 271.

32 System Monitor Guide and Reference

DB2 Productivity Tools

The database system monitor is a very powerful function of the DB2 database
manager. It can be exploited to develop productivity tools for the database
administrator (DBA) and database developer. The following are a few
examples of productivity tools that use the function of the database system
monitor, and are included with the DB2 product:
v Control Center

A GUI for performance and event monitoring. For performance, it allows
you to define variables in terms of the metrics returned by the database
system monitor and graph them over time. For example, you can request
that it take a snapshot and graph the progression of a performance variable
over the last eight hours. Alerts can be set to notify the DBA when certain
threshold are reached. For event monitors, it allows you to create, activate,
start, stop, and delete event monitors. See the online help for the Control
Center for more information.

v db2batch
An application that uses snapshot monitoring to collect metrics for tuning
SQL queries. See the Command Referenceand the Administration Guide for
more information.

v db2gov
The DB2 governor is an application that uses snapshot monitoring to
supervise the load and usage of the database manager. It provides the
functions to FORCE or change the run-time priority of applications
exceeding certain limits. These limits are specified by the DBA in the
db2gov configuration file. Application limits and privileges can be
expressed using several different parameters, for example maximum
amount of CPU. See the Command Reference and the Administration Guide for
more information.

v db2evmon
An application that formats the data stream created by an event monitor.
See the Command Reference for more information.

v Control Center
A GUI for snapshot and event monitoring. For snapshots, it allows you to
define performance variables in terms of the metrics returned by the
database system monitor and graph them over time. For example, you can
request that it take a snapshot and graph the progression of a performance
variable over the last eight hours. Alerts can be set to notify the DBA when
certain threshold are reached. For event monitors, it allows you to create,
activate, start, stop, and delete event monitors. See the online help for the
Control Center for more information.

v Event Analyzer

Chapter 2. Using the Database System Monitor 33

A GUI for viewing file event monitor traces. Information collected on
connections, deadlocks, overflows, transactions, statements, and subsections
is organized and displayed in a tabular format. See the online help for the
Event Analyzer for more information.

v Windows NT Performance Monitor
System monitor counters for DB2 Universal Database and DB2 Connect
have been added to the Windows NT Performance Monitor. See the Help
for the Windows NT Performance Monitor for information on accessing
database manager, database, DB2 Connect database, application, and DB2
Connect application counters.

34 System Monitor Guide and Reference

Chapter 3. Database System Monitor Data Elements

This chapter describes the information that is available from the database
system monitor. The information returned by database system monitor falls
into the following categories:
v Identification for the database manager, an application, or a database

connection being monitored.
v Data primarily intended to help you to configure the system.
v Database activity at various levels including database, application, table, or

statement. This information can be used for activity monitoring, problem
determination, and performance analysis. But it can also be used for
configuration.

v Information on DB2 Connect applications. Including information on DCS
applications running at the gateway, SQL statements being executed, and
database connections.

In this chapter, data elements are organized by their primary use category.
When applicable, elements that have multiple uses may be referred to by
associated elements in other categories. Multi-use data element information
only appears in its main category, it is not duplicated in other categories.
Refer to data elements in the Index, if you have trouble finding a data element.

The information is grouped as follows:
v “Server Identification and Status” on page 38

v “Database Identification and Status” on page 44

v “Application Identification and Status” on page 50

– “DB2 Agent Information” on page 77

v “Database Manager Configuration” on page 78

– “Agents and Connections” on page 78

– “Sort” on page 94

– “Hash Join” on page 101

– “Fast Communication Manager” on page 104

v “Database Configuration” on page 110

– “Buffer Pool Activity” on page 110

- “Extended Storage” on page 135

– “Non-buffered I/O Activity” on page 140

© Copyright IBM Corp. 1993, 1999 35

– “Catalog Cache” on page 146

– “Package Cache” on page 150

– “Database Heap” on page 156

– “Logging” on page 157

v “Database and Application Activity” on page 164

– “Locks and Deadlocks” on page 164

– “Lock Wait Information” on page 176

– “Rollforward Monitoring” on page 184

– “Table Activity” on page 186

– “SQL Cursors” on page 197

– “SQL Statement Activity” on page 202

– “SQL Statement Details” on page 215

– “Subsection Details” on page 227

– “Intra-query Parallelism” on page 237

– “CPU Usage” on page 238

– “Snapshot Monitoring Elements” on page 247

– “Event Monitoring Elements” on page 250

v “DB2 Connect” on page 254

– “Transaction Processor Monitoring” on page 267

Note: For Enterprise - Extended Edition users, snapshot elements only apply
to the partition where the snapshot was issued.

How to Read the Data Element Tables

The section for each data element begins with a table that lists standard
information. An example is shown in Figure 3, followed by an explanation of
each part of the table.

36 System Monitor Guide and Reference

1. The level of information that can be captured by the snapshot monitor.
2. The data group where captured snapshot information is returned. If

parsing the data stream directly, the element name is uppercased and
prefixed with SQLM_ELM_.

3. The snapshot monitor switch that must be set to obtain this information.
4. Whether or not the counter can be reset (snapshot monitor only).
5. The event monitor must be created with this event type to collect this

information. See “Element Types”.

6. The data group in which captured event information is returned. If
parsing the data stream directly, the element name is uppercased and
prefixed with SQLM_ELM_.

7. The name and type of element, as returned in the data group. If parsing
the data stream directly, the element name is uppercased and prefixed
with SQLM_ELM_.

8. References to related data elements or monitoring concepts.

This table is followed by a description of the element and information on how
you can use it when monitoring your database.

Element Types

Data elements are classified by the following categories:
v Counter

Snapshot Level

Event Type
Database
Connection
Statement

Element Name
Element Type

Related Information

Database
Application

Resettable

Logical Data Grouping

Logical Data Grouping
db_event
conn_event
stmt_event

total_sorts
counter

See Resettable
See Switches
See Sort Overflows

dbase
appl

Yes

Monitor Switch
Sort
Sort

1

5

4

6

7

8

32

Figure 3. Sample Element Table

Chapter 3. Database System Monitor Data Elements 37

A counter counts the number of times an activity occurs. Counter values
increase during monitoring. Most are resettable.

v Gauge
A gauge indicates the current value for an item. This value can go up and
down depending on database activity (for example, the number of locks
held).

v Water mark
A water mark indicates the highest (maximum) or lowest (minimum) value
an element reached since monitoring was started. These are not resettable.

v Information
An information element provides reference-type details of your monitoring
activities. This can include items such as node names, aliases, and path
details.

v Timestamp
A timestamp indicates the date and time that an activity took place, by
providing the number of seconds and microseconds that have elapsed since
January 1, 1970. In the C language, for example, this can be converted to
calendar date and time using the ctime() function.

v Time
Time returns the number of seconds and microseconds spent on an activity.

Server Identification and Status

The following elements provide identification and status information about
the server:
v “Start Database Manager Timestamp” on page 39

v “Configuration NNAME at Monitoring (Server) Node” on page 39

v “Server Instance Name” on page 40

v “Database Manager Type at Monitored (Server) Node” on page 40

v “Server Product/Version ID” on page 41

v “Server Version” on page 41

v “Service Level” on page 42

v “Server Operating System” on page 42

v “Product Name” on page 43

v “Product Identification” on page 43

v “Status of DB2 Instance” on page 44

v “Time Zone Displacement” on page 44

38 System Monitor Guide and Reference

Start Database Manager Timestamp

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

db2start_time
timestamp

Related Information v “Snapshot Time” on page 249

Description: The date and time that the database manager was started using
the db2start command.

Usage: This element may be used with the Snapshot Time monitor element to
calculate the elapsed time since the database manager was started up until the
snapshot was taken.

Configuration NNAME at Monitoring (Server) Node

Snapshot Level
Database Manager

Logical Data Grouping
collected

Monitor Switch
Basic

Resettable No

Element Name
Element Type

server_nname
information

Related Information v “Configuration NNAME of Client” on page 60

Description: The name of the node being monitored by the database system
monitor.

Usage: This element can be used to identify the database server node you are
monitoring. This information can be useful if you are saving your monitor
output in a file or database for later analysis and you need to differentiate the
data from different database server nodes. This node name is determined
based on the nname configuration parameter.

Chapter 3. Database System Monitor Data Elements 39

Server Instance Name

Snapshot Level
Database Manager

Logical Data Grouping
collected

Monitor Switch
Basic

Resettable No

Event Type
Event Log Header

Logical Data Grouping
event_log_header

Element Name
Element Type

server_instance_name
information

Related Information v “Configuration NNAME at Monitoring (Server)
Node” on page 39

Description: The name of the database manager instance for which the
snapshot was taken.

Usage: If more than one instance of the database manager is present on the
same system, this data item is used to uniquely identify the instance for
which the snapshot call was issued. Along with Configuration NNAME at
Monitoring (Server) Node, this information can be useful if you are saving your
monitor output in a file or database for later analysis, and you need to
differentiate the data from different instances of the database manager.

Database Manager Type at Monitored (Server) Node

Snapshot Level
Database Manager

Logical Data Grouping
collected

Monitor Switch
Basic

Resettable No

Element Name
Element Type

server_db2_type
information

Related Information v “Configuration NNAME at Monitoring (Server)
Node” on page 39

Description: Identifies the type of database manager being monitored.

Usage: It contains one of the following types of configurations for the
database manager:

API Symbolic Constant Command Line Processor Output

sqlf_nt_server Database Server with local and remote clients

sqlf_nt_stand_req Database Server with local clients

The API symbolic constants are defined in the include file sqlutil.h.

40 System Monitor Guide and Reference

Server Product/Version ID

Snapshot Level
Database Manager

Logical Data Grouping
collected

Monitor Switch
Basic

Resettable No

Event Type
Database Manager

Logical Data Grouping
event_log_header

Element Name
Element Type

server_prdid
information

Related Information v “Client Product/Version ID” on page 61

Description: The product and version that is running on the server.

Usage: It is in the form PPPVVRRM, where:

PPP is SQL

VV identifies a 2-digit version number (with high-order 0 in the case of a
1-digit version)

RR identifies a 2-digit release number (with high-order 0 in the case of a
1-digit release)

M identifies a 1-digit modification level

Server Version

Snapshot Level
Database Manager

Logical Data Grouping
collected

Monitor Switch
Basic

Resettable No

Element Name
Element Type

server_version
information

Related Information v “Server Product/Version ID” on page 41

Description: The version of the server returning the information.

Usage: This field identifies the level of the database server collecting
database system monitor information. This allows applications to interpret the
data based on the level of the server returning the data. Valid values are:

SQLM_DBMON_VERSION1 Data was returned by DB2 Version 1

SQLM_DBMON_VERSION2 Data was returned by DB2 Version 2

SQLM_DBMON_VERSION5 Data was returned by DB2 Universal Database
Version 5

Chapter 3. Database System Monitor Data Elements 41

SQLM_DBMON_VERSION5_2
Data was returned by DB2 Universal Database
Version 5.2

SQLM_DBMON_VERSION6 Data was returned by DB2 Universal Database
Version 6

Service Level

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

service_level
information

Related Information v “Product Identification” on page 43

Description: This is the current corrective service level of the server.

Usage: Used to provide information when requesting service or reporting a
problem with DB2 on OS/2. This element will be blank for non-OS/2 systems.

Note: This element is similar to the corr_serv_lvl field in the sqlestat output.
See “Appendix D. DB2 Version 1 sqlestat Users” on page 393 for more
information on sqlestat equivalent data elements.

Server Operating System

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

server_platform
information

Related Information v “Client Operating Platform” on page 65

v “Database Location” on page 49

Description: The operating system running the database server.

Usage: This element can be used for problem determination for remote
applications. Values for this field can be found in the header file sqlmon.h.

42 System Monitor Guide and Reference

Note: This element is similar to the db_type field in the sqlestat output. See
“Appendix D. DB2 Version 1 sqlestat Users” on page 393 for more
information on sqlestat equivalent data elements.

Product Name

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

product_name
information

Related Information v “Product Identification” on page 43

v “Service Level” on page 42

Description: Details of the version of the server that is running.

Usage: Used to provide information when requesting service or reporting a
problem with DB2 on OS/2. This element will be blank for non-OS/2 systems.

Note: This element is similar to the product_name field in the sqlestat output.
See “Appendix D. DB2 Version 1 sqlestat Users” on page 393 for more
information on sqlestat equivalent data elements.

Product Identification

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

component_id
information

Related Information v “Product Name” on page 43

v “Service Level” on page 42

Description: Details of the type of the server that is running.

Usage: Used to provide information when requesting service or reporting a
problem with DB2 on OS/2. This element will be blank for non-OS/2 systems.

Note: This element is similar to the component_id field in the sqlestat output.
See “Appendix D. DB2 Version 1 sqlestat Users” on page 393 for more
information on sqlestat equivalent data elements.

Chapter 3. Database System Monitor Data Elements 43

Status of DB2 Instance

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

db2_status
information

Related Information v “Status of Database” on page 48

Description: The current status of the instance of the database manager.

Usage: You can use this element to determine the state of your database
manager instance.

The value returned is always SQLM_DB2_ACTIVE.

Time Zone Displacement

Snapshot Level
Database Manager

Logical Data Grouping
collected

Monitor Switch
Basic

Resettable No

Element Name
Element Type

time_zone_disp
information

Related Information v None

Description: Number of seconds that the local time zone is displaced from
Greenwich Mean Time (GMT).

Usage: All time reported by reported by the database system monitor is
GMT, this displacement calculates the local time.

Database Identification and Status

The following elements provide identification and status information about
the database:
v “Database Name” on page 45

v “Database Path” on page 46

v “Database Activation Timestamp” on page 46

v “Time of Database Connection” on page 47

v “Database Deactivation Timestamp” on page 47

44 System Monitor Guide and Reference

v “Status of Database” on page 48

v “Catalog Node Network Name” on page 48

v “Database Location” on page 49

v “Catalog Node Number” on page 49

v “Last Backup Timestamp” on page 50

Database Name

Snapshot Level
Database
Application
Table Space

Table
Lock
Dynamic SQL
DCS Database
DCS Application

Logical Data Grouping
dbase
appl_id_info
tablespace_header
bufferpool
table_header
dbase_lock
dynsql_list
dcs_dbase
dcs_appl_info

Monitor Switch
Basic
Basic
Buffer Pool
Buffer Pool
Table
Basic
Basic
Basic
Basic

Resettable No

Event Type
Database

Logical Data Grouping
dbheader_event

Element Name
Element Type

db_name
information

Related Information v “Resetting Monitor Data” on page 25

v “Last Reset Timestamp” on page 248

v “Input Database Alias” on page 248

v “Database Alias Used by Application” on page 61

v “Database Path” on page 46

Description: The real name of the database for which information is
collected or to which the application is connected. This is the name the
database was given when created.

Usage: You may use this element to identify the specific database to which
the data applies.

For applications that are not using DB2 Connect to connect to a DRDA host
database, you can use this element in conjunction with the Database Path
monitor element to uniquely identify the database and help relate the different
levels of information provided by the monitor.

Chapter 3. Database System Monitor Data Elements 45

Database Path

Snapshot Level
Database
Application
Table Space

Table
Lock
Dynamic SQL

Logical Data Grouping
dbase
appl_id_info
tablespace_header
bufferpool
table_header
dbase_lock
dynsql_list

Monitor Switch
Basic
Basic
Buffer Pool
Buffer Pool
Table
Basic
Basic

Resettable No

Event Type
Database

Logical Data Grouping
dbheader_event

Element Name
Element Type

db_path
information

Related Information v “Resetting Monitor Data” on page 25

v “Input Database Alias” on page 248

v “Database Name” on page 45

Description: The full path of the location where the database is stored on the
monitored system.

Usage: This element can be used with the Database Name monitor element to
identify the specific database to which the data applies.

Database Activation Timestamp

Snapshot Level
Database
Table Space
Table

Logical Data Grouping
dbase
tablespace_list
table_list

Monitor Switch
Basic
Buffer Pool
Basic

Resettable No

Element Name
Element Type

db_conn_time
timestamp

Related Information v “Connection Request Start Timestamp” on page
70

v “Snapshot Time” on page 249

v “Time of Database Connection” on page 47

Description: The date and time of the connection to the database (at the
database level, this is the first connection to the database), or when the
activate database was issued.

46 System Monitor Guide and Reference

Usage: Use this element with the Database Deactivation Timestamp monitor
element to calculate the total connection time.

Time of Database Connection

Event Type
Database
Connection

Logical Data Grouping
dbheader_event
connheader_event

Element Name
Element Type

conn_time
timestamp

Related Information v “Database Activation Timestamp” on page 46

v “Database Deactivation Timestamp” on page 47

Description: The date and time of the connection to the database (at the
database level, this is the first connection to the database), or when the
activate database was issued.

Usage: Use this element with the Database Deactivation Timestamp monitor
element to calculate the elapsed time since:

v The database was active (for information at the database level)
v The connection was active (for information at the connection level).

Database Deactivation Timestamp

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

disconn_time
timestamp

Related Information v None

Description: The date and time that the application disconnected from the
database (at the database level, this is the time the last application
disconnected).

Usage: Use this element to calculate the elapsed time since:
v The database was active (for information at the database level)
v The connection was active (for information at the connection level).

Chapter 3. Database System Monitor Data Elements 47

Status of Database

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

db_status
information

Related Information v “Status of DB2 Instance” on page 44

Description: The current status of the database.

Usage: You can use this element to determine the state of your database.

Values for this field are:

API Constant Description

SQLM_DB_ACTIVE The database is active.

SQLM_DB_QUIESCE_PEND The database is in quiesce-pending state. New
connections to the database are not permitted and
new units of work cannot be started. Depending on
the quiesce request, active units of work will be
allowed to complete or will be rolled back
immediately.

SQLM_DB_QUIESCED The database has been quiesced. New connections to
the database are not permitted and new units of
work cannot be started.

SQLM_DB_ROLLFWD A rollforward is in progress on the database.

Catalog Node Network Name

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

catalog_node_name
information

Related Information v None

Description: The network name of the catalog node. On OS/2, the netbios
name of the server where the database is located.

Usage: Use this element to determine the location of a database.

48 System Monitor Guide and Reference

Note: This element is similar to the node field in the sqlestat output. See
“Appendix D. DB2 Version 1 sqlestat Users” on page 393 for more
information on sqlestat equivalent data elements.

Database Location

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

db_location
information

Related Information v “Server Operating System” on page 42

Description: The location of the database in relation to the application.

Usage: Determine the relative location of the database server with respect to
the application taking the snapshot. Values are:

v SQLM_LOCAL
v SQLM_REMOTE

Note: This element is similar to the location field in the sqlestat output. See
“Appendix D. DB2 Version 1 sqlestat Users” on page 393 for more
information on sqlestat equivalent data elements.

Catalog Node Number

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

catalog_node
information

Related Information v None

Description: The node number of the node where the database catalog tables
are stored.

Usage: The catalog node is the node where all system catalog tables are
stored. All access to system catalog tables must go through this node. See the
Administration Guide for information on system catalog tables.

Chapter 3. Database System Monitor Data Elements 49

Last Backup Timestamp

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

last_backup
timestamp

Related Information v None

Description: The date and time that the latest database backup was
completed.

Usage: You may use this element to help you identify a database that has not
been backed up recently, or to identify which database backup file is the most
recent. If the database has never been backed up, this timestamp is initialized
to zero.

Application Identification and Status

The following elements provide information about databases and their related
applications.
v “Application Handle (agent ID)” on page 51

v “Application Status” on page 52

v “ID of Code Page Used by Application” on page 55

v “Application Status Change Time” on page 55

v “Application with Oldest Transaction” on page 56

v “Application Name” on page 56

v “Application ID” on page 57

v “Sequence Number” on page 59

v “Authorization ID” on page 60

v “Configuration NNAME of Client” on page 60

v “Client Product/Version ID” on page 61

v “Database Alias Used by Application” on page 61

v “Host Product/Version ID” on page 62

v “Outbound Application ID” on page 62

v “Outbound Sequence Number” on page 63

v “User Login ID” on page 64

50 System Monitor Guide and Reference

v “DRDA Correlation Token” on page 64

v “Client Process ID” on page 65

v “Client Operating Platform” on page 65

v “Client Communication Protocol” on page 66

v “Database Country Code” on page 67

v “Application Agent Priority” on page 67

v “Application Priority Type” on page 68

v “User Authorization Level” on page 68

v “Node Number” on page 69

v “Coordinating Node” on page 70

v “Connection Request Start Timestamp” on page 70

v “Maximum Number of Concurrent Connections” on page 71

v “Connection Request Completion Timestamp” on page 71

v “Previous Unit of Work Completion Timestamp” on page 72

v “Unit of Work Start Timestamp” on page 73

v “Unit of Work Stop Timestamp” on page 74

v “Most Recent Unit of Work Elapsed Time” on page 75

v “Unit of Work Completion Status” on page 75

v “Previous Transaction Stop Time” on page 76

v “Application Idle Time” on page 77

Application Handle (agent ID)

Snapshot Level
Application
Lock
DCS Application

Logical Data Grouping
appl_id_info
appl_lock
dcs_appl_info

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection
Statement

Logical Data Grouping
connheader_event
stmt_event
subsection_event

Element Name
Element Type

agent_id
information

Related Information v None

Chapter 3. Database System Monitor Data Elements 51

Description: A system-wide unique ID for the application. On multi-node
systems, where a database is partitioned, this ID will be the same on every
node where the application may make a secondary connection.

Usage: The application handle can be used to uniquely identify an active
application (application handle is synonymous with agent Id).

Note: The Application Handle (agent ID) data element has different behavior
depending on your version of DB2. When taking snapshots from DB2
with version SQLM_DBMON_VERSION1 or
SQLM_DBMON_VERSION2 to a DB2 Universal Database (Version 5 or
greater) database, the agent_id returned is not usable as an application
identifier, rather it is the agent_pid of the agent serving the application.
In these cases an agent_id is still returned for back-level compatibility,
but internally the DB2 Universal Database server will not recognize the
value as an agent_id.

This value can be used as input to GET SNAPSHOT commands that require
an agent Id.

When reading event traces, it can be used to match event records with a given
application.

It can also be used as input to the FORCE APPLICATION command or API.
On multi-node systems this command can be issued from any node where the
application has a connection. Its effect is global

Application Status

Snapshot Level
Application
Lock

Logical Data Grouping
appl_id_info
appl_lock

Monitor Switch
Basic
Basic

Resettable No

Element Name
Element Type

appl_status
information

Related Information v “Application Status Change Time” on page 55

v “Statement Operation” on page 217

Description: The current status of the application.

Usage: This element can help you diagnose potential application problems.
Values for this field are:

52 System Monitor Guide and Reference

API Constant Description

SQLM_CONNECTPEND Database Connect Pending: The application has
initiated a database connection but the request has
not yet completed.

SQLM_CONNECTED Database Connect Completed: The application has
initiated a database connection and the request has
completed.

SQLM_UOWEXEC Unit of Work Executing: The database manager is
executing requests on behalf of the unit of work.

SQLM_UOWWAIT Unit of Work waiting: The database manager is
waiting on behalf of the unit of work in the
application. This status typically means that the
system is executing in the application’s code.

SQLM_LOCKWAIT Lock Wait: The unit of work is waiting for a lock.
After the lock is granted, the status is restored to its
previous value.

SQLM_COMMIT_ACT Commit Active: The unit of work is committing its
database changes.

SQLM_ROLLBACK_ACT Rollback Active: The unit of work is rolling back
its database changes.

SQLM_RECOMP Recompiling: The database manager is
recompiling (that is, rebinding) a plan on behalf of
the application.

SQLM_COMP Compiling: The database manager is compiling an
SQL statement or precompiling a plan on behalf of
the application.

SQLM_INTR Request Interrupted: An interrupt of a request is
in progress.

SQLM_DISCONNECTPEND Database Disconnect Pending: The application
has initiated a database disconnect but the
command has not yet completed executing. The
application may not have explicitly executed the
database disconnect command. The database
manager will disconnect from a database if the
application ends without disconnecting.

SQLM_TPREP Transaction Prepared: The unit of work is part of
a global transaction that has entered the prepared
phase of the two-phase commit protocol.

SQLM_THCOMT Transaction Heuristically Committed: The unit of
work is part of a global transaction that has been
heuristically committed.

Chapter 3. Database System Monitor Data Elements 53

API Constant Description

SQLM_THABRT Transaction Heuristically Rolled Back: The unit of
work is part of a global transaction that has been
heuristically rolled-back.

SQLM_TEND Transaction Ended: The unit of work is part of a
global transaction that has ended but has not yet
entered the prepared phase of the two-phase
commit protocol.

SQLM_CREATE_DB Creating Database: The agent has initiated a
request to create a database and that request has
not yet completed.

SQLM_RESTART Restarting Database: The application is restarting
a database in order to perform crash recovery.

SQLM_RESTORE Restoring Database: The application is restoring a
backup image to the database.

SQLM_BACKUP Backing Up Database: The application is
performing a backup of the database.

SQLM_LOAD Data Fast Load: The application is performing a
“fast load” of data into the database.

SQLM_UNLOAD Data Fast Unload: The application is performing a
“fast unload” of data from the database.

SQLM_IOERROR_WAIT Wait to Disable Table space: The application has
detected an I/O error and is attempting to disable a
particular table space. The application has to wait
for all other active transactions on the table space to
complete before it can disable the table space.

SQLM_QUIESCE_TABLESPACE Quiescing a Table space: The application is
performing a quiesce table space request.

SQLM_WAITFOR_REMOTE Wait for Remote Node: The application is waiting
for a response from a remote node in a partitioned
database instance.

54 System Monitor Guide and Reference

ID of Code Page Used by Application

Snapshot Level
Application
Lock
DCS Application

Logical Data Grouping
appl_id_info
appl_lock
dcs_appl_info

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Event Log Header
Connection

Logical Data Grouping
event_log_header
connheader_event

Element Name
Element Type

codepage_id
information

Related Information v None

Description: The code page identifier.

Usage: For snapshot monitor data, this is the code page at the node where
the monitored application started. This identifier may be used for problem
determination for remote applications. You may use this information to ensure
that data conversion is supported between the application code page and the
database code page (or for DRDA host databases, the host CCSID). For
information about supported code pages, see the Administration Guide.

For event monitor data, this is the code page of the database for which event
data is collected. You can use this element to determine whether your event
monitor application is running under a different code page from that used by
the database. Data written by the event monitor uses the database code page.
If your event monitor application uses a different code page, you may need to
perform some character conversion to make the data readable.

Application Status Change Time

Snapshot Level
Application
Lock
DCS Application

Logical Data Grouping
appl_id_info
appl_lock
dcs_appl_info

Monitor Switch
Unit of Work
Unit of Work
Unit of Work

Resettable No

Element Name
Element Type

status_change_time
timestamp

Related Information v “Resetting Monitor Data” on page 25

v “Application Status” on page 52

Description: The date and time the application entered its current status.

Chapter 3. Database System Monitor Data Elements 55

Usage: This element allows you to determine how long an application has
been in its current status. If it has been in the same status for a long period of
time, this may indicate that it has a problem.

Application with Oldest Transaction

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

appl_id_oldest_xact
information

Related Information v “Resetting Monitor Data” on page 25

v “Agent ID Holding Lock” on page 181

v “Deadlocks Detected” on page 166

Description: The application ID (which corresponds to the agent_id value
from the application snapshot) of the application that has the oldest
transaction.

Usage: This element can help you determine which application has the oldest
active transaction and is therefore holding the most log space in the database.
This application can be forced to free up log space. You should examine the
application to determine if it could be modified to commit more frequently.

There are times when there is not a transaction holding up logging, or the
oldest transaction does not have an application ID (for example, indoubt
transaction or inactive transaction). In these cases, this application’s ID is not
returned in the data stream.

Application Name

Snapshot Level
Application
Lock
DCS Application

Logical Data Grouping
appl_id_info
appl_lock
dcs_appl_info

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
connheader_event

Element Name
Element Type

appl_name
information

Related Information v “Application ID” on page 57

v “ID of Code Page Used by Application” on page
55

56 System Monitor Guide and Reference

Description: The name of the application running at the client as known to
the database manager or DB2 Connect.

Usage: This element may be used with Application ID to relate data items
with your application.

In a client/server environment, this name is passed from the client to the
server to establish the database connection. For DRDA-AS connections, this
name is the DRDA external name.

The application name is not available for applications running on the
following down-level database client products:

v IBM Extended Services for OS/2

In situations where the client application code page is different from the code
page under which the database system monitor is running, you can use ID of
Code Page Used by Application to help translate Application Name.

Application ID

Snapshot Level
Application
DCS Application
Lock

Logical Data Grouping
appl_id_info
dcs_appl_info
appl_lock

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection

Statement
Transaction
Deadlock

Logical Data Grouping
conn_event
connheader_event
stmt_event
xaction_event
dlconn_event

Element Name
Element Type

appl_id
information

Related Information v “Outbound Application ID” on page 62

v “Client Communication Protocol” on page 66

Description: This identifier is generated when the application connects to the
database at the database manager or when DDCS receives a request to
connect to a DRDA database.

Usage: This ID is known on both the client and server, so you can use it to
correlate the client and server parts of the application. For DDCS applications,
you will also need to use Outbound Application ID to correlate the client and
server parts of the application.

Chapter 3. Database System Monitor Data Elements 57

This identifier is unique across the network. There are different formats for the
application ID, which are dependent on the communication protocol between
the client and the server machine on which the database manager and/or
DDCS are running. Each of the formats consists of three parts separated by
periods.

1. APPC

Format Network.LU Name.Application instance

Example CAIBMTOR.OSFDBX0.930131194520

Details This application ID is the displayable format of an actual
SNA LUWID (Logical Unit-of-Work ID) that flows on the
network when an APPC conversation is allocated.
APPC-generated application IDs are made up by
concatenating the network name, the LU name, and the
LUWID instance number, which create a unique label for
the client/server application. The network name and LU
name can each be a maximum of 8 characters. The
application instance corresponds to the
12-decimal-character LUWID instance number.

2. TCP/IP

Format *TCPIP.IPAddr.Application instance

Example *TCPIP.A12CF9E8.930131214645

Details A TCP/IP-generated application ID is made up by
concatenating the string “*TCPIP”, the IP address in
hexadecimal characters, and a unique identifier for the
instance of this application. The IP address is a 32-bit
number displayed as a maximum of 8 hexadecimal
characters.

3. IPX/SPX

Format Netid.nodeid.Application instance

Example C11A8E5C.400011528250.0131214645

Details An IPX/SPX-generated application ID is made up by
concatenating a character network ID (8 hexadecimal
characters), a node id (12 hexadecimal characters), and a
unique identifier for the instance of the application. The
application instance corresponds to a 10-decimal-character
time stamp of the form MMDDHHMMSS.

4. NetBIOS

Format *NETBIOS.nname.Application instance

Example *NETBIOS.SBOIVIN.930131214645

58 System Monitor Guide and Reference

Details A NetBIOS application ID is made up by concatenating the
string “*NETBIOS”, the nname defined in the client’s
database configuration file, and a unique identifier for the
instance of this application.

5. Local Applications

Format *LOCAL.DB2 instance.Application instance

Example *LOCAL.DB2INST1.930131235945

Details The application ID generated for a local application is
made up by concatenating the string *LOCAL, the name of
the DB2 instance, and a unique identifier for the instance
of this application.

Use Client Communication Protocol to determine which communications
protocol the connection is using and, as a result, the format of the application
ID.

Sequence Number

Snapshot Level
Application
DCS Application

Logical Data Grouping
appl_id_info
dcs_appl_info

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Statement
Transaction
Deadlock

Logical Data Grouping
conn_event
connheader_event
stmt_event
xaction_event
dlconn_event

Element Name
Element Type

sequence_no
information

Related Information v None

Description: This element is reserved for future use. In this release, its value
always be “0001”. It may contain different values in future releases of the
product.

Chapter 3. Database System Monitor Data Elements 59

Authorization ID

Snapshot Level
Application
Lock
DCS Application

Logical Data Grouping
appl_id_info
appl_lock
dcs_appl_info

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
connheader_event

Element Name
Element Type

auth_id
information

Related Information v “Application Name” on page 56

Description: The authorization ID of the user who invoked the application
that is being monitored. On a DB2 Connect gateway node, this is the user’s
authorization ID on the host.

Usage: You can use this element to determine who invoked the application.

Configuration NNAME of Client

Snapshot Level
Application
DCS Application

Logical Data Grouping
appl_id_info
dcs_appl_info

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
connheader_event

Element Name
Element Type

client_nname
information

Related Information v “Configuration NNAME at Monitoring (Server)
Node” on page 39

Description: The nname in the database manager configuration file at the
client node.

Usage: You can use this element to identify the client node that is running
the application.

60 System Monitor Guide and Reference

Client Product/Version ID

Snapshot Level
Application
DCS Application

Logical Data Grouping
appl_id_info
dcs_appl_info

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
connheader_event

Element Name
Element Type

client_prdid
information

Related Information v “Server Product/Version ID” on page 41

Description: The product and version that is running on the client.

Usage: You can use this element to identify the product and code version of
the database client. It is in the form PPPVVRRM, where:

v PPP identifies the product, which is “SQL” for the DB2 products
v VV identifies a 2-digit version number (with high-order 0 in the case of a

1-digit version)
v RR identifies a 2-digit release number (with high-order 0 in the case of a

1-digit release)
v M identifies a 1-digit modification level.

Database Alias Used by Application

Snapshot Level
Application
Lock

Logical Data Grouping
appl_id_info
appl_lock

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
connheader_event

Element Name
Element Type

client_db_alias
information

Related Information v All other database-level information

v All other application-level information

v “Last Reset Timestamp” on page 248

v “Input Database Alias” on page 248

v “Database Name” on page 45

Description: The alias of the database provided by the application to connect
to the database.

Chapter 3. Database System Monitor Data Elements 61

Usage: This element can be used to identify the actual database that the
application is accessing. The mapping between this name and Database Name
could be done by using the database directories at the client node and the
database manager server node.

This is the alias defined within the database manager where the database
connection request originated.

This element can also be used to help you determine the authentication type,
since different database aliases can have different authentication types.

Host Product/Version ID

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

host_prdid
information

Related Information v None

Description: The product and version that is running on the server.

Usage: Used to identify the product and code version of the DRDA host
database product. It is in the form PPPVVRRM, where:
v PPP identifies the host DRDA product

– ARI for DB2 for VSE & VM
– DSN for DB2 for MVS/ESA
– QSQ for DB2 Universal Database for AS/400
– SQL for other DB2 products.

v VV identifies a 2-digit version number (with high-order 0 in the case of a
1-digit version)

v RR identifies a 2-digit release number (with high-order 0 in the case of a
1-digit release)

v M identifies a 1-digit modification level

Outbound Application ID

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

outbound_appl_id
information

Related Information v “Application ID” on page 57

62 System Monitor Guide and Reference

Description: This identifier is generated when the application connects to the
DRDA host database. It is used to connect the DB2 Connect gateway to the
host, while the Application ID is used to connect a client to the DB2 Connect
gateway.

Usage: You may use this element in conjunction with Application ID to
correlate the client and server parts of the application information.

This identifier is unique across the network.

Format Network.LU Name.Application instance

Example CAIBMTOR.OSFDBM0.930131194520

Details This application ID is the displayable format of an actual SNA
LUWID (Logical Unit-of-Work ID) that flows on the network
when an APPC conversation is allocated. APPC-generated
application IDs are made up by concatenating the network
name, the LU name, and the LUWID instance number, which
creates a unique label for the client/server application. The
network name and LU name can each be a maximum of 8
characters. The application instance corresponds to the
12-decimal-character LUWID instance number.

Outbound Sequence Number

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

outbound_sequence_no
information

Related Information v None

Description: This element is reserved for future use. In this release, its value
will always be “0001”. It may contain different values in future releases of the
product.

Chapter 3. Database System Monitor Data Elements 63

User Login ID

Snapshot Level
Application

DCS Application

Logical Data Grouping
appl_info
appl
dcs_appl_info

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
connheader_event

Element Name
Element Type

execution_id
information

Related Information v “Authorization ID” on page 60

Description: The ID that the user specified when logging in to the operating
system. This ID is distinct from Authorization ID, which the user specifies
when connecting to the database.

Usage: You can use this element to determine the operating system userid of
the individual running the application that you are monitoring.

DRDA Correlation Token

Snapshot Level
Application

Logical Data Grouping
appl_info
appl

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
connheader_event

Element Name
Element Type

corr_token
information

Related Information v None

Description: The DRDA AS correlation token.

Usage: The DRDA correlation token is used for correlating the processing
between the application server and the application requester. It is an identifier
dumped into logs when errors arise, that you can use to identify the
conversation that is in error. In some cases, it will be the LUWID of the
conversation.

If communications are not using DRDA, this element is blank.

If you are using the database system monitor APIs, note that the API constant
SQLM_APPLID_SZ is used to define the length of this element.

64 System Monitor Guide and Reference

Client Process ID

Snapshot Level
Application

DCS Application

Logical Data Grouping
appl_info
appl
dcs_appl_info

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
connheader_event

Element Name
Element Type

client_pid
information

Related Information v None

Description: The process ID of the client application that made the
connection to the database.

Usage: You can use this element to correlate monitor information such as
CPU and I/O time to your client application.

In the case of a DRDA AS connection, this element will be set to 0.

Client Operating Platform

Snapshot Level
Application

DCS Application

Logical Data Grouping
appl_info
appl
dcs_appl_info

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
connheader_event

Element Name
Element Type

client_platform
information

Related Information v “Server Operating System” on page 42

Description: The operating system on which the client application is
running.

Usage: This element can be used for problem determination for remote
applications. Values for this field can be found in the header file sqlmon.h.

Chapter 3. Database System Monitor Data Elements 65

Client Communication Protocol

Snapshot Level
Application

DCS Application

Logical Data Grouping
appl_info
appl
dcs_appl_info

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
connheader_event

Element Name
Element Type

client_protocol
information

Related Information v None

Description: The communication protocol that the client application is using
to communicate with the server.

Usage: This element can be used for problem determination for remote
applications. Values for this field are:

API Constant Communication Protocol

SQLM_PROT_UNKNOWN (note 1)

SQLM_PROT_LOCAL none (note 2)

SQLM_PROT_APPC APPC

SQLM_PROT_TCPIP TCP/IP

SQLM_PROT_IPXSPX IPX/SPX

SQLM_PROT_NETBIOS NETBIOS

Notes:

1. The client is communicating using an unknown protocol. This value will
only be returned if future clients connect with a down-level server.

2. The client is running on the same node as the server and no
communications protocol is in use.

66 System Monitor Guide and Reference

Database Country Code

Snapshot Level
Application

Logical Data Grouping
appl_info
appl

Monitor Switch
Basic
Basic

Resettable No

Event Type
Event Log Header
Connection

Logical Data Grouping
event_log_header
connheader_event

Element Name
Element Type

country_code
information

Related Information v None

Description: The country code of the database for which the monitor data is
collected.

Usage: Country code information is recorded in the database configuration
file (see the Administration Guide).

For DRDA AS connections, this element will be set to 0.

Application Agent Priority

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
conn_event

Element Name
Element Type

appl_priority
information

Related Information v “Application Priority Type” on page 68

Description: The priority of the agents working for this application.

Usage: You can use this element to check if applications are running with the
expected priorities. Application priorities can be set by an administrator. They
can be changed by the governor utility (db2gov).

The governor is used by DB2 to monitor and change the behavior of
applications running against a database. This information is used to schedule
applications and balance system resources.

A governor daemon collects statistics about the applications by taking
snapshots. It checks these statistics against the rules governing applications

Chapter 3. Database System Monitor Data Elements 67

running on that database. If the governor detects a rule violation, it takes the
appropriate action. These rules and actions were specified by you in the
governor configuration file.

If the action associated with a rule is to change an application’s priority, the
governor changes the priority of the agents in the partition where the
violation was detected.

See the Administration Guide for more information on the governor.

Application Priority Type

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
conn_event

Element Name
Element Type

appl_priority_type
information

Related Information v “Query Cost Estimate” on page 227

v “Application Agent Priority” on page 67

Description: Operating system priority type for the agent working on behalf
of the application.

Usage: Dynamic priority is recalculated by the operating system based on
usage. Static priority does not change.

User Authorization Level

Snapshot Level
Application

Logical Data Grouping
appl
appl_info

Monitor Switch
Basic
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
conn_event

Element Name
Element Type

authority_lvl
information

Related Information v None

Description: The highest authority level granted to an application.

Usage: The operations allowed by an application are granted either directly
or indirectly in the sql.h.

68 System Monitor Guide and Reference

These are the authorizations granted explicitly to a user:
v SQL_SYSADMIN
v SQL_DBADM
v SQL_CREATETAB
v SQL_BINDADD
v SQL_CONNECT
v SQL_CREATE_NOT_FENC
v SQL_SYSCTRL
v SQL_SYSMAINT

The following are indirect authorizations inherited from group or public:
v SQL_SYSADM_GRP
v SQL_DBADM_GRP
v SQL_CREATETAB_GRP
v SQL_BINDADD_GRP
v SQL_CONNECT_GRP
v SQL_CREATE_NOT_FENC_GRP
v SQL_SYSCTRL_GRP
v SQL_SYSMAINT_GRP

See the Administration Guide for detailed information on authority levels.

Node Number

Snapshot Level
Database Manager

Table Space

Logical Data Grouping
collected
fcm_node
rollforward

Monitor Switch
Basic
Basic
Basic

Resettable No

Event Type
Connection
Overflow

Logical Data Grouping
connheader_event
overflow_event

Element Name
Element Type

node_number
information

Related Information v None

Description: The number assigned to the node in the db2nodes.cfg file.

Usage: This value identifies the current node number, which can be used
when monitoring multiple nodes.

Chapter 3. Database System Monitor Data Elements 69

Coordinating Node

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
conn_event

Element Name
Element Type

coord_node
information

Related Information v None

Description: In a multi-node system, the node number of the node where the
application connected or attached to the instance.

Usage: Each connected application is served by one coordinator node.

Connection Request Start Timestamp

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Element Name
Element Type

appl_con_time
timestamp

Related Information v “Connection Request Completion Timestamp” on
page 71

v All information related to the application

Description: The date and time that an application started a connection
request.

Usage: Use this element to determine when the application started its
connection request to the database.

70 System Monitor Guide and Reference

Maximum Number of Concurrent Connections

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

connections_top
water mark

Related Information v “Remote Connections To Database Manager” on
page 80

v “Local Connections” on page 82

Description: The highest number of simultaneous connections to the
database since the database was activated.

Usage: You may use this element to evaluate the setting of the maxappls
configuration parameter, which is described in the Administration Guide.

If the value of this element is the same as the maxappls parameter, it is likely
that some database connection requests were rejected, since maxappls limits the
number of database connections allowed.

The current number of connections at the time the snapshot was taken can be
calculated using the following formula:
remote connections to database manager + local connections

Connection Request Completion Timestamp

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Element Name
Element Type

conn_complete_time
timestamp

Related Information v “Connection Request Start Timestamp” on page
70

v All information related to the application

Description: The date and time that a connection request was granted.

Usage: Use this element to determine when a connection request to the
database was granted.

Chapter 3. Database System Monitor Data Elements 71

Previous Unit of Work Completion Timestamp

Snapshot Level
Application
DCS Application

Logical Data Grouping
appl
dcs_appl

Monitor Switch
Unit of Work
Unit of Work

Resettable No

Element Name
Element Type

prev_uow_stop_time
timestamp

Related Information v “Resetting Monitor Data” on page 25

v “Unit of Work Start Timestamp” on page 73

v “Unit of Work Stop Timestamp” on page 74

v “Connection Request Completion Timestamp” on
page 71

Description: This is the time the unit of work completed.

Usage: You may use this element with Unit of Work Stop Timestamp to
calculate the total elapsed time between COMMIT/ROLLBACK points, and
with Unit of Work Start Timestamp to calculate the time spent in the application
between units of work. The time of one of the following:

v For applications currently within a unit of work, this is the time that the
latest unit of work completed.

v For applications not currently within a unit of work (the application has
completed a unit of work, but not yet started a new one), this is the stop
time of the last unit of work that completed prior to the one that just
completed. The stop time of the one just completed is indicated “Unit of
Work Stop Timestamp” on page 74.

v For applications within their first unit of work, this is the database
connection request completion time.

72 System Monitor Guide and Reference

Unit of Work Start Timestamp

Snapshot Level
Application
DCS Application

Logical Data Grouping
appl
dcs_appl

Monitor Switch
Unit of Work
Unit of Work

Resettable No

Element Name
Element Type

uow_start_time
timestamp

Related Information v “Resetting Monitor Data” on page 25

v “Unit of Work Stop Timestamp” on page 74

v “Previous Unit of Work Completion Timestamp”
on page 72

v “Connection Request Completion Timestamp” on
page 71

Description: The date and time that the unit of work first required database
resources.

Usage: This resource requirement occurs at the first SQL statement execution
of that unit of work:

v For the first unit of work, it is the time of the first database request (SQL
statement execution) after Connection Request Completion Timestamp.

v For subsequent units of work, it is the time of the first database request
(SQL statement execution) after the previous COMMIT or ROLLBACK.

Note: The SQL Reference defines the boundaries of a unit of work as the
COMMIT or ROLLBACK points.

The database system monitor excludes the time spent between the
COMMIT/ROLLBACK and the next SQL statement from its definition of a
unit of work. This measurement method reflects the time spent by the
database manager in processing database requests, separate from time spent
in application logic before the first SQL statement of that unit of work. The
unit of work elapsed time does include the time spent running application
logic between SQL statements within the unit of work.

You may use this element with Unit of Work Stop Timestamp to calculate the
total elapsed time of the unit of work and with Previous Unit of Work
Completion Timestamp to calculate the time spent in the application between
units of work.

Chapter 3. Database System Monitor Data Elements 73

You can use the Unit of Work Stop Timestamp and the Previous Unit of Work
Completion Timestamp to calculate the elapsed time for the SQL Reference’s
definition of a unit of work.

Unit of Work Stop Timestamp

Snapshot Level
Application
DCS Application

Logical Data Grouping
appl
dcs_appl

Monitor Switch
Unit of Work
Unit of Work

Resettable No

Element Name
Element Type

uow_stop_time
timestamp

Related Information v “Resetting Monitor Data” on page 25

v “Unit of Work Start Timestamp” on page 73

v “Previous Unit of Work Completion Timestamp”
on page 72

v “Connection Request Completion Timestamp” on
page 71

Description: The date and time that the most recent unit of work completed,
which occurs when database changes are committed or rolled back.

Usage: You may use this element with Previous Unit of Work Completion
Timestamp to calculate the total elapsed time between COMMIT/ROLLBACK
points, and with Unit of Work Start Timestamp to calculate the elapsed time of
the latest unit of work.

The timestamp contents will be set as follows:

v When the application has completed a unit of work and has not yet started
a new one (as defined in Unit of Work Start Timestamp). this element will be
a valid, non-zero timestamp

v When the application is currently executing a unit of work, this element
will contain zeros

v When the application first connects to the database, this element is set to
Connection Request Completion Timestamp.

As a new unit of work is started, the contents of this element are moved to
Previous Unit of Work Completion Timestamp.

74 System Monitor Guide and Reference

Most Recent Unit of Work Elapsed Time

Snapshot Level
Unit of Work
DCS Unit of Work

Logical Data Grouping
appl
dcs_appl

Monitor Switch
Unit of Work
Unit of Work

Resettable No

Element Name
Element Type

uow_elapsed_time
time

Related Information v “Communication Errors” on page 266

v “Communication Error Time” on page 267

Description: The elapsed execution time of the most recently completed unit
of work.

Usage: Use this element as an indicator of the time it takes for units of work
to complete.

Unit of Work Completion Status

Snapshot Level
Application
DCS Application

Logical Data Grouping
appl
dcs_appl

Monitor Switch
Unit of Work
Unit of Work

Resettable No

Event Type
Transaction

Logical Data Grouping
xaction_event

Element Name
Element Type

uow_comp_status
information

Related Information v “Resetting Monitor Data” on page 25

Description: The status of the unit of work and how it stopped.

Usage: You may use this element to determine if the unit of work ended due
to a deadlock or abnormal termination. It may have been:

v Committed due to a commit statement
v Rolled back due to a rollback statement
v Rolled back due to a deadlock
v Rolled back due to an abnormal termination
v Committed at normal application termination.
v Unknown as a result of a FLUSH EVENT MONITOR command for which

units of work were in progress.

Chapter 3. Database System Monitor Data Elements 75

Note: API users should refer to the header file (sqlmon.h) containing
definitions of database system monitor constants.

Unit of Work Status

Event Type
Transaction

Logical Data Grouping
xaction_event

Element Name
Element Type

uow_status
information

Related Information v “Resetting Monitor Data” on page 25

Description: The status of the unit of work.

Usage: You may use this element to determine the status of a unit of work.

Previous Transaction Stop Time

Event Type
Transaction

Logical Data Grouping
xaction_event

Element Name
Element Type

prev_stop_time
timestamp

Related Information v None

Description: The completion time of the last unit of work.

Usage: You may use this element to calculate the time spent in the
application between units of work.

This is the unit of work that completed prior to the unit of work for which
this transaction event is generated.

For applications within their first unit of work, this is the database connection
request completion time.

76 System Monitor Guide and Reference

Application Idle Time

Snapshot Level
Application
DCS Application/lines>

Logical Data Grouping
appl
dcs_appl

Monitor Switch
Statement
Statement

Resettable No

Element Name
Element Type

appl_idle_time
information

Related Information v “Query Cost Estimate” on page 227

v “Application Agent Priority” on page 67

v “Application Priority Type” on page 68

Description: Number of seconds since an application has issued any requests
to the server. This includes applications that have not terminated a
transaction, for example not issued a commit or rollback.

Usage: This information can be used to implement applications that force
users that have been idle for a specified number of seconds.

DB2 Agent Information

The following database system monitor elements provide information about
agents:
v “Process or Thread ID”

v “Coordinator Agent” on page 78

Process or Thread ID

Snapshot Level
Application

Logical Data Grouping
agent

Monitor Switch
Statement

Resettable No

Element Name
Element Type

agent_pid
information

Related Information v “Coordinator Agent” on page 78

Description: The process Id (UNIX systems) or thread Id (OS/2 or Windows
systems) of a DB2 agent.

Usage: You can use this element to link database system monitor information
to other sources of diagnostic information, such as system traces. You can also
use it to monitor how agents working for a database application use system
resources.

Chapter 3. Database System Monitor Data Elements 77

Coordinator Agent

Snapshot Level
Application

Logical Data Grouping
appl_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

coord_agent_pid
information

Related Information v “Process or Thread ID” on page 77

Description: The process Id (UNIX systems) or thread Id (OS/2 or Windows
systems) of the coordinator agent for the application.

Usage: You can use this element to link database system monitor information
to other sources of diagnostic information, such as system traces.

Database Manager Configuration

The following elements provide database manager configuration information.

Agents and Connections

An agent is a process or thread that carries out the requests made by a client
application. Each connected application is served by exactly 1 coordinator
agent and possibly, a set of subordinator agents or subagents. Subagents are
used for parallel SQL processing in partitioned databases and on SMP
machines. Agents are classified as follows:
v Coordinator agent

This is the initial agent to which a local or remote application connects.
There is one coordinator agent dedicated to each database connection or
instance attachment. The maximum number of coordinating agents per
partition is controlled by the max_coordagents configuration parameter.

v Subagent

In partitioned databases, additional agents can be enlisted by the
coordinator agent to speed up SQL processing. Subagents are selected from
the agent pool and are returned there when their work is done. The size of
the agent pool is controlled by the num_poolagents configuration parameter.

v Associated agent

A coordinator or subagent that is doing work for an application is
associated with that application. After it is finished an application’s work, it
goes into the agent pool as an associated agent. If the application attempts
to do more work, DB2 will search the agent pool for an agent already
associated with the application and assign the work to it. If none is found,
DB2 will attempt to get an agent to satisfy the request by:

78 System Monitor Guide and Reference

1. Choosing an idle agent that is not associated with an application.
2. Creating an agent, if an idle agent is not available.
3. Finding an agent that is associated with another application. For

example, if an agent cannot be created because maxagents has been
reached, DB2 will try to take an idle agent associated with another
application. This is referred to as a stolen agent.

v Primed agent

A gateway agent in the DRDA connections pool that is connected to a
DRDA database in anticipation of work on the remote database.

The maxagents configuration parameter defines the maximum number of
agents, regardless of type, that can exist for an instance. The maxagents value
does not create any agents. The initial number of agents that are created in the
agent pool at DB2START is determined by the num_initagents configuration
parameter.

Assuming no idle agents, each connection creates a new agent, unless
max_coordagents has been reached. If subagents are not used, max_coordagents
equals maxagents. If subagents are used, some combination of coordinator
agents and subagents could reach maxagents.

When an agent is assigned work, it attempts to obtain a token or permission
to process the transaction. The database manager controls the number of
tokens available using the maxcagents configuration parameter. If a token is
not available, the agent will sleep until one becomes available, at which time
the requested work will be processed. This allows you to use maxcagents to
control the load, or number of concurrently executing transactions, the server
handles.

The following elements provide agent and connection information:
v “Remote Connections To Database Manager” on page 80

v “Remote Connections Executing in the Database Manager” on page 81

v “Local Connections” on page 82

v “Local Connections Executing in the Database Manager” on page 82

v “Local Databases with Current Connects” on page 83

v “Connects Since Database Activation” on page 84

v “Applications Connected Currently” on page 85

v “Applications Executing in the Database Currently” on page 85

v “Agents Registered” on page 86

v “Agents Waiting for a Token” on page 86

Chapter 3. Database System Monitor Data Elements 79

v “Maximum Number of Agents Registered” on page 87

v “Maximum Number of Agents Waiting” on page 87

v “Number of Idle Agents” on page 88

v “Agents Assigned From Pool” on page 88

v “Agents Created Due to Empty Agent Pool” on page 89

v “Maximum Number of Coordinating Agents” on page 90

v “Stolen Agents” on page 90

v “Maximum Number of Associated Agents” on page 91

v “Committed Private Memory” on page 91

v “Secondary Connections” on page 92

v “Number of Associated Agents” on page 92

v “Maximum Agent Overflows” on page 93

v “Total Inactive DRDA Agents” on page 93

v “Connection Switches” on page 94

Remote Connections To Database Manager

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

rem_cons_in
gauge

Related Information v “Remote Connections Executing in the Database
Manager” on page 81

v “Local Connections” on page 82

v “Local Connections Executing in the Database
Manager” on page 82

Description: The current number of connections initiated from remote clients
to the instance of the database manager that is being monitored.

Usage: Shows the number of connections from remote clients to databases in
this instance. This value will change frequently, so you may need to sample it
at specific intervals over an extended period of time to get a realistic view of
system usage. This number does not include applications that were initiated
from the same instance as the database manager.

80 System Monitor Guide and Reference

When used in conjunction with the Local Connections monitor element, these
elements can help you adjust the setting of the max_coordagents configuration
parameter, described in the Administration Guide.

Remote Connections Executing in the Database Manager

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

rem_cons_in_exec
gauge

Related Information v “Remote Connections To Database Manager” on
page 80

v “Local Connections” on page 82

v “Local Connections Executing in the Database
Manager” on page 82

Description: The number of remote applications that are currently connected
to a database and are currently processing a unit of work within the database
manager instance being monitored.

Usage: This number can help you determine the level of concurrent
processing occurring on the database manager. This value will change
frequently, so you may need to sample it at specific intervals over an extended
period of time to get a realistic view of system usage. This number does not
include applications that were initiated from the same instance as the database
manager.

When used in conjunction with the Local Connections Executing in the
Database Manager monitor element, this element can help you adjust the
setting of the maxcagents configuration parameter, described in the
Administration Guide.

Chapter 3. Database System Monitor Data Elements 81

Local Connections

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

local_cons
gauge

Related Information v “Remote Connections To Database Manager” on
page 80

v “Remote Connections Executing in the Database
Manager” on page 81

v “Local Connections Executing in the Database
Manager” on page 82

Description: The number of local applications that are currently connected to
a database within the database manager instance being monitored.

Usage: This number can help you determine the level of concurrent
processing occurring in the database manager. This value will change
frequently, so you may need to sample it at specific intervals over an extended
period of time to get a realistic view of system usage.

This number only includes applications that were initiated from the same
instance as the database manager. The applications are connected, but may or
may not be executing a unit of work in the database.

When used in conjunction with the Remote Connections To Database Manager
monitor element, this element can help you adjust the setting of the maxagents
configuration parameter, described in the Administration Guide.

Local Connections Executing in the Database Manager

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

local_cons_in_exec
gauge

Related Information v “Remote Connections To Database Manager” on
page 80

v “Remote Connections Executing in the Database
Manager” on page 81

v “Local Connections” on page 82

82 System Monitor Guide and Reference

Description: The number of local applications that are currently connected to
a database within the database manager instance being monitored and are
currently processing a unit of work.

Usage: This number can help you determine the level of concurrent
processing occurring in the database manager. This value will change
frequently, so you may need to sample it at specific intervals over an extended
period of time to get a realistic view of system usage. This number only
includes applications that were initiated from the same instance as the
database manager.

When used in conjunction with the Remote Connections Executing in the
Database Manager monitor element, this element can help you adjust the
setting of the maxcagents configuration parameter, described in the
Administration Guide.

Local Databases with Current Connects

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

con_local_dbases
gauge

Related Information v None

Description: The number of local databases that have applications connected.

Usage: This value gives an indication of how many database information
records you can expect when gathering data at the database level.

The applications can be running locally or remotely, and may or may not be
executing a unit of work within the database manager

Chapter 3. Database System Monitor Data Elements 83

Connects Since Database Activation

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable Yes

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

total_cons
counter

Related Information v “When Counters are Initialized” on page 24

v “Database Activation Timestamp” on page 46

v “Applications Connected Currently” on page 85

v “Applications Executing in the Database
Currently” on page 85

v “Secondary Connections” on page 92

Description: Indicates the number of connections to the database since the
first connect, activate, or last reset (coordinator agents).

Usage: You can use this element in conjunction with the Database Activation
Timestamp and the Start Database Manager Timestamp monitor elements to
calculate the frequency at which applications have connected to the database.

If the frequency of connects is low, you may want to explicitly activate the
database using the ACTIVATE DATABASE command before connecting any
other application, because of the extra overhead that is associated with the
first connect to a database (for example, initial buffer pool allocation). This
will result in subsequent connects being processed at a higher rate.

Note: When you reset this element, its value is set to the number of
applications that are currently connected, not to zero.

84 System Monitor Guide and Reference

Applications Connected Currently

Snapshot Level
Database
Lock

Logical Data Grouping
dbase
dbase_lock

Monitor Switch
Basic
Basic

Resettable No

Element Name
Element Type

appls_cur_cons
gauge

Related Information v “Applications Executing in the Database
Currently” on page 85

v “Connects Since Database Activation” on page 84

v “Remote Connections To Database Manager” on
page 80

v “Local Connections” on page 82

Description: Indicates the number of applications that are currently
connected to the database.

Usage: You may use this element to help you understand the level of activity
within a database and the amount of system resource being used.

It can help you adjust the setting of the maxappls and max_coordagents
configuration parameters, which are described in the Administration Guide. For
example, its value is always the same as maxappls, you may want to increase
the value of maxappls. See the Remote Connections To Database Manager and the
Local Connections monitor elements for more information.

Applications Executing in the Database Currently

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

appls_in_db2
gauge

Related Information v “Applications Connected Currently” on page 85

v “Connects Since Database Activation” on page 84

v “Remote Connections Executing in the Database
Manager” on page 81

v “Local Connections Executing in the Database
Manager” on page 82

v “Current Agents Waiting On Locks” on page 179

Chapter 3. Database System Monitor Data Elements 85

Description: Indicates the number of applications that are currently
connected to the database, and for which the database manager is currently
processing a request.

Usage: You can use this element to understand how many of the database
manager agent tokens are being used by applications connected to this
database. If the sum of Remote Connections Executing in the Database Manager
and Local Connections Executing in the Database Manager is equal to the value of
the maxcagents configuration parameter, you may want to increase the value of
that parameter, as described in the Administration Guide.

Agents Registered

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

agents_registered
gauge

Related Information v “Maximum Number of Agents Registered” on
page 87

Description: The number of agents registered in the database manager
instance that is being monitored (coordinator agents and subagents).

Usage: You can use this element to help evaluate your setting for the
maxagents configuration parameter.

Agents Waiting for a Token

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

agents_waiting_on_token
gauge

Related Information v “Agents Registered” on page 86

Description: The number of agents waiting for a token so they can execute a
transaction in the database manager.

Usage: You can use this element to help evaluate your setting for the
maxcagents configuration parameter.

Each application has a dedicated coordinator agent to process database
requests within the database manager. Each agent has to get a token before it
can execute a transaction. The maximum number of agents that can execute

86 System Monitor Guide and Reference

database manager transactions is limited by the configuration parameter
maxcagents. For more information about this parameter, see the Administration
Guide.

Maximum Number of Agents Registered

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

agents_registered_top
water mark

Related Information v “Agents Registered” on page 86

v “Maximum Number of Agents Waiting” on page
87

Description: The maximum number of agents that the database manager has
ever registered, at the same time, since it was started (coordinator agents and
subagents).

Usage: You may use this element to help you evaluate your setting of the
maxagents configuration parameter, described in the Administration Guide.

The number of agents registered at the time the snapshot was taken is
recorded by Agents Registered.

Maximum Number of Agents Waiting

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

agents_waiting_top
water mark

Related Information v “Agents Waiting for a Token” on page 86

v “Maximum Number of Agents Registered” on
page 87

Description: The maximum number of agents that have ever been waiting
for a token, at the same time, since the database manager was started.

Usage: You may use this element to help you evaluate your setting of the
maxcagents configuration parameter, described in the Administration Guide.

The number of agents waiting for a token at the time the snapshot was taken
is recorded by Agents Waiting for a Token.

Chapter 3. Database System Monitor Data Elements 87

If the maxcagents parameter is set to its default value (-1), no agents should
wait for a token and the value of this monitor element should be zero.

Number of Idle Agents

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

idle_agents
gauge

Related Information v “Maximum Number of Agents Registered” on
page 87

v “Maximum Number of Agents Waiting” on page
87

v “Agents Registered” on page 86

Description: The number of agents in the agent pool that are currently
unassigned to an application and are, therefore, “idle”.

Usage: You can use this element to help set the num_poolagents configuration
parameter. Having idle agents available to service requests for agents can
improve performance. See the Administration Guide for more information.

Agents Assigned From Pool

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

agents_from_pool
counter

Related Information v “Agents Created Due to Empty Agent Pool” on
page 89

v “Maximum Number of Coordinating Agents” on
page 90

Description: The number of agents assigned from the agent pool.

Usage: This element can be used with Agents Created Due to Empty Agent Pool
to determine how often an agent must be created because the pool is empty.

If the ratio of
Agents Created Due to Empty Agent Pool / Agents Assigned From Pool

88 System Monitor Guide and Reference

is high, it may indicate that the num_poolagents configuration parameter
should be increased. A low ratio suggests that num_poolagents is set too high,
and that some of the agents in the pool are rarely used and are wasting
system resources.

A high ratio can indicate that the overall workload for this node is too high.
You can adjust the workload by lowering the maximum number of
coordinating agents specified by the maxcagents configuration parameter, or by
redistributing data among the nodes.

See the Administration Guide for more information on the Agent Pool Size
(num_poolagents) and Maximum Number of Concurrent Coordinating Agents
(maxcagents) configuration parameters.

Agents Created Due to Empty Agent Pool

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

agents_created_empty_pool
counter

Related Information v “Agents Assigned From Pool” on page 88

v “Maximum Number of Coordinating Agents” on
page 90

Description: The number of agents created because the agent pool was
empty.

Usage: In conjunction with Agents Assigned From Pool, you can calculate
the ratio of

Agents Created Due to Empty Agent Pool / Agents Assigned From Pool

See “Agents Assigned From Pool” on page 88 for information on using this
element.

Chapter 3. Database System Monitor Data Elements 89

Maximum Number of Coordinating Agents

Snapshot Level
Database Manager
Database

Logical Data Grouping
db2
dbase

Basic
Basic

Resettable No

Element Name
Element Type

coord_agents_top
water mark

Related Information v “Agents Assigned From Pool” on page 88

v “Agents Created Due to Empty Agent Pool” on
page 89

Description: The maximum number of coordinating agents working at one
time.

Usage: If the peak number of coordinating agents represents too high a
workload for this node, you can reduce the number that can be concurrently
executing a transaction by changing the maxcagents configuration parameter.

See the Administration Guide for more information on the Maximum Number
of Concurrent Coordinating Agents (maxcagents) configuration parameter.

Stolen Agents

Snapshot Level
Database Manager
Application

Logical Data Grouping
db2
appl

Monitor Switch
Basic
Basic

Resettable Yes

Element Name
Element Type

agents_stolen
counter

Related Information v “Number of Agents Working on a Statement” on
page 237

Description: The number of times that agents are stolen from an application.
Agents are stolen when an idle agent associated with an application is
reassigned to work on a different application.

Usage: This element can be used in conjunction with “Maximum Number of
Associated Agents” on page 91 to evaluate the load that this application places
on the system.

90 System Monitor Guide and Reference

Maximum Number of Associated Agents

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Element Name
Element Type

associated_agents_top
water mark

Related Information v “Agents Assigned From Pool” on page 88

v “Agents Created Due to Empty Agent Pool” on
page 89

Description: The maximum number of subagents associated with this
application.

Usage: If the peak number of subagents is close to the num_poolagents
configuration parameter, this might indicate too high a workload for this
node.

See the Administration Guide for more information on the Agent Pool Size
(num_poolagents) configuration parameter.

Committed Private Memory

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

comm_private_mem
gauge

Related Information v none

Description: The amount of private memory that the instance of the database
manager has currently committed at the time of the snapshot.

Usage: You can use this element to help set the min_priv_mem configuration
parameter (see the Administration Guide) to ensure you have enough private
memory available. This element is returned for all platforms, but tuning can
only be accomplished on platforms where DB2 uses threads (such as OS/2
and Windows NT).

Chapter 3. Database System Monitor Data Elements 91

Secondary Connections

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

total_sec_cons
counter

Related Information v “Connects Since Database Activation” on page 84

v “Start Database Manager Timestamp” on page 39

v “Database Activation Timestamp” on page 46

Description: The number of connections made by a subagent to the database
at the node.

Usage: You can use this element in conjunction with the Connects Since
Database Activation, Database Activation Timestamp, and the Start Database
Manager Timestamp monitor elements to calculate the frequency at which
applications have connected to the database.

Number of Associated Agents

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl_info

Monitor Switch
Basic
Basic

Resettable No

Element Name
Element Type

num_assoc_agents
gauge

Related Information v “Agents Assigned From Pool” on page 88

v “Agents Created Due to Empty Agent Pool” on
page 89

v “Maximum Number of Associated Agents” on
page 91

v “Maximum Agent Overflows” on page 93

Description: At the application level, this is the number of subagents
associated with an application. At the database level, it is the number of
subagents for all applications.

Usage: You can use this element to help evaluate your settings for your
agent configuration parameters.

92 System Monitor Guide and Reference

Maximum Agent Overflows

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

max_agent_overflows
gauge

Related Information v “Agents Assigned From Pool” on page 88

v “Agents Created Due to Empty Agent Pool” on
page 89

v “Maximum Number of Associated Agents” on
page 91

v “Number of Associated Agents” on page 92

Description: The number of times a request to create a new agent was
received when the maxagents configuration parameter had already been
reached.

Usage: If agent creation requests are still being received when the maxagents
configuration parameter has been reached, this might indicate too high a
workload for this node.

See the Administration Guide for more information on the Maximum Number
of Agents (maxagents) configuration parameter.

Total Inactive DRDA Agents

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

inactive_gw_agents
gauge

Related Information v “Maximum Number of Agents Registered” on
page 87

v “Agents Registered” on page 86

v “Number of Associated Agents” on page 92

v “Maximum Agent Overflows” on page 93

v “Connection Switches” on page 94

Description: The number of DRDA agents in the DRDA connections pool
that are primed with a connection to a DRDA database, but are inactive.

Chapter 3. Database System Monitor Data Elements 93

Usage: Using this element over time will help determine if the number of
agents allocated to the connections pool is adequate.

Connection Switches

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Element Name
Element Type

num_gw_conn_switches
gauge

Related Information v “Maximum Number of Agents Registered” on
page 87

v “Agents Registered” on page 86

v “Number of Associated Agents” on page 92

v “Maximum Agent Overflows” on page 93

v “Secondary Connections” on page 92

v “Total Inactive DRDA Agents” on page 93

Description: The number of times that an agent from the agents pool was
primed with a connection and was stolen for use with a different DRDA
database.

Usage: Use this element in conjunction with “Total Inactive DRDA Agents”
on page 93 to determine if the size of the agent pool should be increased.

Sort

The following elements provide information about the database manager sort
work performed:
v “Total Sort Heap Allocated” on page 95

v “Post Threshold Sorts” on page 96

v “Piped Sorts Requested” on page 97

v “Piped Sorts Accepted” on page 97

v “Total Sorts” on page 98

v “Total Sort Time” on page 99

v “Sort Overflows” on page 100

v “Active Sorts” on page 101

94 System Monitor Guide and Reference

Total Sort Heap Allocated

Snapshot Level
Database Manager
Database

Logical Data Grouping
db2
dbase

Monitor Switch
Basic
Basic

Resettable No

Element Name
Element Type

sort_heap_allocated
gauge

Related Information v “Total Sorts” on page 98

Description: The total number of allocated pages of sort heap space for all
sorts at the level chosen and at the time the snapshot was taken.

Usage: The amount of memory allocated for each sort may be some or all of
the available sort heap size. Sort heap size is the amount of memory available
for each sort as defined in the database configuration parameter sortheap.

It is possible for a single application to have concurrent sorts active. For
example, in some cases a SELECT statement with a subquery can cause
concurrent sorts.

Information may be collected at two levels:

v At the database manager level, it represents the sum of sort heap space
allocated for all sorts in all active databases in the database manager

v At the database level, it represents the sum of the sort heap space allocated
for all sorts in a database.

Normal memory estimates do not include sort heap space. If excessive sorting
is occurring, the extra memory used for the sort heap should be added to the
base memory requirements for running the database manager. Generally, the
larger the sort heap, the more efficient the sort. Appropriate use of indexes can
reduce the amount of sorting required.

You may use the information returned at the database manager level to help
you tune the sheapthres configuration parameter. If the element value is greater
than or equal to sheapthres, it means that the sorts are not getting the full sort
heap as defined by the sortheap parameter.

Chapter 3. Database System Monitor Data Elements 95

Post Threshold Sorts

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Sort

Resettable Yes

Element Name
Element Type

post_threshold_sorts
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Statement Sorts” on page 224

v “Active Sorts” on page 101

Description: The number of sorts that have requested heaps after the sort
heap threshold has been reached.

Usage: Under normal conditions, the database manager will allocate sort
heap using the value specified by the sortheap configuration parameter. If the
amount of memory allocated to sort heaps exceeds the sort heap threshold
(sheapthres configuration parameter), the database manager will allocate sort
heap using a value less than that specified by the sortheap configuration
parameter.

Each active sort on the system allocates memory, which may result in sorting
taking up too much of the system memory available. Sorts that start after the
sort heap threshold has been reached may not receive an optimum amount of
memory to execute, but, as a result, the entire system may benefit. By
modifying the sort heap threshold and sort heap size configuration
parameters, the performance of sort operations and/or the overall system can
be improved. If this element’s value is high, you can:

v Increase the sort heap threshold (sheapthres) or,
v Adjust applications to use fewer or smaller sorts via SQL query changes.

96 System Monitor Guide and Reference

Piped Sorts Requested

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable Yes

Element Name
Element Type

piped_sorts_requested
counter

Related Information v “When Counters are Initialized” on page 24

v “Piped Sorts Accepted” on page 97

v “Post Threshold Sorts” on page 96

Description: The number of piped sorts that have been requested.

Usage: Each active sort on the system allocates memory, which may result in
sorting taking up too much of the available system memory.

The sort list heap (sortheap) and sort heap threshold (sheapthres) configuration
parameters help to control the amount of memory used for sort operations.
These parameters are also used to determine whether a sort will be piped.

Since piped sorts may reduce disk I/O, allowing more piped sorts can
improve the performance of sort operations and possibly the performance of
the overall system. A piped sort is not be accepted if the sort heap threshold
will be exceeded when the sort heap is allocated for the sort. See Piped Sorts
Accepted for more information if you are experiencing piped sort rejections.

The SQL EXPLAIN output will show whether the optimizer requests a piped
sort. For more information on piped and non-piped sorts see the
Administration Guide.

Piped Sorts Accepted

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable Yes

Element Name
Element Type

piped_sorts_accepted
counter

Related Information v “When Counters are Initialized” on page 24

v “Piped Sorts Requested” on page 97

v “Post Threshold Sorts” on page 96

Description: The number of piped sorts that have been accepted.

Chapter 3. Database System Monitor Data Elements 97

Usage: Each active sort on the system allocates memory, which may result in
sorting taking up too much of the available system memory.

When the number of accepted piped sorts is low compared to the number
requested, you can improve sort performance by adjusting one or both of the
following configuration parameters:

v sortheap
v sheapthres

If piped sorts are being rejected, you might consider decreasing your sort
heap or increasing your sort heap threshold. You should be aware of the
possible implications of either of these options. If you increase the sort heap
threshold, then there is the possibility that more memory will remain allocated
for sorting. This could cause the paging of memory to disk. If you decrease
the sort heap, you might require an extra merge phase that could slow down
the sort.

See the Administration Guide for more information on sorts.

Total Sorts

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Sort
Sort

Resettable Yes

Event Type
Database
Connection
Statement

Logical Data Grouping
db_event
conn_event
stmt_event

Element Name
Element Type

total_sorts
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Sort Overflows” on page 100

v “Total Sort Time” on page 99

Description: The total number of sorts that have been executed.

Usage: At a database or application level, use this value with Sort Overflows
to calculate the percentage of sorts that need more heap space. You can also
use it with Total Sort Time to calculate the average sort time.

98 System Monitor Guide and Reference

If the number of sort overflows is small with respect to the total sorts, then
increasing the sort heap size may have little impact on performance, unless
this buffer size is increased substantially.

At a statement level, use this element to identify statements which are
performing large numbers of sorts. These statements may benefit from
additional tuning to reduce the number of sorts. You can also use the SQL
EXPLAIN statement to identify the number of sorts a statement performs. See
the Administration Guide for more information.

Total Sort Time

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl
stmt

Monitor Switch
Sort
Sort
Sort

Resettable Yes

Event Type
Database
Connection
Statement

Logical Data Grouping
db_event
conn_event
stmt_event

Element Name
Element Type

total_sort_time
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Total Sorts” on page 98

v “Total Sorts” on page 98

Description: The total elapsed time (in milliseconds) for all sorts that have
been executed.

Usage: At a database or application level, use this element with Total Sorts to
calculate the average sort time, which can indicate whether or not sorting is
an issue as far as performance is concerned.

At a statement level, use this element to identify statements that spend a lot
of time sorting. These statements may benefit from additional tuning to
reduce the sort time.

This count also includes sort time of temporary tables created during related
operations. It provides information for one statement, one application, or all
applications accessing one database.

When using data elements providing elapsed times, you should consider:

Chapter 3. Database System Monitor Data Elements 99

1. Elapsed times are affected by system load, so the more processes you have
running, the higher this elapsed time value.

2. To calculate this data element at a database level, the database system
monitor sums the application-level times. This can result in double
counting elapsed times at a database level, since more than one
application process can be running at the same time.
To provide meaningful data from the database level, you should normalize
the data to a lower level. For example:

total sort time / total sorts

provides information about the average elapsed time for each sort.

Sort Overflows

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl
stmt

Monitor Switch
Sort
Sort
Sort

Resettable Yes

Event Type
Database
Connection
Statement

Logical Data Grouping
db_event
conn_event
stmt_event

Element Name
Element Type

sort_overflows
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Total Sorts” on page 98

Description: The total number of sorts that ran out of sort heap and may
have required disk space for temporary storage.

Usage: At a database or application level, use this element in conjunction
with Total Sorts to calculate the percentage of sorts that had to overflow to
disk. If this percentage is high, you may want adjust the database
configuration by increasing the value of sortheap.

At a statement level, use this element to identify statements that require large
sorts. These statements may benefit from additional tuning to reduce the
amount of sorting required.

100 System Monitor Guide and Reference

When a sort overflows, additional overhead will be incurred because the sort
will require a merge phase and can potentially require more I/O, if data
needs to be written to disk.

This element provides information for one statement, one application, or all
applications accessing one database.

Active Sorts

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

active_sorts
counter

Related Information v “Total Sort Heap Allocated” on page 95

v “Total Sorts” on page 98

Description: The number of sorts in the database that currently have a sort
heap allocated.

Usage: Use this value in conjunction with Total Sort Heap Allocated to
determine the average sort heap space used by each sort. If the sortheap
configuration parameter is substantially larger than the average sort heap
used, you may be able to lower the value of this parameter. (See the
Administration Guide for more details.)

This value includes heaps for sorts of temporary tables that were created
during relational operations.

Hash Join

Hash join is an additional option for the optimizer. A hash join will first
compare hash codes before comparing predicates for tables involved in a join.
In a hash join, one table (selected by the optimizer) is scanned and rows are
copied into memory buffers drawn from the sort heap allocation. The memory
buffers are divided into partitions based on a hash code computed from the
columns of the join predicates. Rows of the other table involved in the join are
matched to rows from the first table by comparing the hash code. If the hash
codes match, the actual join predicate columns are compared.
v “Total Hash Joins” on page 102

v “Hash Join Threshold” on page 102

v “Total Hash Loops” on page 103

v “Hash Join Overflows” on page 103

Chapter 3. Database System Monitor Data Elements 101

v “Hash Join Small Overflows” on page 104

Total Hash Joins

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

total_hash_joins
counter

Related Information v “Hash Join Threshold” on page 102

v “Total Hash Loops” on page 103

v “Hash Join Overflows” on page 103

v “Hash Join Small Overflows” on page 104

Description: The total number of hash joins executed.

Usage: At the database or application level, use this value in conjunction
with Hash Join Overflows and Hash Join Small Overflows to determine if a
significant percentage of hash joins would benefit from modest increases in
the sort heap size.

Hash Join Threshold

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable Yes

Element Name
Element Type

post_threshold_hash_joins
counter

Related Information v “Total Hash Joins” on page 102

v “Total Hash Loops” on page 103

v “Hash Join Overflows” on page 103

v “Hash Join Small Overflows” on page 104

Description: The total number of times that a hash join heap request was
limited due to concurrent use of shared or private sort heap space.

Usage: If this value is large (greater than 5% of “Hash Join Overflows” on
page 103), the sort heap threshold should be increased.

102 System Monitor Guide and Reference

Total Hash Loops

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

total_hash_loops
counter

Related Information v “Total Hash Joins” on page 102

v “Hash Join Threshold” on page 102

v “Hash Join Overflows” on page 103

v “Hash Join Small Overflows” on page 104

Description: The total number of times that a single partition of a hash join
was larger than the available sort heap space.

Usage: Values for this data element indicate inefficient execution of hash
joins. This might indicate that the sort heap size is too small or the sort heap
threshold is too small. Use this value in conjunction with the other hash join
variables to tune the sort heap size (sortheap) and sort heap threshold
(sheapthres) configuration parameters.

Hash Join Overflows

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

hash_join_overflows
counter

Related Information v “Total Hash Joins” on page 102

v “Hash Join Threshold” on page 102

v “Total Hash Loops” on page 103

v “Hash Join Small Overflows” on page 104

Chapter 3. Database System Monitor Data Elements 103

Description: The number of times that hash join data exceeded the available
sort heap space.

Usage: At the database level, if the percentage of Hash Join Small Overflows
is greater than 10% of this value, then you should consider increasing the sort
heap size. Values at the application level can be used to evaluate hash join
performance for individual applications.

Hash Join Small Overflows

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

hash_join_small_overflows
counter

Related Information v “Total Hash Joins” on page 102

v “Hash Join Threshold” on page 102

v “Total Hash Loops” on page 103

v “Hash Join Overflows” on page 103

Description: The number of times that hash join data exceeded the available
sort heap space by less than 10%.

Usage: If this value and Hash Join Overflows are high, then you should
consider increasing the sort heap threshold. If this value is greater than 10% of
Hash Join Overflows, then you should consider increasing the sort heap size.

Fast Communication Manager

The following database system monitor elements provide information about
the Fast Communication Manager (FCM):
v “FCM Buffers Currently Free” on page 105

v “Minimum FCM Buffers Free” on page 105

v “Message Anchors Currently Free” on page 106

v “Minimum Message Anchors” on page 106

v “Connection Entries Currently Free” on page 106

v “Minimum Connection Entries” on page 107

104 System Monitor Guide and Reference

v “Request Blocks Currently Free” on page 107

v “Minimum Request Blocks” on page 108

v “Number of Nodes” on page 108

v “Connection Status” on page 108

v “Total FCM Buffers Sent” on page 109

v “Total FCM Buffers Received” on page 110

FCM Buffers Currently Free

Snapshot Level
Database Manager

Logical Data Grouping
fcm

Monitor Switch
Basic

Resettable No

Element Name
Element Type

buff_free
gauge

Related Information v “Minimum FCM Buffers Free” on page 105

Description: This element indicates the number of FCM buffers currently
free.

Usage: Use the number of FCM buffers currently free in conjunction with the
fcm_num_buffers configuration parameter to determine the current FCM buffer
pool utilization. You can use this information to tune fcm_num_buffers.

Minimum FCM Buffers Free

Snapshot Level
Database Manager

Logical Data Grouping
fcm

Monitor Switch
Basic

Resettable No

Element Name
Element Type

buff_free_bottom
water mark

Related Information v “FCM Buffers Currently Free” on page 105

Description: The lowest number of free FCM buffers reached during
processing.

Usage: Use this element in conjunction with the fcm_num_buffers
configuration parameter to determine the maximum FCM buffer pool
utilization. If buff_free_bottom is low, you should increase fcm_num_buffers to
ensure that operations do not run out of FCM buffers. If buff_free_bottom is
high, you can decrease fcm_num_buffers to conserve system resources.

Chapter 3. Database System Monitor Data Elements 105

Message Anchors Currently Free

Snapshot Level
Database Manager

Logical Data Grouping
fcm

Monitor Switch
Basic

Resettable No

Element Name
Element Type

MA_free
gauge

Related Information v “Minimum Message Anchors” on page 106

Description: This element indicates the number of message anchors currently
free.

Usage: Use the number of message anchors currently free in conjunction
with the fcm_num_anchors configuration parameter to determine the current
message anchor utilization. You can use this information to tune
fcm_num_anchors.

Minimum Message Anchors

Snapshot Level
Database Manager

Logical Data Grouping
fcm

Monitor Switch
Basic

Resettable No

Element Name
Element Type

MA_free_bottom
water mark

Related Information v “Message Anchors Currently Free” on page 106

Description: The lowest number of free message anchors reached during
processing.

Usage: Use this element in conjunction with the fcm_num_anchors
configuration parameter to determine the maximum message anchors
utilization. If MA_free_bottom is low, you should increase fcm_num_anchors to
ensure that operations do not run out of message anchors. If MA_free_bottom
is high, you can decrease fcm_num_anchors to conserve system resources.

Connection Entries Currently Free

Snapshot Level
Database Manager

Logical Data Grouping
fcm

Monitor Switch
Basic

Resettable No

Element Name
Element Type

CE_free
gauge

Related Information v “Minimum Connection Entries” on page 107

106 System Monitor Guide and Reference

Description: This element indicates the number of connection entries
currently free.

Usage: Use the number of connection entries currently free in conjunction
with the fcm_num_connect configuration parameter to determine the current
connection entry utilization. You can use this information to tune
fcm_num_connect.

Minimum Connection Entries

Snapshot Level
Database Manager

Logical Data Grouping
fcm

Monitor Switch
Basic

Resettable No

Element Name
Element Type

CE_free_bottom
water mark

Related Information v “Connection Entries Currently Free” on page 106

Description: The lowest number of free connection entries reached during
processing.

Usage: Use this element in conjunction with the fcm_num_connect
configuration parameter to determine the maximum connection entry
utilization. If CE_free_bottom is low, you should increase fcm_num_connect to
ensure that operations do not run out of connection entries. If CE_free_bottom
is high, you can decrease fcm_num_connect to conserve system resources.

Request Blocks Currently Free

Snapshot Level
Database Manager

Logical Data Grouping
fcm

Monitor Switch
Basic

Resettable No

Element Name
Element Type

RB_free
gauge

Related Information v “Request Blocks Currently Free” on page 107

Description: This element indicates the number of request blocks currently
free.

Usage: Use the number of request blocks currently free in conjunction with
the fcm_num_rqb configuration parameter to determine the current request
block utilization. You can use this information to tune fcm_num_rqb.

Chapter 3. Database System Monitor Data Elements 107

Minimum Request Blocks

Snapshot Level
Database Manager

Logical Data Grouping
fcm

Monitor Switch
Basic

Resettable No

Element Name
Element Type

RB_free_bottom
water mark

Related Information v “Request Blocks Currently Free” on page 107

Description: The lowest number of free request blocks reached during
processing.

Usage: Use this element in conjunction with the fcm_num_rqb configuration
parameter to determine the maximum request block utilization. If
RB_free_bottom is low, you should increase fcm_num_rqb to ensure that
operations do not run out of request blocks. If RB_free_bottom is high, you
can decrease fcm_num_rqb to conserve system resources.

Number of Nodes

Snapshot Level
Database Manager

Logical Data Grouping
fcm

Monitor Switch
Basic

Resettable No

Element Name
Element Type

number_nodes
information

Related Information v None

Description: The number of nodes in the current configuration.

Usage: Use this element to determine the number of fcm_node structures that
will be returned.

Connection Status

Snapshot Level
Database Manager

Logical Data Grouping
fcm_node

Monitor Switch
Basic

Resettable No

Element Name
Element Type

connection_status
information

Related Information v “Total FCM Buffers Sent” on page 109

v “Total FCM Buffers Received” on page 110

108 System Monitor Guide and Reference

Description: This element indicates the status of the communication
connection status between the node issuing the GET SNAPSHOT command
and other nodes listed in the db2nodes.cfg file.

Usage: The connection values are :

SQLM_FCM_CONNECT_INACTIVE
No current connection

SQLM_FCM_CONNECT_ACTIVE
Connection is active

SQLM_FCM_CONNECT_CONGESTED
Connection is congested

Two nodes can be active, but the communication connection between them
will remain inactive, unless there is some communication between those
nodes.

Total FCM Buffers Sent

Snapshot Level
Database Manager

Logical Data Grouping
fcm_node

Monitor Switch
Basic

Resettable No

Element Name
Element Type

total_buffers_sent
counter

Related Information v “Connection Status” on page 108

v “Total FCM Buffers Received” on page 110

Description: The total number of FCM buffers that have been sent from the
node issuing the GET SNAPSHOT command to the node identified by the
node_number (see the db2nodes.cfg file).

Usage: You can use this element to measure the level of traffic between the
current node and the remote node. If the total number of FCM buffers sent to
this node is high, you may want to redistribute the database, or move tables
to reduce the inter-node traffic.

Chapter 3. Database System Monitor Data Elements 109

Total FCM Buffers Received

Snapshot Level
Database Manager

Logical Data Grouping
fcm_node

Monitor Switch
Basic

Resettable No

Element Name
Element Type

total_buffers_rcvd
counter

Related Information v “Connection Status” on page 108

v “Total FCM Buffers Sent” on page 109

Description: The total number of FCM buffers received by the node issuing
the GET SNAPSHOT command from the node identified by the node_number
(see the db2nodes.cfg file).

Usage: You can use this element to measure the level of traffic between the
current node and the remote node. If the total number of FCM buffers
received from this node is high, you may want to redistribute the database, or
move tables to reduce the inter-node traffic.

Database Configuration

The following elements provide information particularly helpful for database
performance tuning.

Buffer Pool Activity

The database server reads and updates all data from a buffer pool. Data is
copied from disk to a buffer pool as it is required by applications.

Pages are placed in a buffer pool:
v by the agent. This is synchronous I/O.
v by the I/O servers (prefetchers). This is asynchronous I/O.

Pages are written to disk from a buffer pool:
v by the agent, synchronously
v by page cleaners, asynchronously

If the server needs to read a page of data, and that page is already in the
buffer pool, then the ability to access that page is much faster than if the page
had to be read from disk. It is desirable to hit as many pages as possible in
the buffer pool. Avoiding disk I/O is the main issue when trying to improve
the performance of your server And so, proper configuration of the buffer
pools are probably the most important consideration for performance tuning.

110 System Monitor Guide and Reference

Buffer Pool Hit Ratio

The buffer pool hit ratio indicates the percentage of time that the database
manager did not need to load a page from disk in order to service a page
request. That is, the page was already in the buffer pool. The greater the
buffer pool hit ratio, the lower the frequency of disk I/O.

The buffer pool hit ratio can be calculated as follows:
(1 - ((pool_data_p_reads + pool_index_p_reads) /
(pool_data_l_reads + pool_index_l_reads))) * 100%

This calculation takes into account all of the pages (index and data) that are
cached by the buffer pool.

For a large database, increasing the buffer pool size may have minimal effect
on the buffer pool hit ratio. Its number of data pages may be so large, that the
statistical chances of a hit are not improved increasing its size. But you might
find that tuning the index buffer pool hit ratio achieves the desired result.
This can be achieved using two methods:
1. Split the data and indices into two different buffer pools and tune them

separately.
2. Use one bufferpool, but increase its size until the index hit ratio stops

increasing. The index buffer pool hit ratio can be calculated as follows:
(1 - ((pool_index_p_reads) / (pool_index_l_reads))) * 100%

The first method is often more effective, but because it requires indices and
data to reside in different tablespaces, it may not be an option for existing
databases. It also requires tuning two bufferpools instead of one, which can be
a more difficult task, particularly when memory is constrained.

Prefetchers

You should also consider the impact that prefetchers may be having on the hit
ratio. Prefetchers read data pages into the buffer pool anticipating their need
by an application (asynchronously). In most situations, these pages are read
just before they are needed (the desired case). However, prefetchers can cause
unnecessary I/O by reading pages into the buffer pool that will not be used.
For example, an application starts reading through a table. This is detected
and prefetching starts, but the application fills an application buffer and stops
reading. Meanwhile, prefetching has been done for a number of additional
pages. I/O has occurred for pages that will not be used and the buffer pool is
partially taken up with those pages.

Chapter 3. Database System Monitor Data Elements 111

Page Cleaners

Page cleaners monitor the buffer pool and asynchronously write pages to disk.
Their goals are:
v Ensure that agents will always find free pages in the buffer pool. If an agent

does not find free pages in the buffer pool, it must clean them itself, and
the associated application will have a poorer response.

v Speed database recovery, if a system crash occurs. The more pages that
have been written to disk, the smaller the number of log file records that
must be processed to recover the database.

Although dirty pages are written out to disk, the pages are not removed from
the buffer pool right away, unless the space is needed to read in new pages.

Note: Buffer pool information is typically gathered at a table space level, but
the facilities of the database system monitor can roll this information
up to the buffer pool and database levels. Depending on your type of
analysis, you may need to examine this data at any or all of these
levels.

The following elements provide information about buffer pool activity. For an
overview how the database manager uses buffer pools, see the Administration
Guide.
v “Buffer Pool Data Logical Reads” on page 113

v “Buffer Pool Data Physical Reads” on page 115

v “Buffer Pool Data Writes” on page 116

v “Buffer Pool Index Logical Reads” on page 118

v “Buffer Pool Index Physical Reads” on page 119

v “Buffer Pool Index Writes” on page 120

v “Total Buffer Pool Physical Read Time” on page 122

v “Total Buffer Pool Physical Write Time” on page 123

v “Database Files Closed” on page 124

v “Buffer Pool Asynchronous Data Reads” on page 125

v “Buffer Pool Asynchronous Data Writes” on page 126

v “Buffer Pool Asynchronous Index Writes” on page 127

v “Buffer Pool Asynchronous Index Reads” on page 128

v “Buffer Pool Asynchronous Read Time” on page 129

v “Buffer Pool Asynchronous Write Time” on page 130

112 System Monitor Guide and Reference

v “Buffer Pool Asynchronous Read Requests” on page 131

v “Buffer Pool Log Space Cleaners Triggered” on page 132

v “Buffer Pool Victim Page Cleaners Triggered” on page 133

v “Buffer Pool Threshold Cleaners Triggered” on page 134

v “Buffer Pool Information” on page 134

v “Bufferpool Name” on page 135

v “Time Waited for Prefetch” on page 135

Buffer Pool Data Logical Reads

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Logical Data Grouping
db_event
tablespace_event
conn_event

Element Name
Element Type

pool_data_l_reads
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Database Activation Timestamp” on page 46

v “Connection Request Start Timestamp” on page
70

v “Buffer Pool Data Physical Reads” on page 115

v “Buffer Pool Data Writes” on page 116

v “Buffer Pool Index Logical Reads” on page 118

v “Buffer Pool Index Physical Reads” on page 119

Description: Indicates the number of logical read requests for data pages
that have gone through the buffer pool.

Usage: This count includes accesses to data that is:

v Already in the buffer pool when the database manager needs to process the
page

Chapter 3. Database System Monitor Data Elements 113

v Read into the buffer pool before the database manager can process the
page.

In conjunction with Buffer Pool Data Physical Reads, you can calculate the data
page hit ratio for the buffer pool using the following formula:

1 - (buffer pool data physical reads / buffer pool data logical reads)

In conjunction with Buffer Pool Data Physical Reads, Buffer Pool Index
Physical Reads, and Buffer Pool Index Logical Reads, you can calculate the
overall buffer pool hit ratio using the following formula:

1 - ((buffer pool data physical reads + buffer pool index physical reads)
/ (buffer pool data logical reads + buffer pool index logical reads))

Increasing buffer pool size will generally improve the hit ratio, but you will
reach a point of diminishing return. Ideally, if you could allocate a buffer pool
large enough to store your entire database, then once the system is up and
running you would get a hit ratio of 100%. However, this is unrealistic in
most cases. the significance of the hit ratio really depends on the size of your
data, and the way it is accessed. A very large database where data is accessed
evenly would have a poor hit ratio. There is little you can do with very large
tables. In such case, you would focus your attention on smaller, frequently
accessed tables, and on the indices. Perhaps, assigning them to an individual
buffer pools, for which you can aim for higher hit ratios.

114 System Monitor Guide and Reference

Buffer Pool Data Physical Reads

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Logical Data Grouping
db_event
tablespace_event
conn_event

Element Name
Element Type

pool_data_p_reads
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Database Activation Timestamp” on page 46

v “Connection Request Start Timestamp” on page
70

v “Buffer Pool Data Logical Reads” on page 113

v “Buffer Pool Data Writes” on page 116

v “Buffer Pool Index Logical Reads” on page 118

v “Buffer Pool Index Physical Reads” on page 119

v “Buffer Pool Asynchronous Data Reads” on page
125

Description: The number of read requests that required I/O to get data
pages into the buffer pool.

Usage: See Buffer Pool Data Logical Reads and Buffer Pool Asynchronous
Data Reads for information about how to use this element.

Chapter 3. Database System Monitor Data Elements 115

Buffer Pool Data Writes

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Logical Data Grouping
db_event
tablespace_event
conn_event

Element Name
Element Type

pool_data_writes
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Database Activation Timestamp” on page 46

v “Connection Request Start Timestamp” on page
70

v “Buffer Pool Data Logical Reads” on page 113

v “Buffer Pool Data Physical Reads” on page 115

v “Total Buffer Pool Physical Write Time” on page
123

v “Buffer Pool Asynchronous Data Writes” on page
126

Description: Indicates the number of times a buffer pool data page was
physically written to disk.

Usage: If a buffer pool data page is written to disk for a high percentage of
the Buffer Pool Data Physical Reads, you may be able to improve performance
by increasing the number of buffer pool pages available for the database.

A buffer pool data page is written to disk for the following reasons:

v To free a page in the buffer pool so another page can be read
v To flush the buffer pool.

The system does not always write a page to make room for a new one. If the
page has not been updated, it can simply be replaced. This replacement is not
counted for this element.

116 System Monitor Guide and Reference

The data page can be written by an asynchronous page-cleaner agent before
the buffer pool space is required. These asynchronous page writes are
included in the value of this element in addition to synchronous page writes
(see Buffer Pool Asynchronous Data Writes).

When calculating this percentage, disregard the number of physical reads
required to initially fill the buffer pool. To determine the number of pages
written:
1. Run your application (to load the buffer)
2. Note the value of this element
3. Run your application again
4. Subtract the value recorded in step 2 from the new value of this element.

In order to prevent the buffer pool from being deallocated between the
runnings of your application, you should either;
v activate the database with the ACTIVATE DATABASE command
v have an idle application connected to the database.

If all applications are updating the database, increasing the size of the buffer
pool may not have much impact on performance since most of the buffer pool
pages contain updated data, which must be written to disk. However, if the
updated pages can be used by other units of work before being written out,
the buffer pool can save a write and a read, which will improve your
performance.

See the Administration Guide for more information about buffer pool size.

Chapter 3. Database System Monitor Data Elements 117

Buffer Pool Index Logical Reads

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Logical Data Grouping
db_event
tablespace_event
conn_event

Element Name
Element Type

pool_index_l_reads
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Database Activation Timestamp” on page 46

v “Connection Request Start Timestamp” on page
70

v “Buffer Pool Index Physical Reads” on page 119

v “Buffer Pool Index Writes” on page 120

v “Buffer Pool Data Physical Reads” on page 115

v “Buffer Pool Data Writes” on page 116

v “Buffer Pool Data Logical Reads” on page 113

Description: Indicates the number of logical read requests for index pages
that have gone through the buffer pool.

Usage: This count includes accesses to index pages that are:

v Already in the buffer pool when the database manager needs to process the
page

v Read into the buffer pool before the database manager can process the
page.

In conjunction with Buffer Pool Index Physical Reads, you can calculate the
index page hit ratio for the buffer pool using one of the following:

1 - (buffer pool index physical reads / buffer pool index logical reads)

To calculate the overall buffer pool hit ratio, see Buffer Pool Data Logical
Reads.

118 System Monitor Guide and Reference

If the hit ratio is low, increasing the number of buffer pool pages may
improve performance. See the Administration Guide for more information about
buffer pool size.

Buffer Pool Index Physical Reads

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Logical Data Grouping
db_event
tablespace_event
conn_event

Element Name
Element Type

pool_index_p_reads
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Database Activation Timestamp” on page 46

v “Connection Request Start Timestamp” on page
70

v “Buffer Pool Index Logical Reads” on page 118

v “Buffer Pool Index Writes” on page 120

v “Buffer Pool Data Logical Reads” on page 113

v “Buffer Pool Data Physical Reads” on page 115

Description: Indicates the number of physical read requests to get index
pages into the buffer pool.

Usage: See Buffer Pool Index Logical Reads for information about how to use
this element.

Chapter 3. Database System Monitor Data Elements 119

Buffer Pool Index Writes

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Logical Data Grouping
db_event
tablespace_event
conn_event

Element Name
Element Type

pool_index_writes
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Database Activation Timestamp” on page 46

v “Connection Request Start Timestamp” on page
70

v “Buffer Pool Index Logical Reads” on page 118

v “Buffer Pool Index Physical Reads” on page 119

v “Buffer Pool Asynchronous Index Writes” on page
127

Description: Indicates the number of times a buffer pool index page was
physically written to disk.

Usage: Like a data page, a buffer pool index page is written to disk for the
following reasons:

v To free a page in the buffer pool so another page can be read
v To flush the buffer pool.

The system does not always write a page to make room for a new one. If the
page has not been updated, it can simply be replaced. This replacement is not
counted for this element.

The index page can be written by an asynchronous page-cleaner agent before
the buffer pool space is required. These asynchronous index page writes are
included in the value of this element in addition to synchronous index page
writes (see Buffer Pool Asynchronous Index Writes).

120 System Monitor Guide and Reference

If a buffer pool index page is written to disk for a high percentage of the
Buffer Pool Index Physical Reads, you may be able to improve performance by
increasing the number of buffer pool pages available for the database.

When calculating this percentage, disregard the number of physical reads
required to initially fill the buffer pool. To determine the number of pages
written:
1. Run your application (to load the buffer)
2. Note the value of this element
3. Run your application again
4. Subtract the value recorded in step 2 from the new value of this element.

In order to prevent the buffer pool from being deallocated between the
runnings of your application, you should either:
v activate the database with the ACTIVATE DATABASE command
v have an idle application connected to the database.

If all applications are updating the database, increasing the size of the buffer
pool may not have much impact on performance, since most of the pages
contain updated data which must be written to disk.

See the Administration Guide for more information about buffer pool size.

Chapter 3. Database System Monitor Data Elements 121

Total Buffer Pool Physical Read Time

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Logical Data Grouping
db_event
tablespace_event
conn_event

Element Name
Element Type

pool_read_time
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Buffer Pool Data Physical Reads” on page 115

v “Buffer Pool Index Physical Reads” on page 119

v “Database Activation Timestamp” on page 46

v “Connection Request Start Timestamp” on page
70

v “Buffer Pool Asynchronous Read Time” on page
129

Description: Provides the total amount of elapsed time spent processing read
requests that caused data or index pages to be physically read from disk to
buffer pool.

Usage: You can use this element with Buffer Pool Data Physical Reads and
Buffer Pool Index Physical Reads to calculate the average page-read time. This
average is important since it may indicate the presence of an I/O wait, which
in turn may indicate that you should be moving data to a different device.

At the database and table space levels, this element includes the value of
Buffer Pool Asynchronous Read Time.

122 System Monitor Guide and Reference

Total Buffer Pool Physical Write Time

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Poo
Buffer Pooll
Buffer Pool

Resettable Yes

Event Type
Database
Table Space
Connection

Logical Data Grouping
db_event
tablespace_event
conn_event

Element Name
Element Type

pool_write_time
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Buffer Pool Data Writes” on page 116

v “Buffer Pool Index Writes” on page 120

v “Database Activation Timestamp” on page 46

v “Connection Request Start Timestamp” on page
70

Description: Provides the total amount of time spent physically writing data
or index pages from the buffer pool to disk.

Usage: You can use this element with Buffer Pool Data Writes and Buffer
Pool Index Writes to calculate the average page-write time. This average is
important since it may indicate the presence of an I/O wait, which in turn
may indicate that you should be moving data to a different device.

At the database and table space levels, this element includes the value of
Buffer Pool Asynchronous Write Time.

Chapter 3. Database System Monitor Data Elements 123

Database Files Closed

Snapshot Level
Database
Table Space

Logical Data Grouping
dbase
tablespace
bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Logical Data Grouping
db_event
tablespace_event

Element Name
Element Type

files_closed
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

Description: The total number of database files closed.

Usage: The database manager opens files for reading and writing into and
out of the buffer pool. The maximum number of database files open by an
application at any time is controlled by the maxfilop configuration parameter.
If the maximum is reached, one file will be closed before the new file is
opened. Note that the actual number of files opened may not equal the
number of files closed.

You can use this element to help you determine the best value for the maxfilop
configuration parameter (see the Administration Guide for more information).

124 System Monitor Guide and Reference

Buffer Pool Asynchronous Data Reads

Snapshot Level
Database
Table Space

Logical Data Grouping
dbase
tablespace
bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Logical Data Grouping
db_event
tablespace_event

Element Name
Element Type

pool_async_data_reads
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Buffer Pool Asynchronous Read Time” on page
129

v “Buffer Pool Data Physical Reads” on page 115

v “Buffer Pool Asynchronous Read Requests” on
page 131

v “Direct Reads From Database” on page 141

Description: The number of pages read asynchronously into the buffer pool.

Usage: You can use this element with Buffer Pool Data Physical Reads to
calculate the number of physical reads that were performed synchronously
(that is, physical data page reads that were performed by database manager
agents). Use the following formula:

buffer pool data physical reads - buffer pool asynchronous data reads

By comparing the ratio of asynchronous to synchronous reads, you can gain
insight into how well the prefetchers are working. This element can be helpful
when you are tuning the num_ioservers configuration parameter (see the
Administration Guide).

Asynchronous reads are performed by database manager prefetchers. For
information about these prefetchers, see the Administration Guide.

Chapter 3. Database System Monitor Data Elements 125

Buffer Pool Asynchronous Data Writes

Snapshot Level
Database
Table Space

Logical Data Grouping
dbase
tablespace
bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Logical Data Grouping
db_event
tablespace_event

Element Name
Element Type

pool_async_data_writes
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Buffer Pool Asynchronous Index Writes” on page
127

v “Buffer Pool Data Writes” on page 116

v “Buffer Pool Asynchronous Write Time” on page
130

v “Buffer Pool Log Space Cleaners Triggered” on
page 132

v “Buffer Pool Victim Page Cleaners Triggered” on
page 133

v “Buffer Pool Threshold Cleaners Triggered” on
page 134

v “Direct Writes to Database” on page 142

Description: The number of times a buffer pool data page was physically
written to disk by either an asynchronous page cleaner, or a prefetcher. A
prefetcher may have written dirty pages to disk to make space for the pages
being prefetched.

Usage: You can use this element with Buffer Pool Data Writes to calculate the
number of physical write requests that were performed synchronously (that is,
physical data page writes that were performed by database manager agents).
Use the following formula:
buffer pool data writes - buffer pool asynchronous data writes

By comparing the ratio of asynchronous to synchronous writes, you can gain
insight into how well the buffer pool page cleaners are performing. This ratio
can be helpful when you are tuning the num_iocleaners configuration
parameter.

126 System Monitor Guide and Reference

For more information about asynchronous page cleaners, see the
Administration Guide.

Buffer Pool Asynchronous Index Writes

Snapshot Level
Database
Table Space

Logical Data Grouping
dbase
tablespace
bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Logical Data Grouping
db_event
tablespace_event

Element Name
Element Type

pool_async_index_writes
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Buffer Pool Asynchronous Data Writes” on page
126

v “Buffer Pool Asynchronous Index Reads” on page
128

v “Buffer Pool Index Writes” on page 120

v “Buffer Pool Asynchronous Write Time” on page
130

v “Buffer Pool Log Space Cleaners Triggered” on
page 132

v “Buffer Pool Victim Page Cleaners Triggered” on
page 133

v “Buffer Pool Threshold Cleaners Triggered” on
page 134

v “Direct Writes to Database” on page 142

Description: The number of times a buffer pool index page was physically
written to disk by either an asynchronous page cleaner, or a prefetcher. A
prefetcher may have written dirty pages to disk to make space for the pages
being prefetched.

Usage: You can use this element with Buffer Pool Index Writes to calculate
the number of physical index write requests that were performed
synchronously. That is, physical index page writes that were performed by
database manager agents. Use the following formula:

buffer pool index writes - buffer pool asynchronous index writes

Chapter 3. Database System Monitor Data Elements 127

By comparing the ratio of asynchronous to synchronous writes, you can gain
insight into how well the buffer pool page cleaners are performing. This ratio
can be helpful when you are tuning the num_iocleaners configuration
parameter.

For more information about asynchronous page cleaners, see the
Administration Guide.

Buffer Pool Asynchronous Index Reads

Snapshot Level
Database
Table Space

Logical Data Grouping
dbase
tablespace
bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Logical Data Grouping
db_event
tablespace_event

Element Name
Element Type

pool_async_index_reads
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Buffer Pool Asynchronous Data Writes” on page
126

v “Buffer Pool Asynchronous Index Writes” on page
127

v “Buffer Pool Index Physical Reads” on page 119

v “Buffer Pool Asynchronous Read Time” on page
129

v “Buffer Pool Log Space Cleaners Triggered” on
page 132

v “Buffer Pool Victim Page Cleaners Triggered” on
page 133

v “Buffer Pool Threshold Cleaners Triggered” on
page 134

v “Direct Reads From Database” on page 141

Description: The number of index pages read asynchronously into the buffer
pool by a prefetcher.

128 System Monitor Guide and Reference

Usage: You can use this element with Buffer Pool Index Physical Reads to
calculate the number of physical reads that were performed synchronously
(that is, physical index page reads that were performed by database manager
agents). Use the following formula:

buffer pool index physical reads - buffer pool asynchronous index reads

By comparing the ratio of asynchronous to synchronous reads, you can gain
insight into how well the prefetchers are working. This element can be helpful
when you are tuning the num_ioservers configuration parameter (see the
Administration Guide).

Asynchronous reads are performed by database manager prefetchers. For
information about these prefetchers, see the Administration Guide.

Buffer Pool Asynchronous Read Time

Snapshot Level
Database
Table Space

Logical Data Grouping
dbase
tablespace
bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Logical Data Grouping
db_event
tablespace_event

Element Name
Element Type

pool_async_read_time
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Buffer Pool Asynchronous Data Reads” on page
125

v “Total Buffer Pool Physical Read Time” on page
122

v “Buffer Pool Asynchronous Read Requests” on
page 131

v “Direct Read Time” on page 145

Description: The total elapsed time spent reading by database manager
prefetchers.

Usage: You can use this element to calculate the elapsed time for
synchronous reading, using the following formula:

total buffer pool physical read time - buffer pool asynchronous read time

Chapter 3. Database System Monitor Data Elements 129

You can also use this element to calculate the average asynchronous read time
using the following formula:

buffer pool asynchronous read time / buffer pool asynchronous data reads

These calculations can be used to understand the I/O work being performed.

Buffer Pool Asynchronous Write Time

Snapshot Level
Database
Table Space

Logical Data Grouping
dbase
tablespace
bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Logical Data Grouping
db_event
tablespace_event

Element Name
Element Type

pool_async_write_time
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Buffer Pool Asynchronous Data Writes” on page
126

v “Buffer Pool Asynchronous Index Writes” on page
127

v “Total Buffer Pool Physical Write Time” on page
123

v “Buffer Pool Asynchronous Read Requests” on
page 131

v “Direct Write Time” on page 146

Description: The total elapsed time spent writing data or index pages from
the buffer pool to disk by database manager page cleaners.

Usage: To calculate the elapsed time spent writing pages synchronously, use
the following formula:
total buffer pool physical write time - buffer pool asynchronous write time

You can also use this element to calculate the average asynchronous read time
using the following formula:
buffer pool asynchronous write time
/ (buffer pool asynchronous data writes

+ buffer pool asynchronous index writes)

130 System Monitor Guide and Reference

These calculations can be used to understand the I/O work being performed.

Buffer Pool Asynchronous Read Requests

Snapshot Level
Database
Table Space

Logical Data Grouping
dbase
tablespace
bp_info

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Table Space

Logical Data Grouping
db_event
tablespace_event

Element Name
Element Type

pool_async_data_read_reqs
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Buffer Pool Asynchronous Data Reads” on page
125

Description: The number of asynchronous read requests.

Usage: To calculate the average number of data pages read per asynchronous
request, use the following formula:
buffer pool asynchronous data reads / buffer pool asynchronous read requests

This average can help you determine the amount of asynchronous I/O done
in each interaction with the prefetcher.

Chapter 3. Database System Monitor Data Elements 131

Buffer Pool Log Space Cleaners Triggered

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Buffer Pool

Resettable Yes

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

pool_lsn_gap_clns
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Buffer Pool Victim Page Cleaners Triggered” on
page 133

v “Buffer Pool Threshold Cleaners Triggered” on
page 134

Description: The number of times a page cleaner was invoked because the
logging space used had reached a predefined criterion for the database.

Usage: This element can be used to help evaluate whether you have enough
space for logging, and whether you need more log files or larger log files.

The page cleaning criterion is determined by the setting for the softmax
configuration parameter. Page cleaners are triggered if the oldest page in the
buffer pool contains an update described by a log record that is older than the
current log position by the criterion value. See the Administration Guide for
more information.

132 System Monitor Guide and Reference

Buffer Pool Victim Page Cleaners Triggered

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Buffer Pool

Resettable Yes

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

pool_drty_pg_steal_clns
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Buffer Pool Log Space Cleaners Triggered” on
page 132

v “Buffer Pool Threshold Cleaners Triggered” on
page 134

Description: The number of times a page cleaner was invoked because a
synchronous write was needed during the victim buffer replacement for the
database.

Usage: Using the following formula, you may calculate what percentage of
all cleaner invocations are represented by this element:

buffer pool victim page cleaners triggered
/ (buffer pool victim page cleaners triggered
+ buffer pool threshold cleaners triggered
+ buffer pool log space cleaners triggered)

If this ratio is low, it may indicate that you have defined too many page
cleaners. If your chngpgs_thresh is set too low, you may be writing out pages
that you will dirty later. Aggressive cleaning defeats one purpose of the buffer
pool, that is to defer writing to the last possible moment.

If this ratio is high, it may indicate that you have too few page cleaners
defined. Too few page cleaners will increase recovery time after failures (see
the Administration Guide).

Note: Although dirty pages are written out to disk, the pages are not
removed from the buffer pool right away, unless the space is needed to
read in new pages.

Chapter 3. Database System Monitor Data Elements 133

Buffer Pool Threshold Cleaners Triggered

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Buffer Pool

Resettable Yes

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

pool_drty_pg_thrsh_clns
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Buffer Pool Log Space Cleaners Triggered” on
page 132

Description: The number of times a page cleaner was invoked because a
buffer pool had reached the dirty page threshold criterion for the database.

Usage: The threshold is set by the chngpgs_thresh configuration parameter. It
is a percentage applied to the buffer pool size. When the number of dirty
pages in the pool exceeds this value, the cleaners are triggered.

If this value is set too low, pages might be written out too early, requiring
them to be read back in. If set too high, then too many pages may
accumulate, requiring users to write out pages synchronously. See the
Administration Guide for more information.

Buffer Pool Information

Snapshot Level
Table Space

Logical Data Grouping
bufferpool

Monitor Switch
Buffer Pool

Resettable No

Event Type
Table Space

Logical Data Grouping
bufferpool_event

Element Name
Element Type

bp_info
information

Related Information v “Resetting Monitor Data” on page 25

Description: Data management counters for a buffer pool.

Usage: Activity performed for a buffer pool.

134 System Monitor Guide and Reference

Bufferpool Name

Snapshot Level
Table Space

Logical Data Grouping
bufferpool

Monitor Switch
Basic

Resettable No

Element Name
Element Type

bp_name
information

Related Information v None

Description: The name of the buffer pool.

Usage: A new database has a default buffer pool called IBMDEFAULTBP
with a size determined by the platform. Each database requires at least one
buffer pool. However, depending on your needs you may choose to create
several buffer pools, each of a different size, for a single database. The
CREATE, ALTER, and DROP BUFFERPOOL statements allow you to create,
change, or remove a buffer pool.

Time Waited for Prefetch

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Buffer Pool
Buffer Pool

Resettable No

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

prefetch_wait_time
counter

Related Information v None

Description: The time an application spent waiting for an I/O server
(prefetcher) to finish loading pages into the buffer pool.

Usage: This element can be used to experiment with changing the number of
I/O servers, and I/O server sizes.

Extended Storage

Extended storage provides a secondary level of storage for bufferpools. This
allows a user to access memory beyond the maximum allowed for each
process. Extended storage consists of segments that will be allocated in
addition to the bufferpools. The extended storage will assign pages to

Chapter 3. Database System Monitor Data Elements 135

segments that are attached or detached, as needed. The number and size of
segments are configurable. Attachment is allowed to only one segment at a
given time.

There is one extended storage for all buffer pools, and each buffer pool can be
configured to use it or not. See the Administration Guide for more information.

Extended storage should only be used on systems with very large amount of
real memory. These are systems that have more memory than can be attached
to by a single process.

Using Extended Storage Counters: If you have extended storage set on for a
buffer pool, all pages removed from the buffer pool will be written to
extended storage. Each of these writes has a cost associated with it. Some of
these pages may never be required or they may be forced out of extended
storage before they are ever read back into the buffer pool.

You can calculate the extended storage read/write ratio as follows:
(data + index copied from extended storage)
/ (data + index copied to extended storage)

Where the numerator in this equation is pages from extended storage to
buffer pool and the denominator is pages from bufferpool to extended storage.

The top portion of this equation represents a performance saving. When a
page is transferred from extended storage to buffer pool, you save a system
I/O call. However, you still incur the cost of attaching to the extended
memory segment, copying the page, and detaching from the segment. The
bottom part represents the cost of transferring a page to extended storage,
that is, attaching to the segment, copying the page, and detaching.

The higher the ratio, the more likely you are to benefit from extended storage.
In general, extended storage is particularly useful if I/O activity is very high
on your system.

There is a crossover point where the cost of copying pages to be removed
from the buffer pool to extended storage equals the savings from reading
pages from extended storage, instead of having to read them from disk. This
crossover point is affected by:
v cost of an I/O on your system
v cost of copying data in memory and accessing shared memory segments

It is difficult to establish an exact crossover point. To establish a baseline, you
must experiment by enabling extended storage for different buffer pools, and
determine whether it improves your overall database performance. This can

136 System Monitor Guide and Reference

be measured by using application benchmarks. For instance, you may want to
monitor transaction rates and execution time. See the Administration Guide for
information on benchmarking.

Once you have established that extended storage is beneficial for some buffer
pools. You want to measure the read/write ratio to obtain a baseline. This
ratio is most important during database creation and initial setup. After that,
you want to monitor this ratio to ensure that it is not deviating from the
initial baseline.

The following elements provide information about buffer pools and extended
storage. For more information on how the database manager uses extended
storage, see the Administration Guide.
v “Buffer Pool Data Pages to Extended Storage”

v “Buffer Pool Index Pages to Extended Storage” on page 138

v “Buffer Pool Data Pages from Extended Storage” on page 139

v “Buffer Pool Index Pages from Extended Storage” on page 140

Buffer Pool Data Pages to Extended Storage

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Logical Data Grouping
db_event
conn_event
tablespace_event

Element Name
Element Type

pool_data_to_estore
counter

Related Information v “Resetting Monitor Data” on page 25

v “Buffer Pool Index Pages to Extended Storage” on
page 138

v “Buffer Pool Data Pages from Extended Storage”
on page 139

v “Buffer Pool Index Pages from Extended Storage”
on page 140

Description: Number of buffer pool data pages copied to extended storage.

Chapter 3. Database System Monitor Data Elements 137

Usage: Pages are copied from the buffer pool to extended storage, when they
are selected as victim pages. This copying is required to make space for new
pages in the buffer pool.

Buffer Pool Index Pages to Extended Storage

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Logical Data Grouping
db_event
conn_event
tablespace_event

Element Name
Element Type

pool_index_to_estore
counter

Related Information v “Resetting Monitor Data” on page 25

v “Buffer Pool Data Pages to Extended Storage” on
page 137

v “Buffer Pool Data Pages from Extended Storage”
on page 139

v “Buffer Pool Index Pages from Extended Storage”
on page 140

Description: Number of buffer pool index pages copied to extended storage.

Usage: Pages are copied from the buffer pool to extended storage, when they
are selected as victim pages. This copying is required to make space for new
pages in the buffer pool.

138 System Monitor Guide and Reference

Buffer Pool Data Pages from Extended Storage

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Logical Data Grouping
db_event
conn_event
tablespace_event

Element Name
Element Type

pool_data_from_estore
counter

Related Information v “Resetting Monitor Data” on page 25

v “Buffer Pool Data Pages to Extended Storage” on
page 137

v “Buffer Pool Index Pages to Extended Storage” on
page 138

v “Buffer Pool Index Pages from Extended Storage”
on page 140

Description: Number of buffer pool data pages copied from extended
storage.

Usage: Required pages are copied from extended storage to the buffer pool,
if they are not in the buffer pool, but are in extended storage. This copying
may incur the cost of connecting to the shared memory segment, but saves
the cost of a disk read.

Chapter 3. Database System Monitor Data Elements 139

Buffer Pool Index Pages from Extended Storage

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Logical Data Grouping
db_event
conn_event
tablespace_event

Element Name
Element Type

pool_index_from_estore
counter

Related Information v “Resetting Monitor Data” on page 25

v “Buffer Pool Data Pages to Extended Storage” on
page 137

v “Buffer Pool Index Pages to Extended Storage” on
page 138

v “Buffer Pool Data Pages from Extended Storage”
on page 139

Description: Number of buffer pool index pages copied from extended
storage.

Usage: Required index pages are copied from extended storage to the buffer
pool, if they are not in the buffer pool, but are in extended storage. This
copying may incur the cost of connecting to the shared memory segment, but
saves the cost of a disk read.

Non-buffered I/O Activity

The following elements provide information about I/O activity that does not
use the buffer pool:
v “Direct Reads From Database” on page 141

v “Direct Writes to Database” on page 142

v “Direct Read Requests” on page 143

v “Direct Write Requests” on page 144

v “Direct Read Time” on page 145

v “Direct Write Time” on page 146

140 System Monitor Guide and Reference

Direct Reads From Database

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Logical Data Grouping
db_event
conn_event
tablespace_event

Element Name
Element Type

direct_reads
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Direct Read Requests” on page 143

v “Direct Read Time” on page 145

v “Direct Writes to Database” on page 142

Description: The number of read operations that do not use the buffer pool.

Usage: Use the following formula to calculate the average number of sectors
that are read by a direct read:

direct reads from database / direct read requests

When using system monitors to track I/O, this data element helps you
distinguish database I/O from non-database I/O on the device.

Direct reads are performed in units, the smallest being a 512-byte sector. They
are used when:

v Reading LONG VARCHAR columns
v Reading LOB (large object) columns
v Performing a backup

Chapter 3. Database System Monitor Data Elements 141

Direct Writes to Database

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Logical Data Grouping
db_event
conn_event
tablespace_event

Element Name
Element Type

direct_writes
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Direct Write Requests” on page 144

v “Direct Write Time” on page 146

v “Direct Reads From Database” on page 141

Description: The number of write operations that do not use the buffer pool.

Usage: Use the following formula to calculate the average number of sectors
that are written by a direct write.

direct writes to database / direct write requests

When using system monitors to track I/O, this data element helps you
distinguish database I/O from non-database I/O on the device.

Direct writes are performed in units, the smallest being a 512-byte sector. They
are used when:

v Writing LONG VARCHAR columns
v Writing LOB (large object) columns
v Performing a restore
v Performing a load.

142 System Monitor Guide and Reference

Direct Read Requests

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Logical Data Grouping
db_event
conn_event
tablespace_event

Element Name
Element Type

direct_read_reqs
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Direct Reads From Database” on page 141

v “Direct Read Time” on page 145

v “Direct Write Requests” on page 144

Description: The number of requests to perform a direct read of one or more
sectors of data.

Usage: Use the following formula to calculate the average number of sectors
that are read by a direct read:

direct reads from database / direct read requests

Chapter 3. Database System Monitor Data Elements 143

Direct Write Requests

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Logical Data Grouping
db_event
conn_event
tablespace_event

Element Name
Element Type

direct_write_reqs
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Direct Writes to Database” on page 142

v “Direct Write Time” on page 146

v “Direct Read Requests” on page 143

Description: The number of requests to perform a direct write of one or
more sectors of data.

Usage: Use the following formula to calculate the average number of sectors
that are written by a direct write:

direct writes to database / direct write requests

144 System Monitor Guide and Reference

Direct Read Time

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Logical Data Grouping
db_event
conn_event
tablespace_event

Element Name
Element Type

direct_read_time
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Direct Reads From Database” on page 141

v “Direct Read Requests” on page 143

v “Direct Write Time” on page 146

Description: The elapsed time (in milliseconds) required to perform the
direct reads.

Usage: Use the following formula to calculate the average direct read time
per sector:

direct read time / direct reads from database

A high average time may indicate an I/O conflict.

Chapter 3. Database System Monitor Data Elements 145

Direct Write Time

Snapshot Level
Database
Table Space

Application

Logical Data Grouping
dbase
tablespace
bp_info
appl

Monitor Switch
Buffer Pool
Buffer Pool
Buffer Pool
Buffer Pool

Resettable Yes

Event Type
Database
Connection
Table Space

Logical Data Grouping
db_event
conn_event
tablespace_event

Element Name
Element Type

direct_write_time
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Direct Writes to Database” on page 142

v “Direct Write Requests” on page 144

v “Direct Read Time” on page 145

Description: The elapsed time (in milliseconds) required to perform the
direct writes.

Usage: Use the following formula to calculate the average direct write time
per sector:

direct write time / direct writes to database

A high average time may indicate an I/O conflict.

Catalog Cache

The catalog cache stores table descriptors for tables, views, and aliases. A
descriptor stores information about a table, view, or alias in a condensed
internal format. When a transaction references a table, it causes an insert of a
table descriptor into the cache, so that subsequent transactions referencing
that same table can use that descriptor and avoid reading from disk.
(Transactions reference a table descriptor when compiling an SQL statement.)

The following database system monitor elements are used for catalog caches:
v “Catalog Cache Lookups” on page 147

v “Catalog Cache Inserts” on page 148

146 System Monitor Guide and Reference

v “Catalog Cache Overflows” on page 148

v “Catalog Cache Heap Full” on page 149

Catalog Cache Lookups

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

cat_cache_lookups
counter

Related Information v “Catalog Cache Inserts” on page 148

v “Catalog Cache Overflows” on page 148

v “Catalog Cache Heap Full” on page 149

Description: The number of times that the catalog cache was referenced to
obtain table descriptor information.

Usage: This element includes both successful and unsuccessful accesses to
the catalog cache. The catalog cache is referenced whenever a table, view, or
alias name is processed during the compilation of an SQL statement.

To calculate the catalog cache hit ratio use the following formula:

(1 - (cat_cache_inserts / cat_cache_lookups))

indicates how well the catalog cache is avoiding catalog accesses. If the ratio
is high (more than 0.8), then the cache is performing well. A smaller ratio
might suggest that the catalogcache_sz should be increased. You should expect
a large ratio immediately following the first connection to the database.

The execution of Data Definition Language (DDL) SQL statements involving a
table, view, or alias will evict the table descriptor information for that object
from the catalog cache causing it to be re-inserted on the next reference.
Therefore, the heavy use of DDLs may also increase the ratio.

See the Administration Guide for more information on the Catalog Cache Size
configuration parameter.

Chapter 3. Database System Monitor Data Elements 147

Catalog Cache Inserts

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

cat_cache_inserts
counter

Related Information v “Catalog Cache Lookups” on page 147

v “Catalog Cache Overflows” on page 148

v “Catalog Cache Heap Full” on page 149

v “Data Definition Language (DDL) SQL
Statements” on page 208

Description: The number of times that the system tried to insert table
descriptor information into the catalog cache.

Usage: Table descriptor information is usually inserted into the cache
following a failed lookup to the catalog cache while processing a table, view,
or alias reference in an SQL statement. The catalog cache inserts value includes
attempts to insert table descriptor information that fail due to catalog cache
overflow and heap full conditions.

See “Catalog Cache Lookups” on page 147 for more catalog cache information.

Catalog Cache Overflows

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

cat_cache_overflows
counter

Related Information v “Catalog Cache Lookups” on page 147

v “Catalog Cache Inserts” on page 148

148 System Monitor Guide and Reference

Description: The number of times that an insert into the catalog cache failed
due the catalog cache being full.

Usage: The catalog cache space is filled with table descriptor information.

The cache entries for transactions that compile SQL statements, either by
issuing dynamic SQL statements or by binding a package, will not be eligible
to be removed from the cache until that transaction has either been committed
or rolled back. Catalog cache space is reclaimed by evicting table descriptor
information for tables, views, or aliases that are not currently in use by any
transaction. Once a transaction has experienced a catalog cache overflow, all
subsequent attempts by the same transaction to insert table descriptor
information into the catalog cache will also result in an overflow.

Note: A transaction involved in an overflow will proceed, but its descriptor
information is not inserted into the cache.

If catalog cache overflows is large, the catalog cache may be too small for the
workload. Enlarging the catalog cache may improve its performance. If the
workload includes transactions which compile a large number of SQL
statements referencing many tables, views, and aliases in a single unit of
work, then compiling fewer SQL statements in a single transaction may
improve the performance of the catalog cache. Or if it includes binding of
packages containing many SQL statements referencing many tables, views or
aliases, you can try splitting packages so that they include fewer SQL
statements to improve performance.

Catalog Cache Heap Full

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

cat_cache_heap_full
counter

Related Information v “Package Cache Inserts” on page 153

v “Data Definition Language (DDL) SQL
Statements” on page 208

v “Dynamic SQL Statements Attempted” on page
203

v “Static SQL Statements Attempted” on page 203

Chapter 3. Database System Monitor Data Elements 149

Description: The number of times that an insert into the catalog cache failed
due to a heap-full condition in the database heap.

Usage: The catalog cache draws its storage dynamically from the database
heap and even if the cache storage has not reached its limit, inserts into the
catalog cache may fail due to a lack of space in the database heap.

If the catalog cache heap full count is not zero, then this insert failure
condition can be corrected by increasing the database heap size or reducing
the catalog cache size.

Package Cache

The package and section information required for the execution of dynamic
and static SQL statements are placed in the package cache as required. This
information is required whenever a dynamic or static statement is being
executed. The package cache exists at a database level. This means that agents
with similar environments can share the benefits of another agent’s work. For
static SQL statements, this can mean avoiding catalog access. For dynamic
SQL statements, this can mean avoiding the cost of compilation.

The following database system monitor elements are used for package caches:
v “Package Cache Lookups” on page 151

v “Package Cache Inserts” on page 153

v “Package Cache Overflows” on page 153

v “Maximum Package Cache Size” on page 154

v “Section Lookups” on page 155

v “Section Inserts” on page 156

150 System Monitor Guide and Reference

Package Cache Lookups

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

pkg_cache_lookups
counter

Related Information v “Package Cache Inserts” on page 153

v “Section Lookups” on page 155

v “Section Inserts” on page 156

v “Static SQL Statements Attempted” on page 203

v “Dynamic SQL Statements Attempted” on page
203

v “Data Definition Language (DDL) SQL
Statements” on page 208

Description: The number of times that an application looked for a section or
package in the package cache. At a database level, it indicates the overall
number of references since the database was started, or monitor data was
reset.

Note: This counter includes the cases where the section is already loaded in
the cache and when the section has to be loaded into the cache.

Usage: To calculate the package cache hit ratio use the following formula:

1 - (Package Cache Inserts / Package Cache Lookups)

The package cache hit ratio tells you whether or not the package cache is
being used effectively. If the hit ratio is high (more than 0.8), the cache is
performing well. A smaller ratio may indicate that the package cache should
be increased.

You will need to experiment with the size of the package cache to find the
optimal number for the pckcachesz configuration parameter. For example, you
might be able to use a smaller package cache size if there is no increase in the
pkg_cache_inserts data element when you decrease the size of the cache.
Decreasing the package cache size frees up system resources for other work. It
is also possible that you could improve overall system performance by

Chapter 3. Database System Monitor Data Elements 151

increasing the size of the package cache if by doing so, you decrease the
number of package cache inserts. This experimentation is best done under full
workload conditions.

You can use this data element with ddl_sql_stmts to determine whether or not
the execution of DDL statements is impacting the performance of the package
cache. Sections for dynamic SQL statements can become invalid when DDL
statements are executed. Invalid sections are implicitly prepared by the system
when next used. The execution of a DDL statement could invalidate a number
of sections and the resulting extra overhead incurred when preparing those
sections could significantly impact performance. In this case, the package
cache hit ratio reflects the implicit recompilation of invalid sections and not
the insertion of new sections into the cache, so increasing the size of the
package cache will not improve overall performance. You might find it less
confusing to tune the cache for an application on its own before working in
the full environment.

It is necessary to determine the role that DDL statements are playing in the
value of the package cache hit ratio before deciding on what action to take. If
DDL statements rarely occur, then cache performance may be improved by
increasing its size. If DDL statements are frequent, then improvements may
require that you limit the use of DDL statements (possibly to specific time
periods).

The static_sql_stmts and dynamic_sql_stmts counts can be used to help provide
information on the quantity and type of sections being cached.

See the Administration Guide for more information on the Package Cache Size
(pckcachesz) configuration parameter.

Note: You may want to use this information at the database level to calculate
the average package cache hit ratio all each applications. You should
look at this information at an application level to find out the exact
package cache hit ratio for a given application. It may not be
worthwhile to increase the size of the package cache in order to satisfy
the cache requirements of an application that only executes
infrequently.

152 System Monitor Guide and Reference

Package Cache Inserts

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

pkg_cache_inserts
counter

Related Information v “Package Cache Lookups” on page 151

v “Section Lookups” on page 155

v “Section Inserts” on page 156

Description: The total number of times that a requested section was not
available for use and had to be loaded into the package cache. This count
includes any implicit prepares performed by the system.

Usage: In conjunction with ″Package Cache Lookups″, you can calculate the
package cache hit ratio using the following formula:

1 - (Package Cache Inserts / Package Cache Lookups)

See “Package Cache Lookups” on page 151 for information on using this
element.

Package Cache Overflows

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable Yes

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

pkg_cache_num_overflows
counter

Related Information v “Package Cache Inserts” on page 153

v “Data Definition Language (DDL) SQL
Statements” on page 208

v “Dynamic SQL Statements Attempted” on page
203

v “Static SQL Statements Attempted” on page 203

Chapter 3. Database System Monitor Data Elements 153

Description: The number of times that the package cache overflowed the
bounds of its allocated memory.

Usage: Use this element with pkg_cache_size_top to determine whether the
size of the package cache needs to be increased to avoid overflowing.
Overflows of the package cache can cause unnecessary lock escalations,
resulting in loss of concurrency, or out of memory errors from the other heaps
allocated out of the database shared memory, as well as performance
degradation.

Maximum Package Cache Size

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

pkg_cache_size_top
water mark

Related Information v “Package Cache Overflows” on page 153

Description: The largest size reached by the package cache.

Usage: This element indicates the maximum number of bytes the package
cache required for the workload run against the database since it was
activated.

If the package cache overflowed, then this element contains the largest size
reached by the package cache during the overflow. Check Package Cache
Overflows to determine if such a condition occurred.

When the package cache overflows, memory is temporarily borrowed from
other entities in database shared memory (for example, lock list or database
heap). This can result in memory shortage errors from these entities or
performance degradation from concurrency reduction due to unnecessary lock
escalations. You can determine the minimum size of the package cache
required by your workload by:

maximum package cache size / 4096

Rounding the result up to a whole number, indicates the minimum number of
4K pages required by the package cache to avoid overflow.

154 System Monitor Guide and Reference

Section Lookups

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

appl_section_lookups
counter

Related Information v “Package Cache Lookups” on page 151

v “Package Cache Inserts” on page 153

v “Section Inserts” on page 156

Description: Lookups of SQL sections by an application from its SQL work
area.

Usage: Each agent has access to a unique SQL work area where the working
copy of any executable section is kept. In partitioned databases, this work area
is shared by all non-SMP agents. In other environments and with SMP agents,
each agent has its own unique SQL work area.

This counter indicates how many times the SQL work area was accessed by
agents for an application. It is a cumulative total of all lookups on all SQL
work heaps for agents working for this application.

You can use this element in conjunction with “Section Inserts” on page 156 to
tune the size of the heap used for the SQL work area. In partitioned databases
this size is controlled by the app_ctl_heap_sz configuration parameter. SQL
work area size in other database environments uses the the applheapsz
configuration parameter. The size of the SQL work area for SMP agents is
controlled by applheapsz in all environments.

Chapter 3. Database System Monitor Data Elements 155

Section Inserts

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

appl_section_inserts
counter

Related Information v “Package Cache Lookups” on page 151

v “Package Cache Inserts” on page 153

v “Section Lookups” on page 155

Description: Inserts of SQL sections by an application from its SQL work
area.

Usage: The working copy of any executable section is stored in a unique SQL
work area. This is a count of when a copy was not available and had to be
inserted. See “Section Lookups” on page 155 for more information on using
sections.

Database Heap

The following database system monitor elements are used for database heaps:
v “Maximum Database Heap Allocated”

Maximum Database Heap Allocated

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

db_heap_top
water mark

Related Information v None

Description: The largest amount of database heap allocated and used by the
database, since the first application connected to the database (in bytes).

156 System Monitor Guide and Reference

Usage: You may use this element to evaluate the setting of the dbheap
configuration parameter, which is described in the Administration Guide. The
dbheap parameter limits the amount of storage that can be allocated for
database heap.

If the value of this element is the same as the dbheap parameter, it is quite
likely that an application has received an error indicating that there was not
enough storage available.

Logging

The following database system monitor elements are used only when circular
logging is being used. That is, they are not used if either the logretain or
userexit configuration parameter is enabled.
v “Maximum Secondary Log Space Used” on page 158

v “Maximum Total Log Space Used” on page 159

v “Secondary Logs Allocated Currently” on page 160

The following database system monitor elements are used for all types of
logging:

v “Number of Log Pages Read” on page 160

v “Number of Log Pages Written” on page 161

v “Unit of Work Log Space Used” on page 162

v “Total Log Space Used” on page 162

v “Total Log Available” on page 163

For more information about logging and log configuration parameters, see the
Administration Guide.

Chapter 3. Database System Monitor Data Elements 157

Maximum Secondary Log Space Used

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

sec_log_used_top
water mark

Related Information v “Unit of Work Log Space Used” on page 162

v “Secondary Logs Allocated Currently” on page
160

v “Maximum Total Log Space Used” on page 159

Description: The maximum amount of secondary log space used (in bytes).

Usage: You may use this element in conjunction with Secondary Logs Allocated
Currently and Maximum Total Log Space Used to show your current dependency
on secondary logs. If this value is high, you may need larger log files, or more
primary log files, or more frequent COMMIT statements within your
application.

As a result, you may need to adjust the following configuration parameters:

v logfilsz
v logprimary
v logsecond
v logretain

The value will be zero if the database does not have any secondary log files.
This would be the case if there were none defined.

For more information, see the Administration Guide.

Note: While the database system monitor information is given in bytes, the
configuration parameters are set in pages, which are each 4K bytes.

158 System Monitor Guide and Reference

Maximum Total Log Space Used

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

tot_log_used_top
water mark

Related Information v “Unit of Work Log Space Used” on page 162

v “Secondary Logs Allocated Currently” on page
160

v “Maximum Secondary Log Space Used” on page
158

Description: The maximum amount of total log space used (in bytes).

Usage: You can use this element to help you evaluate the amount of primary
log space that you have allocated. Comparing the value of this element with
the amount of primary log space you have allocated can help you to evaluate
your configuration parameter settings. Your primary log space allocation can
be calculated using the following formula:

logprimary x logfilsiz x 4096 (see note below)

You can use this element in conjunction with Maximum Secondary Log Space
Used and Secondary Logs Allocated Currently to show your current dependency
on secondary logs.

This value includes space used in both primary and secondary log files, and is
only returned if circular logging is used. (That is, it is not returned if either
the logretain or userexit configuration parameter is enabled.)

As a result, you may need to adjust the following configuration parameters:

v logfilsz
v logprimary
v logsecond
v logretain

For more information, see the Administration Guide.

Note: While the database system monitor information is given in bytes, the
configuration parameters are set in pages, which are each 4K bytes.

Chapter 3. Database System Monitor Data Elements 159

Secondary Logs Allocated Currently

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

sec_logs_allocated
gauge

Related Information v “Unit of Work Log Space Used” on page 162

v “Maximum Secondary Log Space Used” on page
158

v “Maximum Total Log Space Used” on page 159

Description: The total number of secondary log files that are currently being
used for the database.

Usage: You may use this element in conjunction with Maximum Secondary Log
Space Used and Maximum Total Log Space Used to show your current
dependency on secondary logs. If this value is consistently high, you may
need larger log files, or more primary log files, or more frequent COMMIT
statements within your application.

As a result, you may need to adjust the following configuration parameters:

v logfilsz
v logprimary
v logsecond
v logretain

For more information, see the Administration Guide.

Number of Log Pages Read

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable Yes

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

log_reads
counter

Related Information v “When Counters are Initialized” on page 24

v “Number of Log Pages Written” on page 161

Description: The number of log pages read from disk by the logger.

160 System Monitor Guide and Reference

Usage: You can use this element with an operating system monitor to
quantify the amount of I/O on a device that is attributable to database
activity.

Number of Log Pages Written

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable Yes

Event Type
Database

Logical Data Grouping
db_event

Element Name
Element Type

log_writes
counter

Related Information v “When Counters are Initialized” on page 24

v “Number of Log Pages Read” on page 160

Description: The number of log pages written to disk by the logger.

Usage: You may use this element with an operating system monitor to
quantify the amount of I/O on a device that is attributable to database
activity.

Note: When log pages are written to disk, the last page might not be full. In
such cases, the partial log page remains in the log buffer, and additional
log records are written to the page. Therefore log pages might be
written to disk by the logger more than once. You should not use this
data element to measure the number of pages produced by DB2.

Chapter 3. Database System Monitor Data Elements 161

Unit of Work Log Space Used

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Unit of Work

Resettable No

Event Type
Transaction

Logical Data Grouping
xaction_event

Element Name
Element Type

uow_log_space_used
gauge

Related Information v “Resetting Monitor Data” on page 25

v “Secondary Logs Allocated Currently” on page
160

v “Maximum Secondary Log Space Used” on page
158

v “Maximum Total Log Space Used” on page 159

Description: The amount of log space (in bytes) used in the current unit of
work of the monitored application.

Usage: You may use this element to understand the logging requirements at
the unit of work level.

Total Log Space Used

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

total_log_used
gauge

Related Information v “Unit of Work Log Space Used” on page 162

v “Secondary Logs Allocated Currently” on page
160

v “Maximum Total Log Space Used” on page 159

v “Application with Oldest Transaction” on page 56

Description: The total amount of active log space currently used (in bytes) in
the database.

Usage: Use this element in conjunction with “Total Log Available” on
page 163 to determine whether you may need to adjust the following
configuration parameters to avoid running out of log space:

162 System Monitor Guide and Reference

v logfilsz
v logprimary
v logsecond

For more information, see the Administration Guide.

Note: While the database system monitor information is given in bytes, the
configuration parameters are set in pages, which are each 4K bytes.

Total Log Available

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

total_log_available
water mark

Related Information v “Unit of Work Log Space Used” on page 162

v “Secondary Logs Allocated Currently” on page
160

v “Total Log Space Used” on page 162

v “Application with Oldest Transaction” on page 56

Description: The amount of active log space in the database that is not being
used by uncommitted transactions (in bytes).

Usage: Use this element in conjunction with “Total Log Space Used” on
page 162 to determine whether you may need to adjust the following
configuration parameters to avoid running out of log space:

v logfilsz
v logprimary
v logsecond

For more information, see the Administration Guide.

If this value goes down to 0, SQL0964N will be returned. You may need to
increase the above configuration parameters, or end the oldest transaction by
COMMIT, ROLLBACK or FORCE APPLICATION.

Note: While the database system monitor information is given in bytes, the
configuration parameters are set in pages, which are each 4K bytes.

Chapter 3. Database System Monitor Data Elements 163

Database and Application Activity

The following sections provide information on database and application
activity.

Locks and Deadlocks

The following elements provide information about locks and deadlocks:
v “Locks Held”

v “Total Lock List Memory In Use” on page 166

v “Deadlocks Detected” on page 166

v “Number of Lock Escalations” on page 167

v “Exclusive Lock Escalations” on page 169

v “Lock Mode” on page 170

v “Lock Status” on page 171

v “Lock Object Type Waited On” on page 172

v “Lock Object Name” on page 173

v “Number of Lock Timeouts” on page 174

v “Maximum Number of Locks Held” on page 174

v “Connections Involved in Deadlock” on page 175

v “Lock Escalation” on page 175

v “Lock Mode Requested” on page 176

Locks Held

Snapshot Level
Database
Application
Lock

Logical Data Grouping
dbase
appl
dbase_lock
appl_lock

Monitor Switch
Basic
Basic
Basic
Basic

Resettable No

Element Name
Element Type

locks_held
gauge

Related Information v “Number of Lock Escalations” on page 167

v “Exclusive Lock Escalations” on page 169

v “Maximum Number of Locks Held” on page 174

Description: The number of locks currently held.

164 System Monitor Guide and Reference

Usage: If the monitor information is at the database level, this is the total
number of locks currently held by all applications in the database.

If it is at the application level, this is the total number of locks currently held
by all agents for the application. How you use this element depends on the
level of information being returned from the database system monitor.

v At the database level, you can use it in one of two ways:
– This element can provide summary information about locking. For

example, you can calculate the average number of locks per application
by dividing the value of this element by Applications Connected Currently.
If the resulting number is high, it may indicate that you can tune one of
your applications to improve performance.

– You can also compare the value of this element against the results of the
following formula to determine the number of additional locks that may
be requested. This comparison can help you determine if the
configuration parameters need adjusting or your applications need
tuning.

(locklist * 4096 / 36) - locks held = # remaining

where:
- locklist is the configuration parameter as described in the

Administration Guide

- 4096 is the number of bytes in one 4K page
- 36 is the number of bytes required for each lock.

Note: You may also use “Total Lock List Memory In Use” on page 166 in
a similar fashion.

v At the application level, you can use this counter to determine if the
application is approaching the maximum number of locks available to it, as
defined by the maxlocks configuration parameter. This parameter indicates
the percentage of the lock list that each application can use before lock
escalations occur. Lock escalations can result in a decrease in concurrency
between applications connected to a database. (See the Administration Guide
for more information about this parameter.)
Since the maxlocks parameter is specified as a percentage and this element is
a counter, you can compare the count provided by this element against the
total number of locks that can be held by an application, as calculated using
the following formula:

(locklist * 4096 / 36) * (maxlocks / 100)

If you have a large number of locks, you may need to perform more
commits within your application so that some of the locks can be released.

Chapter 3. Database System Monitor Data Elements 165

Total Lock List Memory In Use

Snapshot Level
Database

Logical Data Grouping
dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

lock_list_in_use
gauge

Related Information v None

Description: The total amount of lock list memory (in bytes) that is in use.

Usage: This element may be used in conjunction with the locklist
configuration parameter to calculate the lock list utilization. If the lock list
utilization is high, you may want to consider increasing the size of that
parameter. See the Administration Guide for more information.

Note: When calculating utilization, it is important to note that the locklist
configuration parameter is allocated in pages of 4K bytes each, while
this monitor element provides results in bytes.

Deadlocks Detected

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Lock

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

deadlocks
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Database Activation Timestamp” on page 46

v “Connection Request Start Timestamp” on page
70

v “Number of Lock Escalations” on page 167

v “Exclusive Lock Escalations” on page 169

v “Application ID Holding Lock” on page 182

Description: The total number of deadlocks that have occurred.

166 System Monitor Guide and Reference

Usage: This element can indicate that applications are experiencing
contention problems. These problems could be caused by the following
situations:

v Lock escalations are occurring for the database
v An application may be locking tables explicitly when system-generated row

locks may be sufficient
v An application may be using an inappropriate isolation level when binding
v Catalog tables are locked for repeatable read
v Applications are getting the same locks in different orders, resulting in

deadlock.

You may be able to resolve the problem by determining in which applications
(or application processes) the deadlocks are occurring. You may then be able
to modify the application to better enable it to execute concurrently. Some
applications, however, may not be capable of running concurrently.

You can use the connection timestamp monitor elements (“Last Reset
Timestamp” on page 248, “Database Activation Timestamp” on page 46, and
“Connection Request Start Timestamp” on page 70) to determine the severity of
the deadlocks. For example, 10 deadlocks in 5 minutes is much more severe
than 10 deadlocks in 5 hours.

The descriptions for the related elements listed above may also provide
additional tuning suggestions.

Number of Lock Escalations

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection
Transaction

Logical Data Grouping
db_event
conn_event
xaction_event

Element Name
Element Type

lock_escals
counter

Related Information v “When Counters are Initialized” on page 24

v “Database Activation Timestamp” on page 46

v “Exclusive Lock Escalations” on page 169

v “Maximum Number of Locks Held” on page 174

Chapter 3. Database System Monitor Data Elements 167

Description: The number of times that locks have been escalated from
several row locks to a table lock.

Usage: A lock is escalated when the total number of locks held by an
application reaches the maximum amount of lock list space available to the
application, or the lock list space consumed by all applications is approaching
the total lock list space. The amount of lock list space available is determined
by the maxlocks and locklist configuration parameters.

When an application reaches the maximum number of locks allowed and
there are no more locks to escalate, it will then use space in the lock list
allocated for other applications. When the entire lock list is full, an error
occurs.

This data item includes a count of all lock escalations, including exclusive lock
escalations.

There are several possible causes for excessive lock escalations:

v The lock list size (locklist) may be too small for the number of concurrent
applications

v The percent of the lock list usable by each application (maxlocks) may be too
small

v One or more applications may be using an excessive number of locks.

To resolve these problems, you may be able to:
v Increase the locklist configuration parameter value. See the Administration

Guide for a description of this configuration parameter.
v Increase the maxlocks configuration parameter value. See the Administration

Guide for a description of this configuration parameter.
v Identify the applications with large numbers of locks (see Maximum Number

of Locks Held), or those that are holding too much of the lock list, using the
following formula:
(((locks held * 36) / (locklist * 4096)) * 100)

and comparing the value to maxlocks. These applications can also cause
lock escalations in other applications by using too large a portion of the
lock list. These applications may need to resort to using table locks instead
of row locks, although table locks may cause an increase in “Lock Waits” on
page 177 and “Time Waited On Locks” on page 178.

168 System Monitor Guide and Reference

Exclusive Lock Escalations

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection
Transaction

Logical Data Grouping
db_event
conn_event
xaction_event

Element Name
Element Type

x_lock_escals
counter

Related Information v “When Counters are Initialized” on page 24

v “Database Activation Timestamp” on page 46

v “Number of Lock Escalations” on page 167

v “Connection Request Start Timestamp” on page
70

v “Maximum Number of Locks Held” on page 174

Description: The number of times that locks have been escalated from
several row locks to one exclusive table lock, or the number of times an
exclusive lock on a row caused the table lock to become an exclusive lock.

Usage: Other applications cannot access data held by an exclusive lock;
therefore it is important to track exclusive locks since they can impact the
concurrency of your data.

A lock is escalated when the total number of locks held by an application
reaches the maximum amount of lock list space available to the application.
The amount of lock list space available is determined by the locklist and
maxlocks configuration parameters.

When an application reaches the maximum number of locks allowed and
there are no more locks to escalate, it will then use space in the lock list
allocated for other applications. When the entire lock list is full, an error
occurs.

See “Number of Lock Escalations” on page 167 for possible causes and resolutions
to excessive exclusive lock escalations.

An application may be using exclusive locks when share locks are sufficient.
Although share locks may not reduce the total number of lock escalations
share lock escalations may be preferable to exclusive lock escalations.

Chapter 3. Database System Monitor Data Elements 169

Lock Mode

Snapshot Level
Application
Lock

Logical Data Grouping
appl
lock
lock_wait

Monitor Switch
Lock
Lock
Lock

Resettable No

Event Type
Deadlock

Logical Data Grouping
dlconn_event

Element Name
Element Type

lock_mode
information

Related Information v “Resetting Monitor Data” on page 25

v Other lock information

Description: The type of lock being held.

Usage: This mode can help you determine the source of contention for
resources.

This element indicates one of the following, depending on the type of monitor
information being examined:
v The type of lock another application holds on the object that this

application is waiting to lock (for application-monitoring and
deadlock-monitoring levels)

v The type of lock held on the object by this application (for object-lock
levels).

The values for this field are:

Mode Type of Lock API Constant
No Lock SQLM_LNON

IS Intention Share Lock SQLM_LOIS
IX Intention Exclusive Lock SQLM_LOIX
S Share Lock SQLM_LOOS
SIX Share with Intention Exclusive Lock SQLM_LSIX
X Exclusive Lock SQLM_LOOX
IN Intent None SQLM_LOIN
Z Super Exclusive Lock SQLM_LOOZ
U Update Lock SQLM_LOOU
NS Next Key Share Lock SQLM_LONS
NX Next Key Exclusive Lock SQLM_LONX
W Weak Exclusive Lock SQLM_LOOW
NW Next Key Weak Exclusive Lock SQLM_LONW

170 System Monitor Guide and Reference

Lock Status

Snapshot Level
Lock

Logical Data Grouping
lock

Monitor Switch
Basic

Resettable No

Element Name
Element Type

lock_status
information

Related Information v “Lock Mode” on page 170

v “Lock Object Type Waited On” on page 172

v “Table File ID” on page 196

Description: Indicates the internal status of the lock.

Usage: This element can help explain what is happening when an
application is waiting to obtain a lock on an object. While it may appear that
the application already has a lock on the object it needs, it may have to wait
to obtain a different type of lock on the same object.

The lock can be in one of the following statuses:

Granted state indicates that the application has the lock in
the state specified by “Lock Mode” on
page 170.

Converting state indicates that the application is trying to
change the lock held to a different type; for
example, changing from a share lock to an
exclusive lock.

Note: API users should refer to the sqlmon.h header file containing definitions
of database system monitor constants.

Chapter 3. Database System Monitor Data Elements 171

Lock Object Type Waited On

Snapshot Level
Application

Lock

Logical Data Grouping
appl
appl_lock
lock
lock_wait

Monitor Switch
Lock
Lock
Basic
Lock

Resettable No

Event Type
Deadlock

Logical Data Grouping
dlconn_event

Element Name
Element Type

lock_object_type
information

Related Information v “Resetting Monitor Data” on page 25

Description: The type of object against which the application holds a lock (for
object-lock-level information), or the type of object for which the application is
waiting to obtain a lock (for application-level and deadlock-level information).

Usage: This element can help you determine the source of contention for
resources.

The objects may be one of the following types:

v Table space
v Table
v Record (or row)
v Internal (another type of lock held internally by the database manager).

172 System Monitor Guide and Reference

Lock Object Name

Snapshot Level
Application
Lock

Logical Data Grouping
appl
appl_lock
lock

Monitor Switch
Lock
Lock
Basic

Resettable No

Event Type
Deadlock

Logical Data Grouping
dlconn_event

Element Name
Element Type

lock_object_name
information

Related Information v “Resetting Monitor Data” on page 25

v “Lock Object Type Waited On” on page 172

v “Table Space Name” on page 179

v “Table Name” on page 188

v “Table Schema Name” on page 189

Description: This element is provided for informational purposes only. It is
the name of the object for which the application holds a lock (for
object-lock-level information), or the name of the object for which the
application is waiting to obtain a lock (for application-level and deadlock-level
information).

Usage: It is the name of the object for table-level locks is the file ID (FID) for
SMS and DMS table spaces. For row-level locks, the object name is the row ID
(RID). For table space locks, the object name is blank.

To determine the table holding the lock, use Table Name and Table Schema Name
instead of the file ID, since the file ID may not be unique.

To determine the table space holding the lock, use Table Space Name.

Lock Node

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Element Name
Element Type

lock_node
information

Related Information v None

Description: The node involved in a lock.

Chapter 3. Database System Monitor Data Elements 173

Usage: This can be used for troubleshooting.

Number of Lock Timeouts

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

lock_timeouts
counter

Related Information v “When Counters are Initialized” on page 24

v Other elements in “Locks and Deadlocks” on page
164

Description: The number of times that a request to lock an object timed-out
instead of being granted.

Usage: This element can help you adjust the setting for the locktimeout
database configuration parameter. If the number of lock time-outs becomes
excessive when compared to normal operating levels, you may have an
application that is holding locks for long durations. In this case, this element
may indicate that you should analyze some of the other elements related to
“Locks and Deadlocks” on page 164 to determine if you have an application
problem.

You could also have too few lock time-outs if your locktimeout database
configuration parameter is set too high. In this case, your applications may
wait excessively to obtain a lock. See the Administration Guide for more
information.

Maximum Number of Locks Held

Event Type
Transaction

Logical Data Grouping
xaction_event

Element Name
Element Type

locks_held_top
counter

Related Information v “Locks Held” on page 164

v “Number of Lock Escalations” on page 167

v “Exclusive Lock Escalations” on page 169

Description: The maximum number of locks held during this transaction.

174 System Monitor Guide and Reference

Usage: You can use this element to determine if your application is
approaching the maximum number of locks available to it, as defined by the
maxlocks configuration parameter. This parameter indicates the percentage of
the lock list that each application can use before lock escalations occur. Lock
escalations can result in a decrease in concurrency between applications
connected to a database. (See the Administration Guide for more information
about this parameter.)

Since the maxlocks parameter is specified as a percentage and this element is a
counter, you can compare the count provided by this element against the total
number of locks that can be held by an application, as calculated using the
following formula:

(locklist * 4096 / 36) * (maxlocks / 100)

If you have a large number of locks, you may need to perform more commits
within your application so that some of the locks can be released.

Connections Involved in Deadlock

Event Type
Deadlock

Logical Data Grouping
deadlock_event

Element Name
Element Type

dl_conns
gauge

Related Information v None

Description: The number of connections that are involved in the deadlock.

Usage: Use this element in your monitoring application to identify how
many deadlock connection event records will follow in the event monitor data
stream.

Lock Escalation

Snapshot Level
Lock

Logical Data Grouping
lock
lock_wait

Monitor Switch
Lock
Lock

Resettable No

Event Type
Deadlock

Logical Data Grouping
dlconn_event

Element Name
Element Type

lock_escalation
information

Related Information v other lock data elements

Chapter 3. Database System Monitor Data Elements 175

Description: Indicates whether a lock request was made as part of a lock
escalation.

Usage: Use this element to better understand the cause of deadlocks. If you
experience a deadlock that involves applications doing lock escalation, you
may want to increase the amount of lock memory or change the percentage of
locks that any one application can request.

Lock Mode Requested

Snapshot Level
Lock

Logical Data Grouping
lock_wait

Monitor Switch
Lock

Resettable No

Event Type
Deadlock

Logical Data Grouping
dlconn_event

Element Name
Element Type

lock_mode_requested
information

Related Information v “Resetting Monitor Data” on page 25

v Other lock information

Description: The lock mode being requested by the application.

Usage: The mode in which the lock was requested by the application. This
value can help you determine the source of contention for resources.

Lock Wait Information

The following elements provide information is returned when a DB2 agent
working on behalf of an application is waiting to obtain a lock:
v “Lock Waits” on page 177

v “Time Waited On Locks” on page 178

v “Table Space Name” on page 179

v “Current Agents Waiting On Locks” on page 179

v “Total Time Unit of Work Waited on Locks” on page 180

v “Lock Wait Start Timestamp” on page 180

v “Agent ID Holding Lock” on page 181

v “Application ID Holding Lock” on page 182

v “Sequence Number Holding Lock” on page 183

v “Rolled Back Application” on page 183

v “Rolled Back Sequence Number” on page 184

176 System Monitor Guide and Reference

Lock Waits

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Lock
Lock

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

lock_waits
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Connection Request Start Timestamp” on page
70

v “Time Waited On Locks” on page 178

Description: The total number of times that applications or connections
waited for locks.

Usage: At the database level, this is the total number of times that
applications have had to wait for locks within this database.

At the application-connection level, this is the total number of times that this
connection requested a lock but had to wait because another connection was
already holding a lock on the data.

This element may be used with Time Waited On Locks to calculate, at the
database level, the average wait time for a lock. This calculation can be done
at either the database or the application-connection level.

If the average lock wait time is high, you should look for applications that
hold many locks, or have lock escalations, with a focus on tuning your
applications to improve concurrency, if appropriate. If escalations are the
reason for a high average lock wait time, then the values of one or both of the
locklist and maxlocks configuration parameters may be too low. See the
Administration Guide for more information.

Chapter 3. Database System Monitor Data Elements 177

Time Waited On Locks

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl
appl_lock

Monitor Switch
Lock
Lock

Resettable Yes

Event Type
Database
Connection
Transaction

Logical Data Grouping
db_event
conn_event
xaction_event

Element Name
Element Type

lock_wait_time
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Current Agents Waiting On Locks” on page 179

v “Lock Waits” on page 177

Description: The total elapsed time waited for a lock.

Usage: At the database level, this is the total amount of elapsed time that all
applications were waiting for a lock within this database.

At the application-connection and transaction levels, this is the total amount
of elapsed time that this connection or transaction has waited for a lock to be
granted to it.

This element may be used in conjunction with the Lock Waits monitor
element to calculate the average wait time for a lock. This calculation can be
performed at either the database or the application-connection level.

When using data elements providing elapsed times, you should consider:

v Elapsed times are affected by system load, so the more processes you have
running, the higher this elapsed time value.

v To calculate this data element at the database level, the database system
monitor sums the application-level times. This can result in double counting
elapsed times at a database level, since more than one application process
can be running at the same time.
To provide meaningful data, you can calculate the average wait time for a
lock, as described above.

178 System Monitor Guide and Reference

Table Space Name

Snapshot Level
Table Space
Application
Lock

Logical Data Grouping
tablespace
appl_lock
lock
lock_wait

Monitor Switch
Buffer Pool
Basic
Lock
Lock

Resettable No

Event Type
Deadlock
Table Space

Logical Data Grouping
dlconn_event
tablespace_header

Element Name
Element Type

tablespace_name
information

Related Information v “Resetting Monitor Data” on page 25

v “Lock Object Type Waited On” on page 172

Description: The name of a table space.

Usage: This element can help you determine the source of contention for
resources.

It is equivalent to the TBSPACE column in the database catalog table
SYSCAT.TABLESPACE. At the application level, application-lock level, and
deadlock monitoring level, this is the name of the table space that the
application is waiting to lock. Another application currently holds a lock on
this table space.

At the lock level, this is the name of the table space against which the
application currently holds a lock.

At the table space level (when the buffer pool monitor group is ON), this is
the name of the table space for which information is returned.

Current Agents Waiting On Locks

Snapshot Level
Database
Application
Lock

Logical Data Grouping
dbase
appl
dbase_lock

Monitor Switch
Basic
Basic
Basic

Resettable No

Element Name
Element Type

locks_waiting
gauge

Related Information v “Applications Connected Currently” on page 85

Chapter 3. Database System Monitor Data Elements 179

Description: Indicates the number of agents waiting on a lock.

Usage: When used in conjunction with Applications Connected Currently, this
element indicates the percentage of applications waiting on locks. If this
number is high, the applications may have concurrency problems, and you
should identify applications that are holding locks or exclusive locks for long
periods of time.

Total Time Unit of Work Waited on Locks

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Unit of Work

Resettable No

Element Name
Element Type

uow_lock_wait_time
counter

Related Information v “Resetting Monitor Data” on page 25

v Application-level information on locks

Description: The total amount of elapsed time this unit of work has spent
waiting for locks.

Usage: This element can help you determine the severity of the resource
contention problem.

Lock Wait Start Timestamp

Snapshot Level
Application
Lock

Logical Data Grouping
appl
lock_wait

Monitor Switch
Lock
Lock

Resettable No

Event Type
Deadlock

Logical Data Grouping
dlconn_event

Element Name
Element Type

lock_wait_start_time
timestamp

Related Information v “Resetting Monitor Data” on page 25

v “Agent ID Holding Lock” on page 181

Description: The date and time that this application started waiting to obtain
a lock on the object that is currently locked by another application.

Usage: This element can help you determine the severity of resource
contention.

180 System Monitor Guide and Reference

Agent ID Holding Lock

Snapshot Level
Application

Lock

Logical Data Grouping
appl
appl_lock
lock_wait

Monitor Switch
Lock
Lock
Lock

Resettable No

Element Name
Element Type

agent_id_holding_lock
information

Related Information v “Resetting Monitor Data” on page 25

v “Lock Wait Start Timestamp” on page 180

v “Application ID Holding Lock” on page 182

Description: The application handle of the agent holding a lock for which
this application is waiting. The lock monitor group must be turned on to
obtain this information.

Usage: This element can help you determine which applications are in
contention for resources.

If this element is 0 (zero) and the application is waiting for a lock, this
indicates that the lock is held by an indoubt transaction. You can use either
“Application ID Holding Lock” on page 182 or the command line processor
LIST INDOUBT TRANSACTIONS command (which displays the application
ID of the CICS agent that was processing the transaction when it became
indoubt) to determine the indoubt transaction, and then either commit it or
roll it back.

Note that more than one application can hold a shared lock on an object for
which this application is waiting. See “Lock Mode” on page 170 for
information about the type of lock that the application holds. If you are taking
an application snapshot, only one of the agent IDs holding a lock on the
object will be returned. If you are taking a lock snapshot, all of the agent IDs
holding a lock on the object will be identified.

Chapter 3. Database System Monitor Data Elements 181

Application ID Holding Lock

Snapshot Level
Application

Lock

Logical Data Grouping
appl
appl_lock
lock_wait

Monitor Switch
Lock
Lock
Lock

Resettable No

Event Type
Deadlock

Logical Data Grouping
dlconn_event

Element Name
Element Type

appl_id_holding_lk
information

Related Information v “Resetting Monitor Data” on page 25

v “Agent ID Holding Lock” on page 181

v “Deadlocks Detected” on page 166

Description: The application ID of the application that is holding a lock on
the object that this application is waiting to obtain.

Usage: This element can help you determine which applications are in
contention for resources. Specifically, it can help you identify the application
handle (agent ID) and table ID that are holding the lock. Note that you may
use the LIST APPLICATIONS command to obtain information to relate the
application ID with an agent ID. However, it is a good idea to collect this type
of information when you take the snapshot, as it could be unavailable if the
application ends before you run the LIST APPLICATIONS command.

Note that more than one application can hold a shared lock on an object for
which this application is waiting to obtain a lock. See “Lock Mode” on
page 170 for information about the type of lock that the application holds. If
you are taking an application snapshot, only one of the application IDs
holding a lock on the object will be returned. If you are taking a lock
snapshot, all of the application IDs holding a lock on the object will be
returned.

182 System Monitor Guide and Reference

Sequence Number Holding Lock

Snapshot Level
Application

Logical Data Grouping
appl
appl_lock

Monitor Switch
Basic
Basic

Resettable No

Event Type
Deadlock

Logical Data Grouping
dlconn_event

Element Name
Element Type

sequence_no_holding_lk
information

Related Information v None

Description: This element is reserved for future use. In this release, its value
will always be “0001”. In future releases of the product, it may contain
different values.

Rolled Back Application

Event Type
Deadlock

Logical Data Grouping
deadlock_event

Element Name
Element Type

rolled_back_appl_id
information

Related Information v “Service Level” on page 42

v “Maximum Number of Coordinating Agents” on
page 90

Description: Application id that was rolled back when a deadlock occurred.

Usage: A system administrator can use this information to determine which
application did not complete its updates, and determine which applications
should be restarted

Rolled Back Agent

Event Type
Deadlock

Logical Data Grouping
deadlock_event

Element Name
Element Type

rolled_back_agent_id
information

Related Information v “Service Level” on page 42

v “Maximum Number of Coordinating Agents” on
page 90

Description: Agent that was rolled back when a deadlock occurred.

Chapter 3. Database System Monitor Data Elements 183

Usage: A system administrator can use this information to determine which
application did not complete its updates, and determine which applications
should be restarted

Rolled Back Sequence Number

Event Type
Deadlock

Logical Data Grouping
deadlock_event

Element Name
Element Type

rolled_back_sequence_no
information

Related Information v None

Description: The sequence number of the application that was rolled back
when a deadlock occurred.

Usage: A system administrator can use this information to determine which
application did not complete its updates, and determine which applications
should be restarted

Rollforward Monitoring

Recovering database changes can be a time consuming process. You can use
the database system monitor to monitor the progression of a recovery. The
following elements provide information about rollforward status:
v “Rollforward Timestamp”

v “Tablespace Being Rolled Forward” on page 185

v “Rollforward Type” on page 185

v “Log Being Rolled Forward” on page 185

v “Log Phase” on page 186

v “Number of Rollforward Table Spaces” on page 186

Rollforward Timestamp

Snapshot Level
Table Space

Logical Data Grouping
rollfwd_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

rf_timestamp
timestamp

Related Information v “Tablespace Being Rolled Forward” on page 185

Description: The timestamp of the log being processed.

184 System Monitor Guide and Reference

Usage: If a rollforward is in progress, this is the timestamp of the log record
being processed. This is an indicator of the data changes that will be
recovered.

Tablespace Being Rolled Forward

Snapshot Level
Table Space

Logical Data Grouping
rollfwd_ts_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

ts_name
information

Related Information v “Rollforward Timestamp” on page 184

Description: The name of the table space currently rolled forward.

Usage: If a rollforward is in progress, this element identifies the table spaces
involved.

Rollforward Type

Snapshot Level
Table Space

Logical Data Grouping
rollfwd_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

rf_type
information

Related Information v None

Description: The type of rollforward in progress.

Usage: An indicator of whether recovery is happening at a database or table
space level. For more information on rollforward recovery at the database or
table space level see the Administration Guide.

Log Being Rolled Forward

Snapshot Level
Table Space

Logical Data Grouping
rollfwd_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

rf_log_num
information

Related Information v None

Description: The log being processed.

Chapter 3. Database System Monitor Data Elements 185

Usage: If a rollforward is in progress, this element identifies the log involved.

Log Phase

Snapshot Level
Table Space

Logical Data Grouping
rollfwd_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

rf_status
information

Related Information v None

Description: The status of the recovery.

Usage: This element indicates the progression of a recovery. It indicates if the
recovery is in an undo (rollback) or redo (rollforward) phase.

Number of Rollforward Table Spaces

Snapshot Level
Table Space

Logical Data Grouping
rollfwd_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

rf_num_tspaces
counter

Related Information v None

Description: The number of table spaces involved in a rollforward.

Usage: This is a counter of the table spaces involved in recovery.

Table Activity

The following elements provide information about the tables:
v “Table Type” on page 187

v “Table Name” on page 188

v “Table Schema Name” on page 189

v “Rows Deleted” on page 190

v “Rows Inserted” on page 190

v “Rows Updated” on page 191

v “Rows Selected” on page 191

v “Rows Written” on page 192

v “Rows Read” on page 193

186 System Monitor Guide and Reference

v “Accesses to Overflowed Records” on page 194

v “Internal Rows Deleted” on page 194

v “Internal Rows Updated” on page 195

v “Internal Rows Inserted” on page 196

v “Table File ID” on page 196

v “Page Reorganizations” on page 197

Table Type

Snapshot Level
Table

Logical Data Grouping
table

Monitor Switch
Table

Resettable No

Event Type
Table

Logical Data Grouping
table_event

Element Name
Element Type

table_type
information

Related Information v “Resetting Monitor Data” on page 25

v “Table File ID” on page 196

Description: The type of table for which information is returned.

Usage: You can use this element to help identify the table for which
information is returned. If the table is a user table or a system catalog table,
you can use Table Name and Table Schema Name to identify the table.

The type of table may be one of the following:

v User table.
v User table that has been dropped. The table type will only be updated after

the changes are committed (either explicitly or implicitly).
v Temporary table. Information regarding temporary tables is returned, even

though the tables are not kept in the database after being used. You may
still find information about this type of table useful.

v System catalog table.
v Reorganization table. A table created and used by the database manager

while performing a reorganization of another table.

Chapter 3. Database System Monitor Data Elements 187

Table Name

Snapshot Level
Table
Application

Lock

Logical Data Grouping
table
appl
sqml_appl_lock
lock
lock_wait

Monitor Switch
Table
Lock
Lock
Lock
Lock

Resettable No

Event Type
Table
Deadlock

Logical Data Grouping
table_event
dlconn_event

Element Name
Element Type

table_name
information

Related Information v “Resetting Monitor Data” on page 25

v “Table Schema Name” on page 189

v “Lock Object Type Waited On” on page 172

Description: The name of the table.

Usage: Along with Table Schema Name, this element can help you determine
the source of contention for resources.

At the application-level, application-lock level, and deadlock-monitoring-level,
this is the table that the application is waiting to lock, because it is currently
locked by another application. For snapshot monitoring, this item is only
valid when the “lock” monitor group information is turned on, and when Lock
Object Type Waited On indicates that the application is waiting to obtain a table
lock.

For snapshot monitoring at the object-lock level, this item is returned for
table-level and row-level locks. The table reported at this level is the table
against which this application holds these locks.

For snapshot and event monitoring at the table level, this is the table for
which information has been collected. This element is blank for temporary
tables, reorganization tables, and tables that were dropped. Table names are
only provided for catalog and user tables. For snapshot monitoring, this
element is only valid when the “table” monitor group information is turned
on.

188 System Monitor Guide and Reference

Table Schema Name

Snapshot Level
Table
Application

Lock

Logical Data Grouping
table
appl
appl_lock
lock
lock_wait

Monitor Switch
Table
Lock
Lock
Lock
Lock

Resettable No

Event Type
Table
Deadlock

Logical Data Grouping
table_event
dlconn_event

Element Name
Element Type

table_schema
information

Related Information v “Resetting Monitor Data” on page 25

v “Table Name” on page 188

v “Lock Object Type Waited On” on page 172

Description: The schema of the table.

Usage: Along with Table Name, this element can help you determine the
source of contention for resources.

For application-level, application-lock-level, deadlock-monitoring-level, this is
the schema of the table that the application is waiting to lock, because it is
currently locked by another application. This element is only set if Lock Object
Type Waited On indicates that the application is waiting to obtain a table lock.
For snapshot monitoring at the application-level and application-lock levels,
this item is only valid when the “lock” monitor group information is turned
on.

For snapshot monitoring at the object-lock level, this item is returned for table
and row level locks. The table reported at this level is the table against which
this application holds these locks.

For snapshot and event monitoring at the table level, this element identifies
the schema of the table for which information has been collected. This element
is blank for temporary tables, reorganization tables, and tables that were
dropped. Schema names are provided only for catalog and user tables. For
snapshot monitoring, this element is valid only when the “table” monitor
group information is turned on.

Chapter 3. Database System Monitor Data Elements 189

Rows Deleted

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

rows_deleted
counter

Related Information v “When Counters are Initialized” on page 24

v “Internal Rows Deleted” on page 194

Description: This is the number of row deletions attempted.

Usage: You can use this element to gain insight into the current level of
activity within the database manager.

This count does not include the attempts counted in Internal Rows Deleted.

Rows Inserted

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

rows_inserted
counter

Related Information v “When Counters are Initialized” on page 24

Description: This is the number of row insertions attempted.

Usage: You can use this element to gain insight into the current level of
activity within the database manager.

190 System Monitor Guide and Reference

Rows Updated

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

rows_updated
counter

Related Information v “When Counters are Initialized” on page 24

v “Internal Rows Updated” on page 195

Description: This is the number of row updates attempted.

Usage: You can use this element to gain insight into the current level of
activity within the database manager.

This value does not include updates counted in Internal Rows Updated.
However, rows that are updated by more than one update statement are
counted for each update.

Rows Selected

Snapshot Level
Database
Application
DCS Database
DCS Application

Logical Data Grouping
dbase
appl
dcs_dbase
dcs_appl

Monitor Switch
Basic
Basic
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

rows_selected
counter

Related Information v “When Counters are Initialized” on page 24

v “Select SQL Statements Executed” on page 207

Description: This is the number of rows that have been selected and
returned to the application.

Usage: You can use this element to gain insight into the current level of
activity within the database manager.

Chapter 3. Database System Monitor Data Elements 191

This element does not include a count of rows read for actions such as
COUNT(*) or joins.

Rows Written

Snapshot Level
Table
Application

Dynamic SQL

Logical Data Grouping
table
appl
stmt
subsection
dynsql

Monitor Switch
Table
Basic
Basic
Statement
Statement

Resettable Yes

Event Type
Connection
Table
Statement
Transaction

Logical Data Grouping
conn_event
table_event
stmt_event
xaction_event

Element Name
Element Type

rows_written
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Rows Read” on page 193

v “Internal Rows Inserted” on page 196

v “Internal Rows Deleted” on page 194

v “Internal Rows Updated” on page 195

Description: This is the number of rows changed (inserted, deleted or
updated) in the table.

Usage: A high value for table-level information indicates there is heavy
usage of the table and you may want to use the Run Statistics (RUNSTATS)
utility to maintain efficiency of the packages used for this table.

For application-connections and statements, this element includes the number
of rows inserted, updated, and deleted in temporary tables.

At the application, transaction, and statement levels, this element can be
useful for analyzing the relative activity levels, and for identifying candidates
for tuning.

192 System Monitor Guide and Reference

Rows Read

Snapshot Level
Table
Application

Dynamic SQL

Logical Data Grouping
table
appl
stmt
subsection
dynsql

Monitor Switch
Table
Basic
Basic
Statement
Statement

Resettable Yes

Event Type
Connection
Table
Statement
Transaction

Logical Data Grouping
conn_event
table_event
stmt_event
xaction_event

Element Name
Element Type

rows_read
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Rows Written” on page 192

v “Accesses to Overflowed Records” on page 194

Description: This is the number of rows read from the table.

Usage: This element helps you identify tables with heavy usage for which
you may want to create additional indexes. To avoid the maintenance of
unnecessary indexes, you may use the SQL EXPLAIN statement, described in
the Administration Guide to determine if the package uses an index.

This count is not the number of row that were returned to the calling
application. Rather, it is the number of rows that had to be read in order to
return the result set. For example, the following statement returns one row to
the application, but many rows are read to determine the average salary:

SELECT AVG(SALARY) FROM USERID.EMPLOYEE

This count includes the value in Accesses to Overflowed Records.

Chapter 3. Database System Monitor Data Elements 193

Accesses to Overflowed Records

Snapshot Level
Table

Logical Data Grouping
table

Monitor Switch
Table

Resettable Yes

Event Type
Table

Logical Data Grouping
table_event

Element Name
Element Type

overflow_accesses
counter

Related Information v “Resetting Monitor Data” on page 25

v “When Counters are Initialized” on page 24

v “Rows Read” on page 193

v “Rows Written” on page 192

Description: The number of accesses (reads and writes) to overflowed rows
of this table.

Usage: Overflowed rows indicate that data fragmentation has occurred. If
this number is high, you may be able to improve table performance by
reorganizing the table using the REORG utility, which cleans up this
fragmentation.

A row overflows if it is updated and no longer fits in the data page where it
was originally written. This usually happens as a result of an update of a
VARCHAR or an ALTER TABLE statement.

Internal Rows Deleted

Snapshot Level
Database
Application

Dynamic SQL

Logical Data Grouping
dbase
appl
stmt
dynsql

Monitor Switch
Basic
Basic
Basic
Statement

Resettable Yes

Event Type
Database
Connection
Statement

Logical Data Grouping
db_event
conn_event
stmt_event

Element Name
Element Type

int_rows_deleted
counter

Related Information v “When Counters are Initialized” on page 24

v “Rows Deleted” on page 190

194 System Monitor Guide and Reference

Description: This is the number of rows deleted from the database as a
result of internal activity.

Usage: This element can help you gain insight into internal activity within
the database manager of which you might not be aware. If this activity is
high, you may want to evaluate your table design to determine if the
referential constraints or triggers that you have defined on your database are
necessary.

Internal delete activity can be a result of:

v A cascading delete enforcing an ON CASCADE DELETE referential
constraint

v A trigger being fired.

Internal Rows Updated

Snapshot Level
Database
Application

Dynamic SQL

Logical Data Grouping
dbase
appl
stmt
dynsql

Monitor Switch
Basic
Basic
Basic
Statement

Resettable Yes

Event Type
Database
Connection
Statement

Logical Data Grouping
db_event
conn_event
stmt_event

Element Name
Element Type

int_rows_updated
counter

Related Information v “When Counters are Initialized” on page 24

v “Rows Updated” on page 191

Description: This is the number of rows updated from the database as a
result of internal activity.

Usage: This element can help you gain insight into internal activity within
the database manager of which you might not be aware. If this activity is
high, you may want to evaluate your table design to determine if the
referential constraints that you have defined on your database are necessary.

Internal update activity can be a result of:

v A set null row update enforcing a referential constraint defined with the ON
DELETE SET NULL rule

v A trigger being fired.

Chapter 3. Database System Monitor Data Elements 195

Internal Rows Inserted

Snapshot Level
Database
Application

Dynamic SQL

Logical Data Grouping
dbase
appl
stmt
dynsql

Monitor Switch
Basic
Basic
Basic
Statement

Resettable Yes

Event Type
Database
Connection
Statement

Logical Data Grouping
db_event
conn_event
stmt_event

Element Name
Element Type

int_rows_inserted
counter

Related Information v “When Counters are Initialized” on page 24

v “Rows Inserted” on page 190

Description: The number of rows inserted into the database as a result of
internal activity caused by triggers.

Usage: This element can help you gain insight into the internal activity
within the database manager. If this activity is high, you may want to
evaluate your design to determine if you can alter it to reduce this activity.

Table File ID

Snapshot Level
Application
Table
Lock

Logical Data Grouping
appl
table
appl_lock
lock

Monitor Switch
Lock
Table
Lock
Lock

Resettable No

Element Name
Element Type

table_file_id
information

Related Information v “Resetting Monitor Data” on page 25

v “Table Name” on page 188

v “Table Schema Name” on page 189

v “Table Type” on page 187

Description: This is the file ID (FID) for the table.

196 System Monitor Guide and Reference

Usage: This element is provided for information purposes only. It is returned
for compatibility with previous versions of the database system monitor, and
it may not uniquely identify the table. Use Table Name and Table Schema Name
to identify the table.

Page Reorganizations

Snapshot Level
Table

Logical Data Grouping
table

Monitor Switch
Table

Resettable Yes

Event Type
Table

Logical Data Grouping
table_event

Element Name
Element Type

page_reorgs
counter

Related Information v Rows Inserted

v Rows Updated

Description: The number of page reorganizations executed for a table.

Usage: Too many page reorganizations can result in less than optimal insert
performance. You can use the REORG TABLE utility to reorganize a table and
eliminate fragmentation. You can also use the APPEND parameter for the
ALTER TABLE statement to indicate that all inserts are appended at the end
of a table and so avoid page reorgs.

In situations where updates to rows causes the row length to increase, the
page may have enough space to accommodate the new row, but a page reorg
may be required to defragment that space. Or if the page does not have
enough space for the new larger row, an overflow record is created being
created causing Accesses to Overflowed Records during reads. You can avoid
both situations by using fixed length columns instead of varying length
columns.

SQL Cursors

The following elements provide information about the SQL cursors:
v “Open Remote Cursors” on page 198

v “Open Remote Cursors with Blocking” on page 198

v “Rejected Block Cursor Requests” on page 199

v “Accepted Block Cursor Requests” on page 200

v “Open Local Cursors” on page 201

v “Open Local Cursors with Blocking” on page 201

Chapter 3. Database System Monitor Data Elements 197

Open Remote Cursors

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Element Name
Element Type

open_rem_curs
gauge

Related Information v “Open Remote Cursors with Blocking” on page
198

v “Open Local Cursors” on page 201

Description: The number of remote cursors currently open for this
application, including those cursors counted by Open Remote Cursors with
Blocking.

Usage: You may use this element in conjunction with Open Remote Cursors
with Blocking to calculate the percentage of remote cursors that are blocking
cursors. If the percentage is low, you may be able to improve performance by
improving the row blocking in the application. See Open Remote Cursors with
Blocking for more information.

For the number of open cursors used by applications connected to a local
database, see Open Local Cursors.

Open Remote Cursors with Blocking

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Element Name
Element Type

open_rem_curs_blk
gauge

Related Information v “Open Remote Cursors” on page 198

v “Rejected Block Cursor Requests” on page 199

v “Accepted Block Cursor Requests” on page 200

v “Open Local Cursors” on page 201

v “Open Local Cursors with Blocking” on page 201

Description: The number of remote blocking cursors currently open for this
application.

198 System Monitor Guide and Reference

Usage: You can use this element in conjunction with Open Remote Cursors to
calculate the percentage of remote cursors that are blocking cursors. If the
percentage is low, you may be able to improve performance by improving the
row blocking in the application:

v Check the pre-compile options for record blocking for treatment of
ambiguous cursors

v Redefine cursors to allow for blocking (for example, if possible, specify FOR
FETCH ONLY on your cursors).

Rejected Block Cursor Requests and Accepted Block Cursor Requests provide
additional information that may help you tune your configuration parameters
to improve row blocking in your application.

For the number of open blocking cursors used by applications connected to a
local database see Open Local Cursors with Blocking.

Rejected Block Cursor Requests

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
conn_event

Element Name
Element Type

rej_curs_blk
counter

Related Information v “Accepted Block Cursor Requests” on page 200

v “Open Local Cursors” on page 201

v “Open Local Cursors with Blocking” on page 201

v “Open Remote Cursors” on page 198

v “Open Remote Cursors with Blocking” on page
198

Description: The number of times that a request for an I/O block at server
was rejected and the request was converted to non-blocked I/O.

Usage: If there are many cursors blocking data, the communication heap
may become full. When this heap is full, an error is not returned. Instead, no
more I/O blocks are allocated for blocking cursors. If cursors are unable to
block data, performance can be affected.

If a large number of cursors were unable to perform data blocking, you may
be able to improve performance by:

Chapter 3. Database System Monitor Data Elements 199

v Increasing the size of the query_heap database manager configuration
parameter. For more information see the Administration Guide.

Accepted Block Cursor Requests

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Event Type
Connection

Logical Data Grouping
conn_event

Element Name
Element Type

acc_curs_blk
counter

Related Information v “Rejected Block Cursor Requests” on page 199

v “Open Local Cursors” on page 201

v “Open Local Cursors with Blocking” on page 201

v “Open Remote Cursors” on page 198

v “Open Remote Cursors with Blocking” on page
198

Description: The number of times that a request for an I/O block was
accepted.

Usage: You can use this element in conjunction with Rejected Block Cursor
Requests to calculate the percentage of blocking requests that are accepted
and/or rejected.

See Rejected Block Cursor Requests for suggestions on how to use this
information to tune your configuration parameters.

200 System Monitor Guide and Reference

Open Local Cursors

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Element Name
Element Type

open_loc_curs
gauge

Related Information v “Open Local Cursors with Blocking” on page 201

v “Open Remote Cursors” on page 198

v “Open Remote Cursors with Blocking” on page
198

v “Rejected Block Cursor Requests” on page 199

v “Accepted Block Cursor Requests” on page 200

Description: The number of local cursors currently open for this application,
including those cursors counted by Open Local Cursors with Blocking.

Usage: You may use this element in conjunction with Open Local Cursors with
Blocking to calculate the percentage of local cursors that are blocking cursors.
If the percentage is low, you may be able to improve performance by
improving the row blocking in the application.

For cursors used by remote applications, see Open Remote Cursors.

Open Local Cursors with Blocking

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Element Name
Element Type

open_loc_curs_blk
gauge

Related Information v “Open Local Cursors” on page 201

v “Open Remote Cursors” on page 198

v “Open Remote Cursors with Blocking” on page
198

v “Rejected Block Cursor Requests” on page 199

v “Accepted Block Cursor Requests” on page 200

Description: The number of local blocking cursors currently open for this
application.

Chapter 3. Database System Monitor Data Elements 201

Usage: You may use this element in conjunction with Open Local Cursors to
calculate the percentage of local cursors that are blocking cursors. If the
percentage is low, you may be able to improve performance by improving the
row blocking in the application:

v Check the pre-compile options for record blocking for treatment of
ambiguous cursors

v Redefine cursors to allow for blocking (for example, if possible, specify FOR
FETCH ONLY on your cursors).

Rejected Block Cursor Requests and Accepted Block Cursor Requests provide
additional information that may help you tune your configuration parameters
to improve row blocking in your application.

For blocking cursors used by remote applications, see Open Remote Cursors
with Blocking.

SQL Statement Activity

The following elements provide information about SQL statement activity:
v “Static SQL Statements Attempted” on page 203

v “Dynamic SQL Statements Attempted” on page 203

v “Failed Statement Operations” on page 204

v “Commit Statements Attempted” on page 205

v “Rollback Statements Attempted” on page 206

v “Select SQL Statements Executed” on page 207

v “Update/Insert/Delete SQL Statements Executed” on page 208

v “Data Definition Language (DDL) SQL Statements” on page 208

v “Internal Automatic Rebinds” on page 209

v “Internal Commits” on page 210

v “Internal Rollbacks” on page 211

v “Internal Rollbacks Due To Deadlock” on page 213

v “SQL Requests Since Last Commit” on page 213

v “Statement Node” on page 214

v “Binds/Precompiles Attempted” on page 214

202 System Monitor Guide and Reference

Static SQL Statements Attempted

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

static_sql_stmts
counter

Related Information v “When Counters are Initialized” on page 24

v “Failed Statement Operations” on page 204

Description: The number of static SQL statements that were attempted.

Usage: You can use this element to calculate the total number of successful
SQL statements at the database or application level:

Dynamic SQL Statements Attempted
+ Static SQL Statements Attempted
- Failed Statement Operations
= throughput during monitoring period

Dynamic SQL Statements Attempted

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

dynamic_sql_stmts
counter

Related Information v “When Counters are Initialized” on page 24

v “Failed Statement Operations” on page 204

Description: The number of dynamic SQL statements that were attempted.

Usage: You can use this element to calculate the total number of successful
SQL statements at the database or application level:

Chapter 3. Database System Monitor Data Elements 203

Dynamic SQL Statements Attempted
+ Static SQL Statements Attempted
- Failed Statement Operations
= throughput during monitoring period

Failed Statement Operations

Snapshot Level
Database
Application
DCS Database
DCS Application

Logical Data Grouping
dbase
appl
dcs_dbase
dcs_appl

Monitor Switch
Basic
Basic
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

failed_sql_stmts
counter

Related Information v “When Counters are Initialized” on page 24

v “Dynamic SQL Statements Attempted” on page
203

v “Static SQL Statements Attempted” on page 203

Description: The number of SQL statements that were attempted, but failed.

Usage: You can use this element to calculate the total number of successful
SQL statements at the database or application level:

Dynamic SQL Statements Attempted
+ Static SQL Statements Attempted
- Failed Statement Operations
= throughput during monitoring period

This count includes all SQL statements that received a negative SQLCODE.

This element may also help you in determining reasons for poor performance,
since failed statements mean time wasted by the database manager and as a
result, lower throughput for the database.

204 System Monitor Guide and Reference

Commit Statements Attempted

Snapshot Level
Database
Application
DCS Database
DCS Application

Logical Data Grouping
dbase
appl
dcs_dbase
dcs_appl

Monitor Switch
Basic
Basic
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

commit_sql_stmts
counter

Related Information v “When Counters are Initialized” on page 24

v “Internal Commits” on page 210

v “Rollback Statements Attempted” on page 206

v “Internal Rollbacks” on page 211

v “Internal Rollbacks Due To Deadlock” on page
213

Description: The total number of SQL COMMIT statements that have been
attempted.

Usage: A small rate of change in this counter during the monitor period may
indicate that applications are not doing frequent commits, which may lead to
problems with logging and data concurrency.

You can also use this element to calculate the total number of units of work
by calculating the sum of the following:

commit statements attempted
+ internal commits
+ rollback statements attempted
+ internal rollbacks

Note: The units of work calculated will only include those since the later of:

v The connection to the database (for database-level information, this is
the time of the first connection)

v The last reset of the database monitor counters.

This calculation can be done at a database or application level.

Chapter 3. Database System Monitor Data Elements 205

Rollback Statements Attempted

Snapshot Level
Database
Application
DCS Database
DCS Application

Logical Data Grouping
dbase
appl
dcs_dbase
dcs_appl

Monitor Switch
Basic
Basic
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

rollback_sql_stmts
counter

Related Information v “When Counters are Initialized” on page 24

v “Statement Type” on page 216

v “Commit Statements Attempted” on page 205

v “Internal Commits” on page 210

v “Internal Rollbacks” on page 211

v “Internal Rollbacks Due To Deadlock” on page
213

Description: The total number of SQL ROLLBACK statements that have been
attempted.

Usage: A rollback can result from an application request, a deadlock, or an
error situation. This element only counts the number of rollback statements
issued from applications.

At the application level, this element can help you determine the level of
database activity for the application and the amount of conflict with other
applications. At the database level, it can help you determine the amount of
activity in the database and the amount of conflict between applications on
the database.

Note: You should try to minimize the number of rollbacks, since higher
rollback activity results in lower throughput for the database.

It may also be used to calculate the total number of units of work, by
calculating the sum of the following:

commit statements attempted
+ internal commits
+ rollback statements attempted
+ internal rollbacks

206 System Monitor Guide and Reference

Select SQL Statements Executed

Snapshot Level
Database
Table Space
Application

Logical Data Grouping
dbase
tablespace
appl

Monitor Switch
Basic
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

select_sql_stmts
counter

Related Information v “When Counters are Initialized” on page 24

v “Static SQL Statements Attempted” on page 203

v “Dynamic SQL Statements Attempted” on page
203

Description: The number of SQL SELECT statements that were executed.

Usage: You can use this element to determine the level of database activity at
the application or database level.

You can also use the following formula to determine the ratio of SELECT
statements to the total statements:

select SQL statements executed
/ (static SQL statements attempted
+ dynamic SQL statements attempted)

This information can be useful for analyzing application activity and
throughput.

Chapter 3. Database System Monitor Data Elements 207

Update/Insert/Delete SQL Statements Executed

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

uid_sql_stmts
counter

Related Information v “When Counters are Initialized” on page 24

v “Static SQL Statements Attempted” on page 203

v “Dynamic SQL Statements Attempted” on page
203

Description: The number of SQL UPDATE, INSERT, and DELETE statements
that were executed.

Usage: You can use this element to determine the level of database activity at
the application or database level.

You can also use the following formula to determine the ratio of UPDATE,
INSERT and DELETE statements to the total number of statements:

update/insert/delete SQL statements executed
/ (static SQL statements attempted + dynamic SQL statements attempted)

This information can be useful for analyzing application activity and
throughput.

Data Definition Language (DDL) SQL Statements

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

ddl_sql_stmts
counter

Related Information v “When Counters are Initialized” on page 24

208 System Monitor Guide and Reference

Description: This element indicates the number of SQL Data Definition
Language (DDL) statements that were executed.

Usage: You can use this element to determine the level of database activity at
the application or database level. DDL statements are expensive to run due to
their impact on the system catalog tables. As a result, if the value of this
element is high, you should determine the cause, and possibly restrict this
activity from being performed.

You can also use this element to determine the percentage of DDL activity
using the following formula:

data definition language (DDL) SQL statements / total number of statements

This information can be useful for analyzing application activity and
throughput. DDL statements can also impact the package cache, by
invalidating sections that are stored there and causing additional system
overhead due to section recompilation.

Examples of DDL statements are CREATE TABLE, CREATE VIEW, ALTER
TABLE, and DROP INDEX.

Internal Automatic Rebinds

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

int_auto_rebinds
counter

Related Information v “When Counters are Initialized” on page 24

v “Binds/Precompiles Attempted” on page 214

Description: The number of automatic rebinds (or recompiles) that have
been attempted.

Usage: Automatic rebinds are the internal binds the system performs when
an package has been invalidated. The rebind is performed the first time that
the database manager needs to execute an SQL statement from the package.
For example, packages are invalidated when you:

Chapter 3. Database System Monitor Data Elements 209

v Drop an object, such as a table, view, or index, on which the plan is
dependent

v Add or drop a foreign key
v Revoke object privileges on which the plan is dependent.

You can use this element to determine the level of database activity at the
application or database level. Since internal automatic rebinds can have a
significant impact on performance, they should be minimized where possible.

You can also use this element to determine the percentage of rebind activity
using the following formula:

internal automatic rebinds / total number of statements

This information can be useful for analyzing application activity and
throughput.

Internal Commits

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

int_commits
counter

Related Information v “When Counters are Initialized” on page 24

v “Commit Statements Attempted” on page 205

v “Rollback Statements Attempted” on page 206

v “Internal Rollbacks” on page 211

Description: The total number of commits initiated internally by the
database manager.

Usage: An internal commit may occur during any of the following:

v A reorganization
v An import
v A bind or pre-compile
v An application ends without executing an explicit SQL COMMIT statement

(on UNIX).

210 System Monitor Guide and Reference

This value, which does not include explicit SQL COMMIT statements,
represents the number of these internal commits since the later of:
v The connection to the database (for database-level information, this is the

time of the first connection)
v The last reset of the database monitor counters.

You can use this element to calculate the total number of units of work by
calculating the sum of the following:

commit statements attempted
+ internal commits
+ rollback statements attempted
+ internal rollbacks

Note: The units of work calculated will only include those since the later of:
v The connection to the database (for database-level information, this is

the time of the first connection)
v The last reset of the database monitor counters.

This calculation can be done at the application or the database level.

Internal Rollbacks

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

int_rollbacks
counter

Related Information v “When Counters are Initialized” on page 24

v “Commit Statements Attempted” on page 205

v “Internal Commits” on page 210

v “Rollback Statements Attempted” on page 206

v “Internal Rollbacks Due To Deadlock” on page
213

Description: The total number of rollbacks initiated internally by the
database manager.

Chapter 3. Database System Monitor Data Elements 211

Usage: An internal rollback occurs when any of the following cannot
complete successfully:

v A reorganization
v An import
v A bind or pre-compile
v An application ends as a result of a deadlock situation or lock timeout

situation
v An application ends without executing an explicit commit or rollback

statement (on Windows).

This value represents the number of these internal rollbacks since the later of:
v The connection to the database (for database-level information, this is the

time of the first connection)
v The last reset of the database monitor counters.

While this value does not include explicit SQL ROLLBACK statements, the
count from Internal Rollbacks Due To Deadlock is included.

You can use this element to calculate the total number of units of work by
calculating the sum of the following:

commit statements attempted
+ internal commits
+ rollback statements attempted
+ internal rollbacks

Note: The units of work calculated will include those since the later of:
v The connection to the database (for database-level information, this is

the time of the first connection)
v The last reset of the database monitor counters.

This calculation can be done at the application or the database level.

212 System Monitor Guide and Reference

Internal Rollbacks Due To Deadlock

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Connection

Logical Data Grouping
conn_event

Element Name
Element Type

int_deadlock_rollbacks
counter

Related Information v “When Counters are Initialized” on page 24

v “Deadlocks Detected” on page 166

v “Rollback Statements Attempted” on page 206

v “Internal Rollbacks” on page 211

Description: The total number of forced rollbacks initiated by the database
manager due to a deadlock. A rollback is performed on the current unit of
work in an application selected by the database manager to resolve the
deadlock.

Usage: This element shows the number of deadlocks that have been broken
and can be used as an indicator of concurrency problems. It is important,
since internal rollbacks due to deadlocks lower the throughput of the
database.

This value is included in the value given by Internal Rollbacks.

SQL Requests Since Last Commit

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable No

Element Name
Element Type

sql_reqs_since_commit
information

Related Information v None

Description: Number of SQL requests that have been submitted since the last
commit.

Usage: You can use this element to monitor the progress of a transaction.

Chapter 3. Database System Monitor Data Elements 213

Note: This element is similar to the cur_reqs field in the sqlestat output. See
“Appendix D. DB2 Version 1 sqlestat Users” on page 393 for more
information on sqlestat equivalent data elements.

Statement Node

Snapshot Level
Application

Logical Data Grouping
stmt

Monitor Switch
Statement

Resettable No

Element Name
Element Type

stmt_node_number
information

Related Information v None

Description: Node where the statement was executed.

Usage: Used to correlate each statement with the node where it was
executed.

Binds/Precompiles Attempted

Snapshot Level
Database
Application

Logical Data Grouping
dbase
appl

Monitor Switch
Basic
Basic

Resettable Yes

Event Type
Database
Connection

Logical Data Grouping
db_event
conn_event

Element Name
Element Type

binds_precompiles
counter

Related Information v “When Counters are Initialized” on page 24

v “Internal Automatic Rebinds” on page 209

Description: The number of binds and pre-compiles attempted.

Usage: You can use this element to gain insight into the current level of
activity within the database manager.

This value does not include the count of Internal Automatic Rebinds, but it does
include binds that occur as a result of the REBIND PACKAGE command.

214 System Monitor Guide and Reference

SQL Statement Details

The following elements provide details about the SQL statements:
v “Statement Type” on page 216

v “Statement Operation” on page 217

v “Package Name” on page 218

v “Section Number” on page 219

v “Cursor Name” on page 220

v “Application Creator” on page 220

v “Statement Operation Start Timestamp” on page 221

v “Statement Operation Stop Timestamp” on page 221

v “Event Stop Time” on page 222

v “Event Start Time” on page 222

v “Most Recent Statement Elapsed Time” on page 223

v “SQL Dynamic Statement Text” on page 223

v “Statement Sorts” on page 224

v “Number of Successful Fetches” on page 225

v “SQL Communications Area (SQLCA)” on page 225

v “Query Number of Rows Estimate” on page 226

v “Query Cost Estimate” on page 227

Chapter 3. Database System Monitor Data Elements 215

Statement Type

Snapshot Level
Application

Logical Data Grouping
appl
stmt

Monitor Switch
Statement
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
stmt_event

Element Name
Element Type

stmt_type
information

Related Information v “Resetting Monitor Data” on page 25

v “SQL Dynamic Statement Text” on page 223

v “Application Creator” on page 220

v “Section Number” on page 219

v “Package Name” on page 218

Description: The type of statement processed.

Usage: You can use this element to determine the type of statement that is
executing. It can be one of the following:

v A static SQL statement
v A dynamic SQL statement
v An operation other than an SQL statement; for example, a bind or

pre-compile operation.

For the snapshot monitor, this element describes the statement that is
currently being processed or was most recently processed.

Note: API users should refer to the sqlmon.h header file containing definitions
of database system monitor constants.

216 System Monitor Guide and Reference

Statement Operation

Snapshot Level
Application

DCS Application
DCS Statement

Logical Data Grouping
appl
stmt
dcs_appl
dcs_stmt

Monitor Switch
Basic
Statement
Basic
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
stmt_event

Element Name

Element Type

stmt_operation (Snapshot)
operation (Event)
information

Related Information v “Resetting Monitor Data” on page 25

v “Statement Type” on page 216

v “SQL Dynamic Statement Text” on page 223

v “Application Creator” on page 220

v “Section Number” on page 219

v “Package Name” on page 218

v “Number of Successful Fetches” on page 225

Description: The statement operation currently being processed or most
recently processed (if none currently running).

Usage: You can use this element to determine the operation that is executing
or recently finished.

It can be one of the following.

For SQL operations:

v SELECT
v PREPARE
v EXECUTE
v EXECUTE IMMEDIATE
v OPEN
v FETCH
v CLOSE
v DESCRIBE
v STATIC COMMIT
v STATIC ROLLBACK

Chapter 3. Database System Monitor Data Elements 217

v FREE LOCATOR
v PREP_COMMIT
v CALL
v PREP_OPEN
v PREP_EXEC
v COMPILE

For non-SQL operations:
v RUN STATISTICS
v REORG
v REBIND
v REDISTRIBUTE
v GET TABLE AUTHORIZATION
v GET ADMINISTRATIVE AUTHORIZATION

Note: API users should refer to the sqlmon.h header file containing definitions
of database system monitor constants.

Package Name

Snapshot Level
Application

DCS Application
DCS Statement

Logical Data Grouping
appl
stmt
dcs_appl
dcs_stnt

Monitor Switch
Statement
Statement
Statement
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
stmt_event

Element Name
Element Type

package_name
information

Related Information v “Resetting Monitor Data” on page 25

v “Application Creator” on page 220

v “Section Number” on page 219

v “SQL Dynamic Statement Text” on page 223

Description: The name of the package that contains the SQL statement
currently executing.

Usage: You may use this element to help identify the application program
and the SQL statement that is executing.

218 System Monitor Guide and Reference

Section Number

Snapshot Level
Application

DCS Application
DCS Statement

Logical Data Grouping
appl
stmt
dcs_appl
dcs_stmt

Monitor Switch
Statement
Statement
Statement
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
stmt_event

Element Name
Element Type

section_number
information

Related Information v “Resetting Monitor Data” on page 25

v “SQL Dynamic Statement Text” on page 223

v “Application Creator” on page 220

v “Package Name” on page 218

Description: The internal section number in the package for the SQL
statement currently processing or most recently processed.

Usage: For static SQL, you can use this element along with Application
Creator and Package Name to query the SYSCAT.STATEMENTS system
catalog table and obtain the static SQL statement text, using the sample query
as follows:

SELECT SEQNO, SUBSTR(TEXT,1,120)
FROM SYSCAT.STATEMENTS
WHERE PKGNAME = 'package_name' AND

PKGSCHEMA = 'creator' AND
SECTNO = section_number

ORDER BY SEQNO

Note: Exercise caution in obtaining static statement text, because this query
against the system catalog table could cause lock contentions.
Whenever possible, only use this query when there is little other
activity against the database.

Chapter 3. Database System Monitor Data Elements 219

Cursor Name

Snapshot Level
Application

Logical Data Grouping
appl
stmt

Monitor Switch
Statement
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
stmt_event

Element Name
Element Type

cursor_name
information

Related Information v “Resetting Monitor Data” on page 25

v “SQL Dynamic Statement Text” on page 223

v “Statement Type” on page 216

v “Number of Successful Fetches” on page 225

Description: The name of the cursor corresponding to this SQL statement.

Usage: You may use this element to identify the SQL statement that is
processing. This name will be used on an OPEN, FETCH, CLOSE, and
PREPARE of an SQL SELECT statement. If a cursor is not used, this field will
be blank.

Application Creator

Snapshot Level
Application

DCS Application
DCS Statement

Logical Data Grouping
appl
stmt
dcs_appl
dcs_stmt

Monitor Switch
Statement
Statement
Statement
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
stmt_event

Element Name
Element Type

creator
information

Related Information v “Resetting Monitor Data” on page 25

v “Package Name” on page 218

v “Section Number” on page 219

Description: The authorization ID of the user that pre-compiled the
application.

220 System Monitor Guide and Reference

Usage: You may use this element to help identify the SQL statement that is
processing, in conjunction with the CREATOR column of the package section
information in the catalogs.

Statement Operation Start Timestamp

Snapshot Level
Application

DCS Application
DCS Statement

Logical Data Grouping
appl
stmt
dcs_appl
dcs_stmt

Monitor Switch
Statement
Statement
Statement
Statement

Resettable No

Element Name
Element Type

stmt_start
timestamp

Related Information v “Resetting Monitor Data” on page 25

v “Statement Operation Stop Timestamp” on page
221

v “Statement Operation” on page 217

Description: The date and time when the Statement Operation started
executing.

Usage: You can use this element with Statement Operation Stop Timestamp
to calculate the elapsed statement operation execution time.

Statement Operation Stop Timestamp

Snapshot Level
Application
DCS Application

Logical Data Grouping
stmt
dcs_stmt

Monitor Switch
Statement
Statement

Resettable No

Element Name
Element Type

stmt_stop
Timestamp

Related Information v “Resetting Monitor Data” on page 25

v “Statement Operation Start Timestamp” on page
221

v “Statement Operation” on page 217

v “Event Stop Time” on page 222

Description: The date and time when the Statement Operation stopped
executing.

Chapter 3. Database System Monitor Data Elements 221

Usage: You can use this element with Statement Operation Start Timestamp
to calculate the elapsed statement operation execution time.

Event Stop Time

Event Type
Statement

Logical Data Grouping
stmt_event

Element Name
Element Type

stop_time
timestamp

Related Information v “Previous Transaction Stop Time” on page 76

v “Statement Operation Stop Timestamp” on page
221

Description: The date and time when the statement stopped executing.

Usage: You can use this element with Event Start Time to calculate the
elapsed statement execution time.

For a FETCH statement event, this is the time of the last successful fetch.

Event Start Time

Event Type
Database
Transaction
Statement
Deadlock

Logical Data Grouping
evmon_start_event
xaction_event
stmt_event
deadlock_event
dlconn_event

Element Name
Element Type

start_time
timestamp

Related Information v “Previous Transaction Stop Time” on page 76

v “Statement Operation” on page 217

Description: The date and time of unit of work start, statement start, or
deadlock detection.

This element, in the evmon_start_event API structure indicates the start of the
event monitor.

Usage: You can use this element to correlate the deadlock connection records
to the deadlock event record, and in conjunction with Event Stop Time to
calculate the elapsed statement or transaction execution time.

222 System Monitor Guide and Reference

Most Recent Statement Elapsed Time

Snapshot Level
Statement
DCS Statement

Logical Data Grouping
stmt
dcs_stmt

Monitor Switch
Statement
Statement

Resettable No

Element Name
Element Type

stmt_elapsed_time
time

Related Information v “Communication Errors” on page 266

v “Communication Error Time” on page 267

Description: The elapsed execution time of the most recently completed
statement.

Usage: Use this element as an indicator of the time it takes for a statement to
complete.

SQL Dynamic Statement Text

Snapshot Level
Application
Dynamic SQL
DCS Statement

Logical Data Grouping
stmt
dynsql
dcs_stmt

Monitor Switch
Statement
Basic
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
stmt_event

Element Name
Element Type

stmt_text
information

Related Information v “Resetting Monitor Data” on page 25

v “Statement Operation” on page 217

v “Cursor Name” on page 220

v “Input Database Alias” on page 248

v “Application Creator” on page 220

v “Package Name” on page 218

v “Section Number” on page 219

Description: This is the text of the dynamic SQL statement.

Usage: For application snapshots, this statement text helps you identify what
the application was executing when the snapshot was taken, or most recently
processed if no statement was being processed right at the time the snapshot
was taken.

Chapter 3. Database System Monitor Data Elements 223

For dynamic SQL statements, this element identifies the SQL text associated
with a package.

For event monitors, it is returned in the Statement event record for all
dynamic statements.

See Section Number for information on how to query the system catalog
tables to obtain static SQL statement text that is not provided due to
performance considerations.

Statement Sorts

Snapshot Level
Application

Dynamic SQL

Logical Data Grouping
appl
stmt
dynsql

Monitor Switch
Statement
Statement
Statement

Resettable No

Element Name
Element Type

stmt_sorts
counter

Related Information v “Resetting Monitor Data” on page 25

v “Total Sorts” on page 98

Description: The total number of times that a set of data was sorted in order
to process the statement operation.

Usage: You can use this element to help identify the need for an index, since
indexes can reduce the need for sorting of data. Using the related elements in
the above table you can identify the SQL statement for which this element is
providing sort information, and then analyze this statement to determine
index candidates by looking at columns that are being sorted (for example,
columns used in ORDER BY and GROUP BY clauses and join columns). See
explain in the Administration Guide for information on checking whether your
indexes are used to optimize sort performance.

This count includes sorts of temporary tables that were generated internally
by the database manager to execute the statement. The number of sorts is
associated with the first FETCH operation of the SQL statement. This
information is returned to you when the operation for the statement is the
first FETCH. You should note that for blocked cursors several fetches may be
performed when the cursor is opened. In these cases it can be difficult to use
the snapshot monitor to obtain the number of sorts, since a snapshot would
need to be taken while DB2 was internally issuing the first FETCH.

A more reliable way to determine the number of sorts performed when using
a blocked cursor would be with an event monitor declared for statements. The

224 System Monitor Guide and Reference

total sorts counter, in the statement event for the CLOSE cursor, contains the
total number of sorts that were performed while executing the statement for
which the cursor was defined.

Number of Successful Fetches

Snapshot Level
Application
DCS Statement

Logical Data Grouping
stmt
dcs_stmt

Monitor Switch
Statement
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
stmt_event

Element Name
Element Type

fetch_count
counter

Related Information v “Statement Type” on page 216

v “Statement Operation” on page 217

v “Cursor Name” on page 220

v “Statement Operation Start Timestamp” on page
221

v “Statement Operation Stop Timestamp” on page
221

Description: The number of successful fetches performed on a specific
cursor.

Usage: You can use this element to gain insight into the current level of
activity within the database manager.

For performance reasons, a statement event monitor does not generated a
statement event record for every FETCH statement. A record event is only
generated when a FETCH returns a non-zero SQLCODE.

SQL Communications Area (SQLCA)

Event Type
Statement

Logical Data Grouping
stmt_event

Element Name
Element Type

sqlca
information

Related Information v “Statement Operation” on page 217

Description: The SQLCA data structure that was returned to the application
at statement completion.

Chapter 3. Database System Monitor Data Elements 225

Usage: The SQLCA data structure can be used to determined if the statement
completed successfully. See the SQL Reference or Administrative API Reference
for information about the content of the SQLCA.

Query Number of Rows Estimate

Snapshot Level
Application
DCS Statement

Logical Data Grouping
stmt
dcs_stmt

Monitor Switch
Statement
Statement

Resettable No

Element Name
Element Type

query_card_estimate
information

Related Information v “Resetting Monitor Data” on page 25

v “Query Cost Estimate” on page 227

Description: An estimate of the number of rows that will be returned by a
query.

Usage: This estimate by the SQL compiler can be compared with the run
time actuals.

This data element also returns information for the following SQL statements
when you are monitoring DB2 Connect.

v INSERT, UPDATE, and DELETE
Indicates the number of rows affected.

v PREPARE
Estimate of the number of rows that will be returned. Only collected if the
DRDA server is DB2 Universal Database, DB2 for VM and VSE, or DB2 for
OS/400.

v FETCH
Set to the number of rows fetched. Only collected if the DRDA server is
DB2 for OS/400.

If information is not collected for a DRDA server, then the data element is set
to zero.

226 System Monitor Guide and Reference

Query Cost Estimate

Snapshot Level
Application
DCS Statement

Logical Data Grouping
stmt
dcs_stmt

Monitor Switch
Statement
Statement

Resettable No

Element Name
Element Type

query_cost_estimate
information

Related Information v None

Description: Estimated cost, in timerons, for a query, as determined by the
SQL compiler.

Usage: This allows correlation of actual run-time with the compile-time
estimates.

This data element also returns information for the following SQL statements
when you are monitoring DB2 Connect.
v PREPARE

Represents the relative cost of the prepared SQL statement.
v FETCH

Contains the length of the row retrieved. Only collected if the DRDA server
is DB2 for OS/400.

If information is not collected for a DRDA server, then the data element is set
to zero.

Note: If the DRDA server is DB2 for OS/390, this estimate could be higher
than 2**32 - 1 (the maximum integer number that can be expressed
through an unsigned long variable). In that case, the value returned by
the System Monitor for this data element will be 2**32 - 1.

Subsection Details

When a statement is executed against a partitioned database, it is divided into
subsections that may be executed on different nodes. An application may have
several subsections simultaneously executing on a node. See “Monitoring
Subsections” on page 30 and the Administration Guide for more information on
subsections.

For problem determination, you may have to locate the problem subsection.
For example, a subsection may be waiting on a tablequeue, because one of the
writers to this tablequeue is in lock wait on another node. To get the overall
picture for an application, you may have to issue an application snapshot on
each node where the application is running.

Chapter 3. Database System Monitor Data Elements 227

The following database system monitor elements provide information about
Subsections:

v “Subsection Number”

v “Subsection Node Number” on page 229

v “Subsection Status” on page 229

v “Execution Elapsed Time” on page 230

v “Number of Agents Working on a Subsection” on page 230

v “Waiting for Any Node to Send on a Tablequeue” on page 230

v “Waited for Node on a Tablequeue” on page 231

v “Total Number of Tablequeue Buffers Overflowed” on page 231

v “Current Number of Tablequeue Buffers Overflowed” on page 232

v “Number of Rows Read from Tablequeues” on page 233

v “Number of Rows Written to Tablequeues” on page 233

Subsection Number

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
subsection_event

Element Name
Element Type

ss_number
information

Related Information v None

Description: Identifies the subsection associated with the returned
information.

Usage: This number relates to the subsection number in the access plan that
can be obtained with db2expln (see Administration Guide).

228 System Monitor Guide and Reference

Subsection Node Number

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
subsection_event

Element Name
Element Type

ss_node_number
information

Related Information v None

Description: Node where the subsection was executed.

Usage: Use to correlate each subsection with the database partition where it
was executed.

Subsection Status

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Element Name
Element Type

ss_status
information

Related Information v “Waited for Node on a Tablequeue” on page 231

v “Waiting for Any Node to Send on a Tablequeue”
on page 230

Description: The current status of an executing subsection.

Usage: The current status values can be:

v executing
v waiting for a lock
v waiting to receive data on a tablequeue
v waiting to send data on a tablequeue

Chapter 3. Database System Monitor Data Elements 229

Execution Elapsed Time

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
subsection_event

Element Name
Element Type

ss_exec_time
counter

Related Information v None

Description: The time in seconds that it took a subsection to execute.

Usage: Allows you to track the progress of a subsection.

Number of Agents Working on a Subsection

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
subsection_event

Element Name
Element Type

num_subagents
gauge

Related Information v None

Description: Total number of subagents currently working on a subsection.

Usage: Indicates the current degree of parallelism. Helps you track how
execution is progressing.

Waiting for Any Node to Send on a Tablequeue

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Element Name
Element Type

tq_wait_for_any
information

Related Information v “Subsection Status” on page 229

v “Waited for Node on a Tablequeue” on page 231

Description: This flag is used to indicate that the subsection is blocked
because it is waiting to receive rows from any node.

230 System Monitor Guide and Reference

Usage: If Subsection Status indicates waiting to receive data on a tablequeue and
this flag is TRUE, then the subsection is waiting to receive rows from any
node. This generally indicates that the SQL statement has not processed to the
point it can pass data to the waiting agent. For example, the writing agent
may be performing a sort and will not write rows until the sort has
completed. From the db2expln output, determine the subsection number
associated with the tablequeue that the agent is waiting to receive rows from.
You can then examine the status of that subsection by taking a snapshot on
each node where it is executing.

Waited for Node on a Tablequeue

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Element Name
Element Type

tq_node_waited_for
information

Related Information v “Subsection Status” on page 229

v “Waiting for Any Node to Send on a Tablequeue”
on page 230

Description: If the subsection status Subsection Status is waiting to receive or
waiting to send and Waiting for Any Node to Send on a Tablequeue is FALSE,
then this is the number of the node that this agent is waiting for.

Usage: This can be used for troubleshooting. You may want to take an
application snapshot on the node that the subsection is waiting for. For
example, the application could be in a lock wait on that node.

Total Number of Tablequeue Buffers Overflowed

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
subsection_event

Element Name
Element Type

tq_tot_send_spills
counter

Related Information v “Subsection Status” on page 229

v “Current Number of Tablequeue Buffers
Overflowed” on page 232

Description: Total number of tablequeue buffers overflowed to a temporary
table.

Chapter 3. Database System Monitor Data Elements 231

Usage: Indicates the total number of tablequeue buffers that have been
written to a temporary table. See “Current Number of Tablequeue Buffers
Overflowed” for more information.

Current Number of Tablequeue Buffers Overflowed

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Element Name
Element Type

tq_cur_send_spills
gauge

Related Information v “Subsection Status” on page 229

v “Total Number of Tablequeue Buffers
Overflowed” on page 231

Description: Current number of tablequeue buffers residing in a temporary
table.

Usage: An agent writing to a tablequeue may be sending rows to several
readers. The writing agent will overflow buffers to a temporary table when
the agent that it is currently sending rows to is not accepting rows and
another agent requires rows in order to proceed. Overflowing to temporary
table allows both the writer and the other readers to continue processing.

Rows that have been overflowed will be sent to the reading agent when it is
ready to accept more rows.

If this number is high, and queries fail with sqlcode -968, and there are
messages in db2diad.log indicating that your ran out of temporary space in the
TEMP table space, then tablequeue overflows may be the cause. This could
indicate a problem on another node (such as locking). You would investigate
by taking snapshots on all the partitions for this query.

There are also cases, perhaps because of the way data is partitioned, where
many buffers need to be overflowed for the query. In these cases you will
need to add more disk to the temporary table space.

232 System Monitor Guide and Reference

Number of Rows Read from Tablequeues

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
subsection_event

Element Name
Element Type

tq_rows_read
counter

Related Information v None

Description: Total number of rows read from tablequeues.

Usage: If monitoring does not indicate that this number is increasing, then
processing progress is not taking place.

If there is significant differences in this number between nodes, then some
nodes may be over utilized while others are being under utilized.

If this number is large, then there is a lot of data being shipped between
nodes, suggest that optimization might improve the access plan.

Number of Rows Written to Tablequeues

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
subsection_event

Element Name
Element Type

tq_rows_written
counter

Related Information v None

Description: Total number of rows written to tablequeues.

Usage: If monitoring does not indicate that this number is increasing, then
processing progress is not taking place.

If there is significant differences in this number between nodes, then some
nodes may be over utilized while others are being under utilized.

If this number is large, then there is a lot of data being shipped between
nodes, suggest that optimization might improve the access plan.

Chapter 3. Database System Monitor Data Elements 233

Maximum Number of Tablequeue Buffers Overflows

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Event Type
Statement

Logical Data Grouping
subsection_event

Element Name
Element Type

tq_max_send_spills
water mark

Related Information v “Total Number of Tablequeue Buffers
Overflowed” on page 231

v “Current Number of Tablequeue Buffers
Overflowed” on page 232

Description: Maximum number of tablequeue buffers overflowed to a
temporary table.

Usage: Indicates the maximum number of tablequeue buffers that have been
written to a temporary table.

Waited on Node on a Tablequeue

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Statement

Resettable No

Element Name
Element Type

tq_id_waiting_on
information

Related Information v “Subsection Status” on page 229

v “Waited for Node on a Tablequeue” on page 231

Description: The agent that is waiting.

Usage: This can be used for troubleshooting.

Dynamic SQL

The DB2 statement cache stores packages and statistics for frequently used
SQL statements. By examining the contents of this cache, you can identify the
dynamic SQL statements that are most frequently executed, and the queries
that consume the most resource. Using this information, you can examine the
most commonly executed and most expensive SQL operations, to determine if
SQL tuning could result in better database performance.
v “Statement Executions” on page 235

234 System Monitor Guide and Reference

v “Statement Compilations”

v “Statement Worst Preparation Time” on page 236

v “Statement Best Preparation Time” on page 236

v “Elapsed Statement Execution Time” on page 236

Statement Executions

Snapshot Level
Dynamic SQL

Logical Data Grouping
dynsql

Monitor Switch
Basic

Resettable Yes

Element Name
Element Type

num_executions
counter

Related Information v “Statement Compilations” on page 235

Description: The number of times that an SQL statement has been executed.

Usage: You can use this element to identify the most frequently executed
SQL statements in your system.

Statement Compilations

Snapshot Level
Dynamic SQL

Logical Data Grouping
dynsql

Monitor Switch
Basic

Resettable Yes

Element Name
Element Type

num_compilations
counter

Related Information v “Statement Executions” on page 235

Description: The number of different compilations for a specific SQL
statement.

Usage: Some SQL statements issued on different schemas, such as ″select t1
from foo″ will appear to be the same statement in the DB2 cache even though
they refer to different access plans. Use this value in conjunction with
Statement Executions to determine whether a bad compilation environment
may be skewing the results of dynamic SQL snapshot statistics.

Chapter 3. Database System Monitor Data Elements 235

Statement Worst Preparation Time

Snapshot Level
Dynamic SQL

Logical Data Grouping
dynsql

Monitor Switch
Basic

Resettable No

Element Name
Element Type

prep_time_worst
water mark

Related Information v “Statement Best Preparation Time” on page 236

Description: The longest amount of time in microseconds that was required
to prepare a specific SQL statement.

Usage: Use this value in conjunction with Statement Best Preparation Time to
identify SQL statements that are expensive to compile.

Statement Best Preparation Time

Snapshot Level
Dynamic SQL

Logical Data Grouping
dynsql

Monitor Switch
Basic

Resettable No

Element Name
Element Type

prep_time_best
water mark

Related Information v “Statement Worst Preparation Time” on page 236

Description: The shortest amount of time that was required to prepare a
specific SQL statement.

Usage: Use this value in conjunction with Statement Worst Preparation Time
to identify SQL statements that are expensive to compile.

Elapsed Statement Execution Time

Snapshot Level
Dynamic SQL

Logical Data Grouping
dynsql

Monitor Switch
Statement

Resettable Yes

Element Name
Element Type

total_exec_time
time

Related Information v “Statement Executions” on page 235

v “Statement Compilations” on page 235

v “Total System CPU for a Statement” on page 246

v “Total User CPU for a Statement” on page 247

236 System Monitor Guide and Reference

Description: The total time in seconds and microseconds that was spent
executing a particular statement in the SQL cache.

Usage: Use this element with “Statement Executions” on page 235 determine
the average elapsed time for the statement and identify the SQL statements
that would most benefit from a tuning of their SQL. The “Statement
Compilations” on page 235 must be considered when evaluating the contents
of this data element.

Intra-query Parallelism

The following database system monitor elements provide information about
queries for which the degree of parallelism is greater than 1:
v “Number of Agents Working on a Statement”

v “Number of Agents Created” on page 238

v “Degree of Parallelism” on page 238

Number of Agents Working on a Statement

Snapshot Level
Statement

Logical Data Grouping
stmt
subsection

Monitor Switch
Statement
Statement

Resettable No

Element Name
Element Type

num_agents
gauge

Related Information v “Number of Agents Created” on page 238

v “Degree of Parallelism” on page 238

Description: Number of concurrent agents currently executing a statement or
subsection.

Usage: An indicator how well the query is parallelized. This is useful for
tracking the progress of query execution, by taking successive snapshots.

Chapter 3. Database System Monitor Data Elements 237

Number of Agents Created

Snapshot Level
Database
Application

Logical Data Grouping
dbase
stmt

Monitor Switch
Statement
Statement

Resettable No

Element Name
Element Type

agents_top
water mark

Related Information v “Number of Agents Working on a Statement” on
page 237

v “Degree of Parallelism” on page 238

Description: At the application level, this is the maximum number of agents
that were used when executing the statement. At the database level, it is the
maximum number of agents for all applications.

Usage: An indicator how well intra-query parallelism was realized.

Degree of Parallelism

Snapshot Level
Statement

Logical Data Grouping
stmt

Monitor Switch
Statement

Resettable No

Element Name
Element Type

degree_parallelism
information

Related Information v “Number of Agents Working on a Statement” on
page 237

v “Number of Agents Created” on page 238

Description: The degree of parallelism requested when the query was
bound.

Usage: Use with “Number of Agents Created”, to determine if the query
achieved maximum level of parallelism.

CPU Usage

The CPU usage for an application is broken down into user CPU, which is the
CPU consumed while executing application code, and system CPU, which is
the CPU consumed executing system calls.

CPU consumption is available at the application, transaction, statement, and
subsection levels.

238 System Monitor Guide and Reference

v “User CPU Time used by Agent”

v “System CPU Time used by Agent” on page 240

v “User CPU Time used by Statement” on page 241

v “System CPU Time used by Statement” on page 242

v “User CPU Time” on page 243

v “System CPU Time” on page 244

v “User CPU Time used by Subsection” on page 245

v “System CPU Time used by Subsection” on page 246

v “Total System CPU for a Statement” on page 246

v “Total User CPU for a Statement” on page 247

User CPU Time used by Agent

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable Yes

Element Name
Element Type

agent_usr_cpu_time
time

Related Elements v “System CPU Time used by Agent” on page 240

v “User CPU Time used by Statement” on page 241

v “System CPU Time used by Statement” on page
242

v “User CPU Time used by Subsection” on page 245

v “System CPU Time used by Subsection” on page
246

v “User CPU Time” on page 243

v “System CPU Time” on page 244

v “Total System CPU for a Statement” on page 246

v “Total User CPU for a Statement” on page 247

Description: The total CPU time (in seconds and microseconds) used by
database manager agent process.

Usage: This element along with the other CPU-time related elements can
help you identify applications or queries that consume large amounts of CPU.

Chapter 3. Database System Monitor Data Elements 239

This counter includes time spent on both SQL and non-SQL statements, as
well as any fenced user defined functions (UDF) or stored procedures
executed by the application.

System CPU represents the time spent in system calls. User CPU represents
time spent executing database manager code.

Note: If this information is not available for your operating system, this
element will be returned as 0. For example, they are not available on
OS/2.

System CPU Time used by Agent

Snapshot Level
Application

Logical Data Grouping
appl

Monitor Switch
Basic

Resettable Yes

Element Name
Element Type

agent_sys_cpu_time
time

Related Information v “User CPU Time used by Agent” on page 239

v “User CPU Time used by Statement” on page 241

v “System CPU Time used by Statement” on page
242

v “User CPU Time used by Subsection” on page 245

v “System CPU Time used by Subsection” on page
246

v “User CPU Time” on page 243

v “System CPU Time” on page 244

v “Total System CPU for a Statement” on page 246

v “Total User CPU for a Statement” on page 247

Description: The total system CPU time (in seconds and microseconds) used
by the database manager agent process.

Usage: This element along with the other related CPU-time elements can
help you understand the level of activity within an application, and may help
you identify applications that could benefit from additional tuning.

It includes CPU time for both SQL and non-SQL statements, as well as CPU
time for any fenced User Defined Functions (UDFs)

System CPU represents the time spent in system calls. User CPU represents
time spent executing database manager code.

240 System Monitor Guide and Reference

Note: If this information is not available for your operating system, this
element will be set to 0. For example, it is not available for OS/2.

User CPU Time used by Statement

Snapshot Level
Application

Logical Data Grouping
appl
stmt

Monitor Switch
Statement
Statement

Resettable No

Element Name
Element Type

stmt_usr_cpu_time
time

Related Information v “System CPU Time used by Agent” on page 240

v “User CPU Time used by Agent” on page 239

v “System CPU Time used by Statement” on page
242

v “User CPU Time used by Subsection” on page 245

v “System CPU Time used by Subsection” on page
246

v “User CPU Time” on page 243

v “System CPU Time” on page 244

v “Total System CPU for a Statement” on page 246

v “Total User CPU for a Statement” on page 247

Description: The total user CPU time (in seconds and microseconds) used by
the currently executing statement.

Usage: This element along with the other related CPU-time elements can
help you understand the level of activity within an application, and can help
you identify applications that could benefit from additional tuning.

This counter includes time spent on both SQL and non-SQL statements, as
well as any fenced user defined functions (UDF) or stored procedures
executed by the application.

System CPU represents the time spent in system calls. User CPU represents
time spent executing database manager code.

Note: If this information is not available for your operating system, this
element will be set to 0. For example, it is not available for OS/2.

Chapter 3. Database System Monitor Data Elements 241

System CPU Time used by Statement

Snapshot Level
Application

Logical Data Grouping
appl
stmt

Monitor Switch
Statement
Statement

Resettable No

Element Name
Element Type

stmt_sys_cpu_time
time

Related Information v “System CPU Time used by Agent” on page 240

v “User CPU Time used by Statement” on page 241

v “User CPU Time used by Agent” on page 239

v “User CPU Time used by Subsection” on page 245

v “System CPU Time used by Subsection” on page
246

v “User CPU Time” on page 243

v “System CPU Time” on page 244

v “Total System CPU for a Statement” on page 246

v “Total User CPU for a Statement” on page 247

Description: The total system CPU time (in seconds and microseconds) used
by the currently executing statement.

Usage: This element along with the other related CPU-time elements can
help you understand the level of activity within an application, and can help
you identify applications that could benefit from additional tuning.

This counter includes time spent on both SQL and non-SQL statements, as
well as any fenced user defined functions (UDF) or stored procedures
executed by the application.

System CPU represents the time spent in system calls. User CPU represents
time spent executing database manager code.

Note: If this information is not available for your operating system, this
element will be set to 0. For example, it is not available for OS/2.

242 System Monitor Guide and Reference

User CPU Time

Event Type
Connection
Transaction
Statement

Logical Data Grouping
conn_event
xaction_event
stmt_event

Element Name
Element Type

user_cpu_time
time

Related Information v “System CPU Time used by Agent” on page 240

v “User CPU Time used by Statement” on page 241

v “System CPU Time used by Statement” on page
242

v “User CPU Time used by Subsection” on page 245

v “System CPU Time used by Subsection” on page
246

v “User CPU Time used by Agent” on page 239

v “System CPU Time” on page 244

v “Total System CPU for a Statement” on page 246

v “Total User CPU for a Statement” on page 247

Description: The total user CPU time (in seconds and microseconds) used by
the database manager agent process, the unit of work, or the statement.

Usage: This element along with the other related CPU-time elements can
help you understand the level of activity within an application, and can help
you identify applications that could benefit from additional tuning.

Note: If this information is not available for your operating system, this
element will be set to 0. For example, it is not available for OS/2.

Chapter 3. Database System Monitor Data Elements 243

System CPU Time

Event Type
Connection
Transaction
Statement

Logical Data Grouping
conn_event
xaction_event
stmt_event

Element Name
Element Type

system_cpu_time
time

Related Information v “System CPU Time used by Agent” on page 240

v “User CPU Time used by Statement” on page 241

v “System CPU Time used by Statement” on page
242

v “User CPU Time used by Subsection” on page 245

v “System CPU Time used by Subsection” on page
246

v “User CPU Time” on page 243

v “User CPU Time used by Agent” on page 239

v “Total System CPU for a Statement” on page 246

v “Total User CPU for a Statement” on page 247

Description: The total system CPU time (in seconds and microseconds) used
by the database manager agent process, the unit of work, or the statement.

Usage: This element along with the other related CPU-time elements can
help you understand the level of activity within an application, and can help
you identify applications help could benefit from additional tuning.

Note: If this information is not available for your operating system, this
element will be set to 0. For example, it is not available for OS/2.

244 System Monitor Guide and Reference

User CPU Time used by Subsection

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Basic

Resettable No

Event Type
Statement

Logical Data Grouping
subsection_event

Element Name
Element Type

ss_usr_cpu_time
time

Related Information v “System CPU Time used by Agent” on page 240

v “User CPU Time used by Statement” on page 241

v “System CPU Time used by Statement” on page
242

v “User CPU Time used by Agent” on page 239

v “System CPU Time used by Subsection” on page
246

v “User CPU Time” on page 243

v “System CPU Time” on page 244

v “Total System CPU for a Statement” on page 246

v “Total User CPU for a Statement” on page 247

Description: The total user CPU time (in seconds and microseconds) used by
the currently executing statement subsection.

Usage: This element along with the other related CPU-time elements can
help you understand the level of activity within an application, and can help
you identify applications that could benefit from additional tuning.

System CPU represents the time spent in system calls. User CPU represents
time spent executing database manager code.

Chapter 3. Database System Monitor Data Elements 245

System CPU Time used by Subsection

Snapshot Level
Application

Logical Data Grouping
subsection

Monitor Switch
Basic

Resettable No

Event Type
Statement

Logical Data Grouping
subsection_event

Element Name
Element Type

ss_sys_cpu_time
time

Related Information v “System CPU Time used by Agent” on page 240

v “User CPU Time used by Statement” on page 241

v “System CPU Time used by Statement” on page
242

v “User CPU Time used by Subsection” on page 245

v “System CPU Time used by Subsection” on page
246

v “User CPU Time” on page 243

v “User CPU Time used by Agent” on page 239

v “Total System CPU for a Statement” on page 246

v “Total User CPU for a Statement” on page 247

Description: The total system CPU time (in seconds and microseconds) used
by the currently executing statement subsection.

Usage: This element along with the other related CPU-time elements can
help you understand the level of activity within an application, and can help
you identify applications that could benefit from additional tuning.

System CPU represents the time spent in system calls. User CPU represents
time spent executing database manager code.

Total System CPU for a Statement

Snapshot Level
Dynamic SQL

Logical Data Grouping
dynsql

Monitor Switch
Statement

Resettable Yes

Element Name
Element Type

tot_s_cpu_time
time

Related Information v “Total User CPU for a Statement” on page 247

v “Elapsed Statement Execution Time” on page 236

246 System Monitor Guide and Reference

Description: The total system CPU time for an SQL statement.

Usage: Use this element with Elapsed Statement Execution Time and Total
User CPU for a Statement to evaluate which statements are the most
expensive.

Total User CPU for a Statement

Snapshot Level
Dynamic SQL

Logical Data Grouping
dynsql

Monitor Switch
Statement

Resettable Yes

Element Name
Element Type

tot_u_cpu_time
time

Related Information v “Total System CPU for a Statement” on page 246

v “Elapsed Statement Execution Time” on page 236

Description: The total user CPU time for an SQL statement.

Usage: Use this element with Elapsed Statement Execution Time and to
evaluate the longest running statements.

Snapshot Monitoring Elements

The following elements provide information about monitoring applications.
They are returned as output for every snapshot:
v “Last Reset Timestamp” on page 248

v “Input Database Alias” on page 248

v “Snapshot Time” on page 249

v “Number of Nodes in Partition” on page 249

Chapter 3. Database System Monitor Data Elements 247

Last Reset Timestamp

Snapshot Level
Database Manager
Database
Application
Table Space
Table
DCS Database
DCS Application

Logical Data Grouping
db2
dbase
appl
tablespace_header
table_header
dcs_dbase
dcs_appl

Monitor Switch
Basic
Basic
Basic
Buffer Pool
Table
Basic
Basic

Resettable No

Element Name
Element Type

last_reset
timestamp

Related Information v “Resetting Monitor Data” on page 25

v “Input Database Alias” on page 248

Description: Indicates the date and time that the monitor counters were reset
for the application issuing the GET SNAPSHOT.

Usage: You can use this element to help you determine the scope of
information returned by the database system monitor.

If the counters have never been reset, this element will be zero.

The database manager counters will only be reset if you reset all active
databases.

Input Database Alias

Snapshot Level
Database
Application
Table Space
Buffer Pool
Table
Lock

Logical Data Grouping
dbase
appl_id_info
tablespace_header
bufferpool
table_header
dbase_lock

Monitor Switch
Basic
Basic
Buffer Pool
Buffer Pool
Table
Basic

Resettable No

Element Name
Element Type

input_db_alias
information

Related Information v “Resetting Monitor Data” on page 25

v “Last Reset Timestamp” on page 248

v “Database Alias Used by Application” on page 61

248 System Monitor Guide and Reference

Description: The alias of the database provided when calling the snapshot
function.

Usage: This element can be used to identify the specific database to which
the monitor data applies. It contains blanks unless you requested monitor
information related to a specific database.

The value of this field may be different than the value of the Database Alias
Used by Application monitor element since a database can have many different
aliases. Different applications and users can use different aliases to connect to
the same database.

Snapshot Time

Snapshot Level
Database Manager

Logical Data Grouping
collected

Monitor Switch
Basic

Resettable No

Element Name
Element Type

time_stamp
timestamp

Related Information v None

Description: The date and time when the database system monitor
information was collected.

Usage: You can use this element to help relate data chronologically if you are
saving the results in a file or database for ongoing analysis.

Number of Nodes in Partition

Snapshot Level
Database Manager

Logical Data Grouping
db2

Monitor Switch
Basic

Resettable No

Event Type
Database Manager

Logical Data Grouping
log_header_event

Element Name
Element Type

num_nodes_in_db2_instance
information

Related Information v None

Description: The number of nodes on the instance where the snapshot was
taken.

Usage: Use this element to determine the number of nodes for an instance.
For non-partitioned system databases, this value will be 1.

Chapter 3. Database System Monitor Data Elements 249

Event Monitoring Elements

The following elements provide information about monitoring applications.
They are returned as output for events:
v “Number of Event Monitor Overflows”

v “Time of First Event Overflow”

v “Time of Last Event Overflow” on page 251

v “Byte Order of Event Data” on page 251

v “Version of Monitor Data” on page 252

v “Event Monitor Name” on page 252

v “Partial Record” on page 253

v “Event Time” on page 253

Number of Event Monitor Overflows

Event Type
Overflow Record

Logical Data Grouping
overflow_event

Element Name
Element Type

count
counter

Related Information v None

Description: The number of consecutive overflows that have occurred.

Usage: You may use this element to get an indication of how much monitor
data has been lost.

The event monitor sends one overflow record for a set of consecutive
overflows.

Time of First Event Overflow

Event Type
Overflow Record

Logical Data Grouping
overflow_event

Element Name
Element Type

first_overflow_time
timestamp

Related Information v “Number of Event Monitor Overflows” on page
250

Description: The date and time of the first overflow recorded by this
overflow record.

250 System Monitor Guide and Reference

Usage: Use this element with Time of Last Event Overflow to calculate the
elapsed time for which the overflow record was generated.

Time of Last Event Overflow

Event Type
Overflow Record

Logical Data Grouping
overflow_event

Element Name
Element Type

last_overflow_time
timestamp

Related Information v “Number of Event Monitor Overflows” on page
250

Description: The date and time of the last overflow recorded this overflow
record.

Usage: Use this element with Time of First Event Overflow to calculate the
elapsed time for which the overflow record was generated.

Byte Order of Event Data

Event Type
Event Log Header

Logical Data Grouping
log_header_event

Element Name
Element Type

byte_order
information

Related Information v None

Description: The byte ordering of numeric data, specifically whether the
event data stream was generated on a “big endian” server (for example, a
RISC System/6000) or “little endian” server (for example, a PS/2).

Usage: This information is needed to allow you to interpret numeric data in
the data stream, since the byte order of integers on a “big endian” server is
the reverse of the byte order on a “little endian” server.

If the application that processes the data recognizes that it is running on one
type of computer hardware (for example, a big endian computer), while the
event data was produced on the other type of computer hardware (for
example, a little endian computer), then the monitoring application will have
to reverse the bytes of numeric data fields before interpreting them.
Otherwise, byte reordering is not required.

This element can be set to one of the following API constants:
v SQLM_BIG_ENDIAN
v SQLM_LITTLE_ENDIAN

Chapter 3. Database System Monitor Data Elements 251

Version of Monitor Data

Event Type
Event Log Header

Logical Data Grouping
log_header_event

Element Name
Element Type

version
information

Related Information v None

Description: The version of the database manager that produced the event
monitor data stream.

Usage: The data structures used by the event monitor may change between
releases of the database manager. As a result, your monitor applications
should check the version of the data stream to determine if they can process
the data they will be receiving.

For this release, this element is set to the API constant
SQLM_DBMON_VERSION6.

Event Monitor Name

Event Type
Event Log Header

Logical Data Grouping
log_header_event

Element Name
Element Type

event_monitor_name
information

Related Information v None

Description: The name of the event monitor that created the event data
stream.

Usage: This element allows you to correlate the data that you are analyzing
to a specific event monitor in the system catalog tables. This is the same name
that can be found in the NAME column of the SYSCAT.EVENTMONITORS
catalog table, which is the name specified on the CREATE EVENT MONITOR
and SET EVENT MONITOR statements.

252 System Monitor Guide and Reference

Partial Record

Event Type
Database
Table
Table Space

Connection
Statement

Transaction

Logical Data Grouping
db_event
table_event
tablespace_event
bufferpool_event
conn_event
stmt_event
subsection_event
xaction_event

Element Name
Element Type

partial_record
information

Related Information v None

Description: Indicates that an event monitor record is only a partial record.

Usage: Most event monitors do not output their results until database
deactivation. You can use the FLUSH EVENT MONITORS statement to force
monitor values to the event monitor output writer (see “FLUSH EVENT
MONITOR” on page 323). This allows you to force event monitor records to
the writer without needing to stop and restart the event monitor. This data
element indicates whether an event monitor record was the result of flush
operation and so is a partial record.

Flushing an event monitor does not cause its values to be reset. This means
that a complete event monitor record is still generated when the event
monitor is triggered.

Event Time

Event Type
Table Space
Table

Logical Data Grouping
tablespace_event
table_event

Element Name
Element Type

event_time
information

Related Information v None

Description: The date and time an event occurred.

Usage: You can use this element to help relate events chronologically.

Chapter 3. Database System Monitor Data Elements 253

DB2 Connect

The following elements provide DB2 Connection information at the database,
application, transaction, and statement levels:
v “DCS Database Name” on page 255

v “Host Database Name” on page 255

v “Database Alias at the Gateway” on page 256

v “DB2 Connect Gateway First Connect Initiated” on page 256

v “Maximum Number of Concurrent Connections” on page 256

v “Total Number of Attempted Connections for DB2 Connect” on page 257

v “Current Number of Connections for DB2 Connect” on page 257

v “Number of Connections Waiting for the Host to Reply” on page 258

v “Number of Connections Waiting for the Client to Send Request” on page
258

v “Elapsed Time Spent on DB2 Connect Gateway Processing” on page 259

v “Number of SQL Statements Attempted” on page 259

v “Number of Open Cursors” on page 259

v “DCS Application Status” on page 260

v “Host Coded Character Set ID” on page 261

v “Outbound Communication Protocol” on page 261

v “Outbound Communication Address” on page 262

v “Inbound Communication Address” on page 262

v “Inbound Number of Bytes Received” on page 263

v “Outbound Number of Bytes Sent” on page 263

v “Outbound Number of Bytes Received” on page 264

v “Inbound Number of Bytes Sent” on page 264

v “Transaction ID” on page 265

v “Host Response Time” on page 265

v “Most Recent Response Time for Connect” on page 266

v “Most Recent Connection Elapsed Time” on page 266

v “Communication Errors” on page 266

v “Communication Error Time” on page 267

254 System Monitor Guide and Reference

DCS Database Name

Snapshot Level
DCS Database
DCS Application

Logical Data Grouping
dcs_dbase
dcs_appl_info

Monitor Switch
Basic
Basic

Resettable No

Element Name
Element Type

dcs_db_name
information

Related Information v “Host Database Name” on page 255

v “Database Alias at the Gateway” on page 256

Description: The name of the DCS database as catalogued in the DCS
directory.

Usage: Use this element for problem determination on DCS applications.

Host Database Name

Snapshot Level
DCS Database
DCS Application

Logical Data Grouping
dcs_dbase
dcs_appl_info

Monitor Switch
Basic
Basic

Resettable No

Element Name
Element Type

host_db_name
information

Related Information v “DCS Database Name” on page 255

v “Database Alias at the Gateway” on page 256

Description: The real name of the host database for which information is
being collected or to which the application is connected. This is the name that
was given to the database when it was created.

Usage: Use this element for problem determination on DCS applications.

Chapter 3. Database System Monitor Data Elements 255

Database Alias at the Gateway

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

gw_db_alias
information

Related Information v “DCS Database Name” on page 255

v “Host Database Name” on page 255

Description: The alias used at the DB2 Connect gateway to connect to the
host database.

Usage: Use this element for problem determination on DCS applications.

DB2 Connect Gateway First Connect Initiated

Snapshot Level
DCS Database
DCS Application

Logical Data Grouping
dcs_dbase
dcs_appl

Monitor Switch
Basic
Basic

Resettable No

Element Name
Element Type

gw_con_time
timestamp

Related Information v None

Description: The date and time when the first connection to the host
database was initiated from the DB2 Connect gateway.

Usage: Use this element for problem determination on DCS applications.

Maximum Number of Concurrent Connections

Snapshot Level
DCS Database

Logical Data Grouping
dcs_dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

gw_connections_top
water mark

Related Information v “Total Number of Attempted Connections for DB2
Connect” on page 257

v “Current Number of Connections for DB2
Connect” on page 257

256 System Monitor Guide and Reference

Description: The maximum number of concurrent connections to a host
database that have been handled by the DB2 Connect gateway since the first
database connection.

Usage: This element will help you understand the level of activity at the DB2
Connect gateway and the associated use of system resources.

Total Number of Attempted Connections for DB2 Connect

Snapshot Level
Database Manager
DCS Database

Logical Data Grouping
db2
dcs_dbase

Monitor Switch
Basic
Basic

Resettable Yes

Element Name
Element Type

gw_total_cons
water mark

Related Information v “Maximum Number of Concurrent Connections”
on page 256

v “Current Number of Connections for DB2
Connect” on page 257

Description: The total number of connections attempted from the DB2
Connect gateway since the last db2start command or the last reset.

Usage: This element will help you understand the level of activity at the DB2
Connect gateway and the associated use of system resources.

Current Number of Connections for DB2 Connect

Snapshot Level
Database Manager
DCS Database

Logical Data Grouping
db2
dcs_dbase

Monitor Switch
Basic
Basic

Resettable No

Element Name
Element Type

gw_cur_cons
gauge

Related Information v “Maximum Number of Concurrent Connections”
on page 256

v “Total Number of Attempted Connections for DB2
Connect” on page 257

Description: The current number of connections to host databases being
handled by the DB2 Connect gateway.

Usage: This element will help you understand the level of activity at the DB2
Connect gateway and the associated use of system resources.

Chapter 3. Database System Monitor Data Elements 257

Number of Connections Waiting for the Host to Reply

Snapshot Level
Database Manager
DCS Database

Logical Data Grouping
db2
dcs_dbase

Monitor Switch
Basic
Basic

Resettable No

Element Name
Element Type

gw_cons_wait_host
gauge

Related Information v “Current Number of Connections for DB2
Connect” on page 257

v “Number of Connections Waiting for the Client to
Send Request” on page 258

Description: The current number of connections to host databases being
handled by the DB2 Connect gateway that are waiting for a reply from the
host.

Usage: This value can change frequently. It should be sampled at regular
intervals over an extended period in order to obtain a realistic view of
gateway usage.

Number of Connections Waiting for the Client to Send Request

Snapshot Level
Database Manager
DCS Database

Logical Data Grouping
db2
dcs_dbase

Monitor Switch
Basic
Basic

Resettable No

Element Name
Element Type

gw_cons_wait_client
gauge

Related Information v “Current Number of Connections for DB2
Connect” on page 257

v “Number of Connections Waiting for the Host to
Reply” on page 258

Description: The current number of connections to host databases being
handled by the DB2 Connect gateway that are waiting for the client to send a
request.

Usage: This value can change frequently. It should be sampled at regular
intervals over an extended period in order to obtain a realistic view of
gateway usage.

258 System Monitor Guide and Reference

Elapsed Time Spent on DB2 Connect Gateway Processing

Snapshot Level
DCS Application
DCS Statement

Logical Data Grouping
dcs_appl
dcs_stmt

Monitor Switch
Statement
Statement

Resettable Yes (at application)
No (at other levels)

Element Name
Element Type

gw_exec_time
time

Related Information v None

Description: The time in seconds and microseconds at the DB2 Connect
gateway to process an application request (since the connection was
established), or to process a single statement.

Usage: Use this element to determine what portion of the overall processing
time is due to DB2 Connect gateway processing.

Number of SQL Statements Attempted

Snapshot Level
DCS Database
DCS Application

Logical Data Grouping
dcs_dbase
dcs_appl

Monitor Switch
Basic
Basic

Resettable Yes

Element Name
Element Type

sql_stmts
counter

Related Information v Snapshot Time

Description: The number of SQL statements that have been attempted since
the latter of: application start up, database activation, or last reset.

Usage: Use this element to measure database activity at the database or
application level. To calculate the SQL statement throughput for a given
period, you can divide this element by the elapsed time between two
snapshots.

Number of Open Cursors

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl

Monitor Switch
Basic

Resettable No

Element Name
Element Type

open_cursors
gauge

Related Information v None

Chapter 3. Database System Monitor Data Elements 259

Description: The number of cursors currently open for an application.

Usage: Use this element to assess how much memory is being allocated. The
amount of memory allocated by the DB2 client, DB2 Connect, or the database
agent on the target database is related to the number of cursors that are
currently open. Knowing this information can help with capacity planning.
For example, each open cursor that is doing blocking has a buffer size of
RQRIOBLK. If deferred_prepare is enabled, then two buffers will be allocated.

DCS Application Status

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

dcs_appl_status
information

Related Information v “Host Coded Character Set ID” on page 261

v “Outbound Communication Protocol” on page
261

v “Outbound Communication Address” on page
262

v “Inbound Communication Address” on page 262

Description: The status of a DCS application at the DB2 Connect gateway.

Usage: Use this element for problem determination on DCS applications.
Values are:

v SQLM_DCS_CONNECTPEND_OUTBOUND
The application has initiated a database connection from the DB2 Connect
gateway to the host database, but the request has not completed yet.

v SQLM_DCS_UOWWAIT_OUTBOUND
The DB2 Connect gateway is waiting for the host database to reply to the
application’s request.

v SQLM_DCS_UOWWAIT_INBOUND
The connection from the DB2 Connect gateway to the host database has
been established and the gateway is waiting for SQL requests from the
application. Or the DB2 Connect gateway is waiting on behalf of the unit of
work in the application. This usually means that the application’s code is
being executed.

260 System Monitor Guide and Reference

Host Coded Character Set ID

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

host_ccsid
information

Related Information v “DCS Application Status” on page 260

v “Outbound Communication Protocol” on page
261

v “Outbound Communication Address” on page
262

v “Inbound Communication Address” on page 262

Description: This is the coded character set identifier (CCSID) of the host
database.

Usage: Use this element for problem determination on DCS applications.

Outbound Communication Protocol

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl_info

Monitor Switch
Basic

Resettable No

Element Name
Element Type

outbound_comm_protocol
information

Related Information v “DCS Application Status” on page 260

v “Host Coded Character Set ID” on page 261

v “Outbound Communication Address” on page
262

v “Inbound Communication Address” on page 262

Description: The communication protocol used between the DB2 Connect
gateway and the host.

Usage: Use this element for problem determination on DCS applications.
Valid values are:

v SQLM_PROT_APPC
v SQLM_PROT_TCPIP

Chapter 3. Database System Monitor Data Elements 261

Outbound Communication Address

Snapshot Level
Application
DCS Application

Logical Data Grouping
appl_info
dcs_appl_info

Monitor Switch
Basic
Basic

Resettable No

Element Name
Element Type

outbound_comm_address
information

Related Information v “DCS Application Status” on page 260

v “Host Coded Character Set ID” on page 261

v “Outbound Communication Protocol” on page
261

v “Inbound Communication Address” on page 262

Description: This is the communication address of the target database. For
example, it could be an SNA net ID and LU partner name, or an IP address
and port number for TCP/IP.

Usage: Use this element for problem determination on DCS applications.

Inbound Communication Address

Snapshot Level
Application
DCS Application

Logical Data Grouping
appl_info
dcs_appl_info

Monitor Switch
Basic
Basic

Resettable No

Element Name
Element Type

inbound_comm_address
information

Related Information v “DCS Application Status” on page 260

v “Host Coded Character Set ID” on page 261

v “Outbound Communication Protocol” on page
261

v “Outbound Communication Address” on page
262

Description: This is the communication address of the client. For example, it
could be an SNA net ID and LU partner name, or an IP address and port
number for TCP/IP.

Usage: Use this element for problem determination on DCS applications.

262 System Monitor Guide and Reference

Inbound Number of Bytes Received

Snapshot Level
DCS Application
DCS Statement

Logical Data Grouping
dcs_appl
dcs_stmt

Monitor Switch
Basic
Statement

Resettable Yes (at application)
No (at other levels)

Element Name
Element Type

inbound_bytes_received
counter

Related Information v “Outbound Number of Bytes Sent” on page 263

v “Outbound Number of Bytes Received” on page
264

v “Inbound Number of Bytes Sent” on page 264

Description: The number of bytes received by the DB2 Connect gateway
from the client, excluding communication protocol overhead (for example,
TCP/IP or SNA headers).

Usage: Use this element to measure the throughput from the client to the
DB2 Connect gateway.

Outbound Number of Bytes Sent

Snapshot Level
DCS Database
DCS Application
DCS Statement

Logical Data Grouping
dcs_dbase
dcs_appl
dcs_stmt

Monitor Switch
Basic
Basic
Statement

Resettable No (at statement)
Yes (at other levels)

Element Name
Element Type

outbound_bytes_sent
counter

Related Information v “Inbound Number of Bytes Received” on page
263

v “Outbound Number of Bytes Received” on page
264

v “Inbound Number of Bytes Sent” on page 264

Description: The number of bytes sent by the DB2 Connect gateway to the
host, excluding communication protocol overhead (for example, TCP/IP or
SNA headers).

Usage: Use this element to measure the throughput from the DB2 Connect
gateway to the host database.

Chapter 3. Database System Monitor Data Elements 263

Outbound Number of Bytes Received

Snapshot Level
DCS Database
DCS Application
DCS Statement

Logical Data Grouping
dcs_dbase
dcs_appl
dcs_stmt

Monitor Switch
Basic
Basic
Statement

Resettable No (at statement)
Yes (at other levels)

Element Name
Element Type

outbound_bytes_received
counter

Related Information v “Inbound Number of Bytes Received” on page
263

v “Outbound Number of Bytes Sent” on page 263

v “Inbound Number of Bytes Sent” on page 264

Description: The number of bytes received by the DB2 Connect gateway
from the host, excluding communication protocol overhead (for example,
TCP/IP or SNA headers).

Usage: Use this element to measure the throughput from the host databases
to the DB2 Connect gateway.

Inbound Number of Bytes Sent

Snapshot Level
DCS Application
DCS Statement

Logical Data Grouping
dcs_appl
dcs_stmt

Monitor Switch
Basic
Statement

Resettable Yes (at application)
No (at other levels)

Element Name
Element Type

inbound_bytes_sent
counter

Related Information v “Inbound Number of Bytes Received” on page
263

v “Outbound Number of Bytes Sent” on page 263

v “Outbound Number of Bytes Received” on page
264

Description: The number of bytes sent by the DB2 Connect gateway to the
client, excluding communication protocol overhead (for example, TCP/IP or
SNA headers).

Usage: Use this element to measure the throughput from the DB2 Connect
gateway to the client.

264 System Monitor Guide and Reference

Transaction ID

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl

Monitor Switch
Unit of Work

Resettable No

Element Name
Element Type

xid
information

Related Information v None

Description: A unique transaction identifier (across all databases) generated
by a transaction manager in a two-phase commit transaction.

Usage: This identifier can be used to correlate the transaction generated by
the transaction manager with the transactions executed against multiple
databases. It can be used to help diagnose transaction manager problems by
tying database transactions involving a two-phase commit protocol with the
transactions originated by the transaction manager.

Host Response Time

Snapshot Level
DCS Database
DCS Application
DCS Statement

Logical Data Grouping
dcs_dbase
dcs_appl
dcs_stmt

Monitor Switch
Statement
Statement
Statement

Resettable No (at statement)
Yes (at other levels)

Element Name
Element Type

host_response_time
time

Related Information v “Outbound Number of Bytes Received” on page
264

v “Outbound Number of Bytes Sent” on page 263

Description: At the DCS statement level, this is the elapsed time between the
time that the statement was sent from the DB2 Connect gateway to the host
for processing and the time when the result was received from the host. At
other levels, it is the sum of the elapsed times for all the statements that were
executed for a particular application or database.

Usage: Use this element with Outbound Number of Bytes Sent and
Outbound Number of Bytes Received to calculate the outbound response time
(transfer rate):

(outbound bytes sent + outbound bytes received) / host response time

Chapter 3. Database System Monitor Data Elements 265

Most Recent Response Time for Connect

Snapshot Level
DCS Database

Logical Data Grouping
dcs_dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

con_response_time
time

Related Information v “Package Cache Overflows” on page 153

Description: The elapsed time between the start of connection processing
and actual establishment of a connection, for the most recent DCS application
that connected to this database.

Usage: Use this element as an indicator of the time it currently takes
applications to connect to a particular host database.

Most Recent Connection Elapsed Time

Snapshot Level
DCS Database

Logical Data Grouping
dcs_dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

con_elapsed_time
time

Related Information v “Package Cache Overflows” on page 153

Description: The elapsed time that the DCS application that most recently
disconnected from this host database was connected.

Usage: Use this element as an indicator of the length of time that
applications are maintaining connections to a host database.

Communication Errors

Snapshot Level
DCS Database

Logical Data Grouping
dcs_dbase

Monitor Switch
Basic

Resettable Yes

Element Name
Element Type

gw_comm_errors
counter

Related Information v “Communication Error Time” on page 267

v “Most Recent Statement Elapsed Time” on page
223

266 System Monitor Guide and Reference

Description: The number of times that a communication error (SQL30081)
occurred while a DCS application was attempting to connect to a host
database, or while it was processing an SQL statement.

Usage: By monitoring the number of communication errors over time, you
can assess whether your DB2 Connect gateway has connectivity problems
with a particular host database. You can establish what you consider to be a
normal error threshold, so that any time the number of errors exceeds this
threshold an investigation of the communication errors should be made.

Use this element for problem determination, in conjunction with the
communication error logged in db2diag.log.

Communication Error Time

Snapshot Level
DCS Database

Logical Data Grouping
dcs_dbase

Monitor Switch
Basic

Resettable No

Element Name
Element Type

gw_comm_error_time
timestamp

Related Information v “Communication Errors” on page 266

Description: The date and time when the most recent communication error
(SQL30081) occurred while a DCS application was attempting to connect to a
host database, or while it was processing an SQL statement.

Usage: Use this element for problem determination, in conjunction with
Communication Error and the communication error logged in db2diag.log.

Transaction Processor Monitoring

In a transaction monitor or application server (multi-tier) environment,
application users do not issue SQL requests directly. Instead, they request the
transaction processor monitor (for example, CICS, TUXEDO, or ENCINA
running on a UNIX, OS/2, or Windows NT server) or application server to
execute a business transaction. Each business transaction is an application part
that issues SQL requests to the database server. Because the SQL requests are
issued by an intermediate server, the database server has no information
about the original client that caused the execution of the SQL request.

Developers of transaction processor monitor (TP monitor) transactions or
application server code can use the sqleseti - Set Client Information API to
provide information about the original client to the database server. This
information can be found in the following data elements:
v “TP Monitor Client User ID” on page 268

Chapter 3. Database System Monitor Data Elements 267

v “TP Monitor Client Workstation Name” on page 268

v “TP Monitor Client Application Name” on page 269

v “TP Monitor Client Accounting String” on page 269.

TP Monitor Client User ID

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl

Monitor Switch
Basic

Resettable No

Element Name
Element Type

tpmon_client_userid
information

Related Information v “TP Monitor Client Workstation Name” on page
268

v “TP Monitor Client Application Name” on page
269

v “TP Monitor Client Accounting String” on page
269

Description: The client user ID generated by a transaction manager and
provided to the server, if the sqleseti API is used.

Usage: Use this element in application server or TP monitor environments to
identify the end-user for whom the transaction is being executed.

TP Monitor Client Workstation Name

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl

Monitor Switch
Basic

Resettable No

Element Name
Element Type

tpmon_client_wkstn
information

Related Information v “TP Monitor Client User ID” on page 268

v “TP Monitor Client Application Name” on page
269

v “TP Monitor Client Accounting String” on page
269

Description: Identifies the client’s system or workstation (for example CICS
EITERMID), if the sqleseti API was issued in this connection.

Usage: Use this element to identify the user’s machine by node ID, terminal
ID, or similar identifiers.

268 System Monitor Guide and Reference

TP Monitor Client Application Name

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl

Monitor Switch
Basic

Resettable No

Element Name
Element Type

tpmon_client_app
information

Related Information v “TP Monitor Client User ID” on page 268

v “TP Monitor Client Workstation Name” on page
268

v “TP Monitor Client Accounting String” on page
269

Description: Identifies the the server transaction program performing the
transaction, if the sqleseti API was issued in this connection.

Usage: Use this element for problem determination and accounting purposes.

TP Monitor Client Accounting String

Snapshot Level
DCS Application

Logical Data Grouping
dcs_appl

Monitor Switch
Basic

Resettable No

Element Name

Element Type

tpmon_acc_str
information

Related Information v “TP Monitor Client User ID” on page 268

v “TP Monitor Client Workstation Name” on page
268

v “TP Monitor Client Application Name” on page
269

Description: The data passed to the target database for logging and
diagnostic purposes, if the sqleseti API was issued in this connection.

Usage: Use this element for problem determination and accounting purposes.

Chapter 3. Database System Monitor Data Elements 269

270 System Monitor Guide and Reference

Chapter 4. Event Monitor Output

This chapter explains the contents and format of the trace produced by an
event monitor and different options that can be specified on the CREATE
EVENT MONITOR statement that can influence the trace. It shows how to
program for reading this trace, through the use of code samples.

Output Records

The output of an event monitor is a binary stream of logical data groupings
that are exactly the same for both pipe and file event monitors. You can
format this trace using the db2evmon productivity tool.

The following table illustrates the different groupings which may appear in
the event monitor output. See “Information Available from Event Monitors”
on page 21 for a list of events that trigger the writing of event records and
“Reading an Event Monitor Trace” on page 281 for more information on
output. Records in a trace can be divided into four types:

1. Monitor information - identifies the version level of the event monitor.
2. Prologue information - generated when an event monitor is activated.
3. Actual content information - generated as events occur.
4. Epilog information - generated when a database is deactivated.

Event type Logical data group Information returned

Monitor

Monitor Level event_log_stream_header
(SQLM_EVENT_LOG_STREAM_HEADER)

Identifies the version level and byte order of
the event monitor. Applications can use this
header to determine whether they can handle
the evmon output stream.

Prolog

Log Header log_header_event
(SQLM_ELM_EVENT_LOG_HEADER)

Characteristics of the trace, for example server
type and memory layout.

Database Header db_header_event
(SQLM_ELM_EVENT_DB_HEADER)

Database name, path and activation time.

Event Monitor Start start_event
(SQLM_ELM_EVENT_START)

Time when the monitor was started or
restarted.

Connection Header connheader_event
(SQLM_ELM_EVENT_CONNHEADER)

One for each current connection, includes
connection time and application name.

Actual Contents

Statement Event stmt_event
(SQLM_ELM_EVENT_STMT)

Statement level data, including text for
dynamic statements.

© Copyright IBM Corp. 1993, 1999 271

Event type Logical data group Information returned

Subsection Event subsection_event
(SQLM_ELM_EVENT_SUBSECTION)

Subsection level data.

Transaction Event xaction_event
(SQLM_ELM_EVENT_XACT)

Transaction level data.

Connection Event conn_event
(SQLM_ELM_EVENT_CONN)

Connection level data.

Deadlock Event deadlock_event
(SQLM_ELM_EVENT_DEADLOCK)

Deadlock level data.

Deadlocked Connection
Event

dlconn_event
(SQLM_ELM_EVENT_DLCONN)

One for each connection involved in the
deadlock, includes applications involved and
locks in contention.

Overflow overflow_event
(SQLM_ELM_EVENT_OVERFLOW)

Number of records lost - generated when
writer cannot keep up with a (non-blocked)
event monitor.

Epilog

Database Event db_event
(SQLM_ELM_EVENT_DB)

Database level data.

Buffer Pool Event bufferpool_event
(SQLM_ELM_EVENT_BUFFERPOOL)

Buffer pool level data.

Table Space Event tablespace_event
(SQLM_ELM_EVENT_TABLESPACE)

Table space level data.

Table Event table_event
(SQLM_ELM_EVENT_TABLE)

Table level data.

Event records may be generated for any connection and may therefore appear
in mixed order in the stream. This means that you may get a transaction event
for Connection 1, immediately followed by a connection event for Connection
2. However, records belonging to a single connection or a single event, will
appear in their logical order. For example, a statement record (end of
statement) always precedes a transaction record (end of UOW), if any.
Similarly, a deadlock event record always precedes the deadlocked connection
event records for each connection involved in the deadlock. The application
id or application handle (agent_id) can be used to match records with a
connection.

For example, using the following event monitor,

272 System Monitor Guide and Reference

the following workload,

the following trace might be generated. Listed in this sample are some of the
fields in each event record to give a flavor of the type of information
contained in a trace. See “Event Monitors” on page 12 for an example of
deadlock events. Note, the numbers in this sample are used to illustrate the
order in which records have been written.

MONITOR

The Monitor information is generated for all event monitors. Only event
monitors that return a version of SQLM_DBMON_VERSION6 use the
self-describing data stream.

Pre-Version 6 output must be read using the Version 5 method. For
information on these static sized structures refer to the sqlmon.h file.

PROLOG

The Prolog information is generated when set event monitor all state 1 is
executed. If this event monitor had been AUTOSTART, it would have been
generated when the database was activated.

db2 "create event monitor ALL for
statements, transactions, connections,
deadlocks, database, bufferpools,
tablespaces, tables, write to
file '/tmp/all'"

mkdir /tmp/all
db2 connect reset

db2 connect to sample

db2 connect to sample

db2 +c connect reset

db2 set event monitor ALL state 1
db2 select evmonname from

syscat.eventmonitors
db2 connect reset

Application 1

Application 2

Chapter 4. Event Monitor Output 273

1) event_log_stream_header
byte_order: SQLM_BIG_ENDIAN - a UNIX or AIX box
size: 400 - not used, for compatibility only
version: SQLM_DBMON_VERSION6 - trace was produced by UDB V6

2) log_header_event
version: SQLM_DBMON_VERSION6 - Trace was produced by UDB V6
num_nodes_in_db2_instance: 1 - for a standalone system,
byte_order: SQLM_BIG_ENDIAN - on a UNIX or AIX box,
event_monitor_name: ALL - by event monitor: 'ALL'

3) dbheader_event
db_name: SAMPLE - for database 'SAMPLE'

4) connheader_event
agent_id: 14 - Application 1 - handle
appl_id: *LOCAL.bourbon.970602180712 - Application 1 - id with timestamp

CONTENTS

Generated when Application 1 issues select name from
syscat.eventmonitors. At the time that the event monitor is turned on,
Application 2 has not yet connected.
5) stmt_event

agent_id: 14
appl_id: *LOCAL.bourbon.970602180712
operation: SQLM_PREPARE
package_name: SQLC2BA4
cursor: SQLCUR201
@stmt_text_offset: SELECT EVMONNAME FROM SYSCAT.EVENTMONITORS

6) stmt_event
agent_id: 14
appl_id: *LOCAL.bourbon.970602180712
operation: SQLM_OPEN
package_name: SQLC2BA4
cursor: SQLCUR201
@stmt_text_offset: SELECT EVMONNAME FROM SYSCAT.EVENTMONITORS

7) stmt_event
agent_id: 14
appl_id: *LOCAL.bourbon.970602180712
operation: SQLM_FETCH
package_name: SQLC2BA4
cursor: SQLCUR201
@stmt_text_offset: SELECT EVMONNAME FROM SYSCAT.EVENTMONITORS
fetch_count: 2
sqlca.sqlcode: 100 - (all rows in the SYSCAT.EVENTMONITORS table)
SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a
query is an empty table. SQLSTATE=02000

NOTE - A fetch event is generated only if the fetch fails or encounters end of table

8) stmt_event
agent_id: 14
appl_id: *LOCAL.bourbon.970602180712
operation: SQLM_DESCRIBE
package_name: SQLC2BA4
cursor: SQLCUR201
@stmt_text_offset: SELECT EVMONNAME FROM SYSCAT.EVENTMONITORS

9) stmt_event
agent_id: 14
appl_id: *LOCAL.bourbon.970602180712

274 System Monitor Guide and Reference

operation: SQLM_CLOSE
package_name: SQLC2BA4
cursor: SQLCUR201
@stmt_text_offset: SELECT EVMONNAME FROM SYSCAT.EVENTMONITORS
fetch_count: 2

10) stmt_event
agent_id: 14
appl_id: *LOCAL.bourbon.970602180712
operation: SQLM_STATIC_COMMIT - generated by CLP after the SELECT
package_name: SQLC2BA4

11) xaction_event
agent_id: 14
appl_id: *LOCAL.bourbon.970602180712
status: SQLM_UOWCOMMIT
rows_read: 7

Application 2 is connecting to the database. Output is interleaved, as the DB2
agents are executing simultaneously:
12) connheader_event

agent_id: 15 - Application 2 - handle
appl_id: *LOCAL.bourbon.970602180714 - Application 2 - id with timestamp

13) stmt_event
agent_id: 15
appl_id: *LOCAL.bourbon.970602180714
operation: SQLM_STATIC_COMMIT - generated by CLP on CONNECT

14) xaction_event
agent_id: 15
appl_id: *LOCAL.bourbon.970602180714
status: SQLM_UOWCOMMIT

15) stmt_event
agent_id: 15
appl_id: *LOCAL.bourbon.970602180714
operation: SQLM_STATIC_COMMIT - generated on CONNECT RESET

16) xaction_event
agent_id: 15
appl_id: *LOCAL.bourbon.970602180714
status: SQLM_UOWCOMMIT

17) conn_event
agent_id: 15
appl_id: *LOCAL.bourbon.970602180714
commit_sql_stmts: 2

18) stmt_event
agent_id: 14
appl_id: *LOCAL.bourbon.970602180712
operation: SQLM_STATIC_COMMIT - generated on CONNECT RESET
package_name: SQLC2BA4

19) xaction_event
agent_id: 14
appl_id: *LOCAL.bourbon.970602180712
status: SQLM_UOWCOMMIT
rows_read: 2
locks_held_top: 7

20) conn_event
agent_id: 14

Chapter 4. Event Monitor Output 275

appl_id: *LOCAL.bourbon.970602180712
select_sql_stmts: 1
rows_selected: 2

EPILOG

The Epilog information is generated during database deactivation (last
application finished disconnecting):
21) table_event

table_schema: SYSIBM
table_name: SYSTABLES
table_type: SQLM_CATALOG_TABLE
rows_read: 2

22) table_event
table_schema: SYSIBM
table_name: SYSDBAUTH
table_type: SQLM_CATALOG_TABLE
rows_read: 3

23) tablespace_event
tablespace_name: SYSCATSPACE

24) tablespace_event
tablespace_name: TEMPSPACE1

25) tablespace_event
tablespace_name: USERSPACE1

26) bufferpool_event
bp_name: IBMDEFAULTBP

27) db_event
connections_top: 2

Note: A WHERE clause on the CREATE EVENT MONITOR SQL statement
can be used to restrict the applications that will generate events; see
“Appendix A. Database System Monitor Interfaces” on page 299 for
details.

Matching Event Records with Their Application

Each record includes the application handle and application ID. These allow
you to correlate each record with the application for which the record was
generated.

The application handle (agent_id) is unique system-wide for the duration of
the application. However, it will eventually be reused (a 16 bit counter is used
to generate this identifier). In most cases, this reuse is not a problem, since an
application reading records from the trace is able to detect a connection that
was terminated. For example, encountering (in the trace) a connection header
with a known agent_ID implies that the previous connection with this
agent_ID was terminated.

276 System Monitor Guide and Reference

The application ID is a string identifier that includes a timestamp and is
guaranteed to remain unique, even after stopping and restarting the database
manager.

File Event Monitor Buffering

The event monitor output thread buffers records, using two internal buffers,
before writing them to disk. Records are written to the trace only when a
buffer is full. To force an event monitor to flush its buffers you must turn it off
or empty the buffers using the FLUSH EVENT MONITOR command. The size
of these buffers can be specified on the CREATE EVENT MONITOR statement
with the BUFFERSIZE argument. Specifying larger buffers reduces the number
of disk accesses and for event monitors with a high amount of throughput,
improves monitoring performance.

Figure 4 illustrates how event records are generated for a FILE statement
event monitor: 2 applications are connected to a database, each having a
single agent working on its behalf.

buffer 1

buffer 2

Event
Monitor
output
thread

DB2 agent

DB2 agent

buffer
full
flushed
to
target

event
records

data

data

Database
System
Monitor

file(s)

DB2
Database Manager

Figure 4. Event Monitor Buffers

Chapter 4. Event Monitor Output 277

In this example, each application agent has just finished executing a statement
and is reporting the monitor data it has collected for its statement to the event
monitor output thread. The output thread formats the records and writes
them into one of its two buffers. The buffer gets written to a file when it is
full. Having two buffers allows the output thread to continue receiving data
from database agents, while a buffer is being written.

Blocked Event Monitors

A blocked event monitor will suspend the agent(s) sending monitor data,
when both of its buffers are full, until a buffer has been written. This can
introduce a significant performance overhead, depending on the type of
workload and the speed of the I/O device. But, a blocked event monitor
never discards event records, as long as it is running. This is the default.

Non-Blocked Event Monitors

A non-blocked event monitor will simply discard monitor data coming from
the agents when the data is coming faster than it can write it. This allows
event monitoring with less impact on other database activities. The following
is sample DDL for creating a non-blocked event monitor:

Overflows

An event monitor that has discarded event records generates an overflow
event. It specifies the start and stop time during which the monitor was
discarding events, and the number of events that were discarded during that
period.

Unwritten Overflow Data: It is possible for an event monitor to terminate or
be deactivated with a pending overflow to report. If this occurs, the following
message is written to the db2diag.log:

DIA1603I Event Monitor monitor-name had a pending overflow
record when it was deactivated.

File Event Monitor Target

All the output of the event monitor goes in the directory supplied to the FILE
argument on the CREATE EVENT MONITOR statement.

db2 "create event monitor STMT for
statements write to file '/tmp/all'
NONBLOCKED"

278 System Monitor Guide and Reference

When a file event monitor is first activated, a control file is created in this
directory. This binary file contains control information that is used to prevent
two event monitors from simultaneously writing to the same target, and to
keep track of the file and file location where the event monitor is supposed to
write its next record. It is named db2event.ctl; do not remove or modify this
file.

Limiting Trace Size

By default, an event monitor writes its trace to a single file, called
00000000.evt. This file will keep growing as long as there is space on the file
system. You can limit the maximum size of a trace using the MAXFILESIZE
and MAXFILES arguments of the create event monitor statement.

Number of Files: The trace produced by an event monitor can be quite large,
and you may want to break it down into several files of a fixed size. This also
allows you to remove files after processing them, while the event monitor is
still running.

Files are numbered sequentially, beginning with 00000000.evt. If you are using
several files, then when a file is full, output is automatically directed to the
next file. For example, the following event monitor will break down its trace
into 4MB files. It keeps creating files as long as there is space on the file
system.

This might result in the following files in its target directory.

The highest numbered file is always the active file. When the number of files
reaches the maximum defined by MAXFILES, the event monitor deactivates
itself and the following message is written to the DB2DIAG.LOG.

db2 "create event monitor BIGONE
for statements, transactions, connections,
deadlocks write to file '/tmp/bigevmon'
MAXFILESIZE 1000
MAXFILES NONE"

File size (bytes)
/tmp/bigevmon/db2evmon.ctl 300
/tmp/bigevmon/00000000.evt 4079766
/tmp/bigevmon/00000001.evt 4095128
/tmp/bigevmon/00000002.evt 4095602

Chapter 4. Event Monitor Output 279

DIA1601I Event Monitor monitor-name was deactivated when
it reached its preset MAXFILES and MAXFILESIZE limit

You can avoid this situation by removing full files (see “Processing Data
While Monitor is Active”). Any event file except the active file can be
removed while the event monitor is still running.

Running out of Disk Space

When a File event monitor runs out of disk space, it shuts itself down, after
logging a system-error-level message in the error logs, db2diag.log and
db2err.log.

Processing Data While Monitor is Active

You may want an event monitor to collect data continuously so that no events
are ever missed. For example, if you have a usage account system that uses an
event monitor to collect data, you may want to process the data each night
beginning at 2:00 AM, at which point you delete the files that have been
processed.

An event monitor cannot be forced to switch to the next file unless you stop
and restart it. It must also be in APPEND mode. In order to keep track of
which events have been processed in the active file, you can create an
application that simply keeps track of the file number and location of the last
record processed. When processing the trace the next time around, the
application can simply seek to that file location.

Using Pipe event monitors is an easy way to read data produced by an active
event monitor (see “Using Pipe Event Monitors” on page 22).

Restarting a File Event Monitor

When a File event monitor is restarted, it can either erase any existing data, or
append to it.

An APPEND event monitor starts writing at the end of the file it was last
using (the file number is indicated in the db2evmon.ctl control file). If you have
removed that file, then the next file number in sequence is used. For example,
in the example above, if you remove all .evt files, and restart the event
monitor, then event records will be written into 00000003.evt. If you had not
removed the files, then they would go into or append to 00000002.evt. When
an append event monitor is restarted, only the start_event is generated. The
event log header and database header are only generated for the first
activation.

280 System Monitor Guide and Reference

A REPLACE event monitor always deletes existing event files, and starts
writing at 00000000.evt.

Reading an Event Monitor Trace

Version 6 event monitors return their data in a self-describing format. Figure 5
shows the structure of the data stream and Table 1 on page 282 provides some
examples of the logical data groups and data elements that could be returned.

Note: In the examples and tables descriptive names are used for the
identifiers. These names are prefixed by SQLM_ELM_ in the actual
data stream. For example, db_event would appear as
SQLM_ELM_DB_EVENT in the event monitor output. Types are
prefixed with SQLM_TYPE_ in the actual data stream. For example,
headers appear as SQLM_TYPE_HEADER in the data stream.

1. The structure of the sqlm_event_log_data_stream_header is different than
the other headers in the data stream. The version field determines if the
output can be processed as a Version 6 data stream.
This header has the same size and type as pre-Version 6 event monitor
streams. This allows applications to determine if the event monitor output
is self-describing or is in the old static format.

event_log_stream_header

log_header_event

db_event

byte order
size
version
size
type
element

size
type
element

size
type
element
data

..
.

size
type
element
data

..
.

1

2

4
3

3
4

2

Figure 5. Event Monitor Data Stream

Chapter 4. Event Monitor Output 281

Note: This data element is extracted by reading
sizeof(sqlm_event_log_data_stream) bytes from the data stream.

2. Each logical data group begins with a header that indicates its size and
element name.

3. The size element in the header indicates the size of all the data in that
logical data group.

4. Data element information follows its logical data group header and is also
self-describing.

Table 1. Sample Event Data Stream

Logical Data Group Data Stream Description

event_log_ stream_header sqlm_little_endian
1000
sqlm_dbmon_version6

Byte order of the event monitor data returned.
Not used (for compatibility with previous releases).
The version of the database manager that returned
the data. Only version 6 monitors can write data in
the self-describing format.

log_header_event 100
header
log_header_event

Size of the logical data group.
Indicates the start of a logical data group.
Name of the logical data group.

4
u32bit
byte_order
little_endian

Size of the data stored in this data element.
Data element type - 32 bit numeric.
The name of the data element collected.
The collected value for this element.

2
u16bit
codepage_id
850

Size of the data stored in this data element.
Data element type - unsigned 16 bit numeric.
The name of the data element collected.
The collected value for this element.

db_event 100
header
db_event

Size of the logical data group.
Indicates the start of a logical data group.
Name of the logical data group.

4
u32bit
lock_waits
2

Size of the data stored in this data element.
Data element type - unsigned 32 bit numeric.
The name of the data element collected.
The collected value for this element.

Reading the Log Stream Header

The event_log_stream_header identifies the version of the database manager
that returned the data. Only Version 6 monitors write their data in the
self-describing format.

If you are working with a Version 6 monitor, then you can start processing the
self-describing data stream. When reading the trace, you can use the size
element to skip a logical data group in the trace.

282 System Monitor Guide and Reference

An event monitor, unlike a snapshot monitor (see “Snapshot Output” on
page 291), does not have a size element that returns the total size of the trace.
You typically read an event monitor trace until you reach an end of file.

Reading the Log Header

The log header describes the characteristics of the trace, containing
information such as the memory model (for example little endian) of the
server where the trace was collected, and the codepage of the database. You
may have to do byte swapping on numerical values, if the system where you
read the trace has a different memory model than the server (for example,
Windows NT to UNIX). Codepage translation may also need to be done, if the
database is configured in a different language than the machine from which
you read the trace.

The following code can be used to read a single record from the event
monitor trace.

//--
// Read an event record - returns: 0 (success) or EOF
// NOTE: This works for all records except sqlm_event_log_stream_header
//--
int read_event_record(EventLog *evtlog, char *buffer)
{

sqlm_header_info* pHeader = (sqlm_header_info*) buffer;

//---
// Read the record header
//---
int rc;
rc=read_data(evtlog, (char *) pHeader, sizeof(sqlm_header_info));
if (rc)

return rc; /* could be at EOF */

if (evtlog->needByteReversal)
swapBytes_sqlm_event_rec_header(pHeader);

//---
// Read the rest of the data
//---
rc=read_data(evtlog, buffer + sizeof(sqlm_header_info),

pHeader->size);

if (rc==0 && evtlog->needByteReversal)
swapBytes(pHeader->type, buffer);

return rc;
} /* end of read_event_record */

Chapter 4. Event Monitor Output 283

Reading the Data Stream

The following routines illustrate how you can open, read, or skip bytes from a
PIPE or FILE on a UNIX platform.

//--
// File functions - Using the ANSI C library
//--
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
//--
FILE* openFile(char *file_name) {

return fopen(file_name,"rb"); /* returns NULL if file cannot be opened */
}
//--
int closeFile(FILE* handle) {

return fclose(handle);
}
//--
int readFromFile(char* buffer, int size, FILE* fp) {

int rc=0; // returns 0 (success); EOF; or errno
int records_read = fread(buffer, size, 1, fp);
if (records_read != 1) {

if (feof(fp))
rc = EOF;

else rc = errno;
} /* end if no data was returned */
return rc;

} /* end readFromFile */

//--
// Pipe functions - for AIX
//--
#include <unistd.h> /* for pipe functions on AIX */
#include <fcntl.h> /* for definition of O_RDONLY and open() */
//--
int openNamedPipe (char *pipe_name) {

return open(pipe_name, O_RDONLY);
}
//--
int closeNamedPipe (int handle) {
return close(handle);

}
//--
int readFromPipe(int handle, char* buffer, int size) {

int rc=0;
int num_bytes;
num_bytes = read(handle, buffer, size);
if (num_bytes != size) {

if (num_bytes==0)
rc=EOF;

else rc = num_bytes;
} /* end did not get the expected number of bytes back from read() */

284 System Monitor Guide and Reference

return rc;
} /* end readFromPipe */

//--
// Read data from Event Monitor trace (FILE or PIPE) returns 0 (success) or EOF
//--
int read_data(EventLog* evtlog,

char* buffer,
int size) {

int rc=0;
if (evtlog->type == EVMFile) {

rc = readFromFile(buffer, size, evtlog->current_fp);
if (rc && rc!=EOF) {

fprintf(stderr, "ERROR: Could not read from: %s\n",
evtlog->current_fn);

exit(1);
} /* end cannot read the log header from the file */

} /* end if the Event Monitor Log is read from a file */
else {

rc = readFromPipe(evtlog->handle, buffer, size);
if (rc && rc!=EOF) {

fprintf(stderr, "ERROR: Could not read a data from: %s\n",
evtlog->target);

exit(2);
} /* end cannot read from the pipe */

} /* end else the Event Log is read from a pipe */
return rc;

} /* end of read_data */

//--
// Skip n bytes from current position in the trace
//--
void skip_data(EventLog* evtlog, int n) {

if (evtlog->type == EVMFile)
fseek(evtlog->current_fp, n, SEEK_CUR);

else if (evtlog->type == EVMPipe) {
lseek(evtlog->handle, n, SEEK_CUR);

} /* end else pipe event monitor */
} /* end skip_data *//

Swapping Bytes in Numerical Values

This code is required when transferring data between systems using different
conventions for storing numerical values (for example, UNIX to Windows
NT).

#include <sqlmon.h> // DB2 Database Monitor interface
//--
// Byte conversion macros
//--
#define SWAP2(s) ((((s) >> 8) & 0xFF) | (((s) << 8) & 0xFF00))

#define SWAP4(l) ((((l) >> 24) & 0xFF) | ((((l) & 0xFF0000) >> 8) & 0xFF00) \
| (((l) & 0xFF00) << 8) | ((l) << 24))

Chapter 4. Event Monitor Output 285

//--
void swapBytes_sqlm_event_log_stream_header(sqlm_event_log_stream_header* r) {

r->size = SWAP4(r->size);
r->version = SWAP4(r->version);

} // end of swapBytes_sqlm_event_log_header)

Printing Event Records

All timestamps in event monitor records are returned in two unsigned 4 byte
data elements (seconds and microsec). These represent the GMT time since
January 1, 1970.

All strings in event monitor records are padded with blanks, up to their
maximum size. Strings returned by DB2 are NOT NULL TERMINATED.

286 System Monitor Guide and Reference

Chapter 5. Snapshot Monitor Output

This chapter explains the contents and format of the information captured by
a snapshot. It shows how to program for working with the snapshot monitor
and how to parse through the self-describing output.

Snapshot Requests

The following table lists the Snapshot request types and the logical data
groupings that can be returned. Figure 6 on page 290 shows the hierarchical
structure of the logical data groups.

API request type Logical data groupings that may
be returned

Information returned

All Snapshots collected
(SQLM_ELM_COLLECTED)

Information relevant to the entire snapshot.
Including an indication of the number of
lower level logical data groups that follow.

SQLMA_DB2 db2
(SQLM_ELM_DB2)

fcm
(SQLM_ELM_FCM)

fcm_node
(SQLM_ELM_FCM_NODE)

DB2 instance information.

FCM information.

FCM node information.

SQLMA_APPLINFO_ALL
SQLMA_DBASE_APPLINFO

appl_info
(SQLM_ELM_APPL_INFO)

Application identification information.

SQLMA_DCS_APPLINFO_ALL dcs_appli_info
(SQLM_ELM__DCS_APPL_INFO)

DCS application identification information.

SQLMA_DCS_APPL
SQLMA_DCS_APPL_HANDLE
SQLMA_DCS_DBASE_APPLS

dcs_appl
(SQLM_ELM_DCS_APPL)

dcs_stmt
(SQLM_ELM_DCS_STMT)

dcs_appl_info
(SQLM_ELM_DCS_APPL_INFO)

DCS application information.

DCS statement information.

DCS application identification information.

© Copyright IBM Corp. 1993, 1999 287

API request type Logical data groupings that may
be returned

Information returned

SQLMA_APPL
SQLMA_AGENT_ID
SQLMA_DBASE_APPLS

appl
(SQLM_ELM_APPL)

agent
(SQLM_ELM_AGENT)

appl_info
(SQLM_ELM_APPL_INFO)

lock_wait
(SQLM_ELM_LOCK_WAIT)

stmt
(SQLM_ELM_STMT)

subsection
(SQLM_ELM_SUBSECTION)

agent
(SQLM_ELM_AGENT)

Application information.

Agent information.

Application information.

Lock waiting information.

Statement information.

Subsection information.

Subagent information for parallel SQL
processing in partitioned databases
and on SMP machines.

SQLMA_DCS_DBASE
SQLMA_DCS_DBASE_ALL

dcs_dbase
(SQLM_ELM_DCS_DBASE)

DCS database information.

SQLMA_DBASE
SQLMA_DBASE_ALL

dbase
(SQLM_ELM_DBASE)

rollforward
(SQLM_ELM_ROLLFORWARD)

tablespace
(SQLM_ELM_TABLESPACE)

Database information.

Rollforward information.

Tablespace information

SQLMA_DBASE_TABLES table_list
(SQLM_ELM_TABLE_LIST)

tables
(SQLM_ELM_TABLE)

Table information.

Database-wide table information.

SQLMA_APPL_LOCKS
SQLMA_APPL_LOCKS_AGENT_ID

appl_lock_list
(SQLM_ELM_APPL_LOCK_LIST)

lock_wait
(SQLM_ELM_LOCK_WAIT)

lock
(SQLM_ELM_LOCK)

A listing of application locks.

If any lock waits, they precede locks.

Lock information.

SQLMA_DBASE_LOCKS db_lock_list
(SQLM_ELM_DB_LOCK_LIST)

lock_wait
(SQLM_ELM_LOCK_WAIT)

lock
(SQLM_ELM_LOCK)

appl_lock_list
(SQLM_ELM_APPL_LOCK_LIST)

A listing of database locks.

If any lock waits, they preceed locks.

Lock information.

A listing of application locks.

SQLMA_DBASE_TABLESPACES tablespace_list
(SQLM_ELM_TABLESPACE_LIST)

tablespace
(SQLM_ELM_TABLESPACE)

Database-wide tablespace information.

Tablespace information.

SQLMA_BUFFERPOOLS_ALL
SQLMA_DBASE_BUFFERPOOLS

bufferpool
(SQLM_ELM_BUFFERPOOL)

Buffer pool information.

288 System Monitor Guide and Reference

API request type Logical data groupings that may
be returned

Information returned

SQLMA_DYNAMIC_SQL dysql_list
(SQLM_ELM_DYNSQL_LIST)

dysql
(SQLM_ELM_DYNSQL)

List of dynamic SQL statements.

Dynamic SQL statement information.

The following figure shows the order that logical data groupings may appear
in a snapshot data stream.

Chapter 5. Snapshot Monitor Output 289

Note: Times may be returned as part of any logical data grouping.

collected
db2

fcm
fcm_node
switches_list

appl_info
dcs_appl_info
dcs_appl

stmt
dcs_appl_info

appl
agent
appl_info
lock_wait
stmt

subsection
agent

agent
dcs_dbase
dbase

rollforward
tablespace

table_list
table

appl_lock_list
lock
lock_wait

lock
db_lock_list

lock

uow_sw
statement_sw
lock_sw
bufferpool_sw
table_sw
sort_sw

lock_wait
lock

appl_lock_list
tablespace_list

tablespace
bufferpool
dynsql_list

dynsql
switch_list

1

1

1 Similar structures (lower level_sw items are returned
by db2, but are not shown in the figure)

Figure 6. Data Stream Hierarchy

290 System Monitor Guide and Reference

Snapshot Output

A Version 6 snapshot monitor returns its data as a self-describing data stream.
Figure 7 shows the structure of the data stream and Table 2 on page 292
provides some examples of the logical data groups and data elements that
may be returned.

Note: In the examples and tables descriptive names are used for the
identifiers. These names are prefixed by SQLM_ELM_ in the actual
data stream. For example, collected would appear as
SQLM_ELM_COLLECTED in the snapshot monitor output. Types are
prefixed with SQLM_TYPE_ in the actual data stream. For example,
headers appear as SQLM_TYPE_HEADER in the data stream.

1. Each logical data group begins with a header that indicates its size and
name.

2. Size in the collected header returns the total size of the snapshot.
3. The size element in other headers indicates the size of all the data in that

logical data group, including any subordinate groupings.
4. Data element information follows its logical data group header and is also

self-describing.

1

1

4

2

3

3

4

1

1

collected

db2

appl

agent

size
type
element
size
type
element

size
type
element

size
type
element

size
type
element
data

size
type
element
data

..
.

..
.

..
.

Figure 7. Snapshot Monitor Data Stream

Chapter 5. Snapshot Monitor Output 291

Table 2. Sample Snapshot Data Stream

Logical Data Group Data Stream Description

collected 1000
header
collected

Size of the entire snapshot buffer (in bytes).
Indicates the start of a logical data group.
Name of the logical data group.

4
u32bit
server_db2_type
sqlf_nt_server

Size of the data stored in this data element.
Data element type - unsigned 32 bit numeric.
The name of the data element collected.
The collected value for this element.

2
u16bit
node_number
3

Size of the data stored in this data element.
Data element type - unsigned 16 bit numeric.
The name of the data element collected.
The collected value for this element.

db2 200
header
db2

Size of the db2 level portion of data in the snapshot.
Indicates the start of a logical data group.
Name of the logical data group.

4
u32bit
sort_heap_allocated
16

Size of the data stored in this data element.
Data element type - unsigned 32 bit numeric.
The name of the data element collected.
The collected value for this element.

4
u32bit
local_cons
3

Size of the data stored in this data element.
Data element type - unsigned 32 bit numeric.
The name of the data element collected.
The collected value for this element.

appl 100
header
appl

Size of the appl element data in the snapshot.
Indicates the start of a logical data group.
Name of the logical data group.

4
u32bit
locks_held
3

Size of the data stored in this data element.
Data element type - unsigned 32 bit numeric.
The name of the data element collected.
The collected value for this element.

agent 50
header
agent

Size of the agent portion of the appl structure.
Indicates the start of a logical data group.
Name of the logical data group.

4
u32bit
agent_pid
12

Size of the data stored in this data element.
Data element type - 32 bit numeric.
The name of the data element collected.
The collected value for this element.

Snapshot Scenarios

The following table lists the snapshot scenarios available with Version 6
clients.

Note: From Version 5 clients, binary compatibility is maintained and the
lowest down-level server that can be attached to is Version 5.

292 System Monitor Guide and Reference

Table 3. Client/Server Snapshot Scenarios

Snapshot Version Requested Server Version Data Format
Returned

Action

SQLM_DBMON_VERSION1
SQLM_DBMON_VERSION2
SQLM_DBMON_VERSION5
SQLM_DBMON_VERSION5_2

DB2 Version 5
through Version 6

fixed size
structures

Parse the data stream using the fixed
structure method.

SQLM_DBMON_VERSION6 DB2 Version 6 self-describing Parse using the methods described in this
chapter (see “Reading the Snapshot” on
page 295). The db2ConvMonStream() API
can be used to make migrating existing
monitor applications easier (see
“db2ConvMonStream” on page 310).

SQLM_DBMON_VERSION6 DB2 Version 5 fixed size
structures

Parse the data stream using the fixed
structure method.

Making a Snapshot Request

An invocation of db2GetSnapshot() can specify several requests (if desired).
/* Get Snapshot Data Interface Structure */
typedef struct
{

sqlma * piSqlmaData; /* Pointer to monitor area */
sqlm_collected * poCollectedData; /* Pointer to collected data */
void *poBuffer; /* Pointer to output buffer */
db2Uint32 iVersion; /* Snapshot version */
db2Uint32 iBufferSize; /* Size of output buffer */
db2Uint32 iStoreResult; /* Write to file flag */

} db2GetSnapshotData;

SQL_API_RC SQL_API_FN /* Get snapshot */
db2GetSnapshot (

db2Uint32 versionNumber, /* Database version number */
void * pParamStruct, /* In/out parameters */
struct sqlca * pSqlca); /* SQLCA */

The sqlma supplied as input argument to db2GetSnapshot() contains an array
of sqlm_obj_struct. Each sqlm_obj_struct is an individual snapshot request.

sqlm_obj_struct is defined as follows:
typedef struct sqlm_obj_struct /* SNAPSHOT REQUEST */
{

unsigned long agent_id; /* used for requests based on agentid */
unsigned long obj_type; /* Snapshot Request Type (SQLMA_XXXX) */
char object[SQLM_OBJECT_SZ];/* used for requests based on object */

/* name, such as 'get snapshot for database' */
}sqlm_obj_struct;

Chapter 5. Snapshot Monitor Output 293

Where agent_id and object are only required if applicable for the request type,
and are mutually exclusive. For example: a database name is required when
the type is SQLMA_DBASE_LOCKS (get snapshot for locks on database),
whereas an agent_id is required when the type is
SQLMA_APPL_LOCKS_AGENT_ID. Both agent_id and object are ignored for
requests such as SQLMA_APPLINFO_ALL (list applications).

Note that agent_id is the application handle for an application. It does not
correspond to any Operating System process Id (it is named this way for
source compatibility with older releases of DB2).

The size of strings returned by DB2 are the actual string length. Strings are
not NULL terminated.

Setting Up the sqlma and Issuing the Snapshot Call

The following example sets up the sqlma for a call to db2GetSnapshot() that
requests two different snapshots. The first request requires an object name, the
database alias, the second request requires an agent_id, the application
handle:
#include "string.h"
#include "stdlib.h"
#include "stdio.h"
#include "sqlutil.h"
#include "sqlmon.h" // System Monitor interface
#include "db2ApiDf.h"
main()
{

struct sqlca sqlca;
int rc;

db2GetSnapshotData ss_data;

#define BUFFER_SZ 4096 // Use a fixed size output buffer
char snap_buffer[BUFFER_SZ]; // Snapshot output buffer
sqlm_collected collected;

//--
// Request SQLMA_DBASE, and SQLMA_APPL_LOCKS_AGENT_ID in the sqlma
//--
unsigned long agent_id = 0; // STUB: Obtain by issuing 'list application'

// Allocate the variable size sqlma structure
struct sqlma* sqlma = (struct sqlma *) malloc(SQLMASIZE(2));

// Request 2 different snapshots in same call
sqlma->obj_num = 2;
sqlma->obj_var[0].obj_type = SQLMA_DBASE;
strcpy(sqlma->obj_var[0].object, "SAMPLE");

sqlma->obj_var[1].obj_type = SQLMA_APPL_LOCKS_AGENT_ID;

294 System Monitor Guide and Reference

sqlma->obj_var[1].agent_id = agent_id;

//--
// Perform the snapshot
//--

ss_data.piSqlmaData = sqlma;
ss_data.poCollectedData = &collected;
ss_data.poBuffer = snap_buffer;
ss_data.iVersion = SQLM_DBMON_VERSION6;
ss_data.iBufferSize = sizeof(snap_buffer);
ss_data.iStoreResult = FALSE;

rc = db2GetSnapshot(db2Version610,
ss_data,
&sqlca);

if (sqlca.sqlcode < 0) {
// get and display a printable error message
char msg[1024];
sqlaintp (msg, sizeof(msg), 60, &sqlca);
printf("%s", msg);

}
free(sqlma);
return rc;

}

Reading the Snapshot

The db2GetSnapshot() routine returns snapshot data as a self-describing data
stream in the user supplied buffer. Data is returned in the logical data
groupings described in “Snapshot Requests” on page 287.

Each item returned by a snapshot request contains fields that specify its size
and type (see “Snapshot Output” on page 291). The size can be used to parse
through the returned data.

Size can also be used to skip over a logical data group. For example, to skip
over a db2 record you need to determine

size of the db2 logical data grouping + sizeof(sqlm_header_info)

bytes in the data stream.

The following code sample illustrates how an application could parse through
the data returned in the snapshot output buffer. The element datastream
passed into the function is the buffer returned from the db2GetSnapshot() call.
#include "stdlib.h"
#include "stdio.h"
#include "sqlutil.h"
#include "string.h"
#include "sqlmon.h" // System Monitor interface

Chapter 5. Snapshot Monitor Output 295

void pocess_buffer(sqlm_header_info *datastream)
{

long data_len = datastream->size;
sqlm_header_info *traversal_ptr = datastream;

// presume that we aren't interested in the "collected" data
// elements
++traversal_ptr;

//--
// PROCESS EACH RECORD THAT MAY BE RETURNED IN THE SNAPSHOT OUTPUT BUFFER
//--
while (data_len > 0)
{

// Switch on the element
switch (traversal_ptr->element)
{
case SQLM_ELM_DB2:

// Process the database manager snapshot
printf("Processing database manager snapshot\n");
// ...
break;

case SQLM_ELM_DBASE:
// Process the snapshot ...
printf("Processing database snapshot\n");
// ...
break;

case SQLM_ELM_APPL:
printf("Processing application snapshot\n");
// ...
break;

case SQLM_ELM_APPL_INFO:
printf("Processing list application\n");
// ...
break;

case SQLM_DCS_APPL_INFO:
printf("Processing list dcs application\n");
// ...
break;

case SQLM_ELM_TABLE_LIST:
printf("Processing list tables\n");
// ...
break;

case SQLM_ELM_DBASE_LOCK_LIST:
printf("Processing snapshot for locks on database\n");
// ...
break;

case SQLM_ELM_APPL_LOCK: {
printf("Processing snapshot for locks for application\n");
// ...
break;

case SQLM_ELM_TABLESPACE_LIST: {
printf("Processing snapshot for tablespaces\n");
// ...

296 System Monitor Guide and Reference

break;
default:

// Do nothing. This could be a new logical data element we aren't
// interested in, or it could be one of the collected data elements.

} // end check the current snapshot buffer structure

// Skip the record we just processed
data_len -= traversal_ptr->size + sizeof(sqlm_header_info);
traversal_ptr = (sqlm_header_info *)((char *)traversal_ptr +

traversal_ptr->size + sizeof(sqlm_header_info));
} // end while there are top-level structures in the snapshot output buffer

}

Processing portions of the new data stream is similar to processing the
uppermost portion of the stream. The following is an example of how a user
could pick out the db name from a database logical grouping of data
elements, to return it in a pre-allocated string.

A similar approach can be taken for processing any data element from the
stream.
void process_db2_info(sqlm_header_info *db2inf, char *db_name)
{
long data_size = db2inf->header.size;
sqlm_header_data *traverse_ptr = (sqlm_header_data *)db2inf;
traverse_ptr++;

while(data_size)
{
switch(traverse_ptr->header.element)
{
case SQLM_ELM_DB_NAME:
memcpy(db_name, traverse_ptr->data, traverse_ptr->header.size);
// Add the null terminator
db_name[traverse_ptr->header.size] = '\0';

break;

// cases to access other elements of interest
// ...
default:
break;

}
data_size -= (traverse_ptr->header.size + sizeof(sqlm_header_info));
traverse_ptr = (sqlm_header_data *)((char *)traverse_ptr->header.size +

sizeof(sqlm_header_info));
}

}

Chapter 5. Snapshot Monitor Output 297

298 System Monitor Guide and Reference

Appendix A. Database System Monitor Interfaces
Monitoring task Interface

(API, Command, SQL Statement)

Activating an event monitor “SET EVENT MONITOR STATE” on page 351

Converting the new monitor datastream “db2ConvMonStream” on page 310

Creating an event monitor “CREATE EVENT MONITOR” on page 300

Deactivating an event monitor “SET EVENT MONITOR STATE” on page 351

Determining the state of an event monitor “EVENT_MON_STATE” on page 322

Displaying the database manager monitor
switches

“GET DATABASE MANAGER MONITOR SWITCHES”
on page 324

Displaying the database system monitor
switches

“GET MONITOR SWITCHES” on page 326
“sqlmon - Get/Update Monitor Switches” on page 355

Estimating the size of a snapshot “sqlmonsz - Estimate Size Required for db2GetSnapshot()
Output Buffer” on page 358

Formatting the event monitor trace “db2evmon - Event Monitor Productivity Tool” on page
315

Listing the active databases “LIST ACTIVE DATABASES” on page 342

Listing the applications connected to a
database

“LIST APPLICATIONS” on page 344

Listing the DCS applications “LIST DCS APPLICATIONS” on page 346

Removing an event monitor “DROP EVENT MONITOR Command and SQL” on page
321

Resetting monitor counters “RESET MONITOR” on page 349
“sqlmrset - Reset Monitor” on page 361

Starting the event analyzer “db2eva - Event Analyzer” on page 313

Taking a snapshot “GET SNAPSHOT” on page 328
“db2GetSnapshot - Get Snapshot” on page 317

Updating the database system monitor
switches

“UPDATE MONITOR SWITCHES” on page 364
“sqlmon - Get/Update Monitor Switches” on page 355

Viewing SQL statements “SQLCACHE_SNAPSHOT” on page 353

Writing event monitor values “FLUSH EVENT MONITOR” on page 323

© Copyright IBM Corp. 1993, 1999 299

CREATE EVENT MONITOR

The CREATE EVENT MONITOR statement defines a monitor that will record
certain events that occur when using the database. The definition of each
event monitor also specifies where the database should record the events.

Scope

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.
However, if the bind option DYNAMICRULES BIND applies, the statement
cannot be dynamically prepared (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID must include either SYSADM or
DBADM authority (SQLSTATE 42502).

Command Syntax

ÊÊ CREATE EVENT MONITOR event-monitor-name FOR Ê

Ê ·

,

DATABASE
TABLES
DEADLOCKS
TABLESPACES
BUFFERPOOLS
CONNECTIONS
STATEMENTS WHERE Event Condition
TRANSACTIONS

Ê

Ê
MANUALSTART

WRITE TO PIPE pipe-name
FILE path-name File Options AUTOSTART

Ê

Ê
ON NODE node-number

LOCAL

GLOBAL
ÊÍ

Event Condition:

CREATE EVENT MONITOR

300 System Monitor Guide and Reference

·

AND | OR

APPL_ID = comparison-string
NOT AUTH_ID (1)

APPL_NAME <>
>

(1)
>=
<

(1)
<=
LIKE
NOT LIKE

(Event Condition)

File Options:

NONE
MAXFILES number-of-files

pages
MAXFILESIZE NONE

Ê

Ê
BUFFERSIZE pages

BLOCKED

NONBLOCKED

APPEND

REPLACE

Notes:

1. Other forms of these operators are also supported. See SQL Reference for
more details.

Command Parameters

event-monitor-name
Names the event monitor. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The event-monitor-name must not identify an
event monitor that already exists in the catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.

DATABASE
Specifies that the event monitor records a database event when the
last application disconnects from the database.

TABLES
Specifies that the event monitor records a table event for each active
table when the last application disconnects from the database. An
active table is a table that has changed since the first connection to the
database.

CREATE EVENT MONITOR

Appendix A. Database System Monitor Interfaces 301

DEADLOCKS
Specifies that the event monitor records a deadlock event whenever a
deadlock occurs.

TABLESPACES
Specifies that the event monitor records a table space event for each
table space when the last application disconnects from the database.

BUFFERPOOLS
Specifies that the event monitor records a buffer pool event when the
last application disconnects from the database.

CONNECTIONS
Specifies that the event monitor records a connection event when an
application disconnects from the database.

STATEMENTS
Specifies that the event monitor records a statement event whenever a
SQL statement finishes executing.

TRANSACTIONS
Specifies that the event monitor records a transaction event whenever
a transaction completes (that is, whenever there is a commit or
rollback operation).

WHERE event condition
Defines a filter that determines which connections cause a
CONNECTION, STATEMENT or TRANSACTION event to occur. If
the result of the event condition is TRUE for a particular connection,
then that connection will generate the requested events.

This clause is a special form of the WHERE clause that should not be
confused with a standard search condition.

To determine if an application will generate events for a particular
event monitor, the WHERE clause is evaluated:
1. For each active connection when an event monitor is first turned

on.
2. Subsequently for each new connection to the database at connect

time.

The WHERE clause is not evaluated for each event.

If no WHERE clause is specified then all events of the specified event
type will be monitored.

APPL_ID
Specifies that the application ID of each connection should be
compared with the comparison-string in order to determine if the

CREATE EVENT MONITOR

302 System Monitor Guide and Reference

connection should generate CONNECTION, STATEMENT or
TRANSACTION events (whichever was specified).

AUTH_ID
Specifies that the authorization ID of each connection should be
compared with the comparison-string in order to determine if the
connection should generate CONNECTION, STATEMENT or
TRANSACTION events (whichever was specified).

APPL_NAME
Specifies that the application program name of each connection
should be compared with the comparison-string in order to
determine if the connection should generate CONNECTION,
STATEMENT or TRANSACTION events (whichever was
specified).

The application program name is the first 20 bytes of the
application program file name, after the last path separator.

comparison-string
A string to be compared with the APPL_ID, AUTH_ID, or
APPL_NAME of each application that connects to the database.
comparison-string must be a string constant (that is, host variables
and other string expressions are not permitted).

WRITE TO
Introduces the target for the data.

PIPE
Specifies that the target for the event monitor data is a named pipe.
The event monitor writes the data to the pipe in a single stream (that
is, as if it were a single, infinitely long file). When writing the data to
a pipe, an event monitor does not perform blocked writes. If there is
no room in the pipe buffer, then the event monitor will discard the
data. It is the monitoring application’s responsibility to read the data
promptly if it wishes to ensure no data loss.

pipe-name
The name of the pipe (FIFO on AIX) to which the event monitor
will write the data.

The naming rules for pipes are platform specific. On UNIX
operating systems pipe names are treated like file names. As a
result, relative pipe names are permitted, and are treated like
relative path-names (see path-name below). However, on OS/2,
Windows 95 and Windows NT, there is a special syntax for a pipe
name. As a result, on OS/2, Windows 95 and Windows NT
absolute pipe names are required.

CREATE EVENT MONITOR

Appendix A. Database System Monitor Interfaces 303

The existence of the pipe will not be checked at event monitor
creation time. It is the responsibility of the monitoring application
to have created and opened the pipe for reading at the time that
the event monitor is activated. If the pipe is not available at this
time, then the event monitor will turn itself off, and will log an
error. (That is, if the event monitor was activated at database start
time as a result of the AUTOSTART option, then the event
monitor will log an error in the system error log.) If the event
monitor is activated via the SET EVENT MONITOR STATE SQL
statement, then that statement will fail (SQLSTATE 58030).

FILE
Indicates that the target for the event monitor data is a file (or set
of files). The event monitor writes out the stream of data as a
series of 8 character numbered files, with the extension “evt”. (for
example, 00000000.evt, 00000001.evt, 00000002.evt, etc). The data
should be considered to be one logical file even though the data is
broken up into smaller pieces (that is, the start of the data stream
is the first byte in the file 00000000.evt; the end of the data stream
is the last byte in the file nnnnnnnn.evt).

The maximum size of each file can be defined as well as the
maximum number of files. An event monitor will never split a
single event record across two files. However, an event monitor
may write related records in two different files. It is the
responsibility of the application that uses this data to keep track
of such related information when processing the event files.

path-name
The name of the directory in which the event monitor should
write the event files data. The path must be known at the
server, however, the path itself could reside on another
partition or node (for example, in a UNIX-based system, this
might be an NFS mounted file). A string constant must be
used when specifying the path-name.

The directory does not have to exist at CREATE EVENT
MONITOR time. However, a check is made for the existence
of the target path when the event monitor is activated. At that
time, if the target path does not exist, an error (SQLSTATE
428A3) is raised.

If an absolute path (a path that starts with the root directory
on AIX, or a disk identifier on OS/2, Windows 95 and
Windows NT) is specified, then the specified path will be the
one used. If a relative path (a path that does not start with the
root) is specified, then the path relative to the DB2EVENT
directory in the database directory will be used.

CREATE EVENT MONITOR

304 System Monitor Guide and Reference

When a relative path is specified, the DB2EVENT directory is
used to convert it into an absolute path. Thereafter, no
distinction is made between absolute and relative paths. The
absolute path is stored in the SYSCAT.EVENTMONITORS
catalog view.

It is possible to specify two or more event monitors that have
the same target path. However, once one of the event
monitors has been activated for the first time, and as long as
the target directory is not empty, it will be impossible to
activate any of the other event monitors.

File Options
Specifies the options for the file format.

MAXFILES NONE
Specifies that there is no limit to the number of event files
that the event monitor will create. This is the default.

MAXFILES number-of-files
Specifies that there is a limit on the number of event
monitor files that will exist for a particular event monitor
at any time. Whenever an event monitor has to create
another file, it will check to make sure that the number of
.evt files in the directory is less than number-of-files. If this
limit has already been reached, then the event monitor
will turn itself off.

If an application removes the event files from the
directory after they have been written, then the total
number of files that an event monitor can produce can
exceed number-of-files. This option has been provided to
allow a user to guarantee that the event data will not
consume more than a specified amount of disk space.

MAXFILESIZE pages
Specifies that there is a limit to the size of each event
monitor file. Whenever an event monitor writes a new
event record to a file, it checks that the file will not grow
to be greater than pages (in units of 4K pages). If the
resulting file would be too large, then the event monitor
switches to the next file. The default for this option is:
v OS/2, Windows 95 and Windows NT - 200 4K pages
v UNIX - 1000 4K pages

The number of pages must be greater than at least the size
of the event buffer in pages. If this requirement is not met,
then an error (SQLSTATE 428A4) is raised.

CREATE EVENT MONITOR

Appendix A. Database System Monitor Interfaces 305

MAXFILESIZE NONE
Specifies that there is no set limit on a file’s size. If
MAXFILESIZE NONE is specified, then MAXFILES 1
must also be specified. This option means that one file
will contain all of the event data for a particular event
monitor. In this case the only event file will be
00000000.evt.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of
4K pages). All event monitor file I/O is buffered to
improve the performance of the event monitors. The
larger the buffers, the less I/O will be performed by the
event monitor. Highly active event monitors should have
larger buffers than relatively inactive event monitors.
When the monitor is started, two buffers of the specified
size are allocated. Event monitors use double buffering to
permit asynchronous I/O.

The minimum and default size of each buffer (if this
option is not specified) is 1 page (that is, 2 buffers, each 4
K in size). The maximum size of the buffers is limited by
the size of the database heap (DBHEAP) since the buffers
are allocated from the heap. If using a lot of event
monitors at the same time, increase the size of the
DBHEAP database configuration parameter.

Event monitors that write their data to a pipe also have
two internal (non-configurable) buffers that are each 1
page in size. These buffers are also allocated from the
database heap (DBHEAP). For each active event monitor
that has a pipe target, increase the size of the database
heap by 2 pages.

BLOCKED
Specifies that each agent that generates an event should
wait for an event buffer to be written out to disk if the
agent determines that both event buffers are full.
BLOCKED should be selected to guarantee no event data
loss. This is the default option.

NONBLOCKED
Specifies that each agent that generates an event should
not wait for the event buffer to be written out to disk if
the agent determines that both event buffers are full.
NONBLOCKED event monitors do not slow down
database operations to the extent of BLOCKED event

CREATE EVENT MONITOR

306 System Monitor Guide and Reference

monitors. However, NONBLOCKED event monitors are
subject to data loss on highly active systems.

APPEND
Specifies that if event data files already exist when the
event monitor is turned on, then the event monitor will
append the new event data to the existing stream of data
files. When the event monitor is re-activated, it will
resume writing to the event files as if it had never been
turned off. APPEND is the default option.

The APPEND option does not apply at CREATE EVENT
MONITOR time, if there is existing event data in the
directory where the newly created event monitor is to
write its event data.

REPLACE
Specifies that if event data files already exist when the
event monitor is turned on, then the event monitor will
erase all of the event files and start writing data to file
00000000.evt.

MANUALSTART
Specifies that the event monitor not be started automatically each time
the database is started. Event monitors with the MANUALSTART
option must be activated manually using the SET EVENT MONITOR
STATE statement. This is the default option.

AUTOSTART
Specifies that the event monitor be started automatically each time the
database is started.

ON NODE
Keyword that indicates that specific partitions are specified.

node-number
Specifies a partition number where the event monitor runs and
write the events. With the monitoring scope defined as GLOBAL,
all partitions report to the specified partition number. The I/O
component will physically run on the specified partition, writing
its records to /tmp/dlocks direcotry on that partition.

GLOBAL
Event monitor reports from all partitions. For a partitioned database
in DB2 Universal Database Version 5.2, only deadlock event monitors
can be defined as GLOBAL. The global event monitor will report
deadlocks for all nodes in the system.

CREATE EVENT MONITOR

Appendix A. Database System Monitor Interfaces 307

LOCAL
Event monitor reports only on the partition that is running. It gives a
partial trace of the database activity. This is the default.

Sample Programs
v Each of the event types (DATABASE, TABLES, DEADLOCKs,...) can only be

specified once in a particular event monitor definition.

Usage Notes
v Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS

catalog view. The events themselves are recorded in the SYSCAT.EVENTS
catalog view.

Examples

Example 1: The following example creates an event monitor called
SMITHPAY. This event monitor, will collect event data for the database as well
as for the SQL statements performed by the PAYROLL application owned by
the JSMITH authorization ID. The data will be appended to the absolute path
/home/jsmith/event/smithpay/. A maximum of 25 files will be created. Each
file will be a maximum of 1024 4K pages long. The file I/O will be
non-blocked.

CREATE EVENT MONITOR SMITHPAY
FOR DATABASE, STATEMENTS
WHERE APPL_NAME = 'PAYROLL' AND AUTH_ID = 'JSMITH'
WRITE TO FILE '/home/jsmith/event/smithpay'
MAXFILES 25
MAXFILESIZE 1024
NONBLOCKED
APPEND

Example 2: The following example creates an event monitor called
DEADLOCKS_EVTS. This event monitor will collect deadlock events and will
write them to the relative path DLOCKS. One file will be written, and there is
no maximum file size. Each time the event monitor is activated, it will append
the event data to the file 00000000.evt if it exists. The event monitor will be
started each time the database is started. The I/0 will be blocked by default.

CREATE EVENT MONITOR DEADLOCK_EVTS
FOR DEADLOCKS
WRITE TO FILE 'DLOCKS'
MAXFILES 1
MAXFILESIZE NONE
AUTOSTART

Example 3: This example creates an event monitor called DB_APPLS. This
event monitor collects connection events, and writes the data to the named
pipe /home/jsmith/applpipe.

CREATE EVENT MONITOR

308 System Monitor Guide and Reference

CREATE EVENT MONITOR DB_APPLS
FOR CONNECTIONS
WRITE TO PIPE '/home/jsmith/applpipe'

CREATE EVENT MONITOR

Appendix A. Database System Monitor Interfaces 309

db2ConvMonStream

Converts the new, self-describing format for a single logical data element (for
example, SQLM_ELM_DB2) to the corresponding pre-version 6 external
monitor structure (for example, sqlm_db2). When upgrading API calls to use
the post-version 5 stream, one must traverse the monitor data using the new
stream format (for example, the user must find the SQLM_ELM_DB2
element). This portion of the stream can then be passed into the conversion
API to get the associated pre-version 6 data.

Authorization

None

Required Connection

None

API Include File

db2ApiDf.h

C API Syntax

API Parameters

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, data.

data Input. A pointer to the db2ConvMonStreamData structure.

/* File: db2ApiDf.h */
/* API: db2ConvMonStream */
/* ... */
int db2ConvMonStream (

unsigned char version,
db2ConvMonStreamData * data,
struct sqlca * pSqlca);

typedef struct
{
void * poTarget;
sqlm_header_info * piSource;
db2Uint32 iTargetType;
db2Uint32 iTargetSize;
db2Uint32 iSourceType

} db2ConvMonStreamData;
/* ... */

db2ConvMonStream

310 System Monitor Guide and Reference

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference.

poTarget
Output. A pointer to the target monitor output structure (for example,
sqlm_db2). A list of output types, and their corresponding input
types, is given below.

piSource
Input. A pointer to the logical data element being converted (for
example, SQLM_ELM_DB2). A list of output types, and their
corresponding input types, is given below.

iTargetType
Input. The type of conversion being performed. Specify the value for
the v5 type in sqlmon.h for instance SQLM_DB2_SS.

iTargetSize
Input. This parameter can usually be set to the size of the structure
pointed to by poTarget; however, for elements that have usually been
referenced by an offset value from the end of the structure (for
example, statement text in sqlm_stmt), specify a buffer that is large
enough to contain the sqlm_stmt statically-sized elements, as well as a
statement of the largest size to be extracted; that is, SQL_MAX_STMT_SZ
plus sizeof(sqlm_stmt).

iSourceType
Input. The type of source stream. Valid values are
SQLM_STREAM_SNAPSHOT (snapshot stream), or SQLM_STREAM_EVMON (event
monitor stream).

Usage Notes

Following is a list of supported convertable data elements:
Snapshot Variable Datastream Type Structure
--------------------------------- ---------
SQLM_ELM_APPL sqlm_appl
SQLM_ELM_APPL_INFO sqlm_applinfo
SQLM_ELM_DB2 sqlm_db2
SQLM_ELM_FCM sqlm_fcm
SQLM_ELM_FCM_NODE sqlm_fcm_node
SQLM_ELM_DBASE sqlm_dbase
SQLM_ELM_TABLE_LIST sqlm_table_header
SQLM_ELM_TABLE sqlm_table
SQLM_ELM_DB_LOCK_LIST sqlm_dbase_lock
SQLM_ELM_APPL_LOCK_LIST sqlm_appl_lock
SQLM_ELM_LOCK sqlm_lock
SQLM_ELM_STMT sqlm_stmt
SQLM_ELM_SUBSECTION sqlm_subsectiion
SQLM_ELM_TABLESPACE_LIST sqlm_tablespace_header

db2ConvMonStream

Appendix A. Database System Monitor Interfaces 311

SQLM_ELM_TABLESPACE sqlm_tablespace
SQLM_ELM_ROLLFORWARD sqlm_rollfwd_info
SQLM_ELM_BUFFERPOOL sqlm_bufferpool
SQLM_ELM_LOCK_WAIT sqlm_lockwait
SQLM_ELM_DCS_APPL sqlm_dcs_appl, sqlm_dcs_applid_info,

sqlm_dcs_appl_snap_stats,
sqlm_xid, sqlm_tpmon

SQLM_ELM_DCS_DBASE sqlm_dcs_dbase
SQLM_ELM_DCS_APPL_INFO sqlm_dcs_applid_info
SQLM_ELM_DCS_STMT sqlm_dcs_stmt
SQLM_ELM_COLLECTED sqlm_collected

Event Monitor Variable Datastream Type Structure
-------------------------------------- ---------
SQLM_ELM_EVENT_DB sqlm_db_event
SQLM_ELM_EVENT_CONN sqlm_conn_event
SQLM_ELM_EVENT_TABLE sqlm_table_event
SQLM_ELM_EVENT_STMT sqlm_stmt_event
SQLM_ELM_EVENT_XACT sqlm_xaction_event
SQLM_ELM_EVENT_DEADLOCK sqlm_deadlock_event
SQLM_ELM_EVENT_DLCONN sqlm_dlconn_event
SQLM_ELM_EVENT_TABLESPACE sqlm_tablespace_event
SQLM_ELM_EVENT_DBHEADER sqlm_dbheader_event
SQLM_ELM_EVENT_START sqlm_evmon_start_event
SQLM_ELM_EVENT_CONNHEADER sqlm_connheader_event
SQLM_ELM_EVENT_OVERFLOW sqlm_overflow_event
SQLM_ELM_EVENT_BUFFERPOOL sqlm_bufferpool_event
SQLM_ELM_EVENT_SUBSECTION sqlm_subsection_event
SQLM_ELM_EVENT_LOG_HEADER sqlm_event_log_header

The sqlm_rollfwd_ts_info structure is not converted; it only contains a table
space name that can be accessed directly from the stream. The sqlm_agent
structure is also not converted; it only contains the pid of the agent, which can
also be accessed directly from the stream.

db2ConvMonStream

312 System Monitor Guide and Reference

db2eva - Event Analyzer

Starts the event analyzer, allowing the user to trace performance data
produced by DB2 event monitors that have their data directed to files.

Authorization

None, unless connecting to the database and selecting from the catalogs
(-evm, -db, and -conn); then one of the following is required:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection

None

Command Syntax

ÊÊ db2eva -path evmon-target
-conn

-db -database-alias
-evm evmon-name -db database-alias

-conn

ÊÍ

Command Parameters

-path evmon-target
Specifies the directory containing the event monitor trace files.

-conn Requests that db2eva maintain a connection to the database specified
with -db, or if -db is not used, then to the database specified in the
event monitor trace header. Maintaining a connection allows the event
analyzer to obtain information not contained in the trace files (for
example, the text for static SQL). A statement event record contains
the package creator, package, and section number; when -conn is
specified, db2eva can retrieve the text from the database system
catalog (sysibm.sysstmt).

-db database-alias
Specifies the name of the database defined for the event monitor. If
-path is specified, the database name in the event monitor trace
header is overridden.

-evm evmon-name
Specifies the name of the event monitor whose traces are to be
analyzed.

db2eva - Event Analyzer

Appendix A. Database System Monitor Interfaces 313

Usage Notes

Although there is no required connection, db2eva will attempt to connect to
the database if the -conn, or the -evm and the -db options are used. If the user
can access the database and has the appropriate authorization, the SQL text
for static statements can be displayed. Without the required access or
authority, only the text for dynamic statements is available.

There are two methods for reading event monitor traces:
1. Specifying the directory where the trace files are located (using the -path

option). This allows users to move trace files from a server and analyze
them locally. This can be done even if the event monitor has been
dropped.

2. Specifying the database and event monitor names allows automatic
location of the trace files. The event analyzer connects to the database, and
issues a select target from sysibm.syseventmonitors to locate the
directory where the event monitor writes its trace files. The connection is
then released, unless -conn was specified. This method cannot be used if
the event monitor has been dropped.

Note: The event analyzer can be used to analyze the data produced by an
active event monitor. However, event monitors buffer their data before
writing it to disk; therefore, some information may be missing. Turn off
the event monitor, thereby forcing it to flush its buffers.

db2eva - Event Analyzer

314 System Monitor Guide and Reference

db2evmon - Event Monitor Productivity Tool

Formats event monitor file and named pipe output, and writes it to standard
output.

Note: This productivity tool is provided as is, without any warranty of any
kind, including the warranties of merchantability and fitness for a
particular purpose, which are expressly disclaimed.

Authorization

None, unless connecting to the database (-evm, -db,); then, one of the
following is required:
v sysadm

v sysctrl

v sysmaint

v dbadm

Required Connection

None

Command Syntax

ÊÊ db2evmon
-db database-alias -evm event-monitor-name

-path event-monitor-target

ÊÍ

Command Parameters

-db database-alias
Specifies the database whose data is to be displayed. This parameter
is case sensitive.

-evm event-monitor-name
The one-part name of the event monitor. An ordinary or delimited
SQL identifier. This parameter is case sensitive.

-path event-monitor-target
Specifies the directory containing the event monitor trace files.

Usage Notes

If the data is being written to files, the tool formats the files for display using
standard output. In this case, the monitor is turned on first, and any event
data in the files is displayed by the tool. To view any data written to files after
the tool has been run, reissue db2evmon.

db2evmon - Event Monitor Productivity Tool

Appendix A. Database System Monitor Interfaces 315

If the data is being written to a pipe, the tool formats the output for display
using standard output as events occur. In this case, the tool is started before
the monitor is turned on.

db2evmon - Event Monitor Productivity Tool

316 System Monitor Guide and Reference

db2GetSnapshot - Get Snapshot

Collects database manager monitor information and returns it to a
user-allocated data buffer. The information returned represents a snapshot of
the database manager operational status at the time the API was called.

Scope

This API returns information only for the node on which it is issued.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection

Instance or database:
v If there is neither an attachment to an instance, nor a connection to a

database, a default instance attachment is created.
v If there is both an attachment to an instance, and a database connection, the

instance attachment is used.

To obtain a snapshot from a remote instance (or a different local instance), it is
necessary to first attach to that instance.

API Include File

db2ApiDf.h

db2GetSnapshot - Get Snapshot

Appendix A. Database System Monitor Interfaces 317

C API Syntax

Generic API Syntax

API Parameters

version
Input. Specifies the version and release level of the structure passed in
as the second parameter, data.

data Input/Output. A pointer to the db2GetSnapshotData structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference.

/* File: db2ApiDf.h */
/* API: Get Snapshot */
/* ... */
int db2GetSnapshot (

unsigned char version,
db2GetSnapshotData * data,
struct sqlca * pSqlca);

typedef struct
{
sqlma * piSqlmaData;
sqlm_collected * poCollectedData;
void * poBuffer;
db2Uint32 iVersion;
db2Uint32 iBufferSize;
db2Uint32 iStoreResult

} db2GetSnapshotData;
/* ... */

/* File: db2ApiDf.h */
/* API: Get Snapshot */
/* ... */
int db2GetSnapshot (
unsigned char version,
db2GetSnapshotData * data,
struct sqlca * pSqlca);

typedef struct
{
sqlma * piSqlmaData;
sqlm_collected * poCollectedData;
void * poBuffer;
db2Uint32 iVersion;
db2Uint32 iBufferSize;
db2Uint32 iStoreResult

} db2GetSnapshotData;
/* ... */

db2GetSnapshot - Get Snapshot

318 System Monitor Guide and Reference

piSqlmaData
Input. Pointer to the user-allocated sqlma (monitor area) structure. This
structure specifies the type(s) of data to be collected.

poCollectedData
Output. A pointer to the sqlm_collected structure into which the
database monitor delivers summary statistics and the number of each
type of data structure returned in the buffer area.

Note: This structure is only used for pre-Version 6 data streams.
However, if a snapshot call is made to a back-level remote
server, this structure must be passed in for results to be
processed. It is therefore recommended that this parameter
always be passed in.

poBuffer
Output. Pointer to the user-defined data area into which the snapshot
information will be returned. For information about interpreting the
data returned in this buffer, see the System Monitor Guide and Reference.

iVersion
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version.
Set this parameter to one of the following symbolic constants:
v SQLM_DBMON_VERSION1

v SQLM_DBMON_VERSION2

v SQLM_DBMON_VERSION5

v SQLM_DBMON_VERSION5_2

v SQLM_DBMON_VERSION6

If requesting data for a version higher than the current server, the
database monitor only returns data for its level (see the server_version
field in the ″collected″ portion of the datastream.

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs
cannot be run remotely.

iBufferSize
Input. The length of the data buffer. Use “sqlmonsz - Estimate Size
Required for db2GetSnapshot() Output Buffer” on page 358 to estimate
the size of this buffer. If the buffer is not large enough, a warning is
returned, along with the information that will fit in the assigned
buffer. It may be necessary to resize the buffer and call the API again.

iStoreResult
Input. An indicator set to TRUE or FALSE, depending on whether the
snapshot results are to be stored at the DB2 server for viewing

db2GetSnapshot - Get Snapshot

Appendix A. Database System Monitor Interfaces 319

through SQL. This parameter should only be set to TRUE when the
snapshot is being taken over a database connection, and when one of
the snapshot types in the sqlma is SQLMA_DYNAMIC_SQL.

Usage Notes

If an alias for a database residing at a different instance is specified, an error
message is returned.

See Also

“db2ConvMonStream” on page 310

“sqlmon - Get/Update Monitor Switches” on page 355

“sqlmonsz - Estimate Size Required for db2GetSnapshot() Output Buffer” on
page 358

“sqlmrset - Reset Monitor” on page 361.

db2GetSnapshot - Get Snapshot

320 System Monitor Guide and Reference

DROP EVENT MONITOR Command and SQL

Removes an event monitor definition from the Database catalogs. Whenever
an object is deleted, its description is deleted from the catalog and any
packages that reference the object are invalidated.

Scope

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

Authorization

The authorization ID of the DROP statement when dropping an event monitor
must have SYSADM or DBADM authority

Command Syntax

ÊÊ DROP EVENT MONITOR event-monitor-name ÊÍ

Command Parameters

EVENT MONITOR event-monitor-name
Identifies the event monitor that is to be dropped. The event-monitor-name
must identify an event monitor that is described in the catalog
(SQLSTATE 42704).

If the identified event monitor is ON, an error (SQLSTATE 55034) is
raised. Otherwise, the event monitor is deleted.

If there are event files in the target path of the event monitor when the
event monitor is dropped, the event files are not deleted.

Sample Programs

An event monitor must be stopped or OFF before it can be deleted. Dropping
an event monitor does not erase the target directory.

DROP EVENT MONITOR Command and SQL

Appendix A. Database System Monitor Interfaces 321

EVENT_MON_STATE

ÊÊ EVENT_MON_STATE (string-expression) ÊÍ

The schema is SYSIBM.

The EVENT_MON_STATE function returns the current state of an event
monitor.

The argument is a string expression with a resulting type of CHAR or
VARCHAR and a value that is the name of an event monitor. If the named
event monitor does not exist in the SYSCAT.EVENTMONITORS catalog table,
SQLSTATE 42704 will be returned.

The result is an integer with one of the following values:

0 The event monitor is inactive.

1 The event monitor is active.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example:
v The following example selects all of the defined event monitors, and

indicates whether each is active or inactive:
SELECT EVMONNAME,

CASE
WHEN EVENT_MON_STATE(EVMONNAME) = 0 THEN 'Inactive'
WHEN EVENT_MON_STATE(EVMONNAME) = 1 THEN 'Active'

END
FROM SYSCAT.EVENTMONITORS

EVENT_MON_STATE

322 System Monitor Guide and Reference

FLUSH EVENT MONITOR

The FLUSH EVENT MONITOR statement writes current database monitor
values for all active monitor types associated with event monitor
event-monitor-name to the event monitor I/O target. Hence, at any time a
partial event record is available for event monitors that have low record
generation frequency (such as a database event monitor). Such records are
noted in the event monitor log with a partial record identifier.

When an event monitor is flushed, its active internal buffers are written to the
event monitor output object.

Scope

This statement can be embedded in an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID must include either SYSADM or
DBADM authority (SQLSTATE 42502).

Command Syntax

ÊÊ FLUSH EVENT MONITOR event-monitor-name
BUFFER

ÊÍ

Command Parameters

event-monitor-name
Name of the event monitor. This is a one-part name. It is an SQL
identifier.

BUFFER
Indicates that the event monitor buffers are to be written out. If BUFFER
is specified, then a partial record is not generated. Only the data already
present in the event monitor buffers are written out.

Usage Notes
v Flushing out the event monitor will not cause the event monitor values to

be reset. This means that the event monitor record that would have been
generated if no flush was performed, will still be generated when the
normal monitor event is triggered.

FLUSH EVENT MONITOR

Appendix A. Database System Monitor Interfaces 323

GET DATABASE MANAGER MONITOR SWITCHES

Displays the status of the database system monitor switches. Monitor switches
instruct the database system manager to collect database activity information.
Each application using the database system monitor interface has its own set
of monitor switches (see “GET MONITOR SWITCHES” on page 326). A
database manager-level switch is on when any of the monitoring applications
has turned it on. This command is used to determine if the database system
monitor is currently collecting data for any monitoring application.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection

Instance or database:
v If there is neither an attachment to an instance, nor a connection to a

database, a default instance attachment is created.
v If there is both an attachment to an instance, and a database connection, the

instance attachment is used.

To display the settings for a remote instance, or for a different local instance, it
is necessary to first attach to that instance.

Command Syntax

ÊÊ GET DATABASE MANAGER MONITOR SWITCHES
DB MANAGER
DBM

ÊÍ

Command Parameters

None

Examples

The following is sample output from GET DATABASE MANAGER
MONITOR SWITCHES:

GET DATABASE MANAGER MONITOR SWITCHES

324 System Monitor Guide and Reference

Usage Notes

The six recording switches (BUFFERPOOL, LOCK, SORT, STATEMENT,
TABLE, and UOW) are off by default, but may be switched on using
“UPDATE MONITOR SWITCHES” on page 364. If a particular switch is on,
this command also displays the time stamp for when the switch was turned
on.

See Also

“GET MONITOR SWITCHES” on page 326

“GET SNAPSHOT” on page 328

“RESET MONITOR” on page 349

“UPDATE MONITOR SWITCHES” on page 364.

DBM System Monitor Information Collected

Buffer Pool Activity Information (BUFFERPOOL) = ON 06-11-1997 10:11:01.738377
Lock Information (LOCK) = OFF
Sorting Information (SORT) = ON 06-11-1997 10:11:01.738400
SQL Statement Information (STATEMENT) = OFF
Table Activity Information (TABLE) = OFF
Unit of Work Information (UOW) = ON 06-11-1997 10:11:01.738353

GET DATABASE MANAGER MONITOR SWITCHES

Appendix A. Database System Monitor Interfaces 325

GET MONITOR SWITCHES

Displays the status of the database system monitor switches for the current
session. Monitor switches instruct the database system manager to collect
database activity information. Each application using the database system
monitor interface has its own set of monitor switches. This command displays
them. To display the database manager-level switches, use “GET DATABASE
MANAGER MONITOR SWITCHES” on page 324.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection

Instance or database:
v If there is neither an attachment to an instance, nor a connection to a

database, a default instance attachment is created.
v If there is both an attachment to an instance, and a database connection, the

instance attachment is used.

To display the settings for a remote instance, or for a different local instance, it
is necessary to first attach to that instance.

Command Syntax

ÊÊ GET MONITOR SWITCHES ÊÍ

Command Parameters

None

Examples

The following is sample output from GET MONITOR SWITCHES:

GET MONITOR SWITCHES

326 System Monitor Guide and Reference

Usage Notes

The six recording switches (BUFFERPOOL, LOCK, SORT, STATEMENT,
TABLE, and UOW) are off by default, but may be switched on using
“UPDATE MONITOR SWITCHES” on page 364. If a particular switch is on,
this command also displays the time stamp for when the switch was turned
on.

See Also

“GET DATABASE MANAGER MONITOR SWITCHES” on page 324

“GET SNAPSHOT” on page 328

“RESET MONITOR” on page 349

“UPDATE MONITOR SWITCHES” on page 364.

Monitor Recording Switches

Buffer Pool Activity Information (BUFFERPOOL) = ON 02-20-1997 16:04:30.070073
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = ON 02-20-1997 16:04:30.070073
Table Activity Information (TABLE) = OFF
Unit of Work Information (UOW) = ON 02-20-1997 16:04:30.070073

GET MONITOR SWITCHES

Appendix A. Database System Monitor Interfaces 327

GET SNAPSHOT

Collects database manager status information and returns it to a user-allocated
data buffer. The information returned represents a snapshot of the database
manager operational status at the time the command was issued.

Scope

This command can be invoked from any node in the db2nodes.cfg file. It acts
only on that node or partition.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection

Instance or database:
v If there is neither an attachment to an instance, nor a connection to a

database, a default instance attachment is created.
v If there is both an attachment to an instance, and a database connection, the

instance attachment is used.

To obtain a snapshot of a remote instance, it is necessary to first attach to that
instance.

Command Syntax

ÊÊ GET SNAPSHOT FOR Ê

GET SNAPSHOT

328 System Monitor Guide and Reference

Ê DATABASE MANAGER
DB MANAGER
DBM

ALL DATABASES
DCS

ALL APPLICATIONS
DCS

ALL BUFFERPOOLS
APPLICATION APPLID appl-id

DCS AGENTID appl-handle
FCM FOR ALL NODES
LOCKS FOR APPLICATION APPLID appl-id

AGENTID appl-handle
ALL ON database-alias

DATABASE WRITE TO FILE
DCS DB

APPLICATIONS
DCS

TABLES
TABLESPACES
LOCKS
BUFFERPOOLS
DYNAMIC SQL

ÊÍ

Note: The monitor switches must be turned on to get some statistics (see
“UPDATE MONITOR SWITCHES” on page 364).

Command Parameters

DATABASE MANAGER
Provides statistics for the active database manager instance.

ALL DATABASES
Provides general statistics for all active databases on the current node.

ALL APPLICATIONS
Provides information about all active applications that are connected
to a database on the current node.

ALL BUFFERPOOLS
Provides information about buffer pool activity for all active
databases.

APPLICATION APPLID appl-id
Provides information only about the application whose ID is specified.
To get a specific application ID, use “LIST APPLICATIONS” on
page 344.

APPLICATION AGENTID appl-handle
Provides information only about the application whose application
handle is specified. The application handle is a 32-bit number that

GET SNAPSHOT

Appendix A. Database System Monitor Interfaces 329

uniquely identifies an application that is currently running. Use “LIST
APPLICATIONS” on page 344 to get a specific application handle.

FCM FOR ALL NODES
Provides FCM statistics for all nodes.

LOCKS FOR APPLICATION APPLID appl-id
Provides information about all locks held by the specified application,
identified by application ID.

LOCKS FOR APPLICATION AGENTID appl-handle
Provides information about all locks held by the specified application,
identified by application handle.

ALL ON database-alias
Provides general statistics and information about all applications,
tables, table spaces, buffer pools, and locks for a specified database.

DATABASE ON database-alias
Provides general statistics for a specified database.

APPLICATIONS ON database-alias
Provides information about all applications connected to a specified
database.

TABLES ON database-alias
Provides information about tables in a specified database. This will
include only those tables that have been accessed since the TABLE
recording switch was turned on.

TABLESPACES ON database-alias
Provides information about table spaces for a specified database.

LOCKS ON database-alias
Provides information about every lock held by each application
connected to a specified database.

BUFFERPOOLS ON database-alias
Provides information about buffer pool activity for the specified
database.

DYNAMIC SQL ON database-alias
Returns a point-in-time picture of the contents of the SQL statement
cache for the database.

WRITE TO FILE
Only available for DYNAMIC SQL snapshots. Specifies that snapshot
results are to be stored in a file at the server, as well as being passed
back to the client. This command is valid only over a database
connection. The snapshot data can then be queried through the table

GET SNAPSHOT

330 System Monitor Guide and Reference

function SYSFUN.SQLCACHE_SNAPSHOT over the same connection
on which the call was made. For more information, see the System
Monitor Guide and Reference.

DCS Depending on which clause it is specified, this keyword requests
statistics about:

v A specific DCS application currently running on the DB2 Connect
Gateway

v All DCS applications
v All DCS applications currently connected to a specific DCS database
v A specific DCS database
v All DCS databases.

Examples

In the following sample output listings, some of the information may not be
available, depending on whether or not the appropriate database system
monitor recording switch is turned on (see “UPDATE MONITOR SWITCHES”
on page 364). If the information is unavailable, Not Collected appears in the
output.

The following is typical output resulting from a request for database manager
information:

Database Manager Snapshot

Node type = Database Server with local clients
Instance name = smith
Number of nodes in DB2 instance = 0
Database manager status = Active

Product name =
Product identification =
Service level =

Sort heap allocated = 0
Post threshold sorts = 0
Piped sorts requested = 0
Piped sorts accepted = 0

Start Database Manager timestamp = 02-25-1999 13:26:53.126518
Last reset timestamp =
Snapshot timestamp = 02-25-1999 13:45:42.257720

Remote connections to db manager = 0
Remote connections executing in db manager = 0
Local connections = 1
Local connections executing in db manager = 0
Active local databases = 1

High water mark for agents registered = 3
High water mark for agents waiting for a token = 0
Agents registered = 3
Agents waiting for a token = 0
Idle agents = 1

GET SNAPSHOT

Appendix A. Database System Monitor Interfaces 331

Committed private Memory (Bytes) = 3670016

Buffer Pool Activity Information (BUFFERPOOL) = ON 02-25-1999 13:32:14
Lock Information (LOCK) = ON 02-25-1999 13:32:40
Sorting Information (SORT) = ON 02-25-1999 13:32:40
SQL Statement Information (STATEMENT) = ON 02-25-1999 13:32:14
Table Activity Information (TABLE) = ON 02-25-1999 13:32:40
Unit of Work Information (UOW) = ON 02-25-1999 13:32:14

Agents assigned from pool = 2
Agents created from empty pool = 3
Agents stolen from another application = 0
High water mark for coordinating agents = 3
Max agents overflow = 0
Hash joins after heap threshold exceeded = 0

Total number of gateway connections = 0
Current number of gateway connections = 0
Gateway connections waiting for host reply = 0
Gateway connections waiting for client reply = 0
Gateway inactive connection pool agents = 0
Gateway connection pool agents stolen = 0

The following is typical output resulting from a request for database
information:

Database Snapshot

Database name = SAMPLE
Database path = /home/smith/smith/NODE0000/SQL00001/
Input database alias =
Database status = Active
Catalog node number = 0
Catalog network node name =
Operating system running at database server= AIX
Location of the database = Local
First database connect timestamp = 02-25-1999 13:31:33.886214
Last reset timestamp =
Last backup timestamp =
Snapshot timestamp = 02-25-1999 13:40:08.337902

High water mark for connections = 1
Application connects = 1
Secondary connects total = 0
Applications connected currently = 1
Appls. executing in db manager currently = 0
Agents associated with applications = 1
Maximum agents associated with applications= 1
Maximum coordinating agents = 1

Locks held currently = 1
Lock waits = 0
Time database waited on locks (ms) = 0
Lock list memory in use (Bytes) = 432
Deadlocks detected = 0
Lock escalations = 0
Exclusive lock escalations = 0
Agents currently waiting on locks = 0
Lock Timeouts = 0

Total sort heap allocated = 0
Total sorts = 0
Total sort time (ms) = 0
Sort overflows = 0
Active sorts = 0

GET SNAPSHOT

332 System Monitor Guide and Reference

High water mark for database heap = 316084

Buffer pool data logical reads = 1
Buffer pool data physical reads = 0
Asynchronous pool data page reads = 0
Buffer pool data writes = 0
Asynchronous pool data page writes = 0
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Asynchronous pool index page reads = 0
Buffer pool index writes = 0
Asynchronous pool index page writes = 0
Total buffer pool read time (ms) = 0
Total buffer pool write time (ms) = 0
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0
LSN Gap cleaner triggers = 0
Dirty page steal cleaner triggers = 0
Dirty page threshold cleaner triggers = 0
Time waited for prefetch (ms) = 0
Direct reads = 0
Direct writes = 0
Direct read requests = 0
Direct write requests = 0
Direct reads elapsed time (ms) = 0
Direct write elapsed time (ms) = 0
Database files closed = 0
Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0

Commit statements attempted = 2
Rollback statements attempted = 0
Dynamic statements attempted = 10
Static statements attempted = 2
Failed statement operations = 0
Select SQL statements executed = 2
Update/Insert/Delete statements executed = 0
DDL statements executed = 0

Internal automatic rebinds = 0
Internal rows deleted = 0
Internal rows inserted = 0
Internal rows updated = 0
Internal commits = 1
Internal rollbacks = 0
Internal rollbacks due to deadlock = 0

Rows deleted = 0
Rows inserted = 0
Rows updated = 0
Rows selected = 16

Binds/precompiles attempted = 0

Log space available to the database (Bytes)= 0
Log space used by the database (Bytes) = 0
Maximum secondary log space used (Bytes) = 0
Maximum total log space used (Bytes) = 0
Secondary logs allocated currently = 0
Log pages read = 0
Log pages written = 0
Appl id holding the oldest transaction = 0

GET SNAPSHOT

Appendix A. Database System Monitor Interfaces 333

Package cache lookups = 2
Package cache inserts = 1
Package cache overflows = 0
Package cache high water mark (Bytes) = 108757
Application section lookups = 10
Application section inserts = 1

Catalog cache lookups = 1
Catalog cache inserts = 1
Catalog cache overflows = 0
Catalog cache heap full = 0

Number of hash joins = 0
Number of hash loops = 0
Number of hash join overflows = 0
Number of small hash join overflows = 0

The following is typical output resulting from a request for DCS database
information:

DCS Database Snapshot

DCS database name = DCSDB
Host database name = GILROY
First database connect timestamp = 02-25-1999 17:00:05.003421
Most recent elapsed time to connect = 0.001200
Most recent elapsed connection duration = 3.443780
Host response time (sec.ms) = 0.000320
Last reset timestamp =
Number of SQL statements attempted = 12
Commit statements attempted = 6
Rollback statements attempted = 2
Failed statement operations = 4
Total number of gateway connections = 0
Current number of gateway connections = 1
Gateway conn. waiting for host reply = 0
Gateway conn. waiting for client reply = 1
Gateway communication errors to host = 0
Timestamp of last communication error = None
High water mark for gateway connections = 1
Rows selected = 0
Outbound bytes sent = 0
Outbound bytes received = 0

The following is typical output resulting from a request for application
information (by specifying either an application ID, an application handle, all
applications, or all applications on a database):

Application Snapshot

Application handle = 3
Application status = UOW Waiting
Status change time = 02-25-1999 13:33:41.446676
Application code page = 819
Application country code = 1
DUOW correlation token = *LOCAL.smith.990225183133
Application name = db2bp
Application ID = *LOCAL.smith.990225183133
Sequence number = 0001
Connection request start timestamp = 02-25-1999 13:31:33.886214
Connect request completion timestamp = 02-25-1999 13:31:34.434114
Application idle time = 6 minutes and 42 seconds
Authorization ID = SMITH

GET SNAPSHOT

334 System Monitor Guide and Reference

Client login ID = smith
Configuration NNAME of client =
Client database manager product ID = SQL06000
Process ID of client application = 27918
Platform of client application = AIX
Communication protocol of client = Local Client

Outbound communication address =
Outbound communication protocol = APPC
Inbound communication address =

Database name = SAMPLE
Database path = /home/smith/smith/NODE0000/SQL00001/
Client database alias = sample
Input database alias =
Last reset timestamp =
Snapshot timestamp = 02-25-1999 13:40:23.773540
The highest authority level granted =

Direct DBADM authority
Direct CREATETAB authority
Direct BINDADD authority
Direct CONNECT authority
Direct CREATE_NOT_FENC authority
Direct IMPLICIT_SCHEMA authority
Indirect SYSADM authority
Indirect CREATETAB authority
Indirect BINDADD authority
Indirect CONNECT authority
Indirect IMPLICIT_SCHEMA authority

Coordinating node number = 0
Current node number = 0
Coordinator agent process or thread ID = 26160
Agents stolen = 0
Agents waiting on locks = 0
Maximum associated agents = 1
Priority at which application agents work = 0
Priority type = Dynamic

Locks held by application = 1
Lock waits since connect = 0
Time application waited on locks (ms) = 0
Deadlocks detected = 0
Lock escalations = 0
Exclusive lock escalations = 0
Number of Lock Timeouts since connected = 0
Total time UOW waited on locks (ms) = 0

Total sorts = 0
Total sort time (ms) = 0
Total sort overflows = 0

Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0
Buffer pool data logical reads = 1
Buffer pool data physical reads = 0
Buffer pool data writes = 0
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Buffer pool index writes = 0
Total buffer pool read time (ms) = 0
Total buffer pool write time (ms) = 0
Time waited for prefetch (ms) = 0
Direct reads = 0
Direct writes = 0

GET SNAPSHOT

Appendix A. Database System Monitor Interfaces 335

Direct read requests = 0
Direct write requests = 0
Direct reads elapsed time (ms) = 0
Direct write elapsed time (ms) = 0

Number of SQL requests since last commit = 5
Commit statements = 2
Rollback statements = 0
Dynamic SQL statements attempted = 10
Static SQL statements attempted = 2
Failed statement operations = 0
Select SQL statements executed = 2
Update/Insert/Delete statements executed = 0
DDL statements executed = 0
Internal automatic rebinds = 0
Internal rows deleted = 0
Internal rows inserted = 0
Internal rows updated = 0
Internal commits = 1
Internal rollbacks = 0
Internal rollbacks due to deadlock = 0
Binds/precompiles attempted = 0
Rows deleted = 0
Rows inserted = 0
Rows updated = 0
Rows selected = 16
Rows read = 25
Rows written = 0

UOW log space used (Bytes) = 0
Previous UOW completion timestamp = 02-25-1999 13:31:34.434114
Elapsed time of last completed uow (sec.ms)= 0.919533380
UOW start timestamp = 02-25-1999 13:33:41.392167
UOW stop timestamp =
UOW completion status =
Open remote cursors = 0
Open remote cursors with blocking = 0
Rejected Block Remote Cursor requests = 0
Accepted Block Remote Cursor requests = 2
Open local cursors = 0
Open local cursors with blocking = 0

Total User CPU Time used by agent (s) = 0.100000
Total System CPU Time used by agent (s) = 0.020000
Package cache lookups = 2
Package cache inserts = 1
Application section lookups = 10
Application section inserts = 1
Catalog cache lookups = 1
Catalog cache inserts = 1
Catalog cache overflows = 0
Catalog cache heap full = 0

Most recent operation = Select
Most recent operation start timestamp = 02-25-1999 13:33:41.394260
Most recent operation stop timestamp = 02-25-1999 13:33:41.446740
Agents associated with the application = 1

Number of hash joins = 0
Number of hash loops = 0
Number of hash join overflows = 0
Number of small hash join overflows = 0

Statement type = Dynamic SQL Statement
Statement = Select
Section number = 201

GET SNAPSHOT

336 System Monitor Guide and Reference

Application creator = NULLID
Package name = SQLC28A4
Cursor name = SQLCUR201
Statement node number = 0
Statement start timestamp = 02-25-1999 13:33:41.394260
Statement stop timestamp = 02-25-1999 13:33:41.446740
Elapsed time of last completed stmt(sec.ms)= 0.000000
Total user CPU time = 0.000000
Total system CPU time = 0.000000
SQL compiler cost estimate in timerons = 30
SQL compiler cardinality estimate = 47
Degree of parallelism requested = 1
Number of agents working on statement = 1
Number of subagents created for statement = 1
Statement sorts = 0
Total sort time = 0
Sort overflows = 0
Rows read = 8
Rows written = 0
Rows deleted = 0
Rows updated = 0
Rows inserted = 0
Rows fetched = 0
Number of subsections = 0
Dynamic SQL statement text:
select * from org

The following is typical output resulting from a request for DCS application
information (by specifying either a DCS application ID, a DCS application
handle, all DCS applications, or all DCS applications on a database):

DCS Application Snapshot
Client application ID = 09151251.04D6.980521202839
Sequence number = 0001
Authorization ID = NEWTON
Application name = db2bp
Application handle = 0
Application status = waiting for request
Status change time = 05-21-1998 16:35:27.670354
Client DB alias = MVSDB
Client node = antman
Client release level = SQL05020
Client platform = AIX
Client protocol = TCP/IP
Client codepage = 819
Process ID of client application = 35754
Client login ID = user1
Host application ID = G9151251.G4D7.980521202840
Sequence number = 0000
Host DB name = GILROY
Host release level = DSN05011
Host CCSID = 500

Outbound communication address = 9.21.21.92 5021
Outbound communication protocol = TCP/IP
Inbound communication address = 9.31.12.34 334
First database connect timestamp = 05-21-1998 16:28:39.517919
Time spent on gateway processing = 0.334215
Last reset timestamp =
Rows selected = 0
Number of SQL statements attempted = 2
Failed statement operations = 0
Commit statements = 1
Rollback statements = 0
Inbound bytes received = 392

GET SNAPSHOT

Appendix A. Database System Monitor Interfaces 337

Outbound bytes sent = 136
Outbound bytes received = 178
Inbound bytes sent = 190
Number of open cursors = 0
Application idle time = 53 seconds
UOW completion status = Committed - Commit Statement
Previous UOW completion timestamp =
UOW start timestamp = 05-21-1998 16:35:27.252375
UOW stop timestamp = 05-21-1998 16:35:27.670290
Inbound bytes received for UOW = 180
Outbound bytes sent for UOW = 136
Outbound bytes received for UOW = 178
Inbound bytes sent for UOW = 190
Most recent operation = Static Commit
Most recent operation start timestamp = 05-21-1998 16:35:27.284183
Most recent operation stop timestamp = 05-21-1998 16:35:27.670290
Statement = Static Commit
Section number = 0
Application creator = NULLID
Package name = SQLC28A0
SQL compiler cost estimate in timerons = 0
SQL compiler cardinality estimate = 0
Statement start timestamp = 05-21-1998 16:35:27.284183
Statement stop timestamp = 05-21-1998 16:35:27.670290
Rows fetched = 0
Time spent on gateway processing = 0.333740
Inbound bytes received for statement = 0
Outbound bytes sent for statement = 10
Outbound bytes received for statement = 54
Inbound bytes sent for statement = 0

The following is typical output resulting from a request for buffer pool
information:

Bufferpool Snapshot
Bufferpool name = IBMDEFAULTBP
Database name = SAMPLE
Database path = /home/user1/user1/NODE0000/SQL00011/
Input database alias = SAMPLE
Buffer pool data logical reads = 32
Buffer pool data physical reads = 13
Buffer pool data writes = 0
Buffer pool index logical reads = 55
Buffer pool index physical reads = 23
Total buffer pool read time (ms) = 364
Total buffer pool write time (ms) = 0
Database files closed = 0
Asynchronous pool data page reads = 0
Asynchronous pool data page writes = 0
Buffer pool index writes = 0
Asynchronous pool index page reads = 0
Asynchronous pool index page writes = 0
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0
Direct reads = 34
Direct writes = 0
Direct read requests = 4
Direct write requests = 0
Direct reads elapsed time (ms) = 1
Direct write elapsed time (ms) = 0
Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0

GET SNAPSHOT

338 System Monitor Guide and Reference

The following is typical output resulting from a request for table space
information:

Tablespace Snapshot
First database connect timestamp = 04-04-1997 14:29:55.197659
Last reset timestamp =
Snapshot timestamp = 04-04-1997 14:32:14.151875
Database name = SAMPLE
Database path = /home/user1/user1/NODE0000/SQL00011/
Input database alias = SAMPLE
Number of accessed tablespaces = 3
Tablespace name = SYSCATSPACE

Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0
Buffer pool data logical reads = 26
Buffer pool data physical reads = 11
Asynchronous pool data page reads = 0
Buffer pool data writes = 0
Asynchronous pool data page writes = 0
Buffer pool index logical reads = 55
Buffer pool index physical reads = 23
Asynchronous pool index page reads = 0
Buffer pool index writes = 0
Asynchronous pool index page writes = 0
Total buffer pool read time (ms) = 342
Total buffer pool write time (ms) = 0
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0
Direct reads = 34
Direct writes = 0
Direct read requests = 4
Direct write requests = 0
Direct reads elapsed time (ms) = 1
Direct write elapsed time (ms) = 0
Number of files closed = 0

Tablespace name = TEMPSPACE1
Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0
Buffer pool data logical reads = 0
Buffer pool data physical reads = 0
Asynchronous pool data page reads = 0
Buffer pool data writes = 0
Asynchronous pool data page writes = 0
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Asynchronous pool index page reads = 0
Buffer pool index writes = 0
Asynchronous pool index page writes = 0
Total buffer pool read time (ms) = 0
Total buffer pool write time (ms) = 0
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0
Direct reads = 0
Direct writes = 0
Direct read requests = 0
Direct write requests = 0
Direct reads elapsed time (ms) = 0
Direct write elapsed time (ms) = 0
Number of files closed = 0

Tablespace name = USERSPACE1

GET SNAPSHOT

Appendix A. Database System Monitor Interfaces 339

Data pages copied to extended storage = 0
Index pages copied to extended storage = 0
Data pages copied from extended storage = 0
Index pages copied from extended storage = 0
Buffer pool data logical reads = 6
Buffer pool data physical reads = 2
Asynchronous pool data page reads = 0
Buffer pool data writes = 0
Asynchronous pool data page writes = 0
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Asynchronous pool index page reads = 0
Buffer pool index writes = 0
Asynchronous pool index page writes = 0
Total buffer pool read time (ms) = 22
Total buffer pool write time (ms) = 0
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0
Direct reads = 0
Direct writes = 0
Direct read requests = 0
Direct write requests = 0
Direct reads elapsed time (ms) = 0
Direct write elapsed time (ms) = 0
Number of files closed = 0

The following is typical output resulting from a request for dynamic SQL
information:

Dynamic SQL Snapshot Result

Database name = SAMPLE

Database path = /home/smith/smith/NODE0000/SQL00001/

Number of executions = 2
Number of compilations = 1
Worst preparation time (ms) = 126
Best preparation time (ms) = 126
Rows deleted = 0
Rows inserted = 0
Rows read = 24
Rows updated = 0
Rows written = 0
Statement sorts = 0
Total execution time (sec.ms) = 0.060226
Total system cpu time (sec.ms) = 0
Total user cpu time (sec.ms) = 0
Statement text = select * from org

Usage Notes

To obtain a snapshot from a remote instance (or a different local instance), it is
necessary to first attach to that instance. If an alias for a database residing at a
different instance is specified, an error message is returned.

To obtain some statistics, it is necessary that the database system monitor
switches are turned on.

GET SNAPSHOT

340 System Monitor Guide and Reference

No data is returned following a request for table information if any of the
following is true:
v The TABLE recording switch is turned off.
v No tables have been accessed since the switch was turned on.
v No tables have been accessed since the last RESET MONITOR command

was issued.

See Also

“GET MONITOR SWITCHES” on page 326

“LIST APPLICATIONS” on page 344

“RESET MONITOR” on page 349.

GET SNAPSHOT

Appendix A. Database System Monitor Interfaces 341

LIST ACTIVE DATABASES

Displays a subset of the information listed by the GET SNAPSHOT FOR ALL
DATABASES command (see “GET SNAPSHOT” on page 328). For each active
database, this command displays the following:

v Database name
v Number of applications currently connected to the database
v Database path.

Scope

This command can be issued from any node that is listed in
$HOME/sqllib/db2nodes.cfg. It returns the same information from any of these
nodes.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Command Syntax

ÊÊ LIST ACTIVE DATABASES ÊÍ

Command Parameters

None

Examples

Following is sample output from the LIST ACTIVE DATABASES command:

Active Databases

Database name = TEST
Applications connected currently = 0
Database path = /home/smith/smith/NODE0000/SQL00002/

Database name = SAMPLE
Applications connected currently = 1
Database path = /home/smith/smith/NODE0000/SQL00001/

LIST ACTIVE DATABASES

342 System Monitor Guide and Reference

See Also

“GET SNAPSHOT” on page 328.

LIST ACTIVE DATABASES

Appendix A. Database System Monitor Interfaces 343

LIST APPLICATIONS

Displays to standard output the application program name, authorization ID
(user name), application handle, application ID, and database name of all
active database applications. This command can also optionally display an
application’s sequence number, status, status change time, and database path.

Scope

This command only returns information for the node on which it is issued.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection

Instance. To list applications for a remote instance, it is necessary to first
attach to that instance.

Command Syntax

ÊÊ LIST APPLICATIONS
FOR DATABASE database-alias

DB
SHOW DETAIL

ÊÍ

Command Parameters

FOR DATABASE database-alias
Information for each application that is connected to the specified
database is to be displayed. Database name information is not
displayed. If this option is not specified, the command displays the
information for each application that is currently connected to any
database at the node to which the user is currently attached.

The default application information is comprised of the following:
v Authorization ID
v Application program name
v Application handle
v Application ID
v Database name.

LIST APPLICATIONS

344 System Monitor Guide and Reference

SHOW DETAIL
Output will include the following additional information:
v Sequence #
v Application status
v Status change time
v Database path.

Note: If this option is specified, it is recommended that the output be
redirected to a file, and that the report be viewed with the help of an
editor. The output lines may wrap around when displayed on the
screen.

Examples

The following is sample output from LIST APPLICATIONS:

Note: For more information about these fields, see the System Monitor Guide
and Reference.

Usage Notes

The database administrator can use the output from this command as an aid
to problem determination. In addition, this information is required if the
database administrator wants to use “GET SNAPSHOT” on page 328 .

To list applications at a remote instance (or a different local instance), it is
necessary to first attach to that instance. If FOR DATABASE is specified when
an attachment exists, and the database resides at an instance which differs
from the current attachment, the command will fail.

Auth Id Application Appl. Application Id DB # of
Name Handle Name Agents

-------- -------------- ---------- ------------------------------ -------- -----
smith db2bp_32 12 *LOCAL.smith.970220191502 TEST 1
smith db2bp_32 11 *LOCAL.smith.970220191453 SAMPLE 1

LIST APPLICATIONS

Appendix A. Database System Monitor Interfaces 345

LIST DCS APPLICATIONS

Displays to standard output information about applications that are connected
to host databases via DB2 Connect Enterprise Edition.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection

Instance. To list the DCS applications at a remote instance, it is necessary to
first attach to that instance.

Command Syntax

ÊÊ LIST DCS APPLICATIONS
SHOW DETAIL
EXTENDED

ÊÍ

Command Parameters

LIST DCS APPLICATIONS
The default application information includes:
v Host authorization ID (username)
v Application program name
v Application handle
v Outbound application ID (luwid).

SHOW DETAIL
Specifies that output include the following additional information:
v Client application ID
v Client sequence number
v Client database alias
v Client node name (nname)
v Client release level
v Client code page
v Outbound sequence number
v Host database name
v Host release level.

LIST DCS APPLICATIONS

346 System Monitor Guide and Reference

EXTENDED
Generates an extended report. This report includes all of the fields
that are listed when the SHOW DETAIL option is specified, plus the
following additional fields:
v DCS application status
v Status change time
v Client platform
v Client protocol
v Client code page
v Process ID of the client application
v Host coded character set ID (CCSID).

Examples

The following is sample output from LIST DCS APPLICATIONS:

The following is sample output from LIST DCS APPLICATIONS EXTENDED:

Notes:

1. The application status field contains one of the following values:

Auth Id Application Name Appl. Outbound Application Id
Handle

-------- -------------------- ---------- --------------------------------
DDCSUS1 db2bp_s 2 0915155C.139D.971205184245

List of DCS Applications - Extended Report

Client application ID = 09151251.0AD1.980529194106
Sequence number = 0001
Authorization ID = SMITH
Application name = db2bp
Application handle = 0
Application status = waiting for reply
Status change time = Not Collected
Client DB alias = MVSDB
Client node = antman
Client release level = SQL05020
Client platform = AIX
Client protocol = TCP/IP
Client codepage = 819
Process ID of client application = 38340
Client login ID = user1
Host application ID = G9151251.GAD2.980529194108
Sequence number = 0000
Host DB name = GILROY
Host release level = DSN05011
Host CCSID = 500

LIST DCS APPLICATIONS

Appendix A. Database System Monitor Interfaces 347

connect pending - outbound
Denotes that the request to connect to a host database has been
issued, and that DB2 Connect is waiting for the connection to be
established.

waiting for request
Denotes that the connection to the host database has been
established, and that DB2 Connect is waiting for an SQL statement
from the client application.

waiting for reply
Denotes that the SQL statement has been sent to the host database.

2. The status change time is shown only if the System Monitor UOW switch
was turned on during processing. Otherwise, Not Collected is shown.

3. For more information about these fields, see the System Monitor Guide and
Reference.

Usage Notes

The database administrator can use this command to match client application
connections to the gateway with corresponding host connections from the
gateway.

The database administrator can also use agent ID information to force
specified applications off a DB2 Connect server.

LIST DCS APPLICATIONS

348 System Monitor Guide and Reference

RESET MONITOR

Resets the internal database system monitor data areas of a specified database,
or of all active databases, to zero. The internal database system monitor data
areas include the data areas for all applications connected to the database, as
well as the data areas for the database itself.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection

Instance or database:
v If there is neither an attachment to an instance, nor a connection to a

database, a default instance attachment is created.
v If there is both an attachment to an instance, and a database connection, the

instance attachment is used.

To reset the monitor switches for a remote instance (or a different local
instance), it is necessary to first attach to that instance.

Command Syntax

ÊÊ RESET MONITOR ALL
DCS

FOR DATABASE database-alias
DCS DB

ÊÍ

Command Parameters

ALL This option indicates that the internal counters should be reset for all
databases.

FOR DATABASE database-alias
This option indicates that only the database with alias database-alias
should have its internal counters reset.

DCS Depending on which clause it is specified, this keyword resets the
internal counters of:
v All DCS databases
v A specific DCS database.

RESET MONITOR

Appendix A. Database System Monitor Interfaces 349

Usage Notes

Each process (attachment) has its own private view of the monitor data. If one
user resets, or turns off a monitor switch, other users are not affected. Change
the setting of the monitor switch configuration parameters to make global
changes to the monitor switches .

If ALL is specified, some database manager information is also reset to
maintain consistency of the returned data, and some node-level counters are
reset.

See Also

“GET SNAPSHOT” on page 328

“GET MONITOR SWITCHES” on page 326.

RESET MONITOR

350 System Monitor Guide and Reference

SET EVENT MONITOR STATE

The SET EVENT MONITOR STATE statement activates or deactivates an
event monitor. The current state of an event monitor (active or inactive) is
determined by using the EVENT_MON_STATE built-in function. The SET
EVENT MONITOR STATE statement is not under transaction control.

Scope

This statement can be embedded in an application program or issued through
the use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared. However, if the bind option DYNAMICRULES BIND
applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization

The authorization ID of the statement most hold either SYSADM or DBADM
authority (SQLSTATE 42815).

Command Syntax

ÊÊ SET EVENT MONITOR event-monitor-name STATE
=

0
1
host-variable

ÊÍ

Command Parameters

event-monitor-name
Identifies the event monitor to activate or deactivate. The name must
identify an event monitor that exists in the catalog (SQLSTATE 42704).

new-state
new-state can be specified either as an integer constant or as the name of a
host variable that will contain the appropriate value at run time. The
following may be specified:

0 Indicates that the specified event monitor should be
deactivated.

1 Indicates that the specified event monitor should be
activated. The event monitor should not already be active;
otherwise a warning (SQLSTATE 01598) is issued.

host-variable The data type is INTEGER. The value specified must be 0
or 1 (SQLSTATE 42815). If host-variable has an associated
indicator variable, the value of that indicator variable
must not indicate a null value (SQLSTATE 42815).

SET EVENT MONITOR STATE

Appendix A. Database System Monitor Interfaces 351

Sample Programs
v Although an unlimited number of event monitors may be defined, there is

a limit of 32 event monitors that can be simultaneously active (SQLSTATE
54030).

v In order to activate an event monitor, the transaction in which the event
monitor was created must have been committed (SQLSTATE 55033). This
rule prevents (in one unit of work) creating an event monitor, activating the
monitor, then rolling back the transaction.

v If the number or size of the event monitor files exceeds the values specified
for MAXFILES or MAXFILESIZE on the CREATE EVENT MONITOR
statement, an error (SQLSTATE 54031) is raised.

v If the target path of the event monitor (that was specified on the CREATE
EVENT MONITOR statement) is already in use by another event monitor,
an error (SQLSTATE 51026) is raised.

Usage Notes
v Activating an event monitor performs a reset of any counters associated

with it.

The following example activates an event monitor called SMITHPAY.
SET EVENT MONITOR SMITHPAY STATE = 1

SET EVENT MONITOR STATE

352 System Monitor Guide and Reference

SQLCACHE_SNAPSHOT

ÊÊ SQLCACHE_SNAPSHOT ÊÍ

The schema is SYSFUN.

The SQLCACHE_SNAPSHOT returns the the results of a snapshot of the db2
dynamic sql statement cache, when a snapshot is taken with iStoreResult set
to true.

The results of the snapshot are returned to the buffer and written to the file
applid.sql in the tmp subdirectory of the instance’s sqllib subdirectory on the
DB2 server. Where applid is the application ID of the user making the
snapshot request. You can then access the snapshot data using the table
function SQLCACHE_SNAPSHOT.

You can select specific columns by referencing data elements by their
snapshot’s name. For example:
1) get snapshot for dynamic sql on foo write to file

2) select table_name.db_name, table_name.num_executions from
table(sysfun.SQLCACHE_SNAPSHOT()) table_name where
table_name.commit_sql_stmts > 100

Where table_name is an arbitrary valid SQL identifier. The table function in this
example is called SQLCACHE_SNAPSHOT(). This corresponds to a table
function for returning information from a get snapshot for dynamic SQL.

For time and time and timestamp elements, the identifier names are idname_s
and idname_ms. For example, for the data element total_exec_time, the
identifiers would be total_exec_time_s and total_exec_time_ms.

The file containing the results of a dynamic SQL snapshot will be overwritten
by the next dynamic SQL snapshot request. As well, any snapshot data files
generated during the database connection are erased when the application
disconnects.

The function does not take any arguments. A snapshot of the statement cache
can only be taken over a database connection. If write to file is attempted over
an instance attachement, the request will be rejected.

SQLCACHE_SNAPSHOT

Appendix A. Database System Monitor Interfaces 353

Table 4. Column names and data types of the table returned by
SQLCACHE_SNAPSHOT table function

Column name Data type

NUM_EXECUTIONS INTEGER

NUM_COMPILATIONS INTEGER

PREP_TIME_WORST INTEGER

PREP_TIME_BEST INTEGER

INT_ROWS_DELETED INTEGER

INT_ROWS_INSERTED INTEGER

ROWS_READ INTEGER

INT_ROWS_UPDATED INTEGER

ROWS_WRITE INTEGER

STMT_SORTS INTEGER

TOTAL_EXEC_TIME_S INTEGER

TOTAL_EXEC_TIME_MS INTEGER

TOT_U_CPU_TIME_S INTEGER

TOT_U_CPU_TIME_MS INTEGER

TOT_S_CPU_TIME_S INTEGER

TOT_S_CPU_TIME_MS INTEGER

DB_NAME VARCHAR(8)

STMT_TEXT CLOB(64K)

SQLCACHE_SNAPSHOT

354 System Monitor Guide and Reference

sqlmon - Get/Update Monitor Switches

Selectively turns on or off switches for groups of monitor data to be collected
by the database manager. Returns the current state of these switches for the
application issuing the call.

Scope

This API only returns information for the node on which it is executed.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection

Instance or database:
v If there is neither an attachment to an instance, nor a connection to a

database, a default instance attachment is created.
v If there is both an attachment to an instance, and a database connection, the

instance attachment is used.

To display the settings for a remote instance, or for a different local instance, it
is necessary to first attach to that instance.

API Include File

sqlmon.h

C API Syntax

/* File: sqlmon.h */
/* API: Get/Update Monitor Switches */
/* ... */
int SQL_API_FN
sqlmon (
unsigned long version,
_SQLOLDCHAR *reserved,
sqlm_recording_group group_states[],
struct sqlca *sqlca);

/* ... */

sqlmon - Get/Update Monitor Switches

Appendix A. Database System Monitor Interfaces 355

Generic API Syntax

API Parameters

reserved_lgth
Reserved for future use. Users should set this value to zero.

sqlca Output. A pointer to the sqlca structure.

group_states
Input/Output. Pointer to an array of size SQLM_NUM_GROUPS (6).
If the array size is less than six, an error message is returned. The user
determines which element of the array corresponds to which switch
by indexing it to the following symbolic statements (defined in
sqlmon.h):
v SQLM_UOW_SW
v SQLM_STATEMENT_SW
v SQLM_TABLE_SW
v SQLM_BUFFER_POOL_SW
v SQLM_LOCK_SW
v SQLM_SORT_SW.

The array contains the following elements:
v An input_state element set to one of the following (defined in

sqlmon.h):

SQLM_ON
Turns information group on.

SQLM_OFF
Turns information group off.

SQLM_HOLD
Leaves information group in its current state.

v An output_state element, containing current state information about
the information group being monitored, is returned. SQLM_ON and
SQLM_OFF indicate the state.

/* File: sqlmon.h */
/* API: Get/Update Monitor Switches */
/* ... */
int SQL_API_FN

sqlgmon (
unsigned long reserved_lgth,
struct sqlca *sqlca,
sqlm_recording_group group_states[],
_SQLOLDCHAR *reserved,
unsigned long version);

/* ... */

sqlmon - Get/Update Monitor Switches

356 System Monitor Guide and Reference

v A start_time element, indicating the time that the monitored group
was turned on, is returned. If monitoring of this group is turned off,
the time stamp is zero.

reserved
Reserved for future use. Users should set this value to NULL.

version
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version.
Set this parameter to one of the following symbolic constants:
v SQLM_DBMON_VERSION1

v SQLM_DBMON_VERSION2

v SQLM_DBMON_VERSION5

v SQLM_DBMON_VERSION5_2

v SQLM_DBMON_VERSION6

If requesting data for a version higher than the current server, the
database monitor only returns data for its level (see the server_version
field in the ″collected″ portion of the datastream.

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs
cannot be run remotely.

Sample Programs

C \sqllib\samples\c\db2mon.c

Usage Notes

To obtain the status of the switches at the database manager level, call
“db2GetSnapshot - Get Snapshot” on page 317, specifying SQMA_DB2 for
OBJ_TYPE (get snapshot for database manager).

See Also

“db2GetSnapshot - Get Snapshot” on page 317

“sqlmonsz - Estimate Size Required for db2GetSnapshot() Output Buffer” on
page 358

“sqlmrset - Reset Monitor” on page 361.

sqlmon - Get/Update Monitor Switches

Appendix A. Database System Monitor Interfaces 357

sqlmonsz - Estimate Size Required for db2GetSnapshot() Output Buffer

Estimates the buffer size needed by “db2GetSnapshot - Get Snapshot” on
page 317.

Scope

This API only affects the instance to which the calling application is attached.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection

Instance or database:
v If there is neither an attachment to an instance, nor a connection to a

database, a default instance attachment is created.
v If there is both an attachment to an instance, and a database connection, the

instance attachment is used.

To obtain information from a remote instance (or a different local instance), it
is necessary to first attach to that instance. If an attachment does not exist, an
implicit instance attachment is made to the node specified by the
DB2INSTANCE environment variable.

API Include File

sqlmon.h

C API Syntax

/* File: sqlmon.h */
/* API: Estimate Size Required for sqlmonss() Output Buffer */
/* ... */
int SQL_API_FN

sqlmonsz (
unsigned long version,
_SQLOLDCHAR *reserved,
sqlma *sqlma_ptr,
unsigned long *buff_size,
struct sqlca *sqlca);

/* ... */

sqlmonsz - Estimate Size Required for db2GetSnapshot Output Buffer

358 System Monitor Guide and Reference

Generic API Syntax

API Parameters

reserved_lgth
Reserved for future use. This value should be set to zero.

sqlca Output. A pointer to the sqlca structure.

buff_size
Output. A pointer to the returned estimated buffer size needed by the
GET SNAPSHOT API.

sqlma_ptr
Input. Pointer to the user-allocated sqlma (monitor area) structure. This
structure specifies the type(s) of snapshot data to be collected, and can
be reused as input to “db2GetSnapshot - Get Snapshot” on page 317.

reserved
Reserved for future use. Must be set to NULL.

version
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version.
Set this parameter to one of the following symbolic constants:

v SQLM_DBMON_VERSION1

v SQLM_DBMON_VERSION2

v SQLM_DBMON_VERSION5

v SQLM_DBMON_VERSION5_2

v SQLM_DBMON_VERSION6

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs
cannot be run remotely.

Sample Programs

C \sqllib\samples\c\db2mon.c

/* File: sqlmon.h */
/* API: Estimate Size Required for sqlmonss() Output Buffer */
/* ... */
int SQL_API_FN
sqlgmnsz (
unsigned long reserved_lgth,
struct sqlca *sqlca,
unsigned long *buff_size,
sqlma *sqlma_ptr,
_SQLOLDCHAR *reserved,
unsigned long version);

/* ... */

sqlmonsz - Estimate Size Required for db2GetSnapshot Output Buffer

Appendix A. Database System Monitor Interfaces 359

Usage Notes

This function generates a significant amount of overhead. Allocating and
freeing memory dynamically for each db2GetSnapshot call is also expensive.
If calling db2GetSnapshot repeatedly, for example, when sampling data over
a period of time, it may be preferable to allocate a buffer of fixed size, rather
than call sqlmonsz.

If the database system monitor finds no active databases or applications, it
may return a buffer size of zero (if, for example, lock information related to a
database that is not active is requested). Verify that the estimated buffer size
returned by this API is non-zero before calling “db2GetSnapshot - Get
Snapshot” on page 317. If an error is returned by db2GetSnapshot because of
insufficient buffer space to hold the output, call this API again to determine
the new size requirements.

See Also

“sqlmon - Get/Update Monitor Switches” on page 355

“db2GetSnapshot - Get Snapshot” on page 317

“sqlmrset - Reset Monitor” on page 361.

sqlmonsz - Estimate Size Required for db2GetSnapshot Output Buffer

360 System Monitor Guide and Reference

sqlmrset - Reset Monitor

Resets the database system monitor data of a specified database, or of all
active databases, for the application issuing the call.

Scope

This API only affects the node on which it is issued.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection

Instance or database:
v If there is neither an attachment to an instance, nor a connection to a

database, a default instance attachment is created.
v If there is both an attachment to an instance, and a database connection, the

instance attachment is used.

To reset the monitor switches for a remote instance (or a different local
instance), it is necessary to first attach to that instance.

API Include File

sqlmon.h

C API Syntax

/* File: sqlmon.h */
/* API: Reset Monitor */
/* ... */
int SQL_API_FN
sqlmrset (
unsigned long version,
_SQLOLDCHAR *reserved,
unsigned long reset_all,
_SQLOLDCHAR *db_alias,
struct sqlca *sqlca);

/* ... */

sqlmrset - Reset Monitor

Appendix A. Database System Monitor Interfaces 361

Generic API Syntax

API Parameters

dbnamel
Input. A 2-byte unsigned integer representing the length in bytes of
the database alias.

reserved_lgth
Reserved for future use. Users should set this value to zero.

sqlca Output. A pointer to the sqlca structure.

db_alias
Input. The name that is used to reference the database.

If SQLM_ON is specified for the reset_all parameter, this alias is ignored,
and the data areas for all active databases are reset.

reset_all
Input. Indicates whether to reset data areas for a specific database, or
for all active databases. Set this parameter to one of the following
(defined in sqlmon):

SQLM_OFF
Resets data areas for a specific database.

SQLM_ON
Resets data areas for all active databases.

reserved
Reserved for future use. Must be set to NULL.

version
Input. Version ID of the database monitor data to collect. The database
monitor only returns data that was available for the requested version.
Set this parameter to one of the following symbolic constants:
v SQLM_DBMON_VERSION1

/* File: sqlmon.h */
/* API: Reset Monitor */
/* ... */
int SQL_API_FN

sqlgmrst (
unsigned short dbnamel,
unsigned long reserved_lgth,
struct sqlca *sqlca,
_SQLOLDCHAR *db_alias,
unsigned long reset_all,
_SQLOLDCHAR *reserved,
unsigned long version);

/* ... */

sqlmrset - Reset Monitor

362 System Monitor Guide and Reference

v SQLM_DBMON_VERSION2

v SQLM_DBMON_VERSION5

v SQLM_DBMON_VERSION5_2

v SQLM_DBMON_VERSION6

Note: If SQLM_DBMON_VERSION1 is specified as the version, the APIs
cannot be run remotely.

Sample Programs

C \sqllib\samples\c\db2mon.c

Usage Notes

Each process (attachment) has its own private view of the monitor data. If one
user resets, or turns off a monitor switch, other users are not affected. When
an application first calls any database monitor function, it inherits the default
switch settings from the database manager configuration file . These settings
can be overridden with “sqlmon - Get/Update Monitor Switches” on
page 355.

If all active databases are reset, some database manager information is also
reset to maintain the consistency of the data that is returned.

This API cannot be used to selectively reset specific data items or specific
monitor groups. However, a specific group can be reset by turning its switch
off, and then on, using “sqlmon - Get/Update Monitor Switches” on page 355.

See Also

“sqlmon - Get/Update Monitor Switches” on page 355

“db2GetSnapshot - Get Snapshot” on page 317

“sqlmonsz - Estimate Size Required for db2GetSnapshot() Output Buffer” on
page 358.

sqlmrset - Reset Monitor

Appendix A. Database System Monitor Interfaces 363

UPDATE MONITOR SWITCHES

Turns one or more database monitor recording switches on or off. When the
database manager starts, the settings of the six switches are determined by the
dft_mon database manager configuration parameters .

The database monitor records a base set of information at all times. Users who
require more than this basic information can turn on the appropriate switches,
but at a cost to system performance. The amount of information available in
output from “GET SNAPSHOT” on page 328 reflects which, if any, switches
are on.

Authorization

One of the following:
v sysadm

v sysctrl

v sysmaint

Required Connection

Instance or database:
v If there is neither an attachment to an instance, nor a connection to a

database, a default instance attachment is created.
v If there is both an attachment to an instance, and a database connection, the

instance attachment is used.

To update the monitor switches at a remote instance (or a different local
instance), it is necessary to first attach to that instance.

Command Syntax

ÊÊ UPDATE MONITOR SWITCHES USING · switch-name ON
OFF

ÊÍ

Command Parameters

USING switch-name
The following switch names are available:

BUFFERPOOL
Buffer pool activity information

LOCK Lock information

UPDATE MONITOR SWITCHES

364 System Monitor Guide and Reference

SORT Sorting information

STATEMENT SQL statement information

TABLE Table activity information

UOW Unit of work information.

Usage Notes

Information is collected by the database manager only after a switch is turned
on. The switches remain set until db2stop is issued, or the application that
issued the UPDATE MONITOR SWITCHES command terminates. To clear the
information related to a particular switch, set the switch off, then on.

Updating switches in one application does not affect other applications.

To view the switch settings, use “GET MONITOR SWITCHES” on page 326.

UPDATE MONITOR SWITCHES

Appendix A. Database System Monitor Interfaces 365

UPDATE MONITOR SWITCHES

366 System Monitor Guide and Reference

Appendix B. Logical Data Groupings

The following tables list the logical data groupings and the data elements
associated with Snapshot and Event Monitoring.

Table 5. Snapshot Monitor Logical Data Groups and Data Elements

Snapshot
Logical Data
Groups

Data Elements See page

collected server_db2_type
server_version
time_zone_disp
time_stamp
node_number
server_prdid
server_nname
server_instance_name
server_switch_list

“Database Manager Type at Monitored (Server) Node” on page 40
“Server Version” on page 41
“Time Zone Displacement” on page 44
“Snapshot Time” on page 249
“Node Number” on page 69
“Server Product/Version ID” on page 41
“Configuration NNAME at Monitoring (Server) Node” on page 39
“Server Instance Name” on page 40
Monitor Switches Control Data Collected by the Database Manager

© Copyright IBM Corp. 1993, 1999 367

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

db2 sort_heap_allocated
post_threshold_sorts
piped_sorts_requested
piped_sorts_accepted
rem_cons_in
rem_cons_in_exec
local_cons
local_cons_in_exec
con_local_dbases
agents_registered
agents_waiting_on_token
db2_status
agents_registered_top
agents_waiting_top
comm_private_mem
idle_agents
agents_from_pool
agents_created_empty_pool
coord_agents_top
max_agent_overflows
agents_stolen
gw_total_cons
gw_cur_cons
gw_cons_wait_host
gw_cons_wait_client
post_threshold_hash_joins
inactive_gw_agents
num_gw_conn_switches
db2start_time
last_reset
server_switch_list
num_nodes_in_db2_instance
product_name
component_id
service_level

“Total Sort Heap Allocated” on page 95
“Post Threshold Sorts” on page 96
“Piped Sorts Requested” on page 97
“Piped Sorts Accepted” on page 97
“Remote Connections To Database Manager” on page 80
“Remote Connections Executing in the Database Manager” on page 81
“Local Connections” on page 82
“Local Connections Executing in the Database Manager” on page 82
“Local Databases with Current Connects” on page 83
“Agents Registered” on page 86
“Agents Waiting for a Token” on page 86
“Status of Database” on page 48
“Maximum Number of Agents Registered” on page 87
“Maximum Number of Agents Waiting” on page 87
“Committed Private Memory” on page 91
“Number of Idle Agents” on page 88
“Agents Assigned From Pool” on page 88
“Agents Created Due to Empty Agent Pool” on page 89
“Maximum Number of Coordinating Agents” on page 90
“Maximum Agent Overflows” on page 93
“Stolen Agents” on page 90
“Total Number of Attempted Connections for DB2 Connect” on page 257
“Current Number of Connections for DB2 Connect” on page 257
“Number of Connections Waiting for the Host to Reply” on page 258
Number of Connections Waiting for the Client to Send Request
“Hash Join Threshold” on page 102
“Total Inactive DRDA Agents” on page 93
“Connection Switches” on page 94
“Start Database Manager Timestamp” on page 39
“Last Reset Timestamp” on page 248
Monitor Switches Control Data Collected by the Database Manager
“Number of Nodes in Partition” on page 249
“Product Name” on page 43
“Product Identification” on page 43
“Service Level” on page 42

fcm buff_free
buff_free_bottom
MA_free
MA_free_bottom
CE_free
CE_free_bottom
RB_free
RB_free_bottom

“FCM Buffers Currently Free” on page 105
“Minimum FCM Buffers Free” on page 105
“Message Anchors Currently Free” on page 106
“Minimum Message Anchors” on page 106
“Connection Entries Currently Free” on page 106
“Minimum Connection Entries” on page 107
“Request Blocks Currently Free” on page 107
“Minimum Request Blocks” on page 108

fcm_node connection_status
total_buffers_sent
total_buffers_rcvd
node_number

“Connection Status” on page 108
“Total FCM Buffers Sent” on page 109
“Total FCM Buffers Received” on page 110
“Node Number” on page 69

368 System Monitor Guide and Reference

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

dynsql num_executions
num_compilations
prep_time_worst
prep_time_best
int_rows_deleted
int_rows_inserted
rows_read
int_rows_updated
rows_written
stmt_sorts
total_exec_time
tot_s_cpu_time
tot_u_cpu_time
stmt_text

“Statement Executions” on page 235
“Statement Compilations” on page 235
“Statement Worst Preparation Time” on page 236
“Statement Best Preparation Time” on page 236
“Internal Rows Deleted” on page 194
“Internal Rows Inserted” on page 196
“Rows Read” on page 193
“Internal Rows Updated” on page 195
“Rows Written” on page 192
“Statement Sorts” on page 224
“Elapsed Statement Execution Time” on page 236
“Total System CPU for a Statement” on page 246
“Total User CPU for a Statement” on page 247
“SQL Dynamic Statement Text” on page 223

Appendix B. Logical Data Groupings 369

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

dbase pool_data_l_reads
pool_data_p_reads
pool_data_writes
pool_index_l_reads
pool_index_p_reads
pool_index_writes
pool_read_time
pool_write_time
files_closed
pool_async_index_reads
pool_data_to_estore
pool_index_to_estore
pool_index_from_estore
pool_data_from_estore
pool_async_data_reads
pool_async_data_writes
pool_async_index_writes
pool_async_read_time
pool_async_write_time
pool_async_data_read_reqs
direct_reads
direct_writes
direct_read_reqs
direct_write_reqs
direct_read_time
direct_write_time
pool_lsn_gap_clns
pool_drty_pg_steal_clns
pool_drty_pg_thrsh_clns
locks_held
lock_waits
lock_wait_time
lock_list_in_use
deadlocks
lock_escals
x_lock_escals
locks_waiting
sort_heap_allocated
total_sorts
total_sort_time
sort_overflows
active_sorts
commit_sql_stmts
rollback_sql_stmts
dynamic_sql_stmts
static_sql_stmts

“Buffer Pool Data Logical Reads” on page 113
“Buffer Pool Data Physical Reads” on page 115
“Buffer Pool Data Writes” on page 116
“Buffer Pool Index Logical Reads” on page 118
“Buffer Pool Index Physical Reads” on page 119
“Buffer Pool Index Writes” on page 120
“Total Buffer Pool Physical Read Time” on page 122
“Total Buffer Pool Physical Write Time” on page 123
“Database Files Closed” on page 124
“Buffer Pool Asynchronous Index Reads” on page 128
“Buffer Pool Data Pages to Extended Storage” on page 137
“Buffer Pool Index Pages to Extended Storage” on page 138
“Buffer Pool Index Pages from Extended Storage” on page 140
“Buffer Pool Data Pages from Extended Storage” on page 139
“Buffer Pool Asynchronous Data Reads” on page 125
“Buffer Pool Asynchronous Data Writes” on page 126
“Buffer Pool Asynchronous Index Writes” on page 127
“Buffer Pool Asynchronous Read Time” on page 129
“Buffer Pool Asynchronous Write Time” on page 130
“Buffer Pool Asynchronous Read Requests” on page 131
“Direct Reads From Database” on page 141
“Direct Writes to Database” on page 142
“Direct Read Requests” on page 143
“Direct Write Requests” on page 144
“Direct Read Time” on page 145
“Direct Write Time” on page 146
“Buffer Pool Log Space Cleaners Triggered” on page 132
“Buffer Pool Victim Page Cleaners Triggered” on page 133
“Buffer Pool Threshold Cleaners Triggered” on page 134
“Locks Held” on page 164
“Lock Waits” on page 177
“Time Waited On Locks” on page 178
“Total Lock List Memory In Use” on page 166
“Deadlocks Detected” on page 166
“Number of Lock Escalations” on page 167
“Exclusive Lock Escalations” on page 169
“Current Agents Waiting On Locks” on page 179
“Total Sort Heap Allocated” on page 95
“Total Sorts” on page 98
“Total Sort Time” on page 99
“Sort Overflows” on page 100
“Active Sorts” on page 101
“Commit Statements Attempted” on page 205
“Rollback Statements Attempted” on page 206
“Dynamic SQL Statements Attempted” on page 203
“Static SQL Statements Attempted” on page 203

370 System Monitor Guide and Reference

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

dbase
(continued)

failed_sql_stmts
select_sql_stmts
ddl_sql_stmts
uid_sql_stmts
int_auto_rebinds
int_rows_deleted
int_rows_updated
int_commits
int_rollbacks
int_deadlock_rollbacks
rows_deleted
rows_inserted
rows_updated
rows_selected
binds_precompiles
total_cons
appls_cur_cons
appls_in_db2
sec_log_used_top
tot_log_used_top
sec_logs_allocated
db_status
lock_timeouts
connections_top
db_heap_top
int_rows_inserted
log_reads
log_writes
pkg_cache_lookups
pkg_cache_inserts
cat_cache_lookups
cat_cache_inserts
cat_cache_overflows
cat_cache_heap_full
catalog_node
total_sec_cons
num_assoc_agents
agents_top
coord_agents_top
prefetch_wait_time
appl_section_lookups
appl_section_inserts
total_hash_joins
total_hash_loops
hash_join_overflows
hash_join_small_overflows

“Failed Statement Operations” on page 204
“Select SQL Statements Executed” on page 207
“Data Definition Language (DDL) SQL Statements” on page 208
“Update/Insert/Delete SQL Statements Executed” on page 208
“Internal Automatic Rebinds” on page 209
“Internal Rows Deleted” on page 194
“Internal Rows Updated” on page 195
“Internal Commits” on page 210
“Internal Rollbacks” on page 211
“Internal Rollbacks Due To Deadlock” on page 213
“Rows Deleted” on page 190
“Rows Inserted” on page 190
“Rows Updated” on page 191
“Rows Selected” on page 191
“Binds/Precompiles Attempted” on page 214
“Connects Since Database Activation” on page 84
“Applications Connected Currently” on page 85
“Applications Executing in the Database Currently” on page 85
“Maximum Secondary Log Space Used” on page 158
“Maximum Total Log Space Used” on page 159
“Secondary Logs Allocated Currently” on page 160
“Status of Database” on page 48
“Number of Lock Timeouts” on page 174
“Maximum Number of Concurrent Connections” on page 71
“Maximum Database Heap Allocated” on page 156
“Internal Rows Inserted” on page 196
“Number of Log Pages Read” on page 160
“Number of Log Pages Written” on page 161
“Package Cache Lookups” on page 151
“Package Cache Inserts” on page 153
“Catalog Cache Lookups” on page 147
“Catalog Cache Inserts” on page 148
“Catalog Cache Overflows” on page 148
“Catalog Cache Heap Full” on page 149
“Catalog Node Number” on page 49
“Secondary Connections” on page 92
“Number of Associated Agents” on page 92
“Number of Agents Created” on page 238
“Maximum Number of Coordinating Agents” on page 90
“Time Waited for Prefetch” on page 135
“Section Lookups” on page 155
“Section Inserts” on page 156
“Total Hash Joins” on page 102
“Total Hash Loops” on page 103
“Hash Join Overflows” on page 103
“Hash Join Small Overflows” on page 104

Appendix B. Logical Data Groupings 371

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

dbase
(continued)

pkg_cache_num_overflows
pkg_cache_size_top
total_log_used
total_log_available
db_conn_time
last_reset
last_backup
db_location
server_platform
appl_id_oldest_xact
catalog_node_name
input_db_alias
db_name
db_path

“Package Cache Overflows” on page 153
“Maximum Package Cache Size” on page 154
“Total Log Space Used” on page 162
“Total Log Available” on page 163
“Database Activation Timestamp” on page 46
“Last Reset Timestamp” on page 248
“Last Backup Timestamp” on page 50
“Database Location” on page 49
“Server Operating System” on page 42
“Application with Oldest Transaction” on page 56
“Catalog Node Network Name” on page 48
“Input Database Alias” on page 248
“Database Name” on page 45
“Database Path” on page 46

rollforward rf_type
rf_log_num
rf_status
rf_timestamp
node_number
ts_name

“Rollforward Type” on page 185
“Log Being Rolled Forward” on page 185
“Log Phase” on page 186
“Rollforward Timestamp” on page 184
“Node Number” on page 69
“Tablespace Being Rolled Forward” on page 185

table_list last_reset
db_conn_time
input_db_alias
db_name
db_path

“Last Reset Timestamp” on page 248
“Database Activation Timestamp” on page 46
“Input Database Alias” on page 248
“Database Name” on page 45
“Database Path” on page 46

table table_file_id
table_type
rows_written
rows_read
overflow_accesses
page_reorgs
table_name
table_schema

“Table File ID” on page 196
“Table Type” on page 187
“Rows Written” on page 192
“Rows Read” on page 193
“Accesses to Overflowed Records” on page 194
“Page Reorganizations” on page 197
“Table Name” on page 188
“Table Schema Name” on page 189

tablespace_list last_reset
db_conn_time
input_db_alias
db_name
db_path

“Last Reset Timestamp” on page 248
“Database Activation Timestamp” on page 46
“Input Database Alias” on page 248
“Database Name” on page 45
“Database Path” on page 46

372 System Monitor Guide and Reference

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

tablespace pool_data_l_reads
pool_data_p_reads
pool_async_data_reads
pool_data_writes
pool_async_data_writes
pool_index_l_reads
pool_index_p_reads
pool_index_writes
pool_async_index_writes
pool_read_time
pool_write_time
pool_async_read_time
pool_async_write_time
pool_async_data_read_reqs
direct_reads
direct_writes
direct_read_reqs
direct_write_reqs
direct_read_time
direct_write_time
files_closed
pool_async_index_reads
pool_data_to_estore
pool_index_to_estore
pool_index_from_estore
pool_data_from_estore
tablespace_name

“Buffer Pool Data Logical Reads” on page 113
“Buffer Pool Data Physical Reads” on page 115
“Buffer Pool Asynchronous Data Reads” on page 125
“Buffer Pool Data Writes” on page 116
“Buffer Pool Asynchronous Data Writes” on page 126
“Buffer Pool Index Logical Reads” on page 118
“Buffer Pool Index Physical Reads” on page 119
“Buffer Pool Index Writes” on page 120
“Buffer Pool Asynchronous Index Writes” on page 127
“Total Buffer Pool Physical Read Time” on page 122
“Total Buffer Pool Physical Write Time” on page 123
“Buffer Pool Asynchronous Read Time” on page 129
“Buffer Pool Asynchronous Write Time” on page 130
“Buffer Pool Asynchronous Read Requests” on page 131
“Direct Reads From Database” on page 141
“Direct Writes to Database” on page 142
“Direct Read Requests” on page 143
“Direct Write Requests” on page 144
“Direct Read Time” on page 145
“Direct Write Time” on page 146
“Database Files Closed” on page 124
“Buffer Pool Asynchronous Index Reads” on page 128
“Buffer Pool Data Pages to Extended Storage” on page 137
“Buffer Pool Index Pages to Extended Storage” on page 138
“Buffer Pool Index Pages from Extended Storage” on page 140
“Buffer Pool Data Pages from Extended Storage” on page 139
“Table Space Name” on page 179

db_lock_list locks_held
appls_cur_cons
locks_waiting
db_name
db_path

“Locks Held” on page 164
“Applications Connected Currently” on page 85
“Current Agents Waiting On Locks” on page 179
“Input Database Alias” on page 248
“Database Name” on page 45
“Database Path” on page 46

appl_lock_list agent_id
appl_status
codepage_id
locks_held
locks_waiting
lock_wait_time
status_change_time
appl_id
sequence_no
appl_name
auth_id
client_db_alias

“Application Handle (agent ID)” on page 51
“Application Status” on page 52
“ID of Code Page Used by Application” on page 55
“Locks Held” on page 164
“Current Agents Waiting On Locks” on page 179
“Time Waited On Locks” on page 178
“Application Status Change Time” on page 55
“Application ID” on page 57
“Sequence Number” on page 59
“Application Name” on page 56
“Authorization ID” on page 60
“Database Alias Used by Application” on page 61

Appendix B. Logical Data Groupings 373

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

lock_wait subsection_number
lock_mode
lock_object_type
agent_id_holding_lk
lock_mode_requested
lock_wait_start_time
lock_escalation
table_name
table_schema
tablespace_name
appl_id_holding_lk

“Subsection Number” on page 228
“Lock Mode” on page 170
“Lock Object Type Waited On” on page 172
“Agent ID Holding Lock” on page 181
“Lock Mode Requested” on page 176
“Lock Wait Start Timestamp” on page 180
“Lock Escalation” on page 175
“Table Name” on page 188
“Table Schema Name” on page 189
“Table Space Name” on page 179
“Application ID Holding Lock” on page 182

lock table_file_id
lock_object_type
lock_mode
lock_status
lock_object_name
lock_escalation
table_name
table_schema
tablespace_name

“Table File ID” on page 196
“Lock Object Type Waited On” on page 172
“Lock Mode” on page 170
“Lock Status” on page 171
“Lock Object Name” on page 173
“Lock Escalation” on page 175
“Table Name” on page 188
“Table Schema Name” on page 189
“Table Space Name” on page 179

374 System Monitor Guide and Reference

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

bufferpool pool_data_l_reads
pool_data_p_reads
pool_data_writes
pool_index_l_reads
pool_index_p_reads
pool_index_writes
pool_read_time
pool_write_time
files_closed
pool_async_data_reads
pool_async_data_writes
pool_async_index_writes
pool_async_read_time
pool_async_write_time
pool_async_data_read_reqs
direct_reads
direct_writes
direct_read_reqs
direct_write_reqs
direct_read_time
direct_write_time
pool_async_index_reads
pool_data_to_estore
pool_index_to_estore
pool_index_from_estore
pool_data_from_estore
bp_name
input_db_alias
db_name
db_path

“Buffer Pool Data Logical Reads” on page 113
“Buffer Pool Data Physical Reads” on page 115
“Buffer Pool Data Writes” on page 116
“Buffer Pool Index Logical Reads” on page 118
“Buffer Pool Index Physical Reads” on page 119
“Buffer Pool Index Writes” on page 120
“Total Buffer Pool Physical Read Time” on page 122
“Total Buffer Pool Physical Write Time” on page 123
“Database Files Closed” on page 124
“Buffer Pool Asynchronous Data Reads” on page 125
“Buffer Pool Asynchronous Data Writes” on page 126
“Buffer Pool Asynchronous Index Writes” on page 127
“Buffer Pool Asynchronous Read Time” on page 129
“Buffer Pool Asynchronous Write Time” on page 130
“Buffer Pool Asynchronous Read Requests” on page 131
“Direct Reads From Database” on page 141
“Direct Writes to Database” on page 142
“Direct Read Requests” on page 143
“Direct Write Requests” on page 144
“Direct Read Time” on page 145
“Direct Write Time” on page 146
“Buffer Pool Asynchronous Index Reads” on page 128
“Buffer Pool Data Pages to Extended Storage” on page 137
“Buffer Pool Index Pages to Extended Storage” on page 138
“Buffer Pool Index Pages from Extended Storage” on page 140
“Buffer Pool Data Pages from Extended Storage” on page 139
“Bufferpool Name” on page 135
“Input Database Alias” on page 248
“Database Name” on page 45
“Database Path” on page 46

Appendix B. Logical Data Groupings 375

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

appl_info agent_id
appl_status
codepage_id
num_assoc_agents
coord_node_num
authority_lvl
client_pid
coord_agent_pid
status_change_time
client_platform
client_protocol
country_code
appl_name
appl_id
sequence_no
auth_id
client_nname
client_prdid
input_db_alias
client_db_alias
db_name
db_path
execution_id
corr_token
outbound_comm_address
inbound_comm_address

“Application Handle (agent ID)” on page 51
“Application Status” on page 52
“ID of Code Page Used by Application” on page 55
“Number of Associated Agents” on page 92
“Coordinating Node” on page 70
“Authorization ID” on page 60
“Client Process ID” on page 65
“Coordinator Agent” on page 78
“Application Status Change Time” on page 55
“Client Operating Platform” on page 65
“Client Communication Protocol” on page 66
“Database Country Code” on page 67
“Application Name” on page 56
“Application ID” on page 57
“Sequence Number” on page 59
“Authorization ID” on page 60
“Configuration NNAME of Client” on page 60
“Client Product/Version ID” on page 61
“Input Database Alias” on page 248
“Database Alias Used by Application” on page 61
“Database Name” on page 45
“Database Path” on page 46
“User Login ID” on page 64
“DRDA Correlation Token” on page 64
“Outbound Communication Address” on page 262
“Inbound Communication Address” on page 262

376 System Monitor Guide and Reference

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

appl locks_held
lock_waits
lock_wait_time
lock_escals
x_lock_escals
deadlocks
total_sorts
total_sort_time
sort_overflows
pool_data_l_reads
pool_data_p_reads
pool_data_writes
pool_index_l_reads
pool_index_p_reads
pool_index_writes
pool_read_time
pool_write_time
direct_reads
direct_writes
direct_read_reqs
direct_write_reqs
direct_read_time
direct_write_time
pool_data_to_estore
pool_index_to_estore
pool_index_from_estore
pool_data_from_estore
commit_sql_stmts
rollback_sql_stmts
dynamic_sql_stmts
static_sql_stmts
failed_sql_stmts
select_sql_stmts
ddl_sql_stmts
uid_sql_stmts
int_auto_rebinds
int_rows_deleted
int_rows_updated
int_commits
int_rollbacks
int_deadlock_rollbacks
rows_deleted
rows_inserted
rows_updated
rows_selected
binds_precompiles
open_rem_curs
open_rem_curs_blk
rej_curs_blk

“Locks Held” on page 164
“Lock Waits” on page 177
“Time Waited On Locks” on page 178
“Lock Escalation” on page 175
“Exclusive Lock Escalations” on page 169
“Deadlocks Detected” on page 166
“Total Sorts” on page 98
“Total Sort Time” on page 99
“Sort Overflows” on page 100
“Buffer Pool Data Logical Reads” on page 113
“Buffer Pool Data Physical Reads” on page 115
“Buffer Pool Data Writes” on page 116
“Buffer Pool Index Logical Reads” on page 118
“Buffer Pool Index Physical Reads” on page 119
“Buffer Pool Index Writes” on page 120
“Total Buffer Pool Physical Read Time” on page 122
“Total Buffer Pool Physical Write Time” on page 123
“Direct Reads From Database” on page 141
“Direct Writes to Database” on page 142
“Direct Read Requests” on page 143
“Direct Write Requests” on page 144
“Direct Read Time” on page 145
“Direct Write Time” on page 146
“Buffer Pool Data Pages to Extended Storage” on page 137
“Buffer Pool Index Pages to Extended Storage” on page 138
“Buffer Pool Index Pages from Extended Storage” on page 140
“Buffer Pool Data Pages from Extended Storage” on page 139
“Commit Statements Attempted” on page 205
“Rollback Statements Attempted” on page 206
“Dynamic SQL Statements Attempted” on page 203
“Static SQL Statements Attempted” on page 203
“Failed Statement Operations” on page 204
“Select SQL Statements Executed” on page 207
“Data Definition Language (DDL) SQL Statements” on page 208
“Update/Insert/Delete SQL Statements Executed” on page 208
“Internal Automatic Rebinds” on page 209
“Internal Rows Deleted” on page 194
“Internal Rows Updated” on page 195
“Internal Commits” on page 210
“Internal Rollbacks” on page 211
“Internal Rollbacks Due To Deadlock” on page 213
“Rows Deleted” on page 190
“Rows Inserted” on page 190
“Rows Updated” on page 191
“Rows Selected” on page 191
“Binds/Precompiles Attempted” on page 214
“Open Remote Cursors” on page 198
“Open Remote Cursors with Blocking” on page 198
“Rejected Block Cursor Requests” on page 199

Appendix B. Logical Data Groupings 377

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

appl
(continued)

acc_curs_blk
sql_reqs_since_commit
lock_timeouts
int_rows_inserted
rows_read
rows_written
open_loc_curs
open_loc_curs_blk
pkg_cache_lookups
pkg_cache_inserts
cat_cache_lookups
cat_cache_inserts
cat_cache_overflows
cat_cache_heap_full
num_agents
agents_stolen
associated_agents_top
appl_priority
appl_priority_type
prefetch_wait_time
appl_section_lookups
appl_section_inserts
locks_waiting
total_hash_joins
total_hash_loops
hash_join_overflows
hash_join_small_overflows
appl_idle_time
uow_log_space_used
uow_lock_wait_time
uow_comp_status
agent_usr_cpu_time
agent_sys_cpu_time
appl_con_time
conn_complete_time
last_reset
uow_start_time
uow_stop_time
prev_uow_stop_time
uow_elapsed_time

“Accepted Block Cursor Requests” on page 200
“SQL Requests Since Last Commit” on page 213
“Number of Lock Timeouts” on page 174
“Internal Rows Inserted” on page 196
“Rows Read” on page 193
“Rows Written” on page 192
“Open Local Cursors” on page 201
“Open Local Cursors with Blocking” on page 201
“Package Cache Lookups” on page 151
“Package Cache Inserts” on page 153
“Catalog Cache Lookups” on page 147
“Catalog Cache Inserts” on page 148
“Catalog Cache Overflows” on page 148
“Catalog Cache Heap Full” on page 149
“Number of Agents Working on a Statement” on page 237
“Stolen Agents” on page 90
“Maximum Number of Associated Agents” on page 91
“Application Agent Priority” on page 67
“Application Priority Type” on page 68
“Time Waited for Prefetch” on page 135
“Section Lookups” on page 155
“Section Inserts” on page 156
“Current Agents Waiting On Locks” on page 179
“Total Hash Joins” on page 102
“Total Hash Loops” on page 103
“Hash Join Overflows” on page 103
“Hash Join Small Overflows” on page 104
“Application Idle Time” on page 77
“Unit of Work Log Space Used” on page 162
“Total Time Unit of Work Waited on Locks” on page 180
“Unit of Work Completion Status” on page 75
“User CPU Time used by Agent” on page 239
“System CPU Time used by Agent” on page 240
“Connection Request Start Timestamp” on page 70
“Connection Request Completion Timestamp” on page 71
“Last Reset Timestamp” on page 248
“Unit of Work Start Timestamp” on page 73
“Unit of Work Stop Timestamp” on page 74
“Previous Unit of Work Completion Timestamp” on page 72
“Most Recent Unit of Work Elapsed Time” on page 75

378 System Monitor Guide and Reference

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

stmt num_agents
agents_top
stmt_type
stmt_operation
section_number
query_cost_estimate
query_card_estimate
degree_parallelism
stmt_sorts
total_sort_time
sort_overflows
rows_read
rows_written
int_rows_deleted
int_rows_updated
int_rows_inserted
fetch_count
stmt_start
stmt_stop
stmt_usr_cpu_time
stmt_sys_cpu_time
stmt_elapsed_time
stmt_node_number
cursor_name
creator
package_name
stmt_text

“Number of Agents Working on a Statement” on page 237
“Number of Agents Created” on page 238
“Statement Type” on page 216
“Statement Operation” on page 217
“Section Number” on page 219
“Query Cost Estimate” on page 227
“Query Number of Rows Estimate” on page 226
“Degree of Parallelism” on page 238
“Statement Sorts” on page 224
“Total Sort Time” on page 99
“Sort Overflows” on page 100
“Rows Read” on page 193
“Rows Written” on page 192
“Internal Rows Deleted” on page 194
“Internal Rows Updated” on page 195
“Internal Rows Inserted” on page 196
“Number of Successful Fetches” on page 225
“Statement Operation Start Timestamp” on page 221
“Statement Operation Stop Timestamp” on page 221
“User CPU Time used by Statement” on page 241
“System CPU Time used by Statement” on page 242
“Most Recent Statement Elapsed Time” on page 223
“Statement Node” on page 214
“Cursor Name” on page 220
“Application Creator” on page 220
“Package Name” on page 218
“SQL Dynamic Statement Text” on page 223

subsection ss_exec_time
tq_tot_send_spills
tq_cur_send_spills
tq_max_send_spills
tq_rows_read
tq_rows_written
rows_read
rows_written
ss_usr_cpu_time
ss_sys_cpu_time
ss_number
ss_status
ss_node_number
tq_node_waited_for
tq_wait_for_any
tq_id_waiting_on

“Execution Elapsed Time” on page 230
“Total Number of Tablequeue Buffers Overflowed” on page 231
“Current Number of Tablequeue Buffers Overflowed” on page 232
“Maximum Number of Tablequeue Buffers Overflows” on page 234
“Number of Rows Read from Tablequeues” on page 233
“Number of Rows Written to Tablequeues” on page 233
“Rows Read” on page 193
“Rows Written” on page 192
“User CPU Time used by Subsection” on page 245
“System CPU Time used by Subsection” on page 246
“Subsection Number” on page 228
“Subsection Status” on page 229
“Subsection Node Number” on page 229
“Waited for Node on a Tablequeue” on page 231
“Waiting for Any Node to Send on a Tablequeue” on page 230
“Waited on Node on a Tablequeue” on page 234

agent agent_pid “Process or Thread ID” on page 77

Appendix B. Logical Data Groupings 379

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

dcs_dbase sql_stmts
failed_sql_stmts
commit_sql_stmts
rollback_sql_stmts
rows_selected
gw_total_cons
gw_cur_cons
gw_cons_wait_host
gw_cons_wait_client
gw_connections_top
gw_comm_errors
gw_con_time
outbound_bytes_sent
outbound_bytes_received
gw_con_time
last_reset
gw_comm_error_time
con_response_time
con_elapsed_time
host_response_time
dcs_db_name
host_db_name

“Number of SQL Statements Attempted” on page 259
“Failed Statement Operations” on page 204
“Commit Statements Attempted” on page 205
“Rollback Statements Attempted” on page 206
“Rows Selected” on page 191
“Total Number of Attempted Connections for DB2 Connect” on page 257
“Current Number of Connections for DB2 Connect” on page 257
“Number of Connections Waiting for the Host to Reply” on page 258
Number of Connections Waiting for the Client to Send Request
“Maximum Number of Concurrent Connections” on page 256
“Communication Errors” on page 266
“DB2 Connect Gateway First Connect Initiated” on page 256
“Outbound Number of Bytes Sent” on page 263
“Inbound Number of Bytes Received” on page 263
“DB2 Connect Gateway First Connect Initiated” on page 256
“Last Reset Timestamp” on page 248
“Communication Error Time” on page 267
“Most Recent Response Time for Connect” on page 266
“Most Recent Connection Elapsed Time” on page 266
“Host Response Time” on page 265
“DCS Database Name” on page 255
“Host Database Name” on page 255

dcs_appl_info agent_id
codepage_id
dcs_appl_status
client_pid
status_change_time
client_platform
client_protocol
host_ccsid
outbound_comm_protocol
execution_id
appl_name
appl_id
sequence_no
auth_id
client_nname
client_prdid
gw_db_alias
dcs_db_name
host_db_name
host_prdid
outbound_appl_id
outbound_sequence_no
outbound_comm_address
inbound_comm_address

“Application Handle (agent ID)” on page 51
“ID of Code Page Used by Application” on page 55
“DCS Application Status” on page 260
“Client Process ID” on page 65
“Application Status Change Time” on page 55
“Client Operating Platform” on page 65
“Client Communication Protocol” on page 66
“Host Coded Character Set ID” on page 261
“Outbound Communication Protocol” on page 261
“User Login ID” on page 64
“Application Name” on page 56
“Application ID” on page 57
“Sequence Number” on page 59
“Authorization ID” on page 60
“Configuration NNAME of Client” on page 60
“Client Product/Version ID” on page 61
“Database Alias at the Gateway” on page 256
“DCS Database Name” on page 255
“Host Database Name” on page 255
“Host Product/Version ID” on page 62
“Outbound Application ID” on page 62
“Outbound Sequence Number” on page 63
“Outbound Communication Address” on page 262
“Inbound Communication Address” on page 262

380 System Monitor Guide and Reference

Table 5. Snapshot Monitor Logical Data Groups and Data Elements (continued)

Snapshot
Logical Data
Groups

Data Elements See page

dcs_appl open_cursors
appl_idle_time
uow_comp_status
sql_stmts
failed_sql_stmts
commit_sql_stmts
rollback_sql_stmts
rows_selected
inbound_bytes_received
outbound_bytes_sent
outbound_bytes_received
inbound_bytes_sent
prev_uow_stop_time
uow_start_time
uow_stop_time
last_reset
gw_con_time
gw_exec_time
host_response_time
uow_elapsed_time
xid
tpmon_client_userid
tpmon_client_wkstn
tpmon_client_app
tpmon_acc_str

“Number of Open Cursors” on page 259
“Application Idle Time” on page 77
“Unit of Work Completion Status” on page 75
“Number of SQL Statements Attempted” on page 259
“Failed Statement Operations” on page 204
“Commit Statements Attempted” on page 205
“Rollback Statements Attempted” on page 206
“Rows Selected” on page 191
“Inbound Number of Bytes Received” on page 263
“Outbound Number of Bytes Sent” on page 263
“Outbound Number of Bytes Received” on page 264
“Inbound Number of Bytes Sent” on page 264
“Previous Unit of Work Completion Timestamp” on page 72
“Unit of Work Start Timestamp” on page 73
“Unit of Work Stop Timestamp” on page 74
“Last Reset Timestamp” on page 248
“DB2 Connect Gateway First Connect Initiated” on page 256
“Elapsed Time Spent on DB2 Connect Gateway Processing” on page 259
“Host Response Time” on page 265
“Most Recent Unit of Work Elapsed Time” on page 75
“Transaction ID” on page 265
“TP Monitor Client User ID” on page 268
“TP Monitor Client Workstation Name” on page 268
“TP Monitor Client Application Name” on page 269
“TP Monitor Client Accounting String” on page 269

dcs_stmt section_number
query_cost_estimate
query_card_estimate
stmt_operation
fetch_count
inbound_bytes_received
outbound_bytes_sent
outbound_bytes_received
inbound_bytes_sent
stmt_start
stmt_stop
gw_exec_time
host_response_time
stmt_elpased_time
creator
package_name
stmt_text

“Section Number” on page 219
“Query Cost Estimate” on page 227
“Query Number of Rows Estimate” on page 226
“Statement Operation” on page 217
“Number of Successful Fetches” on page 225
“Inbound Number of Bytes Received” on page 263
“Outbound Number of Bytes Sent” on page 263
“Outbound Number of Bytes Received” on page 264
“Inbound Number of Bytes Sent” on page 264
“Statement Operation Start Timestamp” on page 221
“Statement Operation Stop Timestamp” on page 221
“Elapsed Time Spent on DB2 Connect Gateway Processing” on page 259
“Host Response Time” on page 265
“Most Recent Statement Elapsed Time” on page 223
“Application Creator” on page 220
“Package Name” on page 218
“SQL Dynamic Statement Text” on page 223

Appendix B. Logical Data Groupings 381

Table 6. Event Monitor Logical Data Groups and Data Elements

Event Logical Data
Groups

Data Elements See page

db_event lock_waits
lock_wait_time
deadlocks
lock_escals
lock_escals
lock_timeouts
total_sorts
total_sort_time
sort_overflows
pool_data_l_reads
pool_data_p_reads
pool_async_data_reads
pool_data_writes
pool_async_data_writes
pool_index_l_reads
pool_index_p_reads
pool_index_writes
pool_async_index_writes
pool_read_time
pool_write_time
pool_async_read_time
pool_async_write_time
pool_async_data_read_reqs
pool_lsn_gap_clns
pool_drty_pg_steal_clns
pool_drty_pg_thrsh_clns
direct_reads
direct_writes
direct_read_reqs
direct_write_reqs
direct_read_time
direct_write_time
files_closed
commit_sql_stmts
rollback_sql_stmts
dynamic_sql_stmts
static_sql_stmts
failed_sql_stmts
select_sql_stmts
ddl_sql_stmts
uid_sql_stmts
int_auto_rebinds
int_rows_deleted
int_rows_updated
int_rows_inserted
int_commits
int_rollbacks
rows_deleted
rows_inserted
rows_updated

“Lock Waits” on page 177
“Time Waited On Locks” on page 178
“Deadlocks Detected” on page 166
“Number of Lock Escalations” on page 167
“Exclusive Lock Escalations” on page 169
“Number of Lock Timeouts” on page 174
“Total Sorts” on page 98
“Total Sort Time” on page 99
“Sort Overflows” on page 100
“Buffer Pool Data Logical Reads” on page 113
“Buffer Pool Data Physical Reads” on page 115
“Buffer Pool Asynchronous Data Reads” on page 125
“Buffer Pool Data Writes” on page 116
“Buffer Pool Asynchronous Data Writes” on page 126
“Buffer Pool Index Logical Reads” on page 118
“Buffer Pool Index Physical Reads” on page 119
“Buffer Pool Index Writes” on page 120
“Buffer Pool Asynchronous Index Writes” on page 127
“Total Buffer Pool Physical Read Time” on page 122
“Total Buffer Pool Physical Write Time” on page 123
“Buffer Pool Asynchronous Read Time” on page 129
“Buffer Pool Asynchronous Write Time” on page 130
“Buffer Pool Asynchronous Read Requests” on page 131
“Buffer Pool Log Space Cleaners Triggered” on page 132
“Buffer Pool Victim Page Cleaners Triggered” on page 133
“Buffer Pool Threshold Cleaners Triggered” on page 134
“Direct Reads From Database” on page 141
“Direct Writes to Database” on page 142
“Direct Read Requests” on page 143
“Direct Write Requests” on page 144
“Direct Read Time” on page 145
“Direct Write Time” on page 146
“Database Files Closed” on page 124
“Commit Statements Attempted” on page 205
“Rollback Statements Attempted” on page 206
“Dynamic SQL Statements Attempted” on page 203
“Static SQL Statements Attempted” on page 203
“Failed Statement Operations” on page 204
“Select SQL Statements Executed” on page 207
“Data Definition Language (DDL) SQL Statements” on page 208
“Update/Insert/Delete SQL Statements Executed” on page 208
“Internal Automatic Rebinds” on page 209
“Internal Rows Deleted” on page 194
“Internal Rows Updated” on page 195
“Internal Rows Inserted” on page 196
“Internal Commits” on page 210
“Internal Rollbacks” on page 211
“Rows Deleted” on page 190
“Rows Inserted” on page 190
“Rows Updated” on page 191

382 System Monitor Guide and Reference

Table 6. Event Monitor Logical Data Groups and Data Elements (continued)

Event Logical Data
Groups

Data Elements See page

db_event
(continued)

rows_selected
binds_precompiles
total_cons
connections_top
db_heap_top
sec_log_used_top
tot_log_used_top
log_reads
log_writes
pkg_cache_lookups
pkg_cache_inserts
cat_cache_lookups
cat_cache_inserts
cat_cache_overflows
cat_cache_heap_full
appl_section_lookups
appl_section_inserts
pool_async_index_reads
pool_data_to_estore
pool_index_to_estore
pool_index_from_estore
pool_data_from_estore
prefetch_wait_time
catalog_node
total_hash_joins
total_hash_loops
hash_join_overflows
hash_join_small_overflows
pkg_cache_num_overflows
pkg_cache_size_top
disconn_time
server_platform
talog_node_name
partial_record

“Rows Selected” on page 191
“Binds/Precompiles Attempted” on page 214
“Connects Since Database Activation” on page 84
“Maximum Number of Concurrent Connections” on page 71
“Maximum Database Heap Allocated” on page 156
“Maximum Secondary Log Space Used” on page 158
“Maximum Total Log Space Used” on page 159
“Number of Log Pages Read” on page 160
“Number of Log Pages Written” on page 161
“Package Cache Lookups” on page 151
“Package Cache Inserts” on page 153
“Catalog Cache Lookups” on page 147
“Catalog Cache Inserts” on page 148
“Catalog Cache Overflows” on page 148
“Catalog Cache Heap Full” on page 149
“Section Lookups” on page 155
“Section Inserts” on page 156
“Buffer Pool Asynchronous Index Reads” on page 128
“Buffer Pool Data Pages to Extended Storage” on page 137
“Buffer Pool Index Pages to Extended Storage” on page 138
“Buffer Pool Index Pages from Extended Storage” on page 140
“Buffer Pool Data Pages from Extended Storage” on page 139
“Time Waited for Prefetch” on page 135
“Catalog Node Number” on page 49
“Total Hash Joins” on page 102
“Total Hash Loops” on page 103
“Hash Join Overflows” on page 103
“Hash Join Small Overflows” on page 104
“Package Cache Overflows” on page 153
“Maximum Package Cache Size” on page 154
“Database Deactivation Timestamp” on page 47
“Server Operating System” on page 42
“Catalog Node Network Name” on page 48
“Partial Record” on page 253

dbheader_event conn_time
db_name
db_path

“Time of Database Connection” on page 47
“Database Name” on page 45
“Database Path” on page 46

Appendix B. Logical Data Groupings 383

Table 6. Event Monitor Logical Data Groups and Data Elements (continued)

Event Logical Data
Groups

Data Elements See page

connheader_event client_pid
agent_id
conn_time
codepage_id
country_code
client_platform
client_protocol
node_number
appl_id
sequence_no
corr_token
appl_name
auth_id
execution_id
client_nname
client_prdid
client_db_alias

“Client Process ID” on page 65
“Application Handle (agent ID)” on page 51
“Time of Database Connection” on page 47
“ID of Code Page Used by Application” on page 55
“Database Country Code” on page 67
“Client Operating Platform” on page 65
“Client Communication Protocol” on page 66
“Node Number” on page 69
“Application ID” on page 57
“Sequence Number” on page 59
“DRDA Correlation Token” on page 64
“Application Name” on page 56
“Authorization ID” on page 60
“User Login ID” on page 64
“Configuration NNAME of Client” on page 60
“Client Product/Version ID” on page 61
“Database Alias Used by Application” on page 61

start_event start_time “Event Start Time” on page 222

deadlock_event dl_conns
rolled_back_agent_id
start_time
rolled_back_appl_id
rolled_back_sequence_no

“Connections Involved in Deadlock” on page 175
“Rolled Back Agent” on page 183
“Event Start Time” on page 222
“Rolled Back Application” on page 183
“Rolled Back Sequence Number” on page 184

dlconn_event lock_mode
lock_object_type
lock_object_name
lock_node
agent_id
lock_mode_requested
lock_wait_start_time
start_time
lock_escalation
appl_id
sequence_no
appl_id_holding_lk
sequence_no_holding_lk
table_name
table_schema
tablespace_name

“Lock Mode” on page 170
“Lock Object Type Waited On” on page 172
“Lock Object Name” on page 173
“Lock Node” on page 173
“Application Handle (agent ID)” on page 51
“Lock Mode Requested” on page 176
“Lock Wait Start Timestamp” on page 180
“Event Start Time” on page 222
“Lock Escalation” on page 175
“Application ID” on page 57
“Sequence Number” on page 59
“Application ID Holding Lock” on page 182
“Sequence Number Holding Lock” on page 183
“Table Name” on page 188
“Table Schema Name” on page 189
“Table Space Name” on page 179

table_event table_type
rows_written
rows_read
overflow_accesses
page_reorgs
event_time
table_name
table_schema
partial_record

“Table Type” on page 187
“Rows Written” on page 192
“Rows Read” on page 193
“Accesses to Overflowed Records” on page 194
“Page Reorganizations” on page 197
“Event Time” on page 253
“Table Name” on page 188
“Table Schema Name” on page 189
“Partial Record” on page 253

384 System Monitor Guide and Reference

Table 6. Event Monitor Logical Data Groups and Data Elements (continued)

Event Logical Data
Groups

Data Elements See page

tablespace_event pool_data_l_reads
pool_data_p_reads
pool_async_data_reads
pool_data_writes
pool_async_data_writes
pool_index_l_reads
pool_index_p_reads
pool_index_writes
pool_async_index_writes
pool_read_time
pool_write_time
pool_async_read_time
pool_async_write_time
pool_async_data_read_reqs
direct_reads
direct_writes
direct_read_reqs
direct_write_reqs
direct_read_time
direct_write_time
files_closed
pool_async_index_reads
pool_data_to_estore
pool_index_to_estore
pool_index_from_estore
pool_data_from_estore
event_time
tablespace_name
partial_record

“Buffer Pool Data Logical Reads” on page 113
“Buffer Pool Data Physical Reads” on page 115
“Buffer Pool Asynchronous Data Reads” on page 125
“Buffer Pool Data Writes” on page 116
“Buffer Pool Asynchronous Data Writes” on page 126
“Buffer Pool Index Logical Reads” on page 118
“Buffer Pool Index Physical Reads” on page 119
“Buffer Pool Index Writes” on page 120
“Buffer Pool Asynchronous Index Writes” on page 127
“Total Buffer Pool Physical Read Time” on page 122
“Total Buffer Pool Physical Write Time” on page 123
“Buffer Pool Asynchronous Read Time” on page 129
“Buffer Pool Asynchronous Write Time” on page 130
“Buffer Pool Asynchronous Read Requests” on page 131
“Direct Reads From Database” on page 141
“Direct Writes to Database” on page 142
“Direct Read Requests” on page 143
“Direct Write Requests” on page 144
“Direct Read Time” on page 145
“Direct Write Time” on page 146
“Database Files Closed” on page 124
“Buffer Pool Asynchronous Index Reads” on page 128
“Buffer Pool Data Pages to Extended Storage” on page 137
“Buffer Pool Index Pages to Extended Storage” on page 138
“Buffer Pool Index Pages from Extended Storage” on page 140
“Buffer Pool Data Pages from Extended Storage” on page 139
“Event Time” on page 253
“Table Space Name” on page 179
“Partial Record” on page 253

Appendix B. Logical Data Groupings 385

Table 6. Event Monitor Logical Data Groups and Data Elements (continued)

Event Logical Data
Groups

Data Elements See page

conn_event lock_waits
lock_wait_time
lock_escals
x_lock_escals
deadlocks
lock_timeouts
total_sorts
total_sort_time
sort_overflows
pool_data_l_reads
pool_data_p_reads
pool_data_writes
pool_index_l_reads
pool_index_p_reads
pool_index_writes
pool_read_time
pool_write_time
direct_reads
direct_writes
direct_read_reqs
direct_write_reqs
direct_read_time
direct_write_time
commit_sql_stmts
rollback_sql_stmts
dynamic_sql_stmts
static_sql_stmts
failed_sql_stmts
select_sql_stmts
ddl_sql_stmts
uid_sql_stmts
int_auto_rebinds
int_rows_deleted
int_rows_updated
int_rows_inserted
int_commits
int_rollbacks
int_deadlock_rollbacks
rows_deleted
rows_inserted
rows_updated
rows_selected
rows_read
rows_written
binds_precompiles
rej_curs_blk
acc_curs_blk
pkg_cache_lookups
pkg_cache_inserts
cat_cache_overflows

“Lock Waits” on page 177
“Time Waited On Locks” on page 178
“Lock Escalation” on page 175
“Exclusive Lock Escalations” on page 169
“Deadlocks Detected” on page 166
“Number of Lock Timeouts” on page 174
“Total Sorts” on page 98
“Total Sort Time” on page 99
“Sort Overflows” on page 100
“Buffer Pool Data Logical Reads” on page 113
“Buffer Pool Data Physical Reads” on page 115
“Buffer Pool Data Writes” on page 116
“Buffer Pool Index Logical Reads” on page 118
“Buffer Pool Index Physical Reads” on page 119
“Buffer Pool Index Writes” on page 120
“Total Buffer Pool Physical Read Time” on page 122
“Total Buffer Pool Physical Write Time” on page 123
“Direct Reads From Database” on page 141
“Direct Writes to Database” on page 142
“Direct Read Requests” on page 143
“Direct Write Requests” on page 144
“Direct Read Time” on page 145
“Direct Write Time” on page 146
“Commit Statements Attempted” on page 205
“Rollback Statements Attempted” on page 206
“Dynamic SQL Statements Attempted” on page 203
“Static SQL Statements Attempted” on page 203
“Failed Statement Operations” on page 204
“Select SQL Statements Executed” on page 207
“Data Definition Language (DDL) SQL Statements” on page 208
“Update/Insert/Delete SQL Statements Executed” on page 208
“Internal Automatic Rebinds” on page 209
“Internal Rows Deleted” on page 194
“Internal Rows Updated” on page 195
“Internal Rows Inserted” on page 196
“Internal Commits” on page 210
“Internal Rollbacks” on page 211
“Internal Rollbacks Due To Deadlock” on page 213
“Internal Rows Deleted” on page 194
“Internal Rows Inserted” on page 196
“Internal Rows Updated” on page 195
“Rows Selected” on page 191
“Rows Read” on page 193
“Rows Written” on page 192
“Binds/Precompiles Attempted” on page 214
“Rejected Block Cursor Requests” on page 199
“Accepted Block Cursor Requests” on page 200
“Package Cache Lookups” on page 151
“Package Cache Inserts” on page 153
“Catalog Cache Overflows” on page 148

386 System Monitor Guide and Reference

Table 6. Event Monitor Logical Data Groups and Data Elements (continued)

Event Logical Data
Groups

Data Elements See page

conn_event
(continued)

cat_cache_heap_full
appl_section_lookups
appl_section_inserts
prefetch_wait_time
pool_data_to_estore
pool_index_to_estore
pool_index_from_estore
pool_data_from_estore
authority_lvl
coord_node
appl_priority_type
agent_id
total_hash_joins
total_hash_loops
hash_join_overflows
hash_join_small_overflows
cat_cache_inserts
cat_cache_lookups
appl_priority
disconn_time
user_cpu_time
system_cpu_time
appl_id
sequence_no
partial_record

“Catalog Cache Heap Full” on page 149
“Section Lookups” on page 155
“Section Inserts” on page 156
“Time Waited for Prefetch” on page 135
“Buffer Pool Data Pages to Extended Storage” on page 137
“Buffer Pool Index Pages to Extended Storage” on page 138
“Buffer Pool Index Pages from Extended Storage” on page 140
“Buffer Pool Data Pages from Extended Storage” on page 139
“User Authorization Level” on page 68
“Secondary Connections” on page 92
“Application Priority Type” on page 68
“Application Handle (agent ID)” on page 51
“Total Hash Joins” on page 102
“Total Hash Loops” on page 103
“Hash Join Overflows” on page 103
“Hash Join Small Overflows” on page 104
“Catalog Cache Inserts” on page 148
“Catalog Cache Lookups” on page 147
“Application Agent Priority” on page 67
“Database Deactivation Timestamp” on page 47
“User CPU Time” on page 243
“System CPU Time” on page 244
“Application ID” on page 57
“Sequence Number” on page 59
“Partial Record” on page 253

sqlca sqlcode
sqlerrml
sqlcabc
sqlerrmc
sqlerrp
sqlerrd
sqlwarn
sqlstate
sqlcaid

Administrative API Reference
Administrative API Reference
Administrative API Reference
Administrative API Reference
Administrative API Reference
Administrative API Reference
Administrative API Reference
Administrative API Reference
Administrative API Reference

Appendix B. Logical Data Groupings 387

Table 6. Event Monitor Logical Data Groups and Data Elements (continued)

Event Logical Data
Groups

Data Elements See page

stmt_event stmt_type
stmt_operation
fetch_count
section_number
total_sorts
total_sort_time
sort_overflows
rows_read
rows_written
int_rows_deleted
int_rows_updated
int_rows_inserted
agent_id
agents_top
start_time
stop_time
user_cpu_time
system_cpu_time
sqlca
cursor_name
creator
package_name
appl_id
sequence_no
stmt_text
partial_record

“Statement Type” on page 216
“Statement Operation” on page 217
“Number of Successful Fetches” on page 225
“Section Number” on page 219
“Total Sorts” on page 98
“Total Sort Time” on page 99
“Sort Overflows” on page 100
“Rows Read” on page 193
“Rows Written” on page 192
“Internal Rows Deleted” on page 194
“Internal Rows Updated” on page 195
“Internal Rows Inserted” on page 196
“Application Handle (agent ID)” on page 51
“Number of Agents Created” on page 238
“Event Start Time” on page 222
“Event Stop Time” on page 222
“User CPU Time” on page 243
“System CPU Time” on page 244
“SQL Communications Area (SQLCA)” on page 225
“Cursor Name” on page 220
“Application Creator” on page 220
“Package Name” on page 218
“Application ID” on page 57
“Sequence Number” on page 59
“SQL Dynamic Statement Text” on page 223
“Partial Record” on page 253

subsection_event agent_id
ss_exec_time
tq_tot_send_spills
tq_max_send_spills
tq_rows_read
tq_rows_written
ss_usr_cpu_time
ss_sys_cpu_time
ss_number
ss_node_number
num_agents
partial_record

“Application Handle (agent ID)” on page 51
“Execution Elapsed Time” on page 230
“Total Number of Tablequeue Buffers Overflowed” on page 231
Maximum Number of Tablequeue Buffers Overflows
“Number of Rows Read from Tablequeues” on page 233
“Number of Rows Written to Tablequeues” on page 233
“User CPU Time used by Subsection” on page 245
“System CPU Time used by Subsection” on page 246
“Subsection Number” on page 228
“Subsection Node Number” on page 229
“Number of Agents Working on a Statement” on page 237
“Partial Record” on page 253

388 System Monitor Guide and Reference

Table 6. Event Monitor Logical Data Groups and Data Elements (continued)

Event Logical Data
Groups

Data Elements See page

xaction_event uow_log_space_used
uow_status
lock_wait_time
locks_held_top
lock_escals
x_lock_escal
rows_written
agent_id
user_cpu_time
system_cpu_time
prev_uow_stop_time
uow_start_time
stop_time
appl_id
sequence_no
partial_record

“Unit of Work Log Space Used” on page 162
“Unit of Work Status” on page 76
“Time Waited On Locks” on page 178
“Maximum Number of Locks Held” on page 174
“Number of Lock Escalations” on page 167
“Exclusive Lock Escalations” on page 169
“Rows Written” on page 192
“Application Handle (agent ID)” on page 51
“User CPU Time” on page 243
“System CPU Time” on page 244
“Previous Unit of Work Completion Timestamp” on page 72
“Unit of Work Start Timestamp” on page 73
“Event Stop Time” on page 222
“Application ID” on page 57
“Sequence Number” on page 59
“Partial Record” on page 253

bufferpool_event pool_data_l_reads
pool_data_p_reads
pool_data_writes
pool_index_l_reads
pool_index_p_reads
pool_index_writes
pool_read_time
pool_write_time
files_closed
pool_async_data_reads
pool_async_data_writes
pool_async_index_writes
pool_async_read_time
pool_async_write_time
pool_async_data_read_reqs
direct_reads
direct_writes
direct_read_reqs
direct_write_reqs
direct_read_time
direct_write_time
pool_async_index_reads
pool_data_to_estore
pool_index_to_estore
pool_index_from_estore
pool_data_from_estore
event_time
bp_name
db_name
db_path
partial_record

“Buffer Pool Data Logical Reads” on page 113
“Buffer Pool Data Physical Reads” on page 115
“Buffer Pool Data Writes” on page 116
“Buffer Pool Index Logical Reads” on page 118
“Buffer Pool Index Physical Reads” on page 119
“Buffer Pool Index Writes” on page 120
“Total Buffer Pool Physical Read Time” on page 122
“Total Buffer Pool Physical Write Time” on page 123
“Database Files Closed” on page 124
“Buffer Pool Asynchronous Data Reads” on page 125
“Buffer Pool Asynchronous Data Writes” on page 126
“Buffer Pool Asynchronous Index Writes” on page 127
“Buffer Pool Asynchronous Read Time” on page 129
“Buffer Pool Asynchronous Write Time” on page 130
“Buffer Pool Asynchronous Read Requests” on page 131
“Direct Reads From Database” on page 141
“Direct Writes to Database” on page 142
“Direct Read Requests” on page 143
“Direct Write Requests” on page 144
“Direct Read Time” on page 145
“Direct Write Time” on page 146
“Buffer Pool Asynchronous Index Reads” on page 128
“Buffer Pool Data Pages to Extended Storage” on page 137
“Buffer Pool Index Pages to Extended Storage” on page 138
“Buffer Pool Index Pages from Extended Storage” on page 140
“Buffer Pool Data Pages from Extended Storage” on page 139
“Event Time” on page 253
“Bufferpool Name” on page 135
“Database Name” on page 45
“Database Path” on page 46
“Partial Record” on page 253

Appendix B. Logical Data Groupings 389

Table 6. Event Monitor Logical Data Groups and Data Elements (continued)

Event Logical Data
Groups

Data Elements See page

overflow_event count
first_overflow_time
last_overflow_time
node_number

“Number of Event Monitor Overflows” on page 250
“Time of First Event Overflow” on page 250
“Time of Last Event Overflow” on page 251
“Node Number” on page 69

log_header_event byte_order
version
num_nodes_in_db2_instance
codepage_id
country_code
server_prdid
server_instance_name
event_monitor_name

“Byte Order of Event Data” on page 251
“Version of Monitor Data” on page 252
“Number of Nodes in Partition” on page 249
“ID of Code Page Used by Application” on page 55
“Database Country Code” on page 67
“Server Product/Version ID” on page 41
“Server Instance Name” on page 40
“Event Monitor Name” on page 252

390 System Monitor Guide and Reference

Appendix C. Parallel Edition Version 1.2 Users

In DB2 Version 6 the database system monitor interface has been simplified
and is now the same for all database and system configurations. This
harmonization of the interface means that some of the request types that were
available with the Parallel Edition (PE) V1.2 system monitor are no longer
supported.

The most significant change affects how you monitor an application. In DB2
Version 6 an application snapshot returns all the relevaent application
information, including a breakdown of the application statistics at the
subsection or agent level (if applicable). For example, assuming an application
is running a query composed of several subsections, a GET SNAPHOT FOR
APPLICATION will return:
v Lock wait information for each agent that is working for this application

and is waiting for a lock.
v Tablequeue activity for each subsection executed by this application. This

allows you to track progression of a query that is against a partitioned
database.

v A list of process IDs or thread IDs for each agent associated with the
application.

This information is available on both the coordinator and non-coordinator
nodes. In PE V1.2, you would have to request information about individual
agents or tablequeues and correlate the output obtained at these levels with
the application.

Note: PE V1.2 applications are not compatible with DB2 Version 6.

PE V1.2 applications that are not using any of the requests that have are
obsolete in DB2 Version 6 can be recompiled after changing the request type
from SQLM_DBMON_PARALLEL1 to SQLM_DBMON_VERSION1. No other
changes should be required. See the following tables for obsolete requests.

agent_id

You should note that agent_id no longer corresponds to the process ID of the
agent process. This field has not been renamed in the API to ensure source
compatibility with previous versions, however it has become a globally
unique identifier for the application.

© Copyright IBM Corp. 1993, 1999 391

Agent ID and application handle are synonymous. See “Partitioned Database
Considerations” on page 27 for more information.

API Changes

Obsolete sqlmonss() Request
Type

Description Replacement

SQLMA_AGENT_APPL
SQLMA_AGENT_AGENTID

Get snapshot for agent Replaced with SQLMA_APPL which will
report a breakdown per agent, if and when
applicable.

SQLMA_COORD_AGENTS List all coordinator agents Replaced with SQLMA_appl_info_ALL,
which returns appl_info for each
application. It identifies the node where the
coordinator agent runs and provides both its
application handle and agent thread or
process ID.

SQLMA_FCM_NODE_ALL
SQLMA_FCM_NODE

Get Fast Communication Manager Replaced with SQLMA_DB2, which gets all
database manager information and returns
FCM information (if applicable).

SQLMA_AGENT_ALL
SQLMA_COORD_AGENTS

Get snapshot for all agents
Get snapshot for coordinator agents

In PE V1.2, returned an
SQLMA_AGENT_AGENTID snapshot for
all agents, including the coordinators (or the
coordinators only). Replaced with
SQLMA_APPL_ALL (GET SNAPSHOT FOR
APPLICATIONS). Note that information is
not returned for agents that are not
associated with any applications, as their
counts would be zeroes.

SQLMA_DBASE_AGENTS Get snapshot for all agents for a
database

Replaced with SQLMA_DBASE_APPLS.

Obsolete Commands

Obsolete PE V1.2 Command Replacement

get snapshot for all agents get snapshot for all applications

get snapshot for all coord agents get snapshot for all applications

get snapshot for agents on dbname get snapshot for applications on dbname

get snapshot for agents for application get snapshot for application

get snapshot for coordinating agent get snapshot for application

get snapshot for tablequeues get snapshot for application

Note: GET SNAPSHOT FOR FCM is still supported, however the command
processor maps it to a GET SNAPSHOT FOR DBM and extracts the
FCM information from the returned output.

392 System Monitor Guide and Reference

Appendix D. DB2 Version 1 sqlestat Users

The following information previously available with the sqlestat API on OS/2
for DB2 Version 1 is now available through snapshot monitoring.

sqlestat Name Data Element

component_id “Product Identification” on page 43

corr_serv_lvl “Service Level” on page 42

curr_reqs_lvl “SQL Requests Since Last Commit” on page
213

db_type “Server Operating System” on page 42

location “Database Location” on page 49

node “Catalog Node Network Name” on page 48

product_name “Product Name” on page 43

© Copyright IBM Corp. 1993, 1999 393

394 System Monitor Guide and Reference

Appendix E. How the DB2 Library Is Structured

The DB2 Universal Database library consists of SmartGuides, online help,
books and sample programs in HTML format. This section describes the
information that is provided, and how to access it.

To access product information online, you can use the Information Center. You
can view task information, DB2 books, troubleshooting information, sample
programs, and DB2 information on the Web. See “Accessing Information with
the Information Center” on page 406 for details.

Completing Tasks with SmartGuides

SmartGuides help you complete some administration tasks by taking you
through each task one step at a time. SmartGuides are available through the
Control Center and the Client Configuration Assistant. The following table
lists the SmartGuides.

Note: Create Database, Index, and Configure Multisite Update SmartGuide
are available for the partitioned database environment.

SmartGuide Helps You to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click Add.

Back up Database Determine, create, and schedule a backup
plan.

From the Control Center, click with
the right mouse button on the
database you want to back up and
select Backup->Database using
SmartGuide.

Configure Multisite
Update SmartGuide

Perform a multi-site update, a distributed
transaction, or a two-phase commit.

From the Control Center, click with
the right mouse button on the
Database icon and select Multisite
Update.

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, click with
the right mouse button on the
Databases icon and select
Create->Database using
SmartGuide.

© Copyright IBM Corp. 1993, 1999 395

SmartGuide Helps You to... How to Access...

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, click with
the right mouse button on the
Tables icon and select
Create->Table using SmartGuide.

Create Table Space Create a new table space. From the Control Center, click with
the right mouse button on the
Table spaces icon and select
Create->Table space using
SmartGuide.

Index Advise which indexes to create and drop for
all your queries.

From the Control Center, click with
the right mouse button on the
Index icon and select
Create->Index using SmartGuide.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match
your business requirements.

From the Control Center, click with
the right mouse button on the
database you want to tune and
select Configure using
SmartGuide.

Restore Database Recover a database after a failure. It helps
you understand which backup to use, and
which logs to replay.

From the Control Center, click with
the right mouse button on the
database you want to restore and
select Restore->Database using
SmartGuide.

Accessing Online Help

Online help is available with all DB2 components. The following table
describes the various types of help. You can also access DB2 information
through the Information Center. For information see “Accessing Information
with the Information Center” on page 406.

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive
mode, enter:

? command

where command is a keyword or the entire
command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE
command.

396 System Monitor Guide and Reference

Type of Help Contents How to Access...

Control Center Help

Client Configuration
Assistant Help

Event Analyzer Help

Command Center Help

Explains the tasks you can
perform in a window or
notebook. The help includes
prerequisite information you
need to know, and describes
how to use the window or
notebook controls.

From a window or notebook, click the Help push
button or press the F1 key.

Message Help Describes the cause of a
message, and any action
you should take.

From the command line processor in interactive
mode, enter:

? XXXnnnnn

where XXXnnnnn is a valid message identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext is the file where you want to
save the message help.

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive
mode, enter:

help statement

where statement is an SQL statement.

For example, help SELECT displays help about
the SELECT statement.
Note: SQL help is not available on UNIX-based
platforms.

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive
mode, enter:

? sqlstate or ? class-code

where sqlstate is a valid five-digit SQL state and
class-code is the first two digits of the SQL state.

For example, ? 08003 displays help for the 08003
SQL state, while ? 08 displays help for the 08 class
code.

Appendix E. How the DB2 Library Is Structured 397

DB2 Information – Hardcopy and Online

The table in this section lists the DB2 books. They are divided into two
groups:

Cross-platform books
These books contain the common DB2 information for all
platforms.

Platform-specific books
These books are for DB2 on a specific platform. For example,
there are separate Quick Beginnings books for DB2 on OS/2,
on Windows NT, and on the UNIX-based platforms.

Cross-platform sample programs in HTML
These samples are the HTML version of the sample programs
that are installed with the SDK. They are for informational
purposes and do not replace the actual programs.

Most books are available in HTML and PostScript format, or you can choose
to order a hardcopy from IBM. The exceptions are noted in the table.

On OS/2 and Windows platforms, HTML documentation files can be installed
under the doc\html subdirectory. Depending on the language of your system,
some files may be in that language, and the remainder are in English.

On UNIX platforms, you can install multiple language versions of the HTML
documentation files under the doc/%L/html subdirectories. Any
documentation that is not available in a national language is shown in
English.

You can obtain DB2 books and access information in a variety of different
ways:

View See “Viewing Online Information” on page 405.

Search See “Searching Online Information” on page 408.

Print See “Printing the PostScript Books” on page 408.

Order See “Ordering the Printed Books” on page 409.

Name Description Form Number

File Name for
Online Book

HTML
Directory

Cross-Platform Books

398 System Monitor Guide and Reference

Name Description Form Number

File Name for
Online Book

HTML
Directory

Administration Guide Administration Guide, Design and
Implementation contains information
required to design, implement, and
maintain a database. It also describes
database access using the Control
Center(whether local or in a
client/server environment), auditing,
database recovery, distributed database
support, and high availability.

Administration Guide, Performance
contains information that focuses on the
database environment, such as
application performance evaluation and
tuning.

You can order both volumes of the
Administration Guide in the English
language in North America using the
form number SBOF-8922.

Volume 1
SC09-2839
db2d1x60

Volume 2
SC09-2840
db2d2x60

db2d0

Administrative API
Reference

Describes the DB2 application
programming interfaces (APIs) and data
structures you can use to manage your
databases. Explains how to call APIs
from your applications.

SC09-2841

db2b0x60

db2b0

Application Building
Guide

Provides environment setup information
and step-by-step instructions about how
to compile, link, and run DB2
applications on Windows, OS/2, and
UNIX-based platforms.

This book combines the Building
Applications books for the OS/2,
Windows, and UNIX-based
environments.

SC09-2842

db2axx60

db2ax

APPC, CPI-C and SNA
Sense Codes

Provides general information about
APPC, CPI-C, and SNA sense codes that
you may encounter when using DB2
Universal Database products.
Note: Available in HTML format only.

No form number

db2apx60

db2ap

Appendix E. How the DB2 Library Is Structured 399

Name Description Form Number

File Name for
Online Book

HTML
Directory

Application Development
Guide

Explains how to develop applications
that access DB2 databases using
embedded SQL or JDBC, how to write
stored procedures, user-defined types,
user-defined functions, and how to use
triggers. It also discusses programming
techniques and performance
considerations.

This book was formerly known as the
Embedded SQL Programming Guide.

SC09-2845

db2a0x60

db2a0

CLI Guide and Reference Explains how to develop applications
that access DB2 databases using the DB2
Call Level Interface, a callable SQL
interface that is compatible with the
Microsoft ODBC specification.

SC09-2843

db2l0x60

db2l0

Command Reference Explains how to use the command line
processor, and describes the DB2
commands you can use to manage your
database.

SC09-2844

db2n0x60

db2n0

Data Movement Utilities
Guide and Reference

Explains how to use the Load, Import,
Export, Autoloader, and Data
Propogation utilities to work with the
data in the database.

SC09-2858

db2dmx60

db2dm

DB2 Connect Personal
Edition Quick Beginnings

Provides planning, installing, and
configuring information for DB2 Connect
Personal Edition.

GC09-2830

db2c1x60

db2c1

DB2 Connect User’s Guide Provides concepts, programming and
general usage information about the DB2
Connect products.

SC09-2838

db2c0x60

db2c0

Connectivity Supplement Provides setup and reference information
on how to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as
DRDA application requesters with DB2
Universal Database servers, and on how
to use DRDA application servers with
DB2 Connect application requesters.
Note: Available in HTML and PostScript
formats only.

No form number

db2h1x60

db2h1

Glossary Provides a comprehensive list of all DB2
terms and definitions.
Note: Available in HTML format only.

No form number

db2t0x50

db2t0

400 System Monitor Guide and Reference

Name Description Form Number

File Name for
Online Book

HTML
Directory

Installation and
Configuration Supplement

Guides you through the planning,
installation, and set up of
platform-specific DB2 clients. This
supplement contains information on
binding, setting up client and server
communications, DB2 GUI tools, DRDA
AS, distributed installation, and the
configuration of distributed requests and
access methods to heterogeneous data
sources.

GC09-2857

db2iyx60

db2iy

Message Reference Lists messages and codes issued by DB2,
and describes the actions you should
take.

GC09-2846

db2m0x60

db2m0

Replication Guide and
Reference

Provides planning, configuration,
administration, and usage information
for the IBM Replication tools supplied
with DB2.

SC26-9642

db2e0x60

db2e0

SQL Getting Started Introduces SQL concepts, and provides
examples for many constructs and tasks.

SC09-2856

db2y0x60

db2y0

SQL Reference, Volume 1
and Volume 2

Describes SQL syntax, semantics, and the
rules of the language. Also includes
information about release-to-release
incompatibilities, product limits, and
catalog views.

You can order both volumes of the SQL
Reference in the English language in
North America with the form number
SBOF-8923.

SBOF-8923

Volume 1
db2s1x60

Volume 2
db2s2x60

db2s0

System Monitor Guide and
Reference

Describes how to collect different kinds
of information about databases and the
database manager. Explains how to use
the information to understand database
activity, improve performance, and
determine the cause of problems.

SC09-2849

db2f0x60

db2f0

Troubleshooting Guide Helps you determine the source of
errors, recover from problems, and use
diagnostic tools in consultation with DB2
Customer Service.

S10J-8169 db2p0

Appendix E. How the DB2 Library Is Structured 401

Name Description Form Number

File Name for
Online Book

HTML
Directory

What’s New Describes the new features, functions,
and enhancements in DB2 Universal
Database, Version 6.0, including
information about Java-based tools.

SC09-2851

db2q0x60

db2q0

Platform-Specific Books

Administering Satellites
Guide and Reference

Provides planning, configuration,
administration, and usage information
for satellites.

GC09-2821

db2dsx60

db2ds

DB2 Personal Edition
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on the OS/2, Windows 95, and
Windows NT operating systems.

GC09-2831

db2i1x60

db2i1

DB2 for OS/2 Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the OS/2
operating system. Also contains
installing and setup information for
many supported clients.

GC09-2834

db2i2x60

db2i2

DB2 for UNIX Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on
UNIX-based platforms. Also contains
installing and setup information for
many supported clients.

GC09-2836

db2ixx60

db2ix

DB2 for Windows NT
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the
Windows NT operating system. Also
contains installing and setup information
for many supported clients.

GC09-2835

db2i6x60

db2i6

DB2 Enterprise - Extended
Edition for UNIX Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for UNIX.
Also contains installing and setup
information for many supported clients.

GC09-2832

db2v3x60

db2v3

402 System Monitor Guide and Reference

Name Description Form Number

File Name for
Online Book

HTML
Directory

DB2 Enterprise - Extended
Edition for Windows NT
Quick Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for
Windows NT. Also contains installing
and setup information for many
supported clients.

GC09-2833

db2v6x60

db2v6

DB2 Connect Enterprise
Edition for OS/2 and
Windows NT Quick
Beginnings

Provides planning, migration,
installation, and configuration
information for DB2 Connect Enterprise
Edition on the OS/2 and Windows NT
operating systems. Also contains
installation and setup information for
many supported clients.

This book was formerly part of the DB2
Connect Enterprise Edition Quick
Beginnings.

GC09-2828

db2c6x60

db2c6

DB2 Connect Enterprise
Edition for UNIX Quick
Beginnings

Provides planning, migration,
installation, configuration, and usage
information for DB2 Connect Enterprise
Edition in UNIX-based platforms. Also
contains installation and setup
information for many supported clients.

This book was formerly part of the DB2
Connect Enterprise Edition Quick
Beginnings.

GC09-2829

db2cyx60

db2cy

DB2 Data Links Manager
for AIX Quick Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for AIX.

GC09-2837

db2z0x60

db2z0

DB2 Data Links Manager
for Windows NT Quick
Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for Windows
NT.

GC09-2827

db2z6x60

db2z6

DB2 Query Patroller
Administration Guide

Provides administration information on
DB2 Query Patrol.

SC09-2859

db2dwx60

db2dw

DB2 Query Patroller
Installation Guide

Provides installation information on DB2
Query Patrol.

GC09-2860

db2iwx60

db2iw

DB2 Query Patroller
User’s Guide

Describes how to use the tools and
functions of the DB2 Query Patrol.

SC09-2861

db2wwx60

db2ww

Appendix E. How the DB2 Library Is Structured 403

Name Description Form Number

File Name for
Online Book

HTML
Directory

Cross-Platform Sample Programs in HTML

Sample programs in
HTML

Provides the sample programs in HTML
format for the programming languages
on all platforms supported by DB2 for
informational purposes (not all samples
are available in all languages). Only
available when the SDK is installed.

See Application Building Guide for more
information on the actual programs.
Note: Available in HTML format only.

No form number db2hs/c
db2hs/cli
db2hs/clp
db2hs/cpp
db2hs/cobol
db2hs/cobol_mf
db2hs/fortran
db2hs/java
db2hs/rexx

Notes:

1. The character in the sixth position of the file name indicates the language
of a book. For example, the file name db2d0e60 indicates that the
Administration Guide is in English. The following letters are used in the file
names to indicate the language of a book:

Language Identifier
Brazilian Portuguese b
Bulgarian u
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Russian r
Simp. Chinese c
Slovenian l
Spanish z

404 System Monitor Guide and Reference

Swedish s
Trad. Chinese t
Turkish m

2. For late breaking information that could not be included in the DB2 books:
v On UNIX-based platforms, see the Release.Notes file. This file is located

in the DB2DIR/Readme/%L directory, where %L is the locale name and
DB2DIR is:
– /usr/lpp/db2_06_01 on AIX
– /opt/IBMdb2/V6.1 on HP-UX, Solaris, SCO UnixWare 7, and Silicon

Graphics IRIX
– /usr/IBMdb2/V6.1 on Linux.

v On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed.

v Under Windows Start menu

Viewing Online Information

The manuals included with this product are in Hypertext Markup Language
(HTML) softcopy format. Softcopy format enables you to search or browse the
information, and provides hypertext links to related information. It also makes
it easier to share the library across your site.

You can view the online books or sample programs with any browser that
conforms to HTML Version 3.2 specifications.

To view online books or sample programs on all platforms other than SCO
UnixWare 7:
v If you are running DB2 administration tools, use the Information Center.

See “Accessing Information with the Information Center” on page 406 for
details.

v Select the Open Page menu item of your Web browser. The page you open
contains descriptions of and links to DB2 information:
– On UNIX-based platforms, open the following page:

file:/INSTHOME/sqllib/doc/%L/html/index.htm

where %L is the locale name.
– On other platforms, open the following page:

sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

Appendix E. How the DB2 Library Is Structured 405

If you have not installed the Information Center, you can open the page
by double-clicking on the DB2 Online Books icon. Depending on the
system you are using, the icon is in the main product folder or the
Windows Start menu.

To view online books or sample programs on the SCO UnixWare 7:
v DB2 Universal Database for SCO UnixWare 7 uses the native SCOhelp

utility to search the DB2 information. You can access SCOhelp by the
following methods:
– entering the ″scohelp″ command on the command line,
– selecting the Help menu in the Control Panel of the CDE desktop or
– selecting Help in the Root menu of the Panorama desktop

For more information on SCOhelp, refer to the Installation and Configuration
Supplement.

Accessing Information with the Information Center

The Information Center provides quick access to DB2 product information.
The Information Center is available on all platforms on which the DB2
administration tools are available.

Depending on your system, you can access the Information Center from the:
v Main product folder
v Toolbar in the Control Center
v Windows Start menu
v Help menu of the Control Center

The Information Center provides the following kinds of information. Click the
appropriate tab to look at the information:

Tasks Lists tasks you can perform using DB2.

Reference Lists DB2 reference information, such as
keywords, commands, and APIs.

Books Lists DB2 books.

Troubleshooting Lists categories of error messages and their
recovery actions.

Sample Programs Lists sample programs that come with the
DB2 Software Developer’s Kit. If the Software
Developer’s Kit is not installed, this tab is not
displayed.

Web Lists DB2 information on the World Wide

406 System Monitor Guide and Reference

Web. To access this information, you must
have a connection to the Web from your
system.

When you select an item in one of the lists, the Information Center launches a
viewer to display the information. The viewer might be the system help
viewer, an editor, or a Web browser, depending on the kind of information
you select.

The Information Center provides some search capabilities, so you can look for
specific topics, and filter capabilities to limit the scope of your searches.

For a full text search, click the Search button of the Information Center follow
the Search DB2 Books link in each HTML file.

The HTML search server is usually started automatically. If a search in the
HTML information does not work, you may have to start the search server by
double-clicking its icon on the Windows or OS/2 desktop.

Refer to the release notes if you experience any other problems when
searching the HTML information.

Note: Search function is not available in the Linux and Silicon Graphics
environments.

Setting Up a Document Server

By default, the DB2 information is installed on your local system. This means
that each person who needs access to the DB2 information must install the
same files. To have the DB2 information stored in a single location, use the
following instructions:
1. Copy all files and subdirectories from \sqllib\doc\html on your local

system to a Web server. Each book has its own subdirectory containing all
the necessary HTML and GIF files that make up the book. Ensure that the
directory structure remains the same.

2. Configure the Web server to look for the files in the new location. For
information, see the NetQuestion Appendix in Installation and Configuration
Supplement.

3. If you are using the Java version of the Information Center, you can
specify a base URL for all HTML files. You should use the URL for the list
of books.

4. Once you are able to view the book files, you should bookmark commonly
viewed topics. Among those, you will probably want to bookmark the
following pages:

Appendix E. How the DB2 Library Is Structured 407

v List of books
v Tables of contents of frequently used books
v Frequently referenced articles, such as the ALTER TABLE topic
v The Search form

For information about setting up a search, see the NetQuestion Appendix in
Installation and Configuration Supplement book.

Searching Online Information

To search for information in the HTML books, you can do the following:
v Click on Search the DB2 Books at the bottom of any page in the HTML

books. Use the search form to find a specific topic. This function is not
available in the Linux or Silicon Graphics IRIX environments.

v Click on Index at the bottom of any page in an HTML book. Use the index
to find a specific topic in the book.

v Display the table of contents or index of the HTML book, and then use the
find function of the Web browser to find a specific topic in the book.

v Use the bookmark function of the Web browser to quickly return to a
specific topic.

v Use the search function of the Information Center to find specific topics. See
“Accessing Information with the Information Center” on page 406 for
details.

Printing the PostScript Books

If you prefer to have printed copies of the manuals, you can decompress and
print PostScript versions. For the file name of each book in the library, see the
table in “DB2 Information – Hardcopy and Online” on page 398. Specify the
full path name for the file you intend to print.

On OS/2 and Windows platforms:

1. Copy the compressed PostScript files to a hard drive on your system. The
files have a file extension of .exe and are located in the
x:\doc\language\books\ps directory, where x: is the letter representing the
CD-ROM drive and language is the two-character country code that
represents your language (for example, EN for English).

2. Decompress the file that corresponds to the book that you want. Each
compressed book is a self-extracting executable file. To decompress the

408 System Monitor Guide and Reference

book, simply run it as you would run any other executable program. The
result from this step is a printable PostScript file with a file extension of
.ps.

3. Ensure that your default printer is a PostScript printer capable of printing
Level 1 (or equivalent) files.

4. Enter the following command from a command line:
print filename.ps

On UNIX-based platforms:
1. Mount the CD-ROM. Refer to your Quick Beginnings manual for the

procedures to mount the CD-ROM.
2. Change to /cdrom/doc/%L/ps directory on the CD-ROM, where /cdrom is

the mount point of the CD-ROM and %L is the name of the desired locale.
The manuals will be installed in the previously-mentioned directory with
file names ending with .ps.Z.

3. Decompress and print the manual you require using the following
command:
v For AIX:

zcat filename | qprt -P PSPrinter_queue

v For HP-UX, Solaris, or SCO UnixWare 7:
zcat filename | lp -d PSPrinter_queue

v For Linux:
zcat filename | lpr -P PSPrinter_queue

v For Silicon Graphics IRIX:
zcat < filename | lp -d PSPrinter_queue

where filename is the full path name and extension of the compressed
PostScript file and PSprinter_queue is the name of the PostScript printer
queue.

For example, to print the English version of DB2 for UNIX Quick
Beginnings on AIX, you can use the following command:
zcat /cdrom/doc/en/ps/db2ixe60.ps.Z || qprt -P ps1

Ordering the Printed Books

You can order the printed DB2 manuals either as a set or individually. There
are three sets of books available. The form number for the entire set of DB2
books is SBOF-8926-00. The form number for the books listed under the
heading ″Cross-Platform Books″ is SBOF-8924-00.

Appendix E. How the DB2 Library Is Structured 409

Note: These form numbers only apply if you are ordering books that are
printed in the English language in North America.

You can also order books individually by the form number listed in “DB2
Information – Hardcopy and Online” on page 398. To order printed versions,
contact your IBM authorized dealer or marketing representative, or phone
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

410 System Monitor Guide and Reference

Appendix F. Notices

Any reference to an IBM licensed program in this publication is not intended
to state or imply that only IBM’s licensed program may be used. Any
functionally equivalent product, program or service that does not infringe any
of IBM’s intellectual property rights may be used instead of the IBM product,
program, or service. Evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, is the user’s
responsibility.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the

IBM Director of Licensing
IBM Corporation, North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

© Copyright IBM Corp. 1993, 1999 411

Trademarks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States and/or other countries:

ACF/VTAM
ADSTAR
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Universal Database
Distributed Relational Database Architecture
DRDA
Extended Services
FFST
First Failure Support Technology
IBM
IMS
LAN Distance

MVS/ESA
MVS/XA
OS/400
OS/390
OS/2
PowerPC
QMF
RACF
RISC System/6000
SP
SQL/DS
SQL/400
S/370
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WIN-OS/2

Trademarks of Other Companies

The following terms are trademarks or registered trademarks of the
companies listed:

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or
both.

HP-UX is a trademark of Hewlett-Packard.

Java, HotJava, Solaris, Solstice, and Sun are trademarks of Sun Microsystems,
Inc.

412 System Monitor Guide and Reference

Microsoft, Windows, Windows NT, Visual Basic, and the Windows logo are
trademarks or registered trademarks of Microsoft Corporation in the United
States, other countries, or both.

PC Direct is a trademark of Ziff Communications Company in the United
States, other countries, or both and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk (**), may be trademarks or service marks of others.

Appendix F. Notices 413

414 System Monitor Guide and Reference

Index

A
acc_curs_blk element 200
accepted block cursor requests,

monitor element 200
accesses to overflowed records,

monitor element 194
activating an event monitor 19
active sorts, monitor element 101
active_sorts element 101
Administering Satellites Guide and

Reference 402
Administration Guide 398
Administrative API Reference 399
agent_id 276
agent_id element 51
agent ID holding lock, monitor

element 181
agent_id_holding_lock element 181
agent_pid element 77
agent pool 78
agent_sys_cpu_time element 240
agent_usr_cpu_time element 239
agents

associated 78
coordinator 78
idle 78
subagent 78

agents assigned from pool, monitor
element 88

agents created due to empty agent
pool, monitor element 89

agents_created_empty_pool
element 89

agents_from_pool element 88
agents registered, monitor

element 86
agents_registered element 86
agents_registered_top element 87
agents_stolen element 90
agents_top element 238
agents waiting for a token, monitor

element 86
agents_waiting_on_token

element 86
agents_waiting_top element 87
APPC, CPI-C and SNA Sense

Codes 399
appl_con_time element 70
appl_id element 57

appl_id_holding_lk element 182
appl_id_oldest_xact element 56
appl_idle_time element 77
appl_name element 56
appl_priority element 67
appl_priority_type element 68
appl_section_inserts element 156
appl_section_lookups element 155
appl_status element 52
application agent priority, monitor

element 67
Application Building Guide 399
application creator, monitor

element 220
Application Development

Guide 399
application handle (agent ID),

monitor element 51
application ID, monitor element 57
application ID holding lock, monitor

element 182
application idle time, monitor

element 77
application name, monitor

element 56
application priority type, monitor

element 68
application snapshot 9
application status, monitor

element 52
application status change time,

monitor element 55
application with oldest transaction,

monitor element 56
applications connected currently,

monitor element 85
applications executing in the

database currently, monitor
element 85

appls_cur_cons 85
appls_in_db2 element 85
associated agent 78
associated_agents_top element 91
auth_id element 60
authority_lvl element 68
authority required

for event monitors 18, 271
for snapshot monitoring 8

authorization ID, monitor
element 60

autostarting an event monitor 19
availability of data

snapshot monitoring 12

B
binds/precompiles attempted,

monitor element 214
binds_precompiles element 214
blocked event monitors 278
bp_info element 134
bp_name element 135
buff_free_bottom element 105
buff_free element 105
buffer overflows

pipe 24
buffer pool 110
buffer pool asynchronous data reads,

monitor element 125
buffer pool asynchronous data

writes, monitor element 126
buffer pool asynchronous index

reads, monitor element 128
buffer pool asynchronous index

writes, monitor element 127
buffer pool asynchronous read

requests, monitor element 131
buffer pool asynchronous read time,

monitor element 129
buffer pool asynchronous write time,

monitor element 130
buffer pool data logical reads,

monitor element 113
buffer pool data pages from

extended storage, monitor
element 139

buffer pool data pages to extended
storage, monitor element 137

buffer pool data physical reads,
monitor element 115

buffer pool data writes, monitor
element 116

buffer pool event monitor 21
buffer pool hit ratio 111
buffer pool index logical reads,

monitor element 118
buffer pool index pages from

extended storage, monitor
element 140

© Copyright IBM Corp. 1993, 1999 415

buffer pool index pages to extended
storage, monitor element 138

buffer pool index physical reads,
monitor element 119

buffer pool index writes, monitor
element 120

buffer pool information, monitor
element 134

buffer pool log space cleaners
triggered, monitor element 132

buffer pool snapshot 9
buffer pool threshold cleaners

triggered, monitor element 134
buffer pool victim page cleaners

triggered, monitor element 133
buffering, event monitor 277
bufferpool name, monitor

element 135
byte_order element 251
byte order of event data, monitor

element 251

C
cache

catalog 146
package 150

capabilities, monitoring
activity monitoring 1
performance analysis 2
problem determination 1
system configuration 2

cat_cache_heap_full element 149
cat_cache_inserts element 148
cat_cache_lookups element 147
cat_cache_overflows element 148
catalog cache heap full, monitor

element 149
catalog cache inserts, monitor

element 148
catalog cache lookups, monitor

element 147
catalog cache overflows, monitor

element 148
catalog_node element 49
catalog_node_name element 48
catalog node network name, monitor

element 48
catalog node number, monitor

element 49
CE_free_bottom element 107
CE_free element 106
CLI Guide and Reference 400
client communication protocol,

monitor element 66
client_db_alias element 61
client_nname element 60

client operating platform, monitor
element 65

client_pid element 65
client_platform element 65
client_prdid element 61
client process ID, monitor

element 65
client product/version ID, monitor

element 61
client_protocol element 66
codepage_id element 55
comm_private_mem element 91
Command Reference 400
commit_sql_stmts element 205
commit statements attempted,

monitor element 205
committed private memory, monitor

element 91
communication error time, monitor

element 267
communication errors, monitor

element 266
component_id element 43
con_elapsed_time element 266
con_local_dbases 83
con_response_time element 266
configuration NNAME at monitoring

(server) node, monitor element 39
configuration NNAME of client,

monitor element 60
conn_complete_time element 71
conn_time 47
connection entries currently free,

monitor element 106
connection for snapshot 11
connection information 9
connection request completion

timestamp, monitor element 71
connection request start timestamp,

monitor element 70
connection status, monitor

element 108
connection_status element 108
connection switches, monitor

element 94
connections event monitor 21
connections involved in deadlock,

monitor element 175
connections_top element 71
Connectivity Supplement 400
connects since database activation,

monitor element 84
coord_agent_pid element 78
coord_agents_top element 90
coord_node element 70

coordinating node, monitor
element 70

coordinator agent 33, 78
coordinator agent, monitor

element 78
corr_token element 64
count element 250
counters 24, 37
country_code element 67
CREATE EVENT MONITOR

statement 300, 309
creating an event monitor 18
creator element 220
current agents waiting on locks,

monitor element 179
current number of connections for

DB2 Connect, monitor
element 257

current number of tablequeue
buffers overflowed, monitor
element 232

cursor name, monitor element 220
cursor_name element 220

D
data, output 31
data definition language (DDL) SQL

statements, monitor element 208
data element

types 37
Data Movement Utilities Guide and

Reference 400
data stream 31
data stream, event logical data

groupings 382
data stream, event monitor 281
data stream, reading event

monitor 284
data stream, snapshot 292, 295
data stream, snapshot logical data

groupings 367
data stream, snapshot monitor 291
data stream hierarchy, snapshot 287
database

information 330
monitor, resetting 349

database activation timestamp,
monitor element 46

database alias at the gateway,
monitor element 256

database alias used by application,
monitor element 61

database connection
applications connected currently,

monitor element 85

416 System Monitor Guide and Reference

database connection (continued)
applications executing in the

database currently, monitor
element 85

connection request completion
timestamp, monitor
element 71

database country code, monitor
element 67

database deactivation timestamp,
monitor element 47

database event monitor 21
database files closed, monitor

element 124
database location, monitor

element 49
database manager

monitor switches, checking 324,
326

statistics 328
database manager snapshot 9
database manager type at monitored

(server) node, monitor element 40
database monitor

description 364
database name, monitor element 45
database path, monitor element 46
database snapshot 9
database system monitor

GET DATABASE MANAGER
MONITOR SWITCHES 324

GET MONITOR SWITCHES 326
Database System Monitor

GET SNAPSHOT 328
RESET MONITOR 349
UPDATE MONITOR

SWITCHES 364
db_conn_time element 46
db_heap_top element 156
db_location element 49
db_name element 45
db_path element 46
db_status element 48
DB2 Connect Enterprise Edition for

OS/2 and Windows NT Quick
Beginnings 403

DB2 Connect Enterprise Edition for
UNIX Quick Beginnings 403

DB2 Connect gateway first connect
initiated, monitor element 256

DB2 Connect Personal Edition Quick
Beginnings 400

DB2 Connect User’s Guide 400
DB2 Data Links Manager for AIX

Quick Beginnings 403

DB2 Data Links Manager for
Windows NT Quick
Beginnings 403

DB2 Enterprise - Extended Edition
for UNIX Quick Beginnings 402

DB2 Enterprise - Extended Edition
for Windows NT Quick
Beginnings 402

db2 explain 2
DB2 library

books 398
Information Center 406
language identifier for

books 404
late-breaking information 405
online help 396
ordering printed books 409
printing PostScript books 408
searching online

information 408
setting up document server 407
SmartGuides 395
structure of 395
viewing online information 405

DB2 Personal Edition Quick
Beginnings 402

DB2 Query Patroller Administration
Guide 403

DB2 Query Patroller Installation
Guide 403

DB2 Query Patroller User’s
Guide 403

db2_status 44
db2batch 33
db2ConvMonStream 310
db2eva 18, 19, 313
db2evmon 19, 33, 315
db2GetSnapshot - Get Snapshot 317
db2gov 33
db2start_time element 39
dcs_appl_status element 260
DCS application status, monitor

element 260
DCS database name, monitor

element 255
dcs_db_name element 255
ddl_sql_stmts element 208
deadlock event monitor 21
deadlocks detected, monitor

element 166
deadlocks element 166
degree of parallelism, monitor

element 238
degree_parallelism element 238
direct_read_reqs element 143

direct read requests, monitor
element 143

direct read time, monitor
element 145

direct_read_time element 145
direct_reads element 141
direct reads from database, monitor

element 141
direct_write_reqs element 144
direct write requests, monitor

element 144
direct write time, monitor

element 146
direct_write_time element 146
direct_writes element 142
direct writes to database, monitor

element 142
disconn_time element 47
dl_conns element 175
drda correlation token, monitor

element 64
DROP statement 321
dynamic SQL snapshot 12
dynamic SQL statements attempted,

monitor element 203
dynamic_sql_stmts element 203

E
elapsed statement execution time,

monitor element 236
elapsed time spent on DB2 Connect

gateway processing, monitor
element 259

element, output 31
event analyzer 33
Event Analyzer 313
EVENT_MON_STATE function 322
event monitor

CREATE EVENT MONITOR
statement 300

DROP statement 321
EVENT_MON_STATE

function 322
FLUSH EVENT MONITOR

statement 323
SET EVENT MONITOR STATE

statement 351
event monitor data stream 281, 284
event monitor name, monitor

element 252
event_monitor_name element 252
Event Monitor Productivity

Tool 315
event monitor trace 281
event monitors

activating 19

Index 417

event monitors (continued)
authority required 19
autostarting 19
blocked 278
buffering 277
creating 18
definition 5, 21
disk space 280, 299
event types 21
example of deadlock

monitoring 12
file event monitors 277
information available 21
matching to application 276
non-blocked 278
output 271
partitioned databases 29
pipe event monitors 22
processing data 280
reading the trace 19
restarting 280
target 278
trace 12, 271
using 18
when written 12, 21

event start time, monitor
element 222

event stop time, monitor
element 222

event time, monitor element 253
event_time element 253
event types 21
exclusive lock escalations, monitor

element 169
execution elapsed time, monitor

element 230
execution_id element 64
extended storage 135

F
failed_sql_stmts element 204
failed statement operations, monitor

element 204
fcm buffers currently free, monitor

element 105
fetch_count element 225
file event monitors 277
files_closed element 124
first_overflow_time element 250
fixed structure, snapshot 292
FLUSH EVENT MONITOR

statement 323
function

scalar
EVENT_MON_STATE 322

function (continued)
scalar (continued)

EVENT_MON_STATE,
returning event monitor
states 322

table
SQLCACHE_SNAPSHOT 353
SQLCACHE_SNAPSHOT,

options and results 353

G
gauges 37
GET DATABASE MANAGER

MONITOR SWITCHES 324
GET MONITOR SWITCHES 326
GET SNAPSHOT 328

effect on UPDATE MONITOR
SWITCHES 364

Glossary 400
gw_comm_error_time element 267
gw_comm_errors element 266
gw_con_time element 256
gw_connections_top element 256
gw_cons_wait_client element 258
gw_cons_wait_host element 258
gw_cur_cons element 257
gw_db_alias element 256
gw_exec_time element 259
gw_total_cons element 257

H
hash join overflows, monitor

element 103
hash_join_overflows element 103
hash join small overflows, monitor

element 104
hash_join_small_overflows

element 104
hash join threshold, monitor

element 102
host_ccsid element 261
host coded character set ID, monitor

element 261
host database name, monitor

element 255
host_db_name element 255
host_prdid element 62
host product/version ID, monitor

element 62
host response time, monitor

element 265
host_response_time element 265

I
ID of code page used by application,

monitor element 55

idle agent 78
idle_agents element 88
inactive_gw_agents element 93
inbound_bytes_received

element 263
inbound_bytes_sent element 264
inbound_comm_address

element 262
inbound communication address,

monitor element 262
inbound number of bytes received,

monitor element 263
inbound number of bytes sent,

monitor element 264
information available

from snapshot monitoring 9
information data elements 37
input database alias, monitor

element 248
input_db_alias element 248
Installation and Configuration

Supplement 400
instance connection 11
int_auto_rebinds element 209
int_commits element 210
int_deadlock_rollbacks element 213
int_rollbacks element 211
int_rows_deleted element 194
int_rows_inserted element 196
int_rows_updated element 195
interface, database system monitor

event monitor commands 299
event monitor GUI 19
snapshot monitoring APIs 8,

299
snapshot monitoring

commands 8, 299
snapshot monitoring GUI 8

internal automatic rebinds, monitor
element 209

internal commits, monitor
element 210

internal rollbacks, monitor
element 211

internal rollbacks due to deadlock,
monitor element 213

internal rows deleted, monitor
element 194

internal rows inserted, monitor
element 196

internal rows updated, monitor
element 195

iStoreResult 12

418 System Monitor Guide and Reference

L
last_backup element 50
last backup timestamp, monitor

element 50
last_over_flow time 251
last_reset element 248
last reset timestamp, monitor

element 248
LIST ACTIVE DATABASES 342
LIST APPLICATIONS 344
LIST DCS APPLICATIONS 346
loc_list_in_use 166
local connections, monitor

element 82
local connections executing in the

database manager, monitor
element 82

local_cons element 82
local_cons_in_exec 82
local databases with current

connects, monitor element 83
lock escalation, monitor

element 175
lock_escalation element 175
lock_escals element 167
lock mode, monitor element 170
lock_mode element 170
lock mode requested, monitor

element 176
lock_mode_requested element 176
lock node, monitor element 173
lock_node element 173
lock object name, monitor

element 173
lock_object_name element 173
lock_object_type element 172
lock object type waited on, monitor

element 172
lock snapshot 9
lock status, monitor element 171
lock_status element 171
lock_timeouts element 174
lock_wait_start_time element 180
lock wait start timestamp, monitor

element 180
lock_wait_time element 178
lock_waits 177
lock waits, monitor element 177
locks

current agents waiting on locks,
monitor element 179

locks held, monitor element 164
total lock list memory in use,

monitor element 166

locks (continued)
total time unit of work waited on

locks, monitor element 179
locks held, monitor element 164
locks_held element 164
locks_held_top element 174
locks_waiting 179
log being rolled forward, monitor

element 185
log header, reading 283
log phase, monitor element 186
log_reads element 160
log_space_used element 162
log stream header, reading 282
log_writes element 161
logical data groupings 367
logical view 26

M
MA_free_bottom element 106
MA_free element 106
max_agent_overflows element 93
maximum agent overflows, monitor

element 93
maximum database heap allocated,

monitor element 156
maximum number of agents

registered, monitor element 87
maximum number of agents waiting,

monitor element 87
maximum number of associated

agents, monitor element 91
maximum number of concurrent

connections, monitor element 71,
256

maximum number of coordinating
agents, monitor element 90

maximum number of locks held,
monitor element 174

maximum number of tablequeue
buffers overflows, monitor
element 234

maximum package cache size,
monitor element 154

maximum secondary log space used,
monitor element 158

maximum total log space used,
monitor element 159

memory requirements 27
message anchors currently free,

monitor element 106
Message Reference 401
minimum connection entries,

monitor element 107
minimum fcm buffers free, monitor

element 105

minimum message anchors, monitor
element 106

minimum request blocks, monitor
element 108

mon_heap_sz 27
monitor switches

control data collected by the
database manager 4

query database manager switch
settings 4

setting explicitly 4
setting for a snapshot 5
setting implicitly 4

monitoring
levels 3

monitoring databases 324, 326
most recent connection elapsed time,

monitor element 266
most recent response time for

connect, monitor element 266
most recent statement elapsed time,

monitor element 223
most recent unit of work elapsed

time, monitor element 75
multiple partition databases

event monitors 29
snapshot monitoring 27
subsections 30
tablequeue 30

N
node number, monitor element 69
node_number element 69
nodegroup 30
num_agents element 237
num_assoc_agents element 92
num_compilation element 235
num_executions element 235
num_gw_conn_switches element 94
num_nodes_in_db2_instance

element 249
num_subagents element 230
number_nodes element 108
number of agents created, monitor

element 238
number of agents working on a

statement, monitor element 237
number of agents working on a

subsection, monitor element 230
number of associated agents,

monitor element 92
number of connections waiting for

the client to send request, monitor
element 258

Index 419

number of connections waiting for
the host to reply, monitor
element 258

number of event monitor overflows,
monitor element 250

number of idle agents, monitor
element 88

number of lock escalations, monitor
element 167

number of lock timeouts, monitor
element 174

number of log pages read, monitor
element 160

number of log pages written,
monitor element 161

number of nodes, monitor
element 108

number of nodes in partition,
monitor element 249

number of open cursors, monitor
element 259

number of rollforward table spaces,
monitor element 186

number of rows read from
tablequeues, monitor element 233

number of rows written to
tablequeues, monitor element 233

number of SQL statements
attempted, monitor element 259

number of successful fetches,
monitor element 225

O
open_cursors element 259
open_loc_curs_blk element 201
open_loc_curs element 201
open local cursors, monitor

element 201
open local cursors with blocking,

monitor element 201
open_rem_curs_blk element 198
open_rem_curs element 198
open remote cursors, monitor

element 198
open remote cursors with blocking,

monitor element 198
operation element 217
outbound_appl_id element 62
outbound application ID, monitor

element 62
outbound_bytes_received

element 264
outbound_bytes_sent element 263
outbound_comm_address

element 262

outbound_comm_protocol
element 261

outbound communication address,
monitor element 262

outbound communication protocol,
monitor element 261

outbound number of bytes received,
monitor element 264

outbound number of bytes sent,
monitor element 263

outbound_sequence_no element 63
outbound sequence number, monitor

element 63
output, snapshot 295
output, snapshot monitor 291
output format 31
overflow_accesses 194
overflows, event monitor 278

P
package cache inserts, monitor

element 153
package cache lookups, monitor

element 151
package cache overflows, monitor

element 153
package name, monitor

element 218
package_name element 218
page reorganizations, monitor

element 197
page_reorgs element 197
parsing, snapshot 292
partial record, monitor element 253
partial_record element 253
performance monitor, Windows

NT 33
pipe event monitors

defining 22
overflows 24
using 22

piped sorts accepted, monitor
element 97

piped_sorts_accepted element 97
piped sorts requested, monitor

element 97
piped_sorts_requested element 97
pkg_cache_inserts element 153
pkg_cache_lookups 151
pkg_cache_num_overflow

element 153
pkg_cache_size_top element 154
pool_async_data_read_reqs

element 131
pool_async_data_reads element 125

pool_async_data_writes
element 126

pool_async_index_reads
element 128

pool_async_index_writes
element 127

pool_async_read_time element 129
pool_async_write_time element 130
pool_data_from_estore element 139
pool_data_l_reads element 113
pool_data_p_reads element 115
pool_data_to_estore element 137
pool_data_writes element 116
pool_drty_pg_steal_clns 133
pool_drty_pg_thrsh_clns

element 134
pool_index_from_estore

element 140
pool_index_l_reads element 118
pool_index_p_reads element 119
pool_index_to_estore element 138
pool_index_writes element 120
pool_lsn_gap_clns element 132
pool_read_time element 122
pool_write_time element 123
post_threshold_hash_joins

element 102
post threshold sorts, monitor

element 96
post_threshold_sorts element 96
prefetch_wait_time element 135
prefetchers 111, 112
prep_time_best element 236
prep_time_worst element 236
prev_stop_time element 76
prev_uow_stop_time element 72
previous transaction stop time,

monitor element 76
previous unit of work completion

timestamp, monitor element 72
process or thread id, monitor

element 77
product identification, monitor

element 43
product name, monitor element 43
product_name element 43

Q
query

database manager monitor switch
settings 4

event monitor state 21
query_card_estimate element 226
query cost estimate, monitor

element 227
query_cost_estimate element 227

420 System Monitor Guide and Reference

query number of rows estimate,
monitor element 226

Quick Beginnings for OS/2 402
Quick Beginnings for UNIX 402
Quick Beginnings for Windows

NT 402

R
RB_free_bottom element 108
RB_free element 107
rej_curs_blk element 199
rejected block cursor requests,

monitor element 199
rem_cons_in element 80
rem_cons_in_exec 81
remote connections executing in the

database manager, monitor
element 81

remote connections to database
manager, monitor element 80

Replication Guide and
Reference 401

request blocks currently free,
monitor element 107

RESET MONITOR 349
resetting monitor data 25
rf_log_num element 185
rf_num_tspaces element 186
rf_status element 186
rf_timestamp element 184
rf_type element 185
rollback_sql_stmts 206
rollback statements attempted,

monitor element 206
rolled back agent, monitor

element 183
rolled_back_agent_id element 183
rolled_back_appl_id element 183
rolled back application, monitor

element 183
rolled_back_sequence_no

element 184
rolled back sequence number,

monitor element 184
rollforward timestamp, monitor

element 184
rollforward type, monitor

element 185
rows deleted, monitor element 190
rows_deleted element 190
rows inserted, monitor element 190
rows_inserted element 190
rows read, monitor element 193
rows_read element 193
rows selected, monitor element 191
rows_selected element 191

rows updated, monitor element 191
rows_updated element 191
rows written, monitor element 192
rows_written element 192

S
samples

event monitor trace 15, 272
event monitoring on partitioned

databases 29
lock snapshot 5
monitoring deadlocks with a lock

snapshot 12
query event monitor state 21
setting switches 25
snapshots on partitioned

databases 27
sec_log_used_top element 158
sec_logs_allocated element 160
secondary connections, monitor

element 92
secondary logs allocated currently,

monitor element 160
section inserts, monitor

element 156
section lookups, monitor

element 155
section number, monitor

element 219
section_number element 219
select SQL statements executed,

monitor element 207
select_sql_stmts element 207
self-describing data stream 31
sequence_no element 59
sequence_no_holding_lk

element 183
sequence number, monitor

element 59
sequence number holding lock,

monitor element 183
server_db2_type element 40
server instance name, monitor

element 40
server_instance_name element 40
server_nname element 39
server operating system, monitor

element 42
server_platform element 42
server_prdid element 41
server product/version ID, monitor

element 41
server version, monitor element 41
server_version element 41
service level, monitor element 42
service_level element 42

SET EVENT MONITOR STATE
statement 351, 352

setting switches
for a monitoring application 5

setting up document server 407
size, output 31
snapshot, reading output 295
snapshot monitor data stream 291
snapshot monitor output 291
snapshot monitoring

APIs 299
authority required 8
availability of data 12
commands 299
data element categories 5
definition 5
information available 9
information returned 9
interface 8
partitioned databases 27
request types 9
required connection 11
sample output 6, 25
setting switches 5, 25
snapshot types 9

snapshot output 287
snapshot parsing 292
snapshot request 293
snapshot request types 287
snapshot scenarios 292
snapshot time, monitor element 249
snapshot types

application 9
buffer pool 9
database 9
database manager 9
lock 9
table 9
table space 9

snapshots, version 6 292
sort_heap_allocated element 95
sort overflows, monitor

element 100
sort_overflows element 100
SQL activity 12
SQL communications area (SQLCA),

monitor element 225
SQL dynamic statement text,

monitor element 223
SQL Getting Started 401
SQL Reference 401
sql_reqs_since_commit element 213
SQL requests since last commit,

monitor element 213

Index 421

SQL statement
CREATE EVENT

MONITOR 300, 309
DROP 321
FLUSH EVENT MONITOR 323
SET EVENT MONITOR

STATE 351, 352
sql_stmts element 259
SQL syntax

SQLCACHE_SNAPSHOT
function, results on set number
pairs 353

sqlca element 225
SQLCACHE_SNAPSHOT function,

detailed description 353
SQLCODE +1627W 31
sqlcode -973 27
SQLM_ELM 281, 291
sqlmon - Get/Update Monitor

Switches 355
sqlmon.h header file 271
sqlmonsz - Estimate Size Required

for db2GetSnapshot() Output
Buffer 358

sqlmrset - Reset Monitor 361
ss_exec_time element 230
ss_node_number element 229
ss_number element 228
ss_status element 229
ss_sys_cpu_time element 246
ss_usr_cpu_time element 245
start database manager timestamp,

monitor element 39
start_time element 222
statement best preparation time,

monitor element 236
statement compilations, monitor

element 235
statement event monitor 21
statement executions, monitor

element 235
statement node, monitor

element 214
statement operation, monitor

element 217
statement operation start timestamp,

monitor element 221
statement operation stop timestamp,

monitor element 221
statement sorts, monitor

element 224
statement type, monitor

element 216
statement worst preparation time,

monitor element 236

static SQL statements attempted,
monitor element 203

static_sql_stmts 203
statistics

database manager 328
status_change_time element 55
status element 75
status of database, monitor

element 48
status of DB2 instance, monitor

element 44
stmt_elapsed_time element 223
stmt_node_number element 214
stmt_operations element 217
stmt_sorts element 224
stmt_start element 221
stmt_stop element 221
stmt_sys_cpu_time element 242
stmt_text element 223
stmt_type element 216
stmt_usr_cpu_time element 241
stolen agent 78
stolen agents, monitor element 90
stop_time element 222
subagent 78
subsection node number, monitor

element 229
subsection number, monitor

element 228
subsection status, monitor

element 229
subsections 227

definition 30
monitoring 30
tablequeue 30

switches 4
system CPU time, monitor

element 244
system_cpu_time element 244
system CPU time used by agent,

monitor element 240
system CPU time used by statement,

monitor element 242
system CPU time used by

subsection, monitor element 246
System Monitor Guide and

Reference 401

T
table event monitor 21
table file ID, monitor element 196
table_file_id element 196
table name, monitor element 188
table_name element 188
table_schema element 189

table schema name, monitor
element 189

table snapshot 9
table space event monitor 21
table space name, monitor

element 179
table space snapshot 9
table type, monitor element 187
table_type element 187
tablequeue 30
tablespace being rolled forward,

monitor element 185
tablespace_name element 179
taking a snapshot 293

issuing get snapshot
command 6

sample output 6
time 37
time of database connection, monitor

element 47
time of first event overflow, monitor

element 250
time of last event overflow, monitor

element 251
time_stamp element 249
time waited for prefetch, monitor

element 135
time waited on locks, monitor

element 178
time_zone_disp element 44
time zone displacement, monitor

element 44
timestamp 37
tools

control center 33
db2batch 33
db2evmon 33
db2gov 33
event analyzer 33

tot_log_used_top element 159
tot_s_cpu_time element 246
tot_u_cpu_time element 247
total buffer pool physical read time,

monitor element 122
total buffer pool physical write time,

monitor element 123
total_buffers_rcvd element 110
total_buffers_sent element 109
total_cons element 84
total_exec_time element 236
total fcm buffers received, monitor

element 110
total fcm buffers sent, monitor

element 109

422 System Monitor Guide and Reference

total hash joins, monitor
element 102

total_hash_joins element 102
total hash loops, monitor

element 103
total_hash_loops element 103
total inactive DRDA agents, monitor

element 93
total lock list memory in use,

monitor element 166
total log available, monitor

element 163
total_log_available element 163
total log space used, monitor

element 162
total_log_used element 162
total number of attempted

connections for DB2 Connect,
monitor element 257

total number of tablequeue buffers
overflowed, monitor element 231

total_sec_cons element 92
total sort heap allocated , monitor

element 95
total sort time, monitor element 99
total_sort_time element 99
total sorts, monitor element 98
total_sorts element 98
total system CPU for a statement,

monitor element 246
total time unit of work waited on

locks, monitor element 180
total user CPU for a statement,

monitor element 247
TP monitor client accounting string,

monitor element 269
TP monitor client application name,

monitor element 269
TP monitor client user ID, monitor

element 268
TP monitor client workstation name,

monitor element 268
tpmon_acc_str element 269
tpmon_client_app element 269
tpmon_client_userid element 268
tpmon_client_wkstn element 268
tq_cur_send_spills element 232
tq_id_waiting_on element 234
tq_max_send_spills element 234
tq_node_waited_for element 231
tq_rows_read element 233
tq_rows_written element 233
tq_tot_send_spills element 231
tq_wait_for_any element 230

trace
event monitor 12
format 271
sample 15
size 278
viewing 18

trace, event monitor 281
transaction event monitor 21
transaction ID, monitor

element 265
Troubleshooting Guide 401
ts_name element 185
type, output 31

U
uid_sql_stmts element 208
unit of work completion status,

monitor element 75
unit of work log space used, monitor

element 162
unit of work start timestamp,

monitor element 73
unit of work status, monitor

element 76
unit of work stop timestamp,

monitor element 74
uow_comp_status element 75
uow_elapsed_time element 75
uow_lock_wait_time element 180
uow_log_space_used element 162
uow_start_time element 73
uow_status element 76
uow_stop_time element 74
update/insert/delete SQL statements

executed, monitor element 208
UPDATE MONITOR

SWITCHES 364
user authorization level, monitor

element 68
user CPU time, monitor

element 243
user_cpu_time element 243
user CPU time used by agent,

monitor element 239
user CPU time used by statement,

monitor element 241
user CPU time used by subsection,

monitor element 245
user login ID, monitor element 64

V
version element 252
version of monitor data, monitor

element 252
view, logical 26

W
waited for node on a tablequeue,

monitor element 231
waited on node on a tablequeue,

monitor element 234
waiting for any node to send on a

tablequeue, monitor element 230
water mark 37
What’s New 401

X
x_lock_escals element 169
xid 265

Index 423

424 System Monitor Guide and Reference

Contacting IBM

This section lists ways you can get more information from IBM.

If you have a technical problem, please take the time to review and carry out
the actions suggested by the Troubleshooting Guide before contacting DB2
Customer Support. Depending on the nature of your problem or concern, this
guide will suggest information you can gather to help us to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

Telephone

If you live in the U.S.A., call one of the following numbers:
v 1-800-237-5511 to learn about available service options.
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, see
Appendix A of the IBM Software Support Handbook. You can access this
document by accessing the following page:
http://www.ibm.com/support/

then performing a search using the keyword “handbook”.

Note that in some countries, IBM-authorized dealers should contact their
dealer support structure instead of the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2 information about
news, product descriptions, education schedules, and more. The DB2 Product
and Service Technical Library provides access to frequently asked questions,
fixes, books, and up-to-date DB2 technical information. (Note that this
information may be in English only.)

Anonymous FTP Sites
ftp.software.ibm.com

© Copyright IBM Corp. 1993, 1999 425

Log on as anonymous. In the directory /ps/products/db2, you can find
demos, fixes, information, and tools concerning DB2 and many related
products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-l

These newsgroups are available for users to discuss their experiences with
DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification Program for DB2 Universal
Database, go to http://www.software.ibm.com/data/db2/db2tech/db2cert.html

426 System Monitor Guide and Reference

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2849-00

