
IBM DB2 Universal Database

Data Movement Utilities Guide and
Reference
Version 6

SC09-2858-00

IBM

IBM DB2 Universal Database

Data Movement Utilities Guide and
Reference
Version 6

SC09-2858-00

IBM

Before using this information and the product it supports, be sure to read the general information under “Appendix F.
Notices” on page 247.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999. All rights reserved.
US Government Users Restricted Rights – Use duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book v
Who Should Use this Book v
How this Book is Structured vi

Chapter 1. Export 1
Export Overview 2
Privileges, Authorities, and Authorization
Required to Use Export 3
Using Export 3

Before Using Export. 3
Invoking Export 3

Recreating an Exported Table 4
Exporting Large Objects (LOBs) 4
EXPORT Command 5
Export API 8
SQLUEXPT-OUT Data Structure. 14
File Type Modifiers (Export) 15

Delimiter Restrictions 16
Example Export Sessions 17

CLP Examples 17
API Examples 18

Restrictions. 22
Troubleshooting 22

Chapter 2. Import 23
Import Overview. 24
Privileges, Authorities, and Authorization
Required to Use Import 25
Using Import 25

Before Using Import 25
Invoking Import 25
Using Import in a Client/Server
Environment 26

Using Import with Buffered Inserts. . . . 26
Recreating an Exported Table 27
Importing Large Objects (LOBs) 27
Importing User-defined Distinct Types
(UDTs) 28
IMPORT Command 29
Import API. 36
SQLUIMPT-IN Data Structure 46
SQLUIMPT-OUT Data Structure. 47
File Type Modifiers (Import) 49
Character Set and NLS Considerations . . 54
Example Import Sessions 54

CLP Examples 54
API Examples 55

Optimizing Import Performance. 55
Restrictions and Limitations 55
Troubleshooting 56

Chapter 3. Load 57
Load Overview 58
Parallelism and Loading 62
Privileges, Authorities, and Authorization
Required to Use Load 63
Using Load 64

Before Using Load 64
Invoking Load 64

Checking for Constraints Violations . . . 65
Restarting an Interrupted Load Operation 67
Using the Load Copy Location File. . . . 67
LOAD Command 70
LOAD QUERY Command. 82
Load API 84
Data Structure: SQLULOAD-IN 93
Data Structure: SQLULOAD-OUT 97
db2LoadQuery - Load Query API 99
File Type Modifiers (Load) 104
Exception Table 112
Dump File 112
Load Temporary Files 113
Load Utility Log Records 113
Character Set and NLS Considerations . . 114
Example Load Sessions. 114

CLP Examples 114
API Examples 118

Pending States After a Load Operation . . 124
Optimizing Load Performance 125
Restrictions and Limitations 130
Troubleshooting 130

Chapter 4. AutoLoader 131
AutoLoader Overview 131
Privileges, Authorities, and Authorization
Required to Use AutoLoader 132
Using AutoLoader 133

Before Using AutoLoader 133
Invoking AutoLoader 133

Loading into Multiple Database Partitions 133

© Copyright IBM Corp. 1999 iii

AutoLoader Options 134
Example AutoLoader Session. 141
Migration and Back-level Compatibility 143
AutoLoader Hints and Tips 144
Restrictions and Limitations 145
AutoLoader Troubleshooting 146

Chapter 5. Moving DB2 Data Links
Manager Data 149
Using Export to Move DB2 Data Links
Manager Data 149
Using Import to Move DB2 Data Links
Manager Data 152
Using Load to Move DB2 Data Links
Manager Data 153

Chapter 6. Moving Data Between Systems 155
Moving Data Across Platforms 155

PC/IXF File Format 155
Delimited ASCII (DEL) File Format . . 156
WSF File Format 156

Moving Data Using the db2move Tool . . 158
Moving Data With DB2 Connect 163

Using the Export and the Import Utilities 163
Moving Data Between Typed Tables . . . 165

Traverse Order 166
Selection During Data Movement . . . 167
Examples of Moving Data Between
Typed Tables 168

Using Replication to Move Data. 170
The IBM Replication Tools by
Component 171

Appendix A. How to Read the Syntax
Diagrams 173

Appendix B. Differences Between the
Import and the Load Utility 177

Appendix C. Export/Import/Load Utility
File Formats 179
Delimited ASCII (DEL) File Format . . . 179

Sample DEL File 181
DEL Data Type Descriptions 183

Non-delimited ASCII (ASC) File Format 186
Sample ASC File 186
ASC Data Type Descriptions 187

PC Version of IXF File Format 190
PC/IXF Record Types 192
PC/IXF Data Types 201
PC/IXF Data Type Descriptions 208
General Rules Governing PC/IXF File
Import into Databases 213
Data Type-Specific Rules Governing
PC/IXF File Import into Databases . . . 215
FORCEIN Option 218
Differences between Version 1 PC/IXF
and Version 0 System/370 IXF 227

Worksheet File Format (WSF) 227

Appendix D. Warning, Error, and
Completion Messages 229

Appendix E. How the DB2 Library Is
Structured 231
Completing Tasks with SmartGuides . . . 231
Accessing Online Help 232
DB2 Information – Hardcopy and Online 234
Viewing Online Information 241

Accessing Information with the
Information Center 242

Setting Up a Document Server 243
Searching Online Information 244
Printing the PostScript Books. 244
Ordering the Printed Books 245

Appendix F. Notices 247
Trademarks 248
Trademarks of Other Companies 248

Index 251

Contacting IBM 255

iv Data Movement Utilities

About This Book

This book provides information about, and shows you how to use, the
following IBM DB2 Universal Database (UDB) data movement utilities:
v The Import and Export utilities move data between a table or view and

another database or spreadsheet program; between DB2 databases; and
between DB2 databases and host databases using DB2 Connect. The export
utility moves data from a database into operating system files; you can then
use those files to import or load that data into another database.

v The Load utility moves data into tables, extends existing indexes, and
generates statistics. Load moves data much faster than the import utility
when large amounts of data are involved. Data unloaded using the export
utility can be loaded with the load utility.

v The AutoLoader utility splits large amounts of data and loads the split data
into the different partitions of a partitioned database.

v DataPropagator (DPROP) is a component of DB2 Universal Database that
allows automatic copying of table updates to other tables in other DB2
relational databases.

Other vendor’s products that move data in and out of databases are also
available, but are not discussed in this book.

Who Should Use this Book

This manual is for database administrators, application programmers, and
other DB2 UDB users who perform the following tasks:
v Load data into DB2 tables from operating system files
v Move data between DB2 databases, and between DB2 and other

applications (for example, spreadsheets)
v Archive data.

It is assumed that you are familiar with DB2 Universal Database, Structured
Query Language (SQL), and with the operating system environment in which
DB2 UDB is running. For general information about DB2 UDB, see the
Administration Guide. For information about SQL, see the SQL Reference. For
information about configuring, invoking, and using the DB2 UDB command
line processor, see the Command Reference. For information about the DB2 UDB
application programming interfaces (APIs), see the Administrative API
Reference. For general information about creating applications containing DB2
administrative APIs, see the Application Building Guide. This manual does not
contain instructions for installing DB2, which depend on your operating

© Copyright IBM Corp. 1999 v

system. Installation information can be found in the appropriate Quick
Beginnings book for your operating system.

How this Book is Structured

The following topics are covered:

Chapter 1
Describes the DB2 export utility, used to move data from DB2 tables
into files.

Chapter 2
Describes the DB2 import utility, used to move data from files into
DB2 tables or views.

Chapter 3
Describes the DB2 load utility, used to move large volumes of data
from files into DB2 tables.

Chapter 4
Describes the AutoLoader utility, which splits large amounts of data
and loads the split data into the different partitions of a partitioned
database.

Chapter 5
Describes how to use the DB2 export, import, and load utilities to
move DB2 File Manager data.

Chapter 6
Describes how to use the DB2 export, import, and load utilities to
transfer data across platforms, and to and from DRDA host databases.
DataPropagator (DPROP), another method for moving data between
databases in an enterprise, is also described.

Appendix A.
Explains the conventions used in syntax diagrams.

Appendix B
Summarizes the important differences between the DB2 load and
import utilities.

Appendix C
Describes external file formats supported by the database manager
export, import, and load utilities.

Appendix D
Provides information about interpreting messages generated by the
database manager when a warning or error condition has been
detected.

vi Data Movement Utilities

Chapter 1. Export

This chapter describes the DB2 UDB export utility, which is used to write data
from a DB2 database to one or more files stored outside of the database. The
exported data can then be imported or loaded into another DB2 database,
using the DB2 import or the DB2 load utility, respectively, or it can be
imported into another application (for example, a spreadsheet).

The following topics are covered:
v “Export Overview” on page 2

v “Privileges, Authorities, and Authorization Required to Use Export” on
page 3

v “Using Export” on page 3

v “Recreating an Exported Table” on page 4

v “Exporting Large Objects (LOBs)” on page 4

v “EXPORT Command” on page 5

v “Export API” on page 8

v “SQLUEXPT-OUT Data Structure” on page 14

v “File Type Modifiers (Export)” on page 15

v “Example Export Sessions” on page 17

v “Restrictions” on page 22

v “Troubleshooting” on page 22.

For information about exporting DB2 Data Links Manager data, see “Using
Export to Move DB2 Data Links Manager Data” on page 149. For information
about exporting data out of typed tables, see “Moving Data Between Typed
Tables” on page 165. For information about exporting data from a DRDA
server database to a file on the DB2 Connect workstation, and the reverse, see
“Moving Data With DB2 Connect” on page 163.

© Copyright IBM Corp. 1999 1

Export Overview

The export utility exports data from a database to an operating system file,
which can be in one of several external file formats.

The following information is required when exporting data:
v An SQL SELECT statement specifying the data to be exported.
v The path and name of the operating system file that will store the exported

data.
v The format of the data in the input file. This format can be IXF, WSF, or

DEL. See “Appendix C. Export/Import/Load Utility File Formats” on
page 179.

v A message file name.
v When exporting typed tables, you may need to provide the subtable

traverse order within the hierarchy. If the IXF format is to be used, the
default order is recommended. When specifying the order, recall that the
subtables must be traversed in the PRE-ORDER fashion. When exporting
typed tables, you cannot provide a SELECT statement directly. Instead, you
must specify the target subtable name, and optionally a WHERE clause. The
export utility uses this information, along with the traverse order, to
generate and execute the required SELECT statement. For more
information, see “Moving Data Between Typed Tables” on page 165.

You can also specify:

v New column names when exporting to IXF or WSF files. If you do not want
to specify new column names, the column names in the existing table or
view are used in the exported file.

v Additional options to customize the export operation (see “File Type
Modifiers (Export)” on page 15).

If you want to use the export utility in a multiple database partition
environment, you can use db2batch to complete the task at each database
partition. The SELECT statement must be able to return only the data found
locally. The selection condition is as follows:

SELECT * FROM tablename WHERE NODENUMBER(column-name) = CURRENT NODE

For more information about db2batch, see the Command Reference or the
Administration Guide.

Export Overview

2 Data Movement Utilities

Privileges, Authorities, and Authorization Required to Use Export

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects
for which they have the appropriate authorization; that is, the required
privilege or authority.

You must have SYSADM or DBADM authority, or CONTROL or SELECT
privilege for each table participating in the export operation.

Using Export

Before Using Export

Before invoking the export utility, you must be connected to (or be able to
implicitly connect to) the database from which the data will be exported.
Since the utility will issue a COMMIT statement, you should complete all
transactions and release all locks by performing either a COMMIT or a
ROLLBACK before invoking export. Other user applications accessing the
table using separate connections need not disconnect.

Invoking Export

The export utility can be invoked through:
v The command line processor (CLP).

Following is an example of the EXPORT command issued through the CLP:
db2 export to staff.ixf of ixf select * from userid.staff

v The Export notebook in the Control Center. To open the Export notebook:
1. From the Control Center, expand the object tree until you find the Tables

or Views folder.
2. Click on the folder you want to work with. Any existing tables or views

are displayed in the pane on the right side of the window (the contents
pane).

3. Click the right mouse button on the table or view you want in the
contents pane, and select Export from the pop-up menu. The Export
notebook opens.

For general information about the Control Center, see the Administration
Guide. Detailed information is provided through the online help facility
within the Control Center.

Authorities Required to Use Export

Chapter 1. Export 3

v An application programming interface (API), sqluexpr. For information
about this API, see “Export API” on page 8. For general information about
creating applications containing DB2 administrative APIs, see the
Application Building Guide.

Recreating an Exported Table

A table can be saved by using the export utility and specifying the IXF file
format. The saved table (including its indexes) can then be recreated using the
import utility. The export utility will fail if the data you want to export
exceeds the space available on the file system on which the exported file will
be created. In this case, you should limit the amount of data selected by
specifying conditions on the WHERE clause, so that the export file will fit on
the target file system. You can invoke the export utility multiple times to
export all of the data.

Exporting Large Objects (LOBs)

When exporting data from large object (LOB) columns, the default action is to
select the first 32KB of data, and to place this data in the same file as the rest
of the column data. If the lobsinfile modifier (see “File Type Modifiers
(Export)” on page 15) has been specified, the export utility selects the entire
LOB (up to 2GB), and places it in a separate file.

Using Export

4 Data Movement Utilities

EXPORT Command

Command Syntax

ÊÊ EXPORT TO filename OF filetype

·

,

LOBS TO lob-path

Ê

Ê

·

,

LOBFILE filename ·MODIFIED BY filetype-mod

Ê

Ê

·

,

METHOD N (column-name)

MESSAGES message-file
Ê

Ê select-statement
HIERARCHY STARTING sub-table-name

traversal-order-list where-clause

ÊÍ

traversal-order-list:

·

,

(sub-table-name)

Command Parameters

HIERARCHY traversal-order-list
Export a sub-hierarchy using the specified traverse order. All
sub-tables must be listed in PRE-ORDER fashion. The first sub-table
name is used as the target table name for the SELECT statement.

HIERARCHY STARTING sub-table-name
Using the default traverse order (OUTER order for ASC, DEL, or WSF
files, or the order stored in PC/IXF data files), export a sub-hierarchy
starting from sub-table-name.

LOBFILE filename
Specifies one or more base file names for the LOB files. When name
space is exhausted for the first name, the second name is used, and so
on.

EXPORT Command

Chapter 1. Export 5

When creating LOB files during an export operation, file names are
constructed by appending the current base name from this list to the
current path (from lob-path), and then appending a 3-digit sequence
number. For example, if the current LOB path is the directory
/u/foo/lob/path, and the current LOB file name is bar, the LOB files
created will be /u/foo/lob/path/bar.001, /u/foo/lob/path/bar.002,
and so on.

LOBS TO lob-path
Specifies one or more paths to directories in which the LOB files are to
be stored. When file space is exhausted on the first path, the second
path will be used, and so on.

MESSAGES message-file
Specifies the destination for warning and error messages that occur
during an export operation. If the file already exists, the export utility
appends the information. If message-file is omitted, the messages are
written to standard output.

METHOD N column-name
Specifies one or more column names to be used in the output file. If
this parameter is not specified, the column names in the table are
used. This parameter is valid only for WSF and IXF files, but is not
valid when exporting hierarchical data.

MODIFIED BY filetype-mod
Specifies additional options (see Table 2 on page 15).

OF filetype
Specifies the format of the data in the output file:

v DEL (delimited ASCII format), which is used by a variety of
database manager and file manager programs.

v WSF (work sheet format), which is used by programs such as:
– Lotus 1-2-3
– Lotus Symphony

Note: When exporting BIGINT or DECIMAL data, only values that
fall within the range of type DOUBLE can be exported
accurately. Although values that do not fall within this range
are also exported, importing or loading these values back
may result in incorrect data, depending on the operating
system.

v IXF (integrated exchange format, PC version), in which most of the
table attributes, as well as any existing indexes, are saved in the IXF
file, except when columns are specified in the SELECT statement.

EXPORT Command

6 Data Movement Utilities

With this format, the table can be recreated, while with the other
file formats, the table must already exist before data can be
imported into it.

For more information about file formats, see “Appendix C.
Export/Import/Load Utility File Formats” on page 179.

select-statement
Specifies the SELECT statement that will return the data to be
exported. If the SELECT statement causes an error, a message is
written to the message file (or to standard output). If the error code is
one of SQL0012W, SQL0347W, SQL0360W, SQL0437W, or SQL1824W,
the export operation continues; otherwise, it stops.

TO filename
Specifies the name of the file to which data is to be exported. If the
complete path to the file is not specified, the export utility uses the
current directory and the default drive as the destination.

If the name of a file that already exists is specified, the export utility
overwrites the contents of the file; it does not append the information.

EXPORT Command

Chapter 1. Export 7

Export API

C API Syntax

Generic API Syntax

API Parameters

DataFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the data file name.

/* File: sqlutil.h */
/* API: Export */
/* ... */
SQL_API_RC SQL_API_FN

sqluexpr (
char * pDataFileName,
sqlu_media_list * pLobPathList,
sqlu_media_list * pLobFileList,
struct sqldcol * pDataDescriptor,
struct sqlchar * pActionString,
char * pFileType,
struct sqlchar * pFileTypeMod,
char * pMsgFileName,
short CallerAction,
struct sqluexpt_out* pOutputInfo,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Export */
/* ... */
SQL_API_RC SQL_API_FN

sqlgexpr (
unsigned short DataFileNameLen,
unsigned short FileTypeLen,
unsigned short MsgFileNameLen,
char * pDataFileName,
sqlu_media_list * pLobPathList,
sqlu_media_list * pLobFileList,
struct sqldcol * pDataDescriptor,
struct sqlchar * pActionString,
char * pFileType,
struct sqlchar * pFileTypeMod,
char * pMsgFileName,
short CallerAction,
struct sqluexpt_out* pOutputInfo,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

Export API

8 Data Movement Utilities

FileTypeLen
Input. A 2-byte unsigned integer representing the length in bytes of
the file type.

MsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the message file name.

pDataFileName
Input. A string containing the path and the name of the external file
into which the data is to be exported.

pLobPathList
Input. An sqlu_media_list using media_type SQLU_LOCAL_MEDIA, and the
sqlu_media_entry structure listing paths on the client where the LOB
files are to be stored.

When file space is exhausted on the first path in this list, the API will
use the second path, and so on.

For more information, see “SQLU-MEDIA-LIST ” in the Administrative
API Reference.

pLobFileList
Input. An sqlu_media_list using media_type SQLU_CLIENT_LOCATION, and
the sqlu_location_entry structure containing base file names.

When the name space is exhausted using the first name in this list, the
API will use the second name, and so on.

For more information, see “SQLU-MEDIA-LIST ” in the Administrative
API Reference.

When creating LOB files during an export operation, file names are
constructed by appending the current base name from this list to the
current path (from pLobFilePath), and then appending a 3-digit
sequence number. For example, if the current LOB path is the
directory /u/foo/lob/path, and the current LOB file name is bar, the
created LOB files will be /u/foo/lob/path/bar.001,
/u/foo/lob/pah/bar.002, and so on.

pDataDescriptor
Input. Pointer to an sqldcol structure specifying the column names for
the output file. The value of the dcolmeth field determines how the
remainder of the information provided in this parameter is interpreted
by the export utility. Valid values for this parameter (defined in
sqlutil) are:

SQL_METH_N
Names. Specify column names to be used in the output file.

Export API

Chapter 1. Export 9

SQL_METH_D
Default. Existing column names from the table are to be used
in the output file. In this case, the number of columns and the
column specification array are both ignored. The column
names are derived from the output of the SELECT statement
specified in pActionString.

For more information, see “SQLDCOL” in the Administrative API
Reference.

pActionString
Input. Pointer to an sqlchar structure containing a valid dynamic SQL
SELECT statement. The structure contains a 2-byte long field, followed
by the characters that make up the SELECT statement. The SELECT
statement specifies the data to be extracted from the database and
written to the external file.

The columns for the external file (from pDataDescriptor), and the
database columns from the SELECT statement, are matched according
to their respective list/structure positions. The first column of data
selected from the database is placed in the first column of the external
file, and its column name is taken from the first element of the
external column array.

For more information, see “SQLCHAR” in the Administrative API
Reference.

Note: The syntax that is to be used for typed tables is described in
“EXPORT Command” on page 5.

pFileType
Input. A string that indicates the format of the data within the
external file. Supported external file formats (defined in sqlutil) are:

SQL_DEL
Delimited ASCII, for exchange with dBase, BASIC, and the
IBM Personal Decision Series programs, and many other
database managers and file managers.

SQL_WSF
Worksheet formats for exchange with Lotus Symphony and
1-2-3 programs.

SQL_IXF
PC version of the Integrated Exchange Format, the preferred
method for exporting data from a table. Data exported to this
file format can later be imported or loaded into the same table
or into another database manager table.

Export API

10 Data Movement Utilities

pFileTypeMod
Input. A pointer to an sqldcol structure containing a 2-byte long field,
followed by an array of characters that specify one or more processing
options. If this pointer is NULL, or the structure pointed to has zero
characters, this action is interpreted as selection of a default
specification.

Not all options can be used with all of the supported file types.

For more information, see “SQLCHAR” in the Administrative API
Reference, and “File Type Modifiers (Export)” on page 15.

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages returned by the utility. It can be the path and
the name of an operating system file or a standard device. If the file
already exists, it is overwritten. If it does not exist, a file is created.

CallerAction
Input. An action requested by the caller. Valid values (defined in
sqlutil) are:

SQLU_INITIAL
Initial call. This value must be used on the first call to the
API.

If the initial call or any subsequent call returns and requires the
calling application to perform some action prior to completing the
requested export operation, the caller action must be set to one of the
following:

SQLU_CONTINUE
Continue processing. This value can only be used on
subsequent calls to the API, after the initial call has returned
with the utility requesting user input (for example, to respond
to an end of tape condition). It specifies that the user action
requested by the utility has completed, and the utility can
continue processing the initial request.

SQLU_TERMINATE
Terminate processing. This value can only be used on
subsequent calls to the API, after the initial call has returned
with the utility requesting user input (for example, to respond
to an end of tape condition). It specifies that the user action
requested by the utility was not performed, and the utility is
to terminate processing the initial request.

Export API

Chapter 1. Export 11

pOutputInfo
Ouput. Returns the number of records exported to the target file. For
more information about this structure, see “SQLUEXPT-OUT Data
Structure” on page 14.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” in the Administrative API Reference.

REXX API Syntax

REXX API Parameters

stmt A REXX host variable containing a valid dynamic SQL SELECT
statement. The statement specifies the data to be extracted from the
database.

datafile
Name of the file into which the data is to be exported.

filetype
The format of the data in the export file. The supported file formats
are:

DEL Delimited ASCII

WSF Worksheet format

IXF PC version of Integrated Exchange Format.

filetmod
A host variable containing additional processing options (see “File
Type Modifiers (Export)” on page 15).

dcoldata
A compound REXX host variable containing the column names to be
used in the export file. In the following, XXX represents the name of
the host variable:

XXX.0 Number of columns (number of elements in the remainder of
the variable).

EXPORT :stmt TO datafile OF filetype
[MODIFIED BY :filetmod] [USING :dcoldata]
MESSAGES msgfile [ROWS EXPORTED :number]

CONTINUE EXPORT

STOP EXPORT

Export API

12 Data Movement Utilities

XXX.1 First column name.

XXX.2 Second column name.

XXX.3 and so on.

If this parameter is NULL, or a value for dcoldata has not been
specified, the utility uses the column names from the database table.

msgfile
File, path, or device name where error and warning messages are to
be sent.

number
A host variable that will contain the number of exported rows.

Export API

Chapter 1. Export 13

SQLUEXPT-OUT Data Structure

This structure is used to pass information from the “Export API” on page 8.

Table 1. Fields in the SQLUEXPT-OUT Structure

Field Name Data Type Description

SIZEOFSTRUCT INTEGER Size of the structure.

ROWSEXPORTED INTEGER Number of records exported from the
database into the target file.

Language Syntax

C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQL-UEXPT-OUT */
/* ... */
SQL_STRUCTURE sqluexpt_out
{

unsigned long sizeOfStruct;
unsigned long rowsExported;

};
/* ... */

* File: sqlutil.cbl
01 SQL-UEXPT-OUT.

05 SQL-SIZE-OF-UEXPT-OUT PIC 9(9) COMP-5 VALUE 8.
05 SQL-ROWSEXPORTED PIC 9(9) COMP-5 VALUE 0.

*

SQLUEXPT-OUT Data Structure

14 Data Movement Utilities

File Type Modifiers (Export)

Table 2. Valid File Type Modifiers (Export)

Modifier Description

All File Formats

lobsinfile lob-path specifies the path to the files containing LOB values.

DEL (Delimited ASCII) File Format

chardelx x is a single character string delimiter. The default value is a
double quotation mark ("). The specified character is used in
place of double quotation marks to enclose a character
string.a

The single quotation mark (') can also be specified as a
character string delimiter as follows:

modified by chardel''

coldelx x is a single character column delimiter. The default value is
a comma (,). The specified character is used in place of a
comma to signal the end of a column.a

In the following example, coldel; causes the export utility
to interpret any semicolon (;) it encounters as a column
delimiter:

db2 "export to temp of del modified by coldel;
select * from staff where dept = 20"

datesiso Date format. Causes all date data values to be exported in
ISO format.

decplusblank Plus sign character. Causes positive decimal values to be
prefixed with a blank space instead of a plus sign (+). The
default action is to prefix positive decimal values with a
plus sign.

decptx x is a single character substitute for the period as a decimal
point character. The default value is a period (.). The
specified character is used in place of a period as a decimal
point character.a

dldelx x is a single character DATALINK delimiter. The default
value is a semicolon (;). The specified character is used in
place of a semicolon as the inter-field separator for a
DATALINK value. It is needed because a DATALINK value
may have more than one sub-value. ab

Note: x must not be the same character specified as the
row, column, or character string delimiter.

nodoubledel Suppresses recognition of double character delimiters.

WSF File Format

File Type Modifiers (Export)

Chapter 1. Export 15

Table 2. Valid File Type Modifiers (Export) (continued)

Modifier Description

1 Creates a WSF file that is compatible with Lotus 1-2-3
Release 1, or Lotus 1-2-3 Release 1a.b This is the default.

2 Creates a WSF file that is compatible with Lotus Symphony
Release 1.0.b

3 Creates a WSF file that is compatible with Lotus 1-2-3
Version 2, or Lotus Symphony Release 1.1.b

4 Creates a WSF file containing DBCS characters.

Notes:

1. The export utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
export operation fails, and an error code is returned.

2. a “Delimiter Restrictions” lists restrictions that apply to the characters that can be
used as delimiter overrides.

3. b These files can also be directed to a specific product by specifying an L for Lotus
1-2-3, or an S for Symphony in the filetype-mod parameter string. Only one value
or product designator may be specified.

Delimiter Restrictions

It is the user’s responsibility to ensure that the chosen delimiter character is
not part of the data to be moved. If it is, unexpected errors may occur. The
following restrictions apply to column, string, DATALINK, and decimal point
delimiters when moving data:
v Delimiters are mutually exclusive.
v A delimiter cannot be binary zero, a line-feed character, a carriage-return, or

a blank space.
v The default decimal point (.) cannot be a string delimiter.
v The following characters are specified differently by an ASCII-family code

page and an EBCDIC-family code page:
– The Shift-In (0x0F) and the Shift-Out (0x0E) character cannot be

delimiters for an EBCDIC MBCS data file.
– Delimiters for MBCS, EUC, or DBCS code pages cannot be greater than

0x40, except the default decimal point for EBCDIC MBCS data, which is
0x4b.

– Default delimiters for data files in ASCII code pages or EBCDIC MBCS
code pages are:

" (0x22, double quotation mark; string delimiter)
, (0x2c, comma; column delimiter)

– Default delimiters for data files in EBCDIC SBCS code pages are:

File Type Modifiers (Export)

16 Data Movement Utilities

" (0x7F, double quotation mark; string delimiter)
, (0x6B, comma; column delimiter)

– The default decimal point for ASCII data files is 0x2e (period).
– The default decimal point for EBCDIC data files is 0x4B (period).
– If the code page of the server is different from the code page of the

client, it is recommended that the hex representation of non-default
delimiters be specified. For example,

db2 load from ... modified by chardel0x0C coldelX1e ...

The following information about support for double character delimiter
recognition in DEL files applies to the export, import, and load utilities:
v Character delimiters are permitted within the character-based fields of a

DEL file. This applies to fields of type CHAR, VARCHAR, LONG
VARCHAR, or CLOB (except when lobsinfile is specified). Any pair of
character delimiters found between the enclosing character delimiters is
imported or loaded into the database. For example,

"What a ""nice"" day!"

will be imported as:
What a "nice" day!

In the case of export, the rule applies in reverse. For example,
I am 6" tall.

will be exported to a DEL file as:
"I am 6"" tall."

v In a DBCS environment, the pipe (|) character delimiter is not supported.

Example Export Sessions

CLP Examples

The following example shows how to export information from the STAFF
table in the SAMPLE database (to which the user must be connected) to
myfile.ixf, with the output in IXF format. If the database connection is not
through DB2 Connect, the index definitions (if any) will be stored in the
output file; otherwise, only the data will be stored:

db2 export to myfile.ixf of ixf messages msgs.txt select * from staff

The following example shows how to export the information about employees
in Department 20 from the STAFF table in the SAMPLE database (to which
the user must be connected) to awards.ixf, with the output in IXF format:

db2 export to awards.ixf of ixf messages msgs.txt select * from staff
where dept = 20

File Type Modifiers (Export)

Chapter 1. Export 17

The following example shows how to export LOBs to an DEL file:
db2 export to myfile.del of del lobs to mylobs

lobfile lobs1, lobs2 modified by lobsinfile
select * from emp_photo

The following example shows how to export LOBs to a DEL file, specifying a
second directory for files that may not fit into the first directory:

db2 export to myfile.del of del
lobs to /db2exp1, /db2exp2 modified by lobsinfile
select * from emp_photo

The following example shows how to export data to a DEL file, using a single
quotation mark as the string delimiter, a semicolon as the column delimiter,
and a comma as the decimal point. The same convention should be used
when importing data back into the database:

db2 export to myfile.del of del
modified by chardel'' coldel; decpt,
select * from staff

API Examples

The following sample program shows how to:
v Export information from the STAFF table in the SAMPLE database to the

file EXPTABLE.DEL.
v Import that information from the delimited text file to a new table,

IMPTABLE.

For detailed information about the SAMPLE database, see the Administration
Guide.

The source file for this sample program (impexp.sqc) can be found in the
\sqllib\samples\c directory. It contains both DB2 APIs and embedded SQL
calls. The script file bldvaemb.cmd, located in the same directory, contains the
commands to build this and other sample programs. For general information
about creating applications containing DB2 administrative APIs, and detailed
information about compile and link options, see the Application Building Guide.
To build the sample program impexp from the source file impexp.sqc on OS/2:
1. Copy the files impexp.sqc, bldvaemb.cmd, util.c, and util.h to a working

directory.
2. If the database manager is not running, issue the command db2start.
3. Enter bldvaemb impexp sample. The following files are generated:

impexp.bnd
impexp.c
util.obj
impexp.obj
impexp.exe

Example Export Sessions

18 Data Movement Utilities

To run the sample program (executable file), enter impexp. You might find it
useful to examine some of the generated files, such as the message file, and
the delimited ASCII data file.

/**
**
** Source File Name = impexp.sqc 1.4
**
** PURPOSE :
** This program is an example of how APIs are implemented in order to
** export and import tables and table data. The order of the program
** is as follows:
** - export a table to a comma-delimited text file
** - import the comma-delimited text file to a DB2 table
** This program needs the embedded SQL calls in order to connect to
** an existing database, then to create a temporary table to work with.
**
** STRUCTURES USED :
** sqldcol
** sqlchar
** sqluexpt_out
** sqluimp_in
** sqluimp_out
** sqlca
**
** APIs USED :
** IMPORT TO sqluimpt_api
** EXPORT sqlgexpt
**
** FUNCTIONS DECLARED :
** 'C' COMPILER LIBRARY :
** stdio.h - printf
** string.h - fgets, strncpy
**
** DBMS LIBRARY :
** sqlenv.h - see "APIs USED" above
**
** OTHER :
** internal :
** list_dcs : Displays a directory of databases
**
** external :
** check_error : Checks for SQLCODE error, and prints out any
** [in UTIL.C] related information available.
**
** EXTERNAL DEPENDANCIES :
** - Ensure existence of database (SAMPLE) for precompile purposes.
** - Precompile with the SQL precompiler (PREP in DB2)
** - Bind to a database (BIND in DB2)
** - Compile and link with the IBM Cset++ compiler (AIX and OS/2)
** or the Microsoft Visual C++ compiler (Windows)
** or the compiler supported on your platform.
**

Example Export Sessions

Chapter 1. Export 19

***/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlenv.h>
#include <sqlutil.h>
#ifndef DB2MAC
#include <malloc.h>
#endif
#include "util.h"

#ifdef DB268K
/* Need to include ASLM for 68K applications */
#include <LibraryManager.h>
#endif

#define CHECKERR(CE_STR) if (check_error (CE_STR, &sqlca) != 0) return 1;

EXEC SQL INCLUDE SQLCA;
int main (int argc, char *argv[]) {

short int callerAction = 0;
struct sqldcol columnData;
struct sqlchar *columnStringPointer;
struct sqluexpt_out outputInfo;
struct sqluimpt_in impInput;
struct sqluimpt_out impOutput;

char datafile[] = "EXPTABLE.DEL";
char statement[] = "select name, id from staff";
char impStatement[] = "insert into imptable (name, id)";
char msgfile_x[] = "EXPMSG.TXT";
char msgfile_m[] = "IMPMSG.TXT";
char fileFormat[] = "DEL";

EXEC SQL BEGIN DECLARE SECTION;
char userid[9];
char passwd[19];

EXEC SQL END DECLARE SECTION;

#ifdef DB268K
/* Before making any API calls for 68K environment,

need to initial the Library Manager */
InitLibraryManager(0,kCurrentZone,kNormalMemory);
atexit(CleanupLibraryManager);
#endif

/* need to preset the size of structure field and counts */
outputInfo.sizeOfStruct = SQLUEXPT_OUT_SIZE;
impInput.sizeOfStruct = SQLUIMPT_IN_SIZE;
impOutput.sizeOfStruct = SQLUIMPT_OUT_SIZE;
impInput.restartcnt = impInput.commitcnt = 0;

/**\
* need to allocate the proper amount of space for the SQL statement *
**/

Example Export Sessions

20 Data Movement Utilities

columnStringPointer = (struct sqlchar *)malloc(strlen(statement)
+ sizeof (struct sqlchar));

columnStringPointer->length = strlen(statement);
strncpy (columnStringPointer->data, statement, strlen(statement));
/* DELimited format can not have specified names, therefore the

column method is 'D'efault */
columnData.dcolmeth = 'D';

if (argc == 1) {
EXEC SQL CONNECT TO sample;

CHECKERR ("CONNECT TO SAMPLE");
}
else if (argc == 3) {

strcpy (userid, argv[1]);
strcpy (passwd, argv[2]);
EXEC SQL CONNECT TO sample USER :userid USING :passwd;
CHECKERR ("CONNECT TO SAMPLE");

}
else {

printf ("\nUSAGE: impexp [userid passwd]\n\n");
return 1;

} /* endif */

printf ("exporting NAME and ID from STAFF table into file '%s'\n", datafile);
/*******************\
* EXPORT API called *
*******************/
sqluexpr (datafile, NULL, NULL, &columnData, columnStringPointer,

fileFormat, NULL, msgfile_x, 0, &outputInfo, NULL, &sqlca);
CHECKERR ("exporting table");
printf ("rows exported %d\n", outputInfo.rowsExported);
free (columnStringPointer);

/**\
* need to allocate the proper amount of space for the SQL statement *
**/
columnStringPointer = (struct sqlchar *)malloc(strlen(impStatement)

+ sizeof (struct sqlchar));
columnStringPointer->length = strlen(impStatement);
strncpy (columnStringPointer->data, impStatement, strlen(impStatement));

printf ("creating a temporary table 'imptable' to import into\n");
/* create a temporary table to import into */
EXEC SQL CREATE TABLE imptable (name VARCHAR(15), id INT);
CHECKERR ("CREATE TABLE");

printf ("importing the file '%s' into the 'imptable'\n", datafile);
/*******************\
* IMPORT API called *
*******************/
sqluimpr (datafile, NULL, &columnData, columnStringPointer, fileFormat,

NULL, msgfile_m, 0, &impInput, &impOutput, NULL, NULL, &sqlca);
CHECKERR ("importing table");
printf ("rows imported %d\nnumber of rows committed %d\n",

impOutput.rowsInserted, impOutput.rowsCommitted);

Example Export Sessions

Chapter 1. Export 21

free (columnStringPointer);

/* drop the table */
EXEC SQL DROP TABLE imptable;
CHECKERR ("DROP TABLE");

EXEC SQL CONNECT RESET;
CHECKERR ("CONNECT RESET");

}
/* end of program : impexp.sqc */

Restrictions

The following restriction applies to the export utility:
v This utility does not support the use of nicknames.

Troubleshooting

During DB2 operations such as exporting, importing, loading, binding, or
restoring data, you can specify that message files be created to contain the
error, warning, and informational messages associated with those operations.
Specify the name of these files with the MESSAGES parameter.

These message files are standard ASCII text files. Each message in a message
file begins on a new line and contains information provided by the DB2
message retrieval facility. To print them, use the printing procedure for your
operating system; to view them, use any ASCII editor.

Example Export Sessions

22 Data Movement Utilities

Chapter 2. Import

This chapter describes the DB2 UDB import utility, which uses the SQL
INSERT statement to write data from an input file into a table or view. If the
target table or view already contains data, you can either replace or append to
the existing data.

The following topics are covered:
v “Import Overview” on page 24

v “Privileges, Authorities, and Authorization Required to Use Import” on
page 25

v “Using Import” on page 25

v “Using Import with Buffered Inserts” on page 26

v “Recreating an Exported Table” on page 27

v “Importing Large Objects (LOBs)” on page 27

v “Importing User-defined Distinct Types (UDTs)” on page 28

v “IMPORT Command” on page 29

v “Import API” on page 36

v “File Type Modifiers (Import)” on page 49

v “Character Set and NLS Considerations” on page 54

v “Example Import Sessions” on page 54

v “Optimizing Import Performance” on page 55

v “Restrictions and Limitations” on page 55

v “Troubleshooting” on page 56.

For information about importing DB2 Data Links Manager data, see “Using
Import to Move DB2 Data Links Manager Data” on page 152. For information
about importing data from typed tables, see “Moving Data Between Typed
Tables” on page 165. For information about importing data from a file on the
DB2 Connect workstation to a DRDA server database, and the reverse, see
“Moving Data With DB2 Connect” on page 163.

© Copyright IBM Corp. 1999 23

Import Overview

The import utility inserts data from an input file into a table or updatable
view. If the table or view receiving the imported data already contains data,
you can either replace or append to the existing data.

The following information is required when importing data:
v The path and the name of the input file.
v The name or alias of the target table or view.
v The format of the data in the input file. This format can be IXF, WSF, DEL,

or ASC. See “Appendix C. Export/Import/Load Utility File Formats” on
page 179.

v Whether the input data is to be inserted into the table or view, or whether
existing data in the table or view is to be updated or replaced by the input
data.

v A message file name, if the utility is invoked through the application
programming interface (API), sqluimpr.

v When working with typed tables, you may need to provide the method or
order by which to progress through all of the structured types. The order of
proceeding top-to-bottom, left-to-right through all of the supertables and
subtables in the hierarchy is called the traverse order. This order is
important when moving data between table hierarchies, because it
determines where the data is moved in relation to other data.
When working with typed tables, you may also need to provide the
subtable list. This list shows into which subtables and attributes to import
data.
For more information, see “Moving Data Between Typed Tables” on
page 165.

You can also specify:

v The method to use for importing the data: column location, column name,
or relative column position.

v The number of rows to INSERT before committing the changes to the table.
Requesting periodic COMMITs reduces the number of rows that are lost if a
failure and a ROLLBACK occur during the import operation. It also
prevents the DB2 logs from getting full when processing a large input file.

v The number of file records to skip before beginning the import operation. If
an error occurs, you can restart the import operation immediately following
the last row that was successfully imported and committed.

v The names of the columns within the table or view into which the data is to
be inserted.

Import Overview

24 Data Movement Utilities

Privileges, Authorities, and Authorization Required to Use Import

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects
for which they have the appropriate authorization; that is, the required
privilege or authority.

To use the import utility to create a new table, you must have SYSADM
authority, DBADM authority, or CREATETAB privilege for the database. To
replace data in an existing table or view, you must have SYSADM authority,
DBADM authority, or CONTROL privilege for the table or view. To append
data to an existing table or view, you must have SELECT and INSERT
privileges for the table or view.

Using Import

Before Using Import

Before invoking the import utility, you must be connected to (or be able to
implicitly connect to) the database into which the data will be imported. Since
the utility will issue a COMMIT or a ROLLBACK statement, you should
complete all transactions and release all locks by performing either a
COMMIT or a ROLLBACK before invoking import.

Invoking Import

The import utility can be invoked through:
v The command line processor (CLP).

Following is an example of the IMPORT command issued through the CLP:
db2 import from stafftab.ixf of ixf insert into userid.staff

v The Import notebook in the Control Center. To open the Import notebook:
1. From the Control Center, expand the object tree until you find the Tables

folder.
2. Click on the Tables folder. Any existing tables are displayed in the pane

on the right side of the window (the contents pane).
3. Click the right mouse button on the table you want in the contents

pane, and select Import from the pop-up menu. The Import notebook
opens.

For general information about the Control Center, see the Administration
Guide. Detailed information is provided through the online help facility
within the Control Center.

Authorities Required to Use Import

Chapter 2. Import 25

v An application programming interface (API), sqluimpr. For information
about this API, see “Import API” on page 36. For general information about
creating applications containing DB2 administrative APIs, see the
Application Building Guide.

Using Import in a Client/Server Environment

When you import a file to a remote database, a stored procedure can be called
to perform the import on the server. A stored procedure will not be called
when:
v The application and database code pages are different.
v The file being imported is a multiple-part PC/IXF file.
v The method used for importing the data is either column name or relative

column position.
v The target column list provided is longer than 4KB.
v An OS/2 or DOS client is importing a file from diskette.
v The LOBS FROM clause or the lobsinfile modifier is specified.
v The NULL INDICATORS clause is specified for ASC files.

When import uses a stored procedure, messages are created in the message
file using the default language installed on the server. The messages are in the
language of the application if the language at the client and the server are the
same.

The import utility creates two temporary files in the tmp subdirectory of the
sqllib directory (or the directory indicated by the DB2INSTPROF registry
variable, if specified). One file is for data, and the other file is for messages
generated by the import utility.

If you receive an error about writing or opening data on the server, ensure
that:
v The directory exists.
v There is sufficient disk space for the files.
v The instance owner has write permission in the directory.

Using Import with Buffered Inserts

In a partitioned database environment, the import utility can be enabled to
use buffered inserts. This reduces the messaging that occurs when data is
imported, resulting in better performance; however, since details about a
failed buffered insert are not returned, this option should only be enabled if
you are not concerned about error reporting.

Using Import

26 Data Movement Utilities

Use the DB2 bind utility to request buffered inserts. The import package,
db2uimpm.bnd, must be rebound against the database using the INSERT BUF
option. For example:

db2 connect to your_database
db2 bind db2uimpm.bnd insert buf

Note: The buffered inserts feature is disabled during any import operation in
which the INSERT_UPDATE parameter is specified.

Recreating an Exported Table

You can use the import utility to recreate a table that was saved through the
export utility. The table must have been exported to an IXF file, and the
SELECT statement used during the export operation must have met certain
conditions (for example, no column names can be used in the SELECT clause;
only select * is permitted). When creating a table from an IXF file, not all
attributes of the original table are preserved. For example, referential
constraints, foreign key definitions, and user-defined data types are not
retained. The following attributes of the original table are retained:
v Column information:

– Names.
– Types, including user-defined distinct types, which are preserved as their

base type.
– Lengths (except for lob_file types).
– Code pages (if applicable).

v Index information:
– Name.
– Creator.
– Column names of key parts (with a restriction if + or − is in the names).
– Ascending or descending.
– Uniqueness.

Importing Large Objects (LOBs)

When importing into large object (LOB) columns, the data can come either
from the same file as the rest of the column data, or from separate files. In the
latter case, there is one file for each LOB instance.

The column in the main input data file contains either the import data
(default), or the name of a file where the import data is stored.

Using Import with Buffered Inserts

Chapter 2. Import 27

Notes:

1. When LOB data is stored in the main input data file, no more than 32KB
of data is allowed. Truncation warnings are ignored.

2. All of the LOB data must be stored in the main file, or each LOB is stored
in separate files. The main file cannot have a mixture of LOB data and file
names. LOB values are imported from separate files by using the
lobsinfile modifier (see “File Type Modifiers (Import)” on page 49), and
the LOBS FROM clause (see “IMPORT Command” on page 29).

Importing User-defined Distinct Types (UDTs)

The import utility casts user-defined distinct types (UDTs) to similar base data
types automatically. This saves you from having to explicitly cast UDTs to the
base data types. Casting allows for comparisons between UDTs and the base
data types in SQL.

Importing Large Objects (LOBs)

28 Data Movement Utilities

IMPORT Command

Command Syntax

ÊÊ IMPORT FROM filename OF filetype

·

,

LOBS FROM lob-path

Ê

Ê

·MODIFIED BY filetype-mod

Ê

Ê

·

·

·

·

,

METHOD L (column-start column-end)
,

NULL INDICATORS (n)
,

N (column-name)
,

P (column-position)

Ê

Ê
COMMITCOUNT n RESTARTCOUNT n MESSAGES message-file

Ê

Ê

·

·

INSERT INTO table-name
INSERT_UPDATE ,
REPLACE
REPLACE_CREATE (insert-column)

hierarchy description

CREATE INTO table-name tblspace-specs
,

(insert-column)
hierarchy description AS ROOT TABLE

UNDER sub-table-name

Ê

Ê
DATALINK SPECIFICATION datalink-spec

ÊÍ

hierarchy description:

ALL TABLES
sub-table-list

IN
HIERARCHY STARTING sub-table-name

traversal-order-list

sub-table-list:

IMPORT Command

Chapter 2. Import 29

·

·

,

(sub-table-name)
,

(insert-column)

traversal-order-list:

·

,

(sub-table-name)

tblspace-specs:

IN tablespace-name
INDEX IN tablespace-name LONG IN tablespace-name

datalink-spec:

·

,

()
DL_LINKTYPE URL DL_URL_REPLACE_PREFIX ″prefix″ DL_URL_SUFFIX ″suffix″

DL_URL_DEFAULT_PREFIX ″prefix″

Command Parameters

ALL TABLES
An implicit keyword for hierarchy only. When importing a hierarchy,
the default is to import all tables specified in the traversal order.

AS ROOT TABLE
Creates one or more sub-tables as a stand-alone table hierarchy.

COMMITCOUNT n
Performs a COMMIT after every n records are imported.

CREATE
Creates the table definition and row contents. If the data was exported
from a DB2 table, sub-table, or hierarchy, indexes are created. If this
option operates on a hierarchy, and data was exported from DB2, a
type hierarchy will also be created. This option can only be used with
IXF files.

Note: If the data was exported from an MVS host database, and it
contains LONGVAR fields whose lengths, calculated on the

IMPORT Command

30 Data Movement Utilities

page size, are less than 254, CREATE may fail because the rows
are too long. In this case, the table should be created manually,
and IMPORT with INSERT should be invoked, or, alternatively,
the LOAD command should be used.

DATALINK SPECIFICATION
For each DATALINK column, there can be one column specification
enclosed by parentheses. Each column specification consists of one or
more DL_LINKTYPE, prefix, and a DL_URL_SUFFIX specification.
The prefix specification can be either DL_URL_REPLACE_PREFIX or
DL_URL_DEFAULT_PREFIX.

There can be as many DATALINK column specifications as the
number of DATALINK columns defined in the table. The order of
specifications follows the order of DATALINK columns found within
the insert-column list, or within the table definition (if an insert-column
list is not specified).

DL_LINKTYPE
If specified, it should match the LINKTYPE of the column definition.
Thus, DL_LINKTYPE URL is acceptable if the column definition
specifies LINKTYPE URL.

DL_URL_DEFAULT_PREFIX ″prefix″
If specified, it should act as the default prefix for all DATALINK
values within the same column. In this context, prefix refers to the
″scheme host port″ part of the URL specification.

Examples of prefix are:
"http://server"
"file://server"
"file:"
"http://server:80"

If no prefix is found in a column’s data, and a default prefix is
specified with DL_URL_DEFAULT_PREFIX, the default prefix is
prefixed to the column value (if not NULL).

For example, if DL_URL_DEFAULT_PREFIX specifies the default
prefix "http://toronto":
v The column input value ″/x/y/z″ is stored as

″http://toronto/x/y/z″.
v The column input value ″http://coyote/a/b/c″ is stored as

″http://coyote/a/b/c″.
v The column input value NULL is stored as NULL.

DL_URL_REPLACE_PREFIX ″prefix″
This clause is useful for loading or importing data previously
generated by the export utility, when the user wants to globally

IMPORT Command

Chapter 2. Import 31

replace the host name in the data with another host name. If specified,
it becomes the prefix for all non-NULL column values. If a column
value has a prefix, this will replace it. If a column value has no prefix,
the prefix specified by DL_URL_REPLACE_PREFIX is prefixed to the
column value.

For example, if DL_URL_REPLACE_PREFIX specifies the prefix
"http://toronto":
v The column input value ″/x/y/z″ is stored as

″http://toronto/x/y/z″.
v The column input value ″http://coyote/a/b/c″ is stored as

″http://toronto/a/b/c″. Note that ″toronto″ replaces ″coyote″.
v The column input value NULL is stored as NULL.

DL_URL_SUFFIX ″suffix″
If specified, it is appended to every non-NULL column value for the
column. It is, in fact, appended to the ″path″ component of the URL
part of the DATALINK value.

FROM filename
Specifies the file that contains the data to be imported. If the path is
omitted, the current working directory is used.

HIERARCHY
Specifies that hierarchical data is to be imported.

IN tablespace-name
Identifies the table space in which the table will be created. The table
space must exist, and must be a REGULAR table space. If no other
table space is specified, all table parts are stored in this table space. If
this clause is not specified, the table is created in a table space created
by the authorization ID. If none is found, the table is placed into the
default table space USERSPACE1. If USERSPACE1 has been dropped,
table creation fails.

INDEX IN tablespace-name
Identifies the table space in which any indexes on the table will be
created. This option is allowed only when the primary table space
specified in the IN clause is a DMS table space. The specified table
space must exist, and must be a REGULAR DMS table space.

Note: Specifying which table space will contain an index can only be
done when the table is created.

insert-column
Specifies the name of a column in the table or the view into which
data is to be inserted.

IMPORT Command

32 Data Movement Utilities

INSERT
Adds the imported data to the table without changing the existing
table data.

INSERT_UPDATE
Adds rows of imported data to the target table, or updates existing
rows (of the target table) with matching primary keys.

INTO table-name
Specifies the database table into which the data is to be imported. This
table cannot be a system table or a summary table.

One can use an alias for INSERT, INSERT_UPDATE, or REPLACE,
except in the case of a down-level server, when the fully qualified or
the unqualified table name should be used. A qualified table name is
in the form: schema.tablename. The schema is the user name under
which the table was created.

LOBS FROM lob-path
Specifies one or more paths that store LOB files. The names of the
LOB data files are stored in the main data file (ASC, DEL, or IXF), in
the column that will be loaded into the LOB column. This option is
ignored if the lobsinfile modifier is not specified.

LONG IN tablespace-name
Identifies the table space in which the values of any long columns
(LONG VARCHAR, LONG VARGRAPHIC, LOB data types, or
distinct types with any of these as source types) will be stored. This
option is allowed only if the primary table space specified in the IN
clause is a DMS table space. The table space must exist, and must be a
LONG DMS table space.

MESSAGES message-file
Specifies the destination for warning and error messages that occur
during an import operation. If the file already exists, the import utility
appends the information. If the complete path to the file is not
specified, the utility uses the current directory and the default drive as
the destination. If message-file is omitted, the messages are written to
standard output.

METHOD

L Specifies the start and end column numbers from which to
import data.

Note: This method can only be used with ASC files, and is
the only valid option for that file type.

N Specifies the names of the columns to be imported.

IMPORT Command

Chapter 2. Import 33

Note: This method can only be used with IXF files.

P Specifies the numbers of the columns to be imported.

Note: This method can only be used with IXF or DEL files,
and is the only valid option for the DEL file type.

MODIFIED BY filetype-mod
Specifies additional options (see Table 5 on page 49).

NULL INDICATORS n
Specifies (by number) one or more columns in the data file that are to
be used as null indicator fields. If this option is used, a null indicator
column for each data column must be specified. Zero (0) indicates that
the data column is not nullable, and that there will always be data in
that column.

While processing each row, a Y indicates that the column data is
NULL, while an N indicates that the column data is not NULL, and
that column data specified by the METHOD L option will be
imported.

OF filetype
Specifies the format of the data in the input file:

v ASC (non-delimited ASCII format)
v DEL (delimited ASCII format), which is used by a variety of

database manager and file manager programs
v WSF (work sheet format), which is used by programs such as:

– Lotus 1-2-3
– Lotus Symphony

v IXF (integrated exchange format, PC version), which means it was
exported from the same or another DB2 table. An IXF file also
contains the table definition and definitions of any existing indexes,
except when columns are specified in the SELECT statement.

For more information about file formats, see “Appendix C.
Export/Import/Load Utility File Formats” on page 179.

REPLACE
Deletes all existing data from the table by truncating the data object,
and inserts the imported data. The table definition and the index
definitions are not changed. This option can only be used if the table
exists. It is not valid for tables with DATALINK columns. If this
option is used when moving data between hierarchies, only the data
for an entire hierarchy, not individual subtables, can be replaced.

REPLACE_CREATE
If the table exists, deletes all existing data from the table by truncating

IMPORT Command

34 Data Movement Utilities

the data object, and inserts the imported data without changing the
table definition or the index definitions.

If the table does not exist, creates the table and index definitions, as
well as the row contents.

This option can only be used with IXF files. It is not valid for tables
with DATALINK columns. If this option is used when moving data
between hierarchies, only the data for an entire hierarchy, not
individual subtables, can be replaced.

RESTARTCOUNT n
Specifies that an import operation is to be started at record n + 1. The
first n records are skipped.

STARTING sub-table-name
A keyword for hierarchy only, requesting the default order, starting
from sub-table-name. For PC/IXF files, the default order is the order
stored in the input file. The default order is the only valid order for
the PC/IXF file format.

sub-table-list
For typed tables with the INSERT or the INSERT_UPDATE option, a
list of sub-table names is used to indicate the sub-tables into which
data is to be imported.

traversal-order-list
For typed tables with the INSERT, INSERT_UPDATE, or the
REPLACE option, a list of sub-table names is used to indicate the
traversal order of the importing sub-tables in the hierarchy.

UNDER sub-table-name
Specifies a parent table for creating one or more sub-tables.

IMPORT Command

Chapter 2. Import 35

Import API

C API Syntax

Generic API Syntax

/* File: sqlutil.h */
/* API: Import */
/* ... */
SQL_API_RC SQL_API_FN

sqluimpr (
char * pDataFileName,
sqlu_media_list * pLobPathList,
struct sqldcol * pDataDescriptor,
struct sqlchar * pActionString,
char * pFileType,
struct sqlchar * pFileTypeMod,
char * pMsgFileName,
short CallerAction,
struct sqluimpt_in* pImportInfoIn,
struct sqluimpt_out* pImportInfoOut,
long * pNullIndicators,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

/* File: sqlutil.h */
/* API: Import */
/* ... */
SQL_API_RC SQL_API_FN

sqlgimpr (
unsigned short DataFileNameLen,
unsigned short FileTypeLen,
unsigned short MsgFileNameLen,
char * pDataFileName,
sqlu_media_list * pLobPathList,
struct sqldcol * pDataDescriptor,
struct sqlchar * pActionString,
char * pFileType,
struct sqlchar * pFileTypeMod,
char * pMsgFileName,
short CallerAction,
struct sqluimpt_in* pImportInfoIn,
struct sqluimpt_out* pImportInfoOut,
long * NullIndicators,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

Import API

36 Data Movement Utilities

API Parameters

DataFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the input file name.

FileTypeLen
Input. A 2-byte unsigned integer representing the length in bytes of
the input file type.

MsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the message file name.

pDataFileName
Input. A string containing the path and the name of the external input
file from which the data is to be imported.

pLobPathList
Input. An sqlu_media_list using media_type SQLU_LOCAL_MEDIA, and the
sqlu_media_entry structure listing paths on the client where the LOB
files can be found.

For more information, see “SQLU-MEDIA-LIST ” in the Administrative
API Reference.

pDataDescriptor
Input. Pointer to an sqldcol structure containing information about the
columns being selected for import from the external file. The value of
the dcolmeth field determines how the remainder of the information
provided in this parameter is interpreted by the import utility. Valid
values for this parameter (defined in sqlutil) are:

SQL_METH_N
Names. Selection of columns from the external input file is by
column name.

SQL_METH_P
Positions. Selection of columns from the external input file is
by column position.

SQL_METH_L
Locations. Selection of columns from the external input file is
by column location. The database manager rejects an import
call with a location pair that is invalid because of any one of
the following conditions:
v Either the beginning or the ending location is not in the

range from 1 to the largest signed 2-byte integer.
v The ending location is smaller than the beginning location.

Import API

Chapter 2. Import 37

v The input column width defined by the location pair is not
compatible with the type and the length of the target
column.

A location pair with both locations equal to zero indicates that
a nullable column is to be filled with NULLs.

SQL_METH_D
Default. If pDataDescriptor is NULL, or is set to SQL_METH_D,
default selection of columns from the external input file is
done. In this case, the number of columns and the column
specification array are both ignored. The first n columns of
data in the external input file are taken in their natural order,
where n is the number of database columns into which the
data is to be imported.

For more information, see “SQLDCOL” in the Administrative API
Reference.

pActionString
Input. Pointer to an sqlchar structure containing a 2-byte long field,
followed by an array of characters identifying the columns into which
data is to be imported.

The character array is of the form:
{INSERT | INSERT_UPDATE | REPLACE | CREATE | REPLACE_CREATE}
INTO {tname[(tcolumn-list)] |
[{ALL TABLES | (tname[(tcolumn-list)][, tname[(tcolumn-list)]])}]
[IN] HIERARCHY {STARTING tname | (tname[, tname])}
[UNDER sub-table-name | AS ROOT TABLE]}
[DATALINK SPECIFICATION datalink-spec]

INSERT
Adds the imported data to the table without changing the
existing table data.

INSERT_UPDATE
Adds the imported rows if their primary key values are not in
the table, and uses them for update if their primary key
values are found. This option is only valid if the target table
has a primary key, and the specified (or implied) list of target
columns being imported includes all columns for the primary
key. This option cannot be applied to views.

REPLACE
Deletes all existing data from the table by truncating the table
object, and inserts the imported data. The table definition and
the index definitions are not changed. (Indexes are deleted
and replaced if indexixf is in FileTypeMod, and FileType is

Import API

38 Data Movement Utilities

SQL_IXF.) If the table is not already defined, an error is
returned. Attention: If an error occurs after the existing data
is deleted, that data is lost.

CREATE
Creates the table definition and the row contents using the
information in the specified PC/IXF file, if the specified table
is not defined. If the file was previously exported by DB2,
indexes are also created. If the specified table is already
defined, an error is returned. This option is valid for the
PC/IXF file format only.

REPLACE_CREATE
Replaces the table contents using the PC/IXF row information
in the PC/IXF file, if the specified table is defined. If the table
is not already defined, the table definition and row contents
are created using the information in the specified PC/IXF file.
If the PC/IXF file was previously exported by DB2, indexes
are also created. This option is valid for the PC/IXF file
format only. Attention: If an error occurs after the existing
data is deleted, that data is lost.

tname The name of the table, typed table, view, or object view into
which the data is to be inserted. An alias for REPLACE,
INSERT_UPDATE, or INSERT can be specified, except in the
case of a down-level server, when a qualified or unqualified
name should be specified. If it is a view, it cannot be a
read-only view.

tcolumn-list
A list of table or view column names into which the data is to
be inserted. The column names must be separated by commas.
If column names are not specified, column names as defined
in the CREATE TABLE or the ALTER TABLE statement are
used. If no column list is specified for typed tables, data is
inserted into all columns within each sub-table.

sub-table-name
Specifies a parent table when creating one or more sub-tables
under the CREATE option.

ALL TABLES
An implicit keyword for hierarchy only. When importing a
hierarchy, the default is to import all tables specified in the
traversal-order-list.

HIERARCHY
Specifies that hierarchical data is to be imported.

Import API

Chapter 2. Import 39

STARTING
Keyword for hierarchy only. Specifies that the default order,
starting from a given sub-table name, is to be used.

UNDER
Keyword for hierarchy and CREATE only. Specifies that the
new hierarchy, sub-hierarchy, or sub-table is to be created
under a given sub-table.

AS ROOT TABLE
Keyword for hierarchy and CREATE only. Specifies that the
new hierarchy, sub-hierarchy, or sub-table is to be created as a
stand-alone hierarchy.

DATALINK SPECIFICATION datalink-spec
Specifies parameters pertaining to DB2 Data Links. These
parameters can be specified using the same syntax as in the
IMPORT command (see “IMPORT Command” on page 29).

The tname and the tcolumn-list parameters correspond to the tablename
and the colname lists of SQL INSERT statements, and have the same
restrictions.

The columns in tcolumn-list and the external columns (either specified
or implied) are matched according to their position in the list or the
structure (data from the first column specified in the sqldcol structure
is inserted into the table or view field corresponding to the first
element of the tcolumn-list).

If unequal numbers of columns are specified, the number of columns
actually processed is the lesser of the two numbers. This could result
in an error (because there are no values to place in some non-nullable
table fields) or an informational message (because some external file
columns are ignored).

For more information, see “SQLCHAR” in the Administrative API
Reference.

pFileType
Input. A string that indicates the format of the data within the
external file. Supported external file formats (defined in sqlutil) are:

SQL_ASC
Non-delimited ASCII.

SQL_DEL
Delimited ASCII, for exchange with dBase, BASIC, and the
IBM Personal Decision Series programs, and many other
database managers and file managers.

Import API

40 Data Movement Utilities

SQL_IXF
PC version of the Integrated Exchange Format, the preferred
method for exporting data from a table so that it can be
imported later into the same table or into another database
manager table.

SQL_WSF
Worksheet formats for exchange with Lotus Symphony and
1-2-3 programs.

For more information about file formats, see “Appendix C.
Export/Import/Load Utility File Formats” on page 179.

pFileTypeMod
Input. A pointer to a structure containing a 2-byte long field, followed
by an array of characters that specify one or more processing options.
If this pointer is NULL, or the structure pointed to has zero
characters, this action is interpreted as selection of a default
specification.

Not all options can be used with all of the supported file types.

For more information, see “SQLCHAR” in the Administrative API
Reference, and “File Type Modifiers (Import)” on page 49.

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages returned by the utility. It can be the path and
the name of an operating system file or a standard device. If the file
already exists, it is appended to. If it does not exist, a file is created.

CallerAction
Input. An action requested by the caller. Valid values (defined in
sqlutil) are:

SQLU_INITIAL
Initial call. This value must be used on the first call to the
API.

If the initial call or any subsequent call returns and requires the
calling application to perform some action prior to completing the
requested import operation, the caller action must be set to one of the
following:

SQLU_CONTINUE
Continue processing. This value can only be used on
subsequent calls to the API, after the initial call has returned
with the utility requesting user input (for example, to respond
to an end of tape condition). It specifies that the user action

Import API

Chapter 2. Import 41

requested by the utility has completed, and the utility can
continue processing the initial request.

SQLU_TERMINATE
Terminate processing. This value can only be used on
subsequent calls to the API, after the initial call has returned
with the utility requesting user input (for example, to respond
to an end of tape condition). It specifies that the user action
requested by the utility was not performed, and the utility is
to terminate processing the initial request.

pImportInfoIn
Input. Optional pointer to the sqluimpt_in structure containing
additional input parameters. For information about this structure, see
“SQLUIMPT-IN Data Structure” on page 46.

pImportInfoOut
Output. Optional pointer to the sqluimpt_out structure containing
additional output parameters. For information about this structure, see
“SQLUIMPT-OUT Data Structure” on page 47.

NullIndicators
Input. For ASC files only. An array of integers that indicate whether
or not the column data is nullable. The number of elements in this
array must match the number of columns in the input file; there is a
one-to-one ordered correspondence between the elements of this array
and the columns being imported from the data file. Therefore, the
number of elements must equal the dcolnum field of the
pDataDescriptor parameter. Each element of the array contains a
number identifying a column in the data file that is to be used as a
null indicator field, or a zero indicating that the table column is not
nullable. If the element is not zero, the identified column in the data
file must contain a Y or an N. A Y indicates that the table column data
is NULL, and N indicates that the table column data is not NULL.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see “SQLCA” in the Administrative API Reference.

Import API

42 Data Movement Utilities

REXX API Syntax

REXX API Parameters

datafile
Name of the file from which the data is to be imported.

filetype
The format of the data in the external import file. The supported file
formats are:

DEL Delimited ASCII

ASC Non-delimited ASCII

WSF Worksheet format

IXF PC version of Integrated Exchange Format.

filetmod
A host variable containing additional processing options (see “File
Type Modifiers (Import)” on page 49).

L|N|P
A character specifying the method to be used to select columns within
the external input file. Valid values are:

L Location

N Name

P Position.

dcoldata
A compound REXX host variable containing information about the
columns selected for import from the external input file. The content
of the structure depends upon the specified method. In the following,
XXX represents the name of the host variable:

v Location method

XXX.0 Number of elements in the remainder of the variable

IMPORT FROM datafile OF filetype
[MODIFIED BY :filetmod]
[METHOD {L|N|P} USING :dcoldata]
[COMMITCOUNT :commitcnt] [RESTARTCOUNT :restartcnt]
MESSAGES msgfile
{INSERT|REPLACE|CREATE|INSERT_UPDATE|REPLACE_CREATE}
INTO tname [(:columns)]
[OUTPUT INTO :output]

CONTINUE IMPORT

STOP IMPORT

Import API

Chapter 2. Import 43

XXX.1 A number representing the starting location of this column
in the input file. This column becomes the first column in
the database table.

XXX.2 A number representing the ending location of the column.

XXX.3 A number representing the starting location of this column
in the input file. This column becomes the second column
in the database table.

XXX.4 A number representing the ending location of the column.

XXX.5 and so on.
v Name method

XXX.0 Number of column names contained in the host variable.

XXX.1 First name.

XXX.2 Second name.

XXX.3 and so on.
v Position method

XXX.0 Number of column positions contained in the host variable.

XXX.1 A column position in the external input file.

XXX.2 A column position in the external input file.

XXX.3 and so on.

tname Name of the target table or view. Data cannot be imported to a
read-only view.

columns
A REXX host variable containing the names of the columns in the
table or the view into which the data is to be inserted. In the
following, XXX represents the name of the host variable:

XXX.0 Number of columns.

XXX.1 First column name.

XXX.2 Second column name.

XXX.3 and so on.

msgfile
File, path, or device name where error and warning messages are to
be sent.

commitcnt
Performs a COMMIT after every commitcnt records are imported.

Import API

44 Data Movement Utilities

restartcnt
Specifies that an import operation is to be started at record restartcnt +
1. The first restartcnt records are skipped.

output
A compound REXX host variable into which information from the
import operation is passed. In the following, XXX represents the name
of the host variable:

XXX.1 Number of records read from the external input file during
the import operation.

XXX.2 Number of records skipped before inserting or updating
begins.

XXX.3 Number of rows inserted into the target table.

XXX.4 Number of rows in the target table updated with information
from the imported records.

XXX.5 Number of records that could not be imported.

XXX.6 Number of records imported successfully and committed to
the database, including rows inserted, updated, skipped, and
rejected.

Import API

Chapter 2. Import 45

SQLUIMPT-IN Data Structure

This structure is used to pass information to the “Import API” on page 36.

Table 3. Fields in the SQLUIMPT-IN Structure

Field Name Data Type Description

SIZEOFSTRUCT INTEGER Size of this structure in bytes.

COMMITCNT INTEGER The number of records to import before
committing them to the database. A COMMIT
is performed whenever commitcnt records are
imported.

RESTARTCNT INTEGER The number of records to skip before starting
to insert or update records. This parameter
should be used if a previous attempt to
import records fails after some records have
been committed to the database. The specified
value represents a starting point for the next
import operation.

Language Syntax

C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQLUIMPT-IN */
/* ... */
SQL_STRUCTURE sqluimpt_in
{

unsigned long sizeOfStruct;
unsigned long commitcnt;
unsigned long restartcnt;

};
/* ... */

* File: sqlutil.cbl
01 SQL-UIMPT-IN.

05 SQL-SIZE-OF-UIMPT-IN PIC 9(9) COMP-5 VALUE 12.
05 SQL-COMMITCNT PIC 9(9) COMP-5 VALUE 0.
05 SQL-RESTARTCNT PIC 9(9) COMP-5 VALUE 0.

*

SQLUIMPT-IN Data Structure

46 Data Movement Utilities

SQLUIMPT-OUT Data Structure

This structure is used to pass information from the “Import API” on page 36.

Table 4. Fields in the SQLUIMPT-OUT Structure

Field Name Data Type Description

SIZEOFSTRUCT INTEGER Size of this structure in bytes.

ROWSREAD INTEGER Number of records read from the file during
import.

ROWSSKIPPED INTEGER Number of records skipped before inserting or
updating begins.

ROWSINSERTED INTEGER Number of rows inserted into the target table.

ROWSUPDATED INTEGER Number of rows in the target table updated
with information from the imported records
(records whose primary key value already
exists in the table).

ROWSREJECTED INTEGER Number of records that could not be
imported.

ROWSCOMMITTED INTEGER Number of records imported successfully and
committed to the database.

Language Syntax

C Structure

/* File: sqlutil.h */
/* Structure: SQLUIMPT-OUT */
/* ... */
SQL_STRUCTURE sqluimpt_out
{
unsigned long sizeOfStruct;
unsigned long rowsRead;
unsigned long rowsSkipped;
unsigned long rowsInserted;
unsigned long rowsUpdated;
unsigned long rowsRejected;
unsigned long rowsCommitted;

};
/* ... */

SQLUIMPT-OUT Data Structure

Chapter 2. Import 47

COBOL Structure

* File: sqlutil.cbl
01 SQL-UIMPT-OUT.

05 SQL-SIZE-OF-UIMPT-OUT PIC 9(9) COMP-5 VALUE 28.
05 SQL-ROWSREAD PIC 9(9) COMP-5 VALUE 0.
05 SQL-ROWSSKIPPED PIC 9(9) COMP-5 VALUE 0.
05 SQL-ROWSINSERTED PIC 9(9) COMP-5 VALUE 0.
05 SQL-ROWSUPDATED PIC 9(9) COMP-5 VALUE 0.
05 SQL-ROWSREJECTED PIC 9(9) COMP-5 VALUE 0.
05 SQL-ROWSCOMMITTED PIC 9(9) COMP-5 VALUE 0.

*

SQLUIMPT-OUT Data Structure

48 Data Movement Utilities

File Type Modifiers (Import)

Table 5. Valid File Type Modifiers (Import)

Modifier Description

All File Formats

compound=x x is a number between 1 and 100 inclusive (7 on
DOS/Windows). Uses nonatomic compound SQL to insert
the data, and x statements will be attempted each time.

lobsinfile lob-path specifies the path to the files containing LOB values.

no_type_id Valid only when importing into a single sub-table. Typical
usage is to export data from a regular table, and then to
invoke an import operation (using this modifier) to convert
the data into a single sub-table.

nodefaults If a source column for a target table column is not explicitly
specified, and the table column is not nullable, default
values are not loaded. Without this option, if a source
column for one of the target table columns is not explicitly
specified, one of the following occurs:

v If the column is defaultable, the default value is loaded

v If the column is nullable and not defaultable, a NULL is
loaded

v If the column is not nullable and not defaultable, an error
is returned, and the utility stops processing.

usedefaults If a source column for a target table column has been
specified, but it contains no data for one or more row
instances, default values are loaded. Examples of missing
data are:

v For DEL files: ",," is specified for the column

v For ASC files: The NULL indicator is set to yes for the
column

v For DEL/ASC/WSF files: A row that does not have
enough columns, or is not long enough for the original
specification.

Without this option, if a source column contains no data for
a row instance, one of the following occurs:

v If the column is nullable, a NULL is loaded

v If the column is not nullable, the utility rejects the row.

ASCII File Formats (ASC/DEL)

implieddecimal The location of an implied decimal point is determined by
the column definition; it is no longer assumed to be at the
end of the value. For example, the value 12345 is loaded
into a DECIMAL(8,2) column as 123.45, not 12345.00.

File Type Modifiers (Import)

Chapter 2. Import 49

Table 5. Valid File Type Modifiers (Import) (continued)

Modifier Description

noeofchar The optional end-of-file character x'1A' is not recognized as
the end of file. Processing continues as if it were a normal
character.

ASC (Non-delimited ASCII) File Format

nochecklengths If nochecklengths is specified, an attempt is made to import
each row, even if the source data has a column definition
that exceeds the size of the target table column. Such rows
can be successfully imported if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in
the source could shrink to 2-byte DBCS data in the target,
and require half the space. This option is particularly useful
if it is known that the source data will fit in all cases despite
mismatched column definitions.

nullindchar=x x is a single character. Changes the character denoting a
null value to x. The default value of x is Y.b

This modifier is case sensitive for EBCDIC data files, except
when the character is an English letter. For example, if the
null indicator character is specified to be the letter N, then n
is also recognized as a null indicator.

reclen=x x is an integer with a maximum value of 32 767. x
characters are read for each row, and a new-line character is
not used to indicate the end of the row.

striptblanks Truncates any trailing blank spaces when loading data into
a variable-length field. If this option is not specified, blank
spaces are kept.

In the following example, striptblanks causes the import
utility to truncate trailing blank spaces:

db2 import from myfile.asc of asc
modified by striptblanks
method l (1 10, 12 15) messages msgs.txt
insert into staff

This option cannot be specified together with striptnulls.
These are mutually exclusive options.
Note: This option replaces the obsolete t option, which is
supported for back-level compatibility only.

File Type Modifiers (Import)

50 Data Movement Utilities

Table 5. Valid File Type Modifiers (Import) (continued)

Modifier Description

striptnulls Truncates any trailing NULLs (0x00 characters) when
loading data into a variable-length field. If this option is not
specified, NULLs are kept.

This option cannot be specified together with striptblanks.
These are mutually exclusive options.
Note: This option replaces the obsolete padwithzero option,
which is supported for back-level compatibility only.

DEL (Delimited ASCII) File Format

chardelx x is a single character string delimiter. The default value is a
double quotation mark ("). The specified character is used in
place of double quotation marks to enclose a character
string.ab

The single quotation mark (') can also be specified as a
character string delimiter. In the following example,
chardel'' causes the import utility to interpret any single
quotation mark (') it encounters as a character string
delimiter:

db2 "import from myfile.del of del
modified by chardel''
method p (1, 4) insert into staff (id, years)"

coldelx x is a single character column delimiter. The default value is
a comma (,). The specified character is used in place of a
comma to signal the end of a column.ab

In the following example, coldel; causes the import utility
to interpret any semicolon (;) it encounters as a column
delimiter:

db2 import from myfile.del of del
modified by coldel;
messages msgs.txt insert into staff

datesiso Date format. Causes all date data values to be imported in
ISO format.

decplusblank Plus sign character. Causes positive decimal values to be
prefixed with a blank space instead of a plus sign (+). The
default action is to prefix positive decimal values with a
plus sign.

File Type Modifiers (Import)

Chapter 2. Import 51

Table 5. Valid File Type Modifiers (Import) (continued)

Modifier Description

decptx x is a single character substitute for the period as a decimal
point character. The default value is a period (.). The
specified character is used in place of a period as a decimal
point character.ab

In the following example, decpt; causes the import utility
to interpret any semicolon (;) it encounters as a decimal
point:

db2 "import from myfile.del of del
modified by chardel'
decpt; messages msgs.txt insert into staff"

delprioritychar The current default priority for delimiters is: record
delimiter, character delimiter, column delimiter. This
modifier protects existing applications that depend on the
older priority by reverting the delimiter priorities to:
character delimiter, record delimiter, column delimiter.
Syntax:

db2 import ... modified by delprioritychar ...

For example, given the following DEL data file:

"Smith, Joshua",4000,34.98<row delimiter>
"Vincent,<row delimiter>, is a manager", ...
... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be
only two rows in this data file. The second <row delimiter>
will be interpreted as part of the first data column of the
second row, while the first and the third <row delimiter>
are interpreted as actual record delimiters. If this modifier is
not specified, there will be three rows in this data file, each
delimited by a <row delimiter>.

dldelx x is a single character DATALINK delimiter. The default
value is a semicolon (;). The specified character is used in
place of a semicolon as the inter-field separator for a
DATALINK value. It is needed because a DATALINK value
may have more than one sub-value. ab

Note: x must not be the same character specified as the
row, column, or character string delimiter.

nodoubledel Suppresses recognition of double character delimiters.

IXF File Format

File Type Modifiers (Import)

52 Data Movement Utilities

Table 5. Valid File Type Modifiers (Import) (continued)

Modifier Description

forcein Directs the utility to accept data despite code page
mismatches, and to suppress translation between code
pages.

Fixed length target fields are checked to verify that they are
large enough for the data. If nochecklengths is specified, no
checking is done, and an attempt is made to import each
row.

indexixf Directs the utility to drop all indexes currently defined on
the existing table, and to create new ones from the index
definitions in the PC/IXF file. This option can only be used
when the contents of a table are being replaced. It cannot be
used with a view, or when a insert-column is specified.

indexschema=schema Uses the specified schema for the index name during index
creation. If schema is not specified (but the keyword
indexschema is specified), uses the connection user ID. If the
keyword is not specified, uses the schema in the IXF file.

nochecklengths If nochecklengths is specified, an attempt is made to import
each row, even if the source data has a column definition
that exceeds the size of the target table column. Such rows
can be successfully imported if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in
the source could shrink to 2-byte DBCS data in the target,
and require half the space. This option is particularly useful
if it is known that the source data will fit in all cases despite
mismatched column definitions.

Notes:

1. The import utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
import operation fails, and an error code is returned.

2. a “Delimiter Restrictions” on page 16 lists restrictions that apply to the characters
that can be used as delimiter overrides.

3. b The character must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified using
the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the code point.
For example, to specify the # character as a column delimiter, use one of the
following:

... modified by coldel# ...

... modified by coldel0x23 ...

... modified by coldelX23 ...

File Type Modifiers (Import)

Chapter 2. Import 53

Character Set and NLS Considerations

Unequal code page situations, involving expansion or contraction of the
character data, can sometimes occur. For example, Japanese or
Traditional-Chinese Extended UNIX Code (EUC) and double-byte character
sets (DBCS) may have different length encodings for the same character.
Normally, comparison of input data length to target column length is
performed before reading in any data. If the input length is greater than the
target length, NULLs are inserted into that column if it is nullable. Otherwise,
the request is rejected. If the nochecklengths modifier (see “File Type
Modifiers (Import)” on page 49) is specified, no initial comparison is
performed, and an attempt is made to import the data. If the data is too long
after translation is complete, the row is rejected. Otherwise, the data is
imported.

Example Import Sessions

CLP Examples

The following example shows how to import information from myfile.ixf to
the STAFF table:

db2 import from myfile.ixf of ixf messages msg.txt insert into staff

The following example shows how to import the table MOVIETABLE from
the input file delfile1, which has data in the DEL format:

SQL3150N The H record in the PC/IXF file has product "DB2 01.00", date
"19970220", and time "140848".

SQL3153N The T record in the PC/IXF file has name "myfile", qualifier " ",
and source " ".

SQL3109N The utility is beginning to load data from file "myfile".

SQL3110N The utility has completed processing. "58" rows were read from the
input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "58".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "58" rows were processed from the input file. "58" rows were
successfully inserted into the table. "0" rows were rejected.

Character Set and NLS Considerations

54 Data Movement Utilities

db2 import from delfile1 of del
modified by dldel|
insert into movietable (actorname, description, url_making_of, url_movie)
datalink specification (dl_url_default_prefix "http://narang"),
(dl_url_replace_prefix "http://bomdel" dl_url_suffix ".mpeg")

Notes:

1. The table has four columns:
actorname VARCHAR(n)
description VARCHAR(m)
url_making_of DATALINK (with LINKTYPE URL)
url_movie DATALINK (with LINKTYPE URL)

2. The DATALINK data in the input file has the vertical bar (|) character as
the sub-field delimiter.

3. If any column value for url_making_of does not have the prefix character
sequence, ″http://narang″ is used.

4. Each non-NULL column value for url_movie will get ″http://bomdel″ as
its prefix. Existing values are replaced.

5. Each non-NULL column value for url_movie will get ″.mpeg″ appended to
the path. For example, if a column value of url_movie is
″http://server1/x/y/z″, it will be stored as ″http://bomdel/x/y/z.mpeg″;
if the value is ″/x/y/z″, it will be stored as ″http://bomdel/x/y/z.mpeg″.

API Examples

See “API Examples” on page 18.

Optimizing Import Performance

Specifying target table column names or a specific importing method makes
importing to a remote database slower.

Restrictions and Limitations

The following restrictions apply to the import utility:
v This utility does not support the use of nicknames.
v If the existing table is a parent table containing a primary key that is

referenced by a foreign key in a dependent table, its data cannot be
replaced, only appended to.

v You cannot perform an import replace operation into an underlying table of
a summary table defined in refresh immediate mode.

v You cannot import data into a system table or a summary table.
v Views cannot be created through the import utility.

Example Import Sessions

Chapter 2. Import 55

v Referential constraints and foreign key definitions are not preserved when
creating tables from PC/IXF files. (Primary key definitions are preserved if
the data was previously exported using SELECT *.)

v Because the import utility generates its own SQL statements, the maximum
statement size of 64KB may, in some cases, be exceeded.

The following limitations apply to the import utility:
v If an import operation is run against a remote database, and the output

message file is very long (more than 60KB), the message file returned to the
user on the client may be missing messages from the middle of the import
operation. The first 30KB of message information and the last 30KB of
message information are always retained.

Troubleshooting

During DB2 operations such as exporting, importing, loading, binding, or
restoring data, you can specify that message files be created to contain the
error, warning, and informational messages associated with those operations.
Specify the name of these files with the MESSAGES parameter.

These message files are standard ASCII text files. Each message in a message
file begins on a new line and contains information provided by the DB2
message retrieval facility. To print them, use the printing procedure for your
operating system; to view them, use any ASCII editor.

Import Restrictions and Limitations

56 Data Movement Utilities

Chapter 3. Load

This chapter describes the DB2 UDB load utility, which moves data from files,
named pipes, or devices into a DB2 table. These data sources must reside on
the node where the database resides, and the table must exist. If the table
receiving the new data already contains data, you can replace or append to
the existing data.

The following topics are covered:
v “Load Overview” on page 58

v “Parallelism and Loading” on page 62

v “Privileges, Authorities, and Authorization Required to Use Load” on
page 63

v “Using Load” on page 64

v “Checking for Constraints Violations” on page 65

v “Restarting an Interrupted Load Operation” on page 67

v “Using the Load Copy Location File” on page 67

v “LOAD Command” on page 70

v “LOAD QUERY Command” on page 82

v “Load API” on page 84

v “Data Structure: SQLULOAD-IN” on page 93

v “Data Structure: SQLULOAD-OUT” on page 97

v “db2LoadQuery - Load Query API” on page 99

v “File Type Modifiers (Load)” on page 104

v “Exception Table” on page 112

v “Dump File” on page 112

v “Load Temporary Files” on page 113

v “Load Utility Log Records” on page 113

v “Character Set and NLS Considerations” on page 114

v “Example Load Sessions” on page 114

v “Pending States After a Load Operation” on page 124

v “Optimizing Load Performance” on page 125

© Copyright IBM Corp. 1999 57

v “Restrictions and Limitations” on page 130

v “Troubleshooting” on page 130.

For information about loading DB2 Data Links Manager data, see “Using
Load to Move DB2 Data Links Manager Data” on page 153.

Load Overview

The load utility is capable of efficiently moving large quantities of data into
newly created tables, or into tables that already contain data. The utility can
handle all data types, including large objects (LOBs) and user-defined types
(UDTs). The load utility is faster than the import utility, because it writes
formatted pages directly into the database, while the import utility performs
SQL INSERTs. The load utility does not fire triggers, and does not perform
referential or table constraints checking (other than validating the uniqueness
of the indexes). The data being loaded must be local to the server (unlike
import and export, which support the passing of data from the client). For a
detailed comparison of the load and the import utilities, see “Appendix B.
Differences Between the Import and the Load Utility” on page 177.

The load process consists of three distinct phases (see Figure 1):

v Load, during which the data is written to the table.
During the load phase, data is loaded into the table, and index keys and
table statistics are collected, if necessary. Save points, or points of
consistency, are established at intervals specified through the SAVECOUNT
parameter in the LOAD command. Messages are generated, indicating how
many input rows were successfully loaded at the time of the save point. For
DATALINK columns defined with FILE LINK CONTROL, link operations
are performed for non-NULL column values. If a failure occurs, you can
restart the load operation; the RESTART option automatically restarts the
load operation from the last successful consistency point. The TERMINATE
option rolls back the failed load operation.

v Build, during which indexes are created.

The Three Phases of a Load Operation

LOAD PHASE
STARTS

LOAD PHASE
ENDS

BUILD PHASE
STARTS

BUILD PHASE
ENDS

DELETE PHASE
STARTS

DELETE PHASE
ENDS

Figure 1. The Three Phases of the Load Process: Load, Build, and Delete.. Associated table
spaces are in load pending state from the beginning of the load phase until the end of the build
phase, and in delete pending state from the end of the build phase until the end of the delete
phase.

58 Data Movement Utilities

During the build phase, indexes are created based on the index keys
collected during the load phase. The index keys are sorted during the load
phase, and index statistics are collected (if the STATISTICS YES with
INDEXES option was specified). The statistics are similar to those collected
through the RUNSTATS command (see the Command Reference). If a failure
occurs during the build phase, the RESTART option automatically restarts
the load operation at the appropriate point.
Unique key violations are placed into the exception table, if one was
specified (see “Exception Table” on page 112), and messages about rejected
rows are written to the message file. Following the completion of the load
process, review these messages, resolve any problems, and insert corrected
rows into the table.

v Delete, during which the rows that caused a unique key violation or a
DATALINK violation are removed from the table.
Do not attempt to delete or to modify any temporary files created by the
load utility. Some temporary files are critical to the delete phase. If a failure
occurs during the delete phase, the RESTART option automatically restarts
the load operation at the appropriate point.

Note: Each deletion event is logged. If you have a large number of records
that violate the uniqueness condition, the log could fill up during the
delete phase.

The following information is required when loading data:
v The path and the name of the input file, named pipe, or device.
v The name or alias of the target table.
v The format of the data in the input file. This format can be DEL, ASC, or

PC/IXF. See “Appendix C. Export/Import/Load Utility File Formats” on
page 179.

v Whether the input data is to be appended to the table, or is to replace the
existing data in the table.

v A message file name, if the utility is invoked through the application
programming interface (API), sqluload.

You can also specify:
v The method to use for loading the data: column location, column name, or

relative column position.
v How often the utility is to establish consistency points. Use the

SAVECOUNT parameter to specify this value. If this parameter is specified,
a load restart operation will start at the last consistency point, instead of at
the beginning.

v The names of the table columns into which the data is to be inserted.

Load Overview

Chapter 3. Load 59

v The paths and the names of the input files in which LOBs are stored. The
lobsinfile modifier tells the load utility that all LOB data is being loaded
from files (see “File Type Modifiers (Load)” on page 104).

v Whether column values being loaded have implied decimal points. The
implieddecimal modifier tells the load utility that decimal points are to be
applied to the data as it enters the table (see “File Type Modifiers (Load)”
on page 104). For example, the value 12345 is loaded into a DECIMAL(8,2)
column as 123.45, not 12345.00.

v Whether the utility should modify the amount of free space available after a
table is loaded. Additional free space permits INSERT and UPDATE growth
to the table following the completion of a load operation. Reduced free
space keeps related rows more closely together and can enhance table
performance.
– The totalfreespace modifier enables you to append empty data pages

to the end of the loaded table. The number specified with this parameter
is the percentage of the total pages in the table that is to be appended to
the end of the table as free space. For example, if you specified the
number twenty with this parameter, and the table has 100 data pages,
twenty additional empty pages are appended. The total number of data
pages in the table will then be 120.

– The pagefreespace modifier enables you to control the amount of free
space that will be allowed on each loaded data page. The number
specified with this parameter is the percentage of each data page that is
to be left as free space. The first row in a page is added without
restriction. Therefore, with very large rows and a large number specified
with this parameter, there may be less free space left on each page than
that indicated by the value specified with this parameter.

– The indexfreespace modifier enables you to control the amount of free
space that will be allowed on each loaded index page. The number
specified with this parameter is the percentage of each index page that is
to be left as free space. The first index entry in a page is added without
restriction. Additional index entries are placed in the index page,
provided the percent free space threshold can be maintained. The default
value is the one used at CREATE INDEX time. The indexfreespace value
takes precedence over the PCTFREE value specified in the CREATE
INDEX statement.

If you specify the pagefreespace modifier, and you have an index on the
table, you might consider specifying indexfreespace. When deciding on the
amount of free space to leave for each, consider that the size of each row
being inserted into the table will likely be larger than the size of the
associated key to be inserted into the index. In addition, the page size of
the table spaces for the table and the index may be different.

Load Overview

60 Data Movement Utilities

v Whether statistics are to be gathered during the load process. This option is
only supported if the load operation is running in REPLACE mode.
If data is appended to a table, statistics are not collected. To collect current
statistics on an appended table, invoke the runstats utility following
completion of the load process. If gathering statistics on a table with a
unique index, and duplicate keys are deleted during the delete phase,
statistics are not updated to account for the deleted records. If you expect to
have a significant number of duplicate records, do not collect statistics
during the load operation. Instead, invoke the runstats utility following
completion of the load process.

v Whether to keep a copy of the changes made. This is done to enable
rollforward recovery of the database. This option is not supported if
forward log recovery is disabled for the database; that is, if the database
configuration parameters logretain and userexit are disabled. If no copy is
made, and forward log recovery is enabled, the table space is left in backup
pending state at the completion of the load operation (see “Pending States
After a Load Operation” on page 124).
Logging is required for fully recoverable databases. The load utility almost
completely eliminates the logging associated with the loading of data. In
place of logging, you have the option of making a copy of the loaded
portion of the table. For information about how DB2 keeps tracks of the
load copies, see “Using the Load Copy Location File” on page 67. If you
have a database environment that allows for database recovery following a
failure, you can do one of the following:

– Explicitly request that a copy of the loaded portion of the table be made.
– Take a backup of the table spaces in which the table resides immediately

after the completion of the load operation.

If you are loading a table that already contains data, and the database is
non-recoverable, ensure that you have a backed-up copy of the database, or
the table spaces for the table being loaded, before invoking the load utility,
so that you can recover from errors.

If you want to perform a sequence of multiple load operations on a
recoverable database, the sequence of operations will be faster if you
specify each load operation to be non-recoverable, and take a backup at the
end of the load sequence, than if you invoke each of the load operations
with the COPY YES option. You can use the NONRECOVERABLE option to
specify that a load transaction is to be marked as non-recoverable, and that
it will not be possible to recover it by a subsequent roll forward action. The
rollforward utility will skip the transaction, and will mark the table into
which data was being loaded as "invalid". The utility will also ignore any
subsequent transactions against that table. After the roll forward is
completed, such a table can only be dropped (see Figure 2 on page 62). With

Load Overview

Chapter 3. Load 61

this option, table spaces are not put in backup pending state following the
load operation, and a copy of the loaded data does not have to be made
during the load operation.

For more information, see the database recovery chapter in the
Administration Guide.

v The fully qualified path to be used when creating temporary files during a
load operation. The name is specified by the TEMPFILES PATH parameter
of the LOAD command. The default value is the database path. The path
resides on the server machine, and is accessed by the DB2 instance
exclusively. Therefore, any path name qualification given to this parameter
must reflect the directory structure of the server, not the client, and the DB2
instance owner must have read and write permission on the path. This is
true even if you are the instance owner. If you are not the instance owner,
you must specify a location that is writable by the instance owner. For more
information about temporary files, see “Load Temporary Files” on page 113.

Parallelism and Loading

The load utility takes advantage of a hardware configuration in which
multiple processors or multiple storage devices are used, such as in a
symmetric multiprocessor (SMP) environment. There are several ways in
which parallel processing of large amounts of data can take place using the
load utility. One way is through the use of multiple storage devices, which
allows for I/O parallelism during the load operation (see Figure 3 on page 63).
Another way involves the use of multiple processors in an SMP environment,
which allows for intra-partition parallelism (see Figure 4 on page 63). Both can
be used together to provide even faster loading of data. For more information,
see “Optimizing Load Performance” on page 125.

full DB
restore

rollforward
begins

load to table X
ignored

transaction to
table X ignored

rollforward
ends

table X
dropped

(recovery time-line)

Figure 2. Non-recoverable Processing During a Roll Forward Action

Load Overview

62 Data Movement Utilities

Privileges, Authorities, and Authorization Required to Use Load

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects
for which they have the appropriate authorization; that is, the required
privilege or authority.

To load data into a table, you must have one of the following:
v SYSADM authority
v DBADM authority
v LOAD authority on the database and

– INSERT privilege on the table when the load utility is invoked in
APPEND, TERMINATE, or RESTART mode

– INSERT and DELETE privilege on the table when the load utility is
invoked in REPLACE mode.

Disk Disk Disk

I/O
Subagent

I/O
Subagent

I/O
Subagent

Figure 3. Taking Advantage of I/O Parallelism When Loading Data

Source data (DEL, ASC, IXF)

parse,
convert fields,
build record,

insert into table

parse,
convert fields,
build record,

insert into table

parse,
convert fields,
build record,

insert into table

parse,
convert fields,
build record,

insert into table

Database

Figure 4. Taking Advantage of Intra-partition Parallelism When Loading Data

Parallelism and Loading

Chapter 3. Load 63

Since all load processes (and all DB2 server processes, in general), are owned
by the instance owner, and all of these processes use the identification of the
instance owner to access needed files, the instance owner must have read
access to input data files. These input data files must be readable by the
instance owner, regardless of who invokes the command.

If DB2 for Windows NT has been defined as a Service to the Windows NT
operating system, the Service must have a user account with the required
read/write file permissions to use LAN resources (drives, directories, and
files).

Using Load

Before Using Load

Before invoking the load utility, you must be connected to (or be able to
implicitly connect to) the database into which the data will be loaded. Since
the utility will issue a COMMIT statement, you should complete all
transactions and release all locks by performing either a COMMIT or a
ROLLBACK before invoking load.

Since data is loaded in the sequence that appears in the input file, if a
particular sequence is desired, the data should be sorted before a load
operation is attempted.

If clustering is required, the data should be sorted on the clustering index
prior to loading.

Invoking Load

The load utility can be invoked through:
v The command line processor (CLP).

Following is an example of the LOAD command issued through the CLP:
db2 load from stafftab.ixf of ixf messages staff.msgs

insert into userid.staff copy yes use adsm data buffer 4000

In this example:
– Any warning or error messages are placed in the staff.msgs file.
– A copy of the changes made is stored in ADSTAR Distributed Storage

Manager (ADSM). For more information about ADSM, see the “ADSTAR
Distributed Storage Manager” section of the database recovery chapter in
the Administration Guide.

– Four thousand pages of buffer space are to be used during the load
operation.

Authorities Required to Use Load

64 Data Movement Utilities

Following is another example of the LOAD command issued through the
CLP:

db2 load from stafftab.ixf of ixf messages staff.msgs
tempfiles path /u/myuser replace into staff

In this example:
– The table data is being replaced.
– The TEMPFILES PATH parameter is used to specify /u/myuser as the

server path into which temporary files will be written.

Note: These examples use relative path names for the load input file.
Relative path names are only allowed on calls from a client on the
same node as the database. The use of fully qualified path names is
recommended.

v The Load notebook in the Control Center. To open the Load notebook:
1. From the Control Center, expand the object tree until you find the Tables

folder.
2. Click on the Tables folder. Any existing tables are displayed in the pane

on the right side of the window (the contents pane).
3. Click the right mouse button on the table you want in the contents

pane, and select Load from the pop-up menu. The Load notebook
opens.

For general information about the Control Center, see the Administration
Guide. Detailed information is provided through the online help facility
within the Control Center.

v An application programming interface (API), sqluload. For information
about this API, see “Load API” on page 84. For general information about
creating applications containing DB2 administrative APIs, see the
Application Building Guide.

Checking for Constraints Violations

Following a load operation, the loaded table may be in check pending state if
it has table check constraints or referential integrity constraints defined on it.
The STATUS flag of the SYSCAT.TABLES entry corresponding to the loaded table
indicates the check pending state of the table. For the loaded table to be
usable, the STATUS must have a value of N, indicating a normal state.

To remove the check pending state, use the SET INTEGRITY statement (see
the SQL Reference). The SET INTEGRITY statement checks a table for
constraints violations, and takes the table out of check pending state. If all the
load operations are performed in INSERT mode, the SET INTEGRITY

Using Load

Chapter 3. Load 65

statement will by default incrementally process the constraints (that is, it will
check only the appended portion of the table for constraints violations). For
example:

db2 load from infile1.ixf of ixf insert into table1
db2 set integrity for table1 immediate checked

Only the appended portion of TABLE1 is checked for constraint violations.
Checking only the appended portion for constraints violations is faster than
checking the entire table, especially in the case of a large table with small
amounts of appended data.

One or more tables can be checked in a single invocation of this statement. If
a dependent table is to be checked, the parent table must not be in check
pending state. In the case of a referential integrity cycle, all the tables
involved in the cycle must be included in a single invocation of the SET
INTEGRITY statement. It may be convenient to check the parent table for
constraints violations while a dependent table is being loaded. This can only
occur if the two tables are not in the same table space.

When issuing the SET INTEGRITY statement, you can specify the
INCREMENTAL option to explicitly request incremental processing. In most
cases, this option is not needed, because the default behavior is incremental
processing. If incremental processing is not possible, full processing is used
automatically. When the INCREMENTAL option is specified, but incremental
processing is not possible, an error is returned if:
v New constraints have been added to the table or to its parent table while

both tables are in check pending state.
v A load replace operation has taken place.
v A parent table has been checked for integrity non-incrementally.

If the T table has one or more W values in the CONST_CHECKED column of
the SYSCAT.TABLES catalog (see the SQL Reference, SET INTEGRITY
statement, for a description of the W state), the system checks the entire table
for constraints violations if the INCREMENTAL option is not specified. If the
option is specified, it is allowed, but the CONST_CHECKED column of
SYSTABLES will be marked as U to indicate that not all data has been verified
by the system.

Use the load exception table option to capture information about rows with
constraints violations (see “Exception Table” on page 112).

The SET INTEGRITY statement does not activate any DELETE triggers as a
result of deleting rows that violate constraints, but once the table is removed
from check pending state, triggers are active. Thus, if we correct data and
insert rows from the exception table into the loaded table, any INSERT

Constraints Checking

66 Data Movement Utilities

triggers defined on the table will be activated. The implications of this should
be considered. One option is to drop the INSERT trigger, insert rows from the
exception table, and then recreate the INSERT trigger.

Restarting an Interrupted Load Operation

If the load utility cannot start because of a user error, such as a nonexistent
data file or invalid column names, it will terminate and leave the table space
in a normal state.

If a failure occurs while loading data, you can restart the load operation from
the last consistency point (using the RESTART option), or reload the entire
table (using the REPLACE option). Specify the same parameters as in the
previous invocation, so that the utility can find the necessary temporary files.

Using the Load Copy Location File

The DB2LOADREC registry variable is used to identify the file with the load
copy location information. This file is used during roll-forward recovery to
locate the load copy. It contains information about:
v Media type
v Number of media devices to be used
v Location of the load copy generated during a table load operation
v File name of the load copy, if applicable.

If the location file does not exist, or no matching entry is found in the file, the
information from the log record is used.

The information in the file may be overwritten before roll-forward recovery
takes place.

In a partitioned database environment, the load copy location file must exist
at each database partition server, and the file name (including the path) must
be the same.

Following is an example of the location file. The first five parameters must
have valid values, and are used to identify the load copy. The entire structure
is repeated for each load copy recorded.

TIMestamp 19950725182542 * Time stamp generated at load time
SCHema PAYROLL * Schema of table loaded
TABlename EMPLOYEES * Table name
DATabasename DBT * Database name
DB2instance TORONTO * DB2INSTANCE

Constraints Checking

Chapter 3. Load 67

BUFfernumber NULL * Number of buffers to be used for recovery
SESsionnumber NULL * Number of sessions to be used for recovery
TYPeofmedia L * Type of media - L for local device

A for ADSM
O for other vendors

LOCationnumber 3 * Number of locations
ENTry /u/toronto/dbt.payroll.employes.001
ENT /u/toronto/dbt.payroll.employes.002
ENT /dev/rmt0

TIM 19950725192054
SCH PAYROLL
TAB DEPT
DAT DBT
DB2 TORONTO
SES NULL
BUF NULL
TYP A
TIM 19940325192054
SCH PAYROLL
TAB DEPT
DAT DBT
DB2 TORONTO
SES NULL
BUF NULL
TYP O
SHRlib /@sys/lib/backup_vendor.a

Notes:

1. The first three characters of each keyword are significant. All keywords
must be in the specified order. No blank lines are accepted.

2. The time stamp is in the format yyyymmddhhmmss.
3. All fields are mandatory, except for BUF and SES, which can be NULL.
4. The media type can be: local device (L for tape, disk or diskettes), ADSM

(A), or other vendor (O). If it is L, the number of locations, followed by
the location entries, are required. If the type is A, no further input is
required. If the type is O, the shared library name is required. For detailed
information about using ADSM and other vendor products as backup
media, see the “ADSTAR Distributed Storage Manager” section of the
database recovery chapter in the Administration Guide.

5. The SHRlib parameter points to a library whose function is to store the
LOAD COPY data.

If you run LOAD COPY NO, and do not take a backup copy of the database
or affected table spaces after running the load operation, you cannot restore
the database or the table spaces to a point in time that is more recent than the
load operation. That is, you cannot use roll-forward recovery to rebuild the
database or the table spaces to their state after the load operation. You can
only restore the database or the table spaces to a point in time that precedes
the load operation.

Using the Load Copy Location File

68 Data Movement Utilities

If you want to use a particular load copy, the load time stamps are recorded
in the recovery history file for the database. In a partitioned database
environment, the recovery history file is local to each database partition.

Using the Load Copy Location File

Chapter 3. Load 69

LOAD Command

Command Syntax

ÊÊ LOAD FROM ·

,

filename
pipename
device

OF filetype

·

,

LOBS FROM lob-path

Ê

Ê

·MODIFIED BY filetype-mod

Ê

Ê

·

·

·

·

,

METHOD L (column-start column-end)
,

NULL INDICATORS (n)
,

N (column-name)
,

P (column-position)

Ê

Ê
SAVECOUNT n ROWCOUNT n WARNINGCOUNT n MESSAGES message-file

Ê

Ê
TEMPFILES PATH temp-pathname

INSERT
REPLACE
RESTART
TERMINATE

Ê

Ê

·

INTO table-name
,

(insert-column)

Ê

Ê
DATALINK SPECIFICATION datalink-spec FOR EXCEPTION table-name

Ê

Ê
YES

STATISTICS
WITH DISTRIBUTION

AND INDEXES ALL
DETAILED

AND INDEXES ALL
FOR DETAILED

NO

Ê

LOAD Command

70 Data Movement Utilities

Ê

·

NO
COPY YES USE ADSM

OPEN num-sess SESSIONS
,

TO device/directory
LOAD lib-name

OPEN num-sess SESSIONS
NONRECOVERABLE

HOLD QUIESCE
Ê

Ê
WITHOUT PROMPTING DATA BUFFER buffer-size CPU_PARALLELISM n

Ê

Ê
DISK_PARALLELISM n INDEXING MODE AUTOSELECT

REBUILD
INCREMENTAL
DEFERRED

ÊÍ

datalink-spec:

·

,

()
DL_LINKTYPE URL DL_URL_REPLACE_PREFIX ″prefix″ DL_URL_SUFFIX ″suffix″

DL_URL_DEFAULT_PREFIX ″prefix″

Command Parameters

COPY NO
Specifies that the table space in which the table resides will be placed
in backup pending state if forward recovery is enabled (that is,
logretain or userexit is on). The data will not be accessible until a table
space backup or a full database backup is made.

COPY YES
Specifies that a copy of the loaded data will be saved. This option is
invalid if forward recovery is disabled (both logretain and userexit are
off). The option is not supported for tables with DATALINK columns.

USE ADSM
Specifies that the copy will be stored using ADSTAR
Distributed Storage Manager (ADSM).

OPEN num-sess SESSIONS
The number of I/O sessions to be used with ADSM or the
vendor product. The default value is 1.

TO device/directory
Specifies the device or directory on which the copy image will

LOAD Command

Chapter 3. Load 71

be created. Tape is not supported on OS/2; copy to tapes is
not supported for DB2 servers running on SCO UnixWare 7.

LOAD lib-name
The name of the shared library (DLL on OS/2 or the Windows
operating system) containing the vendor backup and restore
I/O functions to be used. It may contain the full path. If the
full path is not given, it will default to the path where the
user exit programs reside.

CPU_PARALLELISM n
Specifies the number of processes or threads that the load utility will
spawn for parsing, converting, and formatting records when building
table objects. This parameter is designed to exploit intra-partition
parallelism. It is particularly useful when loading presorted data,
because record order in the source data is preserved. If the value of
this parameter is zero, or has not been specified, the load utility uses
an intelligent default value at run time.

Notes:

1. If this parameter is used with tables containing either LOB or
LONG VARCHAR fields, its value becomes one, regardless of the
number of system CPUs or the value specified by the user.

2. Specifying a small value for the SAVECOUNT parameter causes
the loader to perform many more I/O operations to flush both
data and table metadata. When CPU_PARALLELISM is greater
than one, the flushing operations are asynchronous, permitting the
loader to exploit the CPU. When CPU_PARALLELISM is set to
one, the loader waits on I/O during consistency points. A load
operation with CPU_PARALLELISM set to two, and SAVECOUNT
set to 10 000, completes faster than the same operation with
CPU_PARALLELISM set to one, even though there is only one
CPU.

DATA BUFFER buffer-size
Specifies the number of 4KB pages (regardless of the degree of
parallelism) to use as buffered space for transferring data within the
utility. If the value specified is less than the algorithmic minimum, the
minimum required resource is used, and no warning is returned.

This memory is allocated directly from the utility heap, whose size
can be modified through the util_heap_sz database configuration
parameter.

If a value is not specified, an intelligent default is calculated by the
utility at run time. The default is based on a percentage of the free
space available in the utility heap at the instantiation time of the
loader, as well as some characteristics of the table.

LOAD Command

72 Data Movement Utilities

DATALINK SPECIFICATION
For each DATALINK column, there can be one column specification
enclosed by parentheses. Each column specification consists of one or
more DL_LINKTYPE, prefix, and a DL_URL_SUFFIX specification.
The prefix specification can be either DL_URL_REPLACE_PREFIX or
DL_URL_DEFAULT_PREFIX.

There can be as many DATALINK column specifications as the
number of DATALINK columns defined in the table. The order of
specifications follows the order of DATALINK columns found within
the insert-column list, or within the table definition (if an insert-column
list is not specified).

DISK_PARALLELISM n
Specifies the number of processes or threads that the load utility will
spawn for writing data to the table space containers. If a value is not
specified, the utility selects an intelligent default based on the number
of table space containers and the characteristics of the table.

DL_LINKTYPE
If specified, it should match the LINKTYPE of the column definition.
Thus, DL_LINKTYPE URL is acceptable if the column definition
specifies LINKTYPE URL.

DL_URL_DEFAULT_PREFIX ″prefix″
If specified, it should act as the default prefix for all DATALINK
values within the same column. In this context, prefix refers to the
″scheme host port″ part of the URL specification.

Examples of prefix are:
"http://server"
"file://server"
"file:"
"http://server:80"

If no prefix is found in the column data, and a default prefix is
specified with DL_URL_DEFAULT_PREFIX, the default prefix is
prefixed to the column value (if not NULL).

For example, if DL_URL_DEFAULT_PREFIX specifies the default
prefix "http://toronto":
v The column input value ″/x/y/z″ is stored as

″http://toronto/x/y/z″.
v The column input value ″http://coyote/a/b/c″ is stored as

″http://coyote/a/b/c″.
v The column input value NULL is stored as NULL.

DL_URL_REPLACE_PREFIX ″prefix″
This clause is useful when loading or importing data previously

LOAD Command

Chapter 3. Load 73

generated by the export utility, if the user wants to globally replace
the host name in the data with another host name. If specified, it
becomes the prefix for all non-NULL column values. If a column value
has a prefix, this will replace it. If a column value has no prefix, the
prefix specified by DL_URL_REPLACE_PREFIX is prefixed to the
column value.

For example, if DL_URL_REPLACE_PREFIX specifies the prefix
"http://toronto":
v The column input value ″/x/y/z″ is stored as

″http://toronto/x/y/z″.
v The column input value ″http://coyote/a/b/c″ is stored as

″http://toronto/a/b/c″. Note that ″toronto″ replaces ″coyote″.
v The column input value NULL is stored as NULL.

DL_URL_SUFFIX ″suffix″
If specified, it is appended to every non-NULL column value for the
column. It is, in fact, appended to the ″path″ component of the data
location part of the DATALINK value.

FOR EXCEPTION table-name
Specifies the exception table into which rows in error will be copied.
Any row that is in violation of a unique index or a primary key index
is copied. DATALINK exceptions are also captured in the exception
table.

Information that is written to the exception table is not written to the
dump file (for a description of the dumpfile modifier, see Table 8 on
page 104). In a partitioned database environment, an exception table
must be defined for those nodes on which the loading table is
defined. The dump file, on the other hand, contains rows that cannot
be loaded because they are invalid or have syntax errors. For more
information, see “Exception Table” on page 112.

FROM filename/pipename/device
Specifies the file, pipe, or device that contains the data being loaded.
This file, pipe, or device must reside on the node where the database
resides. If several names are specified, they will be processed in
sequence. If the last item specified is a tape device, the user is
prompted for another tape. Valid response options are:

c Continue. Continue using the device that generated the
warning message (for example, when a new tape has been
mounted).

d Device terminate. Stop using the device that generated the
warning message (for example, when there are no more
tapes).

LOAD Command

74 Data Movement Utilities

t Terminate. Terminate all devices.

Notes:

1. Tape is not supported on OS/2.
2. It is recommended that the fully qualified file name be used. If the

server is remote, the fully qualified file name must be used. If the
database resides on the same node as the caller, relative paths may
be used.

3. Loading data from multiple IXF files is supported if the files are
physically separate, but logically one file. It is not supported if the
files are both logically and physically separate.

4. If, when specifying pipename on OS/2, less than the expected
amount of data is loaded, clean up system resources (IPL is
recommended), and reissue the LOAD command.

HOLD QUIESCE
Specifies that the utility should leave the table in quiesced exclusive
state after the load operation. To unquiesce the table spaces, issue:

db2 quiesce tablespaces for table <tablename> reset

Note: Ensure that no phantom quiesces are created (see the Command
Reference).

INDEXING MODE
Specifies whether the load utility is to rebuild indexes or to extend
them incrementally. Valid values are:

AUTOSELECT
The load utility will automatically decide between REBUILD
or INCREMENTAL mode.

REBUILD
All indexes will be rebuilt. The utility must have sufficient
resources to sort all index key parts for both old and
appended table data.

INCREMENTAL
Indexes will be extended with new data. This approach
consumes index free space. It only requires enough sort space
to append index keys for the inserted records. This method is
only supported in cases where the index object is valid and
accessible at the start of a load operation (it is, for example,
not valid immediately following a load operation in which the
DEFERRED mode was specified). If this mode is specified, but
not supported due to the state of the index, a warning is
returned, and the load operation continues in REBUILD mode.
Similarly, if a load restart operation is begun in the load build
phase, INCREMENTAL mode is not supported.

LOAD Command

Chapter 3. Load 75

Incremental indexing is not supported when all of the
following conditions is true:
v The LOAD COPY option is specified (logretain or userexit is

enabled).
v The table resides in a DMS table space.
v The index object resides in a table space that is shared by

other table objects belonging to the table being loaded.

To bypass this restriction, it is recommended that indexes be
placed in a separate table space.

DEFERRED
The load utility will not attempt index creation if this mode is
specified. Indexes will be marked as needing a refresh. The
first access to such indexes that is unrelated to a load
operation may force a rebuild (for more information, see the
Administration Guide), or indexes may be rebuilt when the
database is restarted. This approach requires enough sort
space for all key parts for the largest index. The total time
subsequently taken for index construction is longer than that
required in REBUILD mode. Therefore, when performing
multiple load operations with deferred indexing, it is
advisable (from a performance viewpoint) to let the last load
operation in the sequence perform an index rebuild, rather
than allow indexes to be rebuilt at first non-load access.

Deferred indexing is only supported for tables with
non-unique indexes, so that duplicate keys inserted during the
load phase are not persistent after the load operation.

INSERT
One of four modes under which the load utility can execute. Adds the
loaded data to the table without changing the existing table data.

insert-column
Specifies the table column into which the data is to be inserted.

The load utility cannot parse columns whose names contain one or
more spaces. For example,

db2 load from delfile1 of del modified by noeofchar noheader
method P (1, 2, 3, 4, 5, 6, 7, 8, 9)
insert into table1 (BLOB1, S2, I3, Int 4, I5, I6, DT7, I8, TM9)

will fail because of the Int 4 column. The solution is to enclose such
column names with double quotation marks:

db2 load from delfile1 of del modified by noeofchar noheader
method P (1, 2, 3, 4, 5, 6, 7, 8, 9)
insert into table1 (BLOB1, S2, I3, "Int 4", I5, I6, DT7, I8, TM9)

LOAD Command

76 Data Movement Utilities

INTO table-name
Specifies the database table into which the data is to be loaded. This
table cannot be a system table. An alias, or the fully qualified or
unqualified table name can be specified. A qualified table name is in
the form schema.tablename. If an unqualified table name is specified,
the table will be qualified with the current authorization ID.

LOBS FROM lob-path
The path to the data files containing LOB values to be loaded. The
path must end with a slash (/). The names of the LOB data files are
stored in the main data file (ASC, DEL, or IXF), in the column that
will be loaded into the LOB column. This option is ignored if
lobsinfile is not specified within the filetype-mod string (see Table 8
on page 104).

MESSAGES message-file
Specifies the destination for warning and error messages that occur
during the load operation. If a message file is not specified, messages
are written to standard output. If the complete path to the file is not
specified, the load utility uses the current directory and the default
drive as the destination. If the name of a file that already exists is
specified, the utility appends the information.

METHOD

L Specifies the start and end column numbers from which to
load data.

Note: This method can only be used with ASC files, and is
the only valid option for that file type.

N Specifies the names of the columns in the data file to be
loaded. The case of these column names must match the case
of the corresponding names in the system catalogs. Each
column in the table that is not nullable should be included in
this list. Specify only complete subsets of column names (for
example, given file columns F1, F2, F3, F4, F5, and F6, and
table columns C1 INT, C2 INT NOT NULL, C3 INT NOT
NULL, and C4 INT, method N (F1,F2,F3,F4) insert into
table_name (C1,C2,C3,C4) is a valid request, while method N
(F1,F4) is not valid, since there will be no data to put into C3.

Note: This method can only be used with IXF files.

P Specifies the numbers of the columns to be loaded. Each
column in the table that is not nullable should be included in
this list. Specify only complete subsets of column numbers
(for example, given file columns F1, F2, F3, F4, F5, and F6,
and table columns C1 INT, C2 INT NOT NULL, C3 INT NOT

LOAD Command

Chapter 3. Load 77

NULL, and C4 INT, method P (1,2,3,4) is a valid request,
while method P (1,4) is not valid.

Note: This method can only be used with IXF or DEL files,
and is the only valid option for the DEL file type.

MODIFIED BY filetype-mod
Specifies additional options (see Table 8 on page 104).

NONRECOVERABLE
Specifies that the load transaction is to be marked as non-recoverable,
and that it will not be possible to recover it by a subsequent roll
forward action. The rollforward utility will skip the transaction, and
will mark the table into which data was being loaded as "invalid". The
utility will also ignore any subsequent transactions against that table.
After the roll forward is completed, such a table can only be dropped.

With this option, table spaces are not put in backup pending state
following the load operation, and a copy of the loaded data does not
have to be made during the load operation.

This option should not be used when DATALINK columns with the
FILE LINK CONTROL attribute are present in, or being added to, the
table.

NULL INDICATORS n
Specifies a column (by number) to be used as a NULL indicator field.
If this option is used, a NULL indicator column for each data column
must also be specified. A value of zero indicates that the data column
is not nullable, and that there will always be data in that column.

A value of Y in the NULL indicator column specifies that the column
data is NULL. Any character other than Y in the NULL indicator
column specifies that the column data is not NULL, and that column
data specified by the METHOD L option will be loaded.

The NULL indicator character can be changed using the MODIFIED
BY option (see the description of the nullindchar modifier in Table 8
on page 104).

OF filetype
Specifies the format of the data in the input file:

v ASC (non-delimited ASCII format)
v DEL (delimited ASCII format)
v IXF (integrated exchange format, PC version), exported from the

same or from another DB2 table.

For more information about file formats, see “Appendix C.
Export/Import/Load Utility File Formats” on page 179.

LOAD Command

78 Data Movement Utilities

REPLACE
One of four modes under which the load utility can execute. Deletes
all existing data from the table, and inserts the loaded data. The table
definition and index definitions are not changed. If this option is used
when moving data between hierarchies, only the data for an entire
hierarchy, not individual subtables, can be replaced.

This option is not supported for tables with DATALINK columns.

RESTART
One of four modes under which the load utility can execute. Restarts
a previously interrupted load operation. The load operation will
automatically continue from the last consistency point in the load,
build, or delete phase.

RESTARTCOUNT
Reserved.

ROWCOUNT n
Specifies the number of n physical records in the file to be loaded.
Allows a user to load only the first n rows in a file.

SAVECOUNT n
Specifies that the load utility is to establish consistency points after
every n rows. This value is converted to a page count, and rounded
up to intervals of the extent size. Since a message is issued at each
consistency point, this option should be selected if the load operation
will be monitored using “LOAD QUERY Command” on page 82. If
the value of n is not sufficiently high, the synchronization of activities
performed at each consistency point will impact performance.

The default value is zero, meaning that no consistency points will be
established, unless necessary.

SORT BUFFER buffer-size
Reserved.

STATISTICS NO
Specifies that no statistics are to be collected, and that the statistics in
the catalogs are not to be altered. This is the default.

STATISTICS YES
Specifies that statistics are to be collected for the table and for any
existing indexes. This option is supported only if the load operation is
in REPLACE mode.

WITH DISTRIBUTION
Specifies that distribution statistics are to be collected.

LOAD Command

Chapter 3. Load 79

AND INDEXES ALL
Specifies that both table and index statistics are to be
collected.

FOR INDEXES ALL
Specifies that only index statistics are to be collected.

DETAILED
Specifies that extended index statistics are to be collected.

TEMPFILES PATH temp-pathname
Specifies the name of the path to be used when creating temporary
files during a load operation, and should be fully qualified according
to the server node.

Temporary files take up file system space. Sometimes, this space
requirement is quite substantial. Following is an estimate of how
much file system space should be allocated for all temporary files:

v 4 bytes for each duplicate or rejected row containing DATALINK
values

v 136 bytes for each message that the load utility generates
v 15KB overhead if the data file contains long field data or LOBs. This

quantity can grow significantly if the INSERT option is specified,
and there is a large amount of long field or LOB data already in the
table.

For more information about temporary files, see “Load Temporary
Files” on page 113.

TERMINATE
One of four modes under which the load utility can execute.
Terminates a previously interrupted load operation, and rolls back the
operation to the point in time at which it started, even if consistency
points were passed. The states of any table spaces involved in the
operation return to normal, and all table objects are made consistent
(index objects may be marked as invalid, in which case index rebuild
will automatically take place at next access). If the load operation
being terminated is a load REPLACE, the table will be truncated to an
empty table after the load TERMINATE operation. If the load
operation being terminated is a load INSERT, the table will retain all
of its original records after the load TERMINATE operation.

If the table spaces in which the table resides are not in load pending
state, this option does not affect the state of the table spaces.

The load terminate option will not remove a backup pending state
from table spaces.

LOAD Command

80 Data Movement Utilities

USING directory
Reserved.

WARNINGCOUNT n
Stops the load operation after n warnings. Set this parameter if no
warnings are expected, but verification that the correct file and table
are being used is desired. If n is zero, or this option is not specified,
the load operation will continue regardless of the number of warnings
issued. If the load operation is stopped because the threshold of
warnings was encountered, another load operation can be started in
RESTART mode. The load operation will automatically continue from
the last consistency point. Alternatively, another load operation can be
initiated in REPLACE mode, starting at the beginning of the input file.

WITHOUT PROMPTING
Specifies that the list of data files contains all the files that are to be
loaded, and that the devices or directories listed are sufficient for the
entire load operation. If a continuation input file is not found, or the
copy targets are filled before the load operation finishes, the load
operation will fail, and the table will remain in load pending state.

If this option is not specified, and the tape device encounters an end
of tape for the copy image, or the last item listed is a tape device, the
user is prompted for a new tape on that device. Tape is not supported
on OS/2.

LOAD Command

Chapter 3. Load 81

LOAD QUERY Command

Checks the status of a load operation during processing. A connection to the
same database, and a separate CLP session are also required to successfully
invoke this command. It can be used either by local or remote users.

Authorization

None

Required Connection

Database

Command Syntax

ÊÊ LOAD QUERY TABLE table-name
TO local-message-file NOSUMMARY

SUMMARYONLY

Ê

Ê
SHOWDELTA

ÊÍ

Command Parameters

NOSUMMARY
Specifies that no load summary information (rows read, rows skipped,
rows loaded, rows rejected, rows deleted, rows committed, and
number of warnings) is to be reported.

SHOWDELTA
Specifies that only new information (pertaining to load events that
have occurred since the last invocation of the LOAD QUERY
command) is to be reported.

SUMMARYONLY
Specifies that only load summary information is to be reported.

TABLE table-name
Specifies the name of the table into which data is currently being
loaded.

TO local-message-file
Specifies the destination for warning and error messages that occur
during the load operation. This file cannot be the message-file specified
for the LOAD command. If the file already exists, all messages that
the load utility has generated are appended to it.

LOAD QUERY Command

82 Data Movement Utilities

Examples

A user loading a large amount of data into the STAFF table wants to check
the status of the load operation. The user can specify:

db2 connect to <database>
db2 load query table staff to /u/mydir/staff.tempmsg

The output file /u/mydir/staff.tempmsg might look like the following:
SQL3500W The utility is beginning the "LOAD" phase at time
"02-13-1997 19:40:29.645353".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

SQL3109N The utility is beginning to load data from file
"/u/mydir/data/staffbig.ixf".

SQL3150N The H record in the PC/IXF file has product "DB2 01.00",
date "19970111", and time "194554".

SQL3153N The T record in the PC/IXF file has name
"data/staffbig.ixf", qualifier " ", and source " ".

SQL3519W Begin Load Consistency Point. Input record count =
"111152".

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count =
"222304".

SQL3520W Load Consistency Point was successful.

See Also

“LOAD Command” on page 70.

LOAD QUERY Command

Chapter 3. Load 83

Load API

C API Syntax

/* File: sqlutil.h */
/* API: Load */
/* ... */
SQL_API_RC SQL_API_FN

sqluload (
sqlu_media_list * pDataFileList,
sqlu_media_list * pLobPathList,
struct sqldcol * pDataDescriptor,
struct sqlchar * pActionString,
char * pFileType,
struct sqlchar * pFileTypeMod,
char * pLocalMsgFileName,
char * pRemoteMsgFileName,
short CallerAction,
struct sqluload_in * pLoadInfoIn,
struct sqluload_out * pLoadInfoOut,
sqlu_media_list * pWorkDirectoryList,
sqlu_media_list * pCopyTargetList,
long * pNullIndicators,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

Load API

84 Data Movement Utilities

Generic API Syntax

API Parameters

FileTypeLen
Input. A 2-byte unsigned integer representing the length in bytes of
the file type.

LocalMsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the local message file name.

RemoteMsgFileNameLen
Input. A 2-byte unsigned integer representing the length in bytes of
the temporary files path name.

pDataFileList
Input. A pointer to an sqlu_media_list structure used to provide a list
of source files, devices, vendors or pipes. Tape is not supported on
OS/2.

The information provided in this structure depends on the value of
the media_type field. Valid values (defined in sqlutil) are:

SQLU_SERVER_LOCATION
If the media_type field is set to this value, the caller provides
information through sqlu_location_entry structures. The sessions

/* File: sqlutil.h */
/* API: Load */
/* ... */
SQL_API_RC SQL_API_FN
sqlgload (
unsigned short FileTypeLen,
unsigned short LocalMsgFileNameLen,
unsigned short RemoteMsgFileNameLen,
sqlu_media_list * pDataFileList,
sqlu_media_list * pLobPathList,
struct sqldcol * pDataDescriptor,
struct sqlchar * pActionString,
char * pFileType,
struct sqlchar * pFileTypeMod,
char * pLocalMsgFileName,
char * pRemoteMsgFileName,
short CallerAction,
struct sqluload_in * pLoadInfoIn,
struct sqluload_out * pLoadInfoOut,
sqlu_media_list * pWorkDirectoryList,
sqlu_media_list * pCopyTargetList,
long * pNullIndicators,
void * pReserved,
struct sqlca * pSqlca);

/* ... */

Load API

Chapter 3. Load 85

field indicates the number of sqlu_location_entry structures
provided. This is used for files, devices, and named pipes.

SQLU_ADSM_MEDIA
If the media_type field is set to this value, the sqlu_vendor
structure is used, where filename is the unique identifier for
the data to be loaded. There should only be one sqlu_vendor
entry, regardless of the value of sessions. The sessions field
indicates the number of ADSM sessions to initiate. The load
utility will start the sessions with different sequence numbers,
but with the same data in the one sqlu_vendor entry.

SQLU_OTHER_MEDIA
If the media_type field is set to this value, the sqlu_vendor
structure is used, where shr_lib is the shared library name, and
filename is the unique identifier for the data to be loaded.
There should only be one sqlu_vendor entry, regardless of the
value of sessions. The sessions field indicates the number of
other vendor sessions to initiate. The load utility will start the
sessions with different sequence numbers, but with the same
data in the one sqlu_vendor entry.

Wherever a file name is provided, it should be fully qualified. For
more information, see “SQLU-MEDIA-LIST ” in the Administrative API
Reference.

pLobPathList
Input. A pointer to an sqlu_media_list structure. For IXF, ASC, and DEL
file types, a list of fully qualified paths or devices to identify the
location of the individual LOB files to be loaded. The file names are
found in the IXF, ASC, or DEL files, and are appended to the paths
provided. Tape is not supported on OS/2.

The information provided in this structure depends on the value of
the media_type field. Valid values (defined in sqlutil) are:

SQLU_LOCAL_MEDIA
If set to this value, the caller provides information through
sqlu_media_entry structures. The sessions field indicates the
number of sqlu_media_entry structures provided.

SQLU_ADSM_MEDIA
If set to this value, the sqlu_vendor structure is used, where
filename is the unique identifier for the data to be loaded.
There should only be one sqlu_vendor entry, regardless of the
value of sessions. The sessions field indicates the number of
ADSM sessions to initiate. The load utility will start the
sessions with different sequence numbers, but with the same
data in the one sqlu_vendor entry.

Load API

86 Data Movement Utilities

SQLU_OTHER_MEDIA
If set to this value, the sqlu_vendor structure is used, where
shr_lib is the shared library name, and filename is the unique
identifier for the data to be loaded. There should only be one
sqlu_vendor entry, regardless of the value of sessions. The
sessions field indicates the number of other vendor sessions to
initiate. The load utility will start the sessions with different
sequence numbers, but with the same data in the one
sqlu_vendor entry.

For more information, see “SQLU-MEDIA-LIST ” in the
Administrative API Reference.

pDataDescriptor
Input. Pointer to an sqldcol structure containing information about the
columns being selected for loading from the external file.

If the pFileType parameter is set to SQL_ASC, the dcolmeth field of this
structure must be set to SQL_METH_L. The user specifies the start and
end locations for each column to be loaded.

If the file type is SQL_DEL, dcolmeth can be either SQL_METH_P or
SQL_METH_D. If it is SQL_METH_P, the user must provide the source
column position. If it is SQL_METH_D, the first column in the file is
loaded into the first column of the table, and so on.

If the file type is SQL_IXF, dcolmeth can be one of SQL_METH_P,
SQL_METH_D, or SQL_METH_N. The rules for DEL files apply here, except
that SQL_METH_N indicates that file column names are to be provided in
the sqldcol structure.

For more information, see “SQLDCOL” in the Administrative API
Reference.

pActionString
Input. Pointer to an sqlchar structure containing a 2-byte long field,
followed by an array of characters specifying an action that affects the
table.

The character array is of the form:
"INSERT|REPLACE|RESTART|TERMINATE
INTO tbname [(column_list)]
[DATALINK SPECIFICATION datalink-spec]
[FOR EXCEPTION e_tbname]"

INSERT
Adds the loaded data to the table without changing the
existing table data.

Load API

Chapter 3. Load 87

REPLACE
Deletes all existing data from the table, and inserts the loaded
data. The table definition and the index definitions are not
changed.

RESTART
Restarts a previously interrupted load operation. The load
operation will automatically continue from the last consistency
point in the load, build, or delete phase.

TERMINATE
Terminates a previously interrupted load operation, and rolls
back the operation to the point in time at which it started,
even if consistency points were passed. The states of any table
spaces involved in the operation return to normal, and all
table objects are made consistent (index objects may be
marked as invalid, in which case index rebuild will
automatically take place at next access). If the table spaces in
which the table resides are not in load pending state, this
option does not affect the state of the table spaces.

The load terminate option will not remove a backup pending
state from table spaces.

tbname The name of the table into which the data is to be loaded. The
table cannot be a system table. An alias, or the fully qualified
or unqualified table name can be specified. A qualified table
name is in the form schema.tablename. If an unqualified table
name is specified, the table will be qualified with the current
authorization ID.

(column_list)
A list of table column names into which the data is to be
inserted. The column names must be separated by commas. If
a name contains spaces or lowercase characters, it must be
enclosed by quotation marks.

DATALINK SPECIFICATION datalink-spec
Specifies parameters pertaining to DB2 Data Links. These
parameters can be specified using the same syntax as in the
LOAD command (see “LOAD Command” on page 70).

FOR EXCEPTION e_tbname
Specifies the exception table into which rows in error will be
copied. Any row that is in violation of a unique index or a
primary key index is copied. DATALINK exceptions are also
captured in the exception table.

Load API

88 Data Movement Utilities

pFileType
Input. A string that indicates the format of the data within the
external file. Supported external file formats (defined in sqlutil) are:

SQL_ASC
Non-delimited ASCII.

SQL_DEL
Delimited ASCII, for exchange with dBase, BASIC, and the
IBM Personal Decision Series programs, and many other
database managers and file managers.

SQL_IXF
PC version of the Integrated Exchange Format, the preferred
method for exporting data from a table so that it can be
loaded later into the same table or into another database
manager table.

For more information about file formats, see “Appendix C.
Export/Import/Load Utility File Formats” on page 179.

pFileTypeMod
Input. A pointer to a structure containing a 2-byte long field, followed
by an array of characters that specify one or more processing options.
If this pointer is NULL, or the structure pointed to has zero
characters, this action is interpreted as selection of a default
specification.

Not all options can be used with all of the supported file types.

For more information, see “SQLCHAR” in the Administrative API
Reference, and “File Type Modifiers (Load)” on page 104.

pLocalMsgFileName
Input. A string containing the name of a local file to which output
messages are to be written.

pRemoteMsgFileName
Input. A string containing the path name to be used on the server for
temporary files. Temporary files are created to store messages,
consistency points, and delete phase information. For more
information about temporary files, see “Load Temporary Files” on
page 113.

CallerAction
Input. An action requested by the caller. Valid values (defined in
sqlutil) are:

SQLU_INITIAL
Initial call. This value (or SQLU_NOINTERRUPT) must be
used on the first call to the API.

Load API

Chapter 3. Load 89

SQLU_NOINTERRUPT
Initial call. Do not suspend processing. This value (or
SQLU_INITIAL) must be used on the first call to the API.

If the initial call or any subsequent call returns and requires the
calling application to perform some action prior to completing the
requested load operation, the caller action must be set to one of the
following:

SQLU_CONTINUE
Continue processing. This value can only be used on
subsequent calls to the API, after the initial call has returned
with the utility requesting user input (for example, to respond
to an end of tape condition). It specifies that the user action
requested by the utility has completed, and the utility can
continue processing the initial request.

SQLU_TERMINATE
Terminate processing. Causes the load utility to exit
prematurely, leaving the table spaces being loaded in
LOAD_PENDING state. This option should be specified if
further processing of the data is not to be done.

SQLU_ABORT
Terminate processing. Causes the load utility to exit
prematurely, leaving the table spaces being loaded in
LOAD_PENDING state. This option should be specified if
further processing of the data is not to be done.

SQLU_RESTART
Restart processing.

SQLU_DEVICE_TERMINATE
Terminate a single device. This option should be specified if
the utility is to stop reading data from the device, but further
processing of the data is to be done.

pLoadInfoIn
Input. Optional pointer to the sqluload_in structure containing
additional input parameters. For information about this structure, see
“Data Structure: SQLULOAD-IN” on page 93.

pLoadInfoOut
Output. Optional pointer to the sqluload_out structure containing
additional output parameters. For information about this structure, see
“Data Structure: SQLULOAD-OUT” on page 97.

pWorkDirectoryList
Reserved.

Load API

90 Data Movement Utilities

pCopyTargetList
Input. A pointer to an sqlu_media_list structure used (if a copy image
is to be created) to provide a list of target paths, devices, or a shared
library to which the copy image is to be written.

The values provided in this structure depend on the value of the
media_type field. Valid values for this field (defined in sqlutil) are:

SQLU_LOCAL_MEDIA
If the copy is to be written to local media, set the media_type
to this value and provide information about the targets in
sqlu_media_entry structures. The sessions field specifies the
number of sqlu_media_entry structures provided.

SQLU_ADSM_MEDIA
If the copy is to be written to ADSM, use this value. No
further information is required.

SQLU_OTHER_MEDIA
If a vendor product is to be used, use this value and provide
further information via an sqlu_vendor structure. Set the shr_lib
field of this structure to the shared library name of the vendor
product. Provide only one sqlu_vendor entry, regardless of the
value of sessions. The sessions field specifies the number of
sqlu_media_entry structures provided. The load utility will start
the sessions with different sequence numbers, but with the
same data provided in the one sqlu_vendor entry.

For more information, see “SQLU-MEDIA-LIST ” in the
Administrative API Reference.

pNullIndicators
Input. For ASC files only. An array of integers that indicate whether
or not the column data is nullable. There is a one-to-one ordered
correspondence between the elements of this array and the columns
being loaded from the data file. That is, the number of elements must
equal the dcolnum field of the pDataDescriptor parameter. Each element
of the array contains a number identifying a location in the data file
that is to be used as a NULL indicator field, or a zero indicating that
the table column is not nullable. If the element is not zero, the
identified location in the data file must contain a Y or an N. A Y
indicates that the table column data is NULL, and N indicates that the
table column data is not NULL.

pReserved
Reserved for future use.

Load API

Chapter 3. Load 91

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference and the SQL
Reference.

REXX API Syntax

This API can be called from REXX through the SQLDB2 interface. See the
Application Development Guide. For a description of the syntax, see “LOAD
Command” on page 70.

Load API

92 Data Movement Utilities

Data Structure: SQLULOAD-IN

This structure is used to input information during a call to “Load API” on
page 84.

Table 6. Fields in the SQLULOAD-IN Structure

Field Name Data Type Description

SIZEOFSTRUCT UNSIGNED
LONG

Size of this structure in bytes.

SAVECNT UNSIGNED
LONG

The number of records to load before establishing a
consistency point. This value is converted to a page
count, and rounded up to intervals of the extent size.
Since a message is issued at each consistency point,
this option should be selected if the load operation
will be monitored using “db2LoadQuery - Load
Query API” on page 99. If the value of savecnt is not
sufficiently high, the synchronization of activities
performed at each consistency point will impact
performance.

The default value is 0, meaning that no consistency
points will be established, unless necessary.

RESTARTCNT UNSIGNED
LONG

Reserved.

ROWCNT UNSIGNED
LONG

The number of physical records to be loaded. Allows
a user to load only the first rowcnt rows in a file.

WARNINGCNT UNSIGNED
LONG

Stops the load operation after warningcnt warnings.
Set this parameter if no warnings are expected, but
verification that the correct file and table are being
used is desired. If warningcnt is 0, or this option is
not specified, the load operation will continue
regardless of the number of warnings issued.

If the load operation is stopped because the
threshold of warnings was exceeded, another load
operation can be started in RESTART mode. The load
operation will automatically continue from the last
consistency point. Alternatively, another load
operation can be initiated in REPLACE mode,
starting at the beginning of the input file.

Data Structure: SQLULOAD-IN

Chapter 3. Load 93

Table 6. Fields in the SQLULOAD-IN Structure (continued)

Field Name Data Type Description

DATA_BUFFER_SIZE UNSIGNED
LONG

The number of 4KB pages (regardless of the degree
of parallelism) to use as buffered space for
transferring data within the utility. If the value
specified is less than the algorithmic minimum, the
required minimum is used, and no warning is
returned.

This memory is allocated directly from the utility
heap, whose size can be modified through the
util_heap_sz database configuration parameter.

If a value is not specified, an intelligent default is
calculated by the utility at run time. The default is
based on a percentage of the free space available in
the utility heap at the instantiation time of the
loader, as well as some characteristics of the table.

SORT_BUFFER_SIZE UNSIGNED
LONG

Reserved.

HOLD_QUIESCE UNSIGNED
SHORT

A flag whose value is set to TRUE if the utility is to
leave the table in quiesced exclusive state after the
load, and to FALSE if it is not.

RESTARTPHASE CHAR(1) Reserved.

STATSOPT CHAR(1) Granularity of statistics to collect. See below for
values.

CPU_PARALLELISM UNSIGNED
SHORT

The number of processes or threads that the load
utility will spawn for parsing, converting and
formatting records when building table objects. This
parameter is designed to exploit intra-partition
parallelism. It is particularly useful when loading
presorted data, because record order in the source
data is preserved. If the value of this parameter is
zero, the load utility uses an intelligent default value
at run time.
Note: If this parameter is used with tables
containing either LOB or LONG VARCHAR fields,
its value becomes one, regardless of the number of
system CPUs, or the value specified by the user.

DISK_PARALLELISM UNSIGNED
SHORT

The number of processes or threads that the load
utility will spawn for writing data to the table space
containers. If a value is not specified, the utility
selects an intelligent default based on the number of
table space containers and the characteristics of the
table.

Data Structure: SQLULOAD-IN

94 Data Movement Utilities

Table 6. Fields in the SQLULOAD-IN Structure (continued)

Field Name Data Type Description

NON_RECOVERABLE UNSIGNED
SHORT

Set to SQLU_NON_RECOVERABLE_LOAD if the load
transaction is to be marked as non-recoverable, and
it will not be possible to recover it by a subsequent
roll forward action. The rollforward utility will skip
the transaction, and will mark the table into which
data was being loaded as ″invalid″. The utility will
also ignore any subsequent transactions against that
table. After the roll forward is completed, such a
table can only be dropped.

With this option, table spaces are not put in backup
pending state following the load operation, and a
copy of the loaded data does not have to be made
during the load operation.

Set to SQLU_RECOVERABLE_LOAD if the load transaction
is to be marked as recoverable.

Valid values for STATSOPT (defined in sqlutil) are:

SQLU_STATS_NONE

SQL_STATS_EXTTABLE_ONLY

SQL_STATS_EXTTABLE_INDEX

SQL_STATS_INDEX

SQL_STATS_TABLE

SQL_STATS_EXTINDEX_ONLY

SQL_STATS_EXTINDEX_TABLE

SQL_STATS_ALL

SQL_STATS_BOTH

Data Structure: SQLULOAD-IN

Chapter 3. Load 95

Language Syntax

C Structure

COBOL Structure

/* File: sqlutil.h */
/* Structure: SQLULOAD-IN */
/* ... */
SQL_STRUCTURE sqluload_in
{

unsigned long sizeOfStruct;
unsigned long savecnt;
unsigned long restartcnt;
unsigned long rowcnt;
unsigned long warningcnt;
unsigned long data_buffer_size;
unsigned long sort_buffer_size; /* No longer used. */
unsigned short hold_quiesce;
char restartphase;
char statsopt;
unsigned short cpu_parallelism;
unsigned short disk_parallelism;
unsigned short non_recoverable;

};
/* ... */

* File: sqlutil.cbl
01 SQLULOAD-IN.

05 SQL-SIZE-OF-STRUCT PIC 9(9) COMP-5 VALUE 40.
05 SQL-SAVECNT PIC 9(9) COMP-5.
05 SQL-RESTARTCOUNT PIC 9(9) COMP-5.
05 SQL-ROWCNT PIC 9(9) COMP-5.
05 SQL-WARNINGCNT PIC 9(9) COMP-5.
05 SQL-DATA-BUFFER-SIZE PIC 9(9) COMP-5.
05 SQL-SORT-BUFFER-SIZE PIC 9(9) COMP-5. * No longer used.
05 SQL-HOLD-QUIESCE PIC 9(4) COMP-5.
05 SQL-RESTARTPHASE PIC X.
05 SQL-STATSOPT PIC X.
05 SQL-CPU-PARALLELISM PIC 9(4) COMP-5.
05 SQL-DISK-PARALLELISM PIC 9(4) COMP-5.
05 SQL-NON-RECOVERABLE PIC 9(4) COMP-5.
05 FILLER PIC X(2).

*

Data Structure: SQLULOAD-IN

96 Data Movement Utilities

Data Structure: SQLULOAD-OUT

This structure is used to output information after a call to “Load API” on
page 84.

Table 7. Fields in the SQLULOAD-OUT Structure

Field Name Data Type Description

SIZEOFSTRUCT UNSIGNED LONG Size of this structure in bytes.

ROWSREAD UNSIGNED LONG Number of records read
during the load operation.

ROWSSKIPPED UNSIGNED LONG Number of records skipped
before the load operation
begins.

ROWSLOADED UNSIGNED LONG Number of rows loaded into
the target table.

ROWSREJECTED UNSIGNED LONG Number of records that could
not be loaded.

ROWSDELETED UNSIGNED LONG Number of duplicate rows
deleted.

ROWSCOMMITTED UNSIGNED LONG The total number of processed
records: the number of records
loaded successfully and
committed to the database,
plus the number of skipped
and rejected records.

Language Syntax

C Structure

/* File: sqlutil.h */
/* Structure: SQLULOAD-OUT */
/* ... */
SQL_STRUCTURE sqluload_out
{
unsigned long sizeOfStruct;
unsigned long rowsRead;
unsigned long rowsSkipped;
unsigned long rowsLoaded;
unsigned long rowsRejected;
unsigned long rowsDeleted;
unsigned long rowsCommitted;

};
/* ... */

Data Structure: SQLULOAD-OUT

Chapter 3. Load 97

COBOL Structure

* File: sqlutil.cbl
01 SQLULOAD-OUT.

05 SQL-SIZE-OF-STRUCT PIC 9(9) COMP-5 VALUE 28.
05 SQL-ROWS-READ PIC 9(9) COMP-5.
05 SQL-ROWS-SKIPPED PIC 9(9) COMP-5.
05 SQL-ROWS-LOADED PIC 9(9) COMP-5.
05 SQL-ROWS-REJECTED PIC 9(9) COMP-5.
05 SQL-ROWS-DELETED PIC 9(9) COMP-5.
05 SQL-ROWS-COMMITTED PIC 9(9) COMP-5.

*

Data Structure: SQLULOAD-OUT

98 Data Movement Utilities

db2LoadQuery - Load Query API

Checks the status of a load operation during processing.

Authorization

None

Required Connection

Database

API Include File

db2ApiDf.h

C API Syntax

/* File: db2ApiDf.h */
/* API: Load Query */
/* ... */
SQL_API_RC SQL_API_FN
db2LoadQuery (
db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca *pSqlca);

typedef struct
{
db2Uint32 iStringType;
char * piString;
db2Uint32 iShowLoadMessages;
db2LoadQueryOutputStruct * poOutputStruct;
char * piLocalMessageFile;

} db2LoadQueryStruct;

typedef struct
{
db2Uint32 oRowsRead;
db2Uint32 oRowsSkipped;
db2Uint32 oRowsCommitted;
db2Uint32 oRowsLoaded;
db2Uint32 oRowsRejected;
db2Uint32 oRowsDeleted;
db2Uint32 oCurrentIndex;
db2Uint32 oNumTotalIndexes;
db2Uint32 oCurrentMPPNode;
db2Uint32 oLoadRestarted;
db2Uint32 oWhichPhase;
db2Uint32 oWarningCount;

} db2LoadQueryOutputStruct;
/* ... */

db2LoadQuery - Load Query API

Chapter 3. Load 99

Generic API Syntax

API Parameters

versionNumber
Input. Specifies the version and release level of the structure passed in
as the second parameter, pParmStruct.

pParmStruct
Input. A pointer to the db2LoadQueryStruct structure.

pSqlca
Output. A pointer to the sqlca structure. For more information about
this structure, see the Administrative API Reference and the SQL
Reference.

/* File: db2ApiDf.h */
/* API: Load Query */
/* ... */
SQL_API_RC SQL_API_FN
db2GenLoadQuery (

db2Uint32 versionNumber,
void * pParmStruct,
struct sqlca *pSqlca);

typedef struct
{
db2Uint32 iStringType;
db2Uint32 iStringLen;
char * piString;
db2Uint32 iShowLoadMessages;
db2LoadQueryOutputStruct * poOutputStruct;
db2Uint32 iLocalMessageFileLen;
char * piLocalMessageFile

} db2LoadQueryStruct;

typedef struct
{
db2Uint32 oRowsRead;
db2Uint32 oRowsSkipped;
db2Uint32 oRowsCommitted;
db2Uint32 oRowsLoaded;
db2Uint32 oRowsRejected;
db2Uint32 oRowsDeleted;
db2Uint32 oCurrentIndex;
db2Uint32 oNumTotalIndexes;
db2Uint32 oCurrentMPPNode;
db2Uint32 oLoadRestarted;
db2Uint32 oWhichPhase;
db2Uint32 oWarningCount;

} db2LoadQueryOutputStruct;
/* ... */

db2LoadQuery - Load Query API

100 Data Movement Utilities

iStringType
Input. Specifies a type for piString. Valid values (defined in
db2ApiDf.h) are:

DB2LOADQUERY_TABLENAME
Represents specifying a table name for use by the
db2LoadQuery API.

iStringLen
Input. Specifies the length in bytes of piString.

piString
Input. Specifies a temporary files path name or a table name,
depending on the value of iStringType.

iShowLoadMessages
Input. Specifies the level of messages that are to be returned by the
load utility. Valid values (defined in db2ApiDf.h) are:

DB2LOADQUERY_SHOW_ALL_MSGS
Return all load messages.

DB2LOADQUERY_SHOW_NO_MSGS
Return no load messages.

DB2LOADQUERY_SHOW_NEW_MSGS
Return only messages that have been generated since the last
call to this API.

poOutputStruct
Output. A pointer to the db2LoadQueryOutputStruct structure, which
contains load summary information. Set to NULL if a summary is not
required.

iLocalMessageFileLen
Input. Specifies the length in bytes of piLocalMessageFile.

piLocalMessageFile
Input. Specifies the name of a local file to be used for output
messages.

oRowsRead
Output. Number of records read so far by the load utility.

oRowsSkipped
Output. Number of records skipped before the load operation began.

oRowsCommitted
Output. Number of rows committed to the target table so far.

oRowsLoaded
Output. Number of rows loaded into the target table so far.

db2LoadQuery - Load Query API

Chapter 3. Load 101

oRowsRejected
Output. Number of rows rejected from the target table so far.

oRowsDeleted
Output. Number of rows deleted from the target table so far (during
the delete phase).

oCurrentIndex
Output. Index currently being built (during the build phase).

oCurrentMPPNode
Output. Indicates which node is being queried (for MPP mode only).

oLoadRestarted
Output. A flag whose value is TRUE if the load operation being queried
is a load restart operation.

oWhichPhase
Output. Indicates the current phase of the load operation being
queried. Valid values (defined in db2ApiDf.h) are:

DB2LOADQUERY_LOAD_PHASE
Load phase.

DB2LOADQUERY_BUILD_PHASE
Build phase.

DB2LOADQUERY_DELETE_PHASE
Delete phase.

oNumTotalIndexes
Output. Total number of indexes to be built (during the build phase).

oWarningCount
Output. Total number of warnings returned so far.

REXX API Syntax

This API can be called from REXX through the SQLDB2 interface. See the
Application Development Guide. For a description of the syntax, see “LOAD
QUERY Command” on page 82.

Sample Programs

C \sqllib\samples\c\loadqry.sqc

COBOL \sqllib\samples\cobol\loadqry.sqb

FORTRAN \sqllib\samples\fortran\loadqry.sqf

db2LoadQuery - Load Query API

102 Data Movement Utilities

Usage Notes

This API reads the status of the load operation on the table specified by
piString, and writes the status to the file specified by pLocalMsgFileName.

db2LoadQuery - Load Query API

Chapter 3. Load 103

File Type Modifiers (Load)

Table 8. Valid File Type Modifiers (LOAD)

Modifier Description

All File Formats

anyorder This modifier is used in conjunction with the cpu_parallelism
parameter. Specifies that the preservation of source data
order is not required, yielding significant additional
performance benefit on SMP systems. If the value of
cpu_parallelism is 1, this option is ignored. This option is not
supported if SAVECOUNT > 0, since crash recovery after a
consistency point requires that data be loaded in sequence.

fastparse Reduced syntax checking is done on user-supplied column
values, and performance is enhanced. Tables loaded under
this option are guaranteed to be architecturally correct, and
the utility is guaranteed to perform sufficient data checking
to prevent a segmentation violation or trap. Data that is in
correct form will be loaded correctly.

For example, if a value of 123qwr4 were to be encountered
as a field entry for an integer column in an ASC file, the
load utility would ordinarily flag a syntax error, since the
value does not represent a valid number. With fastparse, a
syntax error is not detected, and an arbitrary number is
loaded into the integer field. Care must be taken to use this
modifier with clean data only. Performance improvements
using this option with ASCII data can be quite substantial,
but fastparse does not significantly enhance performance
with PC/IXF data, since IXF is a binary format, and
fastparse affects parsing and conversion from ASCII to
internal forms.

indexfreespace=x x is an integer between 0 and 99 inclusive. The value is
interpreted as the percentage of each index page that is to
be left as free space when loading the index. The first entry
in a page is added without restriction; subsequent entries
are added if the percent free space threshold can be
maintained. The default value is the one used at CREATE
INDEX time.

This value takes precedence over the PCTFREE value
specified in the CREATE INDEX statement, and affects
index leaf pages only.

lobsinfile lob-path specifies the path to the files containing LOB values.
The ASC, DEL, or IXF load input files contain the names of
the files having LOB data in the LOB column.

File Type Modifiers (Load)

104 Data Movement Utilities

Table 8. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

noheader Skips the header verification code.

The AutoLoader utility (see “Chapter 4. AutoLoader” on
page 131) writes a header to each file contributing data to a
table in a multi-node nodegroup. The header includes the
node number, the partitioning map, and the partitioning
key specification. The load utility requires this information
to verify that the data is being loaded at the correct node.
When loading files into a table that exists on a single-node
nodegroup, the headers do not exist, and this option causes
the load utility to skip the header verification code.

norowwarnings Suppresses all warnings about rejected rows.

pagefreespace=x x is an integer between 0 and 100 inclusive. The value is
interpreted as the percentage of each data page that is to be
left as free space.

If the specified value is invalid because of the minimum
row size, (for example, a row that is at least 3 000 bytes
long, and an x value of 50), the row will be placed on a
new page. If a value of 100 is specified, each row will reside
on a new page.
Note: The PCTFREE value of a table determines the
amount of free space designated per page. If a
pagefreespace value on the load operation or a PCTFREE
value on a table have not been set, the utility will fill up as
much space as possible on each page. The value set by
pagefreespace overrides the PCTFREE value specified for
the table.

totalfreespace=x x is an integer between 0 and 100 inclusive. The value is
interpreted as the percentage of the total pages in the table
that is to be appended to the end of the table as free space.
For example, if x is 20, and the table has 100 data pages, 20
additional empty pages will be appended. The total number
of data pages for the table will be 120.

File Type Modifiers (Load)

Chapter 3. Load 105

Table 8. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

usedefaults If a source column for a target table column has been
specified, but it contains no data for one or more row
instances, default values are loaded. Examples of missing
data are:

v For DEL files: ",," is specified for the column

v For DEL/ASC/WSF files: A row that does not have
enough columns, or is not long enough for the original
specification.

Without this option, if a source column contains no data for
a row instance, one of the following occurs:

v If the column is nullable, a NULL is loaded

v If the column is not nullable, the utility rejects the row.

ASCII File Formats (ASC/DEL)

codepage=x x is an ASCII character string. The value is interpreted as
the code page of the data in the input data set. Converts
character data (and numeric data specified in characters)
from this code page to the database code page during the
load operation.

The following rules apply:

v For pure DBCS (graphic), mixed DBCS, and EUC,
delimiters are restricted to the range of x00 to x3F,
inclusive.

v For DEL data specified in an EBCDIC code page, the
delimiters may not coincide with the shift-in and shift-out
DBCS characters.

v nullindchar must specify symbols included in the
standard ASCII set between code points x20 and x7F,
inclusive. This refers to ASCII symbols and code points.
EBCDIC data can use the corresponding symbols, even
though the code points will be different.

File Type Modifiers (Load)

106 Data Movement Utilities

Table 8. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

dumpfile = x x is the fully qualified (according to the server node) name
of an exception file to which rejected rows are written. A
maximum of 32KB of data is written per record. Following
is an example that shows how to specify a dump file:

db2 load from data of del
modified by dumpfile = /u/user/filename
insert into table_name

Notes:

1. In a partitioned database environment, the path should
be local to the loading node, so that concurrently
running load operations do not attempt to write to the
same file.

2. The contents of the file are written to disk in an
asynchronous buffered mode. In the event of a failed or
an interrupted load operation, the number of records
committed to disk cannot be known with certainty, and
consistency cannot be guaranteed after a LOAD
RESTART. The file can only be assumed to be complete
for a load operation that starts and completes in a single
pass.

3. This modifier does not support file names with multiple
file extensions. For example,

dumpfile = /home/svtdbm6/DUMP.FILE

is acceptable to the load utility, but

dumpfile = /home/svtdbm6/DUMP.LOAD.FILE

is not.

implieddecimal The location of an implied decimal point is determined by
the column definition; it is no longer assumed to be at the
end of the value. For example, the value 12345 is loaded
into a DECIMAL(8,2) column as 123.45, not 12345.00.

noeofchar The optional end-of-file character x'1A' is not recognized as
the end of file. Processing continues as if it were a normal
character.

ASC (Non-delimited ASCII) File Format

File Type Modifiers (Load)

Chapter 3. Load 107

Table 8. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

binarynumerics Numeric (but not DECIMAL) data must be in binary form,
not the character representation. This avoids costly
conversions.

This option is supported only with positional ASC, using
fixed length records specified by the reclen option. The
noeofchar option is assumed.

The following rules apply:

v No conversion between data types is performed, with the
exception of BIGINT, INTEGER, and SMALLINT.

v Data lengths must match their target column definitions.

v FLOATs must be in IEEE Floating Point format.

v Binary data in the load source file is assumed to be
big-endian, regardless of the platform on which the load
operation is running.

Note: NULLs cannot be present in the data for columns
affected by this modifier. Blanks (normally interpreted as
NULL) are interpreted as a binary value when this modifier
is used.

nochecklengths If nochecklengths is specified, an attempt is made to load
each row, even if the source data has a column definition
that exceeds the size of the target table column. Such rows
can be successfully loaded if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in
the source could shrink to 2-byte DBCS data in the target,
and require half the space. This option is particularly useful
if it is known that the source data will fit in all cases despite
mismatched column definitions.

nullindchar=x x is a single character. Changes the character denoting a
NULL value to x. The default value of x is Y.b

This modifier is case sensitive for EBCDIC data files, except
when the character is an English letter. For example, if the
NULL indicator character is specified to be the letter N, then
n is also recognized as a NULL indicator.

File Type Modifiers (Load)

108 Data Movement Utilities

Table 8. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

packeddecimal Loads packed-decimal data directly, since the
binarynumerics modifier does not include the DECIMAL
field type.

This option is supported only with positional ASC, using
fixed length records specified by the reclen option. The
noeofchar option is assumed.

Supported values for the sign nibble are:

+ = 0xC 0xA 0xE 0xF
- = 0xD 0xB

Note: NULLs cannot be present in the data for columns
affected by this modifier. Blanks (normally interpreted as
NULL) are interpreted as a binary value when this modifier
is used.

Regardless of the server platform, the byte order of binary
data in the load source file is assumed to be big-endian; that
is, when using this modifier on OS/2 or on the Windows
operating system, the byte order must not be reversed.

reclen=x x is an integer with a maximum value of 32 767. x
characters are read for each row, and a new-line character is
not used to indicate the end of the row.

striptblanks Truncates any trailing blank spaces when loading data into
a variable-length field. If this option is not specified, blank
spaces are kept.

This option cannot be specified together with striptnulls.
These are mutually exclusive options.
Note: This option replaces the obsolete t option, which is
supported for back-level compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when
loading data into a variable-length field. If this option is not
specified, NULLs are kept.

This option cannot be specified together with striptblanks.
These are mutually exclusive options.
Note: This option replaces the obsolete padwithzero option,
which is supported for back-level compatibility only.

DEL (Delimited ASCII) File Format

File Type Modifiers (Load)

Chapter 3. Load 109

Table 8. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

chardelx x is a single character string delimiter. The default value is a
double quotation mark ("). The specified character is used in
place of double quotation marks to enclose a character
string.ab

The single quotation mark (') can also be specified as a
character string delimiter as follows:

modified by chardel''

coldelx x is a single character column delimiter. The default value is
a comma (,). The specified character is used in place of a
comma to signal the end of a column.ab

datesiso Date format. Causes all date data values to be loaded in ISO
format.

decplusblank Plus sign character. Causes positive decimal values to be
prefixed with a blank space instead of a plus sign (+). The
default action is to prefix positive decimal values with a
plus sign.

decptx x is a single character substitute for the period as a decimal
point character. The default value is a period (.). The
specified character is used in place of a period as a decimal
point character.ab

delprioritychar The current default priority for delimiters is: record
delimiter, character delimiter, column delimiter. This
modifier protects existing applications that depend on the
older priority by reverting the delimiter priorities to:
character delimiter, record delimiter, column delimiter.
Syntax:

db2 load ... modified by delprioritychar ...

For example, given the following DEL data file:

"Smith, Joshua",4000,34.98<row delimiter>
"Vincent,<row delimiter>, is a manager", ...
... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be
only two rows in this data file. The second <row delimiter>
will be interpreted as part of the first data column of the
second row, while the first and the third <row delimiter>
are interpreted as actual record delimiters. If this modifier is
not specified, there will be three rows in this data file, each
delimited by a <row delimiter>.

File Type Modifiers (Load)

110 Data Movement Utilities

Table 8. Valid File Type Modifiers (LOAD) (continued)

Modifier Description

dldelx x is a single character DATALINK delimiter. The default
value is a semicolon (;). The specified character is used in
place of a semicolon as the inter-field separator for a
DATALINK value. It is needed because a DATALINK value
may have more than one sub-value. abc

Note: x must not be the same character specified as the
row, column, or character string delimiter.

nodoubledel Suppresses recognition of double character delimiters.

IXF File Format

forcein Directs the utility to accept data despite code page
mismatches, and to suppress translation between code
pages.

Fixed length target fields are checked to verify that they are
large enough for the data. If nochecklengths is specified, no
checking is done, and an attempt is made to load each row.

nochecklengths If nochecklengths is specified, an attempt is made to load
each row, even if the source data has a column definition
that exceeds the size of the target table column. Such rows
can be successfully loaded if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in
the source could shrink to 2-byte DBCS data in the target,
and require half the space. This option is particularly useful
if it is known that the source data will fit in all cases despite
mismatched column definitions.

Notes:

1. The load utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
load operation fails, and an error code is returned.

2. a “Delimiter Restrictions” on page 16 lists restrictions that apply to the characters
that can be used as delimiter overrides.

3. b The character must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified using
the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the code point.
For example, to specify the # character as a column delimiter, use one of the
following:

... modified by coldel# ...

... modified by coldel0x23 ...

... modified by coldelX23 ...

4. c Even if the DATALINK delimiter character is a valid character within the URL
syntax, it will lose its special meaning within the scope of the load operation.

File Type Modifiers (Load)

Chapter 3. Load 111

Exception Table

The exception table is a user-created table that reflects the definition of the
table being loaded, and includes some additional columns. It is specified by
the FOR EXCEPTION clause on the LOAD command. The table is used to
store copies of rows that violate unique index rules; the utility will not check
for constraints or foreign key violations other than violations of uniqueness.
DATALINK exceptions are also captured in the exception table.

A unique key is a key for which no two values are equal. The mechanism
used to enforce this constraint is called a unique index. A primary key is a
special case of a unique key. A table cannot have more than one primary key.

Note: Any rows rejected because of invalid data before the building of an
index are not inserted into the exception table.

Rows are appended to existing information in the exception table; this can
include invalid rows from previous load operations. If you want only the
invalid rows from the current load operation, you must remove the existing
rows before invoking the utility.

The exception table used with the load utility is identical to the exception
tables used by the SET INTEGRITY statement.

An exception table should be used when loading data which has a unique
index and the possibility of duplicate records. If an exception table is not
specified, and duplicate records are found, the load operation continues, and
only a warning message is issued about the deleted duplicate records. The
records themselves are not logged.

After the load operation completes, information in the exception table can be
used to correct data that is in error. The corrected data can then be inserted
into the table.

For more information about exception tables, see the SQL Reference.

Dump File

Specifying the dumpfile modifier tells the load utility the name and the
location of the exception file to which rejected rows are written. When
running in a partitioned database environment, the name is given an
extension that identifies the partition number where the exceptions were
generated. For example:

dumpfile = "/u/usrname/dumpit"

Load Exception Table

112 Data Movement Utilities

On partition zero, this will generate a file named /u/usrname/dumpit.000. On
partition five, it will generate a file named /u/usrname/dumpit.005, and so on.

Only the first 32 768 bytes of a record are written into the dump file; the rest
is discarded.

For more information about load file type modifiers, see “File Type Modifiers
(Load)” on page 104.

Load Temporary Files

DB2 creates temporary binary files during load processing. These files are
removed when the load operation completes without error.

The temporary files are written to a path that can be specified through the
temp-pathname parameter of the LOAD command, or in the
pRemoteMsgFileName parameter of the sqluload API. The default path is a
subdirectory of the database directory.

The temporary files path resides on the server machine and is accessed by the
DB2 instance exclusively. Therefore, it is imperative that any path name
qualification given to the temp-pathname parameter reflects the directory
structure of the server, not the client, and that the DB2 instance owner has
read and write permission on the path.

Note: In an MPP system, the temporary files path must reside on a local disk,
not on an NFS mount. If the path is on an NFS mount, there will be a
significant performance decrement during the load operation.

Attention: The temporary files written to this path must not be tampered
with under any circumstances. Doing so will cause the load operation to
malfunction, and will place your database in jeopardy.

Load Utility Log Records

The utility manager produces log records associated with a number of DB2
utilities, including the load utility. The log records mark the beginning or the
end of a specific activity. The following log records are associated with load
operations:
v Load Start. This log record is associated with the beginning of a load

operation.

Load Dump File

Chapter 3. Load 113

v Table Load Delete Start. This log record is associated with the beginning of
the delete phase in a load operation. The delete phase is started only if
there are duplicate primary key values.

v Load Delete Start Compensation. This log record is associated with the end
of the delete phase in a load operation.

v Load Pending List. This log record is written when a load transaction
commits. The pending list is a linked list of non-recoverable operations that
are deferred until the transaction commits. No commit log record follows
this transaction.

For a description of the structure of these log records, see the Administrative
API Reference.

Character Set and NLS Considerations

Unequal code page situations, involving expansion or contraction of the
character data, can sometimes occur. For example, Japanese or
Traditional-Chinese Extended UNIX Code (EUC) and double-byte character
sets (DBCS) may have different length encodings for the same character.
Normally, comparison of input data length to target column length is
performed before reading in any data. If the input length is greater than the
target length, NULLs are inserted into that column if it is nullable. Otherwise,
the request is rejected. If the nochecklengths modifier (see “File Type
Modifiers (Load)” on page 104) is specified, no initial comparison is
performed, and an attempt is made to load the data. If the data is too long
after translation is complete, the row is rejected. Otherwise, the data is loaded.

Example Load Sessions

CLP Examples

Example 1

TABLE1 has 5 columns:
v COL1 VARCHAR 20 NOT NULL WITH DEFAULT
v COL2 SMALLINT
v COL3 CHAR 4
v COL4 CHAR 2 NOT NULL WITH DEFAULT
v COL5 CHAR 2 NOT NULL

ASCFILE1 has 6 elements:
v ELE1 positions 01 to 20

Load Utility Log Records

114 Data Movement Utilities

v ELE2 positions 21 to 22
v ELE5 positions 23 to 23
v ELE3 positions 24 to 27
v ELE4 positions 28 to 31
v ELE6 positions 32 to 32
v ELE6 positions 33 to 40

Data Records:
1...5....10...15...20...25...30...35...40
Test data 1 XXN 123abcdN
Test data 2 and 3 QQY wxyzN
Test data 4,5 and 6 WWN6789 Y

The following command loads the table from the file:
db2 load from ascfile1 of asc modified by striptblanks reclen=40

method L (1 20, 21 22, 24 27, 28 31)
null indicators (0,0,23,32)
insert into table1 (col1, col5, col2, col3)

Notes:

1. The specification of striptblanks in the MODIFIED BY parameter forces
the truncation of blanks in VARCHAR columns (COL1, for example, which
is 11, 17 and 19 bytes long, in rows 1, 2 and 3, respectively).

2. The specification of reclen=40 in the MODIFIED BY parameter indicates
that there is no new-line character at the end of each input record, and
that each record is 40 bytes long. The last 8 bytes are not used to load the
table.

3. Since COL4 is not provided in the input file, it will be inserted into
TABLE1 with its default value (it is defined NOT NULL WITH DEFAULT).

4. Positions 23 and 32 are used to indicate whether COL2 and COL3 of
TABLE1 will be loaded NULL for a given row. If there is a Y in the
column’s null indicator position for a given record, the column will be
NULL. If there is an N, the data values in the column’s data positions of
the input record (as defined in L(........)) are used as the source of column
data for the row. In this example, neither column in row 1 is NULL; COL2
in row 2 is NULL; and COL3 in row 3 is NULL.

5. In this example, the NULL INDICATORS for COL1 and COL5 are
specified as 0 (zero), indicating that the data is not nullable.

6. The NULL INDICATOR for a given column can be anywhere in the input
record, but the position must be specified, and the Y or N values must be
supplied.

Example Load Sessions

Chapter 3. Load 115

Example 2 (Loading LOBs from Files)

TABLE1 has 3 columns:
v COL1 CHAR 4 NOT NULL WITH DEFAULT
v LOB1 LOB
v LOB2 LOB

ASCFILE1 has 3 elements:
v ELE1 positions 01 to 04
v ELE2 positions 06 to 13
v ELE3 positions 15 to 22

The following files reside in either /u/user1 or /u/user1/bin:
v ASCFILE2 has LOB data
v ASCFILE3 has LOB data
v ASCFILE4 has LOB data
v ASCFILE5 has LOB data
v ASCFILE6 has LOB data
v ASCFILE7 has LOB data

Data Records in ASCFILE1:
1...5....10...15...20...25...30.
REC1 ASCFILE2 ASCFILE3
REC2 ASCFILE4 ASCFILE5
REC3 ASCFILE6 ASCFILE7

The following command loads the table from the file:
db2 load from ascfile1 of asc

lobs from /u/user1, /u/user1/bin
modified by lobsinfile reclen=22
method L (1 4, 6 13, 15 22)
insert into table1

Notes:

1. The specification of lobsinfile in the MODIFIED BY parameter tells the
loader that all LOB data is to be loaded from files.

2. The specification of reclen=22 in the MODIFIED BY parameter indicates
that there is no new-line character at the end of each input record, and
that each record is 22 bytes long.

3. LOB data is contained in 6 files, ASCFILE2 through ASCFILE7. Each file
contains the data that will be used to load a LOB column for a specific
row. The relationship between LOBs and other data is specified in
ASCFILE1. The first record of this file tells the loader to place REC1 in
COL1 of row 1. The contents of ASCFILE2 will be used to load LOB1 of

Example Load Sessions

116 Data Movement Utilities

row 1, and the contents of ASCFILE3 will be used to load LOB2 of row 1.
Similarly, ASCFILE4 and ASCFILE5 will be used to load LOB1 and LOB2
of row 2, and ASCFILE6 and ASCFILE7 will be used to load the LOBs of
row 3.

4. The LOBS FROM parameter contains 2 paths that will be searched for the
named LOB files when those files are required by the loader.

5. To load LOBs directly from ASCFILE1 (a non-delimited ASCII file),
without the lobsinfile modifier, the following rules must be observed:
v The total length of any record, including LOBs, cannot exceed 32KB.
v LOB fields in the input records must be of fixed length, and LOB data

padded with blanks as necessary.
v The striptblanks modifier must be specified, so that the trailing blanks

used to pad LOBs can be removed as the LOBs are inserted into the
database.

Example 3 (Using Dump Files)

Table FRIENDS is defined as:
table friends "(c1 INT NOT NULL, c2 INT, c3 CHAR(8))"

If an attempt is made to load the following data records into this table,
23, 24, bobby
, 45, john
4,, mary

the second row is rejected because the first INT is NULL, and the column
definition specifies NOT NULL. Columns which contain initial characters that
are not consistent with the DEL format will generate an error, and the record
will be rejected. Such records can be written to a dump file (see Table 8 on
page 104).

DEL data appearing in a column outside of character delimiters is ignored,
but does generate a warning. For example:

22,34,"bob"
24,55,"sam" sdf

The utility will load ″sam″ in the third column of the table, and the characters
″sdf″ will be flagged in a warning. The record is not rejected. Another
example:

22 3, 34,"bob"

The utility will load 22,34,"bob", and generate a warning that some data in
column one following the 22 was ignored. The record is not rejected.

Example Load Sessions

Chapter 3. Load 117

Example 4 (Loading DATALINK Data)

The following command loads the table MOVIETABLE from the input file
delfile1, which has data in the DEL format:

db2 load from delfile1 of del
modified by dldel|
insert into movietable (actorname, description, url_making_of, url_movie)
datalink specification (dl_url_default_prefix "http://narang"),
(dl_url_replace_prefix "http://bomdel" dl_url_suffix ".mpeg")
for exception excptab

Notes:

1. The table has four columns:
actorname VARCHAR(n)
description VARCHAR(m)
url_making_of DATALINK (with LINKTYPE URL)
url_movie DATALINK (with LINKTYPE URL)

2. The DATALINK data in the input file has the vertical bar (|) character as
the sub-field delimiter.

3. If any column value for url_making_of does not have the prefix character
sequence, ″http://narang″ is used.

4. Each non-NULL column value for url_movie will get ″http://bomdel″ as
its prefix. Existing values are replaced.

5. Each non-NULL column value for url_movie will get ″.mpeg″ appended to
the path. For example, if a column value of url_movie is
″http://server1/x/y/z″, it will be stored as ″http://bomdel/x/y/z.mpeg″;
if the value is ″/x/y/z″, it will be stored as ″http://bomdel/x/y/z.mpeg″.

6. If any unique index or DATALINK exception occurs while loading the
table, the affected records are deleted from the table and put into the
exception table excptab.

API Examples

The following sample program shows how to:
v Export information from the EMP_RESUME table in the SAMPLE database

to the file EXPTABLE.DEL.
v Load that information from the delimited text file to a new table,

LOADTABLE.

For detailed information about the SAMPLE database, see the Administration
Guide.

The source file for this sample program (tload.sqc) can be found in the
\sqllib\samples\c directory. It contains both DB2 APIs and embedded SQL
calls. The script file bldvaemb.cmd, located in the same directory, contains the
commands to build this and other sample programs. For general information

Example Load Sessions

118 Data Movement Utilities

about creating applications containing DB2 administrative APIs, and detailed
information about compile and link options, see the Application Building Guide.
To build the sample program tload from the source file tload.sqc on OS/2:
1. Copy the files tload.sqc, bldvaemb.cmd, util.c, and util.h to a working

directory.
2. If the database manager is not running, issue the command db2start.
3. Enter bldvaemb tload sample. The following files are generated:

tload.bnd
tload.c
util.obj
tload.obj
tload.exe

To run the sample program (executable file), enter tload. You might find it
useful to examine some of the generated files, such as the message files, and
the delimited ASCII data file.

/**
**
** Source File Name = tload.sqc 1.4
**
** Licensed Materials - Property of IBM
**
** (C) COPYRIGHT International Business Machines Corp. 1995, 1997
** All Rights Reserved.
**
** US Government Users Restricted Rights - Use, duplication or
** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
**
**
** PURPOSE :
** To show the use of the QUIESCE TABLESPACE and the LOAD APIs.
** - EXPORT the EMP_RESUME table into a comma delimited file.
** - create a temporary table ('loadtable').
** - QUIESCE the TABLESPACES, preparing the temporary table to be
** LOADable.
** - LOAD the comma delimited file into a temporary table ('loadtable').
**
** STRUCTURES USED :
** sqldcol
** sqlchar
** sqluexpt_out
** sqlca
**
** APIs USED :
** EXPORT sqluexpr
** QUIESCE TABLESPACE FOR TABLES sqluvqdp
** LOAD sqluload
**
** FUNCTIONS DECLARED :

Example Load Sessions

Chapter 3. Load 119

** 'C' COMPILER LIBRARY :
** stdio.h - printf
** string.h - fgets, strncpy
**
** DBMS LIBRARY :
** sqlenv.h - see "APIs USED" above
**
** OTHER :
** external :
** check_error : Checks for SQLCODE error, and prints out any
** [in UTIL.C] related information available.
**
** EXTERNAL DEPENDANCIES :
** - Ensure existence of database (SAMPLE) for precompile purposes.
** - Precompile with the SQL precompiler (PREP in DB2)
** - Bind to a database (BIND in DB2)
** - Compile and link with the IBM Cset++ compiler (AIX and OS/2)
** or the Microsoft Visual C++ compiler (Windows)
** or the compiler supported on your platform.
**
***/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlenv.h>
#include <sqlutil.h>
#include <malloc.h>

#define CHECKERR(CE_STR) if (check_error (CE_STR, &sqlca) != 0) return 1;
#ifdef DB2AIX
#define WORKDIR "/u/workdir"
#else
#define WORKDIR "."
#endif

EXEC SQL INCLUDE SQLCA;
int main (int argc, char *argv[]) {

short int callerAction = 0;
struct sqldcol DataDescriptor;
struct sqlchar *ActionString;
struct sqlchar *FileTypeMod;
struct sqluexpt_out outputInfo;
char datafile[] = "EXPTABLE.DEL";
char statement[] = "SELECT empno, photo_format, picture FROM emp_photo";
char impStatement[] = "INSERT INTO loadtable (num, format, photo)";

/*
char statement[] = "SELECT empno, photo_format FROM emp_photo";
char impStatement[] = "INSERT INTO loadtable (num, format)";

*/

char msgfile_x[] = "EXPMSG.TXT";
char FileType[] = SQL_DEL;

char table_name[18];

Example Load Sessions

120 Data Movement Utilities

/* Variables for the LOAD API */
struct sqlu_media_list DataFileList;
struct sqlu_media_list *pLobPathList;
struct sqluload_in InputInfo;
struct sqluload_out OutputInfo;
struct sqlu_media_list *pWorkDirectoryList;
struct sqlu_media_list *pCopyTargetList;
char LocalMsgFileName[] = "LOADMSG";
char RemoteMsgFileName[] = "RLOADMSG";
short CallerAction;
long *pNullIndicators;
void *pReserved;

EXEC SQL BEGIN DECLARE SECTION;
char userid[9];
char passwd[19];

EXEC SQL END DECLARE SECTION;

printf ("This is sample program 'tload.sqc'\n");

/* need to preset the size of structure field and counts */
outputInfo.sizeOfStruct = SQLUEXPT_OUT_SIZE;

/**\
* need to allocate the proper amount of space for the SQL statement *
**/
ActionString = (struct sqlchar *)malloc(strlen(statement)

+ sizeof (struct sqlchar));
ActionString->length = strlen(statement);
strncpy (ActionString->data, statement, strlen(statement));

FileTypeMod = (struct sqlchar *)malloc(strlen("lobsinfile")
+ sizeof (struct sqlchar));

FileTypeMod->length = strlen("lobsinfile");
strncpy (FileTypeMod->data, "lobsinfile", FileTypeMod->length);

/* DELimited format can not have specified names, therefore the
column method is 'D'efault */

DataDescriptor.dcolmeth = SQL_METH_D;

if (argc == 1) {
EXEC SQL CONNECT TO sample;

CHECKERR ("CONNECT TO SAMPLE");
}
else if (argc == 3) {

strcpy (userid, argv[1]);
strcpy (passwd, argv[2]);
EXEC SQL CONNECT TO sample USER :userid USING :passwd;
CHECKERR ("CONNECT TO SAMPLE");

}
else {

printf ("\nUSAGE: tload [userid passwd]\n\n");
return 1;

Example Load Sessions

Chapter 3. Load 121

} /* endif */

printf ("Exporting EMP_RESUME table into file '%s'\n", datafile);
/*******************\
* EXPORT API called *
*******************/
sqluexpr (datafile, NULL, NULL, &DataDescriptor, ActionString,

FileType, FileTypeMod, msgfile_x, 0, &outputInfo, NULL, &sqlca);
CHECKERR ("exporting table");
printf ("Rows exported %d\n", outputInfo.rowsExported);

free (ActionString);

/* need to allocate the proper amount of space for the SQL statement */
ActionString = (struct sqlchar *)malloc(strlen(impStatement)

+ sizeof (struct sqlchar));
ActionString->length = strlen(impStatement);
strncpy (ActionString->data, impStatement, strlen(impStatement));

printf ("Creating a temporary table 'loadtable' to load into\n");
/* create a temporary table to import into */
EXEC SQL CREATE TABLE loadtable (num CHARACTER(6), format VARCHAR(10),

photo BLOB(100K));
CHECKERR ("CREATE TABLE");

/* end the transaction so the program can quiesce the tablespace */
EXEC SQL COMMIT;

printf ("Quiescing tablespaces for table 'loadtable'\n");
/******************************\
* QUIESCE TABLESPACE FOR TABLE *
******************************/
sqluvqdp ("loadtable", SQLU_QUIESCEMODE_EXCLUSIVE, NULL, &sqlca);
CHECKERR ("QUIESCE TABLESPACES FOR TABLE");

printf ("Loading the file '%s' into 'loadtable'\n", datafile);

/* initializing the variables for the LOAD API */
/* the DataFileList structure */
DataFileList.media_type = SQLU_SERVER_LOCATION;
DataFileList.sessions = 1;
DataFileList.target.location = (sqlu_location_entry *) malloc

(sizeof(sqlu_location_entry) * DataFileList.sessions);
strcpy (DataFileList.target.location->location_entry, datafile);

pLobPathList = NULL;
CallerAction = SQLU_INITIAL;

/* the sqluload input structure */
InputInfo.sizeOfStruct = SQLULOAD_IN_SIZE; /* this should never change */
InputInfo.savecnt = 1; /* consistency points as frequent */

/* as possible */
InputInfo.restartcnt = 0; /* start at row 1 */

Example Load Sessions

122 Data Movement Utilities

InputInfo.rowcnt = 0; /* load all rows */
InputInfo.warningcnt = 0; /* don't stop for warnings */
InputInfo.data_buffer_size = 0; /* default data buffer size */
InputInfo.sort_buffer_size = 0; /* default warning buffer size */
InputInfo.hold_quiesce = 0; /* don't hold the quiesce */
InputInfo.restartphase = ' '; /* ignored anyway, but must */

/* be ' ',L,B,D */
InputInfo.statsopt = SQLU_STATS_NONE; /* don't bother collecting them */

/* the sqluload output structure */
OutputInfo.sizeOfStruct = SQLULOAD_OUT_SIZE;

/* the CopyTargetList structure */

pCopyTargetList = NULL;

OutputInfo.sizeOfStruct = SQLULOAD_OUT_SIZE;
/******\
* LOAD *
******/
sqluload (&DataFileList,

pLobPathList,
&DataDescriptor,
ActionString,
FileType,
FileTypeMod,
LocalMsgFileName,
RemoteMsgFileName,
CallerAction,
&InputInfo,
&OutputInfo,
pWorkDirectoryList,
pCopyTargetList,
pNullIndicators,
pReserved,
&sqlca);

CHECKERR ("LOADing table");

printf ("Rows loaded %d\nrows committed %d\n", OutputInfo.rowsLoaded,
OutputInfo.rowsCommitted);

free (ActionString);

/* drop the table */
EXEC SQL DROP TABLE loadtable;

EXEC SQL CONNECT RESET;
CHECKERR ("CONNECT RESET");

}
/* end of program : tload.sqc */

The source file for a sample program called loadqry.sqc can be found in the
\sqllib\samples\c directory. This sample program shows how to use an API
to query the current status of a load operation against a database to which the

Example Load Sessions

Chapter 3. Load 123

program is connected. It contains both DB2 APIs and embedded SQL calls.
The script file bldvaemb.cmd, located in the same directory, contains the
commands to build this and other sample programs. For general information
about creating applications containing DB2 administrative APIs, and detailed
information about compile and link options, see the Application Building Guide.
To build the sample program loadqry from the source file loadqry.sqc on
OS/2:
1. Copy the files loadqry.sqc, bldvaemb.cmd, util.c, and util.h to a working

directory.
2. If the database manager is not running, issue the command db2start.
3. Enter bldvaemb loadqry sample. The following files are generated:

loadqry.bnd
loadqry.c
util.obj
loadqry.obj
loadqry.exe

To run the sample program (executable file), enter loadqry. You might find it
useful to examine the message file. This file will contain information only if
the program is run when there is a load operation in progress.

Pending States After a Load Operation

Since regular logging is not performed, the load utility uses pending states to
preserve database consistency. These states can be checked by using the LIST
TABLESPACES command (see the Command Reference).

The load and build phases of the load process place any associated table
spaces into load pending state. To remove the load pending state (if the load
operation has failed, or was interrupted):
v Terminate the load operation.
v Restart the load operation.
v Invoke a LOAD REPLACE operation against the same table on which a

load operation has failed.
v Recover table spaces for the loading table by using the RESTORE

DATABASE command with the most recent table space or database backup,
and then carry out further recovery actions.

v Drop and then recreate table spaces for the loading table.

The delete phase places any associated table spaces into delete pending state.

Table spaces are placed in backup pending state if the load process completes,
and:

Example Load Sessions

124 Data Movement Utilities

v The database configuration parameter logretain is set to recovery, or userexit
is enabled, and

v The load option COPY YES is not specified, and
v The load option NONRECOVERABLE is not specified.

The fourth possible state associated with the load process pertains to
referential and check constraints. If an existing table is a parent table
containing a primary key referenced by a foreign key in a dependent table,
replacing data in the parent table places the dependent table (not the table
space) in check pending state. To validate a table for referential integrity and
check constraints, issue the SET INTEGRITY statement after the load process
completes, if the table has been left in check pending state. For more
information about the check pending state, see “Checking for Constraints
Violations” on page 65.

Optimizing Load Performance

The performance of the load utility depends on the nature and the quantity of
the data, the number of indexes, and the load options specified.

Unique indexes reduce load performance if duplicates are encountered. In
most cases, it is still more efficient to create indexes during the load operation
than to invoke the CREATE INDEX statement for each index after the load
operation completes (see Figure 5).

When tuning index creation performance, the amount of memory dedicated to
the sorting of index keys during a load operation is controlled by the sortheap
database configuration parameter. For example, to direct the load utility to use
4000 pages of main memory for index key sorting, set the sortheap database

create
table

load
table

create
index A

create
index B

collect
stats

table available
for queries

Time

create
table

create
index A
(empty)

create
index B
(empty)

load, with
indexing

and statistics

table available
for queries

Time

Figure 5. Increasing Load Performance through Concurrent Indexing and Statistics Collection..
Tables are normally built in three steps: data loading, index building, and statistics collection. This
causes multiple data I/O during the load operation, during index creation (there can be several
indexes for each table), and during statistics collection (which causes I/O on the table data and on
all of the indexes). A much faster alternative is to let the load utility complete all of these tasks in
one pass through the data.

Pending States After a Load Operation

Chapter 3. Load 125

configuration parameter to be 4000 pages, disconnect all applications from the
database, and then issue the LOAD command.

Load performance can be improved by installing high performance sorting
libraries from third party vendors to create indexes during the load operation.
An example of a third party sort product is SyncSort. Use the DB2SORT
environment variable (registry value) to specify the location of the sorting
library that is to be loaded at run time. For more information about
environment variables, see the Administration Guide.

Use of the SET INTEGRITY statement may lengthen the total time needed to
load a table and make it usable again. If all the load operations are performed
in INSERT mode, the SET INTEGRITY statement will check the table for
constraints violations incrementally (by checking only the appended portion
of the table). If a table cannot be checked for constraints violations
incrementally, the entire table is checked, and it may be some time before the
table is usable again.

The load utility performs equally well in INSERT mode and in REPLACE
mode.

The utility attempts to deliver the best performance possible by determining
optimal values for DISK_PARALLELISM, CPU_PARALLELISM, and
DATA_BUFFER, if these parameters have not be specified by the user.
Optimization is done based on the size and the free space available in the
utility heap. Consider allowing the load utility to choose values for these
parameters before attempting to tune them for your particular needs.

Following is information about the performance implications of various
options available through the load utility:

ANYORDER
Specify this file type modifier to suspend the preservation of order in
the data being loaded, and improve performance. If the data to be
loaded is presorted, anyorder may corrupt the presorted order, and
the benefits of presorting will be lost for subsequent queries.

BINARY NUMERICS and PACKED DECIMAL
Use these file type modifiers to improve performance when loading
positional numeric ASC data into fixed-length records.

COPY YES or NO
Use this parameter to specify whether a copy of the input data is to
be made during a load operation. COPY YES reduces load
performance, because all of the loading data is copied during the load
operation (forward recovery must be enabled); the increased I/O
activity may increase the load time on an I/O-bound system.

Optimizing Load Performance

126 Data Movement Utilities

Specifying multiple devices or directories (on different disks) can
offset some of the performance penalty resulting from this operation.
COPY NO may reduce overall performance, because if forward
recovery is enabled, the table is placed in backup pending state, and
the database, or selected table spaces, must be backed up before the
table can be accessed.

CPU_PARALLELISM
Use this parameter to exploit intra-partition parallelism (if this is part
of your machine’s capability), and significantly improve load
performance. The parameter specifies the number of processes or
threads used by the load utility to parse, convert, and format data
records. The maximum number allowed is 30. This parameter is
particularly useful when loading presorted data, because record order
in the source data is preserved (see Figure 6). If there is insufficient
memory to support the specified value, the utility adjusts the value. If
this parameter is not specified, the load utility selects a default value
that is based on the number of CPUs on the system.

If tables include either LOB or LONG VARCHAR data,
CPU_PARALLELISM is set to one. Parallelism is not supported in this
case.

Although use of this parameter is not restricted to symmetric
multiprocessor (SMP) hardware, you may not obtain any discernible
performance benefit from using it in non-SMP environments.

DATA BUFFER
The DATA BUFFER parameter specifies the total amount of memory
allocated to the load utility as a buffer. It is recommended that this
buffer be several extents in size. An extent is the unit of movement for
data within DB2, and the extent size can be one or more 4KB pages.
The DATA BUFFER parameter is useful when working with large
objects (LOBs); it reduces I/O waiting time. The data buffer is
allocated from the utility heap. Depending on the amount of storage
available on your system, you should consider allocating more
memory for use by the DB2 utilities. The database configuration
parameter util_heap_sz can be modified accordingly. For information
about the UPDATE DATABASE CONFIGURATION command, see the
Command Reference. The default value for the Utility Heap Size

User
records:
A,B,C,D

DB2 LOAD
(with SMP exploitation)

Table
records:
A,B,C,D

Figure 6. Record Order in the Source Data is Preserved When Intra-partition Parallelism is
Exploited During a Load Operation

Optimizing Load Performance

Chapter 3. Load 127

configuration parameter is 5 000 4KB pages. Because load is only one
of several utilities that use memory from the utility heap, it is
recommended that no more than fifty percent of the pages defined by
this parameter be available for the load utility, and that the utility
heap be defined large enough. For more information about
util_heap_sz, see the Administration Guide.

DISK_PARALLELISM
The DISK_PARALLELISM parameter specifies the number of
processes or threads used by the load utility to write data records to
disk. Use this parameter to exploit available containers when loading
data, and significantly improve load performance. The maximum
number allowed is the greater of four times the CPU_PARALLELISM
value (actually used by the load utility), or 50. By default,
DISK_PARALLELISM is equal to the sum of the table space containers
on all table spaces containing objects for the table being loaded, except
where this value exceeds the maximum number allowed.

FASTPARSE
Use the fastparse file type modifier to reduce the data checking that
is performed on user-supplied column values, and enhance
performance. This option should only be used when the data being
loaded is known to be valid. It can improve performance by about 10
or 20 percent.

NONRECOVERABLE
Use this parameter if you do not need to be able to recover load
transactions against a table. Load performance is enhanced, because
no additional activity beyond the movement of data into the table is
required, and the load operation completes without leaving the table
spaces in backup pending state.

Note: When these load transactions are encountered during
subsequent restore and roll-forward recovery, the table is not
updated, and is marked ″invalid″. Further actions against this
table are ignored. After the roll-forward operation is complete,
the table can only be dropped.

NOROWWARNINGS
Use the norowwarnings file type modifier to suppress the recording of
warnings about rejected rows, and enhance performance, if you
anticipate a large number of warnings.

SAVECOUNT
Use this parameter to set an interval for the establishment of
consistency points during a load operation. The synchronization of
activities performed to establish a consistency point takes time. If
done too frequently, there will be a noticeable reduction in load

Optimizing Load Performance

128 Data Movement Utilities

performance. If a very large number of rows is to be loaded, it is
recommended that a large SAVECOUNT value be specified (for
example, a value of ten million in the case of a load operation
involving 100 million records).

A LOAD RESTART operation will automatically continue from the last
consistency point.

STATISTICS YES
Use this parameter to collect data distribution and index statistics
more efficiently than through invocation of the runstats utility
following completion of the load operation, even though performance
of the load operation itself will decrease (particularly when
DETAILED INDEXES ALL is specified).

For optimal performance, applications require the best data
distribution and index statistics possible. Once the statistics are
updated, applications can use new access paths to the table data
based on the latest statistics. New access paths to a table can be
created by rebinding the application packages using the DB2 BIND
command (see the Command Reference).

When loading data into large tables, it is recommended that a larger
value for the stat_heap_sz (Statistics Heap Size) database configuration
parameter be specified. For information about the UPDATE
DATABASE CONFIGURATION command, see the Command Reference.
For more information about stat_heap_sz, see the Administration Guide.

WARNINGCOUNT
Use this parameter to specify the number of warnings that can be
returned by the utility before a load operation is forced to terminate.
If you are expecting only a few warnings or no warnings, set the
WARNINGCOUNT parameter to approximately the number you are
expecting, or to twenty if you are expecting no warnings. The load
operation will stop after the WARNINGCOUNT number is reached.
This gives you the opportunity to correct data (or to drop and then
recreate the table being loaded) before attempting to complete the
load operation. Although not having a direct effect on the
performance of the load operation, the establishment of a
WARNINGCOUNT threshold prevents you from having to wait until
the entire load operation completes before determining that there is a
problem.

Optimizing Load Performance

Chapter 3. Load 129

Restrictions and Limitations

The following restrictions apply to the load utility:
v This utility does not support the use of nicknames.
v Loading data into typed tables is not supported.
v Attempts to create or to drop tables in a table space that is in load pending

state will fail.
v You cannot load data into a database accessed through DB2 Connect or a

down-level server prior to DB2 Version 2. Options that are only available
with this release of DB2 cannot be used with a server from the previous
release.

v If an error occurs during a LOAD REPLACE operation, the original data in
the table is lost. Retain a copy of the input data to allow the load operation
to be restarted.

v Triggers are not activated on newly loaded rows. Business rules associated
with triggers are not enforced by the load utility.

v When running concurrent load operations, the temporary files path names
must be unique. If they are not unique (for example, if the TEMPFILES
PATH parameter was not specified on any of the concurrently running load
jobs), the load utility does not enforce uniqueness, and inconsistent results
will be obtained.

Troubleshooting

During DB2 operations such as exporting, importing, loading, binding, or
restoring data, you can specify that message files be created to contain the
error, warning, and informational messages associated with those operations.
Specify the name of these files with the MESSAGES parameter.

These message files are standard ASCII text files. To print them, use the
printing procedure for your operating system; to view them, use any ASCII
editor.

Notes:

1. You can only view the contents of a message file after the operation is
finished.

2. Each message in a message file begins on a new line and contains
information provided by the DB2 message retrieval facility.

Load Restrictions and Limitations

130 Data Movement Utilities

Chapter 4. AutoLoader

This chapter describes the DB2 UDB AutoLoader utility, which can be used in
a partitioned database environment to load data across all or some of the
partitions at the same time.

The following topics are covered:
v “AutoLoader Overview”

v “Privileges, Authorities, and Authorization Required to Use AutoLoader” on
page 132

v “Using AutoLoader” on page 133

v “Loading into Multiple Database Partitions” on page 133

v “AutoLoader Options” on page 134

v “Example AutoLoader Session” on page 141

v “Migration and Back-level Compatibility” on page 143

v “AutoLoader Hints and Tips” on page 144

v “Restrictions and Limitations” on page 145

v “AutoLoader Troubleshooting” on page 146.

AutoLoader Overview

The AutoLoader is a utility that can:
v Transfer data from one system (like MVS) to another system (like UNIX).
v Partition that data in parallel.
v Load the data simultaneously on the corresponding database partitions.

The AutoLoader can be run in one of four modes:
v SPLIT_AND_LOAD. Data is partitioned (perhaps in parallel) and loaded

simultaneously on the corresponding database partitions.
v SPLIT_ONLY. Data is partitioned (perhaps in parallel) and the output is

written to files in a specified location, or in the AutoLoader current working
directory.

v LOAD_ONLY. Data is assumed to be already partitioned; the split process
is skipped, and the data is loaded simultaneously on the corresponding
database partitions.

© Copyright IBM Corp. 1999 131

v ANALYZE. An optimal partitioning map with even distribution across all
database partitions is generated.

In a partitioned database, large amounts of data are located across many
partitions. Partitioning keys are used to determine on which database
partition each portion of the data resides. The data must be split before it can
be loaded at the correct database partition. The AutoLoader utility can
perform both operations (see Figure 7).

The AutoLoader utility uses a hashing algorithm to partition the data into as
many output sockets as there are database partitions in the nodegroup in
which the table was defined. It then loads from these output sockets
concurrently across the set of database partitions in the nodegroup. A key
feature of this utility is that it uses direct TCP/IP communication using
sockets for all data transfer required during both split and load processes. It
also allows the use of multiple database partitions for the splitting phase,
thereby significantly improving performance.

Privileges, Authorities, and Authorization Required to Use AutoLoader

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects
for which they have the appropriate authorization; that is, the required
privilege or authority.

The authority required to use the AutoLoader utility is the same as that
required by the load utility (see “Privileges, Authorities, and Authorization
Required to Use Load” on page 63). Moreover, the load dumpfile, the remote
message file, and the directory used for sorting must all be write-accessible to
the instance owner.

User supplied
config file

db2atld

Partitioning
agent

Partitioning
agent

Load Utility

Load Utility

Load Utility

Figure 7. AutoLoader Overview.. In this example, source data is read by the AutoLoader, and half
is sent to each of two partitioning agents, which partition the data and send it to one of three
database partitions. The load utility at each partition loads the data.

AutoLoader Overview

132 Data Movement Utilities

Using AutoLoader

Before Using AutoLoader

Before invoking the AutoLoader utility:
1. Create a temporary working directory. This directory must be accessible to

all participating database partitions. It is from this directory that you will
invoke the AutoLoader utility.

2. Modify your AutoLoader configuration file (see “Example AutoLoader
Session” on page 141), and copy it into the working directory.

3. Ensure that the svcename database manager configuration parameter and
the DB2COMM profile registry variable are set correctly. This is
important, because the AutoLoader utility makes remote database
connections from the working partition (from which you invoke the
utility) to the database partitions (on which the table is defined).

Invoking AutoLoader

The AutoLoader utility is invoked through the db2atld command:
db2atld [-config config_file] [-restart] [-terminate]

where "-config config_file" specifies an AutoLoader configuration file
(the default is "autoloader.cfg"); "-restart" requests restart
of an interrupted AutoLoader operation (the configuration file
does not need to be modified to restart); and "-terminate" requests
termination of an interrupted AutoLoader operation.

A sample configuration file, autoloader.cfg, can be found in the
sqllib/samples/autoloader directory. It is recommended that you copy,
rename, and customize the sample configuration file according to the
operations that you want the utility to perform.

Loading into Multiple Database Partitions

If you are loading data into a table in a multiple database partition
nodegroup, the load utility requires that the files to be loaded are split and
contain the correct header information. The load utility verifies the header
information that the AutoLoader split operation writes to each data file to
ensure that the data goes to the correct location.

If you are loading data into a table in a single database partition nodegroup,
the files do not have to be split, even if the table is defined to have a
partitioning key. In this situation, you would specify the noheader modifier for
the load operation.

Using AutoLoader

Chapter 4. AutoLoader 133

The load utility checks that the partitioning map used by the AutoLoader split
operation is the same as that specified when the table is being loaded. If not,
an error is returned. It also checks that the file partition is loaded at the
correct database partition, and that the data types of the partitioning key
columns specified during splitting match the current definition in the catalog.
The nodegroup to which the table is loaded cannot be redistributed between
the time that the data file is partitioned and the time that the parts are loaded
into the corresponding database table. If redistribution has been done, the
utility cannot load the partitioned data.

Although the load utility supports the following flat file formats:
v Non-delimited ASCII (ASC)
v Delimited ASCII (DEL)
v PC/IXF

AutoLoader can only be used to partition ASC and DEL files. PC/IXF files
cannot be split, but can be loaded into a single database partition nodegroup
using the noheader modifier for the load operation.

The LOAD ROWCOUNT clause is not supported in an AutoLoader operation.
This parameter is only valid in a non-partitioned database environment. The
LOAD SAVECOUNT clause is not supported if multiple splitters are used in
an AutoLoader operation.

If a column that is part of the partitioning key is invalid or rejected, none of
the data associated with that row is loaded. The row is not placed in the
dumpfile, even if one has been specified; instead, a message indicating that the
record has been rejected is written to the splitter log file. Be sure to check the
splitter log file after the completion of the AutoLoader process.

AutoLoader Options

There are many options that you can specify in the AutoLoader configuration
file.

RELEASE Level
The release level of this configuration file. Do not delete or modify
this line in the configuration file.

LOAD Command
The most important part of the configuration file is the LOAD
command. The AutoLoader needs the LOAD command to direct the
handling of the data, even if the selected mode of operation does not
suggest that any loading is required. For example, the AutoLoader
extracts useful information from the LOAD command even when

Loading into Multiple Database Partitions

134 Data Movement Utilities

performing a SPLIT_ONLY mode operation. Specifications on the
LOAD command indicate where the data is coming from, what type
of data it is (delimited ASCII, for example), how the data is to be
loaded, and the target table name.

Be sure to specify a complete LOAD command that includes the
schema name, file name, file type, and table name. The AutoLoader
utility also requires that the LOAD command conform to the format
of the “db2 -f” file, except for the extra leading “db2” keyword. For
detailed information about this and other command line processor
(CLP) options, see the Command Reference. There is no need to use the
special escape shell characters in the LOAD command. Finally, if the
last character on a line is a backslash (\) character, the next line is a
continuation of the current line. In this case, the backslash and the
end-of-line characters are ignored.

For detailed information about all of the parameters available on the
LOAD command, see “LOAD Command” on page 70.

DATABASE Parameter
This parameter is used to identify the database into which the data is
to be loaded. If no name is specified, SAMPLE is used as the default
value.

HOSTNAME Parameter
This parameter specifies the name of the remote machine on which
the data file resides. This machine can be an MVS host or another
workstation. If not specified, and the FILE_TRANSFER_CMD
parameter is set, the host name nohost is passed to the
FILE_TRANSFER_CMD parameter in the <hostname> argument.
There is no default value associated with this parameter.

FILE_TRANSFER_CMD Parameter
The previous version of AutoLoader supported the concept of host file
transfer, whereby the AutoLoader utility could be configured to
transfer data files from a remote host. That option has been replaced
by the FILE_TRANSFER_CMD option. This parameter specifies the
fully qualified name of an executable file, batch file, or script that is
used to transfer data from a remote host. The path must be accessible
to the AutoLoader. The full path, including the execution file name,
must not exceed 254 characters.

Before invoking the specified file, the AutoLoader establishes named
pipes in anticipation of the data being sent from the host. The number
of named pipes to be created is equivalent to the number of files or
devices listed in the FROM clause on the LOAD command. This
information from the LOAD command is also used to specify the
parameters that are to be passed to the executable file, batch file, or
script.

AutoLoader Options

Chapter 4. AutoLoader 135

Based on this information, AutoLoader creates the following
command:

<COMMAND> <logpath> <hostname> <basepipename>
<nummedia> <source media list>

where

v <COMMAND> is the fully qualified path to an executable file,
batch file, or script used to move data from the host.

and the remaining items are parameters that can be used by the
command:
v <logpath> is the AutoLoader log path. The COMMAND program

can use this path to write diagnostic or temporary data.
v <hostname> is the host name specified by the HOSTNAME

parameter.
v <basepipename> is the base name for named pipes that the

AutoLoader will create. The AutoLoader utility generates the base
name and guarantees it to be unique on the system. The base name
is appended to by the utility to create the necessary named pipes.

v <nummedia> is the number of files or devices providing data
(listed in the FROM clause on the LOAD command).

v <source media list> includes the names of each of the files or
devices providing data (listed in the FROM clause on the LOAD
command). The names are delimited by double quotation marks to
avoid potential problems caused by special characters that may be
present in the names.

An AIX sample file called atldftp.drv can be found in the
sqllib/samples/autoloader directory. The sample shows how FTP can
be used to move data from a remote host.

SPLIT_FILE_LOCATION Parameter
This parameter is used in two ways:
v To provide the path name to the location of the split files if the

utility is in LOAD_ONLY mode.
v To provide the path name to the location in which the files that

have been partitioned (if the utility is in SPLIT_ONLY mode) are to
be placed.

If a value for this parameter is not specified, and the utility is
operating in SPLIT_ONLY mode, the split files are placed in the
current working directory; if the utility is operating in LOAD_ONLY
mode, it looks for the split files in the current working directory.

AutoLoader Options

136 Data Movement Utilities

OUTPUT_NODES Parameter
The database partitions on which the load operation is to be
performed are identified by this parameter. The specified partition
numbers must be a subset of the database partitions on which the
table is defined. The default value is all; that is, all database partitions
on which the table is defined will have data loaded into them.

SPLIT_NODES Parameter
The database partitions participating in the splitting process are
specified through this parameter. These database partitions may be the
same or different from the database partitions being loaded. If a value
for this parameter is not specified, the AutoLoader determines how
many partitions are needed for splitting, and which partitions will be
used to achieve optimal performance. The following rules are used to
determine how many partitions are needed for splitting:
v If the ANYORDER modifier in the LOAD command is not

specified, only one splitter is used in the AutoLoader session, and
– If only one partition is specified through the OUTPUT_NODES

parameter, or the working partition of the AutoLoader is not an
element of the value specified for the OUTPUT_NODES
parameter, the working partition of AutoLoader is used as the
splitting partition.

– Otherwise, the first partition other than the AutoLoader working
partition (found in OUTPUT_NODES) is used as the splitting
partition.

v If the anyorder modifier in the LOAD command is specified,
1. The number of splitting partitions is determined by

(number of partitions in OUTPUT_NODES)/4 + 1

2. This number of partitions is chosen from those specified for the
OUTPUT_NODES parameter, excluding the AutoLoader
working partition.

RUN_STAT_NODE Parameter
In conjunction with the STATISTICS YES specification on the LOAD
command, you can specify the database partition on which you want
to collect statistics. If left blank or a value of -1 is specified, the
default value is the first database partition in the output partition list.

MODE Parameter
This parameter specifies the mode in which the AutoLoader utility is
to run. Valid values are: SPLIT_AND_LOAD (the default),
SPLIT_ONLY, LOAD_ONLY, or ANALYZE.

SPLIT_AND_LOAD
In this mode, data is partitioned and then loaded on the

AutoLoader Options

Chapter 4. AutoLoader 137

correct database partitions. Data is transferred through direct
TCP/IP communication using sockets. Multiple input files are
allowed.

SPLIT_ONLY
In this mode, the data is only split. A set of split data files is
generated for the specified database partitions. You must have
sufficient storage for each of the split data files. The split
function writes the files in the location specified by the
SPLIT_FILE_LOCATION parameter, or in the current working
directory. The directory location must be write-accessible. Data
is partitioned into separate files that are named using the
convention filename.xxx, where xxx represents the number of
the partition to which the split file belongs. If there are
multiple input data files in the LOAD command, they will all
be split. However, only one split file is generated for each
database partition. The name of the split file is the same as the
name of the first input data file.

LOAD_ONLY
In this mode, previously split data is loaded. The data is
contained in separate files that are named using the
convention filename.xxx, or filename.00xxx, where xxx represents
the number of the partition to which the split file belongs.
AutoLoader expects to find these files in the
SPLIT_FILE_LOCATION or in the current working directory.
The directory location must be read-accessible. The split files
are loaded concurrently on their corresponding partitions. If
there are multiple input data files in the LOAD command
(such as infile1, infile2, and so on), AutoLoader loads
infile1.xxx if it exists. Otherwise, it loads infile1.00xxx if it
exists. If neither exists, AutoLoader returns an error. If both
exist, AutoLoader loads infile1.xxx. Once the first infile1 of
either file type (xxx or 00xxx) is loaded, checking begins for
infile2, and this process is repeated until all of the input files
are loaded.

ANALYZE
In this mode, a customized optimal partitioning map for a
nodegroup is generated. It is recommended that a data file
with a large number of records be specified as input (multiple
input files are allowed); if this is done, the map will produce a
more even distribution of data across each of the database
partitions in the nodegroup. The output is written to the file
specified by the MAP_FILE_OUTPUT parameter. The
REDISTRIBUTE NODEGROUP command (see the Command
Reference) must be invoked before the new partitioning map

AutoLoader Options

138 Data Movement Utilities

can take effect. Subsequent AutoLoader invocations in
SPLIT_AND_LOAD mode will automatically use the new
partitioning map. The MAP_FILE_INPUT parameter can be
used when partitioning the data according to the new
partitioning map without changing the default partitioning
map of the nodegroup.

LOGFILE Parameter
This parameter is used to provide the base name of the temporary
and permanent files used by the AutoLoader utility:

<logfile>.split.cfg ...
Configuration file for all splitters.

<logfile>.split.<3-digit-node-number>.log ...
Log file for each splitter.

<logfile>.pmap.<pid> ...
Internal temporary file, where <pid> is the process ID

of this AutoLoader job.
<logfile>.load.<3-digit-node-number> ...

Message file for each loading process if there is no
message file specified in the LOAD command.

Although you can specify a path for the LOGFILE parameter, you
must verify the existence and accessibility of that path. The default
value is ./autoloader.log.

Note: If there are multiple concurrent AutoLoader sessions, you must
ensure that the specified base name or the path name is unique.

AUTHENTICATION and PASSWORD Parameters
These parameters are necessary if a password is required for remote
invocation of the splitter program, or client/server database
connections when loading. The default value for AUTHENTICATION
is NO (no password checking), and any value specified for the
PASSWORD parameter is ignored.

The concept of a local database connection has been extended for
MPP environments to include connections from any node of a given
MPP instance. That means that even though the instance is configured
using AUTHENTICATION server, a password is not required if a
connection is being attempted from one of the nodes defined in the
db2nodes.cfg file. The AutoLoader makes use of this new connection
behavior when the AUTHENTICATION flag in the AutoLoader
configuration file is not set, or is set to NO, and a value for the
PASSWORD parameter is not specified. A password for AutoLoader is
only mandatory if a password is required for remote execution of
programs on your system. For example, a password is required if the
.rhosts file on a UNIX system has not been set up properly to enable
rsh execution.

AutoLoader Options

Chapter 4. AutoLoader 139

Alternatively, if a password is needed, the DB2 registry variable
DB2ATLD_PWFILE, which defines the fully qualified path to a
password file created by the user, can be set. Both the password file
and the fully qualified path must be accessible to the AutoLoader
utility. If this variable is defined, the first word in the file pointed to
by its value will be the password.

MAX_NUM_SPLITTERS Parameter
This parameter specifies the maximum number of splitter processes
that can be used in an AutoLoader job. The default value is 25.

FORCE Parameter
This parameter forces the AutoLoader job to continue even if the
utility determines (at startup time) that some target partitions or table
spaces are offline. If the value is NO, and some partitions are
unavailable, no data will be processed. If the value is YES, database
partitions that are available will be loaded, and all others will be
ignored. The default value for this parameter is NO.

STATUS_INTERVAL Parameter
This parameter specifies the number of megabytes (MB) of data to
load before generating a progress message. Valid values are whole
numbers in the range of 1 to 4000. The default value is 100.

PORTS Parameter
This parameter specifies the range of TCP ports used to create sockets
for internal AutoLoader communications. The default range is 6000 to
6063. If defined at the time of AutoLoader invocation, the value of the
DB2ATLD_PORTS DB2 registry variable replaces any value specified
for this parameter.

CHECK_LEVEL Parameter
This parameter specifies whether checking for record truncation
during input or output should be performed. Valid values are CHECK
and NOCHECK. The default value is NOCHECK.

MAP_FILE_INPUT Parameter
This parameter specifies the name of the input file that points to a file
containing the customized partitioning map. If the partitioning map is
a customized (not a default) map, this parameter must be specified.
You can get a customized partitioning map by invoking the
AutoLoader in ANALYZE mode to generate an optimal map. This
map must be moved to each database partition in your database
before actual loading can proceed.

MAP_FILE_OUTPUT Parameter
This parameter specifies a name for the partitioning map when the
AutoLoader is invoked in ANALYZE mode. An optimal partitioning
map distributes data evenly across all database partitions. If a value

AutoLoader Options

140 Data Movement Utilities

for this parameter is not specified, and the utility is running in
ANALYZE mode, an error is returned.

TRACE Parameter
This parameter specifies the number of records to trace when you
need to review a dump of all of the data conversion process and the
output of hashing values. The default value is zero (no tracing).

NEWLINE Parameter
This parameter specifies the character that is used to delimit each
record in the data file. This parameter is meaningful only if the input
data file is a fixed-length ASC file with each record delimited by a
new line character, and the reclen modifier in the LOAD command
has been specified. If a value of YES is specified, the AutoLoader
always checks whether the record is terminated by a new line
character. It also checks whether the record length matches that
specified through the reclen modifier. The default value is NO.

Example AutoLoader Session

Following is a sample AutoLoader configuration file (on AIX):

###############
release level
###############
RELEASE=V6.00

##################
CLP load command
##################
db2 load from /home/user/atld_work/test.dat of del replace into user.test

###############
database name
###############
database=wsdb

#################
split partition list
#################
SPLIT_NODES=(0,2)

##############
running mode
##############
mode=split_and_load

################
log file token
################
logfile=mylog

AutoLoader Options

Chapter 4. AutoLoader 141

######################################
frequency of progressive information
#
print out progressive info every 10
mega-bytes of data
######################################
STATUS_INTERVAL=10

The following command issued against this configuration file includes the
path and the temporary working directory accessible from each of the
participating database partitions. The name of the configuration file,
sample.atld.cfg, is also specified:

/home/user/atld_work/ $ db2atld -config sample.atld.cfg

Invocation of this command produces the following output:
/home/user/atld_work/ $ db2atld -config sample.atld.cfg
Utility program: "db2atld". Version: "06000".
Start reading autoloader configuration file: sample.atld.cfg
Finish reading autoloader configuration file: sample.atld.cfg
Start initializing autoloader process.
Finish initializing autoloader process.
The Autoloader is now issuing all LOAD requests.
The LOAD operation has begun on partition "0".
The LOAD operation has begun on partition "1".
The LOAD operation has begun on partition "2".
The LOAD operation has begun on partition "3".
The Autoloader is now issuing all split requests.
Start db2split on node "0" in background.
Start db2split on node "2" in background.
The utility has read "10" megabytes from the source data.
The utility has read "20" megabytes from the source data.
The utility has read "30" megabytes from the source data.
The utility has read "40" megabytes from the source data.
The utility has read "50" megabytes from the source data.
The utility has read "60" megabytes from the source data.
The utility has read "70" megabytes from the source data.
The utility has read "80" megabytes from the source data.
The utility has read "90" megabytes from the source data.
The utility has read "100" megabytes from the source data.
The utility has read "110" megabytes from the source data.
The utility has read "120" megabytes from the source data.
The utility has read "130" megabytes from the source data.
The utility has completed reading "130" megabytes from the user data.
The Autoloader is waiting for all splitters to complete.
The Autoloader is waiting for all LOAD operations to complete.
The remote execution of the splitter utility on partition "2"
finished with remote execution code "0".
The remote execution of the splitter utility on partition "0"
finished with remote execution code "0".

Example AutoLoader Session

142 Data Movement Utilities

Operation Node SQL Code Result

LOAD 000 +00000000 Success.

LOAD 001 +00000000 Success.

LOAD 002 +00000000 Success.

LOAD 003 +00000000 Success.

SPLIT 000 +00000000 Success.

SPLIT 002 +00000000 Success.

PSPLIT 000 +00000000 Success.

RESULTS: 4 of 4 LOADs completed successfully.

Rows Read 1310848
Rows Skipped 0
Rows Loaded 1310848
Rows Rejected 0
Rows Deleted 0
Rows Committed 1310848

The main body of the messages generated by the AutoLoader pertain to the
initialization of the participating database partitions. Both splitting and
loading processes are logged. Termination of the AutoLoader processes is also
recorded.

A summary table of operations performed, partitions used, SQL codes
returned, and results obtained, is also generated. If an SQL code other than
zero is returned, a review of the message file will show the specific warnings
or errors that were recorded.

A record summary for the AutoLoader job completes the output.

Migration and Back-level Compatibility

There are migration and back-level compatibility issues associated with the
AutoLoader utility:
v An earlier version of the AutoLoader utility was invoked through the

db2autold command. The current version is invoked through the db2atld
command.

v db2atld uses sockets as internal communications channels (as opposed to
named pipes), and it chooses a TCP port number from the default range of
6063 down to 6000. However, if your system requires this range for other
applications, you have two options when you migrate:

Example AutoLoader Session

Chapter 4. AutoLoader 143

– The PORTS parameter in the AutoLoader configuration file can be used
to specify a port range other than the default.

– The DB2ATLD_PORTS DB2 registry variable can be defined by
specifying the range as:

<lower-port-number>:<higher-port-number>

The priority sequence for determining the TCP port range is: the
DB2ATLD_PORTS DB2 registry variable, the PORTS AutoLoader
configuration parameter, and the default.

v If a password is needed for client-to-server database connections, you have
two options when you migrate:
– The AutoLoader configuration parameters AUTHENTICATION and

PASSWORD can be used. If AUTHENTICATION is set to YES, and
PASSWORD is defined, the password is used for authentication. If
AUTHENTICATION is set to YES, and PASSWORD is not defined, you
are prompted for a password.

– The DB2 registry value DB2ATLD_PWFILE can be set to point to a file
where the password is stored. If specified, the contents of the file are
evaluated, and the first blank-delimited character string is used as the
password. Since the registry value is evaluated last, if defined, it will be
used to override other password values.

AutoLoader Hints and Tips

Following is some information to consider before using the AutoLoader
utility:
v Familiarize yourself with AutoLoader operations by using the utility with

small amounts of data.
v If the input data is already sorted, or in some chosen order, and you wish

to maintain that order during the loading process, only one database
partition should be used for splitting. Parallel splitting cannot guarantee
that the data will be loaded in the same order it was received.

v If large objects (LOBs) are being loaded from separate files (that is, if you
are using the lobsinfile modifier through the load utility), all directories
containing the LOB files must be read-accessible to all the database
partitions where loading is taking place. The LOAD lob-path parameter
must be fully qualified when working with LOBs.

v All temporary AutoLoader files reside in the directory specified through the
LOGFILE AutoLoader configuration parameter. This directory must be
network-accessible with both read and write access to all partitions where
splitting is to be done. By specifying different directories for temporary
files, you can run multiple concurrent AutoLoader jobs to load data into
separate tables in different table spaces.

Migration and Back-level Compatibility

144 Data Movement Utilities

v The maximum number of active database connections in an AutoLoader job
is the number of loading partitions defined in the OUTPUT_NODES
AutoLoader configuration parameter. Ensure that the maxxappls (maximum
number of active applications) database configuration parameter has been
set high enough.

v You can force an AutoLoader job to continue even if the AutoLoader detects
(at startup time) that some loading partitions or associated table spaces are
offline, by specifying FORCE=YES in the AutoLoader configuration file.

v Use the STATUS_INTERVAL AutoLoader configuration parameter to
monitor the progress of an AutoLoader job. AutoLoader returns messages at
specified intervals, indicating how many megabytes of data have been
processed.

v Better performance can be expected if the splitting partitions (as defined by
the SPLIT_NODES parameter) are different from the loading partitions (as
defined by the OUTPUT_NODES parameter), since there is less contention
for CPU cycles. The AutoLoader utility itself should be invoked on a
database partition that is not participating in either the splitting or the
loading operation. On an SMP system, you can improve performance by
ensuring that there is at least one splitter task for every available CPU.

v AutoLoader ignores the MESSAGES parameter in the LOAD command, and
directs all messages from the LOAD command into the file load_log.XXX;
this file contains messages from the load process on database partition
XXX. AutoLoader also creates a file called splt_log.XXX; this file contains
messages from the split process on database partition XXX. The utility also
creates a file called autoload.log, containing messages from the main
AutoLoader script. Check it to ensure that all pipes and temporary
directories have been set up correctly.

v AutoLoader chooses only one output database partition on which to collect
statistics. The RUN_STAT_NODE AutoLoader configuration parameter can
be used to specify that partition.

v Multiple invocations of AutoLoader can be used to load data
simultaneously into separate tables. Ensure that:
– The tables reside in separate table spaces.
– All of the AutoLoader operations are invoked from separate directories.
– The data file name used to create temporary pipes is unique for each

AutoLoader operation.

Restrictions and Limitations

The following restrictions apply to the AutoLoader utility:
v The location of the input files to the load operation cannot be a tape device.

AutoLoader Hints and Tips

Chapter 4. AutoLoader 145

v AutoLoader does not support the ROWCOUNT option on the LOAD
command.

v If you are using multiple database partitions to partition and then load the
data, the use of a SAVECOUNT greater than zero on the LOAD command
is not supported.

AutoLoader Troubleshooting

If it appears that the AutoLoader utility is hanging, you can:
v Use the STATUS_INTERVAL parameter of the AutoLoader configuration file

to monitor the progress of an AutoLoader job.
v Check the <logfile>.split.<3-digit-node-number>.log files to see the

status of the splitter processes on each splitting database partition. If things
are going well, and the TRACE parameter in the AutoLoader configuration
file has been set, there should be trace messages for a certain number of
records in these log files.

v Check the LOAD messages file or the <logfile>.load.<3-digit-node-
number> files to see if there are any load error messages.

v Interrupt the current AutoLoader job if you find errors suggesting that one
of the AutoLoader processes encountered errors.

If the AutoLoader utility is still failing, you can:
1. Set the MODE parameter in the AutoLoader configuration file to

SPLIT_ONLY, and invoke the utility again.
2. Check the split data files to see if there is anything abnormal in them. If

the split files look correct, try to manually load one of those split files on
the correct database partition.

3. If the data loads correctly, there might be additional AutoLoader problems
or database system problems. Contact your IBM service representative.

The following applies to an error scenario for the AutoLoader utility on IBM
DB2 Universal Database Enterprise - Extended Edition for Windows NT.

When running db2atld on a multi-homed machine (that is, a machine with
multiple network cards installed), ensure that the machine is configured
correctly by typing the hostname command on the machine where the
AutoLoader is running, and then pinging this host name from the same
machine. The IP address returned should be the same as that returned when
this host name is pinged from another machine in your DB2 MPP node list. If
the machine is not configured correctly, the utility returns an SQL6555N error,
and you will see the error message errno = 10061 (connection refused) in the
db2diag.log files on some of the loading nodes defined by the
OUTPUTNODES parameter in your AutoLoader configuration file.

AutoLoader Restrictions and Limitations

146 Data Movement Utilities

On Windows NT machines, the IP address returned for a local host name is
not retrieved from the DNS or the hosts file, but from information configured
locally in the Control Panel network icon. A Windows NT Version 4.0 defect
causes the IP address order returned on a multi-homed machine to ignore the
binding order configured in the Control Panel network icon. See Microsoft
Support online article Q171320 for information that will help you to solve this
problem.

AutoLoader Troubleshooting

Chapter 4. AutoLoader 147

148 Data Movement Utilities

Chapter 5. Moving DB2 Data Links Manager Data

This chapter describes how to use the DB2 export, import, and load utilities to
move DB2 Data Links Manager data.

For information about the file formats that you can use with these utilities, see
“Appendix C. Export/Import/Load Utility File Formats” on page 179.

For detailed information about the DB2 Data Links Manager, see the DB2 Data
Links Manager for Windows NT Quick Beginnings, or the DB2 Data Links
Manager for AIX Quick Beginnings.

The following topics are covered:

v “Using Export to Move DB2 Data Links Manager Data”

v “Using Import to Move DB2 Data Links Manager Data” on page 152

v “Using Load to Move DB2 Data Links Manager Data” on page 153.

Using Export to Move DB2 Data Links Manager Data

Since table data resides in the database, and the files referred to by
DATALINK columns reside on Data Links servers, the export utility must
move both the database data, and the data files on the corresponding Data
Links servers (see Figure 8). To do this, the export utility produces one control
file per Data Links server. The name of the control file is the same as the
name of the Data Links server. The control files are created in a new directory

Tables

DB2 UDB
Database Server (DBMS)

DB2 Data Links
Server

Linked
Files

DB2 client running Import,
Export, or Load

Figure 8. Moving DB2 Data Links Manager Data.. Since table data resides in the database, and
the files referred to by DATALINK columns reside on Data Links servers, the export, import, and
load utilities must move both the database data, and the data files on the corresponding Data
Links servers.

© Copyright IBM Corp. 1999 149

that has the name dlfm/YYYYMMDD/HHMMSS, where YYYYMMDD
represents YearMonthDay, and HHMMSS represents HourMinuteSecond. This
directory is created under the same directory in which the export data file is
created. A control file lists the names of the corresponding DB2 Data Links
Manager files that are referenced by the DATALINK columns of the rows that
are exported.

On the WINDOWS NT operating system, the export utility produces only one
control file for all Data Links servers. The name of this control file is
ctrlfile.lst. It is created in a new directory that has the name
dlfm\YYYYMMDD\HHMMSS. This directory is created under the same
directory in which the export data file is created. The control file lists the
URLs of all DB2 Data Links Manager files that are referenced by the
DATALINK columns of the rows that are exported.

DATALINK values that have the NO LINK CONTROL property are not
placed in the control file.

The control files must be transported to their respective Data Links servers.
On the Windows NT operating system, the single control file must be
transported to all referenced Data Links servers. The dlfm_export utility
should be run at each Data Links server, specifying the control file name. This
utility produces an archive of the files listed in the control file for that Data
Links server.

To ensure that a consistent copy of the table and the corresponding files that
are referenced by the DATALINK columns are copied, perform the following
steps:

1. Ensure that no update transactions are in progress when the export
operation is running by issuing the following command:

db2 quiesce tablespaces for table tablename share

2. Invoke the export utility.
3. Run the dlfm_export utility with root authority at each Data Links server;

this will successfully archive files to which the Data Links File Manager
administrator may not have access. As input to dlfm_export, specify the
name of the control file that was generated by the export utility.

4. Make the table available for updates by issuing the following command:
db2 quiesce tablespaces for table tablename reset

The export utility executes as an SQL application. The rows and columns that
satisfy the conditions of the SELECT statement are extracted from the
database. For DATALINK columns, the SELECT statement should not specify
any scalar functions.

Using Export to Move DB2 Data Links Manager Data

150 Data Movement Utilities

The export utility generates the following files:
v The export data file. A DATALINK column value in this file has the same

format as that used by the import and the load utilities. If the DATALINK
column value is NULL, it is treated in the same way as are other NULL
columns.

v Control files for each Data Links server. The control file lists the complete
path and the names of all the files that are to be exported from that Data
Links server. On the Windows NT operating system, there is only one
control file for all Data Links servers referenced by DATALINK column
values.

Use the dlfm_export utility to export files from a Data Links server as follows:
dlfm_export control-file-name archive-file-name

where control-file-name is the name of the control file generated by running the
export utility on the DB2 client, and archive-file-name is the name of the archive
file that will be generated. The default archive-file-name is export.tar, located
in the current working directory.

A complementary utility called dlfm_import is provided to retrieve and
restore files from the archive that dlfm_export generates. This utility must be
used whether the archived files are being restored on the same, or a different,
Data Links server.

Use the dlfm_import utility to retrieve files from the archive as follows:
dlfm_import archive-file-name

where archive-file-name is the name of the archive file that will be used to
restore the files. The default archive-file-name is export.tar. Run the
dlfm_import utility with root authority at each Data Links server, because
you may want to restore the archived files on a different Data Links server,
which may not have the same directory structure and user IDs as the Data
Links server on which the dlfm_export utility was run.

Notes:

1. The DB2 Data Links Manager does not have to be running when you
invoke these utilities.

2. When running the dlfm_import utility on a Data Links server other than
the one on which the dlfm_export utility was run, the files will be restored
in the correct paths. The files will be owned by root in case some of the
user IDs do not exist on the importing machine. Before inserting these files
into a database, ensure that all files have the correct permissions and
belong to the correct user IDs.

Using Export to Move DB2 Data Links Manager Data

Chapter 5. Moving DB2 Data Links Manager Data 151

The following table shows how to export the DB2 data and the files that are
referenced by the database called SystemA to the database called SystemB.
SystemA uses the Data Links servers DLFM1 and DLFM2. SystemB uses the
Data Links servers DLFMX and DLFMY. The files on DLFM1 will be exported
to DLFMX, and the files on DLFM2 will be exported to DLFMY.

Database SystemA with Data Links Servers DLFM1
and DLFM2

Step

DB2 data on File File1 with file
names for DLFM1

File2 with file
names for DLFM2

1) Run the dlfm_export
command (as root) on both
Data Links servers. This
will produce an archive on
both Data Links servers.

Database SystemB with Data Links Servers DLFMX
and DLFMY

On DLFMX,
restore from
archive

On DLFMY,
restore from
archive

2) Run dlfm_import (as
root) on both Data Links
servers.

3) Run the IMPORT
command on SystemB,
using the parameter
DL_URL_REPLACE_PREFIX
to specify the appropriate
Data Links server for each
exported file.

When you run the IMPORT command on SystemB, the SystemA data and all files
referenced by DATALINK columns are imported.

Using Import to Move DB2 Data Links Manager Data

Since table data resides in the database, and the files referred to by
DATALINK columns reside on Data Links servers, the import utility must
move both the database data, and the data files on the corresponding Data
Links servers (see Figure 8 on page 149).

Before running the import utility against the target database:

1. Copy the files that will be referenced to the appropriate Data Links
servers. The dlfm_import utility can be used to extract files from an
archive that is generated by the dlfm_export utility.

2. Define the prefix name (or names) to the Data Links File Managers on the
Data Links servers. (You may want to perform other administrative tasks,
such as registering the database.)

3. Update the Data Links server information in the URLs (of the DATALINK
columns) from the exported data for the SQL table, if required. (If the Data

Using Export to Move DB2 Data Links Manager Data

152 Data Movement Utilities

Links servers of the original configuration are the same as those at the
target location, the Data Links server names need not be updated).

4. Define the Data Links servers at the target configuration in the DB2 Data
Links Manager configuration file.

When the import utility runs against the target database, files referred to by
DATALINK column data are linked on the appropriate Data Links servers.

Using Load to Move DB2 Data Links Manager Data

If you are loading data into a table with a DATALINK column that is defined
with FILE LINK CONTROL, perform the following steps before invoking the
load utility. (If all the DATALINK columns are defined with NO LINK
CONTROL, these steps are not necessary.)
1. Ensure that DB2 Data Links Manager is installed on the Data Links servers

that will be referred to by the DATALINK column values.
2. Ensure that the database is registered with the DB2 Data Links Manager.
3. Copy to the appropriate Data Links servers all files that will be inserted as

DATALINK values.
4. Define the prefix name (or names) to the DB2 Data Links Managers on the

Data Links servers.
5. Register the Data Links servers referred to by DATALINK data (to be

loaded) in the DB2 Data Links Manager configuration file.

The connection between DB2 and the Data Links server may fail while
running the load utility, causing the load operation to fail. If this occurs:
1. Start the Data Links server and DB2 Data Links Manager.
2. Issue the LOAD RESTART command (see “LOAD Command” on page 70).

Links that fail during the load operation are considered to be data integrity
violations, and are handled in much the same way as unique index violations.
Consequently, a special exception has been defined for loading tables that
have one or more DATALINK columns. For additional information, refer to
the description of exceptions in the SQL Reference.

Using Import to Move DB2 Data Links Manager Data

Chapter 5. Moving DB2 Data Links Manager Data 153

Using Load to Move DB2 Data Links Manager Data

154 Data Movement Utilities

Chapter 6. Moving Data Between Systems

This chapter describes how to use the DB2 export, import, and load utilities to
transfer data across platforms, and to and from DRDA host databases.

DataPropagator (DPROP), another method for moving data between databases
in an enterprise, is also described.

The following topics are covered:
v “Moving Data Across Platforms”

v “Moving Data Using the db2move Tool” on page 158

v “Moving Data With DB2 Connect” on page 163

v “Moving Data Between Typed Tables” on page 165

v “Using Replication to Move Data” on page 170.

Moving Data Across Platforms

Compatibility is important when exporting, importing, or loading data across
platforms. The following sections describe PC/IXF, delimited ASCII (DEL),
and WSF file format considerations when moving data between different
operating systems. For more detailed information about the file formats that
you can use with the DB2 data movement utilities, see “Appendix C.
Export/Import/Load Utility File Formats” on page 179.

PC/IXF File Format

PC/IXF is the recommended file format for transferring data across platforms.
PC/IXF files allow the load utility or the import utility to process (normally
machine dependent) numeric data in a machine-independent fashion. For
example, numeric data is stored and handled differently by Intel and other
hardware architectures.

To provide compatibility of PC/IXF files among all products in the DB2
family, the export utility creates files with numeric data in Intel format, and
the import utility expects it in this format.

Depending on the hardware platform, DB2 products convert numeric values
between Intel and non-Intel formats (using byte reversal) during both export
and import operations.

© Copyright IBM Corp. 1999 155

UNIX based implementations of DB2 do not create multiple-part PC/IXF files
during export. However, they will allow you to import a multiple-part
PC/IXF file that was created by DB2. When importing this type of file, all
parts should be in the same directory, otherwise an error is returned.

Single-part PC/IXF files created by UNIX based implementations of the DB2
export utility can be imported by DB2 for OS/2 or DB2 for Windows NT.

Delimited ASCII (DEL) File Format

DEL files have differences based on the operating system on which they were
created. The differences are:
v Row separator characters

– UNIX based text files use a line feed (LF) character.
– Non-UNIX based text files use a carriage return/line feed (CRLF)

sequence.
v End-of-file character

– UNIX based text files do not have an end-of-file character.
– Non-UNIX based text files have an end-of-file character (X’1A’).

Since DEL export files are text files, they can be transferred from one
operating system to another. File transfer programs can handle operating
system-dependant differences if you transfer the files in text mode; the
conversion of row separator and end-of-file characters is not performed in
binary mode.

Note: If character data fields contain row separator characters, these will also
be converted during file transfer. This conversion causes unexpected
changes to the data and, for this reason, it is recommended that you do
not use DEL export files to move data across platforms. Use the
PC/IXF file format instead.

WSF File Format

Numeric data in WSF format files is stored using Intel machine format. This
format allows Lotus WSF files to be transferred and used in different Lotus
operating environments (for example, in Intel based and UNIX based
systems).

As a result of this consistency in internal formats, exported WSF files from
DB2 products can be used by Lotus 1-2-3 or Symphony running on a different
platform. DB2 products can also import WSF files that were created on
different platforms.

Transfer WSF files between operating systems in binary (not text) mode.

Moving Data Across Platforms

156 Data Movement Utilities

Note: Do not use the WSF file format to transfer data between DB2 databases
on different platforms, because a loss of data can occur. Use the PC/IXF
file format instead.

Moving Data Across Platforms

Chapter 6. Moving Data Between Systems 157

Moving Data Using the db2move Tool

This tool facilitates the movement of large numbers of tables between DB2
databases located on workstations. The tool queries the system catalog tables
for a particular database and compiles a list of all user tables. It then exports
these tables in PC/IXF format. The PC/IXF files can be imported or loaded to
another local DB2 database on the same system, or can be transferred to
another workstation platform and imported or loaded to a DB2 database on
that platform.

Authorization

This tool calls the DB2 export, import, and load APIs, depending on the action
requested by the user. Therefore, the requesting user ID must have the correct
authorization required by those APIs, or the request will fail.

Command Syntax

ÊÊ db2move dbname action ·

-tc
-tn
-io
-lo
-l
-u
-p

ÊÍ

Command Parameters

dbname
Name of the database.

action Must be one of: EXPORT, IMPORT, or LOAD.

-tc table-creators. The default is all creators.

This is an EXPORT action only. If specified, only those tables created
by the creators listed with this option are exported. If not specified,
the default is to use all creators. When specifying multiple creators,
each must be separated by commas; no blanks are allowed between
creator IDs. The maximum number of creators that can be specified is
10. This option can be used with the “-tn” table-names option to select
the tables for export.

An asterisk (*) can be used as a wildcard character that can be placed
anywhere in the string.

-tn table-names. The default is all user tables.

Moving Data Using the db2move Tool

158 Data Movement Utilities

This is an EXPORT action only. If specified, only those tables whose
names match exactly those in the specified string are exported. If not
specified, the default is to use all user tables. When specifying
multiple table names, each must be separated by commas; no blanks
are allowed between table names. The maximum number of table
names that can be specified is 10. This option can be used with the
“-tc” table-creators option to select the tables for export. db2move will
only export those tables whose names are matched with specified
table names and whose creators are matched with specified table
creators.

An asterisk (*) can be used as a wildcard character that can be placed
anywhere in the string.

-io import-option. The default is REPLACE_CREATE.

Valid options are: INSERT, INSERT_UPDATE, REPLACE, CREATE,
and REPLACE_CREATE.

-lo load-option. The default is INSERT.

Valid options are: INSERT and REPLACE.

-l lobpaths. The default is the current directory.

This option specifies the absolute path names where LOB files are
created (as part of EXPORT) or searched for (as part of IMPORT or
LOAD). When specifying multiple LOB paths, each must be separated
by commas; no blanks are allowed between LOB paths. If the first
path runs out of space (during EXPORT), or the files are not found in
the path (during IMPORT or LOAD), the second path will be used,
and so on.

If the action is EXPORT, and LOB paths are specified, all files in the
LOB path directories are deleted, the directories are removed, and
new directories are created. If not specified, the current directory is
used for the LOB path.

-u userid. The default is the logged on user ID.

Both user ID and password are optional. However, if one is specified,
the other must be specified. If the command is run on a client
connecting to a remote server, user ID and password should be
specified.

-p password. The default is the logged on password.

Both user ID and password are optional. However, if one is specified,
the other must be specified. If the command is run on a client
connecting to a remote server, user ID and password should be
specified.

Moving Data Using the db2move Tool

Chapter 6. Moving Data Between Systems 159

Examples
v db2move sample export

This will export all tables in the SAMPLE database; default values are used
for all options.

v db2move sample export -tc userid1,us*rid2 -tn tbname1,*tbname2

This will export all tables created by “userid1” or user IDs LIKE “us%rid2”,
and with the name “tbname1” or table names LIKE “%tbname2”.

v db2move sample import -l D:\LOBPATH1,C:\LOBPATH2

This example is applicable to OS/2 or the Windows operating system only.
The command will import all tables in the SAMPLE database; LOB paths
“D:\LOBPATH1” and “C:\LOBPATH2” are to be searched for LOB files.

v db2move sample load -l /home/userid/lobpath,/tmp

This example is applicable to UNIX based systems only. The command will
load all tables in the SAMPLE database; both the /home/userid/lobpath
subdirectory and the tmp subdirectory are to be searched for LOB files.

v db2move sample import -io replace -u userid -p password

This will import all tables in the SAMPLE database in REPLACE mode; the
specified user ID and password will be used.

Usage Notes

This tool exports, imports, or loads user-created tables. If a database is to be
duplicated from one operating system to another operating system, db2move
facilitates the movement of the tables. It is also necessary to move all other
objects associated with the tables, such as: aliases, views, triggers,
user-defined functions, and so on. db2look (DB2 Statistics Extraction Tool; see
the Command Reference) can facilitate the movement of some of these objects
by extracting the data definition language (DDL) statements from the
database.

When export, import, or load APIs are called by db2move, the FileTypeMod
parameter is set to lobsinfile. That is, LOB data is kept in separate files from
PC/IXF files. There are 26 000 file names available for LOB files.

The LOAD action must be run locally on the machine where the database and
the data file reside. When the load API is called by db2move, the
CopyTargetList parameter is set to NULL; that is, no copying is done. If
logretain is on, the load operation cannot be rolled forward later. The table
space where the loaded tables reside is placed in backup pending state, and is
not accessible. A full database backup, or a table space backup, is required to
take the table space out of backup pending state.

Files Required/Generated When Using EXPORT:

v Input: None.

Moving Data Using the db2move Tool

160 Data Movement Utilities

v Output:

EXPORT.out The summarized result of the EXPORT action.

db2move.lst The list of original table names, their corresponding PC/IXF
file names (tabnnn.ixf), and message file names
(tabnnn.msg). This list, the exported PC/IXF files, and LOB
files (tabnnnc.yyy) are used as input to the db2move
IMPORT or LOAD action.

tabnnn.ixf The exported PC/IXF file of a specific table.

tabnnn.msg The export message file of the corresponding table.

tabnnnc.yyy The exported LOB files of a specific table.

“nnn” is the table number. “c” is a letter of the alphabet.
“yyy” is a number ranging from 001 to 999.

These files are created only if the table being exported
contains LOB data. If created, these LOB files are placed in
the “lobpath” directories. There are a total of 26 000 possible
names for the LOB files.

system.msg The message file containing system messages for creating or
deleting file or directory commands. This is only used if the
action is EXPORT, and a LOB path is specified.

Files Required/Generated When Using IMPORT:

v Input:

db2move.lst An output file from the EXPORT action.

tabnnn.ixf An output file from the EXPORT action.

tabnnnc.yyy An output file from the EXPORT action.
v Output:

IMPORT.out The summarized result of the IMPORT action.

tabnnn.msg The import message file of the corresponding table.

Files Required/Generated When Using LOAD:

v Input:

db2move.lst An output file from the EXPORT action.

tabnnn.ixf An output file from the EXPORT action.

tabnnnc.yyy An output file from the EXPORT action.
v Output:

LOAD.out The summarized result of the LOAD action.

Moving Data Using the db2move Tool

Chapter 6. Moving Data Between Systems 161

tabnnn.msg The LOAD message file of the corresponding table.

Moving Data Using the db2move Tool

162 Data Movement Utilities

Moving Data With DB2 Connect

If you are working in a complex environment in which you need to move
data between a host database system and a workstation, you can use DB2
Connect, the gateway for data transfer from the host to the workstation, as
well as the reverse (see Figure 9).

The following section discusses exporting and importing data using DB2
Connect.

Using the Export and the Import Utilities

The DB2 export and import utilities allow you to move data from a DRDA
server database to a file on the DB2 Connect workstation, and the reverse. You
can then use the data with any other application or relational database
management system that supports this export or import format. For example,
you can export data from DB2 for MVS/ESA into a delimited ASCII file, and
then import it into a DB2 for OS/2 database.

You can perform export and import operations from a database client or from
the DB2 Connect workstation.

Notes:

1. The data to be exported or imported must comply with the size and data
type restrictions that are applicable to both databases.

2. To improve import performance, you can use compound SQL. Specify the
compound file type modifier in the import utility to group a specified
number of SQL statements into a block (see “File Type Modifiers (Import)”
on page 49). This may reduce network overhead and improve response

time.

Database
table

DB2 for MVS
Database Server (DBMS)

DB2 UDB client
executing Import/Export

DB2 Connect

Figure 9. Import/Export through DB2 Connect

Moving Data With DB2 Connect

Chapter 6. Moving Data Between Systems 163

3. For detailed information about the syntax of the export and the import
utilities, see “EXPORT Command” on page 5, and “IMPORT Command”
on page 29.

Moving Data from a Workstation to a DRDA Server

To move data to a DRDA server database:
1. Export the data from a DB2 table to a PC/IXF file.
2. Using the INSERT option, import the PC/IXF file into a compatible table

in the DRDA server database.

Moving Data from a DRDA Server to a Workstation

To move data from a DRDA server database:
1. Export the data from the DRDA server database table to a PC/IXF file.
2. Import the PC/IXF file into a DB2 table.

Restrictions

With DB2 Connect, export and import operations must meet the following
conditions:
v The file type must be PC/IXF.
v A table with attributes that are compatible with the data must exist before

you can import to it. Import through DB2 Connect cannot create a table,
because INSERT is the only supported option.

v A commit count interval must not be specified for the import operation.

If any of these conditions is not met, the operation fails, and an error message
is returned.

Note: Index definitions are not stored on export or used on import.

Mixed Single-Byte and Double-Byte Data

If you export or import mixed data (columns containing both single-byte and
double-byte data), consider the following:
v On systems that store data in EBCDIC (MVS, OS/390, OS/400, VM, and

VSE), shift-out and shift-in characters mark the start and the end of
double-byte data. When you define column lengths for your database
tables, be sure to allow enough room for these characters.

v Variable-length character columns are recommended, unless the column
data has a consistent pattern.

Moving Data With DB2 Connect

164 Data Movement Utilities

Moving Data Between Typed Tables

The DB2 export and import utilities can be used to move data out of, and
into, typed tables. Typed tables may be in a hierarchy. Data movement across
hierarchies can include:
v Movement from one hierarchy to an identical hierarchy.
v Movement from one hierarchy to a sub-section of a larger hierarchy.
v Movement from a sub-section of a large hierarchy to a separate hierarchy.

The IMPORT CREATE option allows you to create both the table hierarchy
and the type hierarchy.

Identification of types in a hierarchy is database dependent. This means that
in different databases, the same type has a different identifier. Therefore, when
moving data between these databases, a mapping of the same types must be
done to ensure that the data is moved correctly.

Before each typed row is written out during an export operation, an identifier
is translated into an index value. This index value can be any number from
one to the number of relevant types in the hierarchy. Index values are
generated by numbering each type when moving through the hierarchy in a
specific order. This order is called the traverse order. It is the order of
proceeding top-to-bottom, left-to-right through all of the supertables and
subtables in the hierarchy. The traverse order is important when moving data
between table hierarchies, because it determines where the data is moved in
relation to other data.

One method is to proceed from the top of the hierarchy (or the root table),
down the hierarchy (subtables) to the bottom subtable, then back up to its
supertable, down to the next “right-most” subtable(s), then back up to next
higher supertable, down to its subtables, and so on.

The following figure shows a hierarchy with four valid traverse orders:
v Person, Employee, Manager, Architect, Student.
v Person, Student, Employee, Manager, Architect (this traverse order is

marked with the dotted line).
v Person, Employee, Architect, Manager, Student.
v Person, Student, Employee, Architect, Manager.

Moving Data Between Typed Tables

Chapter 6. Moving Data Between Systems 165

Traverse Order

There is a default traverse order, in which all relevant types refer to all
reachable types in the hierarchy from a given starting point in the hierarchy.
The default order includes all tables in the hierarchy, and each table is ordered
by the scheme used in the OUTER order predicate. There is also a
user-specified traverse order, in which the user defines (in a traverse order
list) the relevant types to be used. The same traverse order must be used
when invoking the export utility and the import utility.

If you are specifying the traverse order, remember that the subtables must be
traversed in PRE-ORDER fashion (that is, each branch in the hierarchy must
be traversed to the bottom before a new branch is started).

Default Traverse Order

The default traverse order behaves differently when used with different file
formats. Assume identical table hierarchy and type relationships in the
following:

Exporting data to the PC/IXF file format creates a record of all relevant types,
their definitions, and relevant tables. Export also completes the mapping of an
index value to each table. During import, this mapping is used to ensure

Person

Person_t

(Oid, Name, Age)

Employee

Employee_t

(SerialNum, Salary, REF

(Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

8

5

4 7

6

3 2

1

Figure 10.

Moving Data Between Typed Tables

166 Data Movement Utilities

accurate movement of the data to the target database. When working with the
PC/IXF file format, you should use the default traverse order.

With the ASC, DEL, or WSF file format, the order in which the typed rows
and the typed tables were created could be different, even though the source
and target hierarchies may be structurally identical. This results in time
differences that the default traverse order will identify when proceeding
through the hierarchies. The creation time of each type determines the order
taken through the hierarchy at both the source and the target when using the
default traverse order. Ensure that the creation order of each type in both the
source and the target hierarchies is identical, and that there is structural
identity between the source and the target. If these conditions cannot be met,
select a user-specified traverse order.

User-Specified Traverse Order

If you want to control the traverse order through the hierarchies, ensure that
the same traverse order is used for both the export and the import utilities.
Given:
v An identical definition of subtables in both the source and the target

databases
v An identical hierarchical relationship among the subtables in both the

source and target databases
v An identical traverse order

the import utility guarantees the accurate movement of data to the target
database.

Although you determine the starting point and the path down the hierarchy
when defining the traverse order, each branch must be traversed to the end
before the next branch in the hierarchy can be started. The export and import
utilities look for violations of this condition within the specified traverse
order.

Selection During Data Movement

The movement of data from one hierarchical structure of typed tables to
another is done through a specific traverse order and the creation of an
intermediate flat file. The export utility (in conjunction with the traverse
order) controls what is placed in that file. You only need to specify the target
table name and the WHERE clause. The export utility uses these selection
criteria to create an appropriate intermediate file.

The import utility controls what is placed in the target database. You can
specify an attributes list at the end of each subtable name to restrict the

Moving Data Between Typed Tables

Chapter 6. Moving Data Between Systems 167

attributes that are moved to the target database. If no attributes list is used, all
of the columns in each subtable are moved.

The import utility controls the size and the placement of the hierarchy being
moved through the CREATE, INTO table-name, UNDER, and AS ROOT
TABLE parameters. For detailed information about IMPORT command
parameters, see “IMPORT Command” on page 29.

Examples of Moving Data Between Typed Tables

Examples in this section are based on the following hierarchical structure:

Example 1

To export an entire hierarchy and then recreate it through an import
operation:

DB2 CONNECT TO Source_db
DB2 EXPORT TO entire_hierarchy.ixf OF IXF HIERARCHY STARTING Person
DB2 CONNECT TO Target_db
DB2 IMPORT FROM entire_hierarchy.ixf OF IXF CREATE INTO

HIERARCHY STARTING Person AS ROOT TABLE

Each type in the hierarchy is created if it does not exist. If these types already
exist, they must have the same definition in the target database as in the
source database. An SQL error (SQL20013N) is returned if they are not the
same. Since we are creating a new hierarchy, none of the subtables defined in
the data file being moved to the target database (Target_db) can exist. Each of

Person

Person_t

(Oid, Name, Age)

Department

Department_t

(Oid, Name, Headcount)

Employee

Employee_t

(SerialNum, Salary, REF (Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

Figure 11.

Moving Data Between Typed Tables

168 Data Movement Utilities

the tables in the source database hierarchy is created. Data from the source
database is imported into the correct subtables of the target database.

Example 2

In a more complex example, we would like to export the entire hierarchy of
the source database and import it to the target database. Although we will
export all of the data for those people over the age of 20, we will only import
selected data to the target database:

DB2 CONNECT TO Source_db
DB2 EXPORT TO entire_hierarchy.del OF DEL HIERARCHY (Person,

Employee, Manager, Architect, Student) WHERE Age>=20
DB2 CONNECT TO Target_db
DB2 IMPORT FROM entire_hierarchy.del OF DEL INSERT INTO (Person,

Employee(Salary), Architect) IN HIERARCHY (Person, Employee,
Manager, Architect, Student)

The target tables Person, Employee, and Architect must all exist. Data is
imported into the Person, Employee, and Architect subtables. That is, we will
import:
v All columns in Person into Person.
v All columns in Person plus Salary in Employee into Employee.
v All columns in Person plus Salary in Employee, plus all columns in

Architect into Architect.

Columns SerialNum and REF(Employee_t) will not be imported into Employee
or its subtables (that is, Architect, which is the only subtable having data
imported into it).

Note: Because Architect is a subtable of Employee, and the only import
column specified for Employee is Salary, Salary will also be the only
Employee-specific column imported into Architect. That is, neither
SerialNum nor REF(Employee_t) columns are imported into either
Employee or Architect rows.

Data for the Manager and the Student tables is not imported.

Example 3

In this example, we export from a regular table, and import as a single
subtable in a hierarchy. The EXPORT command operates on regular
(non-typed) tables, so there is no Type_id column in the data file. The
modifier no_type_id is used to indicate this, so that the import utility does not
expect the first column to be the Type_id column.

Moving Data Between Typed Tables

Chapter 6. Moving Data Between Systems 169

DB2 CONNECT TO Source_db
DB2 EXPORT TO Student_sub_table.del OF DEL SELECT * FROM

Regular_Student
DB2 CONNECT TO Target_db
DB2 IMPORT FROM Student_sub_table.del OF DEL METHOD P(1,2,3,5,4)

MODIFIED BY NO_TYPE_ID INSERT INTO HIERARCHY (Student)

In this example, the target table Student must exist. Since Student is a
subtable, the modifier no_type_id is used to indicate that there is no Type_id
in the first column. However, you must ensure that there is an existing
Object_id column, in addition to all of the other attributes that exist in the
Student table. Object-id is expected to be the first column in each row
imported into the Student table. The METHOD clause reverses the order of
the last two attributes.

Using Replication to Move Data

Replication allows you to copy data on a regular basis to multiple remote
databases. If you need to have updates to a master database automatically
copied to other databases, you can use the replication features of DB2 to
specify what data should be copied, which database tables the data should be
copied to, and how often the updates should be copied. The replication
features in DB2 are part of a larger IBM solution for replicating data in small
and large enterprises—IBM Relational Data Replication (IBM Replication).

The IBM Replication tools are a set of IBM DataPropagator (DPROP)
programs and DB2 Universal Database tools that copy data between
distributed relational database management systems:
v Between DB2 Universal Database platforms.
v Between DB2 Universal Database platforms and host databases supporting

Distributed Relational Database Architecture (DRDA) connectivity.
v Between host databases that support DRDA connectivity.

You can use the IBM Replication tools to define, synchronize, automate, and
manage copy operations from a single control point for data across your
enterprise. The replication tools in DB2 Universal Database offer replication
between relational databases only.

Replication allows you to give end users and applications access to
production data without putting extra load on the production database. You
can copy the data to a database that is local to a user or an application, rather
than have them access the data remotely. A typical replication scenario
involves a source table with copies in one or more remote databases; for
example, a central bank and its local branches. At predetermined times,

Moving Data Between Typed Tables

170 Data Movement Utilities

automatic updates of the DB2 databases takes place, and all changes to the
source database are copied to the target database tables.

The replication tools allow you to customize the copy table structure. You can
use SQL when copying to the target database to enhance the data being
copied. You can produce read-only copies that duplicate the source table,
capture data at a specified point in time, provide a history of changes, or
stage data to be copied to additional target tables. Moreover, you can create
read-write copies that can be updated by end users or applications, and then
have the changes replicated back to the master table. You can replicate views
of source tables, or views of copies. Event-driven replication is also possible.

The replication tools currently support DB2 on MVS/ESA, AS/400, AIX,
OS/2, VM and VSE, Windows NT, HP, and the Solaris operating environment.
You can also replicate to non-IBM databases, such as Oracle, Microsoft SQL
Server, and Lotus Notes.

The IBM Replication Tools by Component

There are two components of the IBM Replication tools solution: IBM DPROP
Capture, and IBM DPROP Apply. You can set up these components using the
DB2 Control Center. The operation and monitoring of these components
happens outside of the Control Center.

The IBM DPROP Capture program captures changes to the source tables. A
source table can be:
v An external table containing SQL data from a file system or a nonrelational

database manager loaded outside DPROP.
v An existing table in the database.
v A table that has previously been updated by the IBM DPROP Apply

program, which allows changes to be copied back to the source, or to other
target tables.

The changes are copied into a change data table, where they are stored until
the target system is ready to copy them. The Apply program then takes the
changes from the change data table, and copies them to the target tables.

Use the Control Center to:
v Set up the replication environment.
v Define source and target tables.
v Specify the timing of automated copying.
v Specify SQL enhancements to the data.
v Define relationships between the source and the target tables.

Using Replication to Move Data

Chapter 6. Moving Data Between Systems 171

For more information, see the Replication Guide and Reference.

Using Replication to Move Data

172 Data Movement Utilities

Appendix A. How to Read the Syntax Diagrams

A syntax diagram shows how a command should be specified so that the
operating system can correctly interpret what is typed.

Read a syntax diagram from left to right, and from top to bottom, following
the horizontal line (the main path). If the line ends with an arrowhead, the
command syntax is continued, and the next line starts with an arrowhead. A
vertical bar marks the end of the command syntax.

When typing information from a syntax diagram, be sure to include
punctuation, such as quotation marks and equal signs.

Parameters are classified as keywords or variables:
v Keywords represent constants, and are shown in uppercase letters; at the

command prompt, however, keywords can be entered in upper, lower, or
mixed case. A command name is an example of a keyword.

v Variables represent names or values that are supplied by the user, and are
shown in lowercase letters; at the command prompt, however, variables can
be entered in upper, lower, or mixed case, unless case restrictions are
explicitly stated. A file name is an example of a variable.

A parameter can be a combination of a keyword and a variable.

Required parameters are displayed on the main path:

ÊÊ COMMAND required parameter ÊÍ

Optional parameters are displayed below the main path:

ÊÊ COMMAND
optional parameter

ÊÍ

A parameter’s default value is displayed above the path:

ÊÊ COMMAND
VALUE1

OPTPARM VALUE2
VALUE3
VALUE4

ÊÍ

© Copyright IBM Corp. 1999 173

A stack of parameters, with the first parameter displayed on the main path,
indicates that one of the parameters must be selected:

ÊÊ COMMAND required choice1
required choice2

ÊÍ

A stack of parameters, with the first parameter displayed below the main
path, indicates that one of the parameters can be selected:

ÊÊ COMMAND
optional_choice1
optional_choice2

ÊÍ

An arrow returning to the left, above the path, indicates that items can be
repeated in accordance with the following conventions:
v If the arrow is uninterrupted, the item can be repeated in a list with the

items separated by blank spaces:

ÊÊ COMMAND · repeatable parameter ÊÍ

v If the arrow contains a comma, the item can be repeated in a list with the
items separated by commas:

ÊÊ COMMAND ·

,

repeatable_parameter ÊÍ

Items from parameter stacks can be repeated in accordance with the stack
conventions for required and optional parameters discussed previously.

Some syntax diagrams contain parameter stacks within other parameter
stacks. Items from stacks can only be repeated in accordance with the
conventions discussed previously. That is, if an inner stack does not have a
repeat arrow above it, but an outer stack does, only one parameter from the
inner stack can be chosen and combined with any parameter from the outer
stack, and that combination can be repeated. For example, the following
diagram shows that one could combine parameter choice2a with parameter
choice2, and then repeat that combination again (choice2 plus choice2a):

How to Read the Syntax Diagrams

174 Data Movement Utilities

ÊÊ COMMAND · parameter choice3
parameter choice1
parameter choice2

parameter choice2a
parameter choice2b
parameter choice2c

ÊÍ

Some commands are preceded by an optional path parameter:

ÊÊ COMMAND
path

ÊÍ

If this parameter is not supplied, the system searches the current directory for
the command. If it cannot find the command, the system continues searching
for the command in all the directories on the paths listed in the .profile.

Some commands have syntactical variants that are functionally equivalent:

ÊÊ COMMAND FORM1
COMMAND FORM2

ÊÍ

How to Read the Syntax Diagrams

Appendix A. How to Read the Syntax Diagrams 175

How to Read the Syntax Diagrams

176 Data Movement Utilities

Appendix B. Differences Between the Import and the Load
Utility

The following table summarizes the important differences between the DB2
load and import utilities.

Import Utility Load Utility

Slow when moving large amounts of
data.

Faster than the import utility when
moving large amounts of data, because
the load utility writes formatted pages
directly into the database.

Limited exploitation of intra-partition
parallelism.

Exploitation of intra-partition parallelism.
Typically, this requires symmetric
multiprocessor (SMP) machines.

No FASTPARSE support. FASTPARSE support, providing reduced
data checking of user-supplied data.

No CODEPAGE support. CODEPAGE support, converting character
data (and numeric data specified in
characters) from this code page to the
database code page during the load
operation.

Supports hierarchical data. Does not support hierarchical data.

Creation of tables, hierarchies, and
indexes supported with PC/IXF format.

Tables and indexes must exist.

No support for importing into summary
tables.

Support for loading into summary tables.

WSF format is supported. WSF format is not supported.

No BINARYNUMERICS support. BINARYNUMERICS support.

No PACKEDDECIMAL support. PACKEDDECIMAL support.

Supports import into tables and views. Supports loading into tables only.

The table spaces in which the table and
its indexes reside are online for the
duration of the import operation.

The table spaces in which the table and
its indexes reside are offline for the
duration of the load operation.

All rows are logged. Minimal logging is performed.

Trigger support. No trigger support.

© Copyright IBM Corp. 1999 177

Import Utility Load Utility

If an import operation is interrupted, and
a commitcount was specified, the table is
usable and will contain the rows that
were loaded up to the last COMMIT. The
user can restart the import operation, or
accept the table as is.

If a load operation is interrupted, and a
savecount was specified, the table remains
in load pending state and cannot be used
until the load operation is restarted, a
load terminate operation is invoked, or
until the table space is restored from a
backup image created some time before
the attempted load operation.

Space required is approximately
equivalent to the size of the largest index
plus 10%. This space is obtained from the
temporary table spaces within the
database.

Space required is approximately
equivalent to the sum of the size of all
indexes defined on the table, and can be
as much as twice this size. This space is
obtained from temporary space within the
database.

All constraints are validated during an
import operation.

Uniqueness is verified during a load
operation, but all other constraints must
be checked using the SET INTEGRITY
statement.

The key values are inserted into the index
one at a time during an import operation.

The key values are sorted and the index
is built after the data has been loaded.

If updated statistics are required, the
runstats utility must be run after an
import operation.

Statistics can be gathered during the load
operation if all the data in the table is
being replaced.

You can import into a host database
through DB2 Connect.

You cannot load into a host database.

Import files must reside on the node from
which the import utility is invoked.

Load files or pipes must reside on the
node that contains the database.

A backup image is not required. Because
the import utility uses SQL inserts, DB2
logs the activity, and no backups are
required to recover these operations in
case of failure.

A backup image can be created during
the load operation.

Differences Between the Import and the Load Utility

178 Data Movement Utilities

Appendix C. Export/Import/Load Utility File Formats

Four operating system file formats supported by the DB2 export, import, and
load utilities are described:

DEL Delimited ASCII, for data exchange among a wide variety of database
managers and file managers. This common approach to storing data
uses special character delimiters to separate column values.

ASC Non-delimited ASCII, for importing or loading data from other
applications that create flat text files with aligned column data.

PC/IXF
PC version of the Integrated Exchange Format (IXF), the preferred
method for data exchange within the database manager. PC/IXF is a
structured description of a database table that contains an external
representation of the internal table.

WSF Work-sheet format, for data exchange with products such as Lotus
1-2-3 and Symphony. The load utility does not support this file
format.

When using DEL, WSF, or ASC data file formats, define the table, including
its column names and data types, before importing the file. The data types in
the operating system file fields are converted into the corresponding type of
data in the database table. The import utility accepts data with minor
incompatibility problems, including character data imported with possible
padding or truncation, and numeric data imported into different types of
numeric fields.

When using the PC/IXF data file format, the table does not need to exist
before beginning the import operation. User-defined distinct types (UDTs) are
not made part of the new table column types; instead, the base type is used.
Similarly, when exporting to the PC/IXF data file format, UDTs are stored as
base data types in the PC/IXF file.

Delimited ASCII (DEL) File Format

A Delimited ASCII (DEL) file is a sequential ASCII file with row and column
delimiters. Each DEL file is a stream of ASCII characters consisting of cell
values ordered by row, and then by column. Rows in the data stream are
separated by row delimiters; within each row, individual cell values are
separated by column delimiters.

© Copyright IBM Corp. 1999 179

The following table describes the format of DEL files that can be imported, or
that can be generated as the result of an export action.
DEL file ::= Row 1 data || Row delimiter ||

Row 2 data || Row delimiter ||
.
.
.
Row n data || Optional row delimiter

Row i data ::= Cell value(i,1) || Column delimiter ||
Cell value(i,2) || Column delimiter ||
.
.
.
Cell value(i,m)

Row delimiter ::= ASCII line feed sequencea

Column delimiter ::= Default value ASCII comma (,)b

Cell value(i,j) ::= Leading spaces
|| ASCII representation of a numeric value

(integer, decimal, or float)
|| Delimited character string
|| Non-delimited character string
|| Trailing spaces

Non-delimited character string ::= A set of any characters except a row delimiter
or a column delimiter

Delimited character string ::= A character string delimiter ||
An extended character string ||
A character string delimiter ||
Trailing garbage

Trailing garbage ::= A set of any characters except a row delimiter
or a column delimiter

Character string delimiter ::= Default value ASCII double quotation
marks (")c

extended character string ::= || A set of any characters except a
row delimiter or a character string
delimiter if the NODOUBLEDEL
modifier is specified

|| A set of any characters except a
row delimiter or a character string
delimiter if the character string
is not part of two consecutive
character string delimiters

|| A set of any characters except a
character string delimiter if the
character string delimiter is not
part of two consecutive character

Delimited ASCII (DEL) File Format

180 Data Movement Utilities

string delimiters, and the DELPRIORITYCHAR
modifier is specified

End-of-file character ::= Hex '1A' (OS/2 or the Windows operating system only)

ASCII representation of a numeric valued ::= Optional sign '+' or '−'
|| 1 to 31 decimal digits with an optional decimal point before,

after, or between two digits
|| Optional exponent

Exponent ::= Character 'E' or 'e'
|| Optional sign '+' or '−'
|| 1 to 3 decimal digits with no decimal point

Decimal digit ::= Any one of the characters '0', '1', ... '9'

Decimal point ::= Default value ASCII period (.)e

v a The record delimiter is assumed to be a new line character, ASCII x0A.
Data generated on OS/2 or the Windows operating system can use the
carriage return/line feed 2-byte standard of 0x0D0A. Data in EBCDIC code
pages should use the EBCDIC LF character (0x25) as the record delimiter
(EBCDIC data can be loaded using the CODEPAGE option on the LOAD
command).

v b The column delimiter can be specified with the COLDEL option.
v c The character string delimiter can be specified with the CHARDEL option.

Note: The default priority of delimiters is:
1. Record delimiter
2. Character delimiter
3. Column delimiter

See also the description of the delprioritychar modifier in Table 8 on
page 104.

v d If the ASCII representation of a numeric value contains an exponent, it is
a FLOAT constant. If it has a decimal point but no exponent, it is a
DECIMAL constant. If it has no decimal point and no exponent, it is an
INTEGER constant.

v e The decimal point character can be specified with the DECPT option.

Sample DEL File

Following is an example of a DEL file. Each line ends with a line feed
sequence (on OS/2 or the Windows operating system, each line ends with a
carriage return/line feed sequence).

Delimited ASCII (DEL) File Format

Appendix C. Export/Import/Load Utility File Formats 181

The following example illustrates the use of non-delimited character strings.
The column delimiter has been changed to a semicolon, because the character
data contains a comma.

Notes:

1. A space (X'20') is never a valid delimiter.
2. Spaces that precede the first character, or that follow the last character of a

cell value, are discarded during import. Spaces that are embedded in a cell
value are not discarded.

3. A period (.) is not a valid character string delimiter, because it conflicts
with periods in time stamp values.

4. For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted
to the range of x00 to x3F, inclusive.

5. For DEL data specified in an EBCDIC code page, the delimiters may not
coincide with the shift-in and shift-out DBCS characters.

6. On OS/2 or the Windows operating system, the first occurrence of an
end-of-file character (X'1A') that is not within character delimiters indicates
the end-of-file. Any subsequent data is not imported.

7. A null value is indicated by the absence of a cell value where one would
normally occur, or by a string of spaces.

8. Since some products restrict character fields to 254 or 255 bytes, the export
utility generates a warning message whenever a character column of
maximum length greater than 254 bytes is selected for export. The import
utility accommodates fields that are as long as the longest LONG
VARCHAR and LONG VARGRAPHIC columns.

"Smith, Bob",4973,15.46
"Jones, Bill",12345,16.34
"Williams, Sam",452,193.78

Smith, Bob;4973;15.46
Jones, Bill;12345;16.34
Williams, Sam;452;193.78

Delimited ASCII (DEL) File Format

182 Data Movement Utilities

DEL Data Type Descriptions

Table 9. Acceptable Data Type Forms for the DEL File Format

Data Type Form in Files Created by
the Export Utility

Form Acceptable to the
Import Utility

BIGINT An INTEGER constant in
the range
-9 223 372 036 854 775 808 to
9 223 372 036 854 775 807.

ASCII representation of a
numeric value in the range
-9 223 372 036 854 775 808 to
9 223 372 036 854 775 807.
Decimal and float numbers
are truncated to integer
values.

BLOB, CLOB Character data enclosed by
character delimiters (for
example, double quotation
marks).

A delimited or
non-delimited character
string. The character string
is used as the database
column value.

BLOB_FILE, CLOB_FILE The character data for each
BLOB/CLOB column is
stored in individual files,
and the file name is
enclosed by character
delimiters.

The delimited or
non-delimited name of the
file that holds the data.

CHAR Character data enclosed by
character delimiters (for
example, double quotation
marks).

A delimited or
non-delimited character
string. The character string
is truncated or padded
with spaces (X'20'), if
necessary, to match the
width of the database
column.

DATE yyyymmdd (year month
day) with no character
delimiters. For example:
19931029

Alternatively, the
DATESISO option can be
used to specify that all date
values are to be exported
in ISO format.

A delimited or
non-delimited character
string containing a date
value in an ISO format
consistent with the country
code of the target database,
or a non-delimited
character string of the form
yyyymmdd.

DBCLOB (DBCS only) Graphic data is exported as
a delimited character
string.

A delimited or
non-delimited character
string, an even number of
bytes in length. The
character string is used as
the database column value.

Delimited ASCII (DEL) File Format

Appendix C. Export/Import/Load Utility File Formats 183

Table 9. Acceptable Data Type Forms for the DEL File Format (continued)

Data Type Form in Files Created by
the Export Utility

Form Acceptable to the
Import Utility

DBCLOB_FILE (DBCS
only)

The character data for each
DBCLOB column is stored
in individual files, and the
file name is enclosed by
character delimiters.

The delimited or
non-delimited name of the
file that holds the data.

DECIMAL A DECIMAL constant with
the precision and scale of
the field being exported.
The DECPLUSBLANK
option can be used to
specify that positive
decimal values are to be
prefixed with a blank space
instead of a plus sign (+).

ASCII representation of a
numeric value that does
not overflow the range of
the database column into
which the field is being
imported. If the input
value has more digits after
the decimal point than can
be accommodated by the
database column, the
excess digits are truncated.

FLOAT(long) A FLOAT constant in the
range -10E307 to 10E307.

ASCII representation of a
numeric value in the range
-10E307 to 10E307.

GRAPHIC (DBCS only) Graphic data is exported as
a delimited character
string.

A delimited or
non-delimited character
string, an even number of
bytes in length. The
character string is
truncated or padded with
double-byte spaces (for
example, X'8140'), if
necessary, to match the
width of the database
column.

INTEGER An INTEGER constant in
the range -2 147 483 648 to
2 147 483 647.

ASCII representation of a
numeric value in the range
-2 147 483 648 to
2 147 483 647. Decimal and
float numbers are truncated
to integer values.

LONG VARCHAR Character data enclosed by
character delimiters (for
example, double quotation
marks).

A delimited or
non-delimited character
string. The character string
is used as the database
column value.

Delimited ASCII (DEL) File Format

184 Data Movement Utilities

Table 9. Acceptable Data Type Forms for the DEL File Format (continued)

Data Type Form in Files Created by
the Export Utility

Form Acceptable to the
Import Utility

LONG VARGRAPHIC
(DBCS only)

Graphic data is exported as
a delimited character
string.

A delimited or
non-delimited character
string, an even number of
bytes in length. The
character string is used as
the database column value.

SMALLINT An INTEGER constant in
the range -32 768 to 32 767.

ASCII representation of a
numeric value in the range
-32 768 to 32 767. Decimal
and float numbers are
truncated to integer values.

TIME hh.mm.ss (hour minutes
seconds). A time value in
ISO format enclosed by
character delimiters. For
example: “09.39.43”

A delimited or
non-delimited character
string containing a time
value in a format consistent
with the country code of
the target database.

TIMESTAMP yyyy-mm-dd-
hh.mm.ss.nnnnnn (year
month day hour minutes
seconds microseconds). A
character string
representing a date and
time enclosed by character
delimiters.

A delimited or
non-delimited character
string containing a time
stamp value acceptable for
storage in a database.

VARCHAR Character data enclosed by
character delimiters (for
example, double quotation
marks).

A delimited or
non-delimited character
string. The character string
is truncated, if necessary, to
match the maximum width
of the database column.

VARGRAPHIC (DBCS
only)

Graphic data is exported as
a delimited character
string.

A delimited or
non-delimited character
string, an even number of
bytes in length. The
character string is
truncated, if necessary, to
match the maximum width
of the database column.

Delimited ASCII (DEL) File Format

Appendix C. Export/Import/Load Utility File Formats 185

Non-delimited ASCII (ASC) File Format

A non-delimited ASCII (ASC) file is a sequential ASCII file with row
delimiters. It can be used for data exchange with any ASCII product that has
a columnar format for data, including word processors. Each ASC file is a
stream of ASCII characters consisting of data values ordered by row and
column. Rows in the data stream are separated by row delimiters. Each
column within a row is defined by a beginning-ending location pair (specified
by IMPORT parameters). Each pair represents locations within a row specified
as byte positions. The first position within a row is byte position 1. The first
element of each location pair is the byte on which the column begins, and the
second element of each location pair is the byte on which the column ends.
The columns may overlap. Every row in an ASC file has the same column
definition.

An ASC file is defined by:
ASC file ::= Row 1 data || Row delimiter ||

Row 2 data || Row delimiter ||
.
.
.
Row n data

Row i data ::= ASCII characters || Row delimiter

Row Delimiter ::= ASCII line feed sequencea

v a The record delimiter is assumed to be a new line character, ASCII x0A.
Data generated on OS/2 or the Windows operating system can use the
carriage return/line feed 2-byte standard of 0x0D0A. Data in EBCDIC code
pages should use the EBCDIC LF character (0x25) as the record delimiter
(EBCDIC data can be loaded using the CODEPAGE option on the LOAD
command). The record delimiter is never interpreted to be part of a field of
data.

Sample ASC File

Following is an example of an ASC file. Each line ends with a line feed
sequence (on OS/2 or the Windows operating system, each line ends with a
carriage return/line feed sequence).

Smith, Bob 4973 15.46
Jones, Suzanne 12345 16.34
Williams, Sam 452123 193.78

Notes:

1. ASC files are assumed not to contain column names.

Non-delimited ASCII (ASC) File Format

186 Data Movement Utilities

2. Character strings are not enclosed by delimiters. The data type of a column
in the ASC file is determined by the data type of the target column in the
database table.

3. A NULL is imported into a nullable database column if:
v A field of blanks is targeted for a numeric, DATE, TIME, or

TIMESTAMP database column
v A field with no beginning and ending location pairs is specified
v A location pair with beginning and ending locations equal to zero is

specified
v A row of data is too short to contain a valid value for the target column
v The NULL INDICATORS load option is used, and an N (or other value

specified by the user) is found in the null indicator column.
4. If the target column is not nullable, an attempt to import a field of blanks

into a numeric, DATE, TIME, or TIMESTAMP column causes the row to be
rejected.

5. If the input data is not compatible with the target column, and that
column is nullable, a null is imported or the row is rejected, depending on
where the error is detected. If the column is not nullable, the row is
rejected. Messages are written to the message file, specifying
incompatibilities that are found.

ASC Data Type Descriptions

Table 10. Acceptable Data Type Forms for the ASC File Format

Data Type Form Acceptable to the Import Utility

BIGINT A constant in any numeric type (SMALLINT, INTEGER,
BIGINT, DECIMAL, or FLOAT) is accepted. Individual
values are rejected if they are not in the range
-9 223 372 036 854 775 808 to 9 223 372 036 854 775 807.
Decimal numbers are truncated to integer values. A comma,
period, or colon is considered to be a decimal point.
Thousands separators are not allowed.

The beginning and ending locations should specify a field
whose width does not exceed 50 bytes. Integers, decimal
numbers, and the mantissas of floating point numbers can
have no more than 31 digits. Exponents of floating point
numbers can have no more than 3 digits.

BLOB/CLOB A string of characters. The character string is truncated on
the right, if necessary, to match the maximum length of the
target column. If the ASC truncate blanks option is in effect,
trailing blanks are stripped from the original or the
truncated string.

Non-delimited ASCII (ASC) File Format

Appendix C. Export/Import/Load Utility File Formats 187

Table 10. Acceptable Data Type Forms for the ASC File Format (continued)

Data Type Form Acceptable to the Import Utility

BLOB_FILE,
CLOB_FILE,
DBCLOB_FILE (DBCS
only)

A delimited or non-delimited name of the file that holds the
data.

CHAR A string of characters. The character string is truncated or
padded with spaces on the right, if necessary, to match the
width of the target column.

DATE A character string representing a date value in a format
consistent with the country code of the target database.

The beginning and ending locations should specify a field
width that is within the range for the external
representation of a date.

DBCLOB (DBCS only) A string of an even number of bytes. A string of an odd
number of bytes is invalid and is not accepted. A valid
string is truncated on the right, if necessary, to match the
maximum length of the target column.

DECIMAL A constant in any numeric type (SMALLINT, INTEGER,
BIGINT, DECIMAL, or FLOAT) is accepted. Individual
values are rejected if they are not in the range of the
database column into which they are being imported. If the
input value has more digits after the decimal point than the
scale of the database column, the excess digits are
truncated. A comma, period, or colon is considered to be a
decimal point. Thousands separators are not allowed.

The beginning and ending locations should specify a field
whose width does not exceed 50 bytes. Integers, decimal
numbers, and the mantissas of floating point numbers can
have no more than 31 digits. Exponents of floating point
numbers can have no more than 3 digits.

FLOAT(long) A constant in any numeric type (SMALLINT, INTEGER,
BIGINT, DECIMAL, or FLOAT) is accepted. All values are
valid. A comma, period, or colon is considered to be a
decimal point. An uppercase or lowercase E is accepted as
the beginning of the exponent of a FLOAT constant.

The beginning and ending locations should specify a field
whose width does not exceed 50 bytes. Integers, decimal
numbers, and the mantissas of floating point numbers can
have no more than 31 digits. Exponents of floating point
numbers can have no more than 3 digits.

Non-delimited ASCII (ASC) File Format

188 Data Movement Utilities

Table 10. Acceptable Data Type Forms for the ASC File Format (continued)

Data Type Form Acceptable to the Import Utility

GRAPHIC (DBCS only) A string of an even number of bytes. A string of an odd
number of bytes is invalid and is not accepted. A valid
string is truncated or padded with double-byte spaces
(0x8140) on the right, if necessary, to match the maximum
length of the target column.

INTEGER A constant in any numeric type (SMALLINT, INTEGER,
BIGINT, DECIMAL, or FLOAT) is accepted. Individual
values are rejected if they are not in the range -2 147 483 648
to 2 147 483 647. Decimal numbers are truncated to integer
values. A comma, period, or colon is considered to be a
decimal point. Thousands separators are not allowed.

The beginning and ending locations should specify a field
whose width does not exceed 50 bytes. Integers, decimal
numbers, and the mantissas of floating point numbers can
have no more than 31 digits. Exponents of floating point
numbers can have no more than 3 digits.

LONG VARCHAR A string of characters. The character string is truncated on
the right, if necessary, to match the maximum length of the
target column. If the ASC truncate blanks option is in effect,
trailing blanks are stripped from the original or the
truncated string.

LONG VARGRAPHIC
(DBCS only)

A string of an even number of bytes. A string of an odd
number of bytes is invalid and is not accepted. A valid
string is truncated on the right, if necessary, to match the
maximum length of the target column.

SMALLINT A constant in any numeric type (SMALLINT, INTEGER,
BIGINT, DECIMAL, or FLOAT) is accepted. Individual
values are rejected if they are not in the range -32 768 to
32 767. Decimal numbers are truncated to integer values. A
comma, period, or colon is considered to be a decimal
point. Thousands separators are not allowed.

The beginning and ending locations should specify a field
whose width does not exceed 50 bytes. Integers, decimal
numbers, and the mantissas of floating point numbers can
have no more than 31 digits. Exponents of floating point
numbers can have no more than 3 digits.

TIME A character string representing a time value in a format
consistent with the country code of the target database.

The beginning and ending locations should specify a field
width that is within the range for the external
representation of a time.

Non-delimited ASCII (ASC) File Format

Appendix C. Export/Import/Load Utility File Formats 189

Table 10. Acceptable Data Type Forms for the ASC File Format (continued)

Data Type Form Acceptable to the Import Utility

TIMESTAMP A character string representing a time stamp value
acceptable for storage in a database.

The beginning and ending locations should specify a field
width that is within the range for the external
representation of a time stamp.

VARCHAR A string of characters. The character string is truncated on
the right, if necessary, to match the maximum length of the
target column. If the ASC truncate blanks option is in effect,
trailing blanks are stripped from the original or the
truncated string.

VARGRAPHIC (DBCS
only)

A string of an even number of bytes. A string of an odd
number of bytes is invalid and is not accepted. A valid
string is truncated on the right, if necessary, to match the
maximum length of the target column.

PC Version of IXF File Format

The PC version of IXF (PC/IXF) file format is a database manager adaptation
of the Integration Exchange Format (IXF) data interchange architecture. The
IXF architecture was specifically designed to enable the exchange of relational
database structures and data. The PC/IXF architecture allows the database
manager to export a database without having to anticipate the requirements
and idiosyncrasies of a receiving product. Similarly, a product importing a
PC/IXF file need only understand the PC/IXF architecture; the characteristics
of the product which exported the file are not relevant. The PC/IXF file
architecture maintains the independence of both the exporting and the
importing database systems.

The IXF architecture is a generic relational database exchange format that
supports a rich set of relational data types, including some types that may not
be supported by specific relational database products. The PC/IXF file format
preserves this flexibility; for example, the PC/IXF architecture supports both
single-byte character string (SBCS) and double-byte character string (DBCS)
data types. Not all implementations support all PC/IXF data types; however,
even restricted implementations provide for the detection and disposition of
unsupported data types during import.

In general, a PC/IXF file consists of an unbroken sequence of variable-length
records. The file contains the following record types in the order shown:
v One header record of record type H
v One table record of record type T

Non-delimited ASCII (ASC) File Format

190 Data Movement Utilities

v Multiple column descriptor records of record type C (one record for each
column in the table)

v Multiple data records of record type D (each row in the table is represented
by one or more D records).

A PC/IXF file may also contain application records of record type A,
anywhere after the H record. These records are permitted in PC/IXF files to
enable an application to include additional data, not defined by the PC/IXF
format, in a PC/IXF file. A records are ignored by any program reading a
PC/IXF file that does not have particular knowledge about the data format
and content implied by the application identifier in the A record.

Every record in a PC/IXF file begins with a record length indicator. This is a
6-byte right justified character representation of an integer value specifying
the length, in bytes, of the portion of the PC/IXF record that follows the
record length indicator; that is, the total record size minus 6 bytes. Programs
reading PC/IXF files should use these record lengths to locate the end of the
current record and the beginning of the next record. H, T, and C records must
be sufficiently large to include all of their defined fields, and, of course, their
record length fields must agree with their actual lengths. However, if extra
data (for example, a new field), is added to the end of one of these records,
pre-existing programs reading PC/IXF files should ignore the extra data, and
generate no more than a warning message. Programs writing PC/IXF files,
however, should write H, T and C records that are the precise length needed
to contain all of the defined fields.

PC/IXF file records are composed of fields which contain character data. The
import and export utilities interpret this character data using the CPGID of
the target database, with two exceptions:
v The IXFADATA field of A records.

The code page environment of character data contained in an IXFADATA
field is established by the application which creates and processes a
particular A record; that is, the environment varies by implementation.

v The IXFDCOLS field of D records.
The code page environment of character data contained in an IXFDCOLS
field is a function of information contained in the C record which defines a
particular column and its data.

Numeric fields in H, T, and C records, and in the prefix portion of D and A
records should be right justified single-byte character representations of
integer values, filled with leading zeros or blanks. A value of zero should be
indicated with at least one (right justified) zero character, not blanks.
Whenever one of these numeric fields is not used, for example IXFCLENG,

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 191

where the length is implied by the data type, it should be filled with blanks.
These numeric fields are:

Note: The database manager PC/IXF file format is not identical to the
System/370 IXF format (see “Differences between Version 1 PC/IXF
and Version 0 System/370 IXF” on page 227).

PC/IXF Record Types

There are five PC/IXF record types:
v header
v table
v column descriptor
v data
v application

Each PC/IXF record type is defined as a sequence of fields; these fields are
required, and must appear in the order shown.

The following fields are contained in the header record:

IXFHRECL
The record length indicator. A 6-byte character representation of an
integer value specifying the length, in bytes, of the portion of the
PC/IXF record that follows the record length indicator; that is, the
total record size minus 6 bytes. The H record must be sufficiently long
to include all of its defined fields.

IXFHRECL, IXFTRECL, IXFCRECL, IXFDRECL, IXFARECL,
IXFHHCNT, IXFHSBCP, IXFHDBCP, IXFTCCNT, IXFTNAML,
IXFCLENG, IXFCDRID, IXFCPOSN, IXFCNAML, IXFCTYPE,
IXFCSBCP, IXFCDBCP, IXFCNDIM, IXFCDSIZ, IXFDRID

HEADER RECORD

FIELD NAME LENGTH TYPE COMMENTS
---------- ------- --------- -------------
IXFHRECL 06-BYTE CHARACTER record length
IXFHRECT 01-BYTE CHARACTER record type = 'H'
IXFHID 03-BYTE CHARACTER IXF identifier
IXFHVERS 04-BYTE CHARACTER IXF version
IXFHPROD 12-BYTE CHARACTER product
IXFHDATE 08-BYTE CHARACTER date written
IXFHTIME 06-BYTE CHARACTER time written
IXFHHCNT 05-BYTE CHARACTER heading record count
IXFHSBCP 05-BYTE CHARACTER single byte code page
IXFHDBCP 05-BYTE CHARACTER double byte code page
IXFHFIL1 02-BYTE CHARACTER reserved

PC Version of IXF File Format

192 Data Movement Utilities

IXFHRECT
The IXF record type, which is set to H for this record.

IXFHID
The file format identifier, which is set to IXF for this file.

IXFHVERS
The PC/IXF format level used when the file was created, which is set
to '0001'.

IXFHPROD
A field that can be used by the program creating the file to identify
itself. If this field is filled in, the first six bytes are used to identify the
product creating the file, and the last six bytes are used to indicate the
version or release of the creating product. The database manager uses
this field to signal the existence of database manager-specific data.

IXFHDATE
The date on which the file was written, in the form yyyymmdd.

IXFHTIME
The time at which the file was written, in the form hhmmss. This field
is optional and can be left blank.

IXFHHCNT
The number of H, T, and C records in this file that precede the first
data record. A records are not included in this count.

IXFHSBCP
Single-byte code page field, containing a single-byte character
representation of a SBCS CPGID or '00000'.

The export utility sets this field equal to the SBCS CPGID of the
exported database table. For example, if the table SBCS CPGID is 850,
this field contains '00850'.

IXFHDBCP
Double-byte code page field, containing a single-byte character
representation of a DBCS CPGID or '00000'.

The export utility sets this field equal to the DBCS CPGID of the
exported database table. For example, if the table DBCS CPGID is 301,
this field contains '00301'.

IXFHFIL1
Spare field set to two blanks to match a reserved field in host IXF
files.

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 193

The following fields are contained in the table record:

IXFTRECL
The record length indicator. A 6-byte character representation of an
integer value specifying the length, in bytes, of the portion of the
PC/IXF record that follows the record length indicator; that is, the
total record size minus 6 bytes. The T record must be sufficiently long
to include all of its defined fields.

IXFTRECT
The IXF record type, which is set to T for this record.

IXFTNAML
The length, in bytes, of the table name in the IXFTNAME field.

IXFTNAME
The name of the table. If each file has only one table, this is an
informational field only. The database manager does not use this field
when importing data. When writing a PC/IXF file, the database
manager writes the DOS file name (and possibly path information) to
this field.

IXFTQUAL
Table name qualifier, which identifies the creator of a table in a
relational system. This is an informational field only. If a program
writing a file has no data to write to this field, the preferred fill value
is blanks. Programs reading a file may print or display this field, or
store it in an informational field, but no computations should depend
on the content of this field.

IXFTSRC
Used to indicate the original source of the data. This is an
informational field only. If a program writing a file has no data to
write to this field, the preferred fill value is blanks. Programs reading

TABLE RECORD

FIELD NAME LENGTH TYPE COMMENTS
---------- ------- --------- -------------
IXFTRECL 06-BYTE CHARACTER record length
IXFTRECT 01-BYTE CHARACTER record type = 'T'
IXFTNAML 03-BYTE CHARACTER name length
IXFTNAME 128-BYTE CHARACTER name of data
IXFTQUAL 128-BYTE CHARACTER qualifier
IXFTSRC 12-BYTE CHARACTER data source
IXFTDATA 01-BYTE CHARACTER data convention = 'C'
IXFTFORM 01-BYTE CHARACTER data format = 'M'
IXFTMFRM 05-BYTE CHARACTER machine format='PC'
IXFTLOC 01-BYTE CHARACTER data location = 'I'
IXFTCCNT 05-BYTE CHARACTER 'C' record count
IXFTFIL1 02-BYTE CHARACTER reserved
IXFTDESC 30-BYTE CHARACTER data description

PC Version of IXF File Format

194 Data Movement Utilities

a file may print or display this field, or store it in an informational
field, but no computations should depend on the content of this field.

IXFTDATA
Convention used to describe the data. This field must be set to C for
import and export, indicating that individual column attributes are
described in the following column descriptor (C) records, and that
data follows PC/IXF conventions.

IXFTFORM
Convention used to store numeric data. This field must be set to M,
indicating that numeric data in the data (D) records is stored in the
machine (internal) format specified by the IXFTMFRM field.

IXFTMFRM
The format of any machine data in the PC/IXF file. The database
manager will only read or write files if this field is set to PCbbb, where
b represents a blank, and PC specifies that data in the PC/IXF file is
in IBM PC machine format.

IXFTLOC
The location of the data. The database manager only supports a value
of I, meaning the data is internal to this file.

IXFTCCNT
The number of C records in this table. It is a right-justified character
representation of an integer value.

IXFTFIL1
Spare field set to two blanks to match a reserved field in host IXF
files.

IXFTDESC
Descriptive data about the table. This is an informational field only. If
a program writing a file has no data to write to this field, the
preferred fill value is blanks. Programs reading a file may print or
display this field, or store it in an informational field, but no
computations should depend on the content of this field. This field
contains NOT NULL WITH DEFAULT if the column was not null with
default, and the table name came from a workstation database.

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 195

The following fields are contained in column descriptor records:

IXFCRECL
The record length indicator. A 6-byte character representation of an
integer value specifying the length, in bytes, of the portion of the
PC/IXF record that follows the record length indicator; that is, the
total record size minus 6 bytes. The C record must be sufficiently long
to include all of its defined fields.

IXFCRECT
The IXF record type, which is set to C for this record.

IXFCNAML
The length, in bytes, of the column name in the IXFCNAME field.

IXFCNAME
The name of the column.

IXFCNULL
Specifies if nulls are permitted in this column. Valid settings are Y or
N.

IXFCSLCT
An obsolete field whose intended purpose was to allow selection of a
subset of columns in the data. Programs writing PC/IXF files should
always store a Y in this field. Programs reading PC/IXF files should
ignore the field.

IXFCKEY
The key indicator. If the value of this field is Y, the column is a key
column; if the value is N, the column is not a key column. The

COLUMN DESCRIPTOR RECORD

FIELD NAME LENGTH TYPE COMMENTS
---------- ------- --------- -------------
IXFCRECL 06-BYTE CHARACTER record length
IXFCRECT 01-BYTE CHARACTER record type = 'C'
IXFCNAML 03-BYTE CHARACTER column name length
IXFCNAME 30-BYTE CHARACTER column name
IXFCNULL 01-BYTE CHARACTER column allows nulls
IXFCSLCT 01-BYTE CHARACTER column selected flag
IXFCKEY 01-BYTE CHARACTER key column flag
IXFCCLAS 01-BYTE CHARACTER data class
IXFCTYPE 03-BYTE CHARACTER data type
IXFCSBCP 05-BYTE CHARACTER single byte code page
IXFCDBCP 05-BYTE CHARACTER double byte code page
IXFCLENG 05-BYTE CHARACTER column data length
IXFCDRID 03-BYTE CHARACTER 'D' record identifier
IXFCPOSN 06-BYTE CHARACTER column position
IXFCDESC 30-BYTE CHARACTER column description
IXFCNDIM 02-BYTE CHARACTER number of dimensions
IXFCDSIZ varying CHARACTER size of each dimension

PC Version of IXF File Format

196 Data Movement Utilities

database manager does not use this field. It ignores the field when
importing data, and sets it to N when generating an export file.

IXFCCLAS
The class of data types to be used in the IXFCTYPE field. The
database manager only supports relational types (R).

IXFCTYPE
The data type for the column. For more information about data types,
see “PC/IXF Data Types” on page 201.

IXFCSBCP
Contains a single-byte character representation of a SBCS CPGID. This
field specifies the CPGID for single-byte character data, which occurs
with the IXFDCOLS field of the D records for this column.

The semantics of this field vary with the data type for the column
(specified in the IXFCTYPE field).

v For a character string column, this field should normally contain a
nonzero value equal to that of the IXFHSBCP field in the H record;
however, other values are permitted. If this value is zero, the
column is interpreted to contain bit string data.

v For a numeric column, this field is not meaningful. It is set to zero
by the export utility, and ignored by the import utility.

v For a date or time column, this field is not meaningful. It is set to
the value of the IXFHSBCP field by the export utility, and ignored
by the import utility.

v For a graphic column, this field must be zero.

See also Table 12 on page 207.

IXFCDBCP
Contains a single-byte character representation of a DBCS CPGID.
This field specifies the CPGID for double-byte character data, which
occurs with the IXFDCOLS field of the D records for this column.

The semantics of this field vary with the data type for the column
(specified in the IXFCTYPE field).

v For a character string column, this field should either be zero, or
contain a value equal to that of the IXFHDBCP field in the H
record; however, other values are permitted. If the value in the
IXFCSBCP field is zero, the value in this field must be zero.

v For a numeric column, this field is not meaningful. It is set to zero
by the export utility, and ignored by the import utility.

v For a date or time column, this field is not meaningful. It is set to
zero by the export utility, and ignored by the import utility.

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 197

v For a graphic column, this field must have a value equal to the
value of the IXFHDBCP field.

See also Table 12 on page 207.

IXFCLENG
Provides information about the size of the column being described.
For some data types, this field is unused, and should contain blanks.
For other data types, this field contains the right-justified character
representation of an integer specifying the column length. For yet
other data types, this field is divided into two subfields: 3 bytes for
precision, and 2 bytes for scale; both of these subfields are
right-justified character representations of integers.

IXFCDRID
The D record identifier. This field contains the right-justified character
representation of an integer value. Several D records can be used to
contain each row of data in the PC/IXF file. This field specifies which
D record (of the several D records contributing to a row of data)
contains the data for the column. A value of one (for example, 001)
indicates that the data for a column is in the first D record in a row of
data. The first C record must have an IXFCDRID value of one. All
subsequent C records must have an IXFCDRID value equal to the
value in the preceding C record, or one higher.

IXFCPOSN
The value in this field is used to locate the data for the column within
one of the D records representing a row of table data. It is the starting
position of the data for this column within the IXFDCOLS field of the
D record. If the column is nullable, IXFCPOSN points to the null
indicator; otherwise, it points to the data itself. If a column contains
varying length data, the data itself begins with the current length
indicator. The IXFCPOSN value for the first byte in the IXFDCOLS
field of the D record is one (not zero). If a column is in a new D
record, the value of IXFCPOSN should be one; otherwise, IXFCPOSN
values should increase from column to column to such a degree that
the data values do not overlap.

IXFCDESC
Descriptive information about the column. This is an informational
field only. If a program writing to a file has no data to write to this
field, the preferred fill value is blanks. Programs reading a file may
print or display this field, or store it in an informational field, but no
computations should depend on the content of this field. If

v the column is not null with default
v the table resides in a workstation database

PC Version of IXF File Format

198 Data Movement Utilities

v the select statement on the export is of the form select * from
table

the export utility will put NOT NULL WITH DEFAULT in this field, and
when the import utility creates a new table with this file, it will create
it as not null with default.

IXFCNDIM
The number of dimensions in the column. Arrays are not supported in
this version of PC/IXF. This field must therefore contain a character
representation of a zero integer value.

IXFCDSIZ
The size or range of each dimension. The length of this field is five
bytes per dimension. Since arrays are not supported (that is, the
number of dimensions must be zero), this field has zero length, and
does not actually exist.

The following fields are contained in the data records:

IXFDRECL
The record length indicator. A 6-byte character representation of an
integer value specifying the length, in bytes, of the portion of the
PC/IXF record that follows the record length indicator; that is, the
total record size minus 6 bytes. Each D record must be sufficiently
long to include all significant data for the current occurrence of the
last data column stored in the record.

IXFDRECT
The IXF record type, which is set to D for this record, indicating that
it contains data values for the table.

IXFDRID
The record identifier, which identifies a particular D record within the
sequence of several D records contributing to a row of data. For the
first D record in a row of data, this field has a value of one; for the
second D record in a row of data, this field has a value of two, and so
on. In each row of data, all the D record identifiers called out in the C
records must actually exist.

DATA RECORD

FIELD NAME LENGTH TYPE COMMENTS
---------- ------- --------- -------------
IXFDRECL 06-BYTE CHARACTER record length
IXFDRECT 01-BYTE CHARACTER record type = 'D'
IXFDRID 03-BYTE CHARACTER 'D' record identifier
IXFDFIL1 04-BYTE CHARACTER reserved
IXFDCOLS varying variable columnar data

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 199

IXFDFIL1
Spare field set to four blanks to match reserved fields, and hold a
place for a possible shift-out character, in host IXF files.

IXFDCOLS
The area for columnar data. The data area of a data record (D record)
is composed of one or more column entries. There is one column
entry for each column descriptor record, which has the same D record
identifier as the D record. In the D record, the starting position of the
column entries is indicated by the IXFCPOSN value in the C records.

The format of the column entry data depends on whether or not the
column is nullable:
v If the column is nullable (the IXFCNULL field is set to Y), the

column entry data includes a null indicator. If the column is not
null, the indicator is followed by data type-specific information,
including the actual database value. The null indicator is a two-byte
value set to x'0000' for not null, and x'FFFF' for null.

v If the column is not nullable, the column entry data includes only
data type-specific information, including the actual database value.

For varying-length data types, the data type-specific information
includes a current length indicator. The current length indicators are
2-byte integers in a form specified by the IXFTMFRM field.

The length of the data area of a D record may not exceed 32 771 bytes.

The following fields are contained in application records:

IXFARECL
The record length indicator. A 6-byte character representation of an
integer value specifying the length, in bytes, of the portion of the
PC/IXF record that follows the record length indicator; that is, the
total record size minus 6 bytes. Each A record must be sufficiently
long to include at least the entire IXFAPPID field.

IXFARECT
The IXF record type, which is set to A for this record, indicating that
this is an application record. These records are ignored by programs

APPLICATION RECORD

FIELD NAME LENGTH TYPE COMMENTS
---------- ------- --------- -------------
IXFARECL 06-BYTE CHARACTER record length
IXFARECT 01-BYTE CHARACTER record type = 'A'
IXFAPPID 12-BYTE CHARACTER application identifier
IXFADATA varying variable application-specific data

PC Version of IXF File Format

200 Data Movement Utilities

which do not have particular knowledge about the content and the
format of the data implied by the application identifier.

IXFAPPID
The application identifier, which identifies the application creating the
A record. PC/IXF files created by the database manager may have A
records with the first 6 characters of this field set to a constant
identifying the database manager, and the last 6 characters identifying
the release or version of the database manager or another application
writing the A record.

IXFADATA
This field contains application dependent supplemental data, whose
form and content are known only to the program creating the A
record, and to other applications which are likely to process the A
record.

PC/IXF Data Types

Table 11. PC/IXF Data Types

Name IXFCTYPE Value Description

BIGINT 492 An 8-byte integer in the form specified
by IXFTMFRM. It represents a whole
number between
-9 223 372 036 854 775 808 and
9 223 372 036 854 775 807. IXFCSBCP and
IXFCDBCP are not significant , and
should be zero. IXFCLENG is not used,
and should contain blanks.

BLOB, CLOB 404, 408 A variable-length character string. The
maximum length of the string is
contained in the IXFCLENG field of the
column descriptor record, and cannot
exceed 32 767 bytes. The string itself is
preceded by a current length indicator,
which is a 4-byte integer specifying the
length of the string, in bytes. The string
is in the code page indicated by
IXFCSBCP.

The following applies to BLOBs only: If
IXFCSBCP is zero, the string is bit data,
and should not be translated by any
transformation program.

The following applies to CLOBs only: If
IXFCDBCP is nonzero, the string can also
contain double-byte characters in the
code page indicated by IXFCDBCP.

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 201

Table 11. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

BLOB_FILE,
CLOB_FILE,
DBCLOB_FILE

804, 808, 812 A fixed-length field containing an
SQLFILE structure with the name_length
and the name fields filled in. The length
of the structure is contained in the
IXFCLENG field of the column
descriptor record, and cannot exceed 255
bytes. The file name is in the code page
indicated by IXFCSBCP. If IXFCDBCP is
nonzero, the file name can also contain
double-byte characters in the code page
indicated by IXFCDBCP. If IXFCSBCP is
zero, the file name is bit data and should
not be translated by any transformation
program.

Since the length of the structure is stored
in IXFCLENG, the actual length of the
original LOB is lost. IXF files with
columns of type BLOB_FILE,
CLOB_FILE, or DBCLOB_FILE should
not be used to recreate the LOB field,
since the LOB will be created with a
length of sql_lobfile_len.

CHAR 452 A fixed-length character string. The
string length is contained in the
IXFCLENG field of the column
descriptor record, and cannot exceed 254
bytes. The string is in the code page
indicated by IXFCSBCP. If IXFCDBCP is
nonzero, the string can also contain
double-byte characters in the code page
indicated by IXFCDBCP. If IXFCSBCP is
zero, the string is bit data and should not
be translated by any transformation
program.

PC Version of IXF File Format

202 Data Movement Utilities

Table 11. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

DATE 384 A point in time in accordance with the
Gregorian calendar. Each date is a
10-byte character string in International
Standards Organization (ISO) format:
yyyy-mm-dd. The range of the year part is
0001 to 9999. The range of the month
part is 01 to 12. The range of the day
part is 01 to n, where n depends on the
month, using the usual rules for days of
the month and leap year. Leading zeros
cannot be omitted from any part.
IXFCLENG is not used, and should
contain blanks. Valid characters within
DATE are invariant in all PC ASCII code
pages; therefore, IXFCSBCP and
IXFCDBCP are not significant, and
should be zero.

DBCLOB 412 A variable-length string of double-byte
characters. The IXFCLENG field in the
column descriptor record specifies the
maximum number of double-byte
characters in the string, and cannot
exceed 16 383. The string itself is
preceded by a current length indicator,
which is a 4-byte integer specifying the
length of the string in double-byte
characters (that is, the value of this
integer is one half the length of the
string, in bytes). The string is in the
DBCS code page, as specified by
IXFCDBCP in the C record. Since the
string consists of double-byte character
data only, IXFCSBCP should be zero.
There are no surrounding shift-in or
shift-out characters.

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 203

Table 11. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

DECIMAL 484 A packed decimal number with precision
P (as specified by the first three bytes of
IXFCLENG in the column descriptor
record) and scale S (as specified by the
last two bytes of IXFCLENG). The
length, in bytes, of a packed decimal
number is (P+2)/2. The precision must
be an odd number between 1 and 31,
inclusive. The packed decimal number is
in the internal format specified by
IXFTMFRM, where packed decimal for
the PC is defined to be the same as
packed decimal for the System/370.
IXFCSBCP and IXFCDBCP are not
significant, and should be zero.

FLOATING POINT 480 Either a long (8-byte) or short (4-byte)
floating point number, depending on
whether IXFCLENG is set to eight or to
four. The data is in the internal machine
form, as specified by IXFTMFRM.
IXFCSBCP and IXFCDBCP are not
significant, and should be zero. Four-byte
floating point is not supported by the
database manager.

GRAPHIC 468 A fixed-length string of double-byte
characters. The IXFCLENG field in the
column descriptor record specifies the
number of double-byte characters in the
string, and cannot exceed 127. The actual
length of the string is twice the value of
the IXFCLENG field, in bytes. The string
is in the DBCS code page, as specified by
IXFCDBCP in the C record. Since the
string consists of double-byte character
data only, IXFCSBCP should be zero.
There are no surrounding shift-in or
shift-out characters.

INTEGER 496 A 4-byte integer in the form specified by
IXFTMFRM. It represents a whole
number between -2 147 483 648 and
+2 147 483 647. IXFCSBCP and
IXFCDBCP are not significant, and
should be zero. IXFCLENG is not used,
and should contain blanks.

PC Version of IXF File Format

204 Data Movement Utilities

Table 11. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

LONGVARCHAR 456 A variable-length character string. The
maximum length of the string is
contained in the IXFCLENG field of the
column descriptor record, and cannot
exceed 32 767 bytes. The string itself is
preceded by a current length indicator,
which is a 2-byte integer specifying the
length of the string, in bytes. The string
is in the code page indicated by
IXFCSBCP. If IXFCDBCP is nonzero, the
string can also contain double-byte
characters in the code page indicated by
IXFCDBCP. If IXFCSBCP is zero, the
string is bit data and should not be
translated by any transformation
program.

LONG
VARGRAPHIC

472 A variable-length string of double-byte
characters. The IXFCLENG field in the
column descriptor record specifies the
maximum number of double-byte
characters for the string, and cannot
exceed 16 383. The string itself is
preceded by a current length indicator,
which is a 2-byte integer specifying the
length of the string in double-byte
characters (that is, the value of this
integer is one half the length of the
string, in bytes). The string is in the
DBCS code page, as specified by
IXFCDBCP in the C record. Since the
string consists of double-byte character
data only, IXFCSBCP should be zero.
There are no surrounding shift-in or
shift-out characters.

SMALLINT 500 A 2-byte integer in the form specified by
IXFTMFRM. It represents a whole
number between −32 768 and +32 767.
IXFCSBCP and IXFCDBCP are not
significant, and should be zero.
IXFCLENG is not used, and should
contain blanks.

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 205

Table 11. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

TIME 388 A point in time in accordance with the
24-hour clock. Each time is an 8-byte
character string in ISO format: hh.mm.ss.
The range of the hour part is 00 to 24,
and the range of the other parts is 00 to
59. If the hour is 24, the other parts are
00. The smallest time is 00.00.00, and
the largest is 24.00.00. Leading zeros
cannot be omitted from any part.
IXFCLENG is not used, and should
contain blanks. Valid characters within
TIME are invariant in all PC ASCII code
pages; therefore, IXFCSBCP and
IXFCDBCP are not significant, and
should be zero.

TIMESTAMP 392 The date and time with microsecond
precision. Each time stamp is a character
string of the form yyyy-mm-dd-
hh.mm.ss.nnnnnn (year month day hour
minutes seconds microseconds).
IXFCLENG is not used, and should
contain blanks. Valid characters within
TIMESTAMP are invariant in all PC
ASCII code pages; therefore, IXFCSBCP
and IXFCDBCP are not significant, and
should be zero.

VARCHAR 448 A variable-length character string. The
maximum length of the string, in bytes,
is contained in the IXFCLENG field of
the column descriptor record, and cannot
exceed 254 bytes. The string itself is
preceded by a current length indicator,
which is a two-byte integer specifying
the length of the string, in bytes. The
string is in the code page indicated by
IXFCSBCP. If IXFCDBCP is nonzero, the
string can also contain double-byte
characters in the code page indicated by
IXFCDBCP. If IXFCSBCP is zero, the
string is bit data and should not be
translated by any transformation
program.

PC Version of IXF File Format

206 Data Movement Utilities

Table 11. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

VARGRAPHIC 464 A variable-length string of double-byte
characters. The IXFCLENG field in the
column descriptor record specifies the
maximum number of double-byte
characters in the string, and cannot
exceed 127. The string itself is preceded
by a current length indicator, which is a
2-byte integer specifying the length of
the string in double-byte characters (that
is, the value of this integer is one half the
length of the string, in bytes). The string
is in the DBCS code page, as specified by
IXFCDBCP in the C record. Since the
string consists of double-byte character
data only, IXFCSBCP should be zero.
There are no surrounding shift-in or
shift-out characters.

Not all combinations of IXFCSBCP and IXFCDBCP values for PC/IXF
character or graphic columns are valid. A PC/IXF character or graphic column
with an invalid (IXFCSBCP,IXFCDBCP) combination is an invalid data type.

Table 12. Valid PC/IXF Data Types

PC/IXF Data Type Valid
(IXFCSBCP,IXFCDBCP)

Pairs

Invalid
(IXFCSBCP,IXFCDBCP)

Pairs

CHAR, VARCHAR, or
LONG VARCHAR

(0,0), (x,0), or (x,y) (0,y)

BLOB (0,0) (x,0), (0,y), or (x,y)

CLOB (x,0), (x,y) (0,0), (0,y)

GRAPHIC, VARGRAPHIC,
LONG VARGRAPHIC, or
DBCLOB

(0,y) (0,0), (x,0), or (x,y)

Note: x and y are not 0.

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 207

PC/IXF Data Type Descriptions

Table 13. Acceptable Data Type Forms for the PC/IXF File Format

Data Type Form in Files
Created by the
Export Utility

Form Acceptable to the Import Utility

BIGINT A BIGINT column,
identical to the
database column, is
created.

A column in any numeric type
(SMALLINT, INTEGER, BIGINT,
DECIMAL, or FLOAT) is accepted.
Individual values are rejected if they are
not in the range
-9 223 372 036 854 775 808 to
9 223 372 036 854 775 807.

BLOB A PC/IXF BLOB
column is created.
The maximum
length of the
database column,
the SBCS CPGID
value, and the DBCS
CPGID value are
copied to the
column descriptor
record.

A PC/IXF CHAR, VARCHAR, LONG
VARCHAR, BLOB, or BLOB_FILE
column is acceptable if:

v The database column is marked FOR
BIT DATA

v The PC/IXF column single-byte code
page value equals the SBCS CPGID of
the database column, and the PC/IXF
column double-byte code page value
equals zero, or the DBCS CPGID of the
database column. A PC/IXF
GRAPHIC, VARGRAPHIC, or LONG
VARGRAPHIC BLOB column is also
acceptable. If the PC/IXF column is of
fixed length, its length must be
compatible with the maximum length
of the database column. See also the
“FORCEIN Option” on page 218.

PC Version of IXF File Format

208 Data Movement Utilities

Table 13. Acceptable Data Type Forms for the PC/IXF File Format (continued)

Data Type Form in Files
Created by the
Export Utility

Form Acceptable to the Import Utility

CHAR A PC/IXF CHAR
column is created.
The database
column length, the
SBCS CPGID value,
and the DBCS
CPGID value are
copied to the
PC/IXF column
descriptor record.

A PC/IXF CHAR, VARCHAR, or LONG
VARCHAR column is acceptable if:

v The database column is marked FOR
BIT DATA

v The PC/IXF column single-byte code
page value equals the SBCS CPGID of
the database column, and the PC/IXF
column double-byte code page value
equals zero, or the DBCS CPGID of the
database column.

A PC/IXF GRAPHIC, VARGRAPHIC, or
LONG VARGRAPHIC column is also
acceptable if the database column is
marked FOR BIT DATA. In any case, if
the PC/IXF column is of fixed length, its
length must be compatible with the
length of the database column. The data
is padded on the right with single-byte
spaces (x'20'), if necessary. See also the
“FORCEIN Option” on page 218.

CLOB A PC/IXF CLOB
column is created.
The maximum
length of the
database column,
the SBCS CPGID
value, and the DBCS
CPGID value are
copied to the
column descriptor
record.

A PC/IXF CHAR, VARCHAR, LONG
VARCHAR, CLOB, or CLOB_FILE
column is acceptable if the PC/IXF
column single-byte code page value
equals the SBCS CPGID of the database
column, and the PC/IXF column
double-byte code page value equals zero,
or the DBCS CPGID of the database
column. If the PC/IXF column is of fixed
length, its length must be compatible
with the maximum length of the
database column. See also the “FORCEIN
Option” on page 218.

DATE A DATE column,
identical to the
database column, is
created.

A PC/IXF column of type DATE is the
usual input. The import utility also
attempts to accept columns in any of the
character types, except those with
incompatible lengths. The character
column in the PC/IXF file must contain
dates in a format consistent with the
country code of the target database.

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 209

Table 13. Acceptable Data Type Forms for the PC/IXF File Format (continued)

Data Type Form in Files
Created by the
Export Utility

Form Acceptable to the Import Utility

DBCLOB A PC/IXF DBCLOB
column is created.
The maximum
length of the
database column,
the SBCS CPGID
value, and the DBCS
CPGID value are
copied to the
column descriptor
record.

A PC/IXF GRAPHIC, VARGRAPHIC,
LONG VARGRAPHIC, DBCLOB, or
DBCLOB_FILE column is acceptable if
the PC/IXF column double-byte code
page value equals that of the database
column. If the PC/IXF column is of fixed
length, its length must be compatible
with the maximum length of the
database column. See also the “FORCEIN
Option” on page 218.

DECIMAL A DECIMAL
column, identical to
the database
column, is created.
The precision and
scale of the column
is stored in the
column descriptor
record.

A column in any numeric type
(SMALLINT, INTEGER, BIGINT,
DECIMAL, or FLOAT) is accepted.
Individual values are rejected if they are
not in the range of the DECIMAL
column into which they are being
imported.

FLOAT A FLOAT column,
identical to the
database column, is
created.

A column in any numeric type
(SMALLINT, INTEGER, BIGINT,
DECIMAL, or FLOAT) is accepted. All
values are within range.

GRAPHIC (DBCS
only)

A PC/IXF
GRAPHIC column
is created. The
database column
length, the SBCS
CPGID value, and
the DBCS CPGID
value are copied to
the column
descriptor record.

A PC/IXF GRAPHIC, VARGRAPHIC, or
LONG VARGRAPHIC column is
acceptable if the PC/IXF column
double-byte code page value equals that
of the database column. If the PC/IXF
column is of fixed length, its length must
be compatible with the database column
length. The data is padded on the right
with double-byte spaces (x'8140'), if
necessary. See also the “FORCEIN
Option” on page 218.

INTEGER An INTEGER
column, identical to
the database
column, is created.

A column in any numeric type
(SMALLINT, INTEGER, BIGINT,
DECIMAL, or FLOAT) is accepted.
Individual values are rejected if they are
not in the range -2 147 483 648 to
2 147 483 647.

PC Version of IXF File Format

210 Data Movement Utilities

Table 13. Acceptable Data Type Forms for the PC/IXF File Format (continued)

Data Type Form in Files
Created by the
Export Utility

Form Acceptable to the Import Utility

LONG VARCHAR A PC/IXF LONG
VARCHAR column
is created. The
maximum length of
the database
column, the SBCS
CPGID value, and
the DBCS CPGID
value are copied to
the column
descriptor record.

A PC/IXF CHAR, VARCHAR, or LONG
VARCHAR column is acceptable if:

v The database column is marked FOR
BIT DATA

v The PC/IXF column single-byte code
page value equals the SBCS CPGID of
the database column, and the PC/IXF
column double-byte code page value
equals zero, or the DBCS CPGID of the
database column.

A PC/IXF GRAPHIC, VARGRAPHIC, or
LONG VARGRAPHIC column is also
acceptable if the database column is
marked FOR BIT DATA. In any case, if
the PC/IXF column is of fixed length, its
length must be compatible with the
maximum length of the database column.
See also the “FORCEIN Option” on
page 218.

LONG
VARGRAPHIC
(DBCS only)

A PC/IXF LONG
VARGRAPHIC
column is created.
The maximum
length of the
database column,
the SBCS CPGID
value, and the DBCS
CPGID value are
copied to the
column descriptor
record.

A PC/IXF GRAPHIC, VARGRAPHIC, or
LONG VARGRAPHIC column is
acceptable if the PC/IXF column
double-byte code page value equals that
of the database column. If the PC/IXF
column is of fixed length, its length must
be compatible with the maximum length
of the database column. See also the
“FORCEIN Option” on page 218.

SMALLINT A SMALLINT
column, identical to
the database
column, is created.

A column in any numeric type
(SMALLINT, INTEGER, BIGINT,
DECIMAL, or FLOAT) is accepted.
Individual values are rejected if they are
not in the range -32 768 to 32 767.

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 211

Table 13. Acceptable Data Type Forms for the PC/IXF File Format (continued)

Data Type Form in Files
Created by the
Export Utility

Form Acceptable to the Import Utility

TIME A TIME column,
identical to the
database column, is
created.

A PC/IXF column of type TIME is the
usual input. The import utility also
attempts to accept columns in any of the
character types, except those with
incompatible lengths. The character
column in the PC/IXF file must contain
time data in a format consistent with the
country code of the target database.

TIMESTAMP A TIMESTAMP
column, identical to
the database
column, is created.

A PC/IXF column of type TIMESTAMP
is the usual input. The import utility also
attempts to accept columns in any of the
character types, except those with
incompatible lengths. The character
column in the PC/IXF file must contain
data in the input format for time stamps.

VARCHAR If the maximum
length of the
database column is
<= 254, a PC/IXF
VARCHAR column
is created. If the
maximum length of
the database column
is > 254, a PC/IXF
LONG VARCHAR
column is created.
The maximum
length of the
database column,
the SBCS CPGID
value, and the DBCS
CPGID value are
copied to the
column descriptor
record.

A PC/IXF CHAR, VARCHAR, or LONG
VARCHAR column is acceptable if:

v The database column is marked FOR
BIT DATA

v The PC/IXF column single-byte code
page value equals the SBCS CPGID of
the database column, and the PC/IXF
column double-byte code page value
equals zero, or the DBCS CPGID of the
database column.

A PC/IXF GRAPHIC, VARGRAPHIC, or
LONG VARGRAPHIC column is also
acceptable if the database column is
marked FOR BIT DATA. In any case, if
the PC/IXF column is of fixed length, its
length must be compatible with the
maximum length of the database column.
See also the “FORCEIN Option” on
page 218.

PC Version of IXF File Format

212 Data Movement Utilities

Table 13. Acceptable Data Type Forms for the PC/IXF File Format (continued)

Data Type Form in Files
Created by the
Export Utility

Form Acceptable to the Import Utility

VARGRAPHIC
(DBCS only)

If the maximum
length of the
database column is
<= 127, a PC/IXF
VARGRAPHIC
column is created. If
the maximum
length of the
database column is
> 127, a PC/IXF
LONG
VARGRAPHIC
column is created.
The maximum
length of the
database column,
the SBCS CPGID
value, and the DBCS
CPGID value are
copied to the
column descriptor
record.

A PC/IXF GRAPHIC, VARGRAPHIC, or
LONG VARGRAPHIC column is
acceptable if the PC/IXF column
double-byte code page value equals that
of the database column. If the PC/IXF
column is of fixed length, its length must
be compatible with the maximum length
of the database column. See also the
“FORCEIN Option” on page 218.

General Rules Governing PC/IXF File Import into Databases

The database manager import utility applies the following general rules when
importing a PC/IXF file in either an SBCS or a DBCS environment:
v The import utility accepts PC/IXF format files only (IXFHID = 'IXF'). IXF

files of other formats cannot be imported.
v The import utility rejects a PC/IXF file with more than 1024 columns.
v The value of IXFHSBCP in the PC/IXF H record must equal the SBCS

CPGID, or there must be a conversion table between the
IXFHSBCP/IXFHDBCP and the SBCS/DBCS CPGID of the target database.
The value of IXFHDBCP must equal either '00000', or the DBCS CPGID of
the target database. If either of these conditions is not satisfied, the import
utility rejects the PC/IXF file, unless the “FORCEIN Option” on page 218 is
specified.

v Invalid Data Types — New Table
Import of a PC/IXF file into a new table is specified by the CREATE or the
REPLACE_CREATE keywords in the IMPORT command. If a PC/IXF
column of an invalid data type (valid data types are defined in “PC/IXF

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 213

Data Types” on page 201) is selected for import into a new table, the import
utility terminates. The entire PC/IXF file is rejected, no table is created, and
no data is imported.

v Invalid Data Types — Existing Table
Import of a PC/IXF file into an existing table is specified by the INSERT, the
INSERT_UPDATE, or the REPLACE_CREATE keywords in the IMPORT
command. If a PC/IXF column of an invalid data type is selected for
import into an existing table, one of two actions is possible:
– If the target table column is nullable, all values for the invalid PC/IXF

column are ignored, and the table column values are set to NULL
– If the target table column is not nullable, the import utility terminates.

The entire PC/IXF file is rejected, and no data is imported. The existing
table remains unaltered.

v When importing into a new table, nullable PC/IXF columns generate
nullable database columns, and not nullable PC/IXF columns generate not
nullable database columns.

v A not nullable PC/IXF column can be imported into a nullable database
column.

v A nullable PC/IXF column can be imported into a not nullable database
column. If a NULL value is encountered in the PC/IXF column, the import
utility rejects the values of all columns in the PC/IXF row that contains the
NULL value (the entire row is rejected), and processing continues with the
next PC/IXF row. That is, no data is imported from a PC/IXF row that
contains a NULL value if a target table column (for the NULL) is not
nullable.

v Incompatible Columns — New Table
If, during import to a new database table, a PC/IXF column is selected that
is incompatible with the target database column, the import utility
terminates. The entire PC/IXF file is rejected, no table is created, and no
data is imported.

Note: The IMPORT “FORCEIN Option” on page 218 extends the scope of
compatible columns.

v Incompatible Columns — Existing Table
If, during import to an existing database table, a PC/IXF column is selected
that is incompatible with the target database column, one of two actions is
possible:
– If the target table column is nullable, all values for the PC/IXF column

are ignored, and the table column values are set to NULL
– If the target table column is not nullable, the import utility terminates.

The entire PC/IXF file is rejected, and no data is imported. The existing
table remains unaltered.

PC Version of IXF File Format

214 Data Movement Utilities

Note: The IMPORT “FORCEIN Option” on page 218 extends the scope of
compatible columns.

v Invalid Values
If, during import, a PC/IXF column value is encountered that is not valid
for the target database column, the import utility rejects the values of all
columns in the PC/IXF row that contains the invalid value (the entire row
is rejected), and processing continues with the next PC/IXF row.

v Importing or loading PC/IXF files containing DBCS data requires that the
corresponding conversion files (located in sqllib\conv) be installed on the
client machine. The names of these conversion files contain both the source
and the target code page numbers; the extension is always .cnv. For
example, file 09320943.cnv contains the conversion table for converting
code page 932 to 943.
If the client machine does not have the appropriate conversion files, they
can be copied from a server machine to the sqllib\conv directory on the
client machine. Be sure to copy the files from a compatible platform; for
example, if the client is running on a UNIX based operating system, copy
the files from a server that is also running on a UNIX based operating
system.

Data Type-Specific Rules Governing PC/IXF File Import into Databases
v A valid PC/IXF numeric column can be imported into any compatible

numeric database column. PC/IXF columns containing 4-byte floating point
data are not imported, because this is an invalid data type.

v Database date/time columns can accept values from matching PC/IXF
date/time columns (DATE, TIME, and TIMESTAMP), as well as from
PC/IXF character columns (CHAR, VARCHAR, and LONG VARCHAR),
subject to column length and value compatibility restrictions.

v A valid PC/IXF character column (CHAR, VARCHAR, or LONG
VARCHAR) can always be imported into an existing database character
column marked FOR BIT DATA; otherwise:
– IXFCSBCP and the SBCS CPGID must agree
– There must be a conversion table for the IXFCSBCP/IXFCDBCP and the

SBCS/DBCS
– One set must be all zeros (FOR BIT DATA).

If IXFCSBCP is not zero, the value of IXFCDBCP must equal either zero or
the DBCS CPGID of the target database column.

If either of these conditions is not satisfied, the PC/IXF and database
columns are incompatible.

When importing a valid PC/IXF character column into a new database
table, the value of IXFCSBCP must equal either zero or the SBCS CPGID of

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 215

the database, or there must be a conversion table. If IXFCSBCP is zero,
IXFCDBCP must also be zero (otherwise the PC/IXF column is an invalid
data type); IMPORT creates a character column marked FOR BIT DATA in
the new table. If IXFCSBCP is not zero, and equals the SBCS CPGID of the
database, the value of IXFCDBCP must equal either zero or the DBCS
CPGID of the database; in this case, the utility creates a character column in
the new table with SBCS and DBCS CPGID values equal to those of the
database. If these conditions are not satisfied, the PC/IXF and database
columns are incompatible.

The “FORCEIN Option” on page 218 can be used to override code page
equality checks. However, a PC/IXF character column with IXFCSBCP
equal to zero and IXFCDBCP not equal to zero is an invalid data type, and
cannot be imported, even if FORCEIN is specified.

v A valid PC/IXF graphic column (GRAPHIC, VARGRAPHIC, or LONG
VARGRAPHIC) can always be imported into an existing database character
column marked FOR BIT DATA, but is incompatible with all other database
columns. The “FORCEIN Option” on page 218 can be used to relax this
restriction. However, a PC/IXF graphic column with IXFCSBCP not equal
to zero, or IXFCDBCP equal to zero, is an invalid data type, and cannot be
imported, even if FORCEIN is specified.
When importing a valid PC/IXF graphic column into a database graphic
column, the value of IXFCDBCP must equal the DBCS CPGID of the target
database column (that is, the double-byte code pages of the two columns
must agree).

v If, during import of a PC/IXF file into an existing database table, a
fixed-length string column (CHAR or GRAPHIC) is selected whose length
is greater than the maximum length of the target column, the columns are
incompatible.

v If, during import of a PC/IXF file into an existing database table, a
variable-length string column (VARCHAR, LONG VARCHAR,
VARGRAPHIC, or LONG VARGRAPHIC) is selected whose length is
greater than the maximum length of the target column, the columns are
compatible. Individual values are processed according to the compatibility
rules governing the database manager INSERT statement, and PC/IXF
values which are too long for the target database column are invalid.

v PC/IXF values imported into a fixed-length database character column (that
is, a CHAR column) are padded on the right with single-byte spaces (0x20),
if necessary, to obtain values whose length equals that of the database
column. PC/IXF values imported into a fixed-length database graphic
column (that is, a GRAPHIC column) are padded on the right with
double-byte spaces (0x8140), if necessary, to obtain values whose length
equals that of the database column.

PC Version of IXF File Format

216 Data Movement Utilities

v Since PC/IXF VARCHAR columns have a maximum length of 254 bytes, a
database VARCHAR column of maximum length n, with 254 < n < 4001,
must be exported into a PC/IXF LONG VARCHAR column of maximum
length n.

v Although PC/IXF LONG VARCHAR columns have a maximum length of
32 767 bytes, and database LONG VARCHAR columns have a maximum
length restriction of 32 700 bytes, PC/IXF LONG VARCHAR columns of
length greater than 32 700 bytes (but less than 32 768 bytes) are still valid,
and can be imported into database LONG VARCHAR columns, but data
may be lost.

v Since PC/IXF VARGRAPHIC columns have a maximum length of 127
bytes, a database VARGRAPHIC column of maximum length n, with 127 <
n < 2001, must be exported into a PC/IXF LONG VARGRAPHIC column of
maximum length n.

v Although PC/IXF LONG VARGRAPHIC columns have a maximum length
of 16 383 bytes, and database LONG VARGRAPHIC columns have a
maximum length restriction of 16 350, PC/IXF LONG VARGRAPHIC
columns of length greater than 16 350 bytes (but less than 16 384 bytes) are
still valid, and can be imported into database LONG VARGRAPHIC
columns, but data may be lost.

Table 14 summarizes PC/IXF file import into new or existing database tables
without the FORCEIN option.

Table 14. Summary of PC/IXF File Import without FORCEIN Option
PC/IXF
COLUMN
DATA TYPE

DATABASE COLUMN DATA TYPE

NUMERIC CHARACTER GRAPH DATETIME

SMALL
INT

INT BIGINT DEC FLT (0,0) (SBCS,
0)d

(SBCS,
DBCS)b

b DATE TIME TIME
STAMP

Numeric

-SMALLINT N

E E E Ea E

-INTEGER N

Ea E E Ea E

-BIGINT N

Ea Ea E Ea E

-DECIMAL N

Ea Ea Ea Ea E

-FLOAT N

Ea Ea Ea Ea E

Character

-(0,0) N

E Ec Ec Ec

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 217

Table 14. Summary of PC/IXF File Import without FORCEIN Option (continued)
PC/IXF
COLUMN
DATA TYPE

DATABASE COLUMN DATA TYPE

NUMERIC CHARACTER GRAPH DATETIME

SMALL
INT

INT BIGINT DEC FLT (0,0) (SBCS,
0)d

(SBCS,
DBCS)b

b DATE TIME TIME
STAMP

-(SBCS,0) N N

E E E Ec Ec Ec

-(SBCS, DBCS) N Ec Ec Ec

E E

Graphic

N

E E

Datetime

-DATE N

E

-TIME N

E

-TIME STAMP N

E

Notes:

1. The table is a matrix of all valid PC/IXF and database manager data types. If a PC/IXF column can be imported into a database
column, a letter is displayed in the matrix cell at the intersection of the PC/IXF data type matrix row and the database manager
data type matrix column. An 'N' indicates that the utility is creating a new database table (a database column of the indicated
data type is created). An 'E' indicates that the utility is importing data to an existing database table (a database column of the
indicated data type is a valid target).

2. Character string data types are distinguished by code page attributes. These attributes are shown as an ordered pair
(SBCS,DBCS), where:

v SBCS is either zero or denotes a nonzero value of the single-byte code page attribute of the character data type

v DBCS is either zero or denotes a nonzero value of the double-byte code page attribute of the character data type.

3. If the table indicates that a PC/IXF character column can be imported into a database character column, the values of their
respective code page attribute pairs satisfy the rules governing code page equality.

a Individual values are rejected if they are out of range for the target numeric data type.

b Data type is available only in DBCS environments.

c Individual values are rejected if they are not valid date or time values.

d Data type is not available in DBCS environments.

FORCEIN Option

The FORCEIN option permits import of a PC/IXF file despite code page
differences between data in the PC/IXF file and the target database. It offers
additional flexibility in the definition of compatible columns.

PC Version of IXF File Format

218 Data Movement Utilities

FORCEIN General Semantics

The following general semantics apply when using the FORCEIN option in
either an SBCS or a DBCS environment:
v The FORCEIN option should be used with caution. It is usually advisable

to attempt an import without this option enabled. However, because of the
generic nature of the PC/IXF data interchange architecture, some PC/IXF
files may contain data types or values that cannot be imported without
intervention.

v Import with FORCEIN to a new table may yield a different result than
import to an existing table. An existing table has predefined target data
types for each PC/IXF data type.

v When LOB data is exported with the LOBSINFILE option, and the files
move to another client with a different code page, then, unlike other data,
the CLOBS and DBCLOBS in the separate files are not converted to the
client code page when imported or loaded into a database.

FORCEIN Code Page Semantics

The following code page semantics apply when using the FORCEIN option in
either an SBCS or a DBCS environment:
v The FORCEIN option disables all import utility code page comparisons.

This rule applies to code page comparisons at the column level and at the
file level as well, when importing to a new or an existing database table. At
the column (for example, data type) level, this rule applies only to the
following database manager and PC/IXF data types: character (CHAR,
VARCHAR, and LONG VARCHAR), and graphic (GRAPHIC,
VARGRAPHIC, and LONG VARGRAPHIC). The restriction follows from
the fact that code page attributes of other data types are not relevant to the
interpretation of data type values.

v The FORCEIN option does not disable inspection of code page attributes to
determine data types.
For example, the database manager allows a CHAR column to be declared
with the FOR BIT DATA attribute. Such a declaration sets both the SBCS
CPGID and the DBCS CPGID of the column to zero; it is the zero value of
these CPGIDs that identifies the column values as bit strings (rather than
character strings).

v The FORCEIN option does not imply code page translation.
Values of data types that are sensitive to the FORCEIN option are copied
"as is". No code point mappings are employed to account for a change of
code page environments. Padding of the imported value with spaces may
be necessary in the case of fixed length target columns.

v When data is imported to an existing table using the FORCEIN option:

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 219

– The code page value of the target database table and columns always
prevails.

– The code page value of the PC/IXF file and columns is ignored.

This rule applies whether or not the FORCEIN option is used. The database
manager does not permit changes to a database or a column code page
value once a database is created.

v When importing to a new table using the FORCEIN option:
– The code page value of the target database prevails.
– PC/IXF character columns with IXFCSBCP = IXFCDBCP = 0 generate

table columns marked FOR BIT DATA.
– All other PC/IXF character columns generate table character columns

with SBCS and DBCS CPGID values equal to those of the database.
– PC/IXF graphic columns generate table graphic columns with an SBCS

CPGID of "undefined", and a DBCS CPGID equal to that of the database
(DBCS environment only).

FORCEIN Example

Consider a PC/IXF CHAR column with IXFCSBCP = '00897' and IXFCDBCP =
'00301'. This column is to be imported into a database CHAR column whose
SBCS CPGID = '00850' and DBCS CPGID = '00000'. Without FORCEIN, the
utility terminates, and no data is imported, or the PC/IXF column values are
ignored, and the database column contains NULLs (if the database column is
nullable). With FORCEIN, the utility proceeds, ignoring code page
incompatibilities. If there are no other data type incompatibilities (such as
length, for example), the values of the PC/IXF column are imported "as is",
and become available for interpretation under the database column code page
environment.

The following table shows:
v The code page attributes of a column created in a new database table when

a PC/IXF file data type with specified code page attributes is imported
v That the import utility rejects PC/IXF data types if they invalid or

incompatible.

PC Version of IXF File Format

220 Data Movement Utilities

Table 15. Summary of Import Utility Code Page Semantics (New Table). This table
assumes there is no conversion table between a and x. If there were, items 3 and 4
would work successfully without the FORCEIN option.

CODE PAGE
ATTRIBUTES of PC/IXF

DATA TYPE

CODE PAGE ATTRIBUTES OF DATABASE TABLE
COLUMN

Without FORCEIN With FORCEIN

SBCS

(0,0) (0,0) (0,0)

(a,0) (a,0) (a,0)

(x,0) reject (a,0)

(x,y) reject (a,0)

(a,y) reject (a,0)

(0,y) reject (0,0)

DBCS

(0,0) (0,0) (0,0)

(a,0) (a,b) (a,b)

(x,0) reject (a,b)

(a,b) (a,b) (a,b)

(x,y) reject (a,b)

(a,y) reject (a,b)

(x,b) reject (a,b)

(0,b) (-,b) (-,b)

(0,y) reject (-,b)

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 221

Table 15. Summary of Import Utility Code Page Semantics (New
Table) (continued). This table assumes there is no conversion table between a and x.
If there were, items 3 and 4 would work successfully without the FORCEIN option.

CODE PAGE
ATTRIBUTES of PC/IXF

DATA TYPE

CODE PAGE ATTRIBUTES OF DATABASE TABLE
COLUMN

Without FORCEIN With FORCEIN

Notes:

1. Code page attributes of a PC/IXF data type are shown as an ordered pair, where
x represents a nonzero single-byte code page value, and y represents a nonzero
double-byte code page value. A '-' represents an undefined code page value.

2. The use of different letters in various code page attribute pairs is deliberate.
Different letters imply different values. For example, if a PC/IXF data type is
shown as (x,y), and the database column as (a,y), x does not equal a, but the
PC/IXF file and the database have the same double-byte code page value y.

3. Only character and graphic data types are affected by the FORCEIN code page
semantics.

4. It is assumed that the database containing the new table has code page attributes
of (a,0); therefore, all character columns in the new table must have code page
attributes of either (0,0) or (a,0).

In a DBCS environment, it is assumed that the database containing the new table
has code page attributes of (a,b); therefore, all graphic columns in the new table
must have code page attributes of (-,b), and all character columns must have code
page attributes of (a,b). The SBCS CPGID is shown as '-', because it is undefined
for graphic data types.

5. The data type of the result is determined by the rules described in “FORCEIN
Data Type Semantics” on page 224.

6. The reject result is a reflection of the rules for invalid or incompatible data types
(see “General Rules Governing PC/IXF File Import into Databases” on page 213).

The following table shows:

v That the import utility accepts PC/IXF data types with various code page
attributes into an existing table column (the target column) having the
specified code page attributes

v That the import utility does not permit a PC/IXF data type with certain
code page attributes to be imported into an existing table column having the
code page attributes shown. The utility rejects PC/IXF data types if they are
invalid or incompatible.

PC Version of IXF File Format

222 Data Movement Utilities

Table 16. Summary of Import Utility Code Page Semantics (Existing Table). This table
assumes there is no conversion table between a and x.

CODE PAGE
ATTRIBUTES OF

PC/IXF DATA
TYPE

CODE PAGE
ATTRIBUTES OF

TARGET
DATABASE
COLUMN

RESULTS OF IMPORT

Without FORCEIN With FORCEIN

SBCS

(0,0) (0,0) accept accept

(a,0) (0,0) accept accept

(x,0) (0,0) accept accept

(x,y) (0,0) accept accept

(a,y) (0,0) accept accept

(0,y) (0,0) accept accept

(0,0) (a,0) null or reject accept

(a,0) (a,0) accept accept

(x,0) (a,0) null or reject accept

(x,y) (a,0) null or reject accept

(a,y) (a,0) null or reject accept

(0,y) (a,0) null or reject null or reject

DBCS

(0,0) (0,0) accept accept

(a,0) (0,0) accept accept

(x,0) (0,0) accept accept

(a,b) (0,0) accept accept

(x,y) (0,0) accept accept

(a,y) (0,0) accept accept

(x,b) (0,0) accept accept

(0,b) (0,0) accept accept

(0,y) (0,0) accept accept

(0,0) (a,b) null or reject accept

(a,0) (a,b) accept accept

(x,0) (a,b) null or reject accept

(a,b) (a,b) accept accept

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 223

Table 16. Summary of Import Utility Code Page Semantics (Existing
Table) (continued). This table assumes there is no conversion table between a and x.

CODE PAGE
ATTRIBUTES OF

PC/IXF DATA
TYPE

CODE PAGE
ATTRIBUTES OF

TARGET
DATABASE
COLUMN

RESULTS OF IMPORT

Without FORCEIN With FORCEIN

(x,y) (a,b) null or reject accept

(a,y) (a,b) null or reject accept

(x,b) (a,b) null or reject accept

(0,b) (a,b) null or reject null or reject

(0,y) (a,b) null or reject null or reject

(0,0) (-,b) null or reject accept

(a,0) (-,b) null or reject null or reject

(x,0) (-,b) null or reject null or reject

(a,b) (-,b) null or reject null or reject

(x,y) (-,b) null or reject null or reject

(a,y) (-,b) null or reject null or reject

(x,b) (-,b) null or reject null or reject

(0,b) (-,b) accept accept

(0,y) (-,b) null or reject accept

Notes:

1. See the notes for Table 15 on page 221.

2. The null or reject result is a reflection of the rules for invalid or incompatible
data types (see “General Rules Governing PC/IXF File Import into Databases” on
page 213).

FORCEIN Data Type Semantics

The FORCEIN option permits import of certain PC/IXF columns into target
database columns of unequal and otherwise incompatible data types. The
following data type semantics apply when using the FORCEIN option in
either an SBCS or a DBCS environment (except where noted):
v In SBCS environments, the FORCEIN option permits import of:

– A PC/IXF BIT data type (IXFCSBCP = 0 = IXFCDBCP for a PC/IXF
character column) into a database character column (nonzero SBCS
CPGID, and DBCS CPGID = 0); existing tables only

PC Version of IXF File Format

224 Data Movement Utilities

– A PC/IXF MIXED data type (nonzero IXFCSBCP and IXFCDBCP) into a
database character column; both new and existing tables

– A PC/IXF GRAPHIC data type into a database FOR BIT DATA column
(SBCS CPGID = 0 = DBCS CPGID); new tables only (this is always
permitted for existing tables).

v The FORCEIN option does not extend the scope of valid PC/IXF data
types.
PC/IXF columns with data types not defined as valid in “PC/IXF Data
Types” on page 201 are invalid for import with or without the FORCEIN
option.

v In DBCS environments, the FORCEIN option permits import of:
– A PC/IXF BIT data type into a database character column
– A PC/IXF BIT data type into a database graphic column; however, if the

PC/IXF BIT column is of fixed length, that length must be even. A fixed
length PC/IXF BIT column of odd length is not compatible with a
database graphic column. A varying-length PC/IXF BIT column is
compatible whether its length is odd or even, although an odd-length
value from a varying-length column is an invalid value for import into a
database graphic column

– A PC/IXF MIXED data type into a database character column.

Table 17 summarizes PC/IXF file import into new or existing database tables
with the FORCEIN option.

Table 17. Summary of PC/IXF File Import with FORCEIN Option

PC/IXF
COLUMN
DATA TYPE

DATABASE COLUMN DATA TYPE

NUMERIC CHARACTER GRAPH DATETIME

SMALL
INT

INT BIGINT DEC FLT (0,0) (SBCS,
0)e

(SBCS,
DBCS)b

b DATE TIME TIME
STAMP

Numeric

-SMALLINT N

E E E Ea E

-INTEGER N

Ea E E Ea E

-BIGINT N

Ea Ea E Ea E

-DECIMAL N

Ea Ea Ea Ea E

-FLOAT N

Ea Ea Ea Ea E

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 225

Table 17. Summary of PC/IXF File Import with FORCEIN Option (continued)

PC/IXF
COLUMN
DATA TYPE

DATABASE COLUMN DATA TYPE

NUMERIC CHARACTER GRAPH DATETIME

SMALL
INT

INT BIGINT DEC FLT (0,0) (SBCS,
0)e

(SBCS,
DBCS)b

b DATE TIME TIME
STAMP

Character

-(0,0) N

E E w/F E w/F E w/F Ec Ec Ec

-(SBCS,0) N N

E E E Ec Ec Ec

-(SBCS,
DBCS)

N
w/Fd

N Ec Ec Ec

E E w/F E

Graphic

N
w/Fd

N

E E

Datetime

-DATE N

E

-TIME N

E

-TIME
STAMP

N

E

Note: If a PC/IXF column can be imported into a database column only with the FORCEIN option, the string 'w/F'
is displayed together with an 'N' or an 'E'. An 'N' indicates that the utility is creating a new database table; an 'E'
indicates that the utility is importing data to an existing database table. The FORCEIN option affects compatibility of
character and graphic data types only.

a Individual values are rejected if they are out of range for the target numeric data type.

b Data type is available only in DBCS environments.

c Individual values are rejected if they are not valid date or time values.

d Applies only if the source PC/IXF data type is not supported by the target database.

e Data type is not available in DBCS environments.

PC Version of IXF File Format

226 Data Movement Utilities

Differences between Version 1 PC/IXF and Version 0 System/370 IXF

The following describes differences between Version 1 PC/IXF, used by the
database manager, and Version 0 System/370 IXF, used by several host
database products:
v PC/IXF files are ASCII, rather than EBCDIC oriented. PC/IXF files have

significantly expanded code page identification, including new code page
identifiers in the H record, and the use of actual code page values in the
column descriptor records. There is also a mechanism for marking columns
of character data as FOR BIT DATA. FOR BIT DATA columns are of special
significance, because transforms which convert a PC/IXF file format to or
from any other IXF or database file format cannot perform any code page
translation on the values contained in FOR BIT DATA columns.

v Only the machine data form is permitted; that is, the IXFTFORM field must
always contain the value M. Furthermore, the machine data must be in PC
forms; that is, the IXFTMFRM field must contain the value PC. This means
that integers, floating point numbers, and decimal numbers in data portions
of PC/IXF data records must be in PC forms.

v Application (A) records are permitted anywhere after the H record in a
PC/IXF file. They are not counted when the value of the IXFHHCNT field
is computed.

v Every PC/IXF record begins with a record length indicator. This is a 6-byte
character representation of an integer value containing the length, in bytes,
of the PC/IXF record not including the record length indicator itself; that is,
the total record length minus 6 bytes. The purpose of the record length field
is to enable PC programs to identify record boundaries.

v To facilitate the compact storage of variable-length data, and to avoid
complex processing when a field is split into multiple records, PC/IXF does
not support Version 0 IXF X records, but does support D record identifiers.
Whenever a variable-length field or a nullable field is the last field in a data
D record, it is not necessary to write the entire maximum length of the field
to the PC/IXF file.

Worksheet File Format (WSF)

Lotus 1-2-3 and Symphony products use the same basic format, with
additional functions added at each new release. The database manager
supports the subset of the worksheet records that are the same for all the
Lotus products. That is, for the releases of Lotus 1-2-3 and Symphony
products supported by the database manager, all file names with any
three-character extension are accepted; for example: WKS, WK1, WRK, WR1,
WJ2.

PC Version of IXF File Format

Appendix C. Export/Import/Load Utility File Formats 227

Each WSF file represents one worksheet. The database manager uses the
following conventions to interpret worksheets and to provide consistency in
worksheets generated by its export operations:
v Cells in the first row (ROW value 0) are reserved for descriptive

information about the entire worksheet. All data within this row is optional.
It is ignored during import.

v Cells in the second row (ROW value 1) are used for column labels.
v The remaining rows are data rows (records, or rows of data from the table).
v Cell values under any column heading are values for that particular column

or field.
v A NULL value is indicated by the absence of a real cell content record (for

example, no integer, number, label, or formula record) for a particular
column within a row of cell content records.

Note: A row of NULLs will be neither imported nor exported.

To create a file that is compliant with the WSF format during an export
operation, some loss of data may occur.

WSF files use a Lotus code point mapping that is not necessarily the same as
existing code pages supported by DB2. As a result, when importing or
exporting a WSF file, data is converted from the Lotus code points to or from
the code points used by the application code page. DB2 supports conversion
between the Lotus code points and code points defined by code pages 437,
819, 850, 860, 863, and 865.

Note: For multi-byte character set users, no conversions are performed.

Worksheet File Format (WSF)

228 Data Movement Utilities

Appendix D. Warning, Error, and Completion Messages

Messages generated by the various data movement utilities are included
among the SQL messages. These messages are generated by the database
manager when a warning or error condition has been detected. Each message
has a message identifier that consists of a prefix (SQL) and a four- or five-digit
message number. There are three message types: notification, warning, and
critical. Message identifiers ending with an N are error messages. Those
ending with a W indicate warning or informational messages. Message
identifiers ending with a C indicate critical system errors.

The message number is also referred to as the SQLCODE. The SQLCODE is
passed to the application as a positive or negative number, depending on its
message type (N, W, or C). N and C yield negative values, whereas W yields
a positive value. DB2 returns the SQLCODE to the application, and the
application can get the message associated with the SQLCODE. DB2 also
returns an SQLSTATE value for conditions that could be the result of an SQL
statement. Some SQLCODE values have associated SQLSTATE values.

For detailed information about all of the DB2 messages, see the Message
Reference. You can use the information contained in this book to identify an
error or problem, and to resolve the problem by using the appropriate
recovery action. This information can also be used to understand where
messages are generated and logged.

SQL messages, and the message text associated with SQLSTATE values, are
also accessible from the operating system command line. To access help for
these error messages, enter the following at the operating system command
prompt:

db2 ? SQLnnnnn

where nnnnn represents the message number.

The message identifier accepted as a parameter for the db2 command is not
case sensitive, and the terminating letter is not required. Therefore, the
following commands will produce the same result:

db2 ? SQL0000N
db2 ? sql0000
db2 ? SQL0000n

If the message text is too long for your screen, use the following command
(on UNIX based operating systems and others that support the ″more″ pipe):

db2 ? SQLnnnnn | more

© Copyright IBM Corp. 1999 229

You can also redirect the output to a file which can then be browsed.

Help can also be invoked from interactive input mode. To access this mode,
enter the following at the operating system command prompt:

db2

To get DB2 message help in this mode, type the following at the command
prompt (db2 =>):

? SQLnnnnn

The message text associated with SQLSTATEs can be retrieved by issuing:
db2 ? nnnnn
or
db2 ? nn

where nnnnn is a five-character SQLSTATE value (alphanumeric), and nn is a
two-digit SQLSTATE class code (the first two digits of the SQLSTATE value).

Messages

230 Data Movement Utilities

Appendix E. How the DB2 Library Is Structured

The DB2 Universal Database library consists of SmartGuides, online help,
books and sample programs in HTML format. This section describes the
information that is provided, and how to access it.

To access product information online, you can use the Information Center. You
can view task information, DB2 books, troubleshooting information, sample
programs, and DB2 information on the Web. See “Accessing Information with
the Information Center” on page 242 for details.

Completing Tasks with SmartGuides

SmartGuides help you complete some administration tasks by taking you
through each task one step at a time. SmartGuides are available through the
Control Center and the Client Configuration Assistant. The following table
lists the SmartGuides.

Note: Create Database, Index, and Configure Multisite Update SmartGuide
are available for the partitioned database environment.

SmartGuide Helps You to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click Add.

Back up Database Determine, create, and schedule a backup
plan.

From the Control Center, click with
the right mouse button on the
database you want to back up and
select Backup->Database using
SmartGuide.

Configure Multisite
Update SmartGuide

Perform a multi-site update, a distributed
transaction, or a two-phase commit.

From the Control Center, click with
the right mouse button on the
Database icon and select Multisite
Update.

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, click with
the right mouse button on the
Databases icon and select
Create->Database using
SmartGuide.

© Copyright IBM Corp. 1999 231

SmartGuide Helps You to... How to Access...

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, click with
the right mouse button on the
Tables icon and select
Create->Table using SmartGuide.

Create Table Space Create a new table space. From the Control Center, click with
the right mouse button on the
Table spaces icon and select
Create->Table space using
SmartGuide.

Index Advise which indexes to create and drop for
all your queries.

From the Control Center, click with
the right mouse button on the
Index icon and select
Create->Index using SmartGuide.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match
your business requirements.

From the Control Center, click with
the right mouse button on the
database you want to tune and
select Configure using
SmartGuide.

Restore Database Recover a database after a failure. It helps
you understand which backup to use, and
which logs to replay.

From the Control Center, click with
the right mouse button on the
database you want to restore and
select Restore->Database using
SmartGuide.

Accessing Online Help

Online help is available with all DB2 components. The following table
describes the various types of help. You can also access DB2 information
through the Information Center. For information see “Accessing Information
with the Information Center” on page 242.

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive
mode, enter:

? command

where command is a keyword or the entire
command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE
command.

232 Data Movement Utilities

Type of Help Contents How to Access...

Control Center Help

Client Configuration
Assistant Help

Event Analyzer Help

Command Center Help

Explains the tasks you can
perform in a window or
notebook. The help includes
prerequisite information you
need to know, and describes
how to use the window or
notebook controls.

From a window or notebook, click the Help push
button or press the F1 key.

Message Help Describes the cause of a
message, and any action
you should take.

From the command line processor in interactive
mode, enter:

? XXXnnnnn

where XXXnnnnn is a valid message identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext is the file where you want to
save the message help.

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive
mode, enter:

help statement

where statement is an SQL statement.

For example, help SELECT displays help about
the SELECT statement.
Note: SQL help is not available on UNIX-based
platforms.

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive
mode, enter:

? sqlstate or ? class-code

where sqlstate is a valid five-digit SQL state and
class-code is the first two digits of the SQL state.

For example, ? 08003 displays help for the 08003
SQL state, while ? 08 displays help for the 08 class
code.

Appendix E. How the DB2 Library Is Structured 233

DB2 Information – Hardcopy and Online

The table in this section lists the DB2 books. They are divided into two
groups:

Cross-platform books
These books contain the common DB2 information for all
platforms.

Platform-specific books
These books are for DB2 on a specific platform. For example,
there are separate Quick Beginnings books for DB2 on OS/2,
on Windows NT, and on the UNIX-based platforms.

Cross-platform sample programs in HTML
These samples are the HTML version of the sample programs
that are installed with the SDK. They are for informational
purposes and do not replace the actual programs.

Most books are available in HTML and PostScript format, or you can choose
to order a hardcopy from IBM. The exceptions are noted in the table.

On OS/2 and Windows platforms, HTML documentation files can be installed
under the doc\html subdirectory. Depending on the language of your system,
some files may be in that language, and the remainder are in English.

On UNIX platforms, you can install multiple language versions of the HTML
documentation files under the doc/%L/html subdirectories. Any
documentation that is not available in a national language is shown in
English.

You can obtain DB2 books and access information in a variety of different
ways:

View See “Viewing Online Information” on page 241.

Search See “Searching Online Information” on page 244.

Print See “Printing the PostScript Books” on page 244.

Order See “Ordering the Printed Books” on page 245.

Name Description Form Number

File Name for
Online Book

HTML
Directory

Cross-Platform Books

234 Data Movement Utilities

Name Description Form Number

File Name for
Online Book

HTML
Directory

Administration Guide Administration Guide, Design and
Implementation contains information
required to design, implement, and
maintain a database. It also describes
database access using the Control
Center(whether local or in a
client/server environment), auditing,
database recovery, distributed database
support, and high availability.

Administration Guide, Performance
contains information that focuses on the
database environment, such as
application performance evaluation and
tuning.

You can order both volumes of the
Administration Guide in the English
language in North America using the
form number SBOF-8922.

Volume 1
SC09-2839
db2d1x60

Volume 2
SC09-2840
db2d2x60

db2d0

Administrative API
Reference

Describes the DB2 application
programming interfaces (APIs) and data
structures you can use to manage your
databases. Explains how to call APIs
from your applications.

SC09-2841

db2b0x60

db2b0

Application Building
Guide

Provides environment setup information
and step-by-step instructions about how
to compile, link, and run DB2
applications on Windows, OS/2, and
UNIX-based platforms.

This book combines the Building
Applications books for the OS/2,
Windows, and UNIX-based
environments.

SC09-2842

db2axx60

db2ax

APPC, CPI-C and SNA
Sense Codes

Provides general information about
APPC, CPI-C, and SNA sense codes that
you may encounter when using DB2
Universal Database products.
Note: Available in HTML format only.

No form number

db2apx60

db2ap

Appendix E. How the DB2 Library Is Structured 235

Name Description Form Number

File Name for
Online Book

HTML
Directory

Application Development
Guide

Explains how to develop applications
that access DB2 databases using
embedded SQL or JDBC, how to write
stored procedures, user-defined types,
user-defined functions, and how to use
triggers. It also discusses programming
techniques and performance
considerations.

This book was formerly known as the
Embedded SQL Programming Guide.

SC09-2845

db2a0x60

db2a0

CLI Guide and Reference Explains how to develop applications
that access DB2 databases using the DB2
Call Level Interface, a callable SQL
interface that is compatible with the
Microsoft ODBC specification.

SC09-2843

db2l0x60

db2l0

Command Reference Explains how to use the command line
processor, and describes the DB2
commands you can use to manage your
database.

SC09-2844

db2n0x60

db2n0

Data Movement Utilities
Guide and Reference

Explains how to use the Load, Import,
Export, Autoloader, and Data
Propogation utilities to work with the
data in the database.

SC09-2858

db2dmx60

db2dm

DB2 Connect Personal
Edition Quick Beginnings

Provides planning, installing, and
configuring information for DB2 Connect
Personal Edition.

GC09-2830

db2c1x60

db2c1

DB2 Connect User’s Guide Provides concepts, programming and
general usage information about the DB2
Connect products.

SC09-2838

db2c0x60

db2c0

Connectivity Supplement Provides setup and reference information
on how to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as
DRDA application requesters with DB2
Universal Database servers, and on how
to use DRDA application servers with
DB2 Connect application requesters.
Note: Available in HTML and PostScript
formats only.

No form number

db2h1x60

db2h1

Glossary Provides a comprehensive list of all DB2
terms and definitions.
Note: Available in HTML format only.

No form number

db2t0x50

db2t0

236 Data Movement Utilities

Name Description Form Number

File Name for
Online Book

HTML
Directory

Installation and
Configuration Supplement

Guides you through the planning,
installation, and set up of
platform-specific DB2 clients. This
supplement contains information on
binding, setting up client and server
communications, DB2 GUI tools, DRDA
AS, distributed installation, and the
configuration of distributed requests and
access methods to heterogeneous data
sources.

GC09-2857

db2iyx60

db2iy

Message Reference Lists messages and codes issued by DB2,
and describes the actions you should
take.

GC09-2846

db2m0x60

db2m0

Replication Guide and
Reference

Provides planning, configuration,
administration, and usage information
for the IBM Replication tools supplied
with DB2.

SC26-9642

db2e0x60

db2e0

SQL Getting Started Introduces SQL concepts, and provides
examples for many constructs and tasks.

SC09-2856

db2y0x60

db2y0

SQL Reference, Volume 1
and Volume 2

Describes SQL syntax, semantics, and the
rules of the language. Also includes
information about release-to-release
incompatibilities, product limits, and
catalog views.

You can order both volumes of the SQL
Reference in the English language in
North America with the form number
SBOF-8923.

SBOF-8923

Volume 1
db2s1x60

Volume 2
db2s2x60

db2s0

System Monitor Guide and
Reference

Describes how to collect different kinds
of information about databases and the
database manager. Explains how to use
the information to understand database
activity, improve performance, and
determine the cause of problems.

SC09-2849

db2f0x60

db2f0

Troubleshooting Guide Helps you determine the source of
errors, recover from problems, and use
diagnostic tools in consultation with DB2
Customer Service.

S10J-8169 db2p0

Appendix E. How the DB2 Library Is Structured 237

Name Description Form Number

File Name for
Online Book

HTML
Directory

What’s New Describes the new features, functions,
and enhancements in DB2 Universal
Database, Version 6.0, including
information about Java-based tools.

SC09-2851

db2q0x60

db2q0

Platform-Specific Books

Administering Satellites
Guide and Reference

Provides planning, configuration,
administration, and usage information
for satellites.

GC09-2821

db2dsx60

db2ds

DB2 Personal Edition
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on the OS/2, Windows 95, and
Windows NT operating systems.

GC09-2831

db2i1x60

db2i1

DB2 for OS/2 Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the OS/2
operating system. Also contains
installing and setup information for
many supported clients.

GC09-2834

db2i2x60

db2i2

DB2 for UNIX Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on
UNIX-based platforms. Also contains
installing and setup information for
many supported clients.

GC09-2836

db2ixx60

db2ix

DB2 for Windows NT
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the
Windows NT operating system. Also
contains installing and setup information
for many supported clients.

GC09-2835

db2i6x60

db2i6

DB2 Enterprise - Extended
Edition for UNIX Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for UNIX.
Also contains installing and setup
information for many supported clients.

GC09-2832

db2v3x60

db2v3

238 Data Movement Utilities

Name Description Form Number

File Name for
Online Book

HTML
Directory

DB2 Enterprise - Extended
Edition for Windows NT
Quick Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for
Windows NT. Also contains installing
and setup information for many
supported clients.

GC09-2833

db2v6x60

db2v6

DB2 Connect Enterprise
Edition for OS/2 and
Windows NT Quick
Beginnings

Provides planning, migration,
installation, and configuration
information for DB2 Connect Enterprise
Edition on the OS/2 and Windows NT
operating systems. Also contains
installation and setup information for
many supported clients.

This book was formerly part of the DB2
Connect Enterprise Edition Quick
Beginnings.

GC09-2828

db2c6x60

db2c6

DB2 Connect Enterprise
Edition for UNIX Quick
Beginnings

Provides planning, migration,
installation, configuration, and usage
information for DB2 Connect Enterprise
Edition in UNIX-based platforms. Also
contains installation and setup
information for many supported clients.

This book was formerly part of the DB2
Connect Enterprise Edition Quick
Beginnings.

GC09-2829

db2cyx60

db2cy

DB2 Data Links Manager
for AIX Quick Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for AIX.

GC09-2837

db2z0x60

db2z0

DB2 Data Links Manager
for Windows NT Quick
Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for Windows
NT.

GC09-2827

db2z6x60

db2z6

DB2 Query Patroller
Administration Guide

Provides administration information on
DB2 Query Patrol.

SC09-2859

db2dwx60

db2dw

DB2 Query Patroller
Installation Guide

Provides installation information on DB2
Query Patrol.

GC09-2860

db2iwx60

db2iw

DB2 Query Patroller
User’s Guide

Describes how to use the tools and
functions of the DB2 Query Patrol.

SC09-2861

db2wwx60

db2ww

Appendix E. How the DB2 Library Is Structured 239

Name Description Form Number

File Name for
Online Book

HTML
Directory

Cross-Platform Sample Programs in HTML

Sample programs in
HTML

Provides the sample programs in HTML
format for the programming languages
on all platforms supported by DB2 for
informational purposes (not all samples
are available in all languages). Only
available when the SDK is installed.

See Application Building Guide for more
information on the actual programs.
Note: Available in HTML format only.

No form number db2hs/c
db2hs/cli
db2hs/clp
db2hs/cpp
db2hs/cobol
db2hs/cobol_mf
db2hs/fortran
db2hs/java
db2hs/rexx

Notes:

1. The character in the sixth position of the file name indicates the language
of a book. For example, the file name db2d0e60 indicates that the
Administration Guide is in English. The following letters are used in the file
names to indicate the language of a book:

Language Identifier
Brazilian Portuguese b
Bulgarian u
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Russian r
Simp. Chinese c
Slovenian l
Spanish z

240 Data Movement Utilities

Swedish s
Trad. Chinese t
Turkish m

2. For late breaking information that could not be included in the DB2 books:
v On UNIX-based platforms, see the Release.Notes file. This file is located

in the DB2DIR/Readme/%L directory, where %L is the locale name and
DB2DIR is:
– /usr/lpp/db2_06_01 on AIX
– /opt/IBMdb2/V6.1 on HP-UX, Solaris, SCO UnixWare 7, and Silicon

Graphics IRIX
– /usr/IBMdb2/V6.1 on Linux.

v On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed.

v Under Windows Start menu

Viewing Online Information

The manuals included with this product are in Hypertext Markup Language
(HTML) softcopy format. Softcopy format enables you to search or browse the
information, and provides hypertext links to related information. It also makes
it easier to share the library across your site.

You can view the online books or sample programs with any browser that
conforms to HTML Version 3.2 specifications.

To view online books or sample programs on all platforms other than SCO
UnixWare 7:
v If you are running DB2 administration tools, use the Information Center.

See “Accessing Information with the Information Center” on page 242 for
details.

v Select the Open Page menu item of your Web browser. The page you open
contains descriptions of and links to DB2 information:
– On UNIX-based platforms, open the following page:

file:/INSTHOME/sqllib/doc/%L/html/index.htm

where %L is the locale name.
– On other platforms, open the following page:

sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

Appendix E. How the DB2 Library Is Structured 241

If you have not installed the Information Center, you can open the page
by double-clicking on the DB2 Online Books icon. Depending on the
system you are using, the icon is in the main product folder or the
Windows Start menu.

To view online books or sample programs on the SCO UnixWare 7:
v DB2 Universal Database for SCO UnixWare 7 uses the native SCOhelp

utility to search the DB2 information. You can access SCOhelp by the
following methods:
– entering the ″scohelp″ command on the command line,
– selecting the Help menu in the Control Panel of the CDE desktop or
– selecting Help in the Root menu of the Panorama desktop

For more information on SCOhelp, refer to the Installation and Configuration
Supplement.

Accessing Information with the Information Center

The Information Center provides quick access to DB2 product information.
The Information Center is available on all platforms on which the DB2
administration tools are available.

Depending on your system, you can access the Information Center from the:
v Main product folder
v Toolbar in the Control Center
v Windows Start menu
v Help menu of the Control Center

The Information Center provides the following kinds of information. Click the
appropriate tab to look at the information:

Tasks Lists tasks you can perform using DB2.

Reference Lists DB2 reference information, such as
keywords, commands, and APIs.

Books Lists DB2 books.

Troubleshooting Lists categories of error messages and their
recovery actions.

Sample Programs Lists sample programs that come with the
DB2 Software Developer’s Kit. If the Software
Developer’s Kit is not installed, this tab is not
displayed.

Web Lists DB2 information on the World Wide

242 Data Movement Utilities

Web. To access this information, you must
have a connection to the Web from your
system.

When you select an item in one of the lists, the Information Center launches a
viewer to display the information. The viewer might be the system help
viewer, an editor, or a Web browser, depending on the kind of information
you select.

The Information Center provides some search capabilities, so you can look for
specific topics, and filter capabilities to limit the scope of your searches.

For a full text search, click the Search button of the Information Center follow
the Search DB2 Books link in each HTML file.

The HTML search server is usually started automatically. If a search in the
HTML information does not work, you may have to start the search server by
double-clicking its icon on the Windows or OS/2 desktop.

Refer to the release notes if you experience any other problems when
searching the HTML information.

Note: Search function is not available in the Linux and Silicon Graphics
environments.

Setting Up a Document Server

By default, the DB2 information is installed on your local system. This means
that each person who needs access to the DB2 information must install the
same files. To have the DB2 information stored in a single location, use the
following instructions:
1. Copy all files and subdirectories from \sqllib\doc\html on your local

system to a Web server. Each book has its own subdirectory containing all
the necessary HTML and GIF files that make up the book. Ensure that the
directory structure remains the same.

2. Configure the Web server to look for the files in the new location. For
information, see the NetQuestion Appendix in Installation and Configuration
Supplement.

3. If you are using the Java version of the Information Center, you can
specify a base URL for all HTML files. You should use the URL for the list
of books.

4. Once you are able to view the book files, you should bookmark commonly
viewed topics. Among those, you will probably want to bookmark the
following pages:

Appendix E. How the DB2 Library Is Structured 243

v List of books
v Tables of contents of frequently used books
v Frequently referenced articles, such as the ALTER TABLE topic
v The Search form

For information about setting up a search, see the NetQuestion Appendix in
Installation and Configuration Supplement book.

Searching Online Information

To search for information in the HTML books, you can do the following:
v Click on Search the DB2 Books at the bottom of any page in the HTML

books. Use the search form to find a specific topic. This function is not
available in the Linux or Silicon Graphics IRIX environments.

v Click on Index at the bottom of any page in an HTML book. Use the index
to find a specific topic in the book.

v Display the table of contents or index of the HTML book, and then use the
find function of the Web browser to find a specific topic in the book.

v Use the bookmark function of the Web browser to quickly return to a
specific topic.

v Use the search function of the Information Center to find specific topics. See
“Accessing Information with the Information Center” on page 242 for
details.

Printing the PostScript Books

If you prefer to have printed copies of the manuals, you can decompress and
print PostScript versions. For the file name of each book in the library, see the
table in “DB2 Information – Hardcopy and Online” on page 234. Specify the
full path name for the file you intend to print.

On OS/2 and Windows platforms:

1. Copy the compressed PostScript files to a hard drive on your system. The
files have a file extension of .exe and are located in the
x:\doc\language\books\ps directory, where x: is the letter representing the
CD-ROM drive and language is the two-character country code that
represents your language (for example, EN for English).

2. Decompress the file that corresponds to the book that you want. Each
compressed book is a self-extracting executable file. To decompress the

244 Data Movement Utilities

book, simply run it as you would run any other executable program. The
result from this step is a printable PostScript file with a file extension of
.ps.

3. Ensure that your default printer is a PostScript printer capable of printing
Level 1 (or equivalent) files.

4. Enter the following command from a command line:
print filename.ps

On UNIX-based platforms:
1. Mount the CD-ROM. Refer to your Quick Beginnings manual for the

procedures to mount the CD-ROM.
2. Change to /cdrom/doc/%L/ps directory on the CD-ROM, where /cdrom is

the mount point of the CD-ROM and %L is the name of the desired locale.
The manuals will be installed in the previously-mentioned directory with
file names ending with .ps.Z.

3. Decompress and print the manual you require using the following
command:
v For AIX:

zcat filename | qprt -P PSPrinter_queue

v For HP-UX, Solaris, or SCO UnixWare 7:
zcat filename | lp -d PSPrinter_queue

v For Linux:
zcat filename | lpr -P PSPrinter_queue

v For Silicon Graphics IRIX:
zcat < filename | lp -d PSPrinter_queue

where filename is the full path name and extension of the compressed
PostScript file and PSprinter_queue is the name of the PostScript printer
queue.

For example, to print the English version of DB2 for UNIX Quick
Beginnings on AIX, you can use the following command:
zcat /cdrom/doc/en/ps/db2ixe60.ps.Z || qprt -P ps1

Ordering the Printed Books

You can order the printed DB2 manuals either as a set or individually. There
are three sets of books available. The form number for the entire set of DB2
books is SBOF-8926-00. The form number for the books listed under the
heading ″Cross-Platform Books″ is SBOF-8924-00.

Appendix E. How the DB2 Library Is Structured 245

Note: These form numbers only apply if you are ordering books that are
printed in the English language in North America.

You can also order books individually by the form number listed in “DB2
Information – Hardcopy and Online” on page 234. To order printed versions,
contact your IBM authorized dealer or marketing representative, or phone
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

246 Data Movement Utilities

Appendix F. Notices

Any reference to an IBM licensed program in this publication is not intended
to state or imply that only IBM’s licensed program may be used. Any
functionally equivalent product, program or service that does not infringe any
of IBM’s intellectual property rights may be used instead of the IBM product,
program, or service. Evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, is the user’s
responsibility.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the

IBM Director of Licensing
IBM Corporation, North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

© Copyright IBM Corp. 1999 247

Trademarks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States and/or other countries:

ACF/VTAM
ADSTAR
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Universal Database
Distributed Relational Database Architecture
DRDA
Extended Services
FFST
First Failure Support Technology
IBM
IMS
LAN Distance

MVS/ESA
MVS/XA
OS/400
OS/390
OS/2
PowerPC
QMF
RACF
RISC System/6000
SP
SQL/DS
SQL/400
S/370
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WIN-OS/2

Trademarks of Other Companies

The following terms are trademarks or registered trademarks of the
companies listed:

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or
both.

HP-UX is a trademark of Hewlett-Packard.

Java, HotJava, Solaris, Solstice, and Sun are trademarks of Sun Microsystems,
Inc.

248 Data Movement Utilities

Microsoft, Windows, Windows NT, Visual Basic, and the Windows logo are
trademarks or registered trademarks of Microsoft Corporation in the United
States, other countries, or both.

PC Direct is a trademark of Ziff Communications Company in the United
States, other countries, or both and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk (**), may be trademarks or service marks of others.

Appendix F. Notices 249

250 Data Movement Utilities

Index

A
Administering Satellites Guide and

Reference 238
Administration Guide 234
Administrative API Reference 235
anyorder 104
APPC, CPI-C and SNA Sense

Codes 235
Application Building Guide 235
Application Development

Guide 235
application record, PC/IXF 200
ASC, as an import file type 32
ASC data type descriptions 187
ASC file

format 186
sample 186

authorities
required for AutoLoader

utility 132
required for export utility 3
required for import utility 25
required for load utility 63

AutoLoader utility
authorities and privileges

required to use 132
limitations 145
overview of 131
restrictions 145
troubleshooting 146

B
binarynumerics 108
buffered inserts

import utility 26

C
character string delimiter 182
chardel 15, 51, 110
CLI Guide and Reference 236
code page considerations

import utility 54
load utility 114

code page conversion
files 215
when importing or loading

PC/IXF data 215
codepage 106
coldel 15, 51, 110

column
specifying for import 40

column descriptor record,
PC/IXF 195

column values, invalid 215
columns, incompatible 214
Command Reference 236
command syntax

interpreting 173
completion messages 229
compound 49
Connectivity Supplement 236
constraints checking 65

D
Data Movement Utilities Guide and

Reference 236
data record, PC/IXF 199
data transfer

across platforms 155
AutoLoader utility 131
between host and

workstation 163
data type descriptions

ASC 187
DEL 183
PC/IXF 208

data types
PC/IXF 201

Database Movement Tool 158
datesiso 15, 51, 110
DB2 Connect Enterprise Edition for

OS/2 and Windows NT Quick
Beginnings 239

DB2 Connect Enterprise Edition for
UNIX Quick Beginnings 239

DB2 Connect Personal Edition Quick
Beginnings 236

DB2 Connect User’s Guide 236
DB2 Data Links Manager

export utility 149
exporting between instances 152
import utility 152
load utility 153
troubleshooting the load

utility 153
DB2 Data Links Manager for AIX

Quick Beginnings 239

DB2 Data Links Manager for
Windows NT Quick
Beginnings 239

DB2 Enterprise - Extended Edition
for UNIX Quick Beginnings 238

DB2 Enterprise - Extended Edition
for Windows NT Quick
Beginnings 238

DB2 library
books 234
Information Center 242
language identifier for

books 240
late-breaking information 241
online help 232
ordering printed books 245
printing PostScript books 244
searching online

information 244
setting up document server 243
SmartGuides 231
structure of 231
viewing online information 241

DB2 Personal Edition Quick
Beginnings 238

DB2 Query Patroller Administration
Guide 239

DB2 Query Patroller Installation
Guide 239

DB2 Query Patroller User’s
Guide 239

db2LoadQuery - Load Query 99
DB2LOADREC 67
db2move 158
decplusblank 15, 51, 110
decpt 15, 52, 110
DEL data type descriptions 183
DEL file

format 179
sample 181

delimited ASCII (DEL) file
format 179

moving data across
platforms 156

delimiter
character string 182

delprioritychar 52, 110
differences between PC/IXF and

System/370 IXF 227

© Copyright IBM Corp. 1999 251

dldel 15, 52, 111
dump file

load utility 112
dumpfile 107

E
environment variables

DB2LOADREC 67
error messages 229
example

forcein 220
exception table

load utility 112
export message files 22, 56, 130
export utility

authorities and privileges
required to use 3

DB2 Data Links Manager 149
large objects (LOBS) 4
overview of 2
recreating an exported table 4
restrictions 22
transferring data between host

and workstation 163
export utility file formats 179
exporting

file type modifiers for 15
specifying column names 9

F
fastparse 104
file format

delimited ASCII (DEL) 179
non-delimited ASCII (ASC) 186
PC version of IXF (PC/IXF) 190
worksheet (WSF)) 227

file formats
for exporting table to file 6
for importing file to table 34

file type modifiers
export utility 15
import utility 49
load utility 104

forcein 53, 111
code page semantics 219
data type semantics 224
example 220
general semantics 219
option 218
summary of PC/IXF file import

with 225

G
Glossary 236

H
hashing algorithm 132
header record, PC/IXF 192

I
IBM Relational Data Replication

Tools
components 171
overview 170

implieddecimal 49, 107
import

of PC/IXF files, with forcein 225
import message files 22, 56, 130
import of PC/IXF files

data type-specific rules 215
general rules 213

import utility
authorities and privileges

required to use 25
buffered inserts 26
client/server 26
code page considerations 54
compared to load utility 177
DB2 Data Links Manager 152
large objects (LOBS) 27
limitations 55
optimizing performance 55
overview of 24
performance 55
recreating an exported table 27
remote database 26
restrictions 55
transferring data between host

and workstation 163
user-defined distinct types

(UDTs) 28
import utility file formats 179
importing

file type modifiers for 49
PC/IXF file to table 30

incompatible columns 214
indexfreespace 104
indexixf 53
indexschema 53
indicator

record length 191
Installation and Configuration

Supplement 236
Integration Exchange Format

(IXF) 190
invalid PC/IXF column values 215
invalid PC/IXF data type 207

K
keywords

syntax for 173

L
large objects (LOBS)

export utility 4
import utility 27

LOAD
temporary files 80

load delete start compensation log
record 113

load message files 22, 56, 130
load pending list log record 113
LOAD QUERY 82
LOAD QUERY (db2LoadQuery) 99
load start log record 113
load utility

authorities and privileges
required to use 63

build phase 58
code page considerations 114
compared to import utility 177
database recovery 61
DB2 Data Links Manager 153
delete phase 59
dump file 112
exception table 112
limitations 130
load phase 58
log records 113
optimizing performance 125
overview of 58
parallelism 62
process overview 58
recovery from failure 67
restrictions 130
running concurrent jobs 130
temporary files 113

load utility file formats 179
loading

file type modifiers for 104
loading data

AutoLoader utility for loading
data on database
partitions 131

lobsinfile 15, 49, 104
log records

load utility 113

M
message files: export, import, and

load 22, 56, 130
Message Reference 237
messages 229
modifiers, file type

for export utility 15
for import utility 49
for load utility 104

252 Data Movement Utilities

moving data
across platforms 155

N
no_type_id 49
nochecklengths 50, 53, 108, 111
nodefaults 49
nodoubledel 15, 52, 111
noeofchar 50, 107
noheader 105
non-delimited ASCII (ASC) file

format 186
norowwarnings 105
nullindchar 50, 108

O
option

forcein 218

P
packeddecimal 109
pagefreespace 105
parallelism

load utility 62
parameters

syntax for 173
partitioning data

AutoLoader utility 131
partitioning keys 131
PC/IXF

code page conversion files 215
contrasted with System/370

IXF 227
data type descriptions 208
data types 201
invalid column values 215
invalid data type 207, 213
record types 190, 192
valid data type 207

PC/IXF file
format 190

PC/IXF file format
moving data across

platforms 155
PC/IXF file import

data type-specific rules 215
general rules 213
with forcein 225

PC/IXF record type
application 200
column descriptor 195
data 199
header 192
table 193

PC version of IXF (PC/IXF) file
format 190

pending states 124
performance

import utility 55
load utility 125

privileges
required for AutoLoader

utility 132
required for export utility 3
required for import utility 25
required for load utility 63

Q
Quick Beginnings for OS/2 238
Quick Beginnings for UNIX 238
Quick Beginnings for Windows

NT 238

R
reclen 50, 109
record length indicator 191
record type, PC/IXF

application 200
column descriptor 195
data 199
header 192
table 193

record types
PC/IXF 190, 192

recreating an exported table
export utility 4
import utility 27

Replication Guide and
Reference 237

rules governing PC/IXF file
import 213, 215

S
sample ASC file 186
sample DEL file 181
SELECT statement

in EXPORT command 7
semantics

forcein, code page 219
forcein, data type 224
forcein, general 219

setting up document server 243
splitting data 131
SQL Getting Started 237
SQL messages 229
SQL Reference 237
SQL-UEXPT-OUT structure 14
SQLCODE 229
SQLSTATE 229
SQLUIMPT-IN structure 46
SQLUIMPT-OUT structure 47
SQLULOAD-IN structure 93

SQLULOAD-OUT structure 97
states

backup pending 124
check pending 124
delete pending 124
load pending 124

striptblanks 50, 109
striptnulls 51, 109
structure

delimited ASCII (DEL) file 180
non-delimited ASCII (ASC)

file 186
summary table

import restriction 55
syntax diagrams 173
System/370 IXF 227

contrasted with PC/IXF 227
System Monitor Guide and

Reference 237

T
table load delete start log

record 113
table record, PC/IXF 193
temporary files

LOAD 80
load utility 113

totalfreespace 105
traverse order 24

default 166
typed tables 166
user-specified 167

Troubleshooting Guide 237
typed tables

data movement examples 168
export utility 165
import utility 165
moving data between 165
selection during data

movement 167
traverse order 24, 166

U
usedefaults 49, 106
user-defined distinct types (UDTs)

import utility 28
utility file formats 179

V
valid PC/IXF data type 207
variables

syntax for 173

W
warning messages 229
What’s New 237

Index 253

worksheet file format (WSF) 227

WSF file

format 227

WSF file format

moving data across
platforms 156

254 Data Movement Utilities

Contacting IBM

This section lists ways you can get more information from IBM.

If you have a technical problem, please take the time to review and carry out
the actions suggested by the Troubleshooting Guide before contacting DB2
Customer Support. Depending on the nature of your problem or concern, this
guide will suggest information you can gather to help us to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

Telephone

If you live in the U.S.A., call one of the following numbers:
v 1-800-237-5511 to learn about available service options.
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, see
Appendix A of the IBM Software Support Handbook. You can access this
document by accessing the following page:
http://www.ibm.com/support/

then performing a search using the keyword “handbook”.

Note that in some countries, IBM-authorized dealers should contact their
dealer support structure instead of the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2 information about
news, product descriptions, education schedules, and more. The DB2 Product
and Service Technical Library provides access to frequently asked questions,
fixes, books, and up-to-date DB2 technical information. (Note that this
information may be in English only.)

Anonymous FTP Sites
ftp.software.ibm.com

© Copyright IBM Corp. 1999 255

Log on as anonymous. In the directory /ps/products/db2, you can find
demos, fixes, information, and tools concerning DB2 and many related
products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-l

These newsgroups are available for users to discuss their experiences with
DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification Program for DB2 Universal
Database, go to http://www.software.ibm.com/data/db2/db2tech/db2cert.html

256 Data Movement Utilities

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2858-00

