IBM DB2 Universal Database

Administration Guide:
Performance

Version 6

SC09-2840-00

IBM DB2 Universal Database

Administration Guide:
Performance

Version 6

SC09-2840-00

Before using this information and the product it supports, be sure to read the general information under

LAQPEMM_W 2 5

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-1BM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 1999. All rights reserved.
US Government Users Restricted Rights — Use duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book - T)4
Who Should Use This book Lo X
How This Book is Structured. X

Part 1. Introduction to

Performance 1
Chapter 1. Elements of Performance . . 3
Tuning Guidelines 4
Performance Improvement Process . 5
How Much Can a System be Tuned? . 6
A Less Formal Approach . 6
Disk Storage 7
Putting It All Together 7
Part 2. Tuning Appllcatlon
Performance A |
Chapter 2. Application Considerations 13
Concurrency . . O <
Repeatable Read 15
Read Stability. 16
Cursor Stability 17
Uncommitted Read 17
Choosing the Isolation Level 18
Specifying the Isolation Level 18
Locking. . . e2
Attributes of Locks Coe .. 20
Locks and Application Performance .. 22
Factors Affecting Locking 29
LOCK TABLE Statement 33
CLOSE CURSOR WITH RELEASE . . 35
Summary of Locking Considerations 35
Adjusting the Optimization Class . . . 36
How Do You Set the Optimization Class7 40
How Much Optimization is Necessary? 40
Restrictions on Result Sets to Improve
Performance . . . < X
FOR UPDATE Clause L .. 44
FOR READ or FETCH ONLY Clause 44
OPTIMIZE FOR n ROWS Clause . . . 45
FETCH FIRST n ROWS ONLY Clause 47

© Copyright IBM Corp. 1993, 1999

DECLARE CURSOR WITH HOLD
Statement .
Row Blocking .
Tuning Queries .
Using a SELECT- Statement
Guidelines When Using a
SELECT-Statement
Compound SQL .
Performance Considerations and Character
Conversion. .
Code Page Conver5|on

Extended UNIX Code (EUC) Code Page

Support .
Stored Procedures
Activating a Database .
Parallel Processing of Appllcatlons

Chapter 3. Environmental Considerations
Configuration Parameters Affecting Query
Optimization .

Nodegroup Impact on Query Optlmlzatlon

Table Space Impact on Query Optimization
Indexing Impact on Query Optimization
Indexing versus No Indexing.
Using the Index Advisor .
Guidelines for Indexing .o
Performance Tips for Administering
Indexes .
Server Options Affectlng Federated
Database Queries.

Chapter 4. System Catalog Statistics
Collecting Statistics Using the RUNSTATS
Utility .

The Database Partltlon Where

RUNSTATS is Executed

Analyzing Statistics .

Collecting and Using Dlstrlbutlon Statlstlcs

Understanding Distribution Statistics
When Should You Use Distribution
Statistics?

How Many Statlstlcs Should You Keep’)

How Does the Optimizer Use
Distribution Statistics? .

47
48
49
49

50
52

52
53

53
54
55
56

59
62
62
66
66
67
68

70

73

81
82
82
88
89

91
92

93

Collecting and Using Detailed Index

Statistics .

Understanding Detalled Index Statlstlcs
When Should You Use Detailed Index
Statistics?

User Update-Capable Catalog Statlstlcs
Rules for Updating Catalog Statistics
Rules for Updating Table and Nickname
Statistics .

Rules for Updating Column Statlstlcs
Rules for Updating Distribution Statistics
for Columns .

Rules for Updating Index Statlstlcs
Updating Statistics for User-Defined
Functions

Modeling Productlon Databases

Chapter 5. Understanding the SQL
Compiler
Overview of the SQL Compller
Rewrite Query by the SQL Comprler .
Operation Merging .
Example - View Merges
Example - Subquery to Join
Transformations .
Example - Redundant Jom EI|m|nat|0n
Example - Shared Aggregation .
Example - Summary Tables
Operation Movement . .
Example - DISTINCT Ellmlnatlon .
Example - General Predicate Pushdown
Example - Decorrelation
Predicate Translation .
Example - Addition of Implled Predlcates
Example - OR to IN Transformations
Accounting for Column Correlation
Data Access Concepts and Optimization
Index Scan Concepts
Relation Scan versus Index Scan
Summary Table Scan
Predicate Terminology .
Join Concepts . .
Replicated Summary Tables .
Join Strategies in a Partitioned Database
Influence of Sorting on the Optimizer
Optimization Strategies for Intra-Partition
Parallelism .
Parallel Scan Strategles
Parallel Sort Strategies .
Parallel Temporary Tables.

iV Administration Guide: Performance

98
98

100
100
102

103
103

104
105

106
108

111
111
115
115
116

117
117
118
119
120
121
121
122
123
123
124
125
126
127
136
137
138
141
149
149
157

159
160
160
161

Parallel Aggregation Strategies 161
Parallel Join Strategies . . . 162
Federated Database Query Compller Phases 162
Pushdown Analysis. 162
Remote SQL Generation and Global
Optimization 170
Chapter 6. SQL Explain Facility N Y
Choosing an Explain Tool. 178
Using the SQL Explain Facility 180
Introductory Concepts for Explain 182
Explain Information for Data Objects 183
Explain Information for Data Operators 184
How Explain Information is Organized 185
Explain Instance Information. 185
Explain Snapshot Information 188
Explain Table Information. 189
Obtaining Explain Datao 191
Capturing Explain Table Informatlon 191
Capturing Explain Snapshot Information 192
Guidelines on Using Explaln Output ... 193
Visual Explain. 195
SQL Advise Facility 196

Part 3. Tuning and Conflgunng

Your System203
Chapter 7. Operational Performance . . 205
How DB2 Uses Memory . . . 205
Setting Parameters That Affect Memory
Usage . . . e 212
FCM Reqmrements S ... 213
Managing the Database Buffer Pool ... 213
Managing Multiple Database Buffer Pools 217
Choosing One or Many Buffer Pools 218
Prefetching Data into the Buffer Pool . . . 219
Understanding Sequential Prefetching 220
Understanding List Prefetching 222
Prefetching and Intra-Partition
Parallelism. . . 222
Configuring 1/0 Servers for Prefetchlng and
Parallel I/O . . . e 222
Enabling Parallel I/O e .. 224
Allocating Multiple Pages at a Tlme . . 226
Sorting 226
Different Types of Sortlng .o 227

Tuning the Parameters that Affect Sortlng 227
Looking for Indicators of Sorting
Performance Problems 228

Techniques for Managing Sorting

Performance .
Reorganizing Table Data

Online Index Reorganization .

Avoiding the Need to Reorganize Tables

Performance Considerations for DMS
Devices . .
Managing In|t|aI|zat|on Overhead .
Database Agents .

Using the Database System Monltor
Extending Memory .

Chapter 8. Using the Governor

Starting and Stopping the Governor

The Governor Daemon.

Creating the Governor Conflguratlon F|Ie
Governor Log Files . .

Querying Governor Log Files

Running the Governor and Database
Manager Performance .

228
229
232
232

233
234
235
239
241

. 243

244
246
247
255
256

257

Chapter 9. Scaling Your Configuration 259

Adding Processors to a Machine
Adding Database Partitions to a Partitioned
Database System .

Adding Database Partltlons to a Runnlng

System . .
Adding Database Partltlons to a Stopped
System .
Dropping a Database Partltlon from a
System .

Chapter 10. Redistributing Data Across
Database Partitions
How to Partition Data .

Adding and Dropping Database Partltlons

Specifying a Target Partitioning Map .
How Data Is Redistributed Across Database
Partitions . .
How Data Is Redlstrlbuted in Tables .
Recovering From Redistribution Errors
Data Redistribution and Other Operations
Following Data Redistribution

Chapter 11. Benchmark Testing

Benchmark Testing Methodology
Preparing for Benchmark Testing
Creating a Benchmark Program .
Executing the Benchmark Tests .

260

261

262

263

266

. 269

270
270
271

271
272
273
273
274

. 275

276
276
278
284

Chapter 12. Configuring DB2 . 289
Tuning Configuration Parameters 290
Database Manager Parameters 291
Database Manager Configuration
Parameter Summary 292
Database Parameters 297
Database Configuration Parameter
Summary 299
Parameter Details by Functlon 303
Capacity Management . 304
Database Shared Memory . 305
Application Shared Memory . 318
Agent Private Memory . 319
Agent/Application Communlcatlon
Memory. . 331
Database Manager Instance Memory 336
Locks .o 341
1/0 and Storage . 345
Agents . 352
Database Appllcatlon Remote Interface
(DARI) . 364
Logging and Recovery 368
Database Log Files . 368
Database Log Activity . 375
Recovery 380
Distributed Unit of Work Recovery 386
Database Management . 390
Attributes . . 391
DB2 Data Links Manager . 394
Status . 396
Compiler Settlngs 399
Communications . . 404
Communication Protocol Setup 404
Distributed Services. 409
DB2 Discovery 414
Parallel . . 417
Communications . 417
Parallel Processing 423
Instance Management . 425
Diagnostic . 425
Database System Monltor Parameters 428
System Management 429
Instance Administration 437
Part 4. Appendixes . 447
Appendix A. DB2 Registry and
Environment Variables . 449
Appendix B. Sample Tables . 489
Contents V

The Sample Database .
To Install the Sample Database .
To Erase the Sample Database
CL_SCHED Table
DEPARTMENT Table
EMPLOYEE Table
EMP_ACT Table .

EMP_PHOTO Table .
EMP_RESUME Table
IN_TRAY Table

ORG Table .
PROJECT Table
SALES Table

STAFF Table
STAFFG Table.

Sample Files with BLOB and CLOB Data

Type . .
Quintana Photo .
Quintana Resume
Nicholls Photo
Nicholls Resume .
Adamson Photo .
Adamson Resume
Walker Photo .
Walker Resume

Appendix C. Catalog Views
Updatable Catalog Views .
“Roadmap” to Catalog Views

“Roadmap” to Updatable Catalog Vlews

SYSIBM.SYSDUMMY1 .
SYSCAT.ATTRIBUTES . .
SYSCAT.BUFFERPOOLNODES .
SYSCAT.BUFFERPOOLS
SYSCAT.CASTFUNCTIONS .
SYSCAT.CHECKS
SYSCAT.COLAUTH.
SYSCAT.COLCHECKS .
SYSCAT.COLDIST
SYSCAT.COLOPTIONS.
SYSCAT.COLUMNS.
SYSCAT.CONSTDEP
SYSCAT.DATATYPES
SYSCAT.DBAUTH
SYSCAT.EVENTMON ITORS
SYSCAT.EVENTS.

SYSCAT. FULLHIERARCHIES
SYSCAT.FUNCDEP . .
SYSCAT.FUNCMAPOPTIONS
SYSCAT.FUNCMAPPARMOPTIONS .

Vi Administration Guide: Performance

490
490
490
491
491
491
493
495
496
496
497
497
498
499
500

501
501
502
503
503
505
505
506
506

. 509

510
510
513
514
515
517
518
519
520
521
522
523
524
525
530
531
533
534
536
537
538
539
540

SYSCAT.FUNCMAPPINGS
SYSCAT.FUNCPARMS .
SYSCAT.FUNCTIONS .
SYSCAT.HIERARCHIES
SYSCAT.INDEXAUTH .
SYSCAT.INDEXCOLUSE .
SYSCAT.INDEXDEP.
SYSCAT.INDEXES
SYSCAT.INDEXOPTIONS.
SYSCAT.KEYCOLUSE .
SYSCAT.NAMEMAPPINGS .
SYSCAT.NODEGROUPDEF .
SYSCAT.NODEGROUPS
SYSCAT.PACKAGEAUTH.
SYSCAT.PACKAGEDEP
SYSCAT.PACKAGES
SYSCAT.PARTITIONMAPS
SYSCAT.PASSTHRUAUTH
SYSCAT.PROCEDURES
SYSCAT.PROCOPTIONS .

SYSCAT.PROCPARMOPTIONS .

SYSCAT.PROCPARMS .
SYSCAT.REFERENCES .

SYSCAT.REVTYPEMAPPINGS .

SYSCAT.SCHEMAAUTH .
SYSCAT.SCHEMATA
SYSCAT.SERVEROPTIONS
SYSCAT.SERVERS
SYSCAT.STATEMENTS.
SYSCAT.TABAUTH .
SYSCAT.TABCONST
SYSCAT.TABLES.
SYSCAT.TABLESPACES
SYSCAT.TABOPTIONS.
SYSCAT.TBSPACEAUTH .
SYSCAT.TRIGDEP
SYSCAT.TRIGGERS .
SYSCAT.TYPEMAPPINGS.
SYSCAT.USEROPTIONS
SYSCAT.VIEWDEP .
SYSCAT.VIEWS . .
SYSCAT.WRAPOPTIONS .
SYSCAT.WRAPPERS
SYSSTAT.COLDIST .
SYSSTAT.COLUMNS
SYSSTAT.FUNCTIONS .
SYSSTAT.INDEXES .
SYSSTAT.TABLES

541
542
544
548
549
550
551
552
555
556
557
558
559
560
561
562
566
567
568
570
571
572
574
575
577
578
579
580
581
582
584
585
589
590
591
592
593
594
596
597
598
599
600
601
602
604
606
609

Appendix D. Explain Tables and

Definitions .

EXPLAIN ARGUMENT Table

EXPLAIN_INSTANCE Table .

EXPLAIN_OBJECT Table .

EXPLAIN_OPERATOR Table.

EXPLAIN_PREDICATE Table

EXPLAIN_STATEMENT Table

EXPLAIN_STREAM Table.

ADVISE_INDEX Table .

ADVISE_WORKLOAD Table.

Table Definitions for Explain Tables
EXPLAIN_ARGUMENT Table Definition
EXPLAIN_INSTANCE Table Definition
EXPLAIN_OBIJECT Table Definition
EXPLAIN_OPERATOR Table Definition
EXPLAIN_PREDICATE Table Definition
EXPLAIN_STATEMENT Table Definition
EXPLAIN_STREAM Table Definition
ADVISE_INDEX Table Definition
ADVISE_WORKLOAD Table Definition

Appendix E. SQL Explain Tools
Running db2expln and dynexpin
db2expln Syntax and Parameters
Usage Notes for db2expln.
dynexpln Syntax and Parameters
Usage Notes for dynexpln.
Description of db2exp|n and dynexpln
Output .

Table Access

. 611

612
616
618
621
623
625
627
629
632
633
634
635
636
637
638
639
640
641
643

. 645

646
646
648
650
652

653
654

Temporary Tables

Joins . .

Data Streams .

Insert, Update, and Delete

Row ldentifier (RID) Preparation

Aggregation

Parallel Processing .

Miscellaneous Statements . .
Examples of db2expln and dynexpln
Output .

Example One: No Parallellsm Plan

Example Two: Single-Partition Database

Plan with Intra-Partition Parallelism

Example Three: Multipartition Database

Plan with Inter-Partition Parallelism

Example Four: Multipartition Database

Plan with Inter-Partition and

Intra-Partition Parallelism .

Appendix F. db2exfmt - Explain Table
Format Tool

Appendix G. Notices
Trademarks
Trademarks of Other Companles

Index

Contacting IBM

Contents

659
662
664
665
665
666
667
670

672
672

674

678

681

. 687

. 689

690
690

. 693

. 707

Vii

Viii Administration Guide: Performance

About This Book

The Administration Guide in its two volumes provides information necessary
to use and administer the year 2000 ready, DB2* relational database
management system (RDBMS) products, including:

* Information required for designing, implementing and managing databases
(found in Administration Guide, Design and Implementation)

+ Information regarding the configuring and tuning of your database
environment to improve performance (found in Administration Guide,
Performance).

Many of the tasks described in this book can be performed using different
interfaces:

* The Command Processor, which allows you to access and manipulate
databases from a graphical interface. From this interface, you can also
execute SQL statements and DB2 utility functions. Most examples in this
book illustrate the use of this interface. For more information about using
the command processor, see the Command Reference manual.

* The application programming interface, which allows you to execute DB2
utility functions within an application program. For more information about
using the application programming interface, see the Administrative API
Reference manual.

* The Control Center, which allows you to graphically perform
administrative tasks such as configuring the system, managing directories,
backing up and recovering the system, scheduling jobs, and managing
media. The Control Center also contains Replication Administration to
graphically set up the replication of data between systems. To invoke the
Control Center, use the db2cc command, or (for OS/2) select the Control
Center icon from the DB2 folder. For introductory help, select Getting
started from the Help pull-down of the Control Center window. The Visual
Explain and Performance Monitor tools are invoked from the Control
Center.

Error conditions when using the Control Center are recorded in the Control
Center Administration Engine Log (db2cc.log). This log records information
about the errors generated while using the Control Center. The log is
always active while the Control Center is active. The log file is kept in the
home directory of the executable that invokes the Control Center. That is, in
the bin subdirectory of the sq11ib subdirectory. The file can be viewed and
updated using an ASCII file editor.

The log file records the error message type, a time stamp, a process
identifier (PID), a thread identifier (TID), and an SQL error message. The

© Copyright IBM Corp. 1993, 1999 iX

process ID and the thread ID are used to determine the originator of the log
message. Combined with the Control Center trace information, DB2 Service
and Support personnel are able to determine which Control Center task
caused the error. The information is only of use to the DB2 Service and
Support personnel.

The log file can be edited by an ASCII file editor to remove log records that
are no longer needed.

There are other tools available that you can use to perform administration
tasks. They include:

e The Script Center to store small applications called scripts. These scripts
may contain DB2 commands as well as operating system commands.

* The Alert Center to monitor the messages that result from other DB2
operations.

* The Tool Settings to change the settings for the Control Center, Alert
Center, and Replication.

e The Journal to schedule jobs to run unattended.

Who Should Use This book

This book is intended primarily for database administrators, system
administrators, security administrators and system operators who need to
design, implement and maintain a database to be accessed by local or remote
clients. It can also be used by programmers and other users who require an
understanding of the administration and operation of the DB2 relational
database management system.

This volume of the Administration Guide is concerned with Performance
Issues. That is, those topics and issues concerned with establishing, testing,
and improving all aspects of your applications and the DB2 UDB product
performance.

How This Book is Structured

The Administration Guide, Performance contains information about the following
major topics:

Introduction to Performance

 Part 1. Introduction to Performancsd, introduces concepts and considerations

for managing and improving DB2 UDB performance.

Tuning Application Performance

X Administration Guide: Performance

Chapter 2. Application Considerationd, describes some techniques for

improving database performance when designing your applications.

Chapter 3. Fnvironmental Considerationd, describes some techniques for

improving database performance when setting up your database
environment.

bhapleuiystemﬁatalog&auwcd describes how statistics about your

data can be collected and used to ensure optimal performance.

Chapter 5_Understanding the SQL Compiled describes what happens to an

SQL statement when it is compiled using the SQL compiler.

Chapter 6_SQL Explain Facility describes the Explain facility, which allows

you to examine the choices the SQL compiler has made to access your data.

Tuning and Configuring Your System

Chapter 7_Qperational Performancd, provides an overview of how the

database manager uses memory and other considerations that affect
run-time performance.

Chapter 8 Using the Governan provides an introduction to the use of a

governor to control some aspects of database management.

Chapter 9_Scaling Your Canfiguratiod, introduces some considerations and

tasks associated with increasing the size of your database systems.

Chapter 10_Redistributing Data Across Database Partitiond, discusses the

tasks required in a partitioned database environment to redistribute data
across partitions.

Chapter 11 Renchmark Testing, provides an overview of benchmark testing

and how to perform benchmark testing.

Chapter 12 Configuring DBA, discusses the database manager and database

configuration files and the values for the configuration parameters.

Appendixes

Appendix A DRB? Registry and Fnvironment Variabled, presents profile

registry values and environment variables.

Appendix B Sample Tabled, contains a description of the sample tables

provided with the database manager.

Appendix C_Catalog Viewsd, contains a description of each system catalog

view, including column names and data types.

Bppendix D. Fxplain Tables and Definitiond, provides information about the

tables used by the DB2 Explain facility and how to create those tables.

Bppendix F. SQI Fxplain Toold, provides information on using the DB2

explain tools: db2expln and dynexpin.

The other volume of the Administration Guide Administration Guide, Design
and Implementation) is concerned with the design and implementation of your

About This Book Xi

Xil

databases. It presents logical and physical design issues; what should be done
to implement your design; distributed transaction issues; and high availability
topics.

The specific chapters and appendixes in that volume are briefly described here
beginning with:

Database Concepts

 Introduction to Concepts Within DB2 Universal Database presents an
overview of DB2 Universal Database including: using the Control Center,
the types of parallelism provided by DB2, and federated systems use.

Database Design and Implementation

* Designing Your Logical Database discusses the concepts and guidelines for
designing a logical database.

* Designing Your Physical Database discusses the guidelines for designing a
physical database, including considerations related to physical data storage.

* Implementing Your Design discusses the concepts and guidelines for
creating a database and the objects within a database.

« Controlling Database Access describes how you can control access to your
database’s resources.

* Auditing DB2 Activities describes how you can detect and monitor
unwanted or unanticipated access to data.

« Utilities for Moving Data is a one-page introduction to the different ways to
move data and to direct you to the Data Movement Utilities Guide and
Reference book.

* Recovering a Database discusses factors to consider when choosing
database and table space recovery methods, including backing up and
restoring a database or table space, and using the roll-forward recovery
method.

Distributed Transaction Processing

» Distributed Databases discusses how you can access multiple databases in a
single transaction.
* Using DB2 with an XA-Compliant Transaction Manager discusses how you

can use your databases in a distributed transaction processing environment
such as CICS.

High Availability Systems
* High Availability Cluster Multi-Processing (HACMP) on AIX discusses the

support of IBM High Availability Cluster Multi-Processing (HACMP) for
AIX by DB2.

Administration Guide: Performance

High Availability Cluster Multi-Processing, Enhanced Scalability (HACMP
ES) for AIX discusses the support of IBM High Availability Cluster
Multi-Processing, Enhanced Scalability (HACMP ES) for AIX by DB2.

High Availability in the Windows NT Environment discusses the support of
Microsoft Cluster Server for Windows NT by DB2.

High Availability in the Solaris Operating Environment, Single-Partition
Database discusses the support of Sun Cluster 2.1 for the Sun Solaris
Operating System by DB2.

High Availability in the Solaris Operating Environment, Partitioned
Database discusses the support of Sun Cluster 2.1 for the Sun Solaris
Operating System by DB2 Enterprise - Extended Edition.

Appendixes

How the DB2 Library is Structured provides information about the
structure of the DB2 library, including SmartGuides, online help, messages,
and books.

Planning Database Migration provides information about migrating
databases to Version 6.

Incompatibilities Between Releases presents the incompatibilities introduced
from release to release up to, and including, Version 6.

Memory Usage for DB2 Universal Database Version 6 presents memory
requirements for each DB2 feature.

Naming Rules provides the rules to follow when naming databases and
objects.

Using Distributed Computing Environment (DCE) Directory Services
provides information about how you can use DCE Directory Services.

X/0pen Distributed Transaction Processing Model provides an overview of
the X/Open Distributed Transaction Processing model and the DB2
database support provided.

User Exit for Database Recovery discusses how user exit programs can be
used with database log files and describes some sample user exit programs.

National Language Support (NLS) introduces DB2 National Language
Support including information about countries, languages, and code pages.

Issuing Commands to Multiple Database Partition Servers discusses the use
of the db2_all and rah shell scripts to send commands to all partitions in a
partitioned database environment.

How DB2 for Windows NT Works with Windows NT Security describes
how DB2 works with Windows NT security.

Using the Windows NT Performance Monitor provides information on
registering DB2 with the Windows NT Performance Monitor and on how to
use the performance information.

About This Book Xiii

* Configuring Multiple Logical Nodes describes how to configure multiple
logical nodes in a partitioned database environment.

» Using Virtual Interface (VI) Architecture describes how to enable Virtual
Interface Architecture for use with DB2 Universal Database.

XIV Administration Guide: Performance

Part 1. Introduction to Performance

© Copyright IBM Corp. 1993, 1999

2 Administration Guide: Performance

Chapter 1. Elements of Performance

Performance is the way a computer system behaves given a particular work
load. Performance is measured through one or more of the system’s response
time, throughput, and availability; and it is affected by:

* The resources available
* How well those resources are used and shared.

In general, you should undertake performance tuning when you want to
improve the cost-benefit ratio of your system. Specific goals could include:

* Processing a larger, or more demanding, work load without increasing
processing costs. (For example, increasing the work load without buying
new hardware or using more processor time.)

* Obtaining faster system response times, or higher throughput, without
increasing processing costs.

* Reducing processing costs without negatively affecting service to your
users.

Translating performance from technical terms to economic terms is difficult.
Performance tuning certainly costs money (through people’s time and through
processor time), so before you undertake a tuning project, weigh its costs
against its possible benefits. Some of these benefits are tangible:

* More efficient use of resources
* The ability to add more users to the system.

Other benefits such as greater user satisfaction because of quicker response
time, are intangible. All of these benefits should be considered.

There are SmartGuides integrated with DB2 that will assist you in completing
some performance-related administration tasks. These tasks are typically those
where you spend a little time and can achieve a significant performance
improvement. The SmartGuides take you through each task one step at a
time. SmartGuides are available through the Control Center and the Client
Configuration Assistant.

The Performance Configuration SmartGuide assist you to tune the
performance of a database by updating configuration parameters to match
your business requirements. This SmartGuide, and, to a less extent the Create
Database SmartGuide, can assist in improving the performance of a database.
Other SmartGuides are available to assist in the improvement of performance
of individual tables and general data access. The SmartGuides in this area

© Copyright IBM Corp. 1993, 1999 3

include: Create Table, Index, and Configure Multisite Update SmartGuides.
The SmartGuides can be found from the Control Center by clicking with the
right mouse button on an object.

Tuning Guidelines

The following guidelines should help you develop an overall approach to
performance tuning.

Remember the Law of Diminishing Returns: Your greatest performance benefits
usually come from your initial efforts. Further changes generally produce
smaller and smaller benefits and require more and more effort.

Do Not Tune Just for the Sake of Tuning: Tune to relieve identified constraints. If
you tune resources that are not the primary cause of performance problems,
this has little or no effect on response time until you have relieved the major
constraints, and it can actually make subsequent tuning work more difficult. If
there is any significant improvement potential, it lies in improving the
performance of the resources that are major factors in the response time.

Consider the Whole System: You can never tune one parameter or system in
isolation. Before you make any adjustments, consider how it will affect the
system as a whole.

Change One Parameter at a Time: Do not change more than one performance
tuning parameter at a time. Even if you are sure that all the changes will be
beneficial, you will have no way of evaluating how much each change
contributed. You also cannot effectively judge the trade-off you have made by
changing more than one parameter at a time. Every time you adjust a
parameter to improve one area, you almost always affect at least one other
area that you may not have considered.

Measure and Reconfigure by Levels: For the same reasons that you should only
change one parameter at a time, tune one level of your system at a time. You
can use the following list of levels within a system as a guide:

* Hardware

* Operating System

» Application Server and Requester
» Database

e SQL Statements

* Application Programs

Check for Hardware and Software Problems: Some performance problems may be
corrected by applying service either to your hardware, or to your software, or

4 Administration Guide: Performance

to both. Do not spend excessive time monitoring and tuning your system
when simply applying service may make it unnecessary.

Understand the Problem Before You Upgrade Your Hardware: Even if it seems that
additional storage or processor power could immediately improve
performance, take the time to understand where your bottlenecks are. You
may spend money on additional disk storage only to find that you do not
have the processing power or the channels to exploit it.

Put Fallback Procedures in Place Before You Start Tuning: As noted earlier, some
tuning can cause unexpected performance results. If this leads to poorer
performance, it should be reversed and alternative tuning tried. If the former
setup is saved in such a manner that it can be simply recalled, the backing out
of the incorrect information becomes much simpler.

Performance Improvement Process

Use the following process to improve the performance of any system:
1. Establish performance indicators.

Define performance objectives.

Develop a performance monitoring plan.

Carry out the plan.

Analyze your measurements to determine whether you have met your

objectives. If you have, consider reducing the number of measurements

you make because performance monitoring itself uses system resources.

Otherwise, continue with the next step.

6. Determine the major constraints in the system.

7. Decide where you can afford to make trade-offs and which resources can
bear additional load. (Nearly all tuning involves trade-offs among system
resources and the various elements of performance.)

8. Adjust the configuration of your system. If you think that it is feasible to

change more than one tuning option, implement one at a time. If there are

no options left at any level, you have reached the limits of your resources
and need to upgrade your hardware.

9. Return to Step 4 above and continue to monitor your system.

a s DN

Periodically, or after significant changes to your system or work load:
* Return to Step 1 above.

* Re-examine your objectives and indicators.

» Refine your monitoring and tuning strategy.

Chapter 1. Elements of Performance 5

How Much Can a System be Tuned?

There are limits to how much you can improve the efficiency of a system.
Consider how much time and money you should spend on improving system
performance, and how much the spending of additional time and money will
help the users of the system.

Your system may perform adequately without any tuning at all, but it
probably will not perform to its potential. Each database is unique. As soon as
you develop your own database, and applications to use it, investigate the
tuning parameters available and learn how you can customize their settings to
reflect your situation. In some circumstances, there will only be a small benefit
from tuning a system; however, in most circumstances, the benefit may be
significant.

SmartGuides are available from within the Control Center to assist in tuning
the database parameters. The Performance Configuration SmartGuide can be
found by clicking the right mouse button on the database you want to tune
from the Control Center.

As your system encounters a performance bottleneck, it is more likely that
tuning will be effective. If you are close to the performance limits and you
increase the number of users on the system by about ten percent, the response
time is likely to rise by much more than ten percent. In this situation, you will
need to determine how to counterbalance this degradation in performance by
tuning your system. However, there is a point beyond which tuning cannot
help you. At that point, you should consider revising your goals and
expectations within that environment. Or, you should change your system
environment by considering: more disk storage, faster CPU, additional CPUs,
more main memory, faster communication links, or a combination of these
changes.

A Less Formal Approach

If you do not have enough time to set performance objectives and to monitor
and tune in a comprehensive manner, you can address performance by
listening to your users. Find out if they are having performance-releated
problems. You can usually locate the problem, or determine where to start
looking for the problem, by asking a few simple questions. For example, you
can ask your users:

* What do you mean by “slow response”? Is it ten percent slower than you
expect it to be, or tens of times slower?

* When did you notice the problems? Is it recent or has it always been there?

6 Administration Guide: Performance

* Do you know of other users who are complaining of the same problem?
Are those complaining one or two individuals or a whole group?

» (If a whole group of users are experiencing difficulties, are they connected
to the same terminal controller?)

* Are the problems you are experiencing related to a specific transaction or
application program?

* Do your problems appear during regular periods such as at lunch hour, or
are they continuous?

Disk Storage

How you manage disk storage affects performance in four ways:
* How Storage is Divided:

How you divide a limited amount of storage between indexes and data,
among table spaces, and among buffer pools, determines to a large degree
how each will perform in different situations.

* Wasted Storage:

Wasted storage in itself may not affect the performance of the system that is
using it, but it may represent a resource that could be used to improve
performance elsewhere.

* Distributing Disk 1/O:

How well you balance the demand for disk 1/0 across several disk storage
devices, and controllers can affect how fast the database manager can
retrieve information from disks.

* Running Out of Storage:
Reaching the limit of available storage can degrade overall performance.

Putting It All Together

Tuning application performance is concerned with those performance topics
associated with your applications and their interaction with the database.
There are topics specific to applications themselves: Concurrency, Locking,
Optimization Classes, control of results sets on queries, row blocking, use of
compound SQL. In addition, there are brief discussions of: Character
conversion as it relates to application performance; stored procedures;
activation of databases; and the advantages of parallel processing. See

‘Chapter 2. Application Considerations” on page 13 for more information.

There are topics specific to optimization of queries: Configuration parameters
affecting query optimization, the impact of hode groups and table spaces on

Chapter 1. Elements of Performance 7

query optimization, and the large impact that indexes can have on query

optimization. See t‘Chapter 3. Fnvironmental Considerations” on page 59 for

more information.

System catalog statistics have a significant influence on how well data is
accessed by applications. The following topics are associated with statistics:
The RUNSTATS utility, distribution statistics, index statistics, and those
statistics that can be updated by users. See L

Btatistics” on page 7d for more information.

The SQL compiler takes each application and determines the best access plan
for that application. Each query within the application is evaluated and may
undergo several different operations designed to most clearly define the goal
of the query. Then different methods of access (scans and joins) are reviewed
for each query to determine the quickest way to retrieve the data requested by
the query. The affects of parallellsm are also considered. See Mr__ﬂ

» for more information.

There are different tools available within the DB2 product to assist in the
understanding of what is happening with the queries of an application. These
tools are concerned with explaining what is affecting application performance.

See EChapter 6 SQL Explain Facility” on page 177 for more information.

In addition to tuning individual applications, you should also consider the
performance of the database where those applications are running.
Performance of your database is determined in large part by how well
memory is used. There are many topics surrounding memory that are
concerned with performance: buffer pools, prefetching of data, parallel 170,
sorting capabilities, the need to reorganize the data in tables, and the concept

of database agents. See [‘Chapter 7 Operational Performance” an page 204 for

more information.

There is a Governor that can be set up to manage how applications are using

the database. See I‘Chapter 8 Using the Gavernaor” on page 243 for more

information.

The number of processors and the number of database partitions can be
increased to improve the performance of the database. See t‘Chapter 9. Scaling
Ivour Configuration” on page 259 for more information.

Once you have increased the number of database partitions, you will want to
ensure the data in the database is spread or redistributed correctly among the
database partitions. See I‘Chapter 10. Redistributing Data Across Databasd
Rartitions” on page 269 for more information.

8 Administration Guide: Performance

To determine how well your database is performing, you can conduct
benchmark testing. The methodology for benchmark testing, how to prepare
for a benchmark test, the creation of a benchmark program, and the running
of benchmark tests are all topics of importance. See [‘Chapter 11. Benchmarkl
[Testing” on page 274 for more information.

The very extensive set of database manager and database configuration
parameters are presented individually within EChapter 12_Configuring DB2'1

There is additional information that is related to these performance topics. The
appendices include the following:

Chapter 1. Elements of Performance 9

10 Administration Guide: Performance

Part 2. Tuning Application Performance

© Copyright IBM Corp. 1993, 1999

11

12 Administration Guide: Performance

Chapter 2. Application Considerations

There are a number of factors that can impact the runtime performance of
your application. This chapter describes the following topics that should be
considered when you are designing and coding your application:

- Eoncurrencyl

« Locking

. o]

. Bom |

You should also refer to the Application Development Guide and the CLI Guide
and Reference for additional information which can affect the performance of
your applications, for example:

* Writing programs using embedded static SQL
* Writing programs using embedded dynamic SQL
* Writing programs using DB2 Call Level Interface (CLI).

Concurrency

The integrity of the data in a relational database must be maintained as
multiple users access and change the data. Concurrency is the sharing of
resources by multiple interactive users or application programs at the same
time. The database manager controls this access to prevent undesirable effects,
such as:

» Lost updates. Two applications, A and B, might both read the same row from
the database and both calculate new values for one of its columns based on
the data these applications read. If A updates the row with its new value
and B then also updates the row, the update performed by A is lost.

» Access to uncommitted data. Application A might update a value in the
database, and application B might read that value before it was committed.

© Copyright IBM Corp. 1993, 1999 13

Then, if the value of A is not later committed, but backed out, the
calculations performed by B are based on uncommitted (and presumably
invalid) data.

* Nonrepeatable reads. Some applications involve the following sequence of
events: application A reads a row from the database, then goes on to
process other SQL requests. In the meantime, application B either modifies
or deletes the row and commits the change. Later, if application A attempts
to read the original row again, it receives the modified row or discovers
that the original row has been deleted.

* Phantom Read Phenomenon. The phantom read phenomenon occurs when:

1. Your application executes a query that reads a set of rows based on
some search criterion.

2. Another application inserts new data or updates existing data that
would satisfy your application’s query.

3. Your application repeats the query from step 1 (within the same unit of
work).

When the query is repeated (step 3), some additional (“phantom”) rows are
returned as part of the result set that were not returned when the query
was initially executed (step 1).

An isolation level determines how data is locked or isolated from other
processes while the data is being accessed. The isolation level will be in effect
for the duration of the unit of work. Applications that use a cursor declared
using the WITH HOLD clause will keep the chosen isolation level for the
duration of the unit of work in which the OPEN CURSOR was performed.
(For more information, refer to the SQL Reference manual.) See m

Lsolation | evel” an page 18 for information on how the isolation level is
specified.

DB2 supports the following isolation levels:

(Note that some DRDA database servers support the no commit isolation level.
On other databases, it behaves like the uncommitted read isolation level. Refer
to the SQL Reference for information on this isolation level.)

See also:

14 Administration Guide: Performance

It may be that you are working in a federated database system that supports
applications and users submitting SQL statements referencing two or more
database management systems (DBMSs) or databases in a single statement. A
DB2 federated system provides Tocation transparency for database objects.
For example, if information about tables and views is moved, references to
that information (called nicknames) can be updated without changes to
applications that request the information. When an application accesses
nicknames, DB2 relies on the concurrency control protocols of data source
database managers to ensure isolation levels. (A data source consists of a
DBMS and data.) DB2 will attempt to match the requested level of isolation at
the data source with a logical equivalent; however, results may vary based on
data source capabilities. Refer to the Application Development Guide manual for
information on writing applications accessing nicknames.

Repeatable Read

Repeatable read (RR) locks all the rows an application references within a unit
of work. Using repeatable read, a SELECT statement issued by an application
twice within the same unit of work in which the cursor was opened, gives the
same result each time. With repeatable read, lost updates, access to
uncommitted data, and phantom rows are not possible.

The repeatable read application can retrieve and operate on the rows as many
times as needed until the unit of work completes. However, no other
applications can update, delete, or insert a row that would affect the result
table, until the unit of work completes. Repeatable read applications cannot
see uncommitted changes of other applications.

With repeatable read, every row that is referenced is locked, not just the rows
that are retrieved. Appropriate locking is performed so that another
application cannot insert or update a row that would be added to the list of
rows referenced by your query, if the query was re-executed. This prevents
phantom rows from occurring. This means that if you scan 10 000 rows and
apply predicates to them, locks are held on all 10 000 rows, even though only
10 rows qualify.

Note: The repeatable read isolation level ensures that all returned data
remains unchanged until the time the application sees the data, even
when temporary tables or row blocking are used.

Since repeatable read may acquire and hold a considerable number of locks,
these locks may exceed the number of locks available as a result of the locklist

and maxlocks configuration parameters. (See EMaximum Percent of Lock List

Befare Escalation (maxlacks)” on page 342 and EMaximum Storage for Lacld
List (lacklist)” on page 314)) In order to avoid lock escalation, the optimizer

may elect to immediately acquire a single table level lock for an index scan, if

Chapter 2. Application Considerations 15

it believes that lock escalation is very likely to occur. (See I‘Lack Fscalation]

for a discussion of lock escalation.) This functions as though the
database manager has issued a LOCK TABLE statement on your behalf. If you
do not want a table level lock to be obtained ensure that enough locks are
available to the transaction or use the Read Stabilityl isolation level.

Read Stability

Read stability (RS) locks only those rows that an application retrieves within a
unit of work. It ensures that any qualifying row read during a unit of work is
not changed by other application processes until the unit of work completes,
and that any row changed by another application process is not read until the
change is committed by that process. That is, “nonrepeatable read” behavior is
not possible.

Unlike repeatable read, with read stability, if your application issues the same
query more than once, you may see additional phantom rows (the phantom read
phenomenon). Recalling the example of scanning 10 000 rows, read stability
only locks the rows that qualify. Thus, with read stability, only 10 rows are
retrieved, and a lock is held only on those ten rows. Contrast this with
repeatable read, where in this example, locks would be held on all 10 000
rows. The locks that are held can be share, next share, update, or exclusive

locks. (For more information on lock attributes, see F*Attributes of | acks” on
)

Note: The read stability isolation level ensures that all returned data remains
unchanged until the time the application sees the data, even when
temporary tables or row blocking are used.

One of the objectives of the read stability isolation level is to provide both a
high degree of concurrency as well as a stable view of the data. To assist in
achieving this objective, the optimizer ensures that table level locks are not

obtained until lock escalation occurs. (See E‘Lack Escalation” on page 24 for

more information about lock escalation).

The read stability isolation level is best for applications that include all of the
following:
» Operate in a concurrent environment

* Require qualifying rows to remain stable for the duration of the unit of
work

* Do not issue the same query more than once within the unit of work, or do
not require that the query get the same answer when issued more than
once in the same unit of work.

16 Administration Guide: Performance

Cursor Stability

Cursor stability (CS) locks any row accessed by a transaction of an application
while the cursor is positioned on the row. This lock remains in effect until the
next row is fetched or the transaction is terminated. However, if any data on a
row is changed, the lock must be held until the change is committed to the
database.

No other applications can update or delete a row that a cursor stability
application has retrieved while any updatable cursor is positioned on the row.
Cursor stability applications cannot see uncommitted changes of other
applications.

Recalling the example of scanning 10 000 rows, if you use cursor stability, you
will only have a lock on the row under your current cursor position. The lock
is removed when you move off that row (unless you update that row).

With cursor stability, both nonrepeatable read and the phantom read
phenomenon are possible. Cursor stability is the default isolation level and
should be used when you want the maximum concurrency while seeing only
committed rows from other applications.

Uncommitted Read

Uncommitted read (UR) allows an application to access uncommitted changes
of other transactions. The application also does not lock other applications out
of the row it is reading, unless the other application attempts to drop or alter
the table. Uncommitted read works differently for read-only and updatable
cursors.

Read-only cursors can access most uncommitted changes of other transactions.
However, tables, views, and indexes that are being created or dropped by
other transactions are not available while the transaction is processing. Any
other changes by other transactions can be read before they are committed or
rolled back.

Cursors that are updatable operating under the uncommitted read isolation
level will behave as if the isolation level was cursor stability.

Recalling the example of scanning 10 000 rows, if you use uncommitted read,
you do not acquire any row locks.

With uncommitted read, both nonrepeatable read behavior and the phantom
read phenomenon are possible.

Chapter 2. Application Considerations 17

The uncommitted read isolation level is most commonly used for queries on
read-only tables, or if you are only executing select-statements and you do not
care whether you see uncommitted data from other applications.

Choosing the Isolation Level
[rable 1 summarizes the different isolation levels in terms of the undesirable
effects described in Application Development Guide manual.

Table 1. Summary of isolation levels

Isolation Level Access to Nonrepeatable Phantom Read
Uncommitted Reads Phenomenon
Data

Repeatable Read (RR) Not Possible Not Possible Not Possible

Read Stability (RS) Not Possible Not Possible Possible

Cursor Stability (CS) Not Possible Possible Possible

Uncommitted Read (UR) Possible Possible Possible

ffable 4 provides a simple heuristic that may help you choose an initial
isolation level for your applications. Consider this table as a starting point,
and refer to the previous discussions of the various levels for factors that
might make another value more appropriate for your requirements.

Table 2. Guidelines for choosing an isolation level

Application Type High data stability High data stability not
required required

Read-write transactions RS Cs

Read-only transactions RR UR

Choosing the appropriate isolation level for an application is very important
to avoid the phenomena that are intolerable for that application. The isolation
level affects not only the degree of isolation among applications but also the
performance characteristics of an individual application since the CPU and
memory resources, required to obtain and free locks, vary with the isolation
level. The potential for deadlock situations also varies with the isolation level.

Specifying the Isolation Level

The isolation level is specified at precompile time or when an application is
bound to a database. For an application written in a supported compiled
language, use the ISOLATION option of the command line processor PREP or
BIND commands. The isolation level can also be specified by using the PREP
or BIND APIs. If no isolation level is specified, the default of cursor stability is
used.

18 Administration Guide: Performance

If a bind file is created at precompile time, the isolation level is stored in the
bind file. If no isolation level is specified at bind time, the default is the
isolation level used during precompilation.

You can determine the isolation level of a package by executing the following
query:
SELECT ISOLATION FROM SYSCAT.PACKAGES

WHERE PKGNAME = 'XXXXXXXX'
AND PKGSCHEMA = 'YYYyyyyy!

where XXXXXXXX is the name of the package and YYYYYYYY is the schema name
of the package. Both of these names must be in all capital letters.

When a database is created, multiple bind files used to support the different
isolation levels for SQL in REXX are bound to the database (on those servers
that support REXX). Other command line processor packages are also bound
to the database when a database is created. Refer to the Application
Development Guide for more information about bind files.

REXX and the command line processor connect to a database using a default
isolation level of cursor stability. Changing to a different isolation level does
not change the connection state. It must be executed in the CONNECTABLE
AND UNCONNECTED state or in the IMPLICITLY CONNECTABLE state.
(Refer to the CONNECT TO statement in the SQL Reference for details about
connection states.) You cannot be connected to a database when issuing this
command.

The isolation level being used can be checked by a REXX application by
checking the value of the SQLISL REXX variable. The value is updated every
time the CHANGE SQLISL command is executed.

The DB2_RR_TO_RS profile registry variable can be used to prevent
Repeatable Read (RR) isolation level access to user tables. This registry value
can be set to “YES” using db2set in environments where RR isolation
semantics are not required. Before taking effect, you must stop and start the
database. Following the db2start, this change affects the entire instance. Once
set, if a request to access a user table using RR is received, the request is
modified internally to use the Read Stability (RS) isolation level instead. No
warning is given when this occurs.

If you are using the command line processor you may change the isolation
level using the CHANGE ISOLATION LEVEL command. Refer to the
Command Reference manual for more information.

For DB2 Call Level Interface (DB2 CLI), you may change the isolation level as
part of the DB2 CLI configuration. In addition, many commercially-written

Chapter 2. Application Considerations 19

applications also provide a method to allow you to choose the isolation level.
Refer to the CLI Guide and Reference manual for more information.

Locking

The database manager provides concurrency control and prevents
uncontrolled access by means of locks. A lock is a means of associating a
database manager resource with an application to control how other
applications can access the same resource. The application with which the
resource is associated is said to hold or own the lock.

The database manager imposes locks to prohibit applications from accessing
uncommitted data written by other applications (unless the uncommitted read
isolation level is used). This principle protects data integrity (that is, the
consistency and security of data). Locks can also prohibit the updating of
rows (such as for a repeatable read application).

To satisfy data integrity, the database manager acquires locks implicitly, under
database manager control. Except for the uncommitted read isolation level, it
is never necessary for an application to request a lock explicitly to ensure that
uncommitted data is hidden from other processes.

Because of the basic principle of locking, you do not need to take action to
control locks in most cases. Still, applications acquire locks on the basis of
certain general parameters. Knowledge of your local situation can help you
make better use of your system resources by changing those parameters. To
assist you, the following topics on locking are discussed:

o Attributes of | ockd
« LOCK TARI F Statement
« Ll OSF CURSOR WITH RFI EASH

- o o

Attributes of Locks

Database manager locks have the following basic attributes:

Object
The resource being locked. The only types of explicitly lockable
objects are tables. The database manager also imposes locks on other
types of resources, such as rows, tables and table spaces. The object
being locked represents the granularity of the lock.

20 Administration Guide: Performance

Duration
The length of time a lock is held. Lock durations are affected by

isolation levels which are discussed in [‘Concurrency” on page 13.

Mode

The type of access allowed for the lock owner as well as the type of

access permitted for concurrent users of the locked object. It is
sometimes referred to as the state of the lock.

Modes and their effects are shown in order of increasing control over

resources:

Table 3. Lock Mode Summary

Lock Mode

Applicable Object
Type

Description

IN (Intent None)

Table spaces, tables

The lock owner can read any data in the table, including
uncommitted data, but cannot change any of it. No row
locks are acquired by the lock owner. Other concurrent
applications can read or update the table.

IS (Intent Share)

Table spaces, tables

The lock owner can read data in the locked table, but not
change this data. When an application holds the IS table
lock, the application acquires an S or NS lock on each row
read. In either case, other applications can read or update
the table.

NS (Next Key
Share)

Rows

This lock is acquired on rows of a table, instead of a Share
lock. The lock owner and all concurrent applications can
read, but not change, the locked row. This lock is acquired in
place of a share (S) lock on data that is read with the RS or
CS isolation levels.

S (Share)

Rows, tables

The lock owner and any concurrent applications can read,
but not change, the locked data. Individual rows can be
Share locked. If a table is Share locked, no row locks are
acquired by the lock owner. Other concurrent applications
can read the table.

IX (Intent
Exclusive)

Table spaces, tables

The lock owner and concurrent applications can read and
change data in the table. When the owner reads data, it
acquires an S, NS, X, or U lock on each row. It also acquires
an X lock on each row that it updates. Other concurrent
applications can both read and update the table.

SIX (Share with Tables The lock owner can both read and change data in the table.
Intent Exclusive) The lock owner acquires X locks on the rows it updates, but
does not acquire locks on rows that it reads. Other
concurrent applications can read the table.
U (Update) Rows, tables The lock owner can update data in the locked object and

acquire X locks on the rows prior to updates. Other units of
work can read the data, but cannot attempt to update it.

Chapter 2. Application Considerations 21

Table 3. Lock Mode Summary (continued)

Lock Mode Applicable Object Description
Type
NX (Next Key Rows This lock is acquired on the next row when a row is deleted
Exclusive) from an index or inserted into the index of a table. The lock
owner can read but not change the locked row. This is
similar to an X lock except that it is compatible with the NS
lock.
NW (Next Key Rows This lock is acquired on the next row when a row is inserted

Weak Exclusive)

into the index of a non-catalog table. The lock owner can
read but not change the locked row. This is similar to X and
NX locks except that it is compatible with the W and NS
locks.

X (Exclusive) Rows, tables

The lock owner can both read and change data in the locked
object. Tables can be Exclusive locked, meaning that no row
locks will be acquired. Only uncommitted read applications
can access the locked table.

W (Weak Exclusive) Rows

This lock is acquired on the row when a row is inserted into
a non-catalog table. The lock owner can change the locked
row. This lock is similar to an X lock except that it is
compatible with the NW lock. Only uncommitted read
applications can access the locked row.

Z (Superxclusive) Table spaces, tables

This lock is acquired on a table in certain conditions, such as
when the table is altered or dropped, an index on the table is
created or dropped, or a table is reorganized. No other
concurrent application can read or update the table.

Note that only tables and table spaces will obtain the “intent” lock
modes. That is, intent locks are not obtained for rows.

Locks and Application Performance

Application programmers need to be aware of several related factors
concerning the uses of locks and their effect on the performance of
applications. These factors include the following:

22 Administration Guide: Performance

Concurrency and Granularity

A lock held by one application can prevent access by another application.
Therefore, for maximum concurrency, a row level lock is better than a table
lock. But locks require storage and processing time to manage. Therefore, for
minimizing storage and processing time, a single table lock is better than
many row locks.

You can define the size (granularity) of locks at row or table level through
ALTER TABLE. By default, row locks are used. With permanent table locks, as
defined by ALTER TABLE, only S and X table locks are used. Performance is
improved since the application does not need to acquire and release as many
row locks. You may prefer to get a permanent table lock using ALTER TABLE
rather than a single transaction table lock using LOCK TABLE statement in
the following cases:

* Your table is read-only, and you will always need S locks. A table level lock
will improve performance while allowing others to obtain S locks on the
table.

* The table will be accessed by a single user for maintenance, where the
person requires an X lock, for a limited period of time. Defining a table
level lock through ALTER TABLE on the table, will provide the person with
an X lock at a table level. Once the person is finished, they can use ALTER
TABLE to return the table to row level locking.

Use of this option will not prevent normal lock escalation from occurring.

In addition, note that using ALTER TABLE to push locks to the table level is a
global approach, affecting all applications and users that access that table.
Another choice is for individual applications to use the LOCK TABLE
statement. This allows you to go to table locks at an application level, not a
database level.

Lock Compatibility

[fable 4 indicates whether a lock request is granted if another process holds or
is requesting a lock on the same resource in a given state. A no indicates that
the requestor must wait until all incompatible locks are released by other
processes. Note that a timeout can occur when waiting for a lock. A yes
indicates that the lock is granted (unless someone else is waiting for the
resource).

Chapter 2. Application Considerations 23

Table 4. Lock Type Compatibility

State of Held Resource

State Being none IN IS NS S IX SIX U NX X Z NW W
Requested

none yes yes yes yes yes yes yes yes yes yes yes yes Ves
IN yes yes yes yes yes yes yes yes yes yes no yes Ves
IS yes yes yes yes yes yes yes yes no no no no no
NS yes yes yes yes yes no no yes yes no no yes no
S yes yes yes yes yes no no yes no no no no no
IX yes yes yes no no yes no no no no no no no
SIX yes yes yes no no no no no no no no no no
] yes yes yes yes yes no no no no no no no no
NX yes yes no yes no no no no no no no no no
X yes yes no no no no no no no no no no no
z yes no no no no no no no no no no no no
NwW yes yes no yes no no no no no no no no yes
W yes yes no no no no no no no no no yes no
Note:
| Intent
N None
NS Next Key Share
S Share

NX Next Key Exclusive

X Exclusive
Update
z Super Exclusive

NwW Next Key Weak Exclusive
w Weak Exclusive

For details of these lock types, refer to the discussion in EAttribhutes of | acks” on page 20,

Note:

» yes - grant lock requested immediately
* no - wait for held lock to be released or timeout to occur

Assume that application A holds a lock on a table that application B also
wants to access. The database manager requests, on behalf of application B, a

24 Administration Guide: Performance

lock of some particular mode. If the mode of the lock held by A permits the
lock requested by B, the two locks (or modes) are said to be compatible.

If the lock mode requested for application B is not compatible with the lock
held by application A, application B cannot continue. Instead, it must wait not
only until application A releases its lock, but until all existing incompatible
locks are released.

Lock Conversion

Lock conversion occurs when a process accesses a data object on which it
already holds a lock, and the mode of access requires a more restrictive lock
than the one already held. A process can hold only one lock on a data object
at any time, although it can (indirectly through a query) request a lock many
times on the same data object. The operation of changing the mode of the lock
already held is called a conversion.

The conversion case for rows is simple: As an example, a conversion occurs if
an X is needed and an S or U is held.

There are more distinct lock modes for tables than for rows. 1X (Intent
Exclusive) and S (Shared) locks are special cases, however. Neither S nor IX is
considered to be more restrictive than the other, so if one of these is held and
the other required, the resulting conversion is to a SIX (Share with Intent
Exclusive) lock. All other conversions result in the requested lock mode
becoming the mode of the lock held, if the requested mode is more restrictive.

A query to update a row can also produce a dual conversion. Suppose the
row had been read through an index access and was locked as S. The table
containing the row would have a covering intention lock. Suppose it is an IS
rather than an IX. Then, if the row is subsequently changed, the table lock is
converted to an IX, and the row to an X.

As a reminder, the application of locks usually takes place implicitly during
the execution of a query. Understanding the kinds of locks obtained for
different queries and table and index combinations can assist you in designing

and tuning your application. See [‘Eactors Affecting | acking” on page 29 for

more information on this topic.

Lock Escalation

Lock escalation is an internal mechanism to reduce the number of locks held.
Escalation is from many row locks (in a single table) to a single table lock.

Lock escalation occurs when too many locks (of any type) are currently held.

Chapter 2. Application Considerations 25

Lock escalation can occur for a specific database agent if the agent exceeds its

allocation of the lock list (see I'Maximum Percent of | ock | ist Before
Escalation (maxlocks)” on page 347).

Such escalation is handled internally; the only externally detectable result
might be a reduction in concurrent access on one or more tables. Normally, in
a properly configured database, lock escalation occurs infrequently.

An example of lock escalation is when an application designer uses an index
on a large table to increase performance and concurrency; however, the
application accesses a large percentage of records in the table. The database
manager is not able to predict (in this case) that so much of the table will be
locked, and locks each record individually rather than only locking the table
either S or X.

Sometimes, the process receiving the escalation request (internally) holds few
or no record locks on any table. The reason for this escalation is that one
process (or processes) can be holding many locks (although this amount is
below the database configuration parameter of locks per process) but not
quite enough to trigger the escalation request. The process might not request
another lock or access the database again except to end the transaction. Then
another process can request the lock or locks that trigger the escalation
request.

If lock escalation reduces concurrency to an unacceptable level, you can do
the following:

* Check the contents of the db2diag.log for information on escalations.
Information is recorded for each table being escalated. The type of
information recorded includes:

— The number of locks currently held.
— The number of locks needed before lock escalation is completed.

— The table identifier information and table name of each table being
escalated.

— The number of non-table locks currently held.

— The new table level lock to be acquired as part of the escalation.
Typically, this will be a “S” or Share lock, or an “X” or eXclusive lock.

— The internal return code of the result of the acquisition of the new table
lock level.

The current dynamic SQL statement may also be recorded. If it is, the
information recorded will include the current SQL statement prior to the
escalation of any table locks if the DIAGLEVEL database manager
configuration parameter is 4. If lock escalation fails, the information

26 Administration Guide: Performance

recorded will include the table for which the escalation failed and the
current SQL statement (if it is available, and not previously written) if the
DIAGLEVEL is 2 or higher.

With this information you will be able to carry out an appropriate action
based on the other points mentioned below.

To start this type of information recording, you should set the database
manager configuration parameter DIAGLEVEL to 3 which is the default, or
to 4.

* Increase the number of locks allowed by increasing the value of the
maxlocks and/Zor the locklist parameters in the database configuration file.
(See EMaximum Percent of L ack List Befare Escalation (maxlocks)” on
page 344 and EMaximum Starage far Lock List (lacklist)” on page 314) This
might be the choice if concurrent access to the table by other processes is
most important. However, the overhead of obtaining record level locks can
induce more delay to other processes than is saved by concurrent access to
a table. (When changing these parameters in a partitioned database, ensure
that the parameters are updated on all partitions).

» Locate and adjust the offending process (or processes), which may or may
not be the one escalating or rolling back, and issue LOCK TABLE
statements explicitly.

« Change the degree of isolation. Note that this may lead to decreased
concurrency or reduced isolation.

* Increase the frequency of commits. This tends to reduce the number of
locks in existence at a given time. For more information about isolation

levels and concurrency, see EConcurrency” on page 13,

Lock Waits and Timeouts

Without lock timeout detection, in an abnormal situation, your application
may have to wait for a lock to be released. This might occur, for example,
when a transaction is waiting for a lock held by another user’s application,
and the other user has left their workstation without performing some
interaction to allow their application to commit their transaction which would
release the lock. Obviously, this results in poorer application performance. To
avoid stalling your program in such a case, you can use the locktimeout
configuration parameter to set the maximum time that any application waits

to obtain a lock. (See I‘Lack Timeout (locktimeout)” on page 344.)

Using this parameter helps avoid global deadlocks, especially in distributed
unit of work (DUOW) applications. If the lock times out, that is, if the time
that the lock request is pending is greater than the locktimeout value, your
application receives an error and your transaction is rolled back. For example,

Chapter 2. Application Considerations 27

if program1 tries to acquire a lock which is already held by program2, programl
returns SQLCODE -911 (SQLSTATE 40001) with reason code 68 if the timeout
is expired.

Deadlocks

In the database manager, contention for locks by processes using the database
can result in deadlocks. For example, Process 1 locks table A in X (exclusive)
mode and Process 2 locks table B in X mode; if Process 1 then tries to lock
table B in X mode and Process 2 tries to lock table A in X mode, the processes
will be in a deadlock. In a deadlock, both processes are suspended until their
second lock request is granted, and neither request is granted until one of the
processes performs a commit or rollback. This state remains indefinitely until
an external agent activates one of the processes and forces it to perform a
rollback.

Deadlocks in the lock system are handled in the database manager by an
asynchronous system background process called the deadlock detector. The
deadlock detector becomes actlve periodically as determmed by the dlchktime
configuration parameter (see L

(dlchktime)” on page 341)). When the deadlock detector becomes active, it
examines the lock system for deadlocks. If the database has been partitioned
then each partition sends lock graphs to the catalog node where global
deadlock detection takes place.

If a deadlock is found, the deadlock detector selects a deadlocked process to
roll back. The selected process is awakened, and it returns to the calling
application with SQLCODE -911 (SQLSTATE 40001), with reason code 2. The
database manager rolls back the selected process automatically. When the
rollback has completed, the locks belonging to the victim process are released,
and the other processes involved in the deadlock can eventually proceed.

Selecting the proper interval for the deadlock detector is necessary to ensure
good performance. An interval that is too short would cause unnecessary
overhead, and one that is too long would allow a deadlock to delay a process
for an unacceptable amount of time. For example, a wake up interval set to 30
minutes could allow a deadlock to exist for nearly 30 minutes. The application
designer must balance the possible delays in resolving deadlocks with the
overhead of detecting them.

In a partitioned database, the interval should be the same on all partitions
(the dichktime configuration parameter must be updated to the same value on
all partitions). If the value is smaller at the catalog node than at other
partitions, phantom deadlocks may be detected. If the value is larger at the
catalog node than at other partitions, it may appear as if more than two
intervals pass before a deadlock is detected. If a large number of deadlocks

28 Administration Guide: Performance

are detected in a partitioned database, you should increase the value of the
dichktime parameter to account for lock waits and communication waits.

Another problem can occur when an application with more than one
independent process accessing the database is structured in such a way as to
make deadlocks likely. An example is an application in which several
processes access the same table for reads and then writes. If the processes do
read-only SQL queries at first and then do SQL updates on the same table, the
chances of deadlocks occurring increase because of potential contention
between the processes for the same data. For instance, if two processes read
the table, and then update the table, they get into a state where process A is
trying to get an X lock on a row, on which process B has an S lock and vice
versa. The result could be a deadlock. To avoid these deadlocks, applications
that access data with the intention of modifying it should use the FOR
UPDATE OF clause when performing a select. This clause ensures that a U
lock is imposed when process A attempts to read the data.

You may want to consider defining a monitor that will record when deadlocks
occur. Use the CREATE EVENT statement described in the SQL Reference to
create the monitor.

In a federated system environment, when an application accesses nicknames,
it is possible that the data requested by the application is unavailable due to a
deadlock at a data source. When this happens, DB2 relies on the deadlock
handling facilities at the data source to resolve the lock. In the case of
deadlocks across more than one data source, DB2 relies on data source
timeout mechanisms to break the deadlock.

Factors Affecting Locking

The mode and granularity of database manager locks are determined by a
combination of factors: the type of processing the application performs, how it
accesses data, and several parameters that you can specify.

Application Processing

For the purpose of determining lock attributes, processing can be classified as
one of four types:

Read-only
This type includes all select-statements which are intrinsically
read-only (refer to the SQL Reference for information about cursors),
have an explicit FOR READ ONLY clause, or are ambiguous but for
which the SQL compiler presumes to be read-only due to the value of
the BLOCKING option specified on the PREP or BIND command. It
requires only Share locks (S or IS).

Chapter 2. Application Considerations 29

Intent to change
This type includes all select-statements with the FOR UPDATE clause,
or which the SQL compiler presumes to be intended for change as a
result of the interpretation of the ambiguous statement. It uses Share
and Update locks (S, U, and X for rows, IX, U, X for tables).

Change
This type includes UPDATE, INSERT, and DELETE, but not UPDATE
WHERE CURRENT OF or DELETE WHERE CURRENT OF. It
requires Exclusive locks (X or IX).

Cursor controlled
This type includes UPDATE WHERE CURRENT OF and DELETE
WHERE CURRENT OF. It also requires Exclusive locks (X or IX).

A statement that inserts, updates or deletes against a target table, based on the
result from a sub-select statement, does two types of processing. The locks for
the tables returned in the sub-select are determined by the rules for read-only
processing; for the target table, by the rules for change processing.

Access Paths

An access path is the method selected by the optimizer for retrieving data from
a specific table reference. (See t‘Data Access Concepts and Qptimization” on
m) The access path chosen by the optimizer can have a significant
effect on the lock modes. For example, when an index scan is used to locate a
specific row, the optimizer will likely choose row-level locking (IS) for the
table. This type of access would be used to select information for a single
employee from the EMPLOYEE table, that has an index on employee number
(EMPNO), with a statement such as the following:

SELECT =*

FROM EMPLOYEE
WHERE EMPNO = '000310';

Similarly, when no index is used, the entire table must be scanned in sequence
to find the selected rows, and may acquire a single table level lock (S). For
example, this type of access might be used to select all the male employees,
using a statement such as this:

SELECT =*

FROM EMPLOYEE
WHERE SEX = 'M';

The following tables provide an overview of which locks are obtained for

what kind of access plan. See [‘Application Processing” on page 29 for
definitions of the column headings. Also see EData Access Concepts and
Qptimization” on page 128

for definitions of the access method. Note that
cursor controlled type processing uses the lock mode of the underlying cursor

30 Administration Guide: Performance

until the application finds a row to update or delete. For this type of
processing, no matter what the lock mode of a cursor, an exclusive lock will
always be obtained to perform the update or delete.

In the following tables, if only one lock mode is shown, it is a table level lock
mode. If two lock modes are shown, the first is the table level lock mode and
the second is the row level lock mode.

Table 5. Lock Modes for Table Scans

Isolation Level Read-only Intent to Change Change

Access Method: Table scan with no predicates

RR S U X
RS IS / NS IX /7 U IX /7 X
CS IS / NS IX /7 U IX /7 X
UR IN IX /7 U IX /7 X
Access Method: Table Scan with predicates
RR S U U
RS IS / NS IX /7 U IX /7 U
CS IS / NS IX /7 U IX /U
UR IN IX /7 U IX /7 U

Table 6. Lock Modes for Index Scans

Isolation Level Read-only Intent to Change Change

Access Method: Index Scan with no predicates

RR S IX /7 U X
RS IS / NS IX /7 U IX /7 X
CSs IS / NS IX /U IX /7 X
UR IN IX /7 U IX /7 X
Access Method: Index Scan a single qualifying row
RR IS/ S IX /7 U IX /7 X
RS IS / NS IX /7 U IX /7 X
CS IS 7/ NS IX /7 U IX /7 X
UR IN IX /7 U IX /7 X
Access Method: Index Scan with start and stop predicates only
RR IS/ S IX /S IX /7 X
RS IS / NS IX /7 U IX /7 X
CS IS / NS IX /7 U IX /7 X
UR IN IX /7 U IX /7 X

Chapter 2. Application Considerations 31

Table 6. Lock Modes for Index Scans (continued)

Isolation Level Read-only Intent to Change Change

Access Method: Index Scan with predicates

RR IS/ S IX 7S IX /7 U
RS IS /7 NS IX /7 U IX /7 U
CS IS / NS IX /7 U IX /7 U
UR IN IX /7 U IX 7 U

ffable 4 shows the lock modes for cases in which reading of the data pages is
deferred to allow the list of rows to be:

+ Further qualified using multiple indexes. See EMultiple Index Access” od

for more information.

+ Sorted for efficient prefetching. See EUnderstanding List Prefetching” ad

for more information.

The deferred access of the data pages implies that access to the row occurs in
two steps and this results in more complex locking scenarios. There are two
major categories which depend on the isolation level. Since the repeatable
read isolation level keeps all locks acquired until the end of the transaction,
the locks acquired in the first step are held and there is no need to acquire
further locks in the second step. For the read stability and cursor stability
isolation levels, locks must be acquired during the second step. To maximize
concurrency, we don’t acquire locks during the first step and rely on the
reapplication of all predicates to ensure that only qualifying rows are
returned.

Table 7. Lock Modes for Index Scans used for Deferred Data Page Access

Isolation Level Read-only Intent to Change Change

Access Method: Index Scan with no predicates

RR IS/ S IX /S X
RS IN IN IN
CS IN IN IN
UR IN IN IN
Access Method: Deferred Data Page Access, after an index scan with no predicates
RR IN IX /S X
RS IS / NS IX /7 U IX /7 X
CS IS / NS IX /7 U IX /7 X
UR IN IX /7 U IX /7 X

Access Method: Index Scan with predicates

32 Administration Guide: Performance

Table 7. Lock Modes for Index Scans used for Deferred Data Page Access (continued)

Isolation Level Read-only Intent to Change Change
RR IS/ S IX /S IX /S
RS IN IN IN
CS IN IN IN
UR IN IN IN
Access Method: Index Scan with start and stop predicates only
RR IS/ S IX /S IX /7 X
RS IN IN IN
CS IN IN IN
UR IN IN IN
Access Method: Deferred Data Page Access, after an index scan with predicates
RR IN IX /S IX/ S
RS IS / NS IX /7 U IX /7 U
CS IS / NS IX /7 U IX /7 U
UR IN IX /7 U IX /7 U

The access path is not controlled by the user; it is chosen by the Optimizer.

The access path used can affect the mode and granularity of a lock. For
example, in an application using the repeatable read (RR) isolation level, an
UPDATE query that uses a table scan without predicates, would use an X lock
on the table. If rows were located through an index, the database manager
might choose to lock individual rows of the table.

LOCK TABLE Statement

You can override the rules for acquiring initial lock modes by using the LOCK
TABLE statement in an application.

The statement locks an entire table. Only the table specified in the LOCK
TABLE statement is locked. Parent and dependent tables of the specified table
are not locked. You must determine whether locking other tables that can be
accessed is necessary to achieve the desired result in terms of concurrency and
performance. The lock is not released until the unit of work is committed or
rolled back.

If a table is normally shared among several users, you might want to lock it
for the following reasons:

Chapter 2. Application Considerations 33

LOCK TABLE IN SHARE MODE
You want to access data that is consistent in time; that is, data current
for a table at a specific point in time. If the table experiences frequent
activity, the only way to ensure that the entire table remains stable is
to lock it. For example, your application wants to take a snapshot of a
table. However, during the time your application needs to process
some rows of a table, other applications are updating rows you have
not yet processed. This is allowed with repeatable read, but this action
is not what you want.

As an alternative, your application can issue the LOCK TABLE IN
SHARE MODE statement: no rows can be changed, regardless of
whether you have retrieved them or not. You can then retrieve as
many rows as you need, knowing that the rows you have retrieved
have not been changed just before you retrieved them.

With LOCK TABLE IN SHARE MODE, other users can retrieve data
from the table, but they cannot update, delete, or insert rows into the
table.

LOCK TABLE IN EXCLUSIVE MODE
You want to update a large part of the table. It is less expensive and
more efficient to prevent all other users from accessing the table than
it is to lock each row as it is updated, and then unlock the row later
when all changes are committed.

With LOCK TABLE IN EXCLUSIVE MODE, all other users are locked
out; no other applications can access the table unless they are
uncommitted read applications.

For more details on the LOCK TABLE statement, refer to the SQL Reference
manual.

An alternative to the use of the LOCK TABLE statement is the ALTER TABLE
statement with the LOCKSIZE parameter. The LOCKSIZE parameter allows
for the selection of either ROW locks or TABLE locks. Whatever choice is
made becomes the granularity of the locks chosen when the table is next
accessed. The selection of ROW locks is no different from selecting the default
lock size when a table is created. The selection of TABLE locks may improve
the performance of queries by limiting the number of locks that need to be
acquired. However, concurrency may be reduced since all locks are held over
the complete table. Selecting either choice does not prevent normal lock
escalation from occurring. For more details on the ALTER TABLE statement,
refer to the SQL Reference manual.

34 Administration Guide: Performance

CLOSE CURSOR WITH RELEASE

When you close a cursor with the CLOSE CURSOR statement that includes
the WITH RELEASE clause, the database manager will attempt to release all
read locks (if any) that have been held for the cursor. Read locks are 1S, S, and
U table locks as well as S, NS, and U row locks. For more information on lock
modes, see L i i

The WITH RELEASE clause has no effect for cursors that are operating under
the CS or UR isolation levels. When specified for cursors that are operating
under the RS or RR isolation levels, the WITH RELEASE clause ends some of
the guarantees of those isolation levels. Specifically, an RS cursor may
experience the nonrepeatable read phenomenon, and an RR cursor may
experience either the nonrepeatable read or phantom read phenomenon.

If a cursor that is originally RR or RS is reopened after being closed using the
WITH RELEASE clause, then new read locks will be acquired.

The DB2 CLI connection attribute SQL_ATTR_CLOSE_BEHAVIOR can be
used in CLI applications to achieve the same results. Refer to the
SQLSetConnectAttr() section of the CLI Guide and Reference for more
information.

Summary of Locking Considerations

The following are points to remember about locking:

» Small units of work (frequent COMMIT statements) promote concurrent
access of data by many users. Include COMMIT statements when your
application is logically at a point of consistency; that is, when the data you
have changed is consistent. When a COMMIT is issued, locks are released
(except for table locks associated with cursors declared WITH HOLD).

* Locks are acquired even if your application merely reads rows, so it is still
important to commit read-only units of work. This is because shared locks
are acquired by repeatable read, read stability, and cursor stability isolation
levels in read-only applications. With repeatable read and read stability, all
locks are held until a COMMIT is issued, preventing other processes from
updating the locked data, unless you close your cursor using the WITH
RELEASE clause. In addition, catalog locks are acquired even in
uncommitted read applications using dynamic SQL.

* The database manager ensures that your application does not retrieve
uncommitted data (rows that have been updated by other applications but
are not yet committed) unless you are using the uncommitted read isolation
level.

* You can lock the entire table that you want to protect by issuing a LOCK
TABLE statement:

Chapter 2. Application Considerations 35

— To allow other applications to retrieve, but not update, delete, or insert
rows

— To prevent other applications (other than those with an uncommitted
read isolation level) from accessing the rows of a table.

* When you close a cursor with the CLOSE CURSOR statement that includes
the WITH RELEASE clause, the database manager will attempt to release
all read locks (if any) that have been held for the cursor.

* When changing the configuration parameters affecting locking in a
partitioned database, ensure that the changes are made to all of the
partitions in the database.

Adjusting the Optimization Class

When an SQL query is compiled, a number of optimization techniques can be
used to determine the most efficient access plan for that query. Using more
optimization techniques results in:

1. Improvements in run-time performance
2. Increased query compilation time
3. Increased system resource usage.

For this reason, you may wish to limit the number of techniques applied to
optimizing your query by setting the optimization class. This can be
particularly useful if you have:

* Very small databases or very simple dynamic queries
* Limited memory available at compile time on your database server
* A desire to reduce the query compilation (for example, PREPARE) time.

You may select from any of the query optimization classes described below,
although class 0 and class 9 should be used only in special circumstances.
Class 5 is the default. Classes 0, 1, and 2 use the Greedy join enumeration
algorithm; for complex queries this algorithm considers far fewer alternative
plans, and incurs significantly less compilation time, than classes 3 and above.
Classes 3 and above use the Dynamic Programming join enumeration
algorithm; this algorithm considers far more alternative plans, and can incur
significantly more compilation time, than classes 0, 1, and 2 as the number of
tables increases.

0 - This class directs the optimizer to use a minimal amount of
optimization to generate an access plan. For example:

* Any non-uniform distribution statistics are not considered by the
optimizer.

36 Administration Guide: Performance

 Only basic query rewrite rules are applied (see I‘Rewrite Query by
ithe SQI Compiler” on page 115 for information about query

rewrite).

« Greedy join enumeration occurs (see [‘Search Strategies for Selecting

* Only nested loop join and index scan access methods are enabled

see E ” and Elndex Scan Concepts” od
).
 List prefetch and index ANDing are disabled as access methods.
* The star join strategy is not considered.

This class should only be used in special circumstances requiring the
lowest possible query compilation overhead. An application consisting
entirely of very simple dynamic SQL statements which access
well-indexed tables is a good example of where query optimization
class 0 is appropriate.

This class directs the optimizer to use a degree of optimization which

is roughly comparable to DB2/6000 Version 1, plus some additional

low cost features not found in Version 1. In particular:

* Any non-uniform distribution statistics are not considered by the
optimizer.

* Only a subset of the query rewrite rules are applied, including
those provided in DB2/6000 Version 1.

+ Greedy join enumeration (see [‘Search Strategies for Selecting
Optimal Join” on page 148.)

» List prefetch and index ANDing are disabled as access methods.

Optimization class 1 is quite similar to class 0 except that Merge Scan
joins and table scans are also available.

This class directs the optimizer to use a degree of optimization which
significantly improves upon that of class 1, while keeping the
compilation cost significantly lower than classes 3 and above for
complex queries. In particular:

» All available statistics, including both frequency and quantile
non-uniform distribution statistics, are utilized.

» All of the query rewrite rules are applied, except computationally
intensive rules which are applicable only in very rare cases.

+ Greedy join enumeration (see [‘Search Strategies for Selecting
Qptimal Join” on page 144) is used.

* A wide range of access methods are considered, including list
prefetch.

Chapter 2. Application Considerations 37

» The star join strategy is considered, if applicable.

Optimization class 2 is quite similar to class 5 except that it uses
Greedy join enumeration rather than Dynamic Programming. This
class has the most optimization of all the optimization classes that use
the Greedy join enumeration algorithm, which considers fewer
alternatives for complex queries, and therefore consumes less
compilation time than classes 3 and above. It is therefore
recommended for very complex queries in a decision support or
online analytic processing (OLAP) environment. In such cases, there is
a good chance the same query is executed infrequently, so that its
access plan is unlikely to remain in the cache until the next occurrence
of the query.

3- This class requests that a moderate amount of optimization be
performed to generate an access plan. This class comes closest to
matching the query optimization characteristics of DB2 for MVS/ESA
or OS/390. This optimization class has the following characteristics:

* Non-uniform distribution statistics, which track frequently
occurring values are used, if available.

* Most query rewrite rules, including subquery-to-join
transformations are applied.

« Dynamic programming join enumeration (see ESearch Strategies fad

- Limited use of composite inner tables (see t*Campasite Tahles” onl

— Limited use of Cartesian products for star schemas involving

“look- u%" tables (see [‘Search Strategies for Star loin” onl

* A wide range of access methods are considered, including list
prefetch, index ANDing and star joins.

This class is suitable for a broad range of applications. Using this class
gives the optimizer a better chance of selecting an excellent access
plan for queries with four or more joins. However, the optimizer
might fail to consider a better plan which would be chosen with the
default query optimization class.

5- This class directs the optimizer to use a significant amount of
optimization to generate an access plan. For example, class 5 has the
following characteristics:

» All available statistics including both frequency and quantile
non-uniform distribution statistics.

38 Administration Guide: Performance

* All of the query rewrite rules are applied including the routing of
queries to summary tables, except for those computationally
intensive rules which are applicable only in very rare cases.

« Dynamic programming join enumeration (see [‘Search Strategies forl
Selecting Optimal Join” on page 148):

— Limited use of composite inner tables (see ECompasite Tables” on

— Limited use of Cartesian products for star schemas involving
“|00k-u§" tables (see kSearch eratpgipc for Star Join” on

* A wide range of access methods are considered, including list
prefetch, index ANDing, and summary table routing.

When the optimizer detects that the additional resources and
processing time are not warranted for complex dynamic SQL queries,
optimization is reduced. The extent or size of the reduction is
dependent on the machine size and the number of predicates.

When the query optimizer reduces the amount of query optimization
performed, it continues to apply all the query rewrite rules that would
normally be applied. However, it does use the greedy join
enumeration method and reduces the number of access plan
combinations that are considered.

Query optimization class 5 is an excellent choice for a mixed
environment consisting of both transactions and complex queries. This
optimization class has been designed to apply the most valuable
query transformations and other query optimization techniques in an
efficient manner.

This class directs the optimizer to use a significant amount of
optimization to generate an access plan. It is the same as query
optimization class 5 except that it does not reduce the amount of
query optimization for complex dynamic SQL queries.

This class directs the optimizer to use all available optimization
techniques. These include:

* All available statistics

* All query rewrite rules

« All possibilities for join enumerations, including Cartesian products
and unlimited composite inners

* All access methods.

Chapter 2. Application Considerations 39

This class can greatly expand the number of possible access plans that
are considered by the optimizer. This class should be used to
determine whether more comprehensive optimization can generate a
better access plan for very complex and very long-running queries
using large tables. Explain and performance measurements should be
used to verify that a better plan has been found.

How Do You Set the Optimization Class?

The way to request a specific query optimization class depends on whether
you are using static or dynamic SQL.

 Static SQL statements use the optimization class specified on the PREP and
BIND commands. The QUERYOPT column in the SYSCAT.PACKAGES
catalog table records the optimization class used to bind the package. If the
package is rebound either implicitly or using the REBIND PACKAGE
command, this same optimization class will be used for the static SQL
statements. If you want to change the optimization class used for these
static SQL statements, you must use the BIND command. If you do not
specify the optimization class, DB2 uses the default optimization as
specified by dft_queryopt.

* Dynamic SQL statements use the optimization class specified by the
CURRENT QUERY OPTIMIZATION special register which is set using the
SQL SET statement. For example, the following statement sets the
optimization class to 1:

SET CURRENT QUERY OPTIMIZATION = 1

To ensure that a dynamic SQL statement always uses the same optimization
class, you may want to include this SET statement in your application
program. For more information, refer to the SQL Reference.

If the CURRENT QUERY OPTIMIZATION register has not been set,
dynamic statements will be bound using the default query optimization
class. The default value for both dynamic and static SQL is determined by
value of the configurable database parameter DFT_QUERYOPT. Class 5 is
the default query optimization class unless you have changed the default.
(For more information on this parameter, see I‘Default Query Optimization
Class (dft_queryopt)” on page 401.) The default values for the bind option

and the special register are taken from the DFT_QUERYOPT configuration
parameter.

How Much Optimization is Necessary?
Most statements will be adequately optimized using a reasonable amount of

resources with the default query optimization class. The query compilation
time and resource consumption, at a given optimization class, is primarily

40 Administration Guide: Performance

influenced by the complexity of the query, particularly the number of joins
and subqueries. However, compilation time and resource usage are also
affected by the amount of optimization performed for the various
optimization classes. For any optimization class, you can expect to see a
greater difference in query compilation time and resource consumption for a
very complex query than for a simple one.

The following may help you select which optimization class to use:
» Start by using the default query optimization class.
* If you wish to use a class other than the default, try class 1, 2 or 3 first.

» Use a low optimization class (0 or 1) for queries having very short
run-times, that is, queries taking less than one second. (See the following
discussion for additional criteria about when to choose a low optimization
class.)

» Use optimization class 1 or 2 if you have many tables with many of the join
predicates that are on the same column, and if compilation time is a
concern.

* Use a higher optimization class (3, 5, or 7) for long running queries, that is,
gueries taking more than 30 seconds.

* Under normal circumstances, you should not use optimization class 9.

* For queries that run a long time, run the query using db2batch to
determine how much of the time is spent in compilation and how much is
spent in execution.

— If most of the time is spent in compilation then reduce the optimization
class.

— If most of the time is spent in execution then consider a higher
optimization class.

Note that query optimization classes 1, 2, 3, 5, and 7 are all suitable for
general purpose use.

Only if you require further reductions in query compilation time and you
know the kind of SQL (for example, extremely simple statements) that will be
executed should you consider class 0. This SQL will tend to have the
following characteristics:

» Access to a single or only a few tables
* Fetches a single or only a few rows
» Uses fully qualified, unique indexes.

Online transaction processing (OLTP) transactions are good examples of this
kind of SQL.

Chapter 2. Application Considerations 41

Complex queries may require different amounts of optimization to select the
best access plan. You may wish to consider using higher optimization classes
for queries exhibiting the following characteristics:

* Access to large tables

* A large number of predicates

* Many subqueries

* Many joins

* Many set operators, such as UNION and INTERSECT
* Many qualifying rows

* GROUP BY and HAVING operations

* Nested table expressions

* A large number of views.

Decision support queries or month-end reporting queries against fully
normalized databases are good examples of complex queries where at least
the default query optimization class should be used.

Another reason to use higher query optimization classes is SQL which was
produced by a query generator. Many query generators create SQL which is
not efficient. Poorly written queries, including those produced by a query
generator, may require additional optimization to make it possible to select a
good access plan. Using query optimization class 2 and higher can improve
poorly written SQL queries.

The use of static or dynamic SQL, and whether the same dynamic SQL is
repeatedly executed are also important considerations. For static SQL, the
query compilation time and resources are expended just once and the
resulting plan can be used many times. In general, static SQL should always
use the default query optimization class. Dynamic statements are bound and
executed at run time; therefore, you should consider whether the overhead of
additional optimization for dynamic statements improves your overall
performance. However, if the same dynamic SQL statement is executed
repeatedly, the selected access plan will be cached. For the purposes of
selecting a query optimization class, the statement can be treated like a static
SQL statement.

(Refer to the Application Development Guide for information on when to use
static and dynamic SQL.)

If you think you have a query that could benefit from additional optimization,
but you are not sure, or you are concerned about compilation time and
resource usage, you may want to perform some benchmark testing. This
testing can help you quantify the benefits obtained from different optimization
classes. See L ing” for general

42 Administration Guide: Performance

techniques and the specific use of the db2batch tool. When designing and
running your benchmark test, consider whether the SQL statements in your
application are static or dynamic:

* For dynamic SQL statements, your testing should compare the average run
time for the statement. You can use the following formula to help you
calculate the average run time:

compile time + sum of execution times for all iterations

number of iterations

where, the number of iterations represents the number of times that you
expect that the SQL statement will be executed each time it is compiled.

Note: Following the initial compilation, dynamic SQL statements are
recompiled when a change to the environment requires the statement
to be recompiled. Once cached, a SQL statement does not need to be
compiled again since subsequent PREPARE statements will re-use the
cached statement assuming the environment does not change. (See
ECatalog Cache Size (catalogcache sz)” an page 30d and tRackagd
Cache Size (pckeachesz)” an page 316 for information about a cache
that can improve performance when working with dynamic SQL
statements.)

» For static SQL statements, your testing should compare the statement run
times.

Note: While you may also be interested in the compile time of static SQL,
the total (compile and run) time for the statement is difficult to use in
any meaningful context. Comparing the total time does not recognize
the fact that a static SQL statement can be run many times for each
time it is bound and that it is generally not bound during run time.

Restrictions on Result Sets to Improve Performance

A SELECT statement defines a set of rows which satisfy the search criteria.
The DB2 optimizer assumes the application will retrieve all the qualifying
rows. This assumption is most appropriate in OLTP and batch environments.
However, in “browse” applications it is common for a query to define a very
large potential answer set but only retrieve the first few rows, typically only
as many rows as are required to fill the screen.

The default assumption made by the optimizer to retrieve all qualifying rows

may not be the best for applications that are not updating or deleting
information from the stored data.

Chapter 2. Application Considerations 43

There are four ways of modifying the SELECT statement to limit or modify
the result table to improve performance. They are:

* FOR UPDATE clause

e FOR READ/FETCH ONLY clause

* OPTIMIZE FOR n ROWS clause

* FETCH FIRST n ROWS ONLY clause.

FOR UPDATE Clause

The FOR UPDATE clause identifies the columns that can be updated by a
subsequent positioned UPDATE statement. If the FOR UPDATE clause is
specified without column names, all updateable-columns of the table or view
are included. If column names are specified, each name must be unqualified
and must identify a column of the table or view.

The FOR UPDATE clause cannot be used when either of the following are
true:

* The cursor associated with the SELECT statement cannot be deleted.

* At least one of the selected columns is a non-updatable column of a catalog
table and has not been excluded in the FOR UPDATE clause.

The DB2 CLI connection attribute SQL_ATTR_ACCESS_MODE can be used in
CLI applications to achieve the same results. Refer to the SQLSetConnectAttr()
section of the CLI Guide and Reference for more information.

FOR READ or FETCH ONLY Clause

The FOR READ ONLY clause ensures that the result table is read-only. The
FOR FETCH ONLY clause has the same meaning.

Some result tables are read-only by definition. For example, the result table
from a SELECT on a view defined as read-only. You can still specify FOR
READ ONLY in such a case, but the clause has no effect.

For result tables where updates and deletes are allowed, specifying FOR
READ ONLY may improve the performance of FETCH operations. This
possible improvement in performance occurs when the database manager is
able to do blocking, and not exclusive locks, on the data. You should use the
FOR READ ONLY clause to improve performance except in cases where
queries are used in positioned UPDATE or DELETE statements.

The DB2 CLI connection attribute SQL_ATTR_ACCESS_MODE can be used in

CLI applications to achieve the same results. Refer to the SQLSetConnectAttr()
section of the CLI Guide and Reference for more information.

44 Administration Guide: Performance

OPTIMIZE FOR n ROWS Clause

The OPTIMIZE FOR clause provides a mechanism for an application to
declare its intent to retrieve only a subset of the result or to give priority to
the retrieval of the first few rows. Once this intent is understood, the
optimizer can give preference to access plans that minimize the response time
for retrieving the first few rows. Also, the number of rows that are sent to the
client as a single block (see ERow Blacking” on page 48) are bounded by the
value of “n” in the OPTIMIZE FOR clause. Therefore, the OPTIMIZE FOR
clause affects both how the qualifying rows are retrieved from the database by
the server, and how the qualifying rows are returned to the client.

For example, suppose you are querying the employee table for the employees
with the highest salary on a regular basis.
SELECT LASTNAME,FIRSTNAME,EMPNO, SALARY

FROM EMPLOYEE
ORDER BY SALARY DESC

You have defined a descending index on the SALARY column. However, since
employees are ordered by employee number, the salary index is likely to be
very poorly clustered. The optimizer, in trying to avoid many random
synchronous 1/0s, would likely choose to use the list prefetch access method
(see tlnderstanding | ist Prefetching” on page 222)) which requires the row
identifiers of all rows that qualify to be sorted. This can cause a delay before
the first qualifying rows can be returned to the application. By adding the
OPTIMIZE FOR clause to the statement as follows:

SELECT LASTNAME,FIRSTNAME,EMPNO, SALARY

FROM EMPLOYEE

ORDER BY SALARY DESC
OPTIMIZE FOR 20 ROWS

the optimizer would likely choose to use the SALARY index directly with the
knowledge that in all likelihood only the twenty employees with the highest
salaries would be retrieved. Regardless of how many rows could be blocked, a
block of rows is returned to the client every twenty rows.

Use of the OPTIMIZE FOR clause causes the optimizer to favor access plans
that avoid bulk operations or operations that interrupt the flow of rows, such
as sorts. You are most likely to influence an access path by using OPTIMIZE
FOR 1 ROW. As a result, using this clause could have the following effects:

» Join sequences with composite inners are less likely since they require a
temporary table.

* The join method could change. A nested loop join is the most likely choice,
because it has low overhead cost and is usually more efficient if you only
want to retrieve a few rows.

Chapter 2. Application Considerations 45

* An index that matches the ORDER BY clause is more likely to be picked.
This occurs because no sort would be needed for the ORDER BY.

» List prefetch is less likely to be picked since this access method requires a
sort.

» Sequential prefetch is less likely to be requested by DB2 because it infers
that you only want to see a small number of rows.

* In a join query, the table with the columns in the ORDER BY clause is likely
to be picked as the outer table if there is an index on that outer table that
gives the ordering needed for the ORDER BY clause.

Although the OPTIMIZE FOR clause applies to all optimization classes (see

EAdjusting the Qptimization Class” on page 36), it works best for optimization

class 3 and higher. The use of the greedy join enumeration method (see
ESearch Strategies for Selecting Qptimal Join” on page 146) in optimization
classes below 3 sometimes results in access plans for multi-table joins that do
not lend themselves to quickly retrieving the first few rows.

The OPTIMIZE FOR clause does not prevent you from retrieving all the
qualifying rows. However the total elapsed time to retrieve all the qualifying
rows may be significantly greater than if the optimizer had been allowed to
optimize for the entire answer set.

If you have a packaged application that uses the call level interface (DB2 CLI
or ODBC) it is possible to have DB2 CLI automatically append an OPTIMIZE
FOR clause to the end of each query statement using the
OPTIMIZEFORNROWS keyword in the db2c1i.ini configuration file. For
additional information refer to the CLI Guide and Reference manual.

When selecting data from nicknames, results may vary depending on data
source support. If the data source referenced by the nickname supports the
OPTIMIZE FOR clause, and the DB2 optimizer pushes down the entire query
containing the clause to the data source, then the clause is generated in the
remote SQL sent to the data source. If the data source does not support this
clause, or if the optimizer decides to execute the clause locally (least cost
plan), the OPTIMIZE FOR clause is applied locally at DB2. In this case, the
DB2 optimizer will continue to give preference to access plans that minimize
the response time for retrieving the first few rows of a query, but the options
available to the optimizer for generating plans are slightly delimited and
performance gains from the OPTIMIZE FOR clause may be negligible.

If both the FETCH FIRST clause and the OPTIMIZE FOR clause are specified,
the lower of the two values is used to influence the communications buffer
size. The two values are considered independent of each other for
optimization purposes. See Elsing a SELECT-Statement” on_page 49 for more
information on the interaction between these two clauses.

46 Administration Guide: Performance

FETCH FIRST n ROWS ONLY Clause

The OPTIMIZE FOR n ROWS clause does not prevent the retrieval of all
qualifying rows. (The total elapsed time to retrieve all qualifying rows may be
significantly greater than if the optimizer was allowed to optimize for the
entire answer set.)

The FETCH FIRST n ROWS ONLY clause sets the maximum number of rows
that can be retrieved from within a SELECT statement. Limiting the result
table to the first several rows can improve performance. Only n rows are
retrieved regardless of the number of rows there might be in the result table
based on a SELECT where this clause is not specified.

If both the FETCH FIRST clause and the OPTIMIZE FOR clause are specified,
the lower of the two values is used to influence the communications buffer
size. The two values are considered independent of each other for

optimization purposes. See FLising a SEL ECT-Statement” on page 49 for more

information on the interaction between these two clauses.

DECLARE CURSOR WITH HOLD Statement

When you declare a cursor with the DECLARE CURSOR statement that
includes the WITH HOLD clause, any open cursors remain open when the
transaction is committed. Further, all locks are released, except locks
protecting the current cursor position of open WITH HOLD cursors.

When you declare a cursor with the DECLARE CURSOR statement that
includes the WITH HOLD clause, all open cursors are closed when the
transaction ends with a ROLLBACK. Further, all locks are released and LOB
locators are freed.

The DB2 CLI connection attribute SQL_ATTR_CURSOR_HOLD can be used in
CLI applications to achieve the same results. For additional information refer
to the “SQLSetStmtAttr - Set Options Related to a Statement” section in the
CLI Guide and Reference manual.

If you have a packaged application that uses the call level interface (DB2 CLI
or ODBC) it is possible to have DB2 CLI automatically assume the WITH
HOLD clause for every declared cursor by using the CURSORHOLD keyword
in the db2c1i.ini configuration file. Refer to the transaction configuration
keywords section of the CLI Guide and Reference for more information.

Chapter 2. Application Considerations 47

Row Blocking

Row blocking is a technique that reduces database manager overhead by
retrieving a block of rows in a single operation. These rows are stored in a
cache, and each FETCH request in the application gets the next row from the
cache. When all the rows in a block have been processed, another block of
rows is retrieved by the database manager.

The cache is allocated when an application issues an OPEN CURSOR request
and is deallocated when the cursor is closed. The size of the cache is
determined by a configuration parameter which is used to allocate memory
for the 1/0 block. The parameter used depends on whether the client is local
or remote:

» For local applications, the parameter aslheapsz is used to allocate the cache for

row blocking. (See :Application Support | ayer Heap Size (aslheapsz)” ad
bage 333

for information about this parameter.)

» For remote applications, the parameter rqrioblk on the client workstation is
used to allocate the cache for row blocking. The cache is allocated on the

database client. (See EClient 1/Q Rlack Size (rqriohlk)” on page 333 for

information about this parameter.)

For local applications, you can use the following formula to estimate how
many rows are returned per block, where:

* aslheapsz is in pages of memory

* 4096 is the number of bytes per page

« orl is the output row length in bytes:

Rows per block = asTheapsz * 4096 / orl

For remote applications, you can use the following formula to estimate how
many rows are returned per block, where:

* rgrioblk is in bytes of memory
 orl is the output row length in bytes:
Rows per block = rqrioblk / orl

Note that if you use the FETCH FIRST n ROWS ONLY clause or the
OPTIMIZE FOR n ROWS clause in a SELECT statement, the number of rows
per block will be the minimum of the following:

¢ The value calculated in the above formula
¢ The value of n in the FETCH FIRST clause
e The value of n in the OPTIMIZE FOR clause

48 Administration Guide: Performance

Use the BLOCKING option on the PREP and BIND commands to specify one
of the following types of row blocking:

UNAMBIG
Blocking occurs for read-only cursors and cursors not specified as
“FOR UPDATE OF”. Ambiguous cursors are treated as updateable.

ALL Blocking occurs for read-only cursors and cursors not specified as
“FOR UPDATE OF”. Ambiguous cursors are treated as read-only.

NO Blocking does not occur for any cursors. Ambiguous cursors are
treated as read-only.

For details of these types of row blocking, refer to the PREP and BIND
command descriptions in the Command Reference manual.

If no option is specified on the PREP and BIND commands, the default row
blocking type is UNAMBIG. For the command line processor and call level
interface, the default row blocking type is ALL.

Refer to the SQL Reference for more information about cursors.

Tuning Queries

This section provides specific considerations and guidelines to help you
fine-tune the SQL statements in an application program. As a general rule,
these guidelines may help design a program that minimizes the use of system
resources and the amount of time needed to access data in a very large table.
Depending on the amount of optimization that takes place when the SQL
statement is compiled, you may not need to fine-tune your SQL statements.
The SQL compiler can rewrite your SQL into more efficient forms. See
tRewrite Query hy the SQI Compiler” on page 119 and EAdjusting thel
Dptimization Class” on page 36.

It is also important to note that the access plan chosen by the optimizer is also
affected by other factors, including environmental considerations and system
catalog statistics. If you conduct benchmark testing of the performance of
your applications, you can make adjustments that can improve the access
plan.

Using a SELECT-Statement

The SQL language is a high-level language with much flexibility. As a result,
different select-statements can be written to retrieve the same data. However,

the performance can vary for the different forms and the different classes of
optimization.

Chapter 2. Application Considerations 49

It is important to note the SQL compiler (including the query rewrite and
optimization phases) must choose an access plan that will produce the result
set for the query you have coded. Therefore, as noted in many of the
following guidelines, you should code your query to obtain only the data that
you need. This ensures that the SQL compiler can choose the best access plan
for your needs.

Guidelines When Using a SELECT-Statement

The guidelines for using a select-statement are:

» Specify only those columns that are needed in the select list. Although it
may be simpler to specify all columns with an asterisk (*), needless
processing and returning of unwanted columns can result.

e Limit the number of rows selected by using predlcates to restrlct the answer
set to only those rows that you require. (See L 2
for more information about the different types of predicates and
their relative impact on performance.)

* When the number of rows you want to use is significantly less than the
total number of rows that could be returned, specify the OPTIMIZE FOR
clause for the select-statement. This clause affects both the choice of access
plans as well as the number of rows that are blocked in the communication

buffer. (For more information, see FRow Blacking” on page 48.)

* When the number of rows to be retrieved is small, there is no need to
specify the OPTIMIZE FOR k ROWS clause in addition to the FETCH
FIRST n ROWS ONLY clause. However, if n is large and you want optimize
by getting the first k rows quickly with a possible delay for the subsequent
k rows, specify both. The communication buffers are sized based on the
lesser of n and k.

SELECT EMPNAME, SALARY FROM EMPLOYEE
ORDER BY SALARY DESC
FETCH FIRST 100 ROWS ONLY
OPTIMIZE FOR 20 ROWS

» Specifying the FOR READ ONLY (or FOR FETCH ONLY) clause can
improve performance by allowing your query to take advantage of row
blocking. It can also improve data concurrency since exclusive locks will
never be held on the rows retrieved by a query with this clause specified. It
also allows additional query rewrites to take place. Specifying the FOR
READ ONLY (or FOR FETCH ONLY) clause along with BLOCKING ALL
BIND can similarly improve the performance of queries against nicknames
in a federated system.

» Specifying the FOR UPDATE OF clause can also improve performance, for

cursors that will be updated, by allowing the database manager to initially
choose more appropriate locking levels, thus avoiding potential deadlocks

(se LDeadJockslan_page.Zd) and lock conversions (see tLock Caonversion™

50 Administration Guide: Performance

Avoid numeric data type conversions whenever possible. When comparing
values, it may be more efficient to use items that have the same data type.
If conversions are necessary, inaccuracies due to limited precision, and
performance costs due to run-time conversions, may result.

If possible, use the following data types:

Character rather than varying character for short columns
Integer rather than float or decimal

Datetime rather than character.

— Numeric rather than character.

SQL statements containing clauses or operations such as DISTINCT, or
ORDER BY, require data to be ordered to perform the operation. If you
want to decrease the chances that a sort operation will be used, omit the
specification of these clauses if they are not required.

To check for existence of rows in a table, do not use:

SELECT COUNT(*) FROM TABLENAME

and check for a value of nonzero unless you know that the table will be
very small. As the table gets larger, counting all the rows will impact
performance. Instead it is suggested that you try to select a single row. This
can be done by either opening a cursor and fetching one row, or by doing a
single-row (SELECT INTO) selection. (Remember to check for the
SQLCODE -811 error if more than one row is found from the
select-statement.)

If update activity is low and your tables are large, define indexes on
columns that are frequently used as predicates.

The following suggestions apply specifically to select-statements that access
several tables.

Use join predicates when joining tables. (A join predicate is a comparison
between two columns from different tables in a join.)

Define indexes on the columns in the join predicate to allow the join to be
processed more efficiently. This will also benefit UPDATE and DELETE
statements that contain select-statements that access several tables.

If possible, avoid using expressions or OR clauses with join predicates. In
this case, some join techniques cannot be used by the database manager
and, as a result, the most efficient join method may not be chosen.

If possible, ensure that the tables joined are both partitioned on the join
column in a partitioned database environment.

For more information see f‘loin Concepts” on page 141l

Also, refer to the Application Development Guide for more information on
coding SQL statements with joins and subqueries.

Chapter 2. Application Considerations 51

Compound SQL

Compound SQL allows you to group several SQL statements into a single
executable block. The SQL statements contained within the block
(sub-statements) could be executed individually; however, by creating and
executing a block of statements, you reduce the database manager overhead.
For remote clients, compound SQL also reduces the number of requests that
have to be transmitted across the network.

There are two types of compound SQL.:

* Atomic
The application receives a response from the database manager when all
sub-statements have completed successfully, or when one sub-statement
ends in an error. If one sub-statement ends in an error, the entire block is
considered to have ended in an error, and any changes made to the
database within the block will be rolled back.

* Not Atomic
The application receives a response from the database manager when all
sub-statements have completed. All sub-statements within a block are
executed regardless of whether or not the preceding sub-statement
completed successfully. The group of statements can only be rolled back if
the unit of work containing the NOT ATOMIC compound SQL is rolled
back.

* Atomic compound SQL is not supported with DB2 Connect

e Compound SQL is supported within stored procedures (also known as
DARI routines)

* Compound SQL is supported through:
— Embedded static SQL (refer to the SQL Reference manual)
— DB2 Call Level Interface (refer to the CLI Guide and Reference manual).

Performance Considerations and Character Conversion

When your application and database are not using the same code page, a
mapping of the data from one code page to the other code page takes place, if
possible. To properly map data between application and database code pages,
some data conversion may be required.

This mapping and data conversion introduce a certain amount of overhead
into the processing time for applications that are running in a code page that
is different from the database code page. Your application’s performance can
be improved if the application and database are using the same code page or
the identity collating sequence.

52 Administration Guide: Performance

Code Page Conversion

Character conversion can occur in the following situations:

* When a client or application accessing a database is running in a code page
that is different from the code page of the database.

Database conversion will occur on the database server machine: From
the application code page to the database code page; and, from the
database code page to the application code page.

* When a client or application importing (or loading) a file runs in a code
page different from the file being imported (or loaded).

* When DB2 Connect is used to access data on a DRDA server.

Character conversion will not occur for:
* File names.

» Data targeted for, or coming from, a column assigned the FOR BIT DATA
attribute, or data used in an SQL operation whose result is FOR BIT or
BLOB data.

« A DB2 product or platform that does not have a supported conversion
function to, or from, EUC or UCS-2 installed. You receive an SQLCODE
-332 (SQLSTATE 57017) when running your application.

For more information about EUC code page support and National Language
Support (NLS) considerations, refer to the Administration Guide, Design and
Implementation.

Depending on the operating system environment DB2 database managers use
a conversion function and conversion tables, or DBCS conversion APIs, when
converting multi-byte code pages.

Note: Character string conversions between multi-byte code pages, like DBCS
with EUC, may result in either an increase or a decrease in the length
of the string.

Code points assigned to different characters in a country’s PC DBCS, EUC,
and UCS-2 code sets may produce different results when sorting the same
characters. If sorting is required across code sets for different countries, you
should refer to the Administration Guide, Design and Implementation.

Extended UNIX Code (EUC) Code Page Support
Use of host variables that use graphic data in C or C++ applications require

special considerations including special precompiler, application performance,
and application design issues.

Chapter 2. Application Considerations 53

If applications are developed requiring EUC code sets, you should see the
Administrative API Reference manual.

Database and client application support for graphic (that is, double byte
character) data must overcome the two bytes wide restriction when dealing
with many characters found in both the Japanese and Traditional Chinese
EUC code pages. Graphic data from these EUC code pages is stored and
manipulated using the UCS-2 code set.

Stored Procedures

In a database application environment, many situations are repetitive; for
example, receiving a fixed set of data, performing the same multiple requests
against a database, or returning a fixed set of data. Stored procedures permit
one call to a remote database to execute a preprogrammed procedure. One
call may represent several accesses to the database.

Processing a single SQL statement for a remote database requires sending two
transmissions: one request and one receive. However, an application can
contain many SQL statements. Without stored procedures, many transmissions
are required for an application to complete its work.

When a database client uses a stored procedure, it requires only two
transmissions for the entire process, thereby reducing the number of network
transmissions. To invoke a stored procedure, the requesting application must
connect to the database containing the procedure before calling it.

Typically these stored procedures are run in processes separate from the
database agents. This separation requires that the stored procedure and agent
processes must communicate through a router. To obtain the best possible
performance for a stored procedure, it is possible to identify a stored
procedure as being “trusted”, or “not fenced”, and as a result, run the
procedure directly in the database agent process. What do we mean by
“trusted” and “not fenced”?

* Not fenced refers to the fact that there is nothing separating the stored
procedure from the database control structures that are used by the
database agent.

* Trusted indicates that as an administrator, you are confident that the stored
procedure will not accidentally or maliciously damage the database control
structures. That is, you trust them to operate in a fashion which will not
jeopardize your database integrity.

Both of these terms mean the same thing, that is, if your stored procedure is

“not fenced”, then your stored procedure is “trusted”. Due to the associated
risk of damaging your database, you should only use not fenced stored

54 Administration Guide: Performance

procedures when you need to obtain the maximum possible performance
benefits. In addition, you should ensure that the procedure is well coded and
has been thoroughly tested before allowing it to run as a not fenced stored
procedure. If a fatal error does occur while running one of these not fenced
stored procedures, the database manager will determine whether the error
occurred in the application or database manager code, and perform the
appropriate recovery.

There are two ways to create a stored procedure as being not fenced:

* Use the CREATE PROCEDURE command and specify the NOT FENCED
clause.

» Put the procedure in a special directory, as defined in the Quick Beginnings
manual for your platform. (This method does not work for Java stored
procedures.)

To run a stored procedure, the end-user running the application that calls the
procedure must have one of the following privileges at run time:

+ EXECUTE or CONTROL privilege for the package associated with the
stored procedure

* SYSADM or DBADM authority

For information on writing programs using stored procedures, refer to the
Application Development Guide manual.

Activating a Database

When a database is started, several types of data are cached. For example,
data buffers are cached in the buffer pool, and packages and dynamic SQL
statements are cached in the package cache.

If frequent, short periods occur during which no user is connected to the
database, and these periods are interspersed with other periods during which
a few users are connected to the database, the benefits provided by caching
are lost because the cache is frequently destroyed. To avoid this situation,
consider activating the database by issuing the following command:

DB2 ACTIVATE DATABASE database

This command activates the specified database and starts up all necessary
services, so that the database is available for connection and use by any
application. Databases initialized by ACTIVATE DATABASE can be shut down
by DEACTIVATE DATABASE or by db2stop. For more information about these
commandes, refer to the Command Reference manual.

Chapter 2. Application Considerations 55

Parallel Processing of Applications

A type of parallel environment supported by DB2 is one which requires
symmetric multi-processor (SMP) machines. In this environment, more than
one processor shares access to the database. This allows parallel execution of
complex SQL requests which can be divided among the processors.

You can specify the degree of parallelism to implement when compiling your
application by using the CURRENT DEGREE special register, or the DEGREE
bind option. "Degree” simply refers to the number of concurrently executing
parts of a query. There is no strict relation between the number of processors
and the value selected for the degree of parallelism. The total number of
processors available for use in your hardware platform need not be requested
while running your applications; you can select more or less than this number.

Each degree of parallelism adds to the system memory and CPU overhead.

As a result of using a number of degrees of parallelism, some configuration
parameters could be modified to use this parallelism more effectively.
Configuration parameters controlling the amount of shared memory and
prefetching should be reviewed and modified as necessary in an environment
with a high degree of parallelism. See FRarallel” an page 417 for a list of
parameters related to parallel operations and partitioned database
environments.

There is a database manager configuration parameter, intra_parallel, that
enables or disables instance parallelism support. The default is "NO” for a
uni-processor system and "YES” for SMP machines. An upper limit, or
maximum, for the run time degree of parallelism is established in the
database configuration parameter, max_querydegree. There is a database
configuration parameter, dft_degree, to specify the default value for the
CURRENT DEGREE special register and the DEGREE bind option.

For more information on the application use and implications from using
more than one degree of parallelism, refer to the Application Development Guide
manual.

If a query is run with DEGREE = ANY, the database manager chooses the
degree of intra-partition parallelism based on a number of factors including
the number of processors and the characteristics of the query. The actual
degree used at runtime may be lower than the number of processors
depending on these factors.

The degree of parallelism is determined by the SQL optimizer when the
statement is compiled and may be adjusted before query execution depending
on the database activity. The degree of parallelism may be lower than that

56 Administration Guide: Performance

chosen by the SQL optimizer if the system is heavily utilized. This occurs
since intra-partition parallelism aggressively uses system resources to reduce
the elapsed time of the query which may adversely affect the performance of
other database users.

The degree of parallelism chosen by the SQL optimizer can be found by using
the SQL Explain Facility to display the access plan. The degree of parallelism
used at runtime can be found by using the database System Monitor. See
EChapter 6_SQL Explain Facility” on page 174 and EFAppendix E_SQL Explain
Tools” an page 643 for more information on the SQL Explain Facility and
related tools. Refer to the System Monitor Guide and Reference for additional
monitor information.

Note: The "degree” of parallelism can be set independent of the hardware
environment. This means that you can use a degree of parallelism
without having an SMP machine. For example, "1/0-bound” queries on
a uni-processor machine may benefit from declaring a degree of "2" or
more. In this case, the uni-processor may not have to wait for input or
output tasks to complete before working on a new query. Declaring a
degree of "2” or more does not directly control 1/0 parallelism on a
uni-processor machine. Utilities such as LOAD can control 1/0
parallelism independent from such a declaration. The keyword ANY can
also be used when changing the dft_degree. The use of ANY means that
the optimizer determines the degree of intra-partition parallelism.

In many cases, database agents are used to coordinate parallel execution. See

‘Datahase Agents” on page 235 for more information, and a list of the various

database manager configuration parameters that affect database agents.

Chapter 2. Application Considerations 57

58 Administration Guide: Performance

Chapter 3. Environmental Considerations

In addition to the factors you should consider when you are designing and

codmg ﬁour application (described in EChapter 2. Application Considerations’l

, there are environmental factors that can influence the access plan
chosen for your application:

Also see EChapter 4_System Catalog Statistics” on page 79 for more

information about factors that affect the SQL optimizer.

When tuning your applications and environment, you should rebind your
applications after you make changes in any of the above areas. This ensures
that the best access plan is being used.

Configuration Parameters Affecting Query Optimization

Several configuration parameters affect the access plan chosen by the SQL
compiler. Many of these are appropriate to a single-partition database and
some are only appropriate to a partitioned database. When working with
configuration parameters in a partitioned database, it is recommended that the
values used for each parameter be the same on all partitions.

When working in a federated system, if the majority of your queries access
nicknames then consider the type of query you are sending before changing
your environment. For example, the buffer pool does not cache pages from
data sources; as such, increasing the buffpage parameter value does not
guarantee that the optimizer will consider additional alternatives when
creating an access plan for queries containing nicknames. (Data sources are
DBMSs and data within the federated system.) Also, the optimizer may decide
that local materialization of data source tables is the least cost route or a
necessary step for a sort operation. In that case, increasing the resources
available to DB2 Universal Database may speed performance. For additional

information, see E‘Server Qptions Affecting Federated Database Queries” on
page 73 and EDatabase Shared Memary” on page 305,

© Copyright IBM Corp. 1993, 1999 59

Following is a list of configuration parameters that affect the access plan
chosen by the SQL compiler:

When selecting the access plan, the optimizer considers the 1/0 cost of
fetching pages from disk to the buffer pool. In its calculations, the optimizer
will estimate the number of 1/0s required to satisfy a query. This estimate
includes a prediction of buffer pool usage, since additional physical 1/0s
are not required to read rows in a page that is already in the buffer pool.
The optimizer considers the value of the npages column in the
BUFFERPOOLS system catalog tables in estimating whether a page will be
found in the buffer pool.

The 1/0 costs of reading the tables can have an impact on :
— How two tables are joined, as described in E*Quter versus Innet

— Whether an unclustered index will be used to read the data (see

FolLstored Tndexas” 124)

You can have more than one buffer pool in a database. You can also have
more than one buffer pool in a partitioned database. The new buffer pool
can be selectively added to each of the partitions in the database or across
all partitions. The npages column in the BUFFERPOOLS and
BUFFERPOOLSNODE system catalog tables are used for estimating in a
partitioned database.

The dft_degree configuration parameter specifies the default value for the
CURRENT DEGREE special register and the DEGREE bind option. A value
of one (1) means no intra-partition parallelism. A value of minus one (-1)
means the optimizer determines the degree of intra-partition parallelism
based on the number of processors and the type of query.

When compiling SQL queries, you can use the query optimization class to
direct the optimizer to use different degrees of optimization. For more
information on selecting a suitable query optimization class, see

The avg_appls parameter is used by the SQL optimizer to help estimate how
much of the buffer pool will be available at run-time for the access plan
chosen. Higher values for this parameter can influence the optimizer to
choose an access plan for queries that will be more conservative in its buffer
pool usage. A value of 1 for this parameter will cause the optimizer to treat
the entire buffer pool as being available to the application.

60 Administration Guide: Performance

A sort is considered to be “piped” if it does not require a temporary table
to store the final, sorted list of data. That is, the results of the sort can be
read in a single, sequential access. Piped sorts result in better performance

than non- plped sorts and will be used if possible. (See F'Influence of Sorting
for a definition of non-piped sorts compared

to piped sorts.)

When choosing an access plan, the optimizer estimates the cost of the sort
operations, including evaluating whether a sort can be piped, by:

— Estimating the amount of data to be sorted

— Looking at the sortheap parameter to determine if there is enough space
for the sort to be piped.

EMaximum Storage for L ack |ist (locklist)” on page 314 and FMaximum
When the isolation level (see ECancurrency” on page 13) being used is

repeatable read (RR), the SQL optimizer will consider the values of the
locklist and maxlocks parameters to determine whether it is likely that row
level locks will be escalated to a table level lock. If the optimizer predicts
that lock escalation will occur for a table access, then it will choose a table
level lock for the access plan, rather than incurring the overhead of lock
escalation during the execution of the query.

The CPU speed is used by the SQL optimizer to estimate the cost of
performing certain operations. The optimizer uses these CPU cost
estimations along with various 1/0 cost estimations to select the best access
plan for a query.

The CPU speed of a machine can have a significant influence on the access
plan chosen. This configuration parameter is automatically set to an
appropriate value when the database is installed or migrated. You should
only adjust this parameter if you are modelling a production environment
on a test system, or to assess the impact of a hardware change. Using this
parameter to model a different hardware environment allows you to
observe the access plan that will be chosen for that environment.

The size of the statement heap does not influence the optimizer in choosing
different access paths; however, it can affect the amount of optimization that
will be performed for complex SQL statements.

If the stmtheap parameter is not set large enough, you may receive an SQL
warning indicating that there is not enough memory available to process
the statement. For example, SQLCODE +437 (SQLSTATE 01602) can indicate
that the amount of optimization that has been used to compile a statement

Chapter 3. Environmental Considerations 61

is less than the amount that you requested when you specified the query

optimization class. (See ‘Adjusting the Optimization Class” on page 36 for

more information.)

When this parameter has a value of "ANY", then the optimizer chooses the
degree of parallelism to be used. If other than "ANY" is present, then the
user-specified value is used to determine the degree of parallelism for the
application.

Communications bandwidth is used by the optimizer to determine access
paths. The optimizer uses the value in this parameter to estimate the cost of
performing certain operations between the database partition servers of a
partitioned database.

For additional information, see ETuning Configuration Parameters” on

Nodegroup Impact on Query Optimization

In partitioned databases, collocation of tables is recognized by the optimizer
and used when determining the best access plan for a query. The assumption
is that tables that are frequently involved in join queries should, when
divided among partitions in a partitioned database, ideally have the rows
from each table being joined located on the same database partition. During
the join operation, the collocation of the data from both tables that are part of
the join would prevent the need to move data from one partition to another.
Placing both tables in the same nodegroup ensures that the data from the
tables is collocated together.

Refer to Administration Guide, Design and Implementation for more information
on collocating tables.

Also, within a partitioned database, the spreading of the data over more
partitions reduces the estimated time (or cost) to execute a query. The number
of tables, the location of the data in those tables, and the type of query
(whether a join is required as noted above) all affect the cost of the query.

Table Space Impact on Query Optimization
Certain characteristics of your table spaces can affect the access plan chosen

by the SQL compiler:
e Container characteristics

62 Administration Guide: Performance

Container characteristics can have a significant impact on the 1/0 cost
associated when executing a query. When selecting an access plan the SQL
optimizer considers these 1/0 costs, including any cost differences for
accessing data from different table spaces. Two columns in the
SYSCAT.TABLESPACES system catalog are used by the optimizer to help
estimate the 1/0 costs of accessing data from a table space:

— OVERHEAD, which provides an estimate (in milliseconds) of the time
required by the container before any data is read into memory. This
overhead activity includes the container’s I/0 controller overhead as
well as the disk latency time, which includes the disk seek time.

You may use the following formula to help you estimate the overhead
cost:

OVERHEAD = average seek time in milliseconds
+ (0.5 * rotational latency)

where:
- 0.5 represents an average overhead of one half rotation

- Rotational latency is calculated, in milliseconds for each full rotation,
as follows:

(1 / RPM) * 60 * 1000

where you:

« Divide by rotations per minute to get minutes per rotation
e Multiply by 60 seconds per minute

e Multiply by 1000 milliseconds per second.

As an example, let the rotations per minute for the disk be 7 200. This
would produce, using the rotational latency formula,

(1 / 7200) = 60 * 1000 = 8.328 milliseconds

which can then be used in the calculation of the OVERHEAD estimate
with an assumed average seek time of 11 milliseconds:

OVERHEAD = 11 + (0.5 * 8.328)
15.164

giving an estimated OVERHEAD value of about 15 milliseconds.
— TRANSFERRATE, which provides an estimate (in milliseconds) of the
time required to read one page of data into memory.

If each table space container is a single physical disk then you may use
the following formula to help you estimate the transfer cost in
milliseconds per page:

TRANSFERRATE = (1 / spec_rate) * 1000 / 1 024 000 * page_size

Chapter 3. Environmental Considerations 63

where:

- spec_rate represents the disk specification for the transfer rate, in MB
per second

- Divide by spec_rate to get Seconds per MB
- Multiply by 1000 milliseconds per second
- Divide by 1 024 000 bytes per MB

- Multiply by the page size in bytes (for example, 4 096 bytes for a 4 KB
page)

As an example, suppose the specification rate for the disk is 3 MB per
second. This would produce the following calculation

TRANSFERRATE = (1 / 3) * 1000 / 1024000 * 4096
1.333248

giving an estimated TRANSFERRATE value of about 1.3 milliseconds per
page.

If the table space containers are not single physical disks but rather are
arrays of disks (such as RAID), then there are additional considerations
when attempting to determine the TRANSFERRATE to use. If the array
is relatively small then you can multiply the spec_rate by the number of
disks, assuming that the bottleneck is at the disk level. However, if the
number of disks in the array making up the container is large, then the
bottleneck may not be at the disk level, but rather be at one of the other
1/0 subsystem components such as disk controllers, 1/0 busses, or the
system bus. In this case, you cannot assume that the 1/0 throughput
capability is the product of the spec_rate and the number of disks.
Instead, you must measure the actual 1/0 rate (in MBs) during a
sequential scan. For example, a sequential scan could be select count(*)
from big_table and will be MBs in size. Divide the result by the number
of containers that make up the table space in which big_table resides.
Use the result as a substitute for spec_rate in the formula given above.
For example, a measured sequential 1/0 rate of 100 MBs while scanning
a table in a four container table space would imply 25 MBs per container,
or a TRANSFERRATE of (1/25) * 1000 / 1024000 * 4096 = 0.16
milliseconds per page.

Each of the containers assigned to a table space may reside on different
physical disks. For best results, all physical disks used for a given table
space should have the same OVERHEAD and TRANSFERRATE
characteristics. If these characteristics are not the same, you should use the
average when setting the values for OVERHEAD and TRANSFERRATE.

64 Administration Guide: Performance

You can obtain media specific values for these columns from the hardware
specifications or through experimentation. These values may be specified on
the CREATE TABLESPACE and ALTER TABLESPACE statements.

Experimentation becomes especially important in the environment mention
above where you may have a disk array as a container. You should create a
simple query that moves data and use it in conjunction with a
platform-specific measuring utility. You can then re-run the query with
different container configurations within your table space. You can use the
CREATE and ALTER TABLESPACE statements to change how data is
transferred in your environment.

The 1/0 cost information through these two vaules could influence the
optimizer in a number of ways, including whether or not to use an index to
access the data, and which table to select for the inner and outer tables in a
join.

* Prefetching
When considering the 1/0 cost of accessing data from a table space, the
optimizer will also consider the potential impact that prefetching data and
index pages from disk can have on the query performance. Prefetching data
and index pages can reduce the overhead and waiting time associated with
reading the data |nto the buffer pool. For more information, see
The optimizer uses the information from the PREFETCHSIZE and
EXTENTSIZE columns in SYSCAT.TABLESPACES to estimate the amount of
prefetching that will occur for a table space.

— EXTENTSIZE can only be set when creating a table space (for example
using the CREATE TABLESPACE statement). The default extent size is 32
pages (of 4 KB each) and is usually sufficient.

— PREFETCHSIZE can be set when creating a table space and also using
the ALTER TABLESPACE statement. The default prefetch size is
determined by the value of the DFT_PREFETCH_SZ database configuration
parameter which varies depending on the operating system. You should
review the recommendations for sizing this parameter in the

Prefetch Size (dft prefetch sz)” on page 349 description and make

changes as needed to improve the movement of data.

The following shows an example of the syntax to change the characteristics of
the RESOURCE table space:
ALTER TABLESPACE RESOURCE
PREFETCHSIZE 64

OVERHEAD 19.3
TRANSFERRATE 0.9

Chapter 3. Environmental Considerations 65

After making any changes to your table spaces you should consider rebinding
your applications and use the RUNSTATS utility to collect the latest statistics
about the indexes to ensure the best access plans are being used.

Indexing Impact on Query Optimization

It is important to remember that you do not decide when an index should be
used; the database manager makes the decision based on the available table
and index information. However, you play an important role in the process by
creating the necessary indexes that can improve performance. It is also
important for you to collect statistics about the indexes (using the RUNSTATS
utility) after you create an index, or change the prefetch size (as mentioned
above), and on an ongoing basis to keep the statistics up to date. This means
you must understand the kinds of indexes that you can create and the ways
to create them.

Indexing versus No Indexing

For each table referenced in a database query, if no index exists on the table,
then a table scan must be performed on that table. The larger the table, the
longer a table scan takes. A table scan occurs when the database manager
sequentially accesses every row of a table. This can be compared to an index
scan that occurs when the database manager accesses data using an index.

(See FIndex Scan Concepts” on page 121.)

An index will be selected for use if the optimizer estimates that an index scan
will be faster than a table scan. Index files generally are smaller and require
less time to read than an entire table, particularly as tables grow larger. In
addition, the entire index may not need to be scanned. The predicates applied
to the index reduce the number of rows to be read from the data pages.

Each index entry consists of a search-key value and a pointer to the row
containing that value. The values can be searched in reverse direction only if
the ALLOW REVERSE SCANS parameter was specified in the CREATE
INDEX statement. It is therefore possible to bracket the search, given the right
predicate. An index can also be used to obtain rows in an ordered sequence,
eliminating the need for the database manager to sort the rows after they are
read from the table. Specifying ALLOW REVERSE SCANS enables the index
to be used to directly obtain rows in sequence, in forward and reverse order.
Refer to the SQL Reference for additional details.

A unique index may contain include columns in addition to the search-key
value and row pointer.

66 Administration Guide: Performance

Note: You cannot control whether an index is used by the database manager.
For example, the result of a query cannot be guaranteed to be produced
in an ordered sequence simply by the existence of an index on the table
being queried. The database manager may use this index during the
processing of the query but is not required to. Only the existence of an
ORDER BY clause can “guarantee” the order of a result set.

Indexes can reduce access time significantly; however, indexes can also have
adverse effects on performance. Before creating indexes, consider the effects of
multiple indexes on disk space and processing time:

* Each index takes up a certain amount of storage or disk space. The exact
amount is dependent on the size of the table and the size and number of
columns included in the index.

* Each INSERT or DELETE operation performed on a table requires
additional updating of each index on that table. This is also true for each
UPDATE operation that changes an index key.

* The LOAD utility rebuilds or appends to any existing indexes.

* The indexfreespace MODIFIED BY parameter can be specified on the
LOAD command to override the index PCTFREE used when the index was
created.

* Each index potentially adds an alternative access path for a query, which
the optimizer will consider, and therefore increases the query compilation
time.

Indexes should be carefully chosen to address the needs of the application
program.

To determine whether an index is used in a specific package you may use the
SQL Ex%Iain facility, described in L ; ARV

Using the Index Advisor

The DB2 Index Advisor is a tool to assist you in choosing an optimal set of
indices for your table data. There are different ways to get to this tool:

* You can access this tool through the Control Center by requesting the Index
SmartGuide.

* The tool can be accessed from the command line and is called db2advis.

More information on the DB2 Index Advisor can be found in m

Chapter 3. Environmental Considerations 67

Guidelines for Indexing

Which indexes should be created depends on the data and its intended uses.
The following guidelines can help you determine which indexes would be
most useful:

» Define primary keys and unique keys, wherever they apply, by using the
CREATE UNIQUE INDEX statement. (Refer to the SQL Reference for more
information.) Unique indexes can help the optimizer avoid performing
certain operations such as sorts.

» Define unique indexes with include columns to improve the performance of
data retrieval. Columns are good candidates for INCLUDE columns of
unique indexes if they:

— Are accessed frequently and therefore would benefit from index-only
access

— Are not required to limit the range of index scans
— Do not affect the ordering or uniqueness of the index key.

Refer to the chapter “Creating an Index or Index Specification” in
Administration Guide, Design and Implementation for more information on
INCLUDE columns.

* Use indexes to optimize frequent queries to tables with more than a few
data pages, as can be determined by the NPAGES column in the
SYSCAT.TABLES catalog view:

— Create an index on any column you will use when joining tables.

— Create an index on any column from which you will be searching for
particular values on a regular basis.

» Decide between ascending and descending ordering of keys based on which
order will be primarily used or requested. The values can be searched in
reverse direction only if the ALLOW REVERSE SCANS parameter was
specified in the CREATE INDEX statement. Although indexes can be
scanned in both forward and reverse directions, a forward scan of the index
(that is, in the order specified at the time the index is created) performs
slightly better than a reverse scan of the index. Refer to the SQL Reference
for additional details.

* Avoid creating indexes that are partial keys of other index keys on the
columns. For example, if there is an index on columns a, b, and c, then a
second index on columns a and b is not generally useful.

* Use indexes on foreign keys to improve performance of delete and update
operations on the parent table.

* Use indexes on columns that will frequently be used to sort the data.

68 Administration Guide: Performance

* In creating a multiple-column index, if you have more than one choice for
the first key column, choose the one most often specified with the “="
predicate or specify the columns with the greatest number of distinct values
first.

» Creating indexes, arbitrarily on all columns, not only consumes much disk

space, but also causes prepare times to be large. This will be particularly
true for complex queries, against which an optimization class with dynamic

programming join enumeration is used. (See EAdjusting the Qptimizatiod
Class” on page 36)

* The following provides a rule-of-thumb for the typical number of indexes
you will define for a table. This number is based on the primary use of
your database:

— For online transaction processing (OLTP) environments, you should only
have one or two indexes

— For query (read-only) environments, you could have more than five
indexes

— For mixed query/OLTP environments, you could have between two and
five indexes.

» Consider defining a clustering index to help keep newly inserted rows
clustered according to that index. A clustering index should significantly
reduce the need for reorganizing the table.

Note: When a clustering index is defined, the table should be loaded with a
free space reserved on each data page to allow inserts to take place
on those pages. (Free space is reserved by using the PCTFREE
keyword on the ALTER TABLE statement; or, the pagefreespace
MODIFIED BY clause of the LOAD command.)

» Consider using the PCTFREE keyword when creating indexes. PCTFREE
reserves space on index pages for future updates to the index. This may
reduce the frequency of page splits and increase performance.

» Consider using the MINPCTUSED option when creating indexes.
MINPCTUSED specifies the threshold for the minimum amount of used
space on an index leaf page and enables online index reorganization. This
could reduce the need for offline reorganization of the data and the index.

The following are typical circumstances in which creating an index can
improve performance:

* An index can be created on columns that are used in WHERE clauses of the
queries and transactions that are most frequently processed.

The WHERE clause:
WHERE WORKDEPT='A®1' OR WORKDEPT='E21'

Chapter 3. Environmental Considerations 69

will generally benefit from an index on WORKDEPT, unless those values occur
frequently.

* An index can be created on a column or columns to order the rows in
collating sequence. Ordering is required not only in the ORDER BY clause,
but also by other features, such as the DISTINCT and GROUP BY clauses.

The following example uses the DISTINCT clause:

SELECT DISTINCT WORKDEPT
FROM EMPLOYEE

The database manager can use an index defined for ascending or
descending order on WORKDEPT to eliminate duplicate values. This same
index could also be used to group values in the following example with a
GROUP BY clause:

SELECT WORKDEPT, AVERAGE (SALARY)

FROM EMPLOYEE
GROUP BY WORKDEPT
* An index can be created to name each column that is referenced in a

statement. When an index is specified in this way, the resulting index-only
access means data can be retrieved more efficiently by avoiding table access.

For example, assume the following SQL statement is issued:

SELECT LASTNAME
FROM EMPLOYEE
WHERE WORKDEPT IN ('AGO','D11','D21')

If an index is defined for the WORKDEPT and LASTNAME columns of the
EMPLOYEE table, the statement might be processed more efficiently by
scanning the index than by scanning the entire table. Note that since the
predicate is on WORKDEPT, this column should be the first column of the
index.

* Include columns on an index is another way to improve the use of indexes
on tables. Using the previous example, you could define unique index as:

CREATE UNIQUE INDEX x ON employee (workdept) INCLUDE (lastname)

Specifying Tastname as an include column rather than as part of the index
key means that Tastname is stored only on the leaf pages of the index.

Performance Tips for Administering Indexes

The following can help you understand how performance can be impacted by
properly using and managing indexes:
1. Index Creation

When creating indexes on large tables, and having an SMP machine,
consider setting intra_parallel to YES (1) or SYSTEM (-1) to take advantage
of parallel performance improvements.

70 Administration Guide: Performance

Multiple processors can be used to scan and sort data. The only time when
it is not advantageous to have multiple processors during index creation
occurs when the indexsort database configuration parameter is NO. (The
default for the parameter is YES). The parameter controls whether sorting
of index keys is done during index creation.

Index Table Space

Indexes may be stored in a different table space from that used to store
other table data. This can allow for more efficient use of disk storage by
reducing the movement of read/write heads. You can also create your
index table spaces so they will be stored on faster physical devices.

A table space may also be assigned a separate buffer pool which may
protect the index pages from being pushed out of the buffer by the
presence of lots of data pages.

When indexes are not placed in separate table spaces, both data and index
pages use the same extent size and prefetch quantity. If you use a different
table space for indexes, you have the option of selecting different values
for all the characteristics of a table space. Since indexes are typically
smaller than tables and are spread over fewer containers, it is common to
find smaller extent sizes such as 8 and 16. For more information see,
Elndex Page Prefetch” an page 136. Use of faster devices for a table space
will be considered by the SQL optimizer, as described in f:[able_..—%pacg

imization™ . Refer to Administration Guide,
Design and Implementation for more information about table spaces.

Degree of Clustering

If your SQL statement requires ordering (for example, ORDER BY, GROUP
BY, DISTINCT) and there is an appropriate index to satisfy the ordering,
there may be times that the database manager does not choose the index.
This could happen when:

* Index clustering is poor (see the CLUSTERRATIO and
CLUSTERFACTOR columns of SYSCAT.INDEXES)

* The table is small enough that it is cheaper to scan the table and sort
the answer set in memory

* There are competing indexes for accessing the table.

It is recommended that you perform a REORG, or a sort and LOAD, after
creating a clustering index. In general a table can only be clustered on one
index. Your tables and indexes should be built in the sequence of the
clustering index for that table. A clustering index attempts to maintain a
particular order of data, improving the CLUSTERRATIO or
CLUSTERFACTOR statistics collected by the RUNSTATS utility.

You should also consider using PCTFREE when altering a table before
loading or reorganizing that table. In order for clustering to be maintained,

Chapter 3. Environmental Considerations 71

each table needs to have space available on each data page for additional
inserts. When the space is available, additional inserts are able to be
clustered with the existing data. As a result, you will want to consider
loading your data into the table after leaving a percentage of free space on
each page for the clustering of additional data. You can do this by first
creating the table, then altering the table with the PCTFREE parameter. In
a similar way, before reorganizing your data, you should consider altering
the table with the PCTFREE parameter. Otherwise, the reorganization will
eliminate all extra space if PCTFREE has not been set.

Clustering is not currently maintained during updates. That is, if one
updates a record such that its key value in the clustering index is changed,
the record will not necessarily be moved to a new page to maintain the
clustering order. To maintain clustering, instead of using UPDATE, use
DELETE and then INSERT.

4. RUNSTATS Utility

After creating a new index, you should use the RUNSTATS utility to
collect index statistics. These statistics allow the optimizer to determine
whether using the index can improve access performance. See

Btatistics Using the RUNSTATS Utility” on page 81 for more information

on this topic.

5. Reorganizing an Index

To get the best performance you can from your indexes, you should
consider reorganizing your indexes periodically. Updates to your tables
may cause index page prefetch to become less effective. To keep the
effectiveness of index page prefetch you must reorganize the index.

You can reorganize the index by either dropping and re-creating the index,
or by using the REORG utility. For more information, see Iﬁm

To prevent having to re-organize often, you can specify PCTFREE when
creating an index. Specifying the PCTFREE parameter during index
creation results in free space being left on each index leaf page as it is
created. As a result, during future activity involving the index, records can
be inserted into the index with less likelihood of causing index page splits.
Index page splits cause index pages to not be contiguous nor sequential.
This results in decreased ability to perform index page prefetching.
Choosing an appropriate PCTFREE for an index may eliminate or reduce
the frequency when you have to reorganize indexes.

Note: The PCTFREE specified when you create the index is used when the
index is re-created during reorganization.

72 Administration Guide: Performance

Dropping and re-creating the index gets a new set of pages that are
roughly contiguous and sequential. This improves index page prefetch
when it occurs.

Although more costly to accomplish, the REORG utility also ensures
clustering of the data pages. This clustering has greater benefit for index
scans accessing a significant number of data pages.

If you work in a symmetric multi-processor (SMP) system environment,
the REORG utility will use multiple processors when intra_parallel is YES
or ANY.

6. Use EXPLAIN

Periodically, run EXPLAIN on your most frequently used queries and
check that each of your indexes is used at least once. If an index is not
used in any query, consider dropping that index.

Also, use EXPLAIN to see if table scans on large tables are processed as
the inner of nested loop joins. This would indicate that an index on the
join predicate column is either missing or thought to be ineffective at
applying the join predicate. Or, perhaps the join predicate is not present.

7. \olatile Tables

A volatile table is defined as a table whose contents can vary from empty
to very large at run time. Generating an access plan that uses a volatile
table can result in the optimizer favoring the use of a table scan rather
than an index scan to access the volatile table.

Declaring a table “volatile” using the ALTER TABLE...VOLATILE
statement can allow the optimizer to use an index scan on the volatile
table. Refer to Administration Guide, Design and Implementation or the SQL
Reference for additional information on this topic.

Server Options Affecting Federated Database Queries

A federated system is composed of a DB2 DBMS (the federated database) and
one or more data sources. Data sources are identified to the federated
database when you issue CREATE SERVER statements. When you issue these
statements, you can also provide server options that refine and control aspects
of federated system operations involving DB2 and the specified data source.
Server options can be changed later using ALTER SERVER statements. Refer
to the SQL Reference for more information about the CREATE SERVER and
ALTER SERVER statements.

Note: You must install the distributed join installation option and set the

database manager parameter FEDERATED to YES before you can create
servers and specify server options.

Chapter 3. Environmental Considerations 73

Server options and their values facilitate query pushdown analysis, global
optimization and other aspects of federated database operations. For example:
in the CREATE SERVER statement, you can specify certain performance
statistics as server option values. That is, you can set the cpu_ratio option to a
value that indicates the relative speeds of the data source’s and federated
server’s CPUs. And you can set the io_ratio option to a value that indicates the
relative rates of the data source’s and federated server’s 1/0 devices. When
you run CREATE SERVER, this data is added to the catalog view
SYSCAT.SERVEROPTIONS, and the optimizer uses it in developing its access
plan for the data source. If a statistic changes (as might happen, for instance,
if the data source CPU is upgraded), you can use the ALTER SERVER
statement to update SYSCAT.SERVEROPTIONS with this change. The
optimizer then uses your update in developing its next access plan for the
data source.

74 Administration Guide: Performance

Table 8. Server Options and Their Settings

Option Valid Settings Default
Setting
collating_sequence Specifies whether the data source uses the same default ‘N’

collating sequence as the federated database, based on the
code set and the country information. If a data source has a
collating sequence that differs from DB2’s collating sequence,
most operations depending on DB2’s collating sequence
cannot be remotely evaluated at a data source. An example is
executing MAX column functions against a nickname
character column at a data source with a different collating
sequence. Because results might differ if the MAX function is
evaluated at the remote data source, DB2 will perform the
aggregate operation and the MAX function locally.

If your query contains an equal sign, it is possible to
push-down that portion of the query even if the collating
sequences are different (set to 'N’). For example, the predicate
C1 ="A’ could be pushed-down to a data source. Of course,
such queries cannot be pushed-down when the collating
sequence at the data source is case-insensitive. When a data
source is case-insensitive, the results from C1="A’ and C1 =
‘a’ are the same, which is not acceptable in a case-sensitive
environment (DB2).

Administrators can create federated databases with a
particular collating sequence that matches the data source
collating sequence. This approach may speed performance if
all data sources use the same collating sequence or if most or
all column functions are directed against data sources that use
the same collating sequence.

Y’ Data source’s collating sequence is the same as
federated database’s.

‘N’ Data source’s collating sequence is not the same as
federated database’s.

T Data source’s collating sequence is different from
federated database’s and is case-insensitive (for
example, "TOLLESON’ and 'TolLESon’ are considered
equal).

comm_rate

Specifies the communication rate between a federated server ’2.0’°
and its associated data sources. Expressed in megabytes per
second.

Chapter 3. Environmental Considerations

75

Table 8. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting
connectstring Specifies initialization properties needed to connect to an OLE None

DB provider. For the complete syntax and semantics of the
connection string, see the "Data Link API of the OLE DB Core
Components” in the Microsoft OLE DB 2.0 Programmer’s
Reference and Data Access SDK, Microsoft Press, 1998.

cpu_ratio Indicates how much faster or slower a data source’s CPU runs ’1.0°
than the federated server’s CPU.

dbname Name of the data source database that you want the federated None.
server to access. Required for DB2 family data sources; does
not apply to Oracle** data sources.

fold_id (See notes 1 and 4 Applies to user IDs that the federated server sends to data None.
at the end of this table.) sources for authentication. Valid values are:
U’ The federated server folds the user ID to uppercase

before sending it to the data source. This is a logical
choice for DB2 Family and Oracle** data sources (See
note 2 at end of this table.)

"N’ The federated server does nothing to the user ID
before sending it to the data source. (See note 2 at
end of this table.)

L’ The federated server folds the user ID to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the user ID to the data source in uppercase. If the user
ID fails, the server tries sending it in lowercase.

fold_pw (See notes 1, 3 Applies to passwords that the federated server sends to data None.
and 4 at the end of this sources for authentication. Valid values are:
table.

) U’ The federated server folds the password to uppercase

before sending it to the data source. This is a logical
choice for DB2 Family and Oracle** data sources.

"N’ The federated server does nothing to the password
before sending it to the data source.

L’ The federated server folds the password to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the password to the data source in uppercase. If the
password fails, the server tries sending it in lowercase.

io_ratio Denotes how much faster or slower a data source’s 1/0 1.0
system runs than the federated server’s 1/0 system.

76 Administration Guide: Performance

Table 8. Server Options and Their Settings (continued)

Option

Valid Settings Default
Setting

node

Name by which a data source is defined as an instance to its None.
RDBMS. Required for all data sources.

For a DB2 family data source, this name is the node specified
in the federated database’s DB2 node directory. To view this
directory, issue the db2 list node directory command.

For an Oracle** data source, this name is the server name
specified in the Oracle** tnsnames.ora file. To access this name
on the Windows NT platform, specify the View Configuration
Information option of the Oracle** SQL Net Easy
Configuration tool.

password

Specifies whether passwords are sent to a data source. Y’

Y’ Passwords are always sent to the data source and
validated. This is the default value.

‘N’ Passwords are not sent to the data source (regardless
of any user mappings) and not validated.

"ENCRYPTION’
Passwords are always sent to the data source in
encrypted form and validated. Valid only for DB2
Family data sources that support encrypted
passwords.

plan_hints

Specifies whether plan hints are to be enabled. Plan hints are ‘N’
statement fragments that provide extra information for data

source optimizers. This information can, for certain query

types, improve query performance. The plan hints can help

the data source optimizer decide whether to use an index,

which index to use, or which table join sequence to use.

Y’ Plan hints are to be enabled at the data source if the
data source supports plan hints.

‘N’ Plan hints are not to be enabled at the data source.

pushdown

Y’ DB2 will consider letting the data source evaluate
operations.

N’ DB2 will retrieve only columns from the remote data
source and will not let the data source evaluate other
operations, such as joins.

Chapter 3. Environmental Considerations

77

Table 8. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting
varchar_no_trailing_blanks Specifies if this data source uses non-blank padded varchar ‘N’

comparison semantics. For varying-length character strings
that contain no trailing blanks, some DBMS’ s
non-blank-padded comparison semantics return the same
results as DB2’s comparison semantics. If you are certain that
all VARCHAR table/view columns at a data source contain no
trailing blanks, consider setting this server option to 'Y’ for a
data source. This option is often used with Oracle** data
sources. Ensure that you consider all objects that can
potentially have nicknames (including views).

Y’ This data source has non-blank-padded comparison
semantics similar to DB2’s.

"N’ This data source does not have the same
non-blank-padded comparison semantics as DB2’s.

Notes on [able 8 on page 75:

1. This field is applied regardless of the value specified for authentication.

2. Because DB2 stores user IDs in uppercase, the values ‘N’ and ‘U’ are
logically equivalent to each other.

3. The setting for fold_pw has no effect when the setting for password is ‘N’.
Because no password is sent, case cannot be a factor.

4. Avoid null settings for either of these options. A null setting may seem
attractive because DB2 will make multiple attempts to resolve user 1Ds
and passwords; however, performance might suffer (it is possible that DB2
will send a user ID and password four times before successfully passing
data source authentication).

78 Administration Guide: Performance

Chapter 4. System Catalog Statistics

When optimizing SQL queries, the decisions made by the SQL compiler are
heavily influenced by the optimizer’s model of the database contents. This
data model is used by the optimizer to estimate the costs of alternative access
paths that could be used to resolve a particular query.

A key element in the data model is the set of statistics gathered about the data
contained in the database and stored in the system catalog tables. This
includes statistics for tables, nicknames, indexes, columns, and user-defined
functions (UDFs). A change in the data statistics can result in a change in the
choice of access plan selected as the most efficient method of accessing the
desired data.

Examples of the statistics available which help define the data model to the
optimizer include:

* The number of pages in a table and the number of pages that are not
empty

* The degree to which rows have been moved from their original page to
other (overflow) pages.

* The number of rows in a table

* The number of distinct values in a column

* The degree of clustering of an index. That is, the extent to which the
physical sequence of rows in a table follows an index.

* The number of index levels and the number of leaf pages in each index

* The number of occurrences of frequently used column values (see
I‘Collecting and Using Distribution Statistics” on page 8§)

* The distribution of column values across the range of values present in the

column (see [‘Callecting and Using Distribution Statistics” on page 88)

» Cost estimates for user-defined functions (UDFs).

Statistics for objects are updated in the system catalog tables only when
explicitly requested. Some or all of the statistics may be updated by:

« Using the RUNSTATS (run statistics) utility (see [‘Callecting Statistics Using

* Using LOAD, with statistics collection options specified

* Coding SQL UPDATE statements that operate against a set of predefined
catalog views (see L =
Note that statistics for user-defined functions must be updated using thls

© Copyright IBM Corp. 1993, 1999 79

technigue (see I'Updating Statistics for User-Defined Functions” on page 106
). Except for UDFs, the catalogs should only be updated manually for
modeling a production environment on a test system or for “what-if
analysis”. Statistics should not be updated on production systems.

Within a federated database system, the only way to gather new statistics for
nicknames from the data source is to drop the nickname, run the equivalent of
RUNSTATS at the data source, and then re-create the nickname. Whenever a
nickname is created, statistics on the underlying table are gathered from the
data source catalog.

You must drop and then re-create nicknames if the data definition information
in the underlying table changes. For example, if a column is added to a table
definition.

In addition you should consider re-creating the nickname if query
performance degrades. Another approach is to manually update statistics in
the SYSSTAT.TABLES.

Use caution when creating a nickname for a view. The statistical information,
such as the number of rows this nickname will return, might not reflect the
real cost to evaluate this view. If the view is defined on a single base table
with no column functions applied on the SELECT list, the statistical
information available to the optimizer should be accurate. If the view is
complex, consider creating new views over nicknames for the view base tables
at the DB2 Universal Database server in the federated database system so the
optimizer can generate an efficient plan to access the data.

Additional Information:

The SYSCAT and SYSSTAT catalogs contain information on the statistics
gathered. See I‘Appendix C Catalog Views” on page 509;
» For information about all the catalog views and the columns they contain.

* For information about all the update-capable catalog views and the
columns they contain. You can also refer to this section if you are only
interested in the statistical columns of the catalog table.

» For information about table statistics.

* For information about column statistics.

* For information about column distribution statistics.
* For information about index statistics.

* For information about user-defined function statistics.

80 Administration Guide: Performance

Collecting Statistics Using the RUNSTATS Utility

The RUNSTATS utility updates statistics in the system catalog tables to help
with the query optimization process. Without these statistics, the database
manager could make a decision that would adversely affect the performance
of an SQL statement. The RUNSTATS utility allows you to collect statistics on
the data contained in the tables, indexes, or both tables and indexes.

Use the RUNSTATS utility to collect statistics based on both the table and the
index data to provide accurate information to the access plan selection process
in the following situations:

* When a table has been loaded with data, and the appropriate indexes have
been created.

* When a table has been reorganized with the REORG utility.

* When there have been extensive updates, deletions, and insertions that
affect a table and its indexes. (“Extensive” in this case may mean that 10 to
20 percent of the table and index data has been affected.)

» Before binding application programs whose performance is critical

* When comparison with previous statistics is desired. Running statistics on a
periodic basis permits the discovery of performance problems at an early
stage, as described below.

* When the prefetch quantity is changed.
* When you have used the REDISTRIBUTE NODEGROUP utility.

When you are working in a partitioned database, collect the statistics related
to a table and its indexes by executing the RUNSTATS operation at a single
node. (The node at which the utility executes is determined by whether the
node at which you issue the command contains table data or not. See
Database Partition Where RUNSTATS is Execiited” on page 89 for details.)
Because the statistics stored in the catalogs are supposed to represent
table-level information, the node-level statistics collected by the database
manager are multiplied where appropriate by the number of nodes across
which the table is partitioned. This provides an approximation of the actual
statistics that would be collected by executing RUNSTATS at every node and
aggregating these statistics.

Note: The DB2 query optimizer assumes that attribute values (data) are
placed equally and evenly across the database partitions of the system.
If the placement of data is not equal, you should run this command on
a database partition that you think has a representative table
distribution.

Chapter 4. System Catalog Statistics 81

The Database Partition Where RUNSTATS is Executed

When you invoke RUNSTATS on a table, you must be connected to the
database in which the table is stored, but the database partition from which
you issue the command does not have to contain a partition for this table:

* If you issue RUNSTATS from a database partition that contains a partition
for the table, the utility executes at this database partition.

» If you issue RUNSTATS from a database partition that does not contain a
table partition, the request is sent to the first database partition in the
nodegroup that holds a partition for the table. The utility then executes at
this database partition.

Analyzing Statistics

Analyzing the statistics can indicate when reorganization is necessary. Some of
these indications are:

e Clustering of indexes

If cluster ratio statistics are collected, their value will be in the range from 0
to 100. If cluster factor statistics are collected, their value will be a number
between 0 and 1. Only one of these two clustering statistics will be
recorded in the SYSCAT.INDEXES catalog. In general, only one of the
indexes in a table can have a high degree of clustering. A value of -1 is
used to indicate that no statistics are available.

If you wish to compare ratio values, multiply the cluster factor by 100 to
obtain a percentage value for the amount of clustering.

Index scans that are not index-only accesses might perform better with
higher cluster ratios. A low cluster ratio leads to more 1/0 for this type of
scan, since after the first access of each data page, it is less likely that the
page is still in the buffer pool the next time it is accessed. Increasing the
buffer size can improve the performance of an unclustered index. (See

tUnderstanding | ist Prefetching” on page 222 for information about how

the database manager can improve index scan performance for indexes

with low cluster ratios and see t‘Clustered Indexes” on page 134 for

information about how the optimizer uses index statistics.)

If the table data was initially clustered with respect to a certain index, and
the above clustering information indicates that the data is now poorly
clustered for that same index, you may wish to reorganize the table to
re-cluster the data with respect to that index.

¢ Overflow of rows

The overflow number indicates the number of rows that do not fit on their
original pages. This can occur when VARCHAR columns are updated with
longer values. In such cases, a pointer is kept at the row’s original location.
This can hurt performance, because the database manager must follow the

82 Administration Guide: Performance

pointer to find the row’s contents, which increases the processing time and
may also increase the number of 1/0s.

As the number of overflow rows grows higher, the potential benefit of
reorganizing your table data also increases. Reorganizing the table data will
eliminate the overflowing of rows.

» Comparison of file pages

The number of pages with rows can be compared with the total number of
pages that a table contains. Empty pages will be read for a table scan.
Empty pages can occur when entire ranges of rows are deleted.

As the number of empty pages grows higher, so does the need for a table
reorganization. Reorganizing the table can compress the amount of space
used by a table, by reclaiming these empty pages. In addition to more
efficient use of disk space, reclaiming unused pages can also improve the
performance of table scan, since fewer pages will be read into the buffer
pool.

* Number of leaf pages

The number of leaf pages predicts how many index page 1/0s are needed
for a complete scan of an index.

Random update activity can cause page splits to occur that increase the size
of the index beyond the minimum amount of space required. When indexes
are rebuilt during the reorganization of a table, it is possible to build each
index with the minimum amount of space possible. For more information

on the minimum space requirements for an index, see lndexing Impact o
Query Optimization” on page 66 or refer to “Creating an Index or an Index

Specification” section in the Administration Guide, Design and Implementation.

Note: A default of ten percent free space is left on each index page when
the indexes are rebuilt. You can increase the free space amount by
using the PCTFREE parameter when first creating the index. Then,
whenever you reorganize the index, the PCTFREE value is used.
Having a free space larger than ten percent may be important if you
wish to reduce the number of times you need to reorganize the
index. The free space is used to accommodate additional index
inserts.

RUNSTATS can also help you determine how performance is related to
changes in your database. The statistics show the data distribution within a
table. When used routinely, RUNSTATS provides data about tables and
indexes over a period of time, thereby allowing performance trends to be
identified for your data model as it evolves over time.

Ideally, you should rebind application programs after running statistics,

because the query optimizer may choose a different access plan given the new
statistics.

Chapter 4. System Catalog Statistics 83

If you do not have enough time available to collect all of the statistics at one
time, you may choose to periodically run RUNSTATS to update only a portion
of the statistics that could be gathered. If inconsistencies are found as a result
of activity on the table between the periods where you run RUNSTATS with a
selective partial update, then a warning message (SQL0437W, reason code 6)
is issued. For example, you first use RUNSTATS to gather table distribution
statistics. Subsequently, you use RUNSTATS to gather index statistics. If
inconsistencies are detected as a result of activity on the table, then the table
distribution statistics are dropped and the warning message is issued. It is
recommended that you run RUNSTATS to gather table distribution statistics
when this happens.

You should periodically use RUNSTATS to gather both table and index
statistics at once, to ensure that the index statistics are synchronized with the
table statistics. Index statistics retain most of the table and column statistics
collected from the last run of RUNSTATS. If the table has been modified
extensively since the last time its table statistics were gathered, gathering only
the index statistics for that table will leave the two sets of statistics out of
synchronization.

You may wish to collect statistics based only on index data in the following
situations:

* A new index has been created since the utility was performed and you do
not want to re-collect statistics on the table data.

* There have been a lot of changes to the data that affect the first column of
an index.

The RUNSTATS utility allows you to collect varying levels of statistics. For
tables, you can collect basic level statistics or you can also collect distribution
statistics for the column values within a table (see [‘Callecting and Using
Distribution Statistics” on page 84). For indexes, you can collect basic level

statistics or you can also collect detailed statistics which can help the
optimizer better estimate the 1/0 cost of an index scan. (See

Indexes” on page 134 for information about these “detailed” statistics).

Note: Statistics are not collected for LONG or large object (LOB) columns. For
row types, the table level statistics NPAGES, FPAGES, and OVERFLOW
are not collected for a sub-table.

The following tables show the catalog statistics that are updated by the
RUNSTATS utility:

84 Administration Guide: Performance

Table 9. Table Statistics (SYSCAT.TABLES and SYSSTAT.TABLES)

Statistic Description RUNSTATS Option
Table Indexes

FPAGES number of pages being | Yes Yes
used by a table

NPAGES number of pages Yes Yes
containing rows

OVERFLOW number of rows that Yes No
overflow

CARD number of rows in table |Yes Yes (Note 2)
(cardinality)

Note:

1. For a partitioned database, the values for each statistic are estimated from the value of the count at

the database partition multiplied by the number of database partitions.

2. If the table has no indices defined and you request statistics for indexes, no new CARD statistics are

updated. The previous CARD statistics are retained.

Table 10. Column Statistics (SYSCAT.COLUMNS and SYSSTAT.COLUMNS)

Statistic Description RUNSTATS Option
Table Indexes

COLCARD column cardinality Yes (Note 1) Yes (Note 2)

AVGCOLLEN average length of Yes Yes (Note 2)
column

HIGH2KEY second highest value in | Yes Yes (Note 2)
column

LOW2KEY second lowest value in | Yes Yes (Note 2)
column

NUMNULLS the number of NULLs in | Yes Yes (Note 2)
a column

Note:

1. COLCARD is estimated for all columns in the table. In a partitioned database, if the column is the
single-column partitioning key for the table, the value of the count is estimated as the count at the

database partition multiplied by the number of database partitions.

2. Column statistics are gathered for the first column in the index key.

Table 11. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES)

Statistic Description RUNSTATS Option
Table Indexes
NLEAF number of index leaf No Yes (Note 3)

pages

Chapter 4. System Catalog Statistics

85

Table 11. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic

Description

RUNSTATS Option

Table

Indexes

NLEVELS

number of index levels

No

Yes

CLUSTERRATIO

degree of clustering of
table data

No

Yes (Note 2)

CLUSTERFACTOR

finer degree of
clustering

No

Detailed (Notes 1,2)

DENSITY

Ratio (percentage) of
SEQUENTIAL_PAGES
to number of pages in
the range of pages
occupied by the index
(Note 4)

No

Yes

FIRSTKEYCARD

number of distinct
values in first column of
the index

No

Yes (Note 3)

FIRST2KEYCARD

number of distinct
values in first two
columns of the index

No

Yes (Note 3)

FIRST3KEYCARD

number of distinct
values in first three
columns of the index

No

Yes (Note 3)

FIRSTAKEYCARD

number of distinct
values in first four
columns of the index

No

Yes (Note 3)

FULLKEYCARD

number of distinct
values in all columns of
the index

No

Yes (Note 3)

PAGE_FETCH_PAIRS

page fetch estimates for
different buffer sizes

No

Detailed (Notes 1,2)

SEQUENTIAL_PAGES

number of leaf pages
located on disk in index
key order, with few or
no large gaps between
them

No

Yes

86 Administration Guide: Performance

Table 11. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

Note:
1.

Detailed index statistics are gathered by specifying the DETAILED clause on the RUNSTATS
command, or by specifying A, Y or X for the statsopt parameter when calling the RUNSTATS API.

CLUSTER_FACTOR and PAGE_FETCH_PAIRS are not collected with the DETAILED clause unless
the table is of a respectable size. If the table is greater than about 25 pages, then CLUSTERFACTOR
and PAGE_FETCH_PAIRS statistics are collected. In this case, CLUSTERRATIO is -1 (not collected).
If the table is a relatively small table, only CLUSTERRATIO is filled in by RUNSTATS while
CLUSTERFACTOR and PAGE_FETCH_PAIRS are not. If the DETAILED clause is not specified, only
the CLUSTERRATIO statistic is collected.

For a partitioned database, the value is estimated from the value of the count at the database
partition multiplied by the number of database partitions.

This statistic measures the percentage of pages in the file containing the index that belongs to that

table. For a table having only one index defined on it, DENSITY should normally be 100. DENSITY
is used by the optimizer to estimate how many irrelevant pages from other indexes might be read,

on average, if the index pages were prefetched.

Table 12. Column Distribution Statistics (SYSCAT.COLDIST and SYSSTAT.COLDIST)

Statistic Description RUNSTATS Option
Table Indexes
DISTCOUNT If TYPE is Q, the Distribution (Note 2) No

number of distinct
values that are less than
or equal to COLVALUE
statistics

TYPE Indicator of whether Distribution No

row provides
frequent-value or
quantile statistics

SEQNO Frequency ranking of a | Distribution No

sequence number to
help uniquely identify
the row in the table

COLVALUE Data value for which Distribution No

frequency or quantile
statistic is collected

VALCOUNT Frequency with which Distribution No

the data value occurs in
column, or for quantiles,
the number of values

less than or equal to the
data value (COLVALUE)

Chapter 4. System Catalog Statistics 87

Table 12. Column Distribution Statistics (SYSCAT.COLDIST and SYSSTAT.COLDIST) (continued)

Statistic

Description RUNSTATS Option

Table Indexes

Note:

1. Column distribution statistics are gathered by specifying the WITH DISTRIBUTION clause on the
RUNSTATS command, or by specifying A, D or Y for the statsopt parameter when calling the
RUNSTATS API. Note that distribution statistics may not be gathered unless there is a sufficient
lack of uniformity in the column values.

2. DISTCOUNT is collected only for columns that are the first key column in an index.

3. In a partitioned database, VALCOUNT is the estimated value of the count at the database partition
multiplied by the number of database partitions. The exception to this is where the TYPE is 'F’ and
the column is the single-column partitioning key of the table, in which case VALCOUNT is simply
the count at the database partition.

For more information about column distribution statistics, see ECallecting and

Osing Distribo sl

Statistics for user-defined functions are not collected by the RUNSTATS utility.
You must manually update the statistics for these functions. See
Update-Capable Catalog Statistics” on page 100 and t‘Updating Statistics foif
User-Defined Functions” on page 1086.

Collecting and Using Distribution Statistics

The database manager can collect, maintain, and use “frequent-value
statistics” and “quantiles”, two types of statistics that estimate, in a concise
way, the distribution of the data values in a column. Use of these statistics by
the optimizer can lead to significantly more accurate estimates of the number
of rows in a column that satisfy given equality or range predicates. These
more accurate estimates in turn increase the likelihood that the optimizer will
choose an optimal plan.

You may collect statistics about the distribution of these data values by using
the WITH DISTRIBUTION clause on the RUNSTATS command. While
collecting these additional statistics results in additional overhead for the
RUNSTATS utility, the SQL compiler can use this information to help ensure
the best access plan is chosen.

In some cases, the database manager will not collect distribution statistics and
no error will be returned. For example:

* The num_freqvalues and num_quantiles configuration parameters are set to
zero (0) to indicate that you do not want to collect distribution statistics.
For more information about these parameters, see:

88 Administration Guide: Performance

* The distribution of the data is known without the use of distribution
statistics. For example, a column that does not have any data value
appearing more than once, that is, each data value in the column is unique.

* The data type is one for which statistics are not collected. That is, the
column is defined using a long field or large object data type.

* In the case of quantiles, there is only one non-NULL value in the column.

Distribution statistics are exact for the first column of indexes. For each
additional column, the database manager uses hashing and sampling
techniques to estimate the distribution statistics because calculating exact
statistics would require too much time and memory to be practical. These
techniques are accepted statistical methods with accepted degrees of accuracy.

The following topics provide information to help you understand and use
these distribution statistics:

Understanding Distribution Statistics

For a fixed number N>=1, the N most frequent values in a column consist of the
data value having the highest frequency (that is, number of duplicates), the
data value having the second highest frequency, and so forth, down to the
data value having the Nth highest frequency. The corresponding frequent-value
statistics consist of these “N” data values, together with the frequencies of
these values in the column.

The K-quantile for a column is the smallest data value, V, such that at least “K”
rows have data values less than or equal to V. A K-quantile can be computed
by sorting the rows in the column according to increasing data values; the
K-quantile is the data value in the Kth row of the sorted column.

For example, consider the following column of data:
C1

B

Chapter 4. System Catalog Statistics 89

rmMmMXXGQGI>>MoO T <m

This column can be sorted to obtain the following ordered values:
c1'

< X"GCcoOMMMMomm@ >

There are nine distinct data values in column C1. For N = 2, the frequent
value statistics are:

SEQNO COLVALUE VALCOUNT

If the number of quantiles being collected is 5 (see ENumber of Quantiles for
Columns (num_quantiles)” on page 403), then the K-quantiles for this column

forK=1, 3, 6,9, and 12 are:
SEQNO COLVALUE VALCOUNT

In this example, the 6-quantile is equal to E since the sixth row in the sorted
column has a data value equal to E (and 6 rows in the original column have
data values less than or equal to E).

90 Administration Guide: Performance

The same quantile value may occur more than once, if it is a common value.
A maximum of two quantiles will be stored for a given value. The first of
these two quantiles has a COLCOUNT that gives the number of rows strictly
less than COLVALUE, and the second of the two quantiles gives the number
of rows less than or equal to COLVALUE.

When Should You Use Distribution Statistics?

To decide whether distribution statistics should be kept for a given table, two
factors should be considered:

1. The use of static or dynamic SQL.

Distribution statistics are most useful for dynamic SQL and static SQL that
does not use host variables. When using SQL with host variables, the
optimizer makes limited use of distribution statistics.

2. The lack of uniformity in the data distributions.

Keeping distribution statistics is advisable if at least one column in the
table has a highly “non-uniform” distribution of data and the column
appears frequently in equality or range predicates; that is, in clauses such
as the following:

WHERE C1 = KEY;

WHERE C1 IN (KEY1, KEY2, KEY3);

WHERE (C1 = KEY1) OR (Cl = KEY2) OR (Cl = KEY3);

WHERE C1 <= KEY;

WHERE C1 BETWEEN KEY1 AND KEY2;

There can be two types of non-uniformity in a data distribution, possibly

occurring together:

* One type of non-uniformity occurs when the data, instead of being
evenly spread out between the highest and lowest data value, is
clustered in some sub-interval, as in the following column, where the
data is clustered in the range (5,10):

93.
100.

OO O PENRF,WRFO

It can be useful to keep quantiles when this type of non-uniformity is
present.

Chapter 4. System Catalog Statistics 91

The following example shows a query that can be used to help
determine whether a high degree of non-uniformity exists in a column.

SELECT C1, COUNT(*) AS OCCURRENCES

FROM T1
GROUP BY (1
ORDER BY OCCURRENCES DESC;
* Another type of non-uniformity occurs when certain data values have a

much higher frequency than other data values, as in a column having
data values with the following frequencies:

Data Value Frequency

20 5
30 10
40 10
50 25
60 25
70 20
80 5

It can be useful to keep both quantiles and frequent-value statistics
when this type of non-uniformity is present.

You may collect distribution statistics by using the WITH DISTRIBUTION
clause on the RUNSTATS command, or by specifying D, E, or A for the
statsopt parameter when calling the RUNSTATS API. For more information,
refer to the Command Reference or the Administrative API Reference manuals.

How Many Statistics Should You Keep?

Keeping a large number of column distribution statistics can lead to improved
selection of access plans by the optimizer, but the cost of collecting these
statistics and compiling your queries increases accordingly. The size of the
statistics heap (see 'Statistics Heap Size (stat heap sz)” on page 324) may
place limitations on the number of statistics that can be computed and stored.

When distribution statistics are requested, the database manager stores a
default of the 10 most frequent values for a column. Keeping between 10 and
100 frequent values should suffice for most practical situations. Ideally,
enough frequent-value statistics should be retained so that the frequencies of
the remaining values are either approximately equal to each other or
negligible compared to the frequencies of the most frequent values.

To set the number of frequent values to collect, use the num_freqvalues

configuration parameter, as described in ENumber of Frequent Valued
Retained (num freguvalues)” on page 404, The database manager may collect

less than this number of frequent value statistics, because these statistics will
only be collected for data values that occur more than once. If collecting only
quantile statistics, this parameter can be set to zero.

92 Administration Guide: Performance

When distribution statistics are requested, the database manager stores a
default of 20 quantiles for a column. This value guarantees a maximum
estimation error of approximately 2.5% for any simple single-sided range
predicate (>, >=, <, or <=), and a maximum error of 5% for any BETWEEN
predicate. A rough rule of thumb for determining the number of quantiles is:

* Determine the maximum error that is tolerable in estimating the number of
rows of any range query, as a percentage, P

* The number of quantiles should be approximately 100/P if the predicate is
a BETWEEN predicate, and 50/P if the predicate is any other type of range
predicate (<, <=, >, or >=).

For example, 25 quantiles should result in a maximum estimate error of 4%
for BETWEEN predicates and of 2% for ">" predicates. In general, at least 10
guantiles should be kept, and more than 50 quantiles should be necessary
only for extremely non-uniform data.

To set the number of quantiles, use the num quantiles configuration parameter
as described in ENumber of Quantiles for Columns (num guantiles)” on

. If collecting only frequent value statistics, this parameter can be set
to zero. Setting this parameter to “1” will also result in no quantile statistics
being gathered since the entire range of values will fit in one quantile.

How Does the Optimizer Use Distribution Statistics?

Why collect and store distribution statistics? The answer lies in the fact that
an optimizer needs to estimate the number of rows in a column that satisfy an
equality or range predicate in order to select the least expensive access plan.
The more accurate the estimate, the greater the likelihood that the optimizer
will choose the optimal access plan. For example, consider the query
SELECT C1, C2
FROM TABLE1

WHERE C1 = 'NEW YORK'
AND C2 <= 10

and suppose that there is an index on C1 and an index on C2. One possible
access plan is to use the index on C1 to retrieve all rows with C1 = '"NEW

YORK' and then check each retrieved row to see if C2 <= 10. An alternative
plan is to use the index on C2 to retrieve all rows with C2 <= 10 and then
check each retrieved row to see if C1 = 'NEW YORK'. Typically, the primary cost
in executing the above query is the cost of the retrieving the rows, and so it is
desirable to choose the plan the that requires the minimum number of
retrievals. To choose the best plan, it is necessary to estimate the number of
rows that satisfy each predicate.

Chapter 4. System Catalog Statistics 93

When you do not request distribution statistics, the optimizer maintains only
the second-highest data value (HIGH2KEY), second-lowest data value
(LOW2KEY), number of distinct values (COLCARD), and number of rows
(CARD) for a column. The number of rows that satisfy an equality or range
predicate is then estimated under the assumption that the frequencies of the
data values in a column are all equal and the data values are evenly spread
out over the interval (LOW2KEY, HIGH2KEY). Specifically, the number of
rows satisfying an equality predicate C1 = KEY is estimated as
CARD/COLCARD, and the number of rows satisfying a range predicate C1
BETWEEN KEY1 AND KEY2 is estimated as:

KEY2 - KEY1

------------------- x CARD (1)
HIGH2KEY - LOW2KEY

These estimates are accurate only when the true distribution of data values in
a column is reasonably uniform. When distribution statistics are unavailable
and either the frequencies of the data values differ widely from each other or
the data values are clustered in a few sub-intervals of the interval
(LOW_KEY,HIGH_KEY), the estimates can be off by orders of magnitude and
the optimizer may choose a less than optimal access plan.

When distribution statistics are available, the errors described above can be
greatly reduced by using frequent-value statistics to compute the number of
rows that satisfy an equality predicate and using frequent-value statistics and
quantiles to compute the number of rows that satisfy a range predicate.

Example of Impact on Equality Predicates:

Consider first a predicate of the form C1 = KEY. If KEY is one of the N most
frequent values, then the optimizer simply uses the frequency of KEY that is
stored in the catalog. If KEY is not one of the N most frequent values, the
optimizer estimates the number of rows that satisfy the predicate under the
assumption that the (COLCARD - N) non-frequent values have a uniform
distribution. That is, the number of rows is estimated as:

CARD - NUM_FREQ_ROWS

-------------------- (2)
COLCARD - N

where NUM_FREQ_ROWS is the total number of rows with a value equal to
one of the N most frequent values.

For example, consider a column (C) for which the frequency of the data values
is as follows:

Data Value Frequency

94 Administration Guide: Performance

g w N
~
(<)

Suppose that frequent-value statistics based on only the most frequent value
(that is, N = 1) are available. For this column, CARD = 50 and COLCARD = 5.
For the predicate C = 3, exactly 40 rows satisfy it. Assuming a uniform data
distribution, the number of rows that satisfy the predicate is estimated as 50/5
= 10, an error of -75%. Using frequent-value statistics, the number of rows is
estimated as 40, with no error.

Similarly, 2 rows satisfy the predicate C = 1. Without frequent-value statistics,
the number of rows that satisfy the predicate is estimated as 10, an error of
400%. You may use the following formula to calculate the estimation error (as
a percentage):

estimated rows - actual rows

actual rows

Using the frequent value statistics (N = 1), the optimizer will estimate the
number of rows containing this value using the formula (2) given above, for
example:

(50 - 40)

and the error is reduced by an order of magnitude as shown below:

3-2
------- = 50%
2

The number of rows that satisfy a range predicate can be estimated using
quantiles, as illustrated by the following examples. Consider a column (C)
given by:

OO OTENRFE WRFO

and suppose that K-quantiles are available for K = 1, 4, 7, and 10:

Chapter 4. System Catalog Statistics 95

K K-quantile

First consider the predicate C <= 8.5. For the data given above, exactly 7 rows
satisfy this predicate. Assuming a uniform data distribution and using
formula (1) from above, with KEY1 replaced by LOW2KEY, the number of
rows that satisfy the predicate is estimated as:

8.5 - 5.1

where *= means “approximately equal to”. The error in this estimation is
approximately -100%.

Using quantiles, the number of rows that satisfy this same predicate (C <=
8.5) is estimated by locating 8.5 as one of the K-quantile values and using the
corresponding value of K, namely 7, as the estimate. In this case, the error is
reduced to 0.

Now consider the predicate C <= 10. Exactly 8 rows satisfy this predicate.
Unlike the previous example, the value 10 is not one of the stored K-quantiles.
Assuming a uniform data distribution and using formula (1), the number of
rows that satisfy the predicate is estimated as 1, an error of -86%.

Using quantiles, the optimizer estimates the number of rows that satisfy the
predicate as r_1 + r_2, where r_1 is the number of rows satisfying the
predicate C <= 8.5 and r_2 is the number of rows satisfying the predicate C >
8.5 AND C <= 10.. As in the above example, r_1 = 7. To estimate r_2 the
optimizer uses linear interpolation:

100.0 - 10.0
P2 %= mmmmmmmmme- X (# rows with value > 8.5 and <= 100.0)
100.0 - 8.5
100.0 - 10.0
ST x (10 - 7)
100.0 - 8.5
*= 3

The final estimate is r 1 + r_2 *= 10, and the absolute error is reduced by
more than a factor of 3.

The reason that the use of quantiles improves the accuracy of the estimates in
the above examples is that the real data values are "clustered” in the range 5 -
10, but the standard estimation formulas assume that the data values are
spread out evenly between 0 and 100.

96 Administration Guide: Performance

The use of quantiles also improves accuracy when there are significant
differences in the frequencies of different data values. Consider a column
having data values with the following frequencies:

Data Value Frequency

20 5
30 5
40 15
50 50
60 15
70 5
80 5

Suppose that K-quantiles are available for K = 5, 25, 75, 95, and 100:
K K-quantile

5 20
25 40
75 50
95 70

100 80

Also suppose that frequent value statistics are available based on the 3 most
frequent values.

Consider the predicate C BETWEEN 20 AND 30. From the distribution of the data
values, you can see that exactly 10 rows satisfy this predicate. Assuming a
uniform data distribution and using formula (1), the number of rows that
satisfy the predicate is estimated as:

30 - 20

which has an error of 150%.

Using frequent-value statistics and quantiles, the number of rows that satisfy
the predicate is estimated as r_1 + r_2, where r_1 is the number of rows that
satisfy the predicate (C = 20) and r_2 is the number of rows that satisfy the
predicate C > 20 AND C <= 30. Using formula (2), r_1 is estimated as:

100 - 80

Using linear interpolation, r_2 is estimated as:

30 - 20
------- x (# rows with value > 20 and <= 40)

Chapter 4. System Catalog Statistics 97

30 - 20

SEGEEEEE x (25 - 5)
40 - 20

= 10,

yielding a final estimate of 15 and reducing the error by a factor of 3.

Collecting and Using Detailed Index Statistics

As an option, you may collect more detailed statistics on indexes that help the
optimizer better estimate the cost of accessing a table using that index. This
can be done in one of two ways: First, you can use the DETAILED clause on
the RUNSTATS command; or, second, you can specify A, Y, or X for the
satsopt parameter when calling the RUNSTATS API. The DETAILED statistics
PAGE_FETCH_PAIRS and CLUSTERFACTOR will be collected only if the
table is of a sufficient size: around 25 pages. In this case, CLUSTERFACTOR
will be a value between 0 and 1; and CLUSTERRATIO will be -1 (not
collected). For tables smaller than 25 pages, CLUSTERFACTOR will be -1 (not
collected), and CLUSTERRATIO will be a value between 0 and 100; even if
the DETAILED clause is specified for an index on that table.

Understanding Detailed Index Statistics

The DETAILED statistics attempt to capture, in a concise way, the number of
physical 1/0s that will be required to access the data pages of a table when a
complete index scan is performed under different buffer sizes. As RUNSTATS
scans through the pages of the index, it models the different buffer sizes, and
gathers estimates of how often a page fault occurs. For example, with only 1
(one) buffer page available, every new page reference by the index will result
in a page fault, and, in a worse case, every row could reference a different
page, resulting in at most CARDINALITY 1/0s. At the other extreme, when
the buffer is big enough to hold the entire table (subject to the maximum
buffer size), then each of the table’s NPAGES pages will be physically read
exactly once. The number of physical 1/0s must therefore be a monotone,
non-increasing function of the buffer size.

RUNSTATS fits a piece-wise linear curve to these estimates, which is stored as
a string of 11 pairs in the PAGE_FETCH_PAIRS statistic. The first value in
each pair is a hypothetical buffer size, and the second value in each pair is the
estimated number of physical 1/0s to fetch the data pages in a complete scan
of the index, with a buffer of that size totally available to that index scan. The
optimizer then uses the PAGE_FETCH_PAIRS statistic to estimate the number
of physical 1/0s for data-page fetches in any complete or partial index scan
using that index.

98 Administration Guide: Performance

The shape of the curve stored in PAGE_FETCH_PAIRS for an index will
depend upon the clustering behavior of that index.

Cardinality —»

Physical I/Os

Npages —

1 I
I
1 Npages

Buffer Size

Figure 1. Three Curves for Clustered and Unclustered Indexes

There are three types of curves that are possible:

1. Curve 1 (dashed-line) is a highly-unclustered index that needs a buffer
almost as large as the table before re-referenced pages are found in the
buffer. This represents a situation in which references to the same page are
widely spread throughout the index’s key values, so a medium-sized
buffer isn’t sufficient to avoid re-referencing the same page multiple times.
This is the worst scenario, as it requires the most buffer space to perform
well. The optimizer is likely to use the list prefetch access strategy for such
indexes, in an attempt to cluster the data-page accesses for the qualifying
key values of the index. If this index is used frequently, it should be a
prime candidate for reorganization.

Chapter 4. System Catalog Statistics 99

2. Curve 2 (solid-line) is more locally unclustered. For very small buffers, it is
as unclustered as curve 1, but once a few buffer pages are available to
contain the most recently referenced data, the data-page hit ratio improves
significantly. This represents the somewhat favorable situation in which,
although the index isn’t particularly clustered, references to the same data
pages are in a close proximity to one another among the index’s key
values.

3. Curve three (dotted-line) is somewhere between these two extremes,
improving at a uniform rate as the buffer is increased. This is usually the
more common case for unclustered indexes, and represents what the
optimizer will assume in the absence of DETAILED indexes.

When Should You Use Detailed Index Statistics?

You should use DETAILED index statistics when your queries reference
columns that are not all in the index. In addition, DETAILED index statistics
should be used when:

* There are multiple unclustered indexes with varying degrees of clustering
* The degree of clustering is non-uniform among the key values
* The values in the index are updated non-uniformly.

It may be quite hard to determine these situations without previous
knowledge, and without attempting to force an index scan under varying
buffer sizes and using the monitor to observe the physical 1/0s that result.
Probably the cheapest way to determine whether any of these situations are
occurring is to collect the DETAILED statistics for an index and retain them if
the PAGE_FETCH_PAIRS that result are non-linear.

User Update-Capable Catalog Statistics

The ability to update selected system catalog statistics allows you to:

* Model query performance on a development system using production
system statistics

* Perform “what if” query performance analysis.

You should not update statistics on a production system because you may
hinder the optimizer from finding the best access plan for your query.

To update the values of these statistical columns, use the SQL UPDATE
statement against the views defined in the SYSSTAT schema. You can update
statistics for:

* Tables for which you hold explicit CONTROL privilege. You can also
update statistics for columns and indexes for these tables.

100 Administration Guide: Performance

* Nicknames for which you hold explicit CONTROL privilege in a federated
database system. You can also update statistics for columns and indexes for
these nicknames. Note that the update only affects local metadata (data
source table statistics are not changed). These updates affect only the global
access strategy generated by the DB2 optimizer.

« User-defined functions (UDFs) that you own (see Elpdating Statistics fod
User-Defined Functions” on page 106 for guidance).

You can also update these statistics if your user ID has explicit DBADM
authority for the database; that is, your user ID is recorded as having DBADM
authority in the SYSCAT.DBAUTH table. Belonging to a DBADM group does
not explicitly provide this authority.

Using these views, a DBADM can see statistics rows for all users. A user
without DBADM authority can only see those rows which contain statistics
for objects over which they have CONTROL privilege.

The following shows an example of updating the table statistics for the
EMPLOYEE table:

UPDATE SYSSTAT.TABLES
SET CARD 10000,
NPAGES = 1000,
FPAGES = 1000,
OVERFLOW =

WHERE TABSCHEMA
AND TABNAME

N

'userid’
"EMPLOYEE'

You must be careful when updating catalog statistics. Arbitrary updates can
have a serious impact on the performance of subsequent queries. You may
wish to use any of the following methods to replace any updates you applied
to these tables:

* ROLLBACK the unit of work in which the changes have been made
(assuming the unit of work has not been committed).

* Using the RUNSTATS utility you can recalculate and refresh the catalog
statistics.

» Update the catalog statistics to indicate that statistics have not been
gathered. (For example, setting column NPAGES to -1 indicates that the
number-of-pages statistic has not been collected.)

* Replace the catalog statistics with the data they contained prior to your
update. This method would only be possible if you used the db2look tool, as

described in I‘Madeling Production Databases” on page 104, to capture the

statistics before you made any changes.

In a some cases, the optimizer may determine that some particular statistical
value or combination of values are not valid, it will use default values and

Chapter 4. System Catalog Statistics 101

issue a warning. Such circumstances are rare, however, since most of the
validation is done when updating the statistics.

Additional Information: For information about updating catalog statistics,
see:

Rules for Updating Catalog Statistics

When you update catalog statistics, the most important general rule is to
ensure that valid values, ranges, and formats of the various statistics are
stored in the statistic views. It is also important to preserve the consistency of
relationships between various statistics.

For example, COLCARD in SYSSTAT.COLUMNS must be less than CARD in
SYSSTAT.TABLES (the number of distinct values in a column can’t be greater
than the number of rows). Assume that you want to reduce COLCARD from
100 to 25, and CARD from 200 to 50. If you update SYSCAT.TABLES first, you
should get an error (since CARD would be less than COLCARD). The correct
order is to update COLCARD in SYSCAT.COLUMNIS first, then update CARD
in SYSSTAT.TABLES. The situation occurs in reverse if you want to increase
COLCARD to 250 from 100, and CARD to 300 from 200. In this case, you
must update CARD first, then COLCARD.

When a conflict is detected between an updated statistic and another statistic,
an error is issued. However, errors may not always be issued when conflicts
arise. In some situations, the conflict is difficult to detect and report in an
error, especially if the two related statistics are in different catalogs. For this
reason, you should be careful to avoid causing such conflicts.

The most common checks you should make, before updating a catalog
statistic, are:

1. Numeric statistics must be -1 or greater than or equal to zero.

2. Numeric statistics representing percentages (for example, CLUSTERRATIO
in SYSSTAT.INDEXES) must be between 0 and 100.

102 Administration Guide: Performance

Note: For row types, the table level statistics NPAGES, FPAGES, and
OVERFLOW are not updatable for a sub-table.

Rules for Updating Table and Nickname Statistics

There are only four statistic values that you can update in SYSTAT.TABLES:
CARD, FPAGES, NPAGES, and OVERFLOW. Keep in mind that:

1. CARD must be greater than all COLCARD values in SYSSTAT.COLUMNS
that correspond to that table.

2. CARD must be greater than NPAGES.
3. FPAGES must be greater than NPAGES.

4. NPAGES must be less than or equal to any "Fetch” value in the
PAGE_FETCH_PAIRS column of any index (assuming this statistic is
relevant for the index).

5. CARD must not be less than or equal to any "Fetch” value in the
PAGE_FETCH_PAIRS column of any index (assuming this statistic is
relevant for the index).

When working within a federated database system, use caution when
manually providing/Zupdating statistics on a nickname over a remote view.
The statistical information, such as the number of rows this nickname will
return, might not reflect the real cost to evaluate this remote view and thus
might mislead the DB2 optimizer. Situations that can benefit from statistics
updates include remote views defined on a single base table with no column
functions applied on the SELECT list. Complex views may require a complex
tuning process which might require that each query be tuned. Consider
creating local views over nicknames instead so the DB2 optimizer knows how
to derive the cost of the view more accurately.

Rules for Updating Column Statistics

When you are updating statistics in SYSSTAT.COLUMNS, follow the
guidelines below. For details on updating column distribution statistics, see

1. HIGH2KEY and LOW2KEY (in SYSSTAT.COLUMNS) must adhere to the
following rules:

e The datatype of any HIGH2KEY, LOW2KEY value must correspond to
the datatype of the user column for which the statistic is attributed.
Because HIGH2KEY is a VARCHAR column, you must enclose the
value in quotation marks. For example, to set HIGH2KEY to 25 for an
INTEGER user column, your update statement would include SET
HIGH2KEY = '25'.

* The length of HIGH2KEY, LOW2KEY values must be the smaller of 33
or the maximum length of the target column’s datatype.

Chapter 4. System Catalog Statistics 103

* HIGH2KEY must be greater than LOW2KEY whenever there are 3 or
more distinct values in the corresponding column. In the case of less
than 3 distinct values in the column, HIGH2KEY can be equal to
LOW?2KEY.

2. The cardinality of a column (COLCARD statistic in SYSSTAT.COLUMNS)
cannot be greater than the cardinality of its corresponding table (CARD
statistic in SYSSTAT.TABLES).

3. The cardinality of a column (NUMNULLS statistic in
SYSSTAT.COLUMNS) cannot be greater than the cardinality of its
corresponding table (CARD statistic in SYSSTAT.TABLES).

4. No statistics are supported for columns with datatypes: LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB.

Rules for Updating Distribution Statistics for Columns

Elser Update-Capahle Catalog Statistics” on page 100 provides general

information about how to update catalog statistics. You may wish to refer to
that section before attempting to update column distribution statistics.

In order for all the statistics in the catalog to be consistent, you must exercise
care when updating the distribution statistics. Specifically, for each column,
the catalog entries for the frequent data statistics and quantiles must satisfy
the following constraints:

1. Frequent value statistics (in the SYSSTAT.COLDIST catalog)

* The values in column VALCOUNT must be non-increasing for
increasing values of SEQNO.

* The number of values in column COLVALUE must be less than or equal
to the number of distinct values in the column, which is stored in
column COLCARD in catalog view SYSSTAT.COLUMNS.

* The sum of the values in column VALCOUNT must be less than or
equal to the number of rows in the column, which is stored in column
CARD in catalog view SYSSTAT.TABLES.

* In most cases, the values in the column COLVALUE should lie between
the second-highest and second-lowest data values for the column, which
are stored in columns HIGH2KEY and LOW2KEY, respectively, in
catalog view SYSSTAT.COLUMNS. There may be one frequent value
greater than HIGH2KEY and one frequent value less than LOW2KEY.

2. Quantiles (in the SYSSTAT.COLDIST catalog)

e The values in column COLVALUE must be non-decreasing for
increasing values of SEQNO

* The values in column VALCOUNT must be strictly increasing for
increasing values of SEQNO

104 Administration Guide: Performance

The largest value in column COLVALUE must have a corresponding
entry in column VALCOUNT equal to the number of rows in the
column

In most cases, the values in the column COLVALUE should lie between
the second-highest and second-lowest data values for the column, which
are stored in columns HIGH2KEY and LOW2KEY, respectively, in
catalog view SYSSTAT.COLUMNS.

Suppose that distribution statistics are available for a column C1 with “R”
rows and you wish to modify the statistics to correspond to a column with
the same relative proportions of data values, but with “(F x R)” rows. To scale
up the frequent-value statistics by a factor of F, each entry in column
VALCOUNT must be multiplied by F. Similarly, to scale up the quantiles by a
factor of F, each entry in column VALCOUNT must be multiplied by F. If
these rules are not followed, the optimizer may use the wrong filter factor
causing unpredictable performance when you run the query.

Rules for Updating Index Statistics

When you update the statistics in SYSSTAT.INDEXES, follow the rules
described below:

1. PAGE_FETCH_PAIRS (in SYSSTAT. INDEXES) must adhere to the
following rules:

Individual values in the PAGE_FETCH_PAIRS statistic must be
separated by a series of blank delimiters.

Individual values in the PAGE_FETCH_PAIRS statistic must not be
longer than 10 digits and must be less than the maximum integer value
(MAXINT = 2147483647).

There must always be a valid PAGE_FETCH_PAIRS value if the
CLUSTERFACTOR is greater than zero.

There must be exactly 11 pairs in a single PAGE_FETCH_PAIR statistic.
Buffer size entries of PAGE_FETCH_PAIRS must be ascending in value.

If the buffer size value is the same as that in the previous pair, the page
fetch value must be the same as that in the previous pair.

Any buffer size value in a PAGE_FETCH_PAIRS entry cannot be greater
than MIN(NPAGES, 524287) where NPAGES is the number of pages in
the corresponding table (in SYSSTAT.TABLES).

“Fetches” entries of PAGE_FETCH_PAIRS must be descending in value,
with no individual “Fetches” entry being less than NPAGES. “Fetch”
size values in a PAGE_FETCH_PAIRS entry cannot be greater than the
CARD (cardinality) statistic of the corresponding table.

If buffer size value is the same in two consecutive pairs, then page fetch
value must also be the same in both the pairs (in SYSSTAT.TABLES).

Chapter 4. System Catalog Statistics 105

A valid PAGE_FETCH_UPDATE is:

PAGE_FETCH_PAIRS =
'100 380 120 360 140 340 160 330 180 320 200 310 220 305 240 300
260 300 280 300 300 300"

where

NPAGES = 300

CARD 10000
CLUSTERRATIO -1
CLUSTERFACTOR = 0.9

2. CLUSTERRATIO and CLUSTERFACTOR (in SYSSTAT.INDEXES) must
adhere to the following rules:

¢ Valid values for CLUSTERRATIO are -1 or between 0 and 100.
¢ Valid values for CLUSTERFACTOR are -1 or between 0 and 1.

¢ At least one of the CLUSTERRATIO and CLUSTERFACTOR values must
be -1 at all times.

* If CLUSTERFACTOR is a positive value, it must be accompanied by a
valid PAGE_FETCH_PAIR statistic.

3. The following rules apply to FIRSTKEYCARD, FIRST2KEYCARD,
FIRST3KEYCARD, FIRSTAKEYCARD, and FULLKEYCARD:

* FIRSTKEYCARD must be equal to FULLKEYCARD for a single-column
index.

* FIRSTKEYCARD must be equal to COLCARD for the corresponding
column.

« If any of these index statistics are not relevant, you should set them to
-1. For example, if you have an index with only 3 columns, set
FIRSTAKEYCARD to -1.

* For multiple column indexes, if all the statistics are relevant, the
relationship between them must be:

FIRSTKEYCARD <= FIRST2KEYCARD <= FIRST3KEYCARD <= FIRST4KEYCARD
<= FULLKEYCARD <= CARD

4. The following rules apply to SEQUENTIAL_PAGES and DENSITY:
* Valid values for SEQUENTIAL_PAGES are -1 or between 0 and NLEAF.
* Valid values for DENSITY are -1 or between 0 and 100.

Updating Statistics for User-Defined Functions

Using the SYSSTAT.FUNCTIONS catalog view, you may update statistics for
user-defined functions (UDFs). If these statistics are available, the optimizer
will use them when estimating costs for various access plans. If statistics are
not available the statistic column values will be -1 and the optimizer will use
default values that assume a simple UDF.

106 Administration Guide: Performance

The following table provides information about the statistic columns that you
may update for UDFs:

Table 13. Function Statistics (SYSCAT.FUNCTIONS and SYSSTAT.FUNCTIONS)

Statistic Description

10S_PER_INVOC Estimated number of read/write requests

executed each time a function is executed.

INSTS_PER_INVOC Estimated number of machine instructions

executed each time a function is executed.

10S_PER_ARGBYTE Estimated number of read/write requests

executed per input argument byte.

INSTS_PER_ARGBYTES Estimated number of machine instructions

executed per input argument byte.

PERCENT_ARGBYTES Estimated average percent of input

argument bytes that the function will
actually process.

INITIAL_IOS Estimated number of read/write requests

executed only the first/last time the
function is invoked.

INITIAL_INSTS Estimated number of machine instructions

executed only the first/last time the
function is invoked.

CARDINALITY Estimated number of rows generated by a

table function.

For example, consider a UDF (EU_SHOE) that converts an American shoe size
to the equivalent European shoe size. (These two shoe sizes could be UDTs.)
For this UDF, you should set the statistic columns as follows:

INSTS_PER_INVOC should be set to the estimated number of machine
instructions required to:

— Invoke EU_SHOE

— Initialize the output string

— Return the result.

INSTS_PER_ARGBYTE should be set to the estimated number of machine
instructions required to convert the input string into a European shoe size.
PERCENT_ARGBYTES would be set to 100 indicating that the entire input
string is to be converted

INITIAL_INSTS, IOS_PER_INVOC, I0S_PER_ARGBYTE, and INITIAL_IOS
should all be set to 0, since this UDF only performs computations.

PERCENT_ARGBYTES would be used by a function that does not always
process the entire input string. For example, consider a UDF (LOCATE) that
accepts two arguments as input and returns the starting position of the first

Chapter 4. System Catalog Statistics 107

occurrence of the first argument within the second argument. Assume that the
length of the first argument is small enough to be insignificant relative to the
second argument and, on average, 75 percent of the second argument is
searched. Based on this information, PERCENT_ARGBYTES should be set to
75. The above estimate of the average of 75 percent is based on the following
additional assumptions:

» Half the time the first argument will not be found resulting in the entire
second argument being searched

* The first argument is equally likely to appear anywhere within the second
argument, resulting in half of the second argument being searched (on
average) when the first argument is found.

INITIAL_INSTS or INITIAL_IOS can be used to record the estimated number
of machine instructions or read/write requests performed only the first or last
time the function is invoked. This could be used, for example, to record the
cost of setting up a scratchpad area.

To obtain information about 1/0s and instructions used by a user-defined
function, you can use output provided by your programming language
compiler or by monitoring tools available for your operating system.

Modeling Production Databases

Sometimes you may wish to have your test system contain a subset of your
production system’s data. However, access plans selected for such a test
system are not necessarily the same as those that would be selected on the
production system, unless the catalog statistics and the configuration
parameters for the test system are updated to match those of the production
system.

A productivity tool, db2look, is provided that can be run against the
production database to generate the update statements required to make the
catalog statistics of the test database match those in production. These update
statements can be generated by using db2look in mimic mode (-m option). In
this case, db2look will generate a command processor script containing all the
statements required to mimic the catalog statistics of the production database.
This can be useful when analyzing SQL statements through Visual Explain in
a test environment.

You can recreate database data objects, including tables, views, indexes, and
other objects in a database, by extracting DDL statements with db2look -e. You
can run the command processor script created from this command against
another database to recreate the database. You can use the -e option with the
-m option.

108 Administration Guide: Performance

After running the update statements produced by db21ook against the test
system, the test system can be used to validate the access plans to be
generated in production. Since the optimizer uses the type and configuration
of the table spaces to estimate 1/0 costs, the test system must have the same
table space geometry or layout. That is, the same number of containers of the
same type: either SMS or DMS.

The db2look tool is found under the bin subdirectory.

For more information on how to use this productivity tool, type the following
on a command line:

db21ook -h

You can also refer to the Command Reference manual for more information on
this tool.

The Control Center also provides an interface to the db2look utility called
“Generate SQL - Object Name”. Using the control center allows for the results
file from the utility to be integrated into the Script Center. You can also
schedule the db2look command from the Control Center. One difference when
using the Control Center is that only single table analysis can be done as
opposed to a maximum of thirty tables in a single call using the db2look
command. You should also be aware that LaTex and Graphical outputs are not
supported from the Control Center.

Chapter 4. System Catalog Statistics 109

110 Administration Guide: Performance

Chapter 5. Understanding the SQL Compiler

When an SQL query is compiled, a number of steps are performed before the
“best” access plan is either executed or written to the system catalog tables
containing information about application packages.

In a partitioned database environment, all of the work done on a SQL query
by the SQL Compiler takes place at the database partition to which you
connect. Once the executable access plan is created, the compiled query is
distributed to all database partitions in the database.

The following topics provide more information about the steps performed by
the SQL Compiler;

. . B iheSOLC T
o : —
+ Qperation Movement

The following sections also provide information about factors external to the
compiler which can affect the results produced by the compiler:

I'Chapter 6. SQI Explain Facility” on page 171 describes how you can examine

the access plan chosen by the SQL compiler.

Overview of the SQL Compiler

The SQL compiler performs several steps before producing an access plan that
you can execute. These steps are shown in Ei

© Copyright IBM Corp. 1993, 1999 111

SQL Compiler SQL ?uery

v

Parse Query

Check
Semantics

Rewrite
Query

| \ Query

Graph

Pushdown Model
Analysns

Optlmlze
Access Plan
Access Remote SQL
Plan Generation
Generate

Executable Code

|

v ‘

Execute Plan

Executable
Plan

Explain
Tables

;’abééif}ﬁ{ K /db2expln
Explain Tool ! ! Tool ;

Figure 2. Steps performed by SQL Compiler

This diagram shows that the Query Graph Model is a key component of the
SQL compiler. The query graph model is an internal, in-memory database that is
used to represent the query throughout the query compilation process as
described below:

* Parse Query

The first task of the SQL compiler is to analyze the SQL query to validate
the syntax. If any syntax errors are detected, the SQL compiler stops

112 Administration Guide: Performance

processing and the appropriate SQL error is returned to the application
attempting to compile the SQL statement. When parsing is complete, an
internal representation of the query is created.

* Check Semantics

The second task of the compiler is to further validate the SQL statement by
checking to ensure that the parts of the statement make sense given the
other parts. A simple example of this semantic checking ensures that the
data type of the column specified for the YEAR scalar function is a datetime
data type. Also during this second stage, the compiler adds the behavioral
semantics to the query graph model, including the effects of referential
constraints, table check constraints, triggers, and views.

The query graph model contains all of the semantics of queries, including
query blocks, subqueries, correlations, derived tables, expressions, data
types, data type conversions, code page conversions, and partitioning keys.

* Rewrite Query

The third phase of the SQL compiler uses the global semantics provided in
the query graph model to transform the query into a form that can be
optimized more easily. For example, the compiler might move a predicate,
altering the level at which it is applied and potentially improving query
performance. This type of operation movement is called general predicate

pushdown. See ERewrite Query by the SQI_Compiler” on page 115 for more

information.

Working in a partitioned database environment, some query operations are
more computationally intensive like those involving:

— Aggregation

— Redistribution of rows

— Correlated subqueries.

In this environment, with some queries, decorrelation can occur as part of
the rewrite of the query.

Any transformations that occur on a query are written back to the query
graph model. That is, the query graph model represents the rewritten query.
* Pushdown Analysis (Federated Databases)

The major task of this step is to recommend to the DB2 optimizer whether
an operation can be remotely evaluated (“pushed-down”) at a data source.
This type of pushdown activity is specific to data source queries and
represents an extension to general predicate pushdown operations.

This step is bypassed unless you are executing federated database queries.

See FPushdown Analysis” on page 162 for more information.

* Optimize Access Plan

Chapter 5. Understanding the SQL Compiler 113

The SQL optimizer portion of the SQL compiler uses the query graph
model as input, and generates many alternative execution plans for
satisfying the user’s request. It estimates the execution cost of each
alternative plan, using the statistics for tables, indexes, columns and
functions, and chooses the plan with the smallest estimated execution cost.
The optimizer uses the query graph model to analyze the query semantics
and to obtain information about a wide variety of factors, including
indexes, base tables, derived tables, subqueries, correlations and recursion.

The optimizer portion can also consider a third type of pushdown
operation: aggregation and sort, which can improve performance by pushing
the evaluation of these operatlons to the Data Management Services
component. See L "

for more information.

The optimizer also considers whether there are different sized buffer pools
when determining page size selection. That the environment includes a
partitioned database is also considered as well as the ability to enhance the
chosen plan for the possibility of intra-query parallelism in a symmetric
multi-processor (SMP) environment. This information is used by the
optimizer to help select the best access plan for the query. See m

Concepts and Optimization” on page 128 for more information.

The output from this step of the SQL compiler is an “access plan”. This
access plan provides the basis for the information captured in the Explain
tables. The information used to generate the access plan can be captured

with an explain snapshot. (See tChapter 6 _SQI Explain Facility” on

for more information on Explain topics.)

* Remote SQL Generation (Federated Databases)
The final plan selected by the DB2 optimizer can consist of a set of steps
that might operate on a remote data source. For those operations that will
be performed by each data source, the remote SQL generation step creates
an efficient SQL statement based on the data source SQL dialect.

This step is bypassed unless you are executing federated database queries.

See I‘Remate SQI Generation and Global Optimization” on page 170 for

more information.

e Generate “Executable” Code

The final step of the SQL Compiler uses the access plan and the query graph
model to create an executable access plan, or section, for the query. This
code generation step uses information from the query graph model to avoid
repetitive execution of expressions that only need to be computed once for
a query. Examples for which this optimization is possible include code page
conversions and the use of host variables.

Information about access plans for static SQL is stored in the system catalog
tables. When the package is executed, the database manager will use the
information stored in the system catalog tables to determine how to access

114 Administration Guide: Performance

the data and provide results for the query. It is this information that is used

by the db2expln tool. (See F‘Chapter 6. SQL_Explain Facility” on page 174 for

more information on Explain topics.)

It is recommended that RUNSTATS be done periodically on tables used in
gueries where good performance is desired. The optimizer will then be better
equipped with relevant statistical information on the nature of the data. If
RUNSTATS is not done (or the optimizer suspects that RUNSTATS was done
on empty or near empty tables), the optimizer may either use defaults or
attempt to derive certain statistics based on the number of file pages used to
store the table on disk (FPAGES).

Rewrite Query by the SQL Compiler

The SQL compiler includes a rewrite query stage which transforms SQL
statements into forms that can be optimized more easily, and as a result, can
improve the access path chosen. Rewriting queries is particularly important
for queries which are very complex, including those queries with many
subqueries or many joins. Query generator tools often create these types of
very complex queries.

You can influence the number of query rewrite rules that are applied to an
SQL statement by changing the optimization class (see Mh

z)

You can see some of the results of the query rewrite through the use of the
Explain facility or Visual Explain.

There are three major categories of rewriting that the SQL compiler may
perform:

Operation Merging

The SQL compiler will rewrite queries to merge query operations, in an
attempt to construct the query so that it has the fewest number of operations,
especially SELECT operations. The following examples are provided to
illustrate some of the operations that can be merged by the SQL compiler:

Chapter 5. Understanding the SQL Compiler 115

Using views in a SELECT statement can restrict the join order of the table
and can also introduce redundant joining of tables. By merging the views
during query rewrite, these restrictions can be lifted.

The use of subqueries in a SELECT statement can force a join method and
the selection of inner and outer tables for the join. During query rewrite,
the subquery can sometimes be merged into the main query as a join,
which gives the optimizer more choices to choose the most efficient access
plan.

During query rewrite redundant joins can be removed to further simplify
the SELECT statement that will be optimized.
When using different functions, rewriting the query can reduce the number
of calculations that need to be done.

+ Example - Summary Tahled
If they exist, summary tables can be used instead of regular tables. They are
of smaller size and therefore require less processing.

Example - View Merges

Suppose you have access to the following two views of the EMPLOYEE table,
one showing employees with a high level of education and the other view
showing employees earning more than $35,000:

CREATE VIEW EMP_EDUCATION (EMPNO, FIRSTNME, LASTNAME, EDLEVEL) AS
SELECT EMPNO, FIRSTNME, LASTNAME, EDLEVEL

FROM EMPLOYEE
WHERE EDLEVEL > 17
CREATE VIEW EMP_SALARIES (EMPNO, FIRSTNAME, LASTNAME, SALARY) AS
SELECT EMPNO, FIRSTNME, LASTNAME, SALARY

FROM EMPLOYEE
WHERE SALARY > 35000

Now suppose you perform the following query to list the employees who
have a high education level and who are earning more than $35,000:
SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY
FROM EMP_EDUCATION E1,

EMP_SALARIES E2
WHERE E1.EMPNO = E2.EMPNO

During query rewrite, these two views could be merged to create the
following query:

116 Administration Guide: Performance

SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY
FROM EMPLOYEE E1,
EMPLOYEE E2
WHERE E1.EMPNO = EZ2.EMPNO
AND E1.EDLEVEL > 17
AND EZ2.SALARY > 35000

By merging the SELECT statements from the two views with the user-written
SELECT statement, the optimizer can consider more choices when selecting an
access plan. In addition, if the two views that have been merged use the same
base table, additional rewriting may be performed as described in

Example - Subquery to Join Transformations

The SQL compiler will take a query containing a subquery, such as:

SELECT EMPNO, FIRSTNME, LASTNAME, PHONENO
FROM EMPLOYEE
WHERE WORKDEPT 1IN
(SELECT DEPTNO
FROM DEPARTMENT
WHERE DEPTNAME = 'OPERATIONS')

and convert it to a join query of the form:

SELECT DISTINCT EMPNO, FIRSTNME, LASTNAME, PHONENO
FROM EMPLOYEE EMP,
DEPARTMENT DEPT
WHERE EMP.WORKDEPT = DEPT.DEPTNO
AND DEPT.DEPTNAME = 'OPERATIONS'

A join is generally much more efficient to execute than a subquery.

Example - Redundant Join Elimination

Queries can sometimes be written or generated which have unnecessary joins.
Queries such as the following could also be produced during the query

rewrite stage as described in ‘Example - View Merges” on page 116.

SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY
FROM EMPLOYEE E1,
EMPLOYEE E2
WHERE E1.EMPNO = E2.EMPNO
AND E1.EDLEVEL > 17
AND EZ2.SALARY > 35000

In this query, the SQL compiler can eliminate the join and simplify the query
to:

Chapter 5. Understanding the SQL Compiler 117

SELECT EMPNO, FIRSTNME, LASTNAME, EDLEVEL, SALARY
FROM EMPLOYEE

WHERE EDLEVEL > 17
AND SALARY > 35000

Another example assumes that a referential constraint exists between the
EMPLOYEE and DEPARTMENT sample tables on the department number.
First, a view is created.
CREATE VIEW PEPLVIEW
AS SELECT FIRSTNME, LASTNAME, SALARY, DEPTNO, DEPTNAME, MGRNO

FROM EMPLOYEE E DEPARTMENT D
WHERE E.WORKDEPT = D.DEPTNO

Then a query such as the following:

SELECT LASTNAME, SALARY
FROM PEPLVIEW

becomes

SELECT LASTNAME, SALARY
FROM EMPLOYEE
WHERE WORKDEPT NOT NULL

Note that in this situation, even if the user knows that the query can be
re-written, they may not be able to do so because they do not have access to
the underlying tables. They may only have access to the view (shown above).
Therefore, this type of optimization has to be performed within the database
manager.

Redundancy in referential integrity joins is likely where:

* Views are defined with joins
* Queries are automatically generated.

For example, there are automated tools in query managers which prevent
users from writing optimized queries.

Example - Shared Aggregation

Using multiple functions within a query can generate several calculations
which take time. Reducing the number of calculations to be done within the
query results in an improved plan. The SQL compiler takes a query using
multiple functions such as:
SELECT SUM(SALARY+BONUS+COMM) AS OSUM,
AVG (SALARY+BONUS+COMM) AS OAVG,

COUNT(*) AS OCOUNT
FROM EMPLOYEE;

and transforms the query in the following way:

118 Administration Guide: Performance

SELECT OSUM,
0SUM/0COUNT
OCOUNT

FROM (SELECT SUM(SALARY+BONUS+COMM) AS OSUM,
COUNT(*) AS OCOUNT

FROM EMPLOYEE) AS SHARED_AGG;

This rewrite reduces the query from 2 sums and 2 counts to 1 sum and 1
count.

Example - Summary Tables

Following is an example of a multidimensional analysis that could take
advantage of summary tables. A summary table is created with the sum and
count of sales for each level of:

* Product hierarchy
» Location hierarchy
* Time hierarchy, composed of year, month, day.

A wide range of queries can pick up their answers from this stored aggregate
data. The following example calculates the sum of product group sales, by
state, by month. Queries that can take advantage of such pre-computed sums
would include:

» Sales by month and product group

+ Total sales for years after 1990

» Sales for 1995 or 1996

» Sum of sales for a product group or product line

« Sum of sales for a specific product group or product line AND for 1995,
1996

« Sum of sales for a specific country.

While the precise answer is not included in the summary table for any of
these queries, the cost of computing the answer using the summary table
could be significantly less than using a large base table, because a portion of
the answer is already computed. For example:

CREATE TABLE PG_SALESSUM
AS (

SELECT 1.id AS prodline, pg.id AS pgroup,
loc.country, loc.state
YEAR(pdate) AS year, MONTH(pdate) AS month,
SUM(ti.amount) AS amount,
COUNT(*) AS count

FROM cube.transitem AS ti, cube.trans AS t,
cube.loc AS Tloc, cube.pgroup AS pg,
cube.prodline AS 1

WHERE ti.transid = t.id

AND ti.pgid = pg.id

Chapter 5. Understanding the SQL Compiler 119

AND pg.lineid = 1.id
AND t.locid = Toc.id
AND YEAR(pdate) > 1990
GROUP BY 1.id, pg.id, loc.country, loc.state,
year(pdate), month(pdate)
)

DATA INITIALLY DEFERRED REFRESH DEFERRED;

REFRESH TABLE SALESCUBE;

The following are sample queries that would obtain significant performance
improvements because they are able to use the results in the summary table
that are already computed. The first example returns the total sales for 1995
and 1996:

SET CURRENT REFRESH AGE=ANY

SELECT YEAR(pdate) AS year, SUM(ti.amount) AS amount
FROM cube.transitem AS ti, cube.trans AS t,
cube.Toc AS loc, cube.pgroup AS pg,
cube.prodline AS 1
WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = 1.id
AND t.Tocid = Toc.id
AND YEAR(pdate) IN (1995, 1996)
GROUP BY year(pdate);

The second example returns the total sales by product group for 1995 and
1996:

SET CURRENT REFRESH AGE=ANY

SELECT pg.id AS "PRODUCT GROUP",
SUM(ti.amount) AS amount
FROM cube.transitem AS ti, cube.trans AS t,
cube.loc AS loc, cube.pgroup AS pg,
cube.prodline AS 1
WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = 1.id
AND t.Tocid = Toc.id
AND YEAR(pdate) IN (1995, 1996)
GROUP BY pg.id;

Operation Movement

The SQL compiler will rewrite queries to move query operations in an
attempt to construct the query with the minimum number of operations and
predicates. The following examples are provided to illustrate some of the
operations that can be moved by the SQL compiler:

o - ——

120 Administration Guide: Performance

During query rewrite, the optimizer can move where the DISTINCT
operation is performed, to reduce the cost of this operation. In the example
provided, the DISTINCT operation is removed completely.

During query rewrite, the order of applying predicates can be changed so
that more selective predicates are applied to the query as early as possible.
When in a partitioned database environment the movement of results sets
between database partitions is costly. Reducing the size of what must be
broadcast to other database partitions and/or the number of broadcasts is
one of the objectives when rewriting queries.

Example - DISTINCT Elimination

If the EMPNO column was defined as the primary key of the EMPLOYEE
table, the following query:

SELECT DISTINCT EMPNO, FIRSTNME, LASTNAME
FROM EMPLOYEE

would be rewritten by removing the DISTINCT clause:

SELECT EMPNO, FIRSTNME, LASTNAME
FROM EMPLOYEE

In the above example, since the primary key is being selected, the SQL
compiler knows that each row returned will already be unique. In this case,
the DISTINCT key word is redundant. If the query was not rewritten, the
optimizer would build a plan with the necessary processing (a sort, for
example) to ensure that the columns are distinct.

Example - General Predicate Pushdown

Altering the level at which a predicate is normally applied can result in
improved performance. For example, given the following view which
provides a list of all employees in department “D11"":
CREATE VIEW D11 EMPLOYEE
(EMPNO, FIRSTNME, LASTNAME, PHONENO, SALARY, BONUS, COMM)
AS SELECT EMPNO, FIRSTNME, LASTNAME, PHONENO, SALARY, BONUS, COMM
FROM EMPLOYEE
WHERE WORKDEPT = 'D11'

And given the following query:

SELECT FIRSTNME, PHONENO
FROM D11_EMPLOYEE
WHERE LASTNAME = 'BROWN'

Chapter 5. Understanding the SQL Compiler 121

The query rewrite stage of the compiler will push the predicate LASTNAME =
'"BROWN' up into the view D11 _EMPLOYEE. This allows the predicate to be
applied sooner and potentially more efficiently. The actual query that could be
executed in this example is:
SELECT FIRSTNME, PHONENO
FROM EMPLOYEE

WHERE LASTNAME
AND WORKDEPT

'"BROWN'
‘D11’

Pushdown of predicates is not limited to views. Other situations in which
predicates may be pushed down include UNIONs, GROUP BYs, and derived
tables (nested table expressions or common table expressions).

Example - Decorrelation

In a partitioned database environment, the SQL compiler can rewrite the
following query:

Find all the employees who are working on programming projects and are
underpaid.
SELECT P.PROJNO, E.EMPNO, E.LASTNAME, E.FIRSTNAME,
E.SALARY+E.BONUS+E.COMM AS COMPENSATION
FROM EMPLOYEE E, PROJECT P
WHERE P.EMPNO = E.EMPNO
AND P.PROJNAME LIKE '%PROGRAMMINGS'
AND E.SALARY+E.BONUS+E.COMM <
(SELECT AVG(EL.SALARY+E1.BONUS+EL.COMM)
FROM EMPLOYEE E1, PROJECT P1
WHERE P1.PROJNAME LIKE '%PROGRAMMINGS'
AND P1.PROJNO = A.PROJNO
AND E1.EMPNO = P1.EMPNO)

Since this query is correlated, and since both PROJECT and EMPLOYEE are
unlikely to be partitioned on PROJNO, the broadcast of each project to each
database partition is possible. In addition, the subquery would have to be
evaluated many times.

The SQL compiler can rewrite the query as follows:

* Determine the distinct list of employees working on programming projects,
DIST_PROIJS, otherwise we’ll aggregate on non-distinct project numbers
multiple times, yielding incorrect results:

WITH DIST PROJS(PROJNO, EMPNO) AS
(SELECT DISTINCT PROJNO, EMPNO

FROM PROJECT P1

WHERE P1.PROJNAME LIKE '%PROGRAMMING%')

» Using the distinct list of employees working on the programming projects,
join this to the employee table, to get the average compensation per project,
AVG_PER_PROJ:

122 Administration Guide: Performance

AVG_PER_PROJ(PROJNO, AVG_COMP) AS

(SELECT P2.PROJNO, AVG(EI.SALARY+E1.BONUS+E1.COMM)
FROM EMPLOYEE E1, DIST PROJS P2

WHERE E1.EMPNO = P2.EMPNO

GROUP BY P2.PROJNO)

* Then the new query would be:

SELECT P.PROJNO, E.EMPNO, E.LASTNAME, E.FIRSTNAME,
E.SALARY+E.BONUS+E.COMM AS COMPENSATION
FROM PROJECT P, EMPLOYEE E, AVG_PER_PROG A
WHERE P.EMPNO = E.EMPNO
AND P.PROJNAME LIKE '%PROGRAMMING%'
AND P.PROJNO = A.PROJNO
AND E.SALARY+E.BONUS+E.COMM < A.AVG_COMP

The rewritten SQL query computes the AVG_COMP per project (AVG_PRE_PR0J)
and can then broadcast the result to all database partitions containing the
EMPLOYEE table.

Predicate Translation

The SQL compiler will rewrite queries to translate existing predicates to more
optimal predicates for the specific query. The following examples are provided
to illustrate some of the predicates that could be translated by the SQL
compiler:

. e - Addin : ied F |
During query rewrite, predicates can be added to the query to allow the
optimizer to consider additional table joins when selecting the best access
plan for the query.

During query rewrite, an OR predicate can be translated into an IN
predicate to allow for a more efficient access plan to be chosen. The SQL
compiler can also translate an IN predicate into an OR predicate if this
transformation would allow a more efficient access plan to be chosen.

Example - Addition of Implied Predicates

The following query produces a list of the managers whose departments
report to “E01” and the projects for which those managers are responsible:

SELECT DEPT.DEPTNAME DEPT.MGRNO, EMP.LASTNAME, PROJ.PROJNAME
FROM DEPARTMENT DEPT,
EMPLOYEE EMP,
PROJECT PROJ
WHERE DEPT.ADMRDEPT = 'EO1'
AND DEPT.MGRNO = EMP.EMPNO
AND EMP.EMPNO PROJ.RESPEMP

The query rewrite will add the following implied predicate:

Chapter 5. Understanding the SQL Compiler 123

DEPT.MGRNO = PROJ.RESPEMP

As a result of this rewrite, the optimizer can consider additional joins when it
is trying to select the best access plan for the query.

In addition to the above predicate transitive closure, query rewrite will also
derive additional local predicates based on the transitivity implied by equality
predicates. For example, the following query lists the names of the
departments (whose department number is greater than “E00”") and
employees who work in that department.
SELECT EMPNO, LASTNAME, FIRSTNAME, DEPTNO, DEPTNAME
FROM EMPLOYEE EMP,
DEPARTMENT DEPT

WHERE EMP.WORKDEPT = DEPT.DEPTNO
AND DEPT.DEPTNO > 'E00'

For this query, the rewrite stage will add the following implied predicate:
EMP.WORKDEPT > 'E00'

As a result of this rewrite, the optimizer reduces the number of rows to be
joined.

Example - OR to IN Transformations

Suppose an OR clause connects two or more simple equality predicates on the
same column, as in the following example:

SELECT =
FROM EMPLOYEE

WHERE DEPTNO = 'D11'
OR DEPTNO = 'D21'
OR DEPTNO = 'E21'

If there is no index on the DEPTNO column, converting the OR clause to the
following IN predicate will allow the query to be processed more efficiently:
SELECT =

FROM EMPLOYEE
WHERE DEPTNO IN ('D11', 'D21', 'E21')

Note: In some cases, the database manager may convert an IN predicate to a
set of OR clauses so that index ORing may be performed. See

[lndex Access” on page 133 for more information about index ORing.

124 Administration Guide: Performance

Accounting for Column Correlation

You may have applications which contain queries constructed with joins that
have more than one join predicate joining two tables. While this may sound
complicated, such a situation is not unusual where you are attempting to
determine relationships between similar, related columns between tables.

For example, a manufacturer makes products from raw material of various
colors, elasticities and qualities. The finished product has the same color and
elasticity as the raw material from which it is made. The manufacturer issues
the query:

SELECT PRODUCT.NAME, RAWMATERIAL.QUALITY FROM PRODUCT, RAWMATERIAL

WHERE PRODUCT.COLOR RAWMATERIAL.COLOR
AND PRODUCT.ELASTICITY RAWMATERIAL.ELASTICITY

This query returns the names and raw material quality of all products. There
are two join predicates:

PRODUCT.COLOR
PRODUCT.ELASTICITY

RAWMATERIAL.COLOR
RAWMATERIAL.ELASTICITY

When the DB2 UDB optimizer chooses a plan for executing this query, it
calculates how selective each of the two predicates are, and assumes that they
are independent, that is, that all variations of elasticity occur for each color,
and that conversely for each level of elasticity there is raw material of every
color. It then uses statistics on how many levels of elasticity and how many
different colors there are in each table to calculate the overall selectivity of the
pair of predicates. Based on this it may choose, for example, a Nested Loop
Join in preference to a Merge Join, or vice versa.

However, it may be that these two predicates are not independent. For
example, it may be that the highly elastic materials are available in only a few
colors, and the very inelastic materials are only available in a few other colors
(different from the elastic ones). Then the combined selectivity of the
predicates is less (eliminates fewer rows) so the query will return more rows.
To see this, imagine the extreme case where there is just one level of elasticity
for each color and vice versa. Now either one of the predicates logically could
be omitted entirely since it is implied by the other. The optimizer’s choice of
plan may no longer be the best, for example it may be that the Nested Loop
join plan is selected but the Merge Join would be faster.

With other database products, database administrators have tried to solve this
performance problem by updating statistics in the catalog to try to make one
of the predicates appear to be less selective, but this approach can cause
unwanted side-effects on other queries.

Chapter 5. Understanding the SQL Compiler 125

DB2 UDB’s optimizer attempts to detect and compensate for correlation of

join predicates if you:

1. Set the DB2 registry variable DB2_CORRELATED_ PREDICATES=Y (or any
value indicating true). This registry variable will take effect after issuing a
db2start.

2. Define unique indexes on the correlated columns, that is, on the columns
of a table which appear in the correlated predicates.

In the above example, you could define a unique index covering either:
PRODUCT.COLOR, PRODUCT.ELASTICITY

or
RAWMATERIAL.COLOR, RAWMATERIAL.ELASTICITY

or both.

In order for correlation to be detected, the non-include columns of this index
must be correlated columns, and no other columns. The index may optionally
contain include columns.

In general there may be more than 2 correlated columns in join predicates so
you should ensure that you define the unique index to cover all of them.

In many cases the correlated columns in one table form its primary key. A
primary key is always unique so if there’s a primary key on the correlated
columns, there’s no need to define another unique index.

After doing this, ensure that statistics on tables are up to date and that they
have not been altered away from the true values for any reason, for example
to attempt to influence the optimizer.

When DB2_CORRELATED_PREDICATES is true, the optimizer will use the
KEYCARD information of unique index statistics to detect cases of correlation,
and dynamically adjust combined selectivities of the correlated predicates,
thus obtaining a more accurate estimate of the join size and cost.

Data Access Concepts and Optimization

When compiling an SQL statement, the SQL optimizer estimates the execution
cost of different ways of satisfying your request. Based on this evaluation, the
optimizer selects what it believes to be the optimal access plan. An access plan
specifies the order of operations required to resolve an SQL statement. When
an application program is bound, a package is created. This package contains

126 Administration Guide: Performance

access plans for all of the static SQL statements in that application program.
Access plans for dynamic SQL statements are created at the time that the
application is executed.

There are two ways of accessing data in a table: by directly reading the table
(relation scan), or by first accessing an index on that table (index scan).

A relation scan occurs when the database manager sequentially accesses every
row of a table. See EIndex Scan Concepts’ to learn how an index scan works
and see ERelation Scan versus Index Scan” an page 136 to understand under

what conditions each type of scan is used.

The following topics describe other methods that can also be used in an access
plan to access data in a table, and to produce the results for your query:

Other Related Topics:

* EAdjusti imizati ” , provides information about
controlling the number of alternative access plans evaluated by the SQL
compiler

o [t i ility” , provides information about
how you can obtain information about the access plan chosen by the SQL
compiler.

Index Scan Concepts

An index scan occurs when the database manager accesses an index to do any
or all of the following:

* Narrow down the set of qualifying rows (by scanning the rows in a certain
range of the index) before accessing the base table. The index scan range (the
start and stop points of the scan) is determined by the values in the query
against which index columns are being compared.

* Order the output.

* Fully retrieve the requested data. If all of the requested data is in the index,
the base table will not be accessed. This is known as an Index-only access.

Scans may also be performed on indexes in the direction opposite to that with

which they were defined. Refer to the ALLOW REVERSE SCANS option on
the CREATE INDEX statement in the SQL Reference for more information.

Chapter 5. Understanding the SQL Compiler 127

The following additional topics are provided:

Index Structure

The database manager uses a B+ tree structure for storing its indexes. A B+
tree has one or more levels, as shown in the following diagram (where RID
means row ID):

E’ ‘N ‘Z ROOT
NODE
‘F* ‘L” ‘N’ INTERMEDIATE
NODES
(P rid) (Grid) (Lite) LEAF
(‘I’,rid) (‘N’,rid) NODES
(‘K rid)

Figure 3. B+ Tree Structure

The top level is called the root node. The bottom level consists of leaf nodes,
where the actual index key values are stored, as well as a pointer to the actual
row in the table. Levels between the root and leaf node levels are called
intermediate nodes.

In looking for a particular index key value, Index Manager searches the index
tree, starting at the root node. The root contains one key for each node at the

128 Administration Guide: Performance

next level. The value of each of these keys is the largest existing key value for
the corresponding node at the next level. For example, if an index has three
levels as shown in Eigure 3 on page 124, then to find an index key value,
Index Manager would search the root node for the first key value greater than
or equal to the key being looked for. This root node key would point to a
specific intermediate node. The same procedure would be followed with that
intermediate node to determine which leaf hode to go to. The final index key
would be found in the leaf node. Using [Eigure 3 on page 124, the key being
looked for is “I”. The first key in the root node greater than or equal to “I” is
“N”. This points to the middle node at the next level. The first key in that
intermediate node that is greater than or equal to “I” is “L”. This points to a
specific leaf node where the index key for “I”” along with its corresponding
row ID(s) are found (the row ID of the corresponding rows in the base table).

Note: At the leaf node level there can be previous leaf pointers. This can be of
great benefit since once finding a particular key value in the index by
traversing the tree, the Index Manager can scan through the leaf nodes
in either direction to retrieve a range of values. This ability to scan in
either direction is only possible if the index was created using the
ALLOW REVERSE SCANS parameter.

Refer to the options on the CREATE INDEX statement in the SQL Reference for
more information.

Index Scans to Delimit a Range

In determining whether an index can be used for a particular query, the
optimizer evaluates each column of the index starting with the first column to
see if it can be used to satisfy:

* Any of the EQUAL predicates in the statement’s WHERE clause

* Any other predicates in the WHERE clause.

A predicate is an element of a search condition in a WHERE clause that
expresses or implies a comparison operation. Predicates that can be used to
delimit the range of an index scan are those involving an index column in
which one of the following is true:

* The index column is being tested for equality against a constant, a host
variable, an expression that evaluates to a constant, or a keyword

* The test against the index column is “IS NULL” or “IS NOT NULL”

* The test is for equality against a basic subquery (that is, one that does not
contain ANY, ALL, or SOME), and the subquery does not have a correlated
column reference to its immediate parent query block (that is, the SELECT
for which this subquery is a subselect).

* The test is an inequality predicate meeting the conditions described below.

Chapter 5. Understanding the SQL Compiler 129

For example, given an index with the following definition:
INDEX IX1: NAME ASC,

DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

the following predicates could be used in delimiting the range of the scan of

index I1X1:
WHERE NAME = :hvl
AND DEPT = :hv2
or
WHERE MGR = :hvl
AND NAME = :hv2
AND DEPT = :hv3

Note that in the second example the WHERE predicates do not have to be
specified in the same order as the key columns appear in the index. And,
although host variables are used in the examples, parameter markers,
expressions, or constants would have the same effect.

A single index created using the ALLOW REVERSE SCANS parameter on the
CREATE INDEX statement can be scanned in a forward or a backward
direction. That is, such indexes support scans in the direction defined when
the index was created and scans in the opposite or reverse direction. The
statement could look something like this:

CREATE INDEX iname ON tname (cname DESC) ALLOW REVERSE SCANS

In this case, the index (iname) is formed based on DESCending values in
cname. By allowing reverse scans, although the index on the column is defined
for scans in descending order, a scan can be done in ascending order. The
actual use of the index in both directions is not controlled by you but by the
optimizer when creating and considering access plans.

In the following WHERE clause, only the predicates for NAME and DEPT
would be used in delimiting the range of the index scan, but not the
predicates for SALARY or YEARS:

WHERE NAME = :hvl
AND DEPT = :hv2
AND SALARY = :hv4
AND YEARS = :hvb

This is because there is a key column (MGR) separating these columns from
the first two index key columns, so the ordering would be off. However, once

130 Administration Guide: Performance

the range is determined by the NAME = :hvl and DEPT = :hv2 predicates, the
remaining predicates can be evaluated against the remaining index key
columns.

In addition to the equality predicates described above, certain inequality
predicates may be used to delimit the range of an index scan. The following
discusses the two types of inequality predicates: strict inequality and inclusive
inequality.

Strict Inequality Predicates: The strict inequality operators which can be used
for range delimiting predicates are > and <.

For delimiting a range for an index scan, only one column with strict
inequality predicates will be considered. In the following example, the
predicates on the NAME and DEPT columns can be used to delimit the range,
but the predicate on the MGR column cannot be used.

WHERE NAME = :hvl
AND DEPT > :hv2
AND DEPT < :hv3
AND MGR < :hv4

Inclusive Inequality Predicates: The following are inclusive inequality
operators which can be used for range delimiting predicates:

e >=and <=
e BETWEEN
e LIKE

For delimiting a range for an index scan, multiple columns with inclusive
inequality predicates will be considered. In the following example, all of the
predicates can be used to delimit the range of the index scan:

WHERE NAME = :hvl
AND DEPT =>= :hv2
AND DEPT <= :hv3
AND MGR <= :hv4

To further illustrate this example, suppose that :hv2 = 404, :hv3 = 406, and
thv4 = 12345. The database manager will scan the index for all of
departments 404 and 405, but it will stop scanning department 406 when it
reaches the first manager that has an employee number (MGR column)
greater than 12345.

For additional information, see [‘Range Delimiting and Index SARGabld

Chapter 5. Understanding the SQL Compiler 131

Index Scans to Order Data

If the query involves ordering, an index can be used to order the data if the
ordering columns appear consecutively in the index, starting from the first
index key column. (Ordering or sorting can result from operations such as
ORDER BY, DISTINCT, GROUP BY, “= ANY” subquery, “> ALL” subquery,
“< ALL” subquery, INTERSECT or EXCEPT, UNION.) An exception to this is
when the index key columns are compared for equality against “constant
values” (that is, any expression that evaluates to a constant). In this case the
ordering column can be other than the first index key columns. For example,

in the query:
WHERE NAME = 'JONES'
AND DEPT = 'D93'

ORDER BY MGR

the index could be used to order the rows since NAME and DEPT will always
be the same values and will thus be ordered. Another way of saying this is
that the preceding WHERE and ORDER BY clauses are equivalent to:

WHERE NAME = 'JONES'

AND DEPT = 'D93'
ORDER BY NAME, DEPT, MGR

A unique index can also be used to truncate an order requirement. For
example, given the following index definition and order by clause:

UNIQUE INDEX IXO: PROJNO ASC

SELECT PROJNO, PROJNAME, DEPTNO
FROM PROJECT

ORDER BY PROJNO, PROJNAME

additional ordering on the PROJINAME column is not required since the 1X0
index ensures that PROJNO is unique. This uniqueness ensures that there is
only one PROJNAME value for each PROJNO value.

Index-Only Access

In some cases, all of the required data can be retrieved from the index without
accessing the table. This is known as an index-only access.

To illustrate an index-only access, consider the following index definition:
INDEX IX1: NAME ASC,

DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

and the following query can be satisfied by accessing only the index, and
without reading the base table:

132 Administration Guide: Performance

SELECT NAME, DEPT, MGR, SALARY
FROM EMPLOYEE
WHERE NAME = 'SMITH'

In other cases, there may be columns that do not appear in the index. To
obtain the data for these columns, rows of the base table must be read. For
example, given the IX1 index, the following query needs to access the base
table to obtain the PHONENO and HIREDATE column data:

SELECT NAME, DEPT, MGR, SALARY, PHONENO, HIREDATE

FROM EMPLOYEE
WHERE NAME = 'SMITH'

By creating a unique index with include columns, you can improve the
performance of data retrieval by increasing the number of access attempts
based solely on indexes.

To illustrate the use of include columns, consider the following index
definition:
CREATE UNIQUE INDEX IX1 ON EMPLOYEE

(NAME ASC)
INCLUDE (DEPT, MGR, SALARY, YEARS)

This creates a unique index which enforces uniqueness of the NAME column
yet stores and maintains data for DEPT, MGR, SALARY, and YEARS columns.

The following query can be satisfied by accessing only the index and without
reading the base table;
SELECT NAME, DEPT, MGR, SALARY

FROM EMPLOYEE
WHERE NAME='SMITH'

Multiple Index Access

In all of the above examples, a single index scan was performed to produce
the results. To satisfy the predicates of a WHERE clause, the optimizer can
choose to scan multiple indexes. For example, given the following two index
definitions:

INDEX IX2: DEPT ASC

INDEX IX3: JOB ASC,
YEARS ASC

the following predicates could be resolved using these two indexes:

WHERE DEPT = :hvl
OR (JOB = :hv2
AND YEARS >= :hv3)

Chapter 5. Understanding the SQL Compiler 133

In this example, scanning index 1X2 will produce a list of row IDs (RIDs) that
satisfy the DEPT = :hv1 predicate. Scanning index IX3 will produce a list of
RIDs satisfying the JOB = :hv2 AND YEARS >= :hv3 predicate. These two lists
of RIDs can be combined and duplicates removed before accessing the table.
This is known as index ORing.

Index ORing may also be used for predicates using the IN expression, as in
the following example:

WHERE DEPT IN (:hvl, :hv2, :hv3)

With index ORing you are looking to eliminate duplicate RIDs, however with
index ANDing you are looking for RIDs that occur in every index scanned.
Index ANDing may occur with applications where there are multiple indexes
on corresponding columns within the same table and a query using multiple
“and” predicates is run against that table. Multiple index scans against each
indexed column in such a query produce qualifying rows that have their RID
values hashed to dynamically create bitmaps. The second bitmap is used to
probe the first bitmap to generate the qualifying rows that are fetched to
create the final returned data set.

For example, given the following two index definitions:

INDEX IX4: SALARY ASC
INDEX IX5: COMM ASC

the following predicates could be resolved using these two indexes:

WHERE SALARY BETWEEN 20000 AND 30000
AND COMM BETWEEN 1000 AND 3000

In this example, scanning index IX4 produces a dynamic bitmap index
satisfying the SALARY BETWEEN 20000 AND 30000 predicate. Scanning IX5 and
probing the dynamic bitmap index for IX4 results in the list of qualifying
RIDs that satisfy both predicates. This is known as “dynamic bitmap
ANDing”. It only occurs if the table has sufficient cardinality and the columns
have sufficient values in the qualifying range, or sufficient duplication if
equality predicates are used.

Note: In the accessing of any single table, DB2 does not combine index
ANDing and index ORing.

Clustered Indexes

When selecting the access plan, the optimizer considers the 170 cost of
fetching pages from disk to the buffer pool. In its calculations, the optimizer
will estimate the number of 1/0s required to satisfy a query. This estimate
includes a prediction of buffer pool usage, since additional 1/0s are not
required to read rows in a page that is already in the buffer pool.

134 Administration Guide: Performance

For index scans, the optimizer uses information from the system catalog tables
(SYSCAT.INDEXES) to help estimate 1/0 cost of reading data pages into the
buffer pool. The following columns from the SYSCAT.INDEXES table are used:

* CLUSTERRATIO indicating the degree to which the table data in relation to
this index is clustered. A higher number means that the rows are ordered
on the data pages in index key sequence. Therefore, all of the rows on a
data page can be read while the page is in buffer. If the value of this
column is -1, the optimizer will attempt to use PAGE_FETCH_PAIRS and
CLUSTERFACTOR.

or

* PAGE_FETCH_PAIRS containing several pairs of numbers which model the
number of I/0s required to read the data pages into buffer pools of various
sizes together with CLUSTERFACTOR. When collecting statistics for an
index, this information is considered a detailed statistic.

If statistics are not available, the optimizer will use default values for the
statistics, which assume poor clustering of the data to the index. See also
LCha.pIeu_S;Lstem_Ca.talag_SIansncslo.n_page_Zd and t‘Collecting Statisticd

You can specify a clustering index that will be used both to cluster the rows
during a table reorganization and to preserve this characteristic during insert
processing. (See FRearganizing Tahle Data” on page 229 for information about
table reorganization.) Subsequent updates and inserts may make the index
less well clustered (as measured by the statistics gathered by RUNSTATS), so
you may need to periodically reorganize the table. To reduce the frequency of
reorganization on a volatile database, use the PCTFREE parameter when
altering a table. This will allow for additional inserts to be clustered with the
existing data.

The degree to which the data is clustered with respect to the index can have a
significant impact on performance and you should try to keep one of the
indexes on the table close to 100 percent clustered.

In general, only one index can be one hundred percent clustered, except in
those cases where the keys are a superset of the keys of the clustering index;
or, where there is de facto correlation between the key columns of the two
indexes.

See I‘Performance Tips for Administering Indexes” on page 70 for more

information on performance reasons to use clustering indexes. Refer to the
SQL Reference, CREATE INDEX, for more information on how to create a
clustering index.

Chapter 5. Understanding the SQL Compiler 135

Clustering Page Reads Using List Prefetch: If the optimizer uses an index to
access rows, it can defer reading the data pages until all the RIDs (row
identifiers) have been obtained from the index. For example, given the
previously defined index 1X1:

INDEX IX1: NAME ASC,

DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

and the following search criteria:
WHERE NAME BETWEEN 'A' and 'I'

the optimizer could perform an index scan on 1X1 to determine the rows (and
data pages) to retrieve. If the data was not clustered according to this index,
list prefetch will include a step to sort the list of RIDs obtained from the index

scan. See tUnderstanding L ist Prefetching” on page 224 for more information.

Index Page Prefetch

When appropriate, the database manager detects sequential access to index
pages and will generate prefetch requests. This will significantly reduce the
elapsed time for nonselective index scans, and selective index scans accessing
a significant portion of the index.

The optimizer uses index statistics such as DENSITY and
SEQUENTIAL_PAGES, the characteristics of the table spaces in which the
index resides, and the effect of any range delimiting predicates, to estimate the
amount of index page prefetch that will occur. These estimates are factored
into the overall cost estimate for using a particular index.

See FUnderstanding Sequiential Prefetching” on page 220 for more information.

Relation Scan versus Index Scan

The optimizer will choose a relation scan when an index cannot be used for
the query, or if the optimizer determines that an index scan would be more
costly. An index scan could be more costly when:

¢ The table is small
* Index clustering is low
¢ Most of the table is accessed.

You may use the SQL Explain facilities to determine whether your access plan
uses a relation scan or an index scan. See E

136 Administration Guide: Performance

Summary Table Scan

Query rewrite will access a summary table if it determines that the query can
be answered by using the data in the summary table instead of accessing the
base table or tables.

Note: The optimization level must be 5 or greater for the optimizer to be able
to consider a summary table scan.

Following is an example of a multidimensional analysis that could take
advantage of summary tables. A summary table is created with the sum and
count of sales for each level of:

* Product hierarchy
» Location hierarchy
* Time hierarchy, composed of year, month, day.

A wide range of queries can pick up their answers from this stored aggregate
data. The following example calculates the sum of product group sales, by
state, by month. Queries that can take advantage of such pre-computed sums
would include:

» Sales by month and product group

+ Total sales for years after 1990

+ Sales for 1995 or 1996

» Sum of sales for a product group or product line

« Sum of sales for a specific product group or product line AND for 1995,
1996

« Sum of sales for a specific country.

While the precise answer is not included in the summary table for any of
these queries, the cost of computing the answer using the summary table
could be significantly less than using a large base table, because a portion of
the answer is already computed. For example:

CREATE TABLE PG_SALESSUM
AS (
SELECT T1.id AS prodline, pg.id AS pgroup,
loc.country, loc.state
YEAR(pdate) AS year, MONTH(pdate) AS month,
SUM(ti.amount) AS amount,
COUNT(*) AS count
FROM cube.transitem AS ti, cube.trans AS t,
cube.loc AS Toc, cube.pgroup AS pg,
cube.prodline AS 1
WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = 1.id
AND t.Tocid = loc.id

Chapter 5. Understanding the SQL Compiler 137

138

AND YEAR(pdate) > 1990
GROUP BY 1.id, pg.id, loc.country, Toc.state,
year(pdate), month(pdate)
)

DATA INITIALLY DEFERRED REFRESH DEFERRED;

REFRESH TABLE SALESCUBE;

The following are sample queries that would obtain significant performance
improvements because they are able to use the results in the summary table
that are already computed. The first example returns the total sales for 1995
and 1996:

SET CURRENT REFRESH AGE=ANY

SELECT YEAR(pdate) AS year, SUM(ti.amount) AS amount
FROM cube.transitem AS ti, cube.trans AS t,
cube.Toc AS loc, cube.pgroup AS pg,
cube.prodline AS 1
WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = 1.1id
AND t.Tocid = Toc.id
AND YEAR(pdate) IN (1995, 1996)
GROUP BY year(pdate);

The second example returns the total sales by product group for 1995 and
1996:

SET CURRENT REFRESH AGE=ANY

SELECT pg.id AS "PRODUCT GROUP",
SUM(ti.amount) AS amount
FROM cube.transitem AS ti, cube.trans AS t,
cube.loc AS loc, cube.pgroup AS pg,
cube.prodline AS 1
WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = 1.id
AND t.locid = Toc.id
AND YEAR(pdate) IN (1995, 1996)
GROUP BY pg.id;

Predicate Terminology

A user application requests a set of rows from the database with an SQL
statement, qualifying the specific rows desired through the use of predicates.
When the optimizer decides how to evaluate an SQL statement, each predicate
falls into one of four categories. The category is determined by how and when
that predicate is used in the evaluation process. These categories are listed
below, ordered in terms of performance from best to worst:

1. Range delimiting predicates

Administration Guide: Performance

2. Index SARGable predicates
3. Data SARGable predicates
4. Residual predicates.

SARGable refers to something that can be used as a search argument.

ESummary of Predicate Usage” on page 14d provides a comparison of the

characteristics that affect the performance of the various predicate categories.

Range Delimiting and Index SARGable Predicates

Range delimiting predicates are those used to bracket an index scan. They
provide start and/or stop key values for the index search. Index SARGable
predicates are not used to bracket a search, but can be evaluated from the
index because the columns involved in the predicate are part of the index key.
For example, given the previously defined index IX1 (in the section

Bcan Cancepts” on page 127) and the following WHERE clause:

WHERE NAME = :hvl
AND DEPT = :hv2
AND YEARS > :hvb

the first two predicates (NAME = :hvl, DEPT = :hv2) would be range
delimiting predicates, while YEARS > :hv5 would be an index SARGable
predicate.

The database manager will make use of the index data in evaluating these
predicates rather than reading the base table. These index SARGable predicates
reduce the number of data pages accessed by reducing the set of rows that
need to be read from the table. These types of predicates do not affect the
number of index pages that are accessed.

Data SARGable Predicates

Predicates that cannot be evaluated by Index Manager, but can be evaluated
by Data Management Services are called data SARGable predicates. Typically,
these predicates require the access of individual rows from a base table. If
required, Data Management Services will retrieve the columns needed to
evaluate the predicate, as well as any others to satisfy the columns in the
SELECT list that could not be obtained from the index.

For example, given a single index defined on the PROJECT table:
INDEX IX0: PROJNO ASC

And given the following query, the DEPTNO = 'D11' predicate is considered to
be data SARGable.

Chapter 5. Understanding the SQL Compiler 139

SELECT PROJNO, PROJNAME, RESPEMP
FROM PROJECT

WHERE DEPTNO = 'DI11'

ORDER BY PROJNO

Residual Predicates

Residual predicates, typically, are those that require 1/0 beyond the simple
accessing of a base table. Examples of residual predicates include those using
correlated subqueries, using quantified subqueries (subqueries with ANY,
ALL, SOME, or IN), or reading LONG VARCHAR or LOB data (stored in a
file separate from the table). These predicates are evaluated by Relational Data
Services.

Sometimes predicates, which are applied to the index only, have to be
reapplied when the data page is accessed. For example, access plans using
index ORing or index ANDing, (see EMultiple Index Access” an page 133),
always reapply the predicates as residual predicates, when the data page is
accessed.

Summary of Predicate Usage

The use of predicates in a query can help to reduce the amount of data read
to satisfy the query. Different categories of predicates have different impacts
on the performance of a query and these impacts are considered by the
optimizer. The following table shows the ranking of the different types of
predicates and how each type of predicate can influence performance.

Table 14. Summary of Predicate Type Characteristics

Characteristic Predicate Type
Range Index Data Residual
Delimiting SARGable SARGable
Reduce index Yes No No No
170
Reduce data Yes Yes No No
page 1/0
Reduce number Yes Yes Yes No
of rows passed
internally
Reduce number Yes Yes Yes Yes
of qualifying
rows

140 Administration Guide: Performance

Join Concepts

A join is where rows from one table are concatenated to rows of one or more
other tables. For example, given the following two tables:

TABLE1 TABLE2

Joining Tablel and Table2 where the ID columns are equal would be
represented by the following SQL statement:
SELECT PROJ, x.PROJ_ID, NAME

FROM TABLE1l x, TABLEZ y
WHERE x.PROJ_ID = y.PROJ_ID

and would yield the following set of result rows:
PROJ PROJ_ID NAME

When joining two tables, one table is selected as the outer table and the other
as the inner. The outer table is accessed first and is only scanned once.
Whether the inner table is scanned multiple times depends on the type of join
and which indexes are present. Whether your query joins two tables or more
than two tables, the optimizer will only join two tables at a time. If needed,
temporary, intermediary results tables will be created.

The optimizer will choose one of the two join methods (nested loop join or
merge join) depending on the existence of a join predicate (defined in
loin” on page 143), as well as various costs involved as determined by table
and index statistics.

Nested Loop Join

A nested loop join is performed in one of two ways:

1. By scanning through the inner table for each accessed row of the outer
table

For example, if column A in tables T1 and T2 has the following values:

Chapter 5. Understanding the SQL Compiler 141

Quter Table T1: column A Inner Table T2: column A

The steps for doing the nested loop:

* Read the first row from T1. The value for A is “2”

* Scan T2 until a match (“2”) is found, and then join the two rows

» Scan T2 until the next match (“2”) is found, and then join the two rows
» Scan T2 to the end of the table

* Go back to T1 and read the next row (“3”)

» Scan T2, starting at the first row, until a match (“3”) is found, and then
join the two rows

* Scan T2 until the next match (“3”) is found, and then join the two rows
« Scan T2 to the end of the table

* Go back to T1 and read the next row (“3”)

» Scan T2 as before, joining all rows which match (“3”).

2. By doing an index lookup on the inner table for each accessed row of the
outer table.
This method can be used for the specified predicates if there is a predicate
of the following form:
expr(outer_table.column) relop inner_table.column

where relop is a relative operator (for example =, >, >=, <, or <=) and
expr is a valid expression on the outer table. The following are examples:

OUTER.C1 + OUTER.C2 <= INNER.C1

and
OUTER.C4 < INNER.C3

This method could be a way to significantly reduce the number of rows
accessed in the inner table for each access of the outer table (although it
depends on a number of factors, including the selectivity of the join
predicate).

When evaluating a nested loop join, the optimizer will also determine
whether or not to sort the outer table before performing the join. By ordering
the outer table, based on the join columns, the number of read operations to
access pages from disk for the inner table may be reduced, since it is more
likely they will already be in the buffer pool. If the join uses a highly

142 Administration Guide: Performance

clustered index to access the inner table, the number of index pages accessed
may be minimized if the outer table has been sorted.

In addition, the optimizer may also choose to perform the sort before the join,
if it expects that the join will make a later sort more expensive. A later sort
could be required to support a GROUP BY, DISTINCT, ORDER BY or merge
join.

Merge Join

Merge join (sometimes known as merge scan join or sort merge join) requires
a predicate of the form tablel.column = table2.column. This is called an
equality join predicate. Merge join requires ordered input on the joining
columns, either through index access or by sorting. In order for a merge join
to be used, the join column cannot be a LONG field column or a large object
(LOB) column.

The joined tables are scanned simultaneously. The outer table of the merge
join is scanned just once. The inner table is also scanned once unless there are
repeated values in the outer table. If there are repeated values in the outer
table, a group of rows in the inner table may be scanned again. For example,
if column A in tables T1 and T2 has the following values:

Outer Table T1: column A Inner Table T2: column A
2 1
3 2
3 2
3
3

The steps for doing the merge join are:

* Read the first row from T1. The value for A is “2”

» Scan T2 until a match is found, and then join the two rows

* Keep scanning T2 while the columns match, joining rows.

* When the “3” in T2 is read, go back to T1 and read the next row
* The next value in T1 is “3”, which matches T2, so join the rows
» Keep scanning T2 while the columns match, joining rows

* The end of T2 is reached

* Go back to T1 to get the next row — note that the next value in T1 is the
same as the previous value from T1, so T2 is scanned again starting at the
first “3” in T2 (the database manager remembers this position).

Chapter 5. Understanding the SQL Compiler 143

Hash Join

Hash join requires one or more predicates of the form tablel.columnX =
table2.columny, and for which the column types are the same. For columns of
type CHAR, the length must be the same. For columns of type DECIMAL, the
precision and scale must be the same. The column type cannot be a LONG
field column, or a large object (LOB) column.

First, one table (called the INNER table) is scanned and the rows cogied into

memory buffers drawn from the sort heap allocation (see the
(sartheap)” an page 320 database configuration parameter). The memory
buffers are divided into partitions based on a “hash code” computed from the
column(s) of the join predicate(s). If the size of the first table exceeds the
available sort heap space, buffers from selected partitions are written to
temporary tables. After finishing the processing of the INNER table, the
second table (called the OUTER table) is scanned. Rows of the OUTER table
are matched to rows from the INNER table by first comparing a “hash code”
generated from the columns of the join predicate(s). Then, if the “hash code”
of the OUTER row matches the “hash code” of the INNER row, the actual join
predicate columns are compared.

OUTER table rows corresponding to partitions not written to a temporary
table are matched immediately with INNER table rows in memory. Otherwise,
if the corresponding INNER table partition was written to a temporary table,
the OUTER row is also written to a temporary table. Finally, matching pairs of
partitions from temporary tables are read and the “hash codes” of their rows
are matched and join predicates checked.

To realize the performance benefits of hash join, it may be necessary to change
the value of the sortheap database configuration parameter, and the sheapthres
database manager configuration parameter.

For decision support queries, hash join access plans use more sort heap space
than do non-hash join plans. When sheapthres is set to be relatively close to
sortheap (that is, less than a factor of two or three per concurrent query), a
hash join runs with much less memory than the optimizer anticipated. When
executing with limited memory, hash joins can be very slow. The problem
occurs in queries with multiple sorts and hash joins, in which the first sorts or
hash joins acquire most of the available memory.

The solution is to configure sheapthres to be large enough (relative to sortheap).

144 Administration Guide: Performance

Outer versus Inner Determination

When joining, how are the inner and outer tables determined? The following
are general guidelines for how the optimizer decides which table will be the
inner and which will be the outer.

In the case of a hash join, the inner table is kept in memory buffers. If there
are too few memory buffers, then the hash join is obliged to spill. The
optimizer attempts to avoid this and so will pick the smaller of the two tables
as the inner table, and the larger one as the outer table.

The order in which the tables are accessed is particularly important for a
nested loop join because the outer table is accessed once but the inner table is
accessed once for each row of the outer table. The optimizer chooses the outer
and inner tables based on cost estimates. These cost estimates are influenced
by the following factors:
» Size
The smaller table is often chosen to be the outer table to reduce the number
of times the inner table must be re-accessed. However, prefetch can cause
just the opposite to be true. Prefetching can reduce the cost of accessing a
large table substantially. However, usually prefetching is only effective for
the outer table of a join. Therefore, the larger table may be accessed first.

ee [‘Prefetching Data inta the Buffer Pool” an page 219 for more

mformatlon.

* Predicates

A table is more likely to be chosen as the outer table if selective predicates
can be applied to it because the inner table is only accessed for rows which
satisfy the predicates applied to the outer table.

 Buffering

If the entire inner table must be scanned for each row of the outer table
(that is, an index lookup cannot be performed on the inner table), the
smaller of the two tables may be chosen as the inner table to take
advantage of buffering. This will be influenced by table size and buffer pool
size. Note that since join decisions are influenced by buffer pool size, the
access plan for your applications may change, if you rebind your
applications to the database, after changing the buffer pool size.

Your ability to create more than one buffer pool, and change the size of that
buffer pool, and control the table spaces that use that buffer pool, can affect
when buffering is used within inner and outer tables.

* Indexes

If it is possible to do an index lookup on one of the tables, then that table is
a good candidate to use as the inner table. It could then be accessed with
an index key lookup using the outer table’s join key predicate as one of the
key values. If a table does not have an index, it would not be a good

Chapter 5. Understanding the SQL Compiler 145

candidate for the inner table since in that case the entire inner table would
have to be scanned for every row of the outer table.

* Order requirements

The table associated with a required order might be assessed first. For

example, if the output of the join between t1 and t2 was to be ordered on

tl.c, accessing t1 as the outer with an index on tl.c might be a good choice.

The output of the join would be ordered and no sort would be required.
SELECT * FROM t1, t2

WHERE tl.a = t2.b
ORDER BY tl.c

The order in which the tables are accessed is somewhat less important for a
merge join because both the inner and outer tables are read only once.
However, portions of the inner table which correspond to duplicate join
values in the outer are kept in an in-memory buffer. The buffer is reread if the
next outer row is the same as the previous outer row, otherwise the buffer is
reset. If the number of duplicate join values exceeds the capacity of the
in-memory buffer, not all of the duplicates are kept. This will only happen
when the duplication on any value is large and the value has a matching
value in the outer table.

With all of these considerations for duplicate values, in most cases it is the
table with fewer duplicates that will be chosen as the outer table in a join.
Ultimately, however, the optimizer chooses the outer and inner tables based
on detailed cost estimates.

Search Strategies for Selecting Optimal Join

The optimizer can determine optimal join methods using different search
strategies. The search strategy that will be used is determined by the

optimization class in use (see [‘Adjusting the Optimization Class” on page 36).

The search strategies and their characteristics are:

* Greedy join enumeration
— Efficient with respect to space and time

— Single direction enumeration; that is, once a join method is selected for
two tables, it will not be changed during further optimization

— May miss best access plan when joining many tables. If your query only
joins two or three tables, the access plan chosen by the greedy join
enumeration will be the same as the access plan chosen by dynamic
programming join enumeration. This is particularly true if the query has
many join predicates (either explicitly specified, or implicitly generated
through predicate transitive closure) on the same column.

* Dynamic programming join enumeration

146 Administration Guide: Performance

— Space and time requirements grow exponentially larger as the number of
tables being joined increases

— Efficient and exhaustive search for best access plan
— Similar to strategy used by DB2 for MVS/ESA.

The join enumeration algorithm is a key determinant of the number of plan
combinations that are explored by the optimizer.

Search Strategies for Star Join

In general, the tables referenced in a query should be connected by join
predicates. If two tables are joined without the presence of a join predicate,
the Cartesian product of the two tables is formed. That is, every qualifying
row of the first table is joined with every qualifying row of the second,
creating a result table consisting of the cross product of the size of the two
tables that is typically very large. Since such a plan is unlikely to perform
very well, the optimizer avoids even determining the cost of such an access
plan. The only exception to this occurs when the optimization class is set to 9,
or the following special case for “Star Schemas”. For more information, see

The cases where access plans involving Cartesian products perform well are
usually large decision support databases designed with the Star Schema
technique. The star schema is a database design in which the bulk of the raw
data is kept in a single large table with many columns and is commonly
known as a “fact” table. Many of the columns contain encoded values that
characterize the dimensions of the particular datum stored in the fact table. In
order to allow easy analysis of some subset of the facts, dimension tables are
used to decode the encoded values. A typical query would consist of multiple
local predicates referencing decoded values in the dimension tables and
would contain join predicates connecting the dimension tables to the fact
table. For these kinds of queries it may be beneficial to perform the Cartesian
product of multiple small dimension tables before accessing the large fact
table. This technique is beneficial when multiple join predicates match a
multi-column index.

DB2 has the ability to recognize queries against databases designed with star

schemas having at least three (3) dimension tables, and to increase the search

space to include potential plans that involve forming the Cartesian product of
dimension tables. If the plan involving the Cartesian products has the lowest

estimated cost, it will be selected by the optimizer.

The Star Schema technique discussed above was focussed on the situation

where primary key indexes were used in the join. Another scenario could
involve foreign key indexes. Given that the foreign key columns in the fact

Chapter 5. Understanding the SQL Compiler 147

table are single-column indexes and that there is a relatively high selectivity
across all dimension tables, the following Star Join technique can be used:
1. Each dimension table is processed by:

» Performing a semi-join between the dimension table and the foreign key
index on the fact table

» Hashing the row ID (RID) values to dynamically create a bitmap.

2. Each bitmap is used with “and” predicates against the previous bitmap
(see EMultiple Index Access” an page 133).

Determine the surviving RIDs after processing the last bitmap.
Optionally sort these RIDs.
Fetch a base table row.

Re-join the fact table with each of its dimension tables, accessing the
dimension tables’ columns that are needed for the SELECT clause

7. Reapply the predicates (residual predicates)

A

Using this technique, there is no requirement to have multi-column indexes.

Composite Tables

Another important parameter determines the shape of the sequence of joins in
a query. The result of joining a pair of tables is a new table known as a
composite. Typically, this resulting composite table becomes the outer table of
a join with another inner table. This is known as a “composite outer”. In some
situations, particularly when using the greedy join enumeration technique, it
is useful to take the result of joining two tables and make that the inner table
of a later join. When the inner table of a join itself consists of the result of
joining two or more tables, we say that the plan contains a “composite inner”.
For example, in the following query:

SELECT COUNT ()
FROM T1, T2, T3, T4

WHERE T1.A = T2.A AND
T3.A = T4.A AND
T2.7 = 13.Z

it may be beneficial to join table T1 and T2 (T1xT2), then join T3 to T4 (
T3xT4) and finally select the first join result as the outer and the second join
result as the inner. In the final plan ((T1xT2) x (T3xT4)) the join result
(T3xT4) is known as a composite inner. Depending on the query optimization
class, the optimizer places different constraints on the maximum number of
tables that may be the inner table of a join. Composite inners are allowed with
optimization classes 5, 7, and 9.

148 Administration Guide: Performance

Replicated Summary Tables

By using replicated summary tables in a partitioned database environment,
you can improve performance by having the database manage pre-computed
values of the base table data. For example, the query below would benefit
from creating the replicated summary table below. The following assumptions
are made:

* The SALES table is in the multipartition nodegroup REGIONTABLESPACE,
and is partitioned on the REGION column.

* The EMPLOYEE and DEPARTMENT tables are in a single-partition
nodegroup.
CREATE TABLE R_EMPLOYEE
AS (
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT
FROM EMPLOYEE

)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE

IN REGIONTABLESPACE
REPLICATED;

REFRESH TABLE R_EMPLOYEE;

The following example calculates sales by employee, the total for the
department, and the grand total:

SELECT d.mgrno, e.empno, SUM(s.sales)

FROM department AS d, employee AS e, sales as S

WHERE s.sales_person = e.lastname

AND e.workdept = d.deptno
GROUP BY ROLLUP(d.mgrno, e.empno)
ORDER BY d.mgrno, e.empno;

Instead of using the EMPLOYEE table, which is on only one database
partition, the database manager will use the R_EMPLOYEE table, which is
replicated on each of the database partitions that the SALES tables is on. The
performance enhancement occurs because the employee information does not
have to be moved across the network to each database partition to calculate
the join.

Join Strategies in a Partitioned Database

The following sections describe the join strategies that are possible in a
partitioned database environment. The DB2 optimizer automatically selects
the best join strategy depending on the requirements of each application. The
join strategies are presented here to help you understand what is happening
in each strategy. A “table queue” is a mechanism for transferring rows
between database partitions, or between processors in a single partition
database.

Chapter 5. Understanding the SQL Compiler 149

In the descriptions that follow, a directed table queue is one whose rows are
hashed to one of the receiving database partitions. A broadcast table queue is
one whose rows are sent to all of the receiving database partitions (that is, it
is not hashed). In the diagrams for this section g1, g2, and g3 refer to table
queues in the examples. Also the tables that are referenced are divided across
two database partitions for the purpose of these scenarios. The arrows
indicate the direction in which the table queues are sent. The coordinator
node is partition 0.

One consideration for those tables involved in frequent joins in a partitioned
database is that of table collocation. Table collocation provides the means in a
partitioned database to locate data from one table with the data from another
table at the same partition based on the same partitioning key. Once
collocated, data to be joined can participate in a query without having to be
moved to another database partition as part of the query activity. Only the
answer set for the join is moved to the coordinator node. Refer to “Table
Collocation” in the Administration Guide, Design and Implementation for more
information on this subject.

For information on join dependencies, refer to the SQL Reference manual.

Collocated Joins

For the optimizer to consider a collocated join, the joined tables must be
collocated, and all pairs of the corresponding partitioning key must
Earticigate in the equijoin predicates. An example is shown in

Note: Replicated summary tables enhance the likelihood of collocated joins.

See I‘Replicated Summary Tables” on page 149for more information.

150 Administration Guide: Performance

Partition 1

End Users Coordinator Node
Select... Partition 0
* Read g1 e Scan
* Process ORDERS
* Return * Apply
RESULTS predicates
* Scan
LINEITEM
* Apply
4 1 predicates
e Join
* Insert into g1

P—

* Scan
ORDERS

* Apply
predicates

* Scan
LINEITEM

* Apply
predicates

* Join

* Insert into g1

q1l

Both the LINEITEM and ORDERS tables are partitioned on the
ORDERKEY column. The join is done locally at each database partition.

In this example, the join predicate is assumed to be:
ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

Figure 4. Collocated Join Example

Broadcast Outer-Table Joins

This parallel join strategy can be used if there are no equijoin predicates
between the joined tables. It can also be used in other situations in which it is
the most cost-effective join method. Typically, this would occur when there is
one very large table and one very small table, neither of which is partitioned

on the join predicate columns. Rather than partition both tables, it may be
“cheaper” to broadcast the smaller table to the larger table. An example is

shown in Eigure 5 an page 152

Chapter 5. Understanding the SQL Compiler

151

End Users

Coordinator Node

Select... Partition 0 Partition 1
* Read g1 * Scan * Scan
* Process ORDERS ORDERS
* Return * Apply * Apply
COUNT | predicates predicates ||
* Write g2 q2 92 » Write g2
q2 q2
* Scan * Scan
LINEITEM LINEITEM
* Apply * Apply
» predicates predicates |«
* Read g2 * Read g2
* Join * Join
* Insert g1 * Insert g1
—

qil

The ORDERS table is sent to all database partitions that have the LINEITEM table.
Table queue g2 is broadcast to all database partitions of the inner table.

Figure 5. Broadcast Outer-Table Join Example

Directed Outer-Table Joins

In this join strategy, each row of the outer table is sent to one database
partition of the inner table (based on the partitioning attributes of the inner

table). The join occurs on this database partition. An example is shown in

152 Administration Guide: Performance

End Users Coordinator Node

Select... Partition O Partition 1
| | * Read g1 * Scan * Scan
* Process ORDERS ORDERS
* Return * Apply * Apply
COUNT — predicates predicates [
* Hash * Hash
ORDERKEY | | 92 92 ORDERKEY
* Write g2 * Write g2
A q2 q2
* Scan e Scan
LINEITEM LINEITEM
* Apply * Apply
Ly/ predicates K B predicates |gq
* Read g2 * Read g2
* Join * Join
* Insert into g1 * Insert into g1
ql |
q1

The LINEITEM table is partitioned on the ORDERKEY column.

The ORDERS table is partitioned on a different column.

The ORDERS table is hashed and sent to the correct LINEITEM

table database partition.

In this example, the join predicate is assumed to be:
ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

Figure 6. Directed Outer-Table Join Example

Directed Inner-Table and Outer-Table Joins

With this strategy, rows of the outer and inner tables are directed to a set of
database partitions, based on the values of the joining columns. The join
occurs on these database partitions. An example is shown in

Chapter 5. Understanding the SQL Compiler 153

End Users

Coordinator Node

Select...

Partition 0 Partition 1
* Read g1 * Scan * Scan
* Process ORDERS ORDERS
* Return | * Apply * Apply
COUNT predicates predicates
* Hash * Hash
ORDERKEY ORDERKEY
* Write g2 * Write g2
ra— g 2 q2 q
0| * Scan * Scan
q LINEITEM LINEITEM |92
* Apply * Apply .
predicates predicates
* Hash * Hash
ORDERKEY ORDERKEY
* Write 3 * Write g3
a3 q3 q3 \ q3
« Read q2 9 \ « Read g2
—» ¢ Read g3 ¥ * Read g3 <«
» < Join « Join -
* Insert g1 * Insert g1
q1Q
q1l

Neither table is partitioned on the ORDERKEY column.
Both tables are hashed and are sent to new database
partitions where they are joined.

Both table queue g2 and g3 are directed.
In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY

Figure 7. Directed Inner-Table and Outer-Table Join Example

Broadcast Inner-Table Joins

With this strategy, the inner table is broadcast to all the database partitions of

the outer join table. An example is shown in Eigure 8 on page 155.

154 Administration Guide: Performance

End Users

Coordinator Node

Select...

Partition 0

* Read g1

* Process

* Return
COUNT

* Scan
ORDERS
* Apply
predicates
* Write g2

* Scan
LINEITEM
* Apply
predicates
* Write g3

* Read g2
* Read g3
¢ Join

* Insert g1

qi

q3

q3

Partition 1

* Scan
ORDERS
* Apply
predicates
* Write g2

* Scan
LINEITEM
* Apply
predicates
» Write g3

* Read g2
* Read g3
* Join

* Insert g1

ql

Figure 8. Broadcast Inner-Table Join Example

Directed Inner-Table Joins

The LINEITEM table is sent to all database partitions that have the ORDERS table.
Table queue g3 is broadcast to all database partitions of the outer table.

With this strategy, each row of the inner table is sent to one database partition

of the outer join table (based on the partitioning attributes of the o
The 'Foin occurs on this database partition. An example is shown in

Chapter 5. Understanding the SQL Compiler

uter tableg.

155

End Users Coordinator Node

Select... Partition 0 Partition 1
* Read g1 * Scan * Scan
* Process ORDERS ORDERS
* Return | = Apply * Apply |
COUNT predicates predicates
* Write g2 * Write g2
A A
e Scan e Scan
“ | agy Coony |
predicates predicates
* Hash e Hash
ORDERKEY ORDERKEY
: 93 q3 - |
* Write g3 * Write g3 T
. 3
Read q2 * Read g2 J9
° ?93‘1 g3 \ * Read g3 1—1
© Joi * Join
* Insert g1 ~ * Insert g1
|
ql

The ORDERS table is partitioned on the ORDERKEY column.
The LINEITEM table is partitioned on a different column.
The LINEITEM table is hashed and sent to the correct ORDERS table database partition.
In this example, the join predicate is assumed to be:
ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

Figure 9. Directed Inner-Table Join Example
Table Queues

A table queue is used:

» To pass table data from one database partition to another when using
inter-partition parallelism

» To pass table data within a database partition when using intra-partition
parallelism

» To pass table data within a database partition when using a single partition
database.

Each table queue is used to pass the data in a single direction.

156 Administration Guide: Performance

The compiler decides where table queues are required, and includes them in
the plan. When the plan is executed, the connections between the database
partitions initiate the table queues. The table queues close as processes end.

There are several types of table queues:

» Asynchronous table queues. These table queues are known as asynchronous
because they read rows in advance of any FETCH being issued by the
application. When the FETCH is issued, the row is retrieved from the table
queue.

Asynchronous table queues are used when you specify the FOR FETCH
ONLY clause on the SELECT statement. If you are only fetching rows, the
asynchronous table queue is faster.

» Synchronous table queues. These table queues are known as synchronous
because they read one row for each FETCH that is issued by the
application. At each database partition, the cursor is positioned on the next
row to be read from that database partition.

Synchronous table queues are used when you do not specify the FOR
FETCH ONLY clause on the SELECT statement. In a partitioned database
environment, if you are updating rows, the database manager will use the
synchronous table queues.

* Merging table queues. These table queues preserve order.

* Non-merging table queues. These table queues are also known as “regular”
table queues. They do not preserve order.

 Listener table queues. These table queues are use with correlated subqueries.
Correlation values are passed down to the subquery and the results are
passed back up to the parent query block using this type of table queue.

Influence of Sorting on the Optimizer

When the optimizer chooses an access plan, it considers the performance
impact of sorting data. Sorting occurs when no index exists to satisfy the
requested ordering of fetched rows. Sorting could also occur when the sort is
determined by the optimizer to be less expensive than an index scan. The
optimizer may carry out one of the following actions when sorting the data:

* “Piping” the results of the sort when the query is executed. See m
-Pj Jand L i i i

* Internal handling of the sort within the database manager. See

Piped versus Non-Piped Sorts

At the completion of a sort, if the final sorted list of data can be read in a
single sequential pass, the results can be piped. Piping is quicker than the use

Chapter 5. Understanding the SQL Compiler 157

of other (non-piped) means of communicating the results of the sort. The
optimizer chooses to pipe the results of a sort whenever possible.

Independent of whether a sort is piped, the time to sort will depend on a
number of factors, including the number of rows to be sorted, the key size
and the row width. If the rows to be sorted occupy more than the space
available in the sort heap, several sort passes are performed, where each pass
sorts a subset of the entire set of rows. Each sort pass is stored in a temporary
table in the buffer pool. (As part of the buffer pool management, it is possible
that pages from this temporary table may be written to disk.) Once all the sort
passes are complete, these sorted subsets must be merged into a single sorted
set of rows. If the sort is piped, as the rows are merged they are handed
directly to Relational Data Services.

For more information, see I‘Looking for Indicatars of Sorting Performancd
Emble.mslon_pa.ge_m or the discussion of the sortheap configuration

.Eara meter in

Aggregation and Sort Pushdown Operators

In some cases, the optimizer can choose to pushdown a sort or aggregation
operation to the Data Management Services component from the Relational
Data Services component. Pushing down these operations improves
performance by allowing the Data Management Services component to pass
data directly to a sort or aggregation routine. Without this pushdown, Data
Management Services would first pass this data to Relational Data Services,
which would then interface with the sort or aggregation routines. For
example, the following query benefits from this optimization:

SELECT WORKDEPT, AVG(SALARY) AS AVG_DEPT_SALARY

FROM EMPLOYEE
GROUP BY WORKDEPT

Aggregation in Sort

When sorting is used to produce the order required for a GROUP BY
operation the optimizer has the option of performing some or all of the
GROUP BY’s aggregation while doing the sort. This is advantageous if the
number of rows in each group is large. It is even more advantageous if doing
some of the grouping during the sort reduces or eliminates the need for the
sort to spill to disk.

When aggregation in sort is used, there are up to three (3) stages of
aggregation required to ensure proper results are calculated. The first stage of
aggregation, “partial aggregation,” calculates the aggregate values until the
sort heap is filled. Partial aggregation is the process whereby unaggregated

158 Administration Guide: Performance

data is taken in and partial aggregates are produced. If the sort heap is filled,
the rest of the data is spilled to disk and includes all of the partial
aggregations that have been calculated in the current filling of the sort heap.
Following the reset of the sort heap, new aggregations are started.

The second stage of aggregation, “intermediate aggregation,” takes all of the
spilled sort runs, and aggregates further on the grouping keys. The
aggregation cannot be completed because the grouping key columns are a
subset of the partitioning key columns. Intermediate aggregation takes in
existing partial aggregates and produce new partial aggregates. This stage is
optional, and is used for both intra-partition parallelism, and for
inter-partition parallelism. In the last case, the grouping is finished when a
global grouping key is available. In inter-partition parallelism, this would
occur when the grouping key is a subset of the partitioning key dividing
groups across partitions, and thus requiring repartitioning to complete the
aggregation. A similar case exists in intra-partition parallelism when each
agent finishes merging it’s spilled sort runs before reducing to a single agent
to complete the aggregation.

The last stage of aggregation, “final aggregation,” takes all of the partial
aggregates and completes the aggregation. Final aggregation takes in partial
aggregates and produces final aggregates. This step always takes place in a
GROUP BY operator. Sort cannot do complete aggregation because there is no
way to guarantee that the sort will not split. Complete aggregation takes in
unaggregated data and produces final aggregates. This method of aggregation
is typically used when grouping data that is already in the correct order and
when partitioning does not prohibit it’s use.

Optimization Strategies for Intra-Partition Parallelism

The optimizer may choose an access plan so that a query is executed in
parallel within a database partition if a degree of parallelism is specified when
the SQL statement is compiled.

At execution time, multiple database agents called “subagents” are created to
execute the query. The number of subagents is less than or equal to the degree
of parallelism determined when the SQL statement was compiled. For more
information on setting the degree of parallelism for SQL statements see

t‘Parallel Processing of Applications” on page 56. For more information on
agents and subagents, see [‘Database Agents” on page 233,

In a partitioned database, the degree of parallelism applies to each partition.
For example, the portion of the query that is executing at a given database
partition is further parallelized based on the degree of parallelism determined
at that database partition for that SQL statement.

Chapter 5. Understanding the SQL Compiler 159

The access plan is parallelized by dividing it into a portion that is run by each
subagent and a portion that is run by the coordinating agent. The subagents
pass data through table queues to the coordinating agent or to other
subagents. In a partitioned database, subagents may send or receive data
through table queues from subagents in other database partitions.

This section describes parallelization strategies within a single database
partition.

Parallel Scan Strategies

Relational scans and index scans can be performed in parallel on the same
table or index. For parallel relational scans, the table is divided into ranges of
pages or rows. A range of pages or rows is assigned to a subagent. A
subagent scans its assigned range and is assigned another range when it has
completed its work on the current range.

For parallel index scans, the index is divided into ranges of records based on
index key values and the number of index entries for a key value. The parallel
index scan proceeds like the parallel table scan with subagents being assigned
a range of records. A subagent is assigned a new range when it has complete
its work on the current range.

The scan unit (either a page or a row) and the scan granularity are
determined by the optimizer.

The parallel scan provides an even distribution of work among the subagents.
The goal of the parallel scan is to balance the load among the subagents and
keep them equally busy. If the number of busy subagents equals the number
of available processors and the disks are not overworked with 1/0 requests,
then the machine resources are being used effectively.

Other access plan operations may cause data imbalance as the query executes.
The optimizer chooses parallel strategies so that data balance is maintained.

Parallel Sort Strategies
The optimizer may choose one of the following parallel sort strategies:

Round-robin Sort

This is also known as a “redistribution sort”. This is an efficient shared
memory sort that attempts to redistribute the data as evenly as possible to all
subagents. It uses a round-robin clock type algorithm to provide the even
distribution. It first creates an individual sort for each subagent. During the
insert phase, subagents insert into each of the individual sorts in a
round-robin fashion. This achieves a more even distribution of data.

160 Administration Guide: Performance

Partitioned Sort

This is similar to the round-robin sort in that a sort is created for each
subagent. The subagents apply a hash function to the sort columns to
determine into which sort a row should be inserted. For example, if the inner
and outer of a merge join are a partitioned sort, a subagent can use merge join
to join the corresponding partitions. This allows the merge join to execute in
parallel.

Replicated Sort

This sort is used where all subagents require all the sort output. One sort is
created and subagents are synchronized during insertion into the sort. When
the sort is completed, each subagent reads the entire sort. This sort may be
used to rebalance the data stream if the number of rows is small.

Shared Sort

This sort is the same as a replicated sort, except the subagents open a parallel
scan on the sorted result. This distributes the data among the subagents in a
way similar to the round-robin sort.

Parallel Temporary Tables

Subagents can cooperate to produce a temporary table by inserting rows into
the same table. This is called a shared temporary table. The subagents can
open private scans or parallel scans on the shared temporary table depending
on whether the data stream is to be replicated or partitioned.

Parallel Aggregation Strategies

Aggregation operations can be performed in parallel by subagents. An
aggregation operation requires the data to be ordered on the grouping
columns. If a subagent can be guaranteed to receive all the rows for a set of
grouping column values, it can perform a complete aggregation. This can
happen if the stream is already partitioned on the grouping columns because
of a previous partitioned sort.

Otherwise the subagent can perform a partial aggregation and use another
strategy to complete the aggregation. Some of these strategies are:

» Send the partially aggregated data to the coordinator agent through a
merging table queue. The coordinator completes the aggregation.

* Insert the partially aggregated data into a partitioned sort. The sort is
partitioned on the grouping columns. This guarantees that all rows for a set
of grouping columns are contained in one sort partition.

 If the stream needs to be replicated for balance reasons, the partially
aggregated data can be inserted into a replicated sort. Each subagent

Chapter 5. Understanding the SQL Compiler 161

completes the aggregation using the replicated sort, and receives an
identical copy of the aggregation result.

Parallel Join Strategies

Join operations can be performed in parallel by subagents. Parallel join
strategies are determined by the characteristics of the data stream.

A join can be parallelized by partitioning and/or replicating the data stream
on the inner and outer of the join. For example, a nested loop join can be
parallelized if its outer stream is partitioned due to a parallel scan and the
inner stream is reevaluated independently by each subagent. A merged join
can be parallelized if its inner and outer streams are value-partitioned due to
partitioned sorts.

Federated Database Query Compiler Phases

This section describes additional query processing phases in a federated
database system. It also provides recommendations for improving federated
database query performance. Major topics include:

Pushdown Analysis

Pushdown analysis tells the DB2 optimizer if an operation can be performed
at a remote data source. An operation can be a function, such as relational
operator, system or user functions, or an SQL operator (GROUP BY, ORDER
BY, and so on).

Functions that cannot be pushed-down can significantly impact query
performance. Consider the effect of forcing a selective predicate to be
evaluated locally instead of at the data source. This approach could require
DB?2 to retrieve the entire table from the remote data source and then filter it
locally against the predicate. If your network is constrained—and the table is
large—query performance could suffer.

Operators that are not pushed-down can also significantly impact query
performance. For example, having a GROUP BY operator aggregate remote
data locally could, once again, require DB2 to retrieve the entire table from the
remote data source.

As an example, assume that nickname N1 references the data source table
EMPLOYEE in a DB2 for OS/390 data source. Further, assume that the table

162 Administration Guide: Performance

has 10,000 rows, one of the columns contains the last names of employees,
and one of the columns contains salaries. Given the statement:
SELECT LASTNAME, COUNT(*) FROM N1

WHERE LASTNAME > 'B' AND SALARY > 50000
GROUP BY LASTNAME;

several possibilities are considered:

« If the collating sequences at DB2 and DB2 for OS/390 are the same, it is
likely that the query predicate will be pushed-down to DB2 for OS/390. It
is usually more efficient to filter and group results at the data source
instead of copying the entire table to DB2 and performing the operations
locally. Pushdown analysis in federated systems determines if operations
can be performed at the data source. In this case, the predicate and the
GROUP BY operation can take place at the data source.

 If the collating sequence is not the same, pushdown analysis will determine
that the entire predicate cannot be evaluated at the data source; however,
the optimizer may decide to pushdown the SALARY > 1000 portion of the
predicate. The range comparison must still be done at DB2.

« If the collating sequence is the same, and the optimizer knows that the
local DB2 server is very fast, it is possible that the optimizer will decide
that performing the GROUP BY operation locally at DB2 is the best (least cost)
approach. The predicate will be evaluated at the data source. This is an
example of pushdown analysis combined with global optimization. DB2
will consider the available paths and then choose a plan that is the most
efficient.

In general, the goal is to ensure that functions and operators can be
considered for evaluation on data sources by the optimizer. Many factors can
affect whether a function or an SQL operator is evaluated at a remote data
source. The key factors are discussed in three groups: server characteristics,
nickname characteristics, and query characteristics.

Server Characteristics Affecting Pushdown Opportunities

The following sections contain data source-specific factors that can affect
pushdown opportunities. In general, these factors exist because DB2 lets you
use a rich SQL dialect to submit queries. This dialect may offer more
functionality than the SQL dialect supported by a server accessed during a
DB2 query. DB2 can compensate for the lack of function at a data server, but
doing so may require that the operation take place at DB2.

SQL Capabilities: Each data source supports a variation of the SQL dialect
and different levels of functionality. For example, consider the GROUP BY list.
Most data sources support the GROUP BY operator; but, some have
restrictions on the number of items on the GROUP BY list or restrictions on

Chapter 5. Understanding the SQL Compiler 163

whether an expression is allowed on the GROUP BY list. If there is a
restriction at the remote data source, DB2 might have to perform the GROUP
BY operation locally.

SQL Restrictions: Each data source can have different SQL restrictions. For
example, some data sources require parameter markers to bind in values to
remote SQL statements. Therefore, parameter marker restrictions must be
checked to ensure that each data source can support such a bind mechanism.
If DB2 cannot determine a good method to bind in a value for a function, this
function must be evaluated locally.

SQL Limits: DB2 might allow the use of larger integers than its remote data
sources; however, limit-exceeding values cannot be embedded in statements
sent to data sources. Therefore, the function or operator that operates on this
constant must be evaluated locally.

Server Specifics: Several factors fall into this category. One example is
sorting NULL values (highest, lowest, or depending on the ordering). For
example, if the NULL value is sorted at a data source differently from DB2,
ORDER BY operations on a nullable expression cannot be remotely evaluated.

Collating Sequence: Configuring a federated database to use the same
collating sequence that a data source uses and then setting the
collating_sequence server option to 'Y’ allows the optimizer to consider
"pushing-down” character range comparison predicates.

When a query from a federated server requires sorting, the place where the
sorting is processed depends on several factors. If the federated database’s
collating sequence is the same as that of the data source where the queried
data is stored, the sort may take place at the data source. If collating
sequences are the same, the optimizer can decide if a local sort or a sort at the
data source is the most efficient way to complete the query. Likewise, if a
query requires a comparison of character data, this comparison can also be
performed at the data source.

Numeric comparisons, in general can be done at either location even if the
collating sequence is different. You may get unusual results, however, if the
weighting of null characters is different between the federated database and
the data source. Likewise, for comparison statements, be careful if you are
submitting statements to a case-insensitive data source. The weights assigned
to the characters "1” and "i” in a case-insensitive data source are the same.
DB2, by default, is case sensitive and would assign different weights to the
characters.

If the collating sequences of the federated database and the data source differ,
DB?2 retrieves the data to the federated database, so that it can do the sorting

164 Administration Guide: Performance

and comparison locally. The reason is that users expect to see the query
results ordered according to the collating sequence defined for the federated
server; by ordering the data locally, the federated server ensures that this
expectation is fulfilled.

Retrieving data for local sorts and comparisons usually decreases
performance. Therefore, consider configuring the federated database to use the
same collating sequences that your data sources use. That way, performance
might increase, because the federated server can allow sorts and comparisons
to take place at data sources. For example, in DB2 UDB for OS/390, sorts
defined by ORDER BY clauses are implemented by a collating sequence based
on an EBCDIC code page. If you want to use the federated server to retrieve
DB2 for OS/390 data sorted in accordance with ORDER BY clauses, it is
advisable to configure the federated database so that it uses a predefined
collating sequence based on the EBCDIC code page.

If the collating sequences at the federated database and the data source differ,
and you need to see the data ordered in the data source’s sequence, you can
submit your query in pass-through mode, or define the query in a data source
view.

See the Administration Guide, Design and Implementation for more information
about collating sequences and how to set them; see [[ahle 8 on page 73 for
more information about the collating_sequence server option.

Server Options: Several server options can affect pushdown opportunities. In
particular, review your settings for collating sequence, varchar no trailing blanks,
and pushdown. See L i i ies”

for information on setting these options.

DB2 Type Mapping and Function Mapping Factors: The default local data
type mappings provided by DB2 (see the Application Development Guide for
data type tables) are designed so that sufficient buffer space is given to each
data source data type (to avoid loss of data). A user can choose to customize
the type mapping for a specific data source to suit specific applications. For
example, if you are accessing an Oracle data source column with a DATE data
type (which by default is mapped to the DB2 TIMESTAMP data type), you
could change the local data type to the DB2 DATE data type.

DB2 can compensate for functions not supported by a data source. There are
three cases where function compensation will occur:

* This function simply does not exist at the remote data source.

* The function does exist; however, the characteristics of the operand violate
function restrictions. An example of this situation is the IS NULL relational

Chapter 5. Understanding the SQL Compiler 165

operator. Most data sources support it, but some may have restrictions,
such as only allowing a column name on the left hand side of the IS NULL
operator.

* The function, if evaluated remotely, may return a different result. An
example of this situation is the '>’ (greater than) operator. For those data
sources with different collating sequences, the greater than operator may
return different results than if it is evaluated locally by DB2.

Nickname Characteristics Affecting Pushdown Opportunities

The following sections contain nickname-specific factors that can affect
pushdown opportunities.

Local Data Type of a Nickname Column: Ensure that the local data type of
a column does not prevent a predicate from being evaluated at the data
source. As mentioned earlier, the default data type mappings are provided to
avoid any possible overflow. However, a joining predicate between two
columns of different lengths might not be considered at the data source whose
joining column is shorter, depending on how DB2 binds in the longer column.
This situation can affect the number of possibilities in a joining sequence
evaluated by the DB2 optimizer. For example, Oracle data source columns
created using the INTEGER or INT data type are given the type
NUMBER(38). A nickname column for this Oracle data type will be given the
local data type FLOAT because the range of a DB2 integer is from 2**31 to
(-2**31)-1, which is roughly equal to NUMBER(9). In this case, joins between a
DB?2 integer column and an Oracle integer column cannot take place at the
DB2 data source (shorter joining column); however, if the domain of this
Oracle integer column can be accommodated by the DB2 INTEGER data type,
change its local data type with the ALTER NICKNAME statement so that the
join can take place at the DB2 data source.

Column Options: The ALTER NICKNAME SQL statement can be used to
add or change column options for nicknames.

One of these options is "varchar_no_trailing_blanks”. It can be used to identify
a column that contains no trailing blanks. The compiler pushdown analysis
step will then take this information into account when checking all operations
performed on columns so indicated. Based on this indication, DB2 may
generate a different but equivalent form of a predicate to be used in the
remote SQL statement sent to a data source. A user might see a different
predicate being evaluated against the data source, but the net result should be
equivalent.

Another column option is numeric_string. Use this option to indicate if the
values in that column are always numbers without trailing blanks.

166 Administration Guide: Performance

See [fahle 19 for column option values and defaults.
Table 15. Column Options and Their Settings

Option Valid Settings Default
Setting
numeric_strin ‘N’
- 9 Y’ Yes, this column contains only strings of numeric data.

IMPORTANT: If this column contains only numeric
strings followed by trailing blanks, it is inadvisable to
specify ‘Y’

‘N’ No, this column is not limited to strings of numeric
data.

By setting numeric_string to ‘Y’ for a column, you are
informing the optimizer that this column contains no blanks
that could interfere with sorting of the column’s data. This
option is helpful when the collating sequence of a data source is
different from DB2. Columns marked with this option will not
be excluded from local (data source) evaluation because of a
different collating sequence.

varchar_no_trailing_blanks Indicates whether trailing blanks are absent from a specific ‘N*
VARCHAR column:
Y’ Yes, trailing blanks are absent from this VARCHAR
column.
‘N’ No, trailing blanks are not absent from this VARCHAR
column.

If data source VARCHAR columns contain no padded blanks,
then the optimizer’s strategy for accessing them depends in part
on whether they contain trailing blanks. By default, the
optimizer “assumes” that they actually do contain trailing
blanks. On this assumption, it develops an access strategy that
involves modifying queries so that the values returned from
these columns are the ones that the user expects. If, however, a
VARCHAR column has no trailing blanks, and you let the
optimizer know this, it can develop a more efficient access
strategy. To tell the optimizer that a specific column has no
trailing blanks, specify that column in the ALTER NICKNAME
statement (for syntax, see the SQL Reference).

Query Characteristics Affecting Pushdown Opportunities

A query can reference an SQL operator that might involve nicknames from
multiple data sources. When DB2 must combine the results from two
referenced data sources using one operator, such as a set operator (e.g.
UNION), the operation must take place at DB2. The operator cannot be
evaluated at a remote data source directly.

Chapter 5. Understanding the SQL Compiler 167

Analyzing and Understanding Pushdown Analysis Decisions

Rewriting SQL statements can provide additional pushdown opportunities for
DB2 query processing. This section introduces tools for determining where a
query is evaluated, lists common questions (and suggested areas to
investigate) associated with query analysis, and closes with a brief section
about data source upgrades.

Analyzing Where a Query is Evaluated: There are two utilities provided
with DB2 that show where queries are evaluated:

* Visual explain. Start it with the db2cc or the db2vexp command. Use it to
view the query access plan graph. The execution location for each operator
is included in the detailed display of an operator.

If a query is completely pushed down, you should see a RETURN operator
on top of an RQUERY operator. The RETURN operator is a standard DB2
operator; the RQUERY operator is unique to federated database operations.
RQUERY sends an SQL SELECT statement to a data source to retrieve the
query result. The SELECT statement is generated using the SQL dialect
supported by the data source. It can contain any valid query for that data
source.

* SQL explain. Start it with the db2expln or the dynexpln command. Use it
to view the access plan strategy as text.

Understanding Why a Query is Evaluated at a Data Source or at DB2: This
section lists typical plan analysis questions and areas to investigate to increase
pushdown opportunities. Key questions include:

* Why isn’t this predicate being evaluated remotely?

This question arises when a predicate is very selective and thus could be

used to filter rows and reduce network traffic. Remote predicate evaluation

also affects whether a join between two tables of the same data source can
be evaluated remotely.

Areas to examine include:

— Subquery predicates. Does this predicate contain a subquery that
pertains to another data source? Does this predicate contain a subquery
involving an SQL operator that is not supported by this data source? Not
all data sources support set operators in a predicate.

— Predicate functions. Does this predicate contain a function that cannot be
evaluated by this remote data source? Relational operators are classified
as functions.

— Predicate bind requirements. Does this predicate, if remotely evaluated,
require bind-in of some value? If so, would it violate SQL restrictions at
this data source?

168 Administration Guide: Performance

Global optimization. The optimizer may have decided that local

processing is more cost effective. See [‘Remate SQI Generation and
Global Optimization” on page 170 for more information.

* Why isn’t the GROUP BY operator evaluated remotely?
There are several areas you can check:

Is the input to the GROUP BY operator evaluated remotely? If the
answer is no, examine the input.

Does the data source have any restrictions on this operator? Examples
include:

- Limited number of GROUP BY items

- Limited byte counts of combined GROUP BY items

- Column specification only on the GROUP BY list

Does the data source support this SQL operator?

Global optimization. The optimizer may have decided that local

processing |s more cost effective. See LRemnle_SQ.l_GP_nal:a.tlan_a.nd

” for more information.

* Why isn’t the set operator evaluated remotely?
There are several areas you can check:
Are both of its operands completely evaluated at the same remote data

source? If the answer is no and it should be yes, examine each operan
Does the data source have any restrictions on this set operator? For

d.

example, are large objects or long fields valid input for this specific set

operator?

* Why isn’t the ORDER BY operation evaluated remotely?
Consider:

Is the input to the ORDER BY operation evaluated remotely? If the
answer is no, examine the input.

— Does the ORDER BY clause contain a character expression? If yes, does

the remote data source not have the same collating sequence as DB2?

— Does the data source have any restrictions on this operator? For example,

is there a limited number of ORDER BY items? Does the data source
restrict column specification to the ORDER BY list?

Data Source Upgrades and Customization: Although the DB2 SQL compiler
has much information about data source SQL support, this data may need
adjustment over time because data sources can be upgraded and/or
customized. In such cases, make enhancements known to DB2 by changing
local catalog information. Use DB2 DDL statements (such as CREATE
FUNCTION MAPPING and ALTER SERVER) to update the catalog. See the
SQL Reference for more information.

Chapter 5. Understanding the SQL Compiler

169

Remote SQL Generation and Global Optimization

This phase helps produce a globally optimal access strategy to evaluate a
query. For a federated database query, the access strategy may involve
breaking down the original query into a set of remote query units and then
combining the results.

Using the output of pushdown analysis as a recommendation, the optimizer
decides whether each operation will be evaluated locally at DB2 or remotely
at a data source. The decision is based on the output of its cost model, which
includes not only the cost to evaluate the operation but also the cost to
transmit the data or messages between DB2 and data sources.

The goal is to produce an optimized query; however, many factors can affect
the output from global optimization and thus affect query performance. The
key factors are discussed in two groups: server characteristics and nickname
characteristics.

Server Characteristics/Options Affecting Global Optimization

Data source server factors that can affect global optimization include the:
* Relative ratio of CPU speed

Use the cpu_ratio server option to indicate how much faster or slower the
data source CPU speed is compared with the DB2 CPU. A low ratio
indicates that the data source workstation CPU is faster than the DB2
workstation CPU. With low ratios, the DB2 optimizer is more likely to
consider pushing-down CPU-intensive operations to the data source. See

'Server Options Affecting Federated Datahase Qiieries” an page 73 for more

information about this ratio.

* Relative ratio of 1/0 speed

Use the io_ratio server option to indicate how much faster or slower the
data source system 1/0 speed is compared with the DB2 system. A low
ratio indicates that the data source workstation 1/0 speed is faster than the
DB2 workstation 1/0 speed. For low ratios, the DB2 optimizer will consider
pushmg down 1/0O-intensive operations to the data source. See

” for more

information about this ratio.

¢ Communication rate between DB2 and the data source

Use the comm_rate server option to indicate network capacity. Low rates
(indicating a slow network communication between DB2 and the data
source) encourage the DB2 optimizer to reduce the number of messages
sent to or from this data source. If the rate is set to 0, the optimizer

170 Administration Guide: Performance

produces a query requiring minimal network traffic. See t‘Server Optiond
Affecting Federated Database Queries” on page 73 for more information

about this ratio.

» Data source collating sequence
Use the collating_sequence server option to indicate if a data source collating

sequence matches the local DB2 database collating sequence. If this option
is not set to 'Y’, the optimizer considers the data retrieved from this data

source as unordered. See ‘Callating Sequence™ on page 164 for more

information about collating sequence performance issues.

* Remote plan hints

Use the plan_hints server option to indicate if plan hints are supported at a
data source. Plan hints are statement fragments that provide extra
information for data source optimizers. This information can, for certain
query types, improve query performance. The plan hints can help the data
source optimizer decide whether to use an index, which index to use, or
which table join sequence to use.

If plan hints are enabled, the query sent to the data source contains
additional information. For example, a statement sent to an Oracle
optimizer with plan hints could look like this:

SELECT /++ INDEX (tablel, tlindex)=/

coll
FROM tablel

The plan hint is the string /*+ INDEX (tablel, tlindex)=x/.
» Information in the DB2 optimizer knowledge base

DB2 has an optimizer knowledge base that contains data about native data
sources. The DB2 optimizer does not generate remote access plans that
cannot be generated by specific DBMSs. In other words, DB2 avoids
generating plans that optimizers at remote data sources cannot understand
or accept.

Nickname Characteristics Affecting Global Optimization

The following sections contain nickname-specific factors that can affect global
optimization.

Index Considerations: DB2 can use information about indexes at data
sources to optimize queries. For this reason, it is important that the index
information available to DB2 is current. The index information for nicknames
is initially acquired at create nickname time. Index information is not gathered
for view nicknames.

Creating Index Specifications on Nicknames: You can create an index
specification for a nickname. Index specifications build an index definition

Chapter 5. Understanding the SQL Compiler 171

(not an actual index) in the catalog for use by the DB2 optimizer. Use the
CREATE INDEX SPECIFICATION ONLY statement to create index
specifications. The syntax for creating an index specification on a nickname is
similar to the syntax for creating an index on a local table. See the
Administration Guide, Design and Implementation for more information.

Consider creating index specifications when:

* DB2 is unable to retrieve any index information from a data source during
nickname creation.

¢ You want an index for a view nickname.

* You want to encourage the DB2 optimizer to use a specific nickname as the
inner table of a nested loop join. The user can create an index on the joining
column if none exists.

Consider your needs before issuing CREATE INDEX statements against a
nickname for a view. In one case, if the view is a simple SELECT on a table
with an index, creating indexes on the nickname (locally) that match the
indexes on the table at the data source can significantly improve query
performance. However, if indexes are created locally over views that are not
simple select statements (for example, a view created by joining two tables),
query performance may suffer. For example, if an index is created over a view
that is a join of two tables, the optimizer may choose that view as the inner
element in a nested loop join. The query will have poor performance because
the join will be evaluated several times. An alternative is to create nicknames
for each of the tables referenced in the data source view and create a local
view at DB2 that references both nicknames.

Catalog Statistics Considerations: Catalog statistics describe the overall size
of nicknames and the range of values in associated columns. They are used by
the optimizer when calculating the least cost path for processing queries
containing nicknames. Nickname statistics are stored in the same catalog

views as table statistics. See I'Chapter 4 System Catalog Statistics” on page 79
and FRules for Updating Tahle and Nickname Statistics” on page 103 for more

information about statistic types and how to update them locally.

While DB2 can retrieve the statistical data held at a data source, it cannot
automatically detect updates to existing statistical data at data sources.
Furthermore, DB2 has no mechanism for handling object definition or
structural changes (adding a column) to objects at data sources. If the
statistical data or structural data for an object has changed, you have two
choices:

* Run the equivalent of RUNSTATS at the data source. Then, drop the current
nickname. Re-create the nickname. Use this approach if structural
information has changed.

172 Administration Guide: Performance

* Manually update the statistics in the SYSSTAT.TABLES view. This approach
requires fewer steps but it will not work if structural information has
changed.

Analyzing and Understanding Global Optimization Decisions

This section introduces tools for analyzing query optimization and presents
common questions (and suggested areas to investigate) associated with query
optimization.

Analyzing Query Optimization: There are two utilities provided with DB2
that show global access plans:

» Visual explain. Start it with the db2cc or the db2vexp command. Use it to
view the query access plan graph. The execution location for each operator
is included in the detailed display of an operator. You can also find the
remote SQL statement generated for each data source in the RQUERY
(select operation) operator. By examining the details of each operator, you
can see the number of rows estimated by the DB2 optimizer as input to and
output from each operator. You can also see the estimated cost to execute
each operator including the communications cost. See FAppendix E_SQI|
Explain Tools” on page 649 for more information.

* SQL explain. Start it with the db2expln or dynexpln command. Use it to
view the access plan strategy as text. SQL explain does not provide cost
information; however, you can get the access plan generated by the remote
optimizer for those data sources supported by the remote explain function.

See I*‘Appendix E_SQL Explain Tools” on page 645 for more information.

Understanding DB2 Optimization Decisions: This section lists optimization
guestions and key areas to investigate to improve performance. Key questions
include:

* Why isn’t a join between two nicknames of the same data source being
evaluated remotely?

Areas to examine include:
— Join operations. Can the data source support them?

— Join predicates. Can the join predicate be evaluated at the remote data
source’> If the answer is no, examlne the join predicate. See

m for more information.

— Number of rows in the join result (with visual explain). Does the join
produce a much larger set of rows than the two nicknames combined?
Do the numbers make sense? If the answer is no, consider updating the
nickname statistics manually (SYSSTAT.TABLES).

* Why isn’t the GROUP BY operator being evaluated remotely?

Chapter 5. Understanding the SQL Compiler 173

Areas to examine include:
— Operator syntax. Verify that the operator can be evaluated at the remote

data source. See EUnderstanding Why a Query is Fvaluated at a Datd
Baurce or at DR2” on page 164 for more information.

— Number of rows. Check the estimated number of rows in the GROUP BY
operator input and output using visual explain. Are these two numbers
very close? If the answer is yes, the DB2 optimizer considers it more
efficient to evaluate this GROUP BY locally. Also, do these two numbers
make sense? If the answer is no, consider updating the nickname
statistics manually (SYSSTAT.TABLES).

* Why is the statement not being completely evaluated by the remote data
source?

The DB2 Optimizer performs cost-based optimization. Even if pushdown
analysis indicates that every operator can be evaluated at the remote data
source, the optimizer still relies on its cost estimate to generate a globally
optimal plan. There are a great many factors that can contribute to that
plan. For example, even though the remote data source can process every
operation in the original query, its CPU speed is much slower than DB2’s
and thus it may turn out to be more beneficial to perform the operations at
DB?2 instead. If results are not satisfactory, verify your server statistics in
SYSCAT.SERVEROPTIONS.

* Why does a plan generated by the optimizer, and completely evaluated at a
remote data source, have much worse performance than the original query
executed directly at the remote data source?

Areas to examine include:

— The remote SQL statement generated by the DB2 optimizer. Ensure that
it is identical to the original query. Check for predicate ordering changes.
A good query optimizer should not be sensitive to the predicate ordering
of a query; unfortunately, not all DBMS optimizers are identical, and
thus it is likely that the optimizer of the remote data source may
generate a different plan based on the input predicate ordering. If this is
true, this is a problem inherent in the remote optimizer. Consider either
modifying the predicate ordering on the input to DB2 or contacting the
service organization of the remote data source for assistance.

Also, check for predicate replacements. A good query optimizer should
not be sensitive to equivalent predicate replacements; unfortunately, not
all DBMS optimizers are identical, and thus it is possible that the
optimizer of the remote data source may generate a different plan based
on the input predicate. For example, some optimizers cannot generate
transitive closure statements for predicates.

— The number of returned rows. You can get this number from Visual
Explain. If the query returns a large number of rows, network traffic is a
potential bottleneck.

174 Administration Guide: Performance

— Additional functions. Does the remote SQL statement contain additional
functions compared with the original query? Some of the extra functions
may be generated to convert data types. Ensure that they are necessary.

Chapter 5. Understanding the SQL Compiler 175

176 Administration Guide: Performance

Chapter 6. SQL Explain Facility

The SQL explain facility is part of the SQL Compiler that can be used to
capture information about the environment where the static or dynamic SQL
statement is compiled. The information captured allows you to understand
the structure and potential execution performance of SQL statements,
including:

» Sequence of operations to process the query

* Cost information

* Predicates and selectivity estimates

 Statistics for all objects referenced in the SQL statement at the time of the
explain.

This information can help you:

* Understand the execution plan chosen for a query
+ Assist in designing application programs

* Determine when an application should be rebound
* Assist in database design.

The following topics are provided:

The explain output is stored in relational tables and, as an option, in a format
which may be graphically displayed using the Visual Explain tool. You should
consider using the explain tables to find those queries that are of interest to

you. For more information on the tables used by the explain facility and how

to create those tables, see [‘Appendix D. Explain Tables and Definitions” on

© Copyright IBM Corp. 1993, 1999 177

Choosing an Explain Tool

DB2 provides the most comprehensive explain facility in the industry with
detailed optimizer information on the access plan chosen for an explained
SQL statement. Several methods are provided to give you the flexibility you
need to capture and access explain information.

Detailed optimizer information that allows for in-depth analysis of an access
plan is kept in explain tables separate from the actual access plan itself. There
are three ways to get information from the explain tables:

1. Write your own queries (based on the explain table descriptions as shown
in 3 H H H H H 7

2. Use the db2exfmt tool
3. Use Visual Explain (to view explain snapshot information)

The explain tables are accessible on all supported platforms and contain
information for both static and dynamic SQL statements. You can access the
explain tables using SQL statements which allows for easy manipulation of
the output and for comparison among different queries, or for comparisons of
the same query over time. When using the explain tables, you are required to
create your own statements to access the tables. If you wish the information
from the explain tables to be presented in a predefined format, you can use
the db2exfmt tool. For more information about this tool, see m

wﬁmauﬂw i i N

Note: The location of this tool (and others like db2batch, dynexpln, db2vexp,
and db2_all) is in the misc subdirectory of the sqgllib directory. If this tool
has been moved from this path, then the command line entry
mentioned above may not work.

Visual Explain allows for the analysis of access plan and optimizer
information from the explain tables through a graphical interface. Both static
and dynamic SQL statements can be analyzed using this tool. Visual Explain
is typically invoked from within the Control Center. The Control Center is
available from the command line by typing db2cc. Also, Visual Explain can be
invoked directly from the command line for a single SQL statement using the
db2vexp command. On some platforms, Visual Explain can be invoked using a
folder from within the DB2 Universal Database folder. Visual Explain is not
available on all supported platforms. You should refer to the Quick Beginnings
manual for your platform to see if Visual Explain is supported. Visual Explain
does allow you to view snapshots captured or taken on another platform. For
example, a Windows NT Client can graph snapshots generated on a DB2 for
HP-UX server. To do this, both of the platforms must be at a \ersion 5 level or
later. The output from Visual Explain is not easily manipulated for further
analysis nor is the information accessible to other applications. For more

178 Administration Guide: Performance

information on the db2vexp command, type db2vexp -h on the command line or
refer to the Command Reference manual. For other information on Visual
Explain, you should refer to the online help in the Control Center by typing
db2cc.

Information about access plans for static SQL statements is generated and
stored in the system catalog as part of a package. To see the access plan
information available for one or more packages, the db2expln tool is available
from the command line. db2expln shows the actual implementation of the
chosen access plan. It does not show optimizer information.

The dynexpln tool, which uses db2expln within it, provides a quick way to
explain dynamic SQL statements that contain no parameter markers. This use
of db2expln from within dynexpln is done by transforming the input SQL
statement into a static statement within a pseudo-package. When this occurs,
the information may not always be completely accurate. If complete accuracy
is desired, you should use the Explain facility.

The db2expln tool does provide a relatively compact and English-like overview
of what operations will occur at run-time by examining the actual access plan
generated (see li14 for more information on how the code is generated).
Additional details on using db2expln and interpreting the output can be found
inL i i ”

[fanle 16 summarizes the different tools available with the DB2 explain facility
and their individual characteristics. Use this table to select the tool most

suitable for your environment and needs.

Table 16. Explain Facility Tools

Visual Explain
Desired Characteristics Explain db2vexp |tables db2exfmt |db2expln |dynexpln
GUI-interface Yes Yes
Text output Yes Yes Yes
“Quick and dirty” static SQL Yes
analysis
Static SQL supported Yes Yes Yes Yes
Dynamic SQL supported Yes Yes Yes Yes Yes*
CLI applications supported Yes Yes Yes
Available to DRDA Application Yes
Requesters
Detailed optimizer information | Yes Yes Yes Yes
Suited for analysis of multiple Yes Yes Yes Yes
statements

Chapter 6. SQL Explain Facility 179

Table 16. Explain Facility Tools (continued)

Visual Explain
Desired Characteristics Explain db2vexp |tables db2exfmt |db2expln |dynexpln
Information accessible from Yes
within an application
Note:
* Indirectly using db2expln; there are some limitations.

Using the SQL Explain Facility

The different means of capturing explain information include using:

1.
2.

3.
4.

EXPLAIN and EXPLSNAP BIND/PREP options

CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT
special registers

EXPLAIN SQL statement
db2vexp tool (also directly calls Visual Explain to display the information)

There are three reasons you may wish to collect and use explain data:

1.

To understand the steps (the access plan) that the Database Manager must
perform to satisfy your query. L imization’

provides information which you may need to reference if you
wish to understand the explain output.

To help evaluate your performance tuning initiatives. There are a number
of actions you can take to help improve the performance of your queries.
Many of these possible actions are described in subtopics of the following:

After making a change in any of these areas, you can use the SQL explain
facility to determine the impact, if any, that the change has on the access
plan chosen. For example, if you add an index based on the
recommendations provided in Flndexing Impact an Query Optimization’]

, the explain data can help you determine whether the index is,
in fact, being used as you expected.

While the explain output will provide you with information to allow you
to determine the access plan that was chosen and its relative cost, the only

180 Administration Guide: Performance

way to accurately measure the performance improvement for a query is to

use benchmark testing techniques, as described in [‘Chapter 11. Benchmarkd

. To help you understand the reasons for changes in query performance,
you need to have the explain information both before and after your
change in order to analyze the impact. Therefore, when compiling a SQL
statement to the database, you should:

* Use the explain facility to capture the plan information before your
changes, and save the resulting explain tables.

» Save and/or print the current catalog statistics if you do not want to, or
cannot, access Visual Explain to view this information. (The db2100k

Eroductivity tool, described in EMadeling Production Databases” an

, could be used to help perform this task.)

* Save and/or print the data definition language (DDL) statements,
including those for CREATE TABLE, CREATE VIEW, CREATE INDEX,
CREATE TABLESPACE.

The above information provides you with a before picture that you can use
as a reference point for future analysis. For dynamic SQL statements, you
can also collect this information when you run your application for the
first time. For static SQL statements, you can also collect this information
at bind time.

When you wish to analyze the reason for a performance change, you can
compare the before data to information you collect about the query and
environment when you are starting your analysis (the after data).

As a simple example, your analysis could show that an index is no longer
being used as part of the access path. Using the catalog statistics
information in Visual Explain, you might notice that the number of index
levels (NLEVELS column) is now substantially higher than when the
query was first bound to the database. You might then choose to:

* Reorganize the index

» Collect new statistics for your table and indexes

* Gather explain information when rebinding your query.
Following these actions, you might notice that the index is once again

being used in the access plan and that performance of the query is no
longer a problem.

Chapter 6. SQL Explain Facility 181

Introductory Concepts for Explain

You can use explain information to analyze the access plan that the optimizer

has chosen based on the choices described in [‘Data Access Concepts and
Qptimization” on page 128. For example, explain information may indicate

that an index scan (see Elndex Scan Concepts” on page 127) was chosen by the
optimizer. In addition, it can also allow you to determine the following:

. How many mdex columns are used as search crlterla as described in

* Whether index-only access is used, as described in L =

* Whether list prefetch will be used to read the pages, as described in

As another example, the explain information could also help you understand
how two tables are joined:

* The join method
e The order in which the tables are joined
* The occurrence and type of sorts.

Although you can use explain for SELECT, SELECT INTO, UPDATE, INSERT,
VALUES, VALUES INTO, and DELETE SQL statements, the primary use of
explain is to observe the access paths for the SELECT parts of your
statements.

To satisfy an SQL query, the Database Manager typically:
» Uses one or more data objects (a table, an index, or both)
» Performs one or more operations (for example, table scan, index scan, and
join)
* Returns the result set to the calling application.
For a simple SQL query, such as:
SELECT DEPTNO, DEPTNAME
FROM DEPARTMENT

the following, graphical representation of the steps performed could be
displayed by Visual Explain:

182 Administration Guide: Performance

The RETURN operator
which gives the query
results back to the
calling application.

RETURN

The TBSCAN operator
which performs a table
scan on the DEPARTMENT
table.

TBSCAN

The table object called

DEPARTMENT.
DEPARTMENT

Figure 10. Graphical Display of Explain Output

The following topics discuss the type of details you can view for objects and
operators:

Explain Information for Data Objects

A single access plan may use one or more data objects to satisfy the SQL
statement.

Object Statistics: The explain facility records facts about the object, such as:
* The creation time
» The last time that statistics were collected for the object (see W

* An indication of whether or not the data in the object is ordered
* The number of columns in the object

* The estimated number of rows in the object

* The number of pages that the object occupies in the buffer pool

* The total estimated overhead, in milliseconds, for a single random 1/0 to
the specified table space where this object is stored

* The estimated transfer rate, in milliseconds, to read a 4K page from the
specified table space

Chapter 6. SQL Explain Facility 183

» Prefetch and extent sizes, in 4K pages
» The degree of data clustering with the index

* The number of leaf pages used by this object’s index and the number of
levels in the tree

* The number of distinct full key values in this object’s index

* The total number of overflow records in the table.

Explain Information for Data Operators

A single access plan may perform several operations on the data to satisfy the
SQL statement and provide results back to you. The SQL compiler determines
the operations required; for example, a table scan, an index scan, a nested
loop join, or a group-by. Details of many of these operators are provided in

In addition to showing the various operators used in an access plan, explain
information is also available for each operator as well as the cumulative
effects of the access plan.

Estimated Cost Information: The following estimated, cumulative costs can
be displayed for the operators. These costs are for the chosen access plan, up
to and including the operator for which the information is captured.

* The total cost (in timerons)

* The number of 4 KB page 1/0s

e The number of CPU instructions

* The cost (in timerons) of fetching the first row, including any initial
overhead required

e The communication cost (in frames).
Timerons are a made-up, relative unit of measure.

Operator Properties: The following information is recorded by the explain
facility to describe the properties of each operator:

e The set of tables that have been accessed
¢ The set of columns that have been accessed

* The columns on which the data is ordered, if the optimizer determined that
this ordering can be used by subsequent operators

* The set of predicates that have been applied
* The estimated number of rows that will be returned (cardinality).

184 Administration Guide: Performance

How Explain Information is Organized

All explain information is organized around the concept of an explain
instance. An explain instance represents one invocation of the explain facility
for one or more SQL statements. An explain instance represents the explain
information for:

+ All the eligible SQL statements in one package for static SQL statements

* One particular SQL statement for dynamic SQL statements

« Each EXPLAIN SQL statement (whether dynamic or static).

The explain information captured within one explain instance includes the
SQL Compilation environment as well as the access plan chosen to satisfy the

SQL statement being compiled. Explain information is organized into 3
subsets:

Explain Instance Information Compilation environment information
captured for each explain instance.

Explain Snapshot Information
Information used by Visual Explain.

Explain Table Information Information collected when explain table
information is requested.

Explain Instance Information

Explain instance information is stored in the EXPLAIN_INSTANCE table.
Additional specific information about each SQL statement explained within an
explain instance is stored in the EXPLAIN_STATEMENT table.

Explain Instance Identification: You can uniquely identify each explain
instance and correlate the information for the SQL statements to a given
invocation of the facility with this information:

* The user who requested the explain information

* When the explain request began

* The name of the package from which the explained SQL statement came

* The schema of the package from which the explained SQL statement came.
* An indication whether a snapshot was part of the explain request.

Environmental Settings: Environmental information concerning how the SQL
compiler optimized your queries is captured. The environmental information
includes the following:

» The version and release number for the level of DB2 being used.

* The degree of parallelism used to compile the query. The CURRENT
DEGREE special register, the DEGREE bind option, the SET RUNTIME

Chapter 6. SQL Explain Facility 185

DEGREE API, and the dft_degree configuration parameter may be used to
determine the degree of parallelism to be used when compiling a particular

query.
* Whether the SQL statement was dynamic or static.

« The query optimization class used to compile the query. See EAdjusting thd
imizati ” for more information.

* The type of cursor blocking specified when compiling the query. For more
information about cursors, refer to the SQL Reference manual. For more

information about cursor blocking, see ERaw Blacking” on page 48

+ The isolation level used when compiling the query. See ECancurrency” od
for more information.

e The values of various configuration parameters when the query was
compiled. See EConfiguration Parameters Affecting Query Qptimization” od
for more information about the configuration parameters that can
affect query optimization, including the following parameters that are
recorded when an explain snapshot is taken:

T - - - P

SQL Statement Identification: For each explain instance, multiple SQL
statements may have been explained. Along with information that uniquely
identifies the explain instance, the following information helps identify each
individual SQL statement.

* The type of statement: SELECT, DELETE, INSERT, UPDATE, positioned
DELETE, positioned UPDATE.

* The statement and section number of the package issuing the SQL
statement, as recorded in SYSCAT.STATEMENTS catalog view.

Within the EXPLAIN_STATEMENT table, the QUERYTAG and QUERYNO
fields contain identifiers and are set for you as part of the explain process.

186 Administration Guide: Performance

For dynamic explain SQL statements submitted during a CLP or CLI session,
when EXPLAIN MODE or EXPLAIN SNAPSHOT is active, the QUERYTAG is
set to “CLP” or “CLI”. When this happens, the QUERYNO is defaulted to a
number that is incremented by one or more for each statement.

For all other dynamic explain SQL statements (not from CLP, CLI, or using
the EXPLAIN SQL statement) the QUERYTAG is set to blanks, and the
QUERYNO will always be “1”.

Cost Estimation: For each statement explained, an estimate of the relative cost
of executing the chosen access plan is recorded. This cost is given using a
made-up, relative unit of measure called timerons. Estimates of elapsed times
are not provided, for the following reasons:

* The SQL optimizer does not estimate elapsed time but rather resource
consumption.

* The optimizer does not model all factors that can affect elapsed time; it
ignores those that do not affect the efficiency of the access plan. The elapsed
time is affected by a number of run-time factors including: the system
workload; the amount of resource contention; the amount of parallel
processing and 1/0; the cost of returning rows to the user; and the
communication time between the client and server.

Statement Text: For each statement explained, two versions of the text of the
SQL statement are recorded. One version is the text as received by the SQL
Compiler. The other is a version of the statement text that has been
reverse-translated from the internal compiler representation of the query. This
translation, while looking similar to other SQL statements, does not
necessarily follow correct SQL syntax nor does it necessarily reflect the actual
content of the internal representation as a whole. This translation is provided
simply to allow an understanding of the SQL context from which the SQL
optimizer chose the access plan. Comparing the user-written statement text to
the internal representation of the SQL statement can help you to understand
how the SQL compiler has rewritten your query for better optimization. (See
IRewrite Query by the SQI Compiler” on page 115.) It also shows you other
elements in the environment affecting your statement such as triggers and
constraints. Some keywords used by this “optimized” text are:

$Cn The name of a derived column, where n
represents an integer value.
$CONSTRAINTS The tag used to indicate the name of a

constraint added to the original SQL statement
during compilation. Seen in conjunction with
the SWITH_CONTEXT$ prefix.

$DERIVED.Tn The name of a derived table, where n
represents an integer value.

Chapter 6. SQL Explain Facility 187

SINTERNAL_FUNCS$

SINTERNAL_PRED$

RID

$TRIGGER$

$WITH_CONTEXTS(...)

Explain Snapshot Information

The tag used to indicate the presence of a
function used by the SQL Compiler for the
explained query but not available for general
use.

The tag used to indicate the presence of a
predicate added by the SQL Compiler during
compilation of the explained query. Again,
such a predicate is not available for general
use. An internal predicate is used by the
compiler to satisfy additional context added to
the original SQL statement as the result of
triggers and constraints.

The tag used to identify the Row ldentifier
(RID) column for a particular row.

The tag used to indicate the name of a trigger
added to the original SQL statement during
compilation. Seen in conjunction with the
SWITH_CONTEXTS$ prefix.

This prefix will appear at the start of the text
when additional triggers or constraints have
been added into the original SQL statement.
Following this prefix will appear a list of the
names of any triggers or constraints affecting
the compilation and resolution of the SQL
statement.

When an explain snapshot is requested, additional explain information is
recorded describing the access plan selected by the SQL optimizer. This
information is stored in the SNAPSHOT column of the
EXPLAIN_STATEMENT table in the format required by Visual Explain. This
format is not usable by other applications.

Additional information on the contents of the explain snapshot information is
available from Visual Explain itself and in:

188 Administration Guide: Performance

Explain Table Information

When explain table information is requested, additional information is
recorded describing the access plan selected by the SQL optimizer. This
information is stored in the following explain tables:

EXPLAIN_ARGUMENT. This table represents the unique characteristics for
each individual operator, if any.

EXPLAIN_INSTANCE. This table is the main control table for all Explain
information. Each row of data in the Explain tables is explicitly linked to
one unique row in this table. Basic information about the source of the SQL
statements being explained and environment information is kept in this
table.

EXPLAIN_OBJECT. This table identifies those data objects required by the
access plan generated to satisfy the SQL statement.

EXPLAIN_OPERATOR. This table contains all the operators needed to
satisfy the SQL statement by the SQL compiler.

EXPLAIN_PREDICATE. This table identifies which predicates are applied
by a specific operator.

EXPLAIN_STATEMENT. This table contains the text of the SQL statement
as it exists for the different levels of Explain information. The original SQL
statement as entered by the user is stored in this table along with the
version used (by the optimizer) to choose an access plan to satisfy the SQL
statement.

EXPLAIN_STREAM. This table represents the input and output data
streams between individual operators and data objects. The data objects
themselves are represented in the EXPLAIN_OBJECT table. The operators
involved in a data stream are represented in the EXPLAIN_OPERATOR
table.

ADVISE_WORKLOAD. This table allows users to describe their workload
to the database. Each row in the workload represents a SQL statement, and
is described by an associated frequency. This table is used by the db2advis
tool and the Index SmartGuide, to pick up and store work and information.

ADVISE_INDEX. This table stores information about recommended indexes.
The table is populated by the SQL compiler, the db2advis utility, the Index
SmartGuide, or a user. This table is used in two ways:

— To get recommended indexes.
— To evaluate indexes based on input about proposed indexes.

All of the tables above are not created by default. They can be created by
running the EXPLAIN.DDL script found in the misc subdirectory of the
SQLLIB subdirectory. Connect to the database where the Explain and Advise

Chapter 6. SQL Explain Facility 189

tables are required. Then issue the command: db2 -tf EXPLAIN.DDL and the
tables will be created. The tables could also be automatically created by the
Index SmartGuide, if necessary.

Each rectangular object node of Visual Explain corresponds to a row in the
EXPLAIN_OBIJECT table. Each octagonal “operator” node of Visual Explain
corresponds to a row in the EXPLAIN_OPERATOR table. Each link between
operators or operator’s objects corresponds to a row of the
EXPLAIN_STREAM table.

The explain table information is similar in content to that recorded for an
explain snapshot, however, this information is stored in ordinary relational
tables which can be accessed using standard SQL statements.

Explain tables, like the Visual Explain access plan graph, are designed to

reflect the relationships between operators and data objects within the access
plan. The following diagram shows the relationships between these tables.

Explain Operator

Table
Explain Predicate Explain Stream Explain Argument
Table Table Table

I

Explain Object
Table

Figure 11. Overview of Explain Table Relationships (not all tables are shown).

It is possible to have explain tables that are common to more than one user.
The explain tables can be defined for one user. Aliases can then be defined
using the same name for each additional user pointing to the defined tables.
Each user sharing the common explain tables must have insert permission on
those tables.

See FAppendix E_SQI Explain Tools” on page 645 for more information on the

Explain tables and how to create the tables. Additional information on the
contents of the explain table information is available in:

190 Administration Guide: Performance

The db2exfmt tool provided in the misc subdirectory under the sqllib
directory can be used to format the contents of the explain tables into a
legible, organized output.

Obtaining Explain Data

Before you can obtain explain data for an SQL statement, you must have a set
of explain tables defined using the same schema as the authorization ID that

invokes the explain facility. See ETahle Definitions for Explain Tahles” on

for information on how to create the tables.

Capturing Explain Table Information

Once these tables are defined, explain data is captured when an SQL
statement is compiled and explain data has been requested:

For static SQL statements, explain table information will be captured when
either EXPLAIN ALL or EXPLAIN YES options are specified on the BIND
or PREP command; or, a static EXPLAIN SQL statement is used in the
source program.

For dynamic SQL statements, explain table information will be captured for
any of the following situations:

An EXPLAIN SQL statement. All explain information is captured and

placed in the explain tables unless the FOR SNAPSHOT clause is used.

An example of an EXPLAIN SQL statement:

EXPLAIN PLAN FOR <any valid DELETE, INSERT, SELECT, SELECT INTO,

UPDATE, VALUES, or VALUES INTO SQL statement>

The CURRENT EXPLAIN MODE special register is set to YES. This

setting will cause the SQL compiler to capture explain data and allow

the SQL statement to execute, returning the results of the query.

The CURRENT EXPLAIN MODE special register is set to EXPLAIN. This

setting will cause the SQL compiler to capture explain data, but will not

execute the SQL statement.

The CURRENT EXPLAIN MODE special register is set to RECOMMEND

INDEXES. This setting will cause the SQL compiler to capture explain

data and the recommended indexes to be placed in the ADVISE_INDEX

table; however, the SQL statement is not executed.

The CURRENT EXPLAIN MODE special register is set to EVALUATE

INDEXES. This setting will cause the SQL compiler to use indexes placed

in the ADVISE_INDEX table by the you. The user inserts a new row for

each index they want evaluated. The required information for each index

Chapter 6. SQL Explain Facility 191

is: index name, table name, and the columns names that make up the
index being evaluated. Once entered, you set the special register. Then
the SQL compiler scans the ADVISE_INDEX table where the field
USE_INDEX="Y"" and assume those indexes exist. All dynamic
statements executed in that mode are explained as if these virtual
indexes were available. The SQL compiler then chooses to use the virtual
indexes if they improve the performance of the statements. Otherwise,
the indexes are ignored. By reviewing the EXPLAIN results, you can see
if the indexes proposed by you were used by the SQL compiler. If they
were used, then this is the indication that you have proposed an index
that should be considered to be implemented to improve access to those
tables.

— The EXPLAIN ALL option has been specified on the BIND or PREP
command. This setting will cause the SQL compiler to capture explain
data for dynamic SQL at run-time, even if the setting of the CURRENT
EXPLAIN MODE special register is NO. The SQL statement will also
execute, returning the results of the query.

Note: Explain information is only captured when the SQL statement is
compiled. Following the initial compilation, dynamic SQL statements
are only recompiled when a change to the environment requires the
statement be recompiled. If the same PREPARE statement is issued
consecutively for the same SQL statement, the SQL statement will
only be compiled, and explain data captured, the first time the
PREPARE statement is issued, assuming the environment does not
change.

For more information about using the EXPLAIN SQL statement or about
using the CURRENT EXPLAIN MODE registers, refer to the SQL Reference
manual. For more information about the BIND and PREP commands, refer to
the Command Reference manual.

Capturing Explain Snapshot Information

Explain snapshot data is captured when an SQL statement is compiled and

explain data has been requested:

» For static SQL statements, an explain snapshot will be captured when either
EXPLSNAP ALL or EXPLSNAP YES options are specified on the BIND or
PREP command; or, a static EXPLAIN SQL statement, using a FOR
SNAPSHOT or WITH SNAPSHOT clause, is used in the source program.

* For dynamic SQL statements, an explain snapshot will be captured in any
of the following situations:

— An EXPLAIN SQL statement using a FOR SNAPSHOT or a WITH
SNAPSHOT clause. The FOR SNAPSHOT clause has no explain table
information captured except the information associated with explain

192 Administration Guide: Performance

snapshot. The WITH SNAPSHOT clause has all explain table information
captured in addition to the information associated with explain snapshot.

An example of an explain snapshot using the EXPLAIN SQL statement:

EXPLAIN PLAN FOR SNAPSHOT FOR <any valid DELETE, INSERT, SELECT,
SELECT INTO, UPDATE, VALUES, or VALUES INTO SQL statement>

Only an explain snapshot is taken and the captured information is
placed in the EXPLAIN_INSTANCE and EXPLAIN_STATEMENT tables.

— The CURRENT EXPLAIN SNAPSHOT special register is set to YES. This
setting will cause the SQL compiler to take a snapshot of explain data
and allow the SQL statement to execute, returning the results of the
query.

— The CURRENT EXPLAIN SNAPSHOT special register is set to
EXPLAIN. This setting will cause the SQL compiler to take a snapshot of
explain data, but will not execute the SQL statement.

— The EXPLSNAP ALL option has been specified on the BIND or PREP
command. This setting will cause the SQL compiler to take a snapshot of
explain data at run-time, even if the setting of the CURRENT EXPLAIN
SNAPSHOT special register is NO. The SQL statement will also execute,
returning the results of the query.

Note: Explain information is only captured when the SQL statement is
compiled. Following the initial compilation, dynamic SQL statements
are only recompiled when a change to the environment requires the
statement be recompiled. If the same PREPARE statement is issued
consecutively for the same SQL statement, the SQL statement will
only be compiled, and explain data captured, the first time the
PREPARE statement is issued, assuming the environment does not
change.

For more information about using the EXPLAIN SQL statement and the FOR
SNAPSHOT or WITH SNAPSHOT clauses, or about using the CURRENT
EXPLAIN SNAPSHOT registers, refer to the SQL Reference manual. For more
information about the BIND and PREP commands, refer to the Command
Reference manual.

Guidelines on

Using Explain Output

There are a number of ways in which analyzing the explain data can help you
to tune your queries and environment. For example:

* Are Indexes Being Used?

As discussed in Elndexing lmpact on Query QOptimization” on page 66, the

proper indexes can have a significant benefit on performance. Using the
explain output, you can determine if the indexes you have created to help a

Chapter 6. SQL Explain Facility 193

specific set of queries are being used. In the explain output, you should
look for index usage in the following areas:

— Join predicates

— Local predicates
— GROUP BY clause
— ORDER BY clause
— The select list.

You can also use the explain facility to evaluate whether a different index
can be used instead of an existing index, or no index at all. After creating a
new index, collect statistics for that index (using the RUNSTATS command)
and recompile your query. Over time you may notice through the explain
data that instead of an index scan, a table scan is now being used. This can
result from a change in the clustering of the table data. If the index that
was previously being used now has a low cluster ratio, you may want to:

— Reorganize your table to cluster the data according to that index

— Use the RUNSTATS command to update the catalog statistics for the
table and index

— Recompile your query
— Re-examine the explain output to determine whether reorganizing your
table has impacted the access plan.

* Is the Type of Access Appropriate for Your Application?

You can analyze the explain output and look for types of access to the data
that, as a rule, are not optimal for the type of application you are running.
For example:

— Online Transaction Processing (OLTP) Queries

OLTP applications are prime candidates to use index scans with range
delimiting predicates, because they tend to return only a few rows that
are qualified using an equality predicate against a key column. If your
OLTP queries are using a table scan, you may want to analyze the
explain data to determine the reasons why an index scan was not used.

— Browse-Only Queries

The search criteria for a “browse” type query may be very vague,
causing a large number of rows to qualify. If the user will usually only
look at a few screens of the output data, you may want to try to ensure
that the entire answer set need not be computed before some results are
returned. In this case, the goals of the user are different from the basic
operating principle of the optimizer, which attempts to minimize
resource consumption for the entire query, not just the first few screens
of data.

For example, if the explain output shows that both merge scan join and
sort operators were used in the access plan, then the entire answer set

194 Administration Guide: Performance

will be materialized in a temporary table before any rows are returned to
the application. In this case, you can attempt to change the access plan
by using the OPTIMIZE FOR clause on the SELECT statement. (For more
information on the OPTIMIZE FOR clause, see FOPTIMIZE FOR
ROWS Clause” on page 43)) In this way, the optimizer can attempt to
choose an access plan that does not produce the entire answer set in a
temporary table before returning the first rows to the application.

* What Type of Join Method is Being Used?

If a query joins two tables, you can check the type of join processing being
used. Joins involving more rows, such as those in decision-support queries,
usually run faster with a merge join. Joins involving only a few rows, such
as OLTP queries, typically run faster with nested loop joins. However, there
may be extenuating circumstances in either case, such as the use of local
predicates or indexes, that would change how these typical joins would
work. (See ENested | oop loin” on page 141 and EMerge loin” on page 143

for information about how these two join methods operate.)

Visual Explain

Visual Explain can be used to study queries in more detail when compared to
the other methods, especially those that contain more complex sequences of
operations. Visual Explain is not available on all supported platforms. You
should check the Quick Beginnings for your platform to see if Visual Explain is
supported.

Visual Explain lets you view the access plan for explained SQL statements as
a graph. You can use the information available from the graph to tune your
SQL queries for better performance. Visual Explain also lets you dynamically
explain a SQL statement and view the resulting access plan graph.

The optimizer chooses an access plan and Visual Explain displays the
information as an access plan graph in which tables and indexes, and each
operation on them, are represented as nodes, and the flow of data is
represented by the links between the nodes.

To display an access plan graph, you must have created an explain snapshot.
From an access plan graph, you can view the details for:

» Tables and indexes (and their associated columns)
* Operators (such as table scans, sorts, and joins)
* Table spaces and functions.

You can also use Visual Explain to:

Chapter 6. SQL Explain Facility 195

* View the statistics that were used at the time of optimization. You can then
compare these statistics to the current catalog statistics to help you
determine whether rebinding the package might improve performance.

* Determine whether or not an index was used to access a table. If an index
was not used, Visual Explain can help you determine which columns might
benefit from being indexed.

* View the effects of performing various tuning techniques by comparing the
before and after versions of the access plan graph for a query.

« Obtain information about each operation in the access plan, including the
total estimated cost and number of rows retrieved (cardinality).

For additional detail on Visual Explain, you should refer to the online
information available through the Control Center. The Control Center can be
accessed by typing db2cc on the command line.

SQL Advise Facility

The Index Advisor is a management tool that reduces the need for you to
design and define suitable indexes for your data.

The Index Advisor is good for:
* Finding the best indexes for a problem query.

* Finding the best indexes for a set of queries (a workload), subject to
resource limits which are optionally applied.

« Testing out an index on a workload without having to create the index.

There are concepts associated with the SQL Advise Facility. First, there is a
workload. A workload is a set of SQL statements which the database manager
has to process over a given period of time. The SQL statements can include:
SELECT, INSERT, UPDATE, and DELETE statements. For example, over a one
month period of time your database manager may have to process 1 000
INSERTS, 10 000 UPDATEs, 10 000 SELECTSs, and 1 000 DELETEs. The
information in the workload is concerned with the type and frequency of the
SQL statements over a given period of time. The advising engine uses this
workload information in conjunction with the database information to
recommend indexes. The goal of the advising engine is to minimize the total
workload cost.

Second, there is a concept of a virtual index. Virtual indexes are indexes which
do not exist in the current database schema. These indexes could be either
recommendations that the Advise Facility has made to you, or indexes that
you are looking to the Advise Facility to evaluate for you. These indexes
could also be those the Advise Facility considers as part of the process and

196 Administration Guide: Performance

then discards because they are not going to be recommended. Virtual indexes
are passed back and forth from you to the Advise Facility using the
ADVISE_INDEX table.

The Advise Facility uses a workload and statistics from the database to
generate recommended indexes.

The Advise Facility uses two tables which are extensions to the EXPLAIN
tables:

* ADVISE_WORKLOAD

This table is where you describe the workload to be considered. Each row
in the table represents an SQL statement and is described by an associated
frequency. There is an identifier for each workload that is a field of the table
called “WORKLOAD_NAME”. All SQL statements which are part of the
same workload should have the same WORKLOAD_ NAME.

To create this table, run the EXPLAIN.DDL script found in the misc
subdirectory of the sq11ib subdirectory. If not already created, the Index
SmartGuide can also create the table.

The Index SmartGuide and the db2advis tool use the table to pick up and
store workload information.

* ADVISE_INDEX

This table stores information about recommended indexes. Information is
placed into this table from the SQL compiler, the Index SmartGuide, the
db2advis tool, or you.

The table is used in two ways:
— To get recommended indexes from the Advise Facility
— To evaluate indexes.

To create this table, run the EXPLAIN.DDL script found in the misc
subdirectory of the sq11ib subdirectory. If not already created, the Index
SmartGuide can also create the table.

The process for using the Index Advisor involves inputs, invocation of the
advisor, outputs, and some special cases that should be considered.

There are three ways to create the input for the Index Advisor:

* Capturing a workload.
That is, using one of the following ways to create the SQL to be evaluated:
— Using the monitor to get dynamic SQL.
— Using the SYSSTMT catalog view to get static SQL.

— Adding statements and frequencies by cutting and pasting the values
into the EVALUATE_INDEXES table.

Chapter 6. SQL Explain Facility 197

* Modifying the workload frequencies to increase or decrease the importance
of queries.

* Determining the constraints, if any, on the data.

There are four ways to invoke the Index Advisor:
* Using the Control Center.

This is the recommended way to use the Index Advisor. From the Control
Center, expand the object tree until you find the indexes folder. Click with
mouse button two on the indexes folder and select Create—>Index using
SmartGuide from the pop-up menu. The Index SmartGuide opens. There is
extensive help with the Index SmartGuide and it is easy to use. The
SmartGuide also contains features to construct a workload by looking for
recently executed SQL, or looking through the recently used packages, or
by manually adding SQL statements.

» Using the command line processor.

On the command line enter db2advis. The db2advis starts by reading in a
workload from one of three locations:

— From the command line
— From the statements in a text file

— From the ADVISE_WORKLOAD table after you have inserted rows with
the proposed workload (SQL and frequency).

The tool then uses the CURRENT EXPLAIN MODE register to obtain
recommended indexes, combined with an internal optimization algorithm
for picking out the best indexes. The output goes to your terminal screen,
the ADVISE_INDEX table, and an output file, if desired.

For example, you may wish the tool to recommend indexes for a simple
query “select count(*) from sales where region = 'Quebec’

$ db2advis -d sample \
-s "select count(*) from sales where region = 'Quebec'" \
-t 1

performing auto-bind

Bind is successful. Used bindfile: /home3/valentin/sqllib/bnd/db2advis.bnd

Calculating initial cost (without recommended indexes) [31.198040] timerons
Initial set of proposed indexes is ready.
Found maximum set of [1] recommended indexes
Cost of workload with all indexes included [2.177133] timerons
cost without index [0] is [31.198040] timerons. Derived benefit is
[29.020907]
total disk space needed for initial set [1] MB
total disk space constrained to [-1] mB
1 indexes in current solution
[31.198040] timerons (without indexes)
[2.177133] timerons (with current solution)

198 Administration Guide: Performance

[%93.02] improvement

Trying variations of the solution set.
Time elapsed.
LIST OF RECOMMENDED INDEXES

Index Advisor tool is finished.

The db2advis tool can be used to recommend indexes for a workload as

well. You can create an input file called “sample.sqgl”:

--#SET FREQUENCY 100

select count(*) from sales where region = ?;

--#SET FREQUENCY 3

select projno, sum(comm) tot_comm from employee, emp_act

where employee.empno = emp_act.empno and
employee.job="DESIGNER'

group by projno

order by tot_comm desc;

--#SET FREQUENCY 50

select = from sales where sales_date = ?;

Then executes the following command:

$ db2advis -d sample -i sample.sql -t 0
found [3] SQL statements from the input file

Calculating initial cost (without recommmended indexes) [62.331280] timerons

Initial set of proposed indexes is ready.
Found maximum set of [2] recommended indexes
Cost of workload with all indexes included [29.795755] timerons
cost without index [0] is [58.816662] timerons. Derived benefit is
[29.020907]
cost without index [1] is [33.310373] timerons. Derived benefit is
[3.514618]
total disk space needed for initial set [2] MB
total disk space constrained to [-1] mB

2 indexes in current solution

[62.331280] timerons (without indexes)

[29.795755] timerons (with current solution)

[%52.20] improvement

Trying variations of the solution set.
Time elapsed.
LIST OF RECOMMENDED INDEXES

index[1], 1MB CREATE INDEX WIZ119 ON VALENTIN.SALES (SALES DATE DESC,
SALES_PERSON DESC)
index[2], IMB CREATE INDEX WIZ63 ON VALENTIN.SALES (REGION DESC)

Index Advisor tool is finished.

Chapter 6. SQL Explain Facility

199

» Using self-directed methods involving the EXPLAIN modes and PREP
options.

For example, the CURRENT EXPLAIN MODE special register is set to
RECOMMEND INDEXES. This setting will cause the SQL compiler to

capture explain data and the recommended indexes to be placed in the
ADVISE_INDEX table; however, the SQL statement is not executed.

Or, the CURRENT EXPLAIN MODE special register is set to EVALUATE
INDEXES. This setting will cause the SQL compiler to use indexes placed in
the ADVISE_INDEX table by the you. The user inserts a new row for each
index they want evaluated. The required information for each index is:
index name, table name, and the columns names that make up the index
being evaluated. Once entered, you set the special register. Then the SQL
compiler scans the ADVISE_INDEX table where the field USE_INDEX="Y"
and assume those indexes exist. All dynamic statements executed in that
mode are explained as if these virtual indexes were available. The SQL
compiler then chooses to use the virtual indexes if they improve the
performance of the statements. Otherwise, the indexes are ignored. By
reviewing the EXPLAIN results, you can see if the indexes proposed by you
were used by the SQL compiler. If they were used, then this is the
indication that you have proposed an index that should be considered to be
implemented to improve access to those tables.

* Using the Call Level Interface (CLI).

If you are using this interface to write applications, you can also use the
advisor.

There are different ways to use the results from the advisor:
* Interpreting the output from the Index Advisor.

To see what indexes were recommended by the Advise Facility, you can use
the following query:

SELECT CAST(CREATION TEXT as CHAR(200))
FROM ADVISE_INDEX

* Applying the recommendations of the Index Advisor.
* Knowing when to drop an index.

To get better recommendations for a specific query, it is suggested that you
advise that query by itself. You can use the Index SmartGuide to recommend
indexes for a single query by building a workload which contains only that

query.
A sample workload can be collected from Event Monitor output. The Event

Monitor can be used to collect dynamic SQL executions. Then these
statements can be fed back to the Advise Facility.

200 Administration Guide: Performance

The Index SmartGuide is a simple, straight-forward, easy to use, visual
interface providing an excellent way to access the Advise Facility.

Chapter 6. SQL Explain Facility 201

202 Administration Guide: Performance

Part 3. Tuning and Configuring Your System

© Copyright IBM Corp. 1993, 1999 203

204 Administration Guide: Performance

Chapter 7. Operational Performance

The following topics provide information on how you can influence
performance of an SQL query during run-time:

The following chapters also provide information on how performance can be
influenced:

You may also refer to Administration Guide, Design and Implementation physical
database design considerations.

How DB2 Uses Memory

Many of the configuration parameters available in DB2 affect memory usage
on the system. Some may affect memory on the server, some on the client,
and some on both. Furthermore, memory is allocated and de-allocated at
different times and from different areas of the system.

A system administrator should also take into consideration balancing overall
memory usage on the system. Different applications running on the operating
system may use memory in different ways. For example, some applications
may use the file system cache, while the Database Manager uses its own

© Copyright IBM Corp. 1993, 1999 205

buffer pool for data caching instead of the operating system facility. See

I‘Setting Parameters That Affect Memory Usage” on page 212 for additional

considerations.

m shows that the Database Manager uses different types of memory.

Database Manager
Shared Memory

{ \
Database Database
Global Memory Global Memory

[|
Application Application
Global Memory Global Memory

{ \

Agent Agent
Private Memory Private Memory

(@) s rogens |

- 1 (one) can be the coordinating agent.
- only 1 per application

Figure 12. Types of memory used by the Database Manager

Memory is allocated for each instance of the Database Manager at the
following times:

* When the Database Manager is started (db2start), the area marked
“Database Manager Shared Memory” is allocated, and this area remains
allocated until the Database Manager is stopped (db2stop). This area
contains information that is needed by the Database Manager to manage
activity across all database connections. When the first application connects
to a database, both global and private memory areas are allocated.

* When a database is activated or connected to for the first time, the
“database global memory” is allocated. The database global memory is

206 Administration Guide: Performance

used across all applications that might connect to the database and contains
memory areas such as the buffer pools, lock list, database heap and utility
heap.

When an application connects to a database, the “application global
memory” is allocated (this occurs only in a partitioned database
environment, or if the intra_parallel configuration parameter is enabled).
This memory is used by agents working on behalf of the application to
share data and coordinate activities amongst themselves.

When an agent is assigned to work for a particular application (as the result
of a connect request, or, in a parallel environment, a new SQL request),
“agent private memory” is allocated for that agent. The agent private
memory area is allocated for the agent and contains memory allocations
that will be used only by this specific agent, such as the sort heap and the
application heap.

Once a database is already in use by one application, any subsequent

connecting applications will only have agent private memory and
application global shared memory allocated on their behalf.

Eigure 12 on page 208 shows how configuration parameter settings can affect
memory. In particular, the parameters in the following list can limit the

amount of memory that is allocated for specific purposes. (In a partitioned
database environment, this memory is required on every database partition.)

numdb defines the maximum number of concurrent active databases (in use
by different applications). Since each database has its own global memory
area, the amount of memory that can potentially be allocated grows if the
value of this parameter increases.

maxappls defines the maximum number of applications that can
simultaneously connect to a single database. It affects the amount of
memory that can potentially be allocated for “Agent Private Memory” and
“Application Global Memory” for that database. (Note that this parameter
can be set differently for every database.)

maxagents (and max_coordagents for parallel environments) limit the number
of Database Manager agents that can exist simultaneously across all active
databases. Along with maxappls, these parameters limit the amount of
memory allocated for “Agent Private Memory” and “Application Global

Memory”. (For information on agents, see [‘Database Agents” on page 235)

Eigure 13 on page 208 summarizes how much memory is used to support

applications. The following configuration parameters allow you to control the
size of this memory, by limiting the number of "memory segments” (portions
of logical memory) and their size.

Chapter 7. Operational Performance 207

Database Manager Shared Memory
(including FCM)

[

Utility Heap
(until_heap_sz)
Backup Buffer

(backbufsz)

Restore Buffer
(restbufsz)

Database Global Memory

Buffer Pools
(buffpage)

Extended Memory Cache

Lock List (locklist)

Database Heap
(dbheap)

Log Buffer
(logbufsz)

Catalog Cache
(catalogcache_sz)

Package Cache

(drda_heap_sz)

(pckcachesz)
[
Application Global Memory
(app_ctl_heap_sz)
[
Agent Private Memory
Agent Stack Statistics Heap Sort Heap
Application (agent_stack_sz) (stat_heap_sz) (sortheap)
Heap
(applheapsz) DRDA Heap UDF Memory Statement Heap
(udf_mem_sz) (stmtheap)

Query Heap (query_heap_sz)

Client I/O Block (rgrioblk)

[

Agent/Application
Shared Memory

Application Support
Layer Heap (aslheapsz)

Client 1/O Block (rgrioblk)

User or Application Process
(Local Client)

User or Application Process
(Remote Client)

Figure 13. How Memory Is Used by the Database Manager

Database Manager Shared Memory

Memory space is required for the database manager to run. This space

Note: Box size does not indicate relative size of memory.

can be very large, especially in intra-partition and inter-partition

parallelism environments. You can predict and control the size of this

space by reviewing the following sections:

208 Administration Guide: Performance

« [“Database Agents” on page 235. Agents running on behalf of
applications require substantial memory space, especially if the
value of maxagents is not appropriate.

 ECM Requirements” on page 213. For partitioned database
systems, the fast communications manager (FCM) requires
substantial memory space, especially if the value of fcm_num_buffers
is not appropriate.

The FCM memory requirements are either allocated from the FCM
Buffer Pool, or from both the Database Manager Shared Memory
and the FCM Buffer Pool, depending on whether or not the
partitioned database system uses multiple logical nodes. See the
following description of the FCM Buffer Pool for details.

FCM Buffer Pool

If you have a partitioned database system that does not have multiple
logical nodes, the Database Manager Shared Memory and FCM Buffer
Pool are as shown in .

Database Manager Shared Memory

Global Control Block FCM Connection Entries (fcm_num_connect)

FCM Message Anchors (fcm_num_anchors) FCM Request Block (fcm_num_rgb)

[

FCM Buffer Pool
(one for each host)

FCM Buffers (fcm_num_buffers) FCM Control Block

[

Database Global Memory

Figure 14. FCM Buffer Pool when Multiple Logical Nodes Are Not Used

If you have a partitioned database system that uses multiple logical
nodes, the Database Manager Shared Memory and FCM Buffer Pool
are as shown in Eigure 15 on page 210,

Chapter 7. Operational Performance 209

210

Database Manager Shared Memory

Global Control Block

l

FCM Buffer Pool

FCM Buffers (fcm_num_buffers)* FCM Control Block™
) . ! |
FCM Connection Entries (fcm_num_connect) FCM Message Anchors (fcm_num_anchors)’
. Legend
FCM Request Block (fcm_num_rgb) - * One for all logical hosts
! One for each logical host

|

Database Global Memory

Figure 15. FCM Buffer Pool when Multiple Logical Nodes Are Used

Database Global Memory
Database Global Memory is affected by the following configuration
parameters:

* The number of memory segments is limited by numdb (see
lhage 421).

* The maximum size of memory segments is determined by the
values of the following parameters:

- EBuffer Poal Size (buffpage)” on page 307 (if a buffer pool size is
-1), or the explicit sizes that were specified when the buffer pools
were created or altered

bage 351 -

Administration Guide: Performance

Application Global Memory
Application Global Memory is affected by the following configuration
parameter:

For parallel systems, space is also required for the application control
heap, which is shared between the agents that are working on behalf
of the same application at one database partition. The heap is
allocated when the first agent to receive a request from the application
requests a connection. The agent can be either a coordinating agent or
a subagent (see E‘Database Agents” an page 233).

Agent Private Memory

e The number of memory segments is limited by the lower of:
— The total of maxappls for all active databases (see EMaximund
DNumber of Active Applications (maxappls)” on page 353)
— The value of maxagents (see EMaximum Number of Agentd
* The maximum size of memory segments is determined by the
values of the following parameters:

Agent/Application Shared Memory

* The total number of agent/application shared memory segments
(for local clients) is limited by the lower of:
— The total of maxappls for all active databases (see FMaximund
DNumber of Active Applications (maxappls)” on page 353)
— The value of maxagents (see I‘Maximum Number of Agentd

(maxagents)” on page 360), or (for parallel systems)
max_coordagents (see 'Maximum Number of Coordinating Agentd
(max_coordagents)” on page 361).

* Agent/Application Shared Memory is also affected by the
following:

Chapter 7. Operational Performance 211

Setting Parameters That Affect Memory Usage

Parameters that allocate memory should never be set at their highest values,
even on systems with the maximum amount of memory installed, unless such
a value has been carefully justified. Many of the parameters can allow the
Database Manager to very easily and quickly take up all of the available
memory on a machine. In addition, the management of a large amount of
memory can take significant additional work on the part of the Database
Manager and thus incur even more overhead.

Some UNIX-based operating systems allocate swap space when a process
allocates memory and not when it is paged out to swap space. In these cases,
you should ensure the total shared memory size is backed with the equivalent
amount of paging space.

For most of the configuration parameters, memory is only committed as it is
required. These parameters reflect the maximum size of a particular memory
heap. The notable exceptions to this rule are the following parameters for
which memory is fully committed based on the parameter value:

o L i (if a buffer pool size is -1), or the
explicit sizes that were specified when the buffer pools were created or
altered

The appropriate values for these types of parameters can best be determined
by benchmarking, where typical and worst-case SQL statements are run
against the server and the values of the parameters are modified until the
point of diminishing return for performance is found. If performance versus
parameter values were graphed, the point where the curve begins to plateau
or decline would indicate the point at which additional allocation provides no
additional value to the application and is therefore simply wasting memory.
(See EChapter 11.Benchmark Testing” on page 275)

212 Administration Guide: Performance

The upper limits of memory allocation for several parameters may be beyond
the memory capabilities of existing hardware and operating systems. These
limits were chosen to allow for future growth.

For valid parameter ranges, see the parameter descriptions in W‘

FCM Requirements

Start with default values when configuring the following Fast
Communications Manager (FCM) configuration parameters:

To tune these parameters, use the database system monitor to monitor the low
water mark for the free buffers, free message anchors, free connection entries,
and the free request blocks. If the low water mark is less than 10 percent of
the number of the corresponding free data item, increase the value of the
corresponding parameter. For information on the database system monitor, see

Refer to Administration Guide, Design and Implementation for information on
enabling FCM communications.

Managing the

Database Buffer Pool

A buffer pool is an area of storage into which database pages (containing table
rows or index entries) are temporarily read and changed. The purpose of the
buffer pool is to improve database system performance. Data can be accessed
much faster from memory than from a disk. Therefore, the fewer times the
Database Manager needs to read from or write to a disk, the better the
performance.

The configuration of one or more buffer pools is the single most important
tuning area, since it is here that most of the data manipulation takes place for
applications connected to the database (excluding large objects and long field
data).

When an application accesses a row of a table for the first time, the database
manager places the page containing that row in the buffer pool. The next time

Chapter 7. Operational Performance 213

any application requests data, the buffer pool is checked first. If the requested
data is found on pages kept in the buffer pool, the database manager does not
need to go out to disk storage to retrieve the requested data. Avoiding the
need to retrieve data from disk storage results in faster performance.

The storage associated with the buffer pool is allocated when a database is
activated or when the first application connects to the database. Applications
are the primary beneficiaries of the buffer pool; once applications are all
disconnected, the storage associated with the buffer pool is de-allocated.

Pages stay in the buffer pool until the database is shut down, or until the
space occupied by a page is required for another page. The space chosen in
the buffer pool to bring in another page is selected using criteria such as the
following:

* The last reference to a page

» The likelihood of the page being referenced again by the last agent that
looked at the page

* The type of page
* Whether or not a page was changed in memory but not written out to disk.
(Changed pages are always written to disk before being overwritten.)

Note: After changed pages are written out to disk, they are not removed from
the buffer pool unless the space they occupy is needed for other pages.
Until they are overwritten, they can be accessed again if their data is
needed.

When creating a buffer pool, by default the page size is 4 KB. You can choose
to have the page size set at one of 4 KB, 8 KB, 16 KB, or 32 KB when creating
the buffer pool. If buffer pools are created using one page size, only table
spaces created using the identical page size can be associated with them. You
cannot alter the page size of the buffer pool following its creation.

Pages in the buffer pool can have different attributes:

* In-use pages are currently being read or updated. They can be read, but not
updated, by other agents.

» “Dirty” pages are pages where data has been changed but has not yet been
written to disk. After a page is written to disk, it is considered “clean”, and
remains in the buffer pool. The space occupied by clean pages can be used
for new pages, and is available for migration to an associated extended
storage cache (if defined).

Pages can be written from the buffer pool to disk when the percentage of

space occupied by changed pages in the buffer pool has exceeded the value
specified by the chngpgs_thresh configuration parameter. You also may need to

214 Administration Guide: Performance

configure the database to include more than one page-cleaner agent. These
agents write out changed pages to disk so that the database agents can find
usable space in the buffer pool.

Page cleaner agents perform 1/0 that would otherwise have to be performed
by the database agents. As a result, your applications can run faster, because
transactions are not forced to wait while their database agents write pages to
disk. (Page-cleaner agents are sometimes referred to as asynchronous page
cleaners or asynchronous buffer writers because they can run in parallel with the
database agents.)

To change the number of page-cleaner agents, use the num_iocleaners
configuration parameter (the default is to create one page-cleaner agent). For
information, see Lt i ’

Writing pages to disk also allows for faster recovery of the database should a
system crash occur, because the Database Manager is able to rebuild more of
the buffer pool from disk rather than having to use the database log files. As a
result, page cleaning is requested if the size of the log that would need to be
read during recovery exceeds the following maximum:

logfilsiz * softmax

where:

- logfilsiz represents the size of the log files (see ['Size of | og Files (lngfilsiz)']
m)

» softmax represents the percentage of log files to be recovered following a
database crash (see L i
(softmax)” on page 378).

For example, if the value of softmax is 250, then 2.5 log files will contain
the changes that need to be recovered if a crash occurs.

You may use the database system monitor to help you track the number of
times that page cleaning is requested to minimize log read time during
recovery. For more information refer to the pool_Isn_gap_clns (buffer pool log
space cleaners triggered) monitor element description in the System Monitor
Guide and Reference manual.

The size of the log that would need to be read during recovery is the
difference between the location of the following in the log:

* The most recently written log record
* The log record that describes the oldest change to data in the buffer pool.

Chapter 7. Operational Performance 215

The following figure illustrates how the work of managing the buffer pool can
be shared between page-cleaner agents and database agents, compared to the
database agents performing all of the 170.

Without Page Cleaners

| have to move a
dirty page

lij Database Agent

Oops, there is no

room for this page Buffer Pool

Al][] [
Xéﬁ%ﬂ

Database Agent

Now | can
put this page in

Buffer Pool 3.

7 %2 72
7 % 7 | "

Database Agent

With Page Cleaners

Buffer Pool

3 % 0
318 | a

There is room for
this page

Take out
dirty pages

Write the
pages to disk

Database Agent %

Asynchronous
Page Cleaner

Figure 16. Asynchronous Page Cleaner. “Dirty” pages are written out to disk.

216 Administration Guide: Performance

Managing Multiple Database Buffer Pools

Each database requires at least one buffer pool. However, depending on your
needs you may choose to create several buffer pools, each of a different size,
for a single database. The CREATE, ALTER, and DROP BUFFERPOOL
statements allow you to create, change, or remove a buffer pool. You can
specify which data is cached in a buffer pool with the CREATE TABLESPACE
and ALTER TABLESPACE statements.

The buffpage configuration parameter specifies the size of any buffer pool, if
the buffer pool’s size is specified as -1 in the SYSCAT.BUFFERPOOLS catalog
view. (Otherwise this parameter is ignored.) A buffer pool’s size can be set
with the DDL statements ALTER BUFFERPOOL or CREATE BUFFERPOOL.

A new database has a default buffer pool called IBMDEFAULTBP with a size
determined by the platform. Once a database is created or migrated, then
other buffer pools can be created for it.

When working on your database design, you may have determined that tables
with 8 KB page sizes were best. As a result, you should create a buffer pool
with an 8 KB page size (along with one or more table spaces with the same
page size).

In a partitioned database environment, each buffer pool for a database has the
same default definition on all database partitions (unless it was otherwise
specified in the CREATE BUFFERPOOL statement, or the buffer pool’s size
was changed for a particular database partition with the ALTER
BUFFERPOOL statement).

When you create a table space with a page size of 4 KB and do not assign it
to a specific buffer pool, the table space is assigned to the default buffer pool.
If you create a table space with a page size greater than 4 KB (8 KB, 16 KB, 32
KB) you should assign it to a buffer pool that uses a page size that is the
same. If this buffer pool is currently not active, DB2 will attempt to assign the
table space to an active buffer pool that uses an identical page size (if one is
available). This assignment, if made, is temporary. When the database is
activated again, and the originally specified buffer pool is active, then DB2
assigns the table space to that buffer pool.

You cannot use the ALTER TABLESPACE statement to add the table space to
a buffer pool that uses a different page size.

When creating or altering buffer pools, the total memory that is required by
all buffer pools must be available to the database manager so that all of the
buffer pools can be allocated when the database is started. Should this

memory not be available when a database is started, the Database Manager

Chapter 7. Operational Performance 217

attempts to start the default buffer pool (IBMDEFAULTBP) and one of each
buffer pool defined with a different page size, but only with a minimal size of
16 pages each. The size of this minimal buffer pool can be overridden with
the registry variable DB2 OVERRIDE_BPF. See [‘Appendix A. DB? Registry
hnd_Emummnanulanablaslan_pangAQ for more information on this and

other registry and environment variables. A warning message is returned with
each failed attempt to start a buffer pool; the database continues in this
operational state until its configuration is changed and the database can be
fully restarted.

The reason for allowing the database manager to start with minimal-sized
values is to allow you to connect to the database. You can then immediately
reconfigure the buffer pool sizes; or, to perform other critical tasks. Do not
consider operating the database for an extended time in such a state.

Note: Although the size and attributes associated with the default buffer pool
can be changed, it cannot be dropped. Also, there is a minimum size
for each buffer pool that is based on the platform being used.

There are advantages to having a large amount of memory allocated to buffer
pools. For example, larger buffer pool sizes:

* Enable often-requested data pages to be kept in the buffer pool, allowing
for quicker access. Fewer 1/0 operations can reduce 1/0 contention,
thereby providing better response time and reducing the processor resource
needed for 1/0 operations.

» Provide the opportunity to achieve higher transaction rates with the same
response time.

* Prevent 1/0 contention for frequently used disk storage devices such as
catalog tables and frequently referenced user tables and indexes. Sorts
required by queries also benefit from reduced 1/0 contention on the disk
storage devices containing the temporary table spaces.

Choosing One or Many Buffer Pools

If any of the following conditions apply to your system, you should use only
a single buffer pool:

» The total buffer space is less than 10 000 4 KB pages.

* People with the application knowledge to do specialized tuning are not
available.

* You are working on a test system.
If your system is not constrained by these conditions, then consider using

more than one buffer pool for the following potential performance
improvements:

218 Administration Guide: Performance

* You can put temporary table spaces into a separate buffer pool to provide
better performance for queries that require temporary storage, especially
sort-intensive queries.

+ If you have data that must be accessed repeatedly and quickly by many
short update transaction applications, then you should consider moving the
table space containing the data into a separate buffer pool. If this buffer
pool is sized appropriately, its pages have a better chance of being found,
contributing to a lower response time and a lower transaction cost.

* You can isolate data into separate buffer pools to favor certain applications,
data, and indexes. For example, you might want to put tables and indexes
that are updated frequently into a buffer pool that is separate from those
tables and indexes that are frequently queried but infrequently updated.
This change will reduce the impact of the frequent updates (on the first set
of tables) on the frequent queries (on the second set of tables).

* You can use smaller buffer pools for the data accessed by applications that
are seldom used, especially in the case where an application requires very
random access into a very large table. In such a case, there is no need to
keep the data in buffer pool memory for longer than a single query. It is
better to keep a small buffer pool for this data, and free up the extra
memory for other uses (for example, for other buffer pools).

+ After separating different activities and data into separate buffer pools,
good and relatively inexpensive performance diagnosis data can be
produced from statistics and accounting traces.

Prefetching Data into the Buffer Pool

Prefetching index and data pages into the buffer pool can help improve
performance by reducing the time spent waiting for 1/0 to complete. To
prefetch pages means that one or more pages are retrieved from disk in
anticipation of their use. There are two categories of prefetch:

+ Sequential prefetch is a mechanism that reads consecutive pages into the
buffer pool before the pages are required by the application. (See
13 H H H ” .)

« List prefetch, or list sequential prefetch, is a way to access data pages
efficiently, even when the data pages needed are not consecutive. (See

tUnderstanding | ist Prefetching” on page 222)

These two methods of reading data pages are in addition to a normal read. A
normal read is used when just one or a few consecutive pages are retrieved.
During a normal read, one page of data is transferred.

For further information on enabling prefetching, see also LC.anilgua.ng_LLd

Chapter 7. Operational Performance 219

Understanding Sequential Prefetching

Reading several consecutive pages into the buffer pool using a single 1/0
operation can greatly reduce the overhead associated with running your
application. In addition, performing multiple 1/0 operations in parallel to
read in several ranges of pages at the same time can help reduce the time
your application needs to wait for 1/0 operations to complete.

Prefetching is started when the Database Manager determines that sequential
1/0 is appropriate and that prefetching may help to improve performance. In
cases such as table scans and table sorts, the Database Manager can easily
determine that sequential prefetch will improve 1/0 performance. In these
cases, the Database Manager automatically starts sequential prefetch. The
following example could require a table scan and would be a good candidate
for sequential prefetch:

SELECT NAME FROM EMPLOYEE

The number of pages that the Database Manager will prefetch can be defined
for each table space using the PREFETCHSIZE clause with either the CREATE
TABLESPACE or ALTER TABLESPACE statements. The value specified is
maintained in the PREFETCHSIZE column of the SYSCAT.TABLESPACES
system catalog table.

It is a good practice to explicitly set the PREFETCHSIZE value as a multiple
of the EXTENTSIZE value for your table space and the number of table space
containers. (The extent size is the number of pages that the database manager
writes to a container before using a different container; refer to “Designing
and Choosing Table Spaces” in the Administration Guide, Design and
Implementation.) For example, if the extent size is 16 pages and the table space
has two containers, you could choose to set the prefetch quantity to 32 pages.

The Database Manager monitors buffer pool usage to ensure that prefetching
of data does not remove pages from the buffer pool if those pages are needed
by another unit of work. To avoid problems, the Database Manager may
choose to limit the number of pages being prefetched to a quantity less than
you specified for the table space.

The setting of the prefetch size can have significant performance implications,
particularly for large table scans. You can use the database system monitor
and other system monitor tools to help you tune PREFETCHSIZE for your
table spaces. For example, you can gather information about whether:

* There are 1/0 waits for your query, using monitoring tools available for
your operating system.

220 Administration Guide: Performance

» Prefetch is occurring, by looking at the pool_async_data_reads (buffer pool
asynchronous data reads) data element provided by the database system
monitor. Refer to the System Monitor Guide and Reference for more
information.

If there are 1/0 waits and the query is prefetching data, you can try
increasing the value of PREFETCHSIZE. It is possible that the prefetcher is not
the cause of the 1/0 wait, in which case increasing the PREFETCHSIZE value
will not improve the performance of your query.

In all types of prefetch, multiple 1/0 operations may be performed in parallel
when the prefetch size is a multiple of the extent size for the table space and
the extents of the table space are in separate containers. For better
performance the containers should be configured to use separate physical
devices. For more information on parallel prefetching, see L iguri

Understanding Sequential Detection

There are cases for which it is not immediately obvious whether sequential
prefetch will improve performance. In these cases, the Database Manager can
monitor 170 and if sequential page reading is occurring the Database
Manager can activate prefetching. Prefetching in this case can be activated and
deactivated by the Database Manager when it deems it appropriate. This type
of sequential prefetch is known as sequential detection and applies to both
index and data pages. You may use the seqdetect configuration parameter (see
'Sequential Detection Flag (seqdetect)” on page 349) to control whether the
Database Manager should perform sequential detection. If sequential detection
is turned on, it could determine that the following SQL statement would
benefit from sequential prefetch:

SELECT NAME FROM EMPLOYEE
WHERE EMPNO BETWEEN 100 AND 3000

In this example, the optimizer may have chosen to scan the table using an
index on the EMPNO column. If the table is highly clustered with respect to
this index, then the data page reads will be almost sequential and prefetching
may improve performance. In this case, data page prefetch will occur.

Index page prefetch may also occur in this example. If a large number of
index pages have to be examined and the database manager detects that
sequential page reading of the index pages is occurring, then index page
prefetching will occur.

Chapter 7. Operational Performance 221

Understanding List Prefetching

List prefetch, or list sequential prefetch, is a way to access data pages efficiently,
even when the data pages needed are not contiguous. List prefetch can be
used in conjunction with either single or multiple index access.

Prefetching and Intra-Partition Parallelism

Prefetching is very important to the performance of intra-partition parallelism,
which uses multiple subagents when scanning an index or a table. These
parallel scans introduce larger data consumption rates, which require higher
prefetch rates.

The cost of inadequate prefetching is higher for parallel scans than serial
scans. If prefetching does not occur when executing a serial scan, the query
runs more slowly because the agent always needs to wait for 1/0. If
prefetching does not occur when executing a parallel scan, all subagents may
need to wait for one subagent that is waiting for 1/0.

Because of its importance, prefetching is performed more aggressively with
intra-partition parallelism. The sequential detection mechanism tolerates larger
gaps between adjacent pages so that the pages can be considered sequential.
The width of these gaps increases with the number of subagents involved in
the scan.

Configuring I/O Servers for Prefetching and Parallel I/O

To enable prefetching, the Database Manager starts separate threads of
control, known as I/O servers, to perform page reading. As a result, the query
processing is divided into two parallel activities: data processing (CPU) and
data page I/0. The I/0 servers wait for prefetch requests from the CPU
processing activity. These prefetch requests contain a description of the 1/0
needed to satisfy the anticipated data needs. The reason for prefetching
determines when and how the Database Manager generates the prefetch

requests. (See [‘Understanding Sequential Prefetching” on page 220 and
EUnderstanding 1ist Prefetching’]

for more information.)

The following figure illustrates how 1/0 servers are used to prefetch data into
a buffer pool.

222 Administration Guide: Performance

User
Application

User
Application

User
Application

N

g

Database Agent Database Agent

g

Database Agent

Asynchronous
Prefetch
Request

I/O Server

\/

I/O Server
Queue

Figure 17. Prefetching Data using I/O Servers

Read

Logical

Buffer
Read

&

&

&

&

&

&

Server

1/0
Block

Buffer Pool

&

Create

4K pages

The following steps are illustrated in Eigure 17:

The user application passes the SQL request to the database agent.

The database agent determines that prefetching should be used to
obtain the data required to satisfy the SQL request and writes a

prefetch request to the 1/0 server queue.

Chapter 7. Operational Performance

223

The first available 170 server will read the prefetch request from the
queue and read the data from the table space into the buffer pool.
Depending on the number of prefetch requests in the queue and the
number of 170 servers configured by the num_ioservers configuration
parameter, multiple 1/0 servers can be fetching data from the table
space at the same time.

6 | The database agent performs the necessary actions against the data
pages in the buffer pool in order to return the result of the SQL
request back to the user application.

Configuring enough 170 servers with the num_ioservers configuration
parameter can greatly enhance the performance of queries for which
prefetching of data can be used. Having some extra 1/0 servers configured
will not hurt performance because extra 1/0 servers are not used and their
memory pages will get paged out. Each I/0 server process is numbered and
the Database Manager will always use the lowest numbered process that is
available and, as a result, some of the upper numbered processes may never
be used.

To determine the number of 170 servers that you should configure, consider
the following:

* The amount of concurrent activity against the database. That is, the number
of database agents that could be writing prefetch requests to the 1/0 server
queue at any given time.

* The highest degree to which the I/0 servers can work in parallel. For more

information, see I‘Enabling Parallel 1/Q’],

Enabling Parallel I/O

For situations in which multiple containers exist for a table space, the
Database Manager can initiate parallel I/O. Parallel 1/0 refers to the ability of
the Database Manager to use multiple 1/0 servers to process the 1/0
requirements of a single query. Each 1/0 server is assigned the 1/0 workload
for a separate container, allowing several containers to be read in parallel.
Performing 1/0 in parallel can result in significant improvements to 170
throughput.

While a separate 1/0 server will handle the workload for each container, the
actual number of 1/0 servers that can perform 170 in parallel will be limited
to the number of physical devices over which the requested data is spread.
This also means you need as many 1/0 servers as the number of physical
devices.

224 Administration Guide: Performance

How parallel 170 is initiated and used is dependent on the reason for
performing the 1/0:

Sequential prefetch

For sequential prefetch, parallel 170 is initiated when the prefetch size is a
multiple of the extent size for a table space. Each prefetch request is then
broken into multiple, smaller, requests along the extent boundaries. These
smaller requests are then assigned to different 1/0O servers.

List prefetch

For list prefetch, each list of pages is divided into smaller lists according to
the container in which the data pages are stored. These smaller lists are
then assigned to different 1/0 servers.

Database or table space backup and restore

For backing up or restoring data, the number of parallel 1/0 requests are
equal to the backup buffer size divided by the extent size up to a maximum
value equal to the number of containers.

Database or table space restore

For restoring data, the parallel 170 requests are initiated and split in a
manner that is the same as that used for sequential prefetch. Instead of
restoring the data into the buffer pool, the data is moved directly from the
restore buffer to disk.

Load

When loading data you can specify the level of 1/0 parallelism with the
LOAD command’s DISK_PARALLELISM option. (If it is not specified, a

default is used based on the cumulative number of table space containers
for all table spaces associated with the table.)

For optimal performance of parallel 1/0, ensure that:

There are enough 1/0 servers. You should configure the number of 1/0
servers to be slightly higher than the number of containers used for all
table spaces within the database.

The extent size and prefetch size are sensible for the table space. Prefetch
size should not be too large, to prevent over-use of the buffer pool. (An
ideal size is a multiple of the extent size and the number of table space
containers.) The extent size should be fairly small, with a good value being
in the range of 8 to 32 pages.

The containers are configured to reside on separate physical drives.
All containers are the same size to ensure a consistent degree of parallelism.

If one or more containers are smaller than the others, they will reduce the
potential for optimized parallel prefetch. For example:

— After a smaller container is filled up, additional data is stored in the
remaining containers, causing the containers to become unbalanced.
Unbalanced containers reduce the performance of parallel prefetching,

Chapter 7. Operational Performance 225

because the number of containers from which data can be prefetched
may be less than the total number of containers.

— If a smaller container is added at a later date and the data is rebalanced,
the smaller container will contain less data than the other containers. Its
small amount of data relative to the other containers will not optimize
parallel prefetching.

— If one container is larger and all of the other containers fill up, it will be
the only container to store additional data. The database manager will
not be able to use parallel prefetch to access this additional data.

* There is adequate 1/0 capacity when using intra-partition parallelism.
Intra-partition parallelism can be used on SMP machines to reduce a
query’s elapsed time by running the query on multiple processors.
Sufficient 1/0 capacity is required to keep each processor busy, usually
requiring additional physical drives to provide the I/0 capacity.

Prefetching must occur at higher rates to use 1/0 capacity effectively. The
prefetch size should be higher for prefetching to occur at higher rates. The
prefetch size should be a multiple of the extent size and the number of
table space containers. Ideally, containers should be configured to reside on
separate physical drives.

The number of physical drives required could depend on the speed and
capacity of the drives and the 1/0 bus, and on the speed of the processors.

Allocating Multiple Pages at a Time

SMS table spaces are expanded on demand. This expansion is done a single
page at a time by default. However, in certain work loads (for example, when
doing a bulk insert) you can increase performance by using the db2empfa tool
to tell DB2 to expand the table space in groups of pages or extents. The
db2empfa tool is located in the bin subdirectory of the sgllib directory. Running
it causes the multipage_alloc database configuration parameter to be set to YES.
For more information on this tool, refer to the Command Reference.

Another way to make the best use of your available memory is discussed in

LEXIEﬂdlﬂg_Mﬂm.Q.QLQﬂ_pﬁgE_m‘ > .

Sorting

Sorting is often required for a query, and the proper configuration of the sort
heap areas can be crucial to the query’s performance. Sorting is required
when:

* No index exists to satisfy a requested ordering (for example a SELECT
statement that uses the ORDER BY clause)

* An index exists but sorting would be more efficient than using the index

226 Administration Guide: Performance

* Creating an index (if the indexsort configuration parameter is set to yes).

Different Types of Sorting

Sorting involves two steps:
1. Asort phase
2. Return of the results of the sort phase.

How the sort is handled within these two steps results in different categories
or types by which we can describe the sort. When considering the sort phase,
the sort can be categorized as “overflowed” or “non-overflowed”. When
considering the return of the results of the sort phase, the sort can be
categorized as “piped” or “non-piped”.

Overflowed and Non-Overflowed
If the information being sorted cannot fit entirely into the sort heap (a
block of memory that is allocated each time a sort is performed) it
overflows into temporary database tables. Sorts that do not overflow
always perform better than those that do.

Piped and Non-Piped
If sorted information can return directly without requiring a
temporary table to store a final, sorted list of data, it is referred to as a
“piped sort”. If the sorted information requires a temporary table to
be returned, it is referred to as a “non-piped sort”. A piped sort
always performs better than a non-piped sort.

Tuning the Parameters that Affect Sorting

The following situations affect the performance of sorting:
* The settings for the following configuration parameters:

Specifies the amount of memory to be used for each sort

Controls the total amount of memory for sorting available across
the entire instance for all sorts.

» Statements that involve a large amount of sorting

* Missing indexes that could help avoid unnecessary sorting

« Application logic that does not minimize sorting

» Parallel sorting, which improves the performance of sorts but can only
occur if the statement uses intra-partition parallelism (see I‘Enabling Parallel

Chapter 7. Operational Performance 227

Looking for Indicators of Sorting Performance Problems

To tell if you have an overall problem with sorting, look at the total CPU time
spent sorting compared to the time spent on the whole application. The
database system monitor can help (see [‘Using the Database System Monitor’]
bn page 23d). In particular, the Performance Monitor (which is made up of
the “Snapshot Monitor” and “Event Monitor” and is available from the
Control Center), shows total sort time by default, along with other times such
as 1/0 and lock wait.

If total sort time is a large proportion of the other times then look at the
following values, which are also shown by default:

Percentage of overflowed sorts
This variable (on the performance details view of the Snapshot
Monitor) shows the percentage of sorts that overflowed. If the
percentage of overflowed sorts is high, increase the sortheap and/or
sheapthres configuration parameters if there were any post-threshold
sorts. (To determine if there were any post threshold sorts, use the
Snapshot Monitor.)

Post threshold sorts
If post threshold sorts are high, increase sheapthres and/or decrease
sortheap.

In general, make the overall sort memory available across the instance
(sheapthres) as large as possible without causing excessive paging. It is possible
for a sort to be done entirely in sort memory. However, if this causes the
operating system to perform excessive page swapping to accommodate that
sort memory you can lose the advantage of a large sort heap. So, whenever
you adjust the sorting configuration parameters, use an operating system
monitor to track any changes in system paging.

Note: With the improvement in the DB2 partial key binary sorting technique
to include non-integer data type keys, some additional memory is
required when sorting long keys. If you believe long keys are being
used, increase the sortheap configuration parameter.

Also note that in a piped sort, the sort heap does not get freed until the

application closes the cursor associated with that sort. So a piped sort can use
up memory until the cursor is closed.

Techniques for Managing Sorting Performance
You can use the database system monitor and benchmarking techniques to
help set the sortheap and sheapthres configuration parameters. Do the following
for each database manager and its databases:

228 Administration Guide: Performance

* Set up and run a representative workload.

» For each applicable database, collect average values for the following
performance variables over the benchmark workload period:

— Total sort heap in use
— Active sorts

These performance variables are shown on the performance details view of
the Snapshot Monitor.

» Set sortheap to the average total sort heap in use for each database.
 Set the sheapthres by doing the following:
1. Determine which database in the instance has the largest sortheap value.
2. Determine the average size of the sort heap for this database.
If this is too difficult to determine, use 80% of the maximum sort heap

3. Set sheapthres to the average number of active sorts times the average
size of the sort heap computed above.

This is a recommended initial setting. You can then use benchmark
techniques to refine this value.

You can also identify particular applications and statements where sorting is a

significant performance problem:

* Set up event monitors at the application and statement level to help you
identify applications with the longest total sort time.

* Within each of these applications, find the statements with the longest total
sort time.

* Tune these statements using a tool such as Visual Explain.

* Ensure that appropriate indexes exist. You can use Visual Explain to
identify all the sort operations for a given statement. Then investigate
whether or not an appropriate index exists for each table accessed by the
statement.

Note: You can search through the explain tables to identify which queries

have sort operations. (See I‘Appendix E. SQL_Explain Tools” or
lhage 643)

Reorganizing Table Data

The performance of SQL statements that use indexes can be impaired after
many updates, deletes, or inserts have been made. Generally, newly inserted
rows cannot be placed in a physical sequence that is the same as the logical
sequence defined by the index (unless you use clustered indexes). This means

Chapter 7. Operational Performance 229

that the Database Manager must perform additional read operations to access
the data, because logically sequential data may be on different physical data
pages that are not sequential.

In general, reorganizing a table takes more time than running statistics.
Performance may be improved sufficiently by obtaining the current statistics
for your data and rebinding your applications, so try this first. If this does not
improve performance, the data in the tables and indexes may not be arranged
efficiently, so reorganization may help. The information in this section applies
not only to reorganizing your own tables, but also to the system catalog tables
which may also require reorganization.

The REORGCHK command returns information about the physical
characteristics of a table, and whether or not it would be beneficial to
reorganize that table. This command can be used through the command line
processor. Refer to the Command Reference for more information, including
how to interpret the command output.

The REORG utility optionally rearranges data into a physical sequence
according to a specified index. REORG has an option to specify the order of
rows in a table with an index, thereby clustering the table data according to
the index and improving the CLUSTERRATIO or CLUSTERFACTOR statistics
collected by the RUNSTATS utility. As a result, SQL statements requiring rows
in the indexed order can be processed more efficiently. REORG also stores the
tables more compactly by removing unused, empty space (though if you
specified PCTFREE when you used ALTER TABLE, that space remains
unused).

Do not use the REORG or REORGCHK commands with nicknames.

The REORG utility requires that all other applications that would normally be
working against the affected table data and indexes be offline. You may have a
work environment where you wish to limit the amount of time your
applications cannot work against the data. In this environment, you might
consider using the online index reorganization utility.

You may wish to consider the following factors to determine when to
reorganize your table data:

* The volume of insert, update, and delete activity

* Any significant change to the performance of queries which use an index
with a high cluster ratio

* Running statistics (RUNSTATS) does not improve the performance of
queries

* The REORGCHK command indicates a need to reorganize your table

230 Administration Guide: Performance

* The cost of reorganizing your table, including the CPU time, the elapsed
time, and the reduced concurrency resulting from the REORG utility
locking the table until the reorganization is complete.

To execute the REORG utility, you must have SYSADM, SYSMAINT,
SYSCTRL or DBADM authority, or CONTROL privilege on the table.

The REORG utility uses temporary tables that can be significantly larger than
the original table, if columns were added to a table, or a table has LOB
columns. If these temporary tables are larger, the resulting permanent table,
created by the REORG utility, will also be larger.

The REORG utility allows you to specify a temporary table space, which is
used to create the temporary REORG table. If a temporary table space is not
specified, the REORG utility will create the temporary REORG tables in the
table space that contains the table being reorganized. The following guidelines
can assist you in determining whether to use a temporary table space:

* It is generally recommended that you specify a temporary SMS table space.

* Do not specify a temporary table space if you think that the REORG table
will fit in the same DMS table space as the base table. In this case, the
REORG utility will operate much faster than if a temporary table space was
specified, but the table space will need enough available free space for a
second copy of the table. This second copy could be smaller or larger than
the original table, depending on how much unused space exists in the
original table and on whether the reorganization will expand the size of
LOBs. Using the same DMS table space also increases the amount of space
required for logging, because a log record is written for each extent
consumed by the reorganized table.

* Using a temporary DMS table space is generally not recommended since
you can only have one REORG in progress using this type of table space.

Remember that you may be reorganizing a table within a table space that is
using greater than 4 KB pages (8 KB, 16 KB, or 32 KB) pages. During the
reorganization, the temporary table space used during the reorganization must
have the same size pages as the base table space.

If the REORG utility does not complete successfully, do not delete any
temporary files, tables or table spaces. These files and tables are used by the
Database Manager to roll back the changes made by the REORG utility, or to
complete the reorganization, depending on how far the reorganization had
progressed before the failure.

In a partitioned database, the REORG utility reorganizes data on each

partition. If the utility fails on any partition, only the failing partition is rolled
back. If you specify a directory path to store temporary tables, this path is

Chapter 7. Operational Performance 231

extended by the Database Manager at each database partition. Therefore, if
you specify a path that is shared by other database partitions, the temporary
files are stored in different subdirectories (identified by node name) under this
path.

Online Index Reorganization

An online reorganization is possible by providing a user-definable threshold
for the maximum amount of free space on an index leaf page. When there is a
deletion of an index key from a leaf page and the threshold is crossed, the
neighboring index leaf pages are checked to determine if two leaf pages can
be merged. If there is sufficient space on a page for a merge of two
neighboring pages to take place, the merge occurs without having to take the
database offline.

This online reorganization of the index is only possible with indexes created
in this release and those following this release. Existing indexes requiring the
ability to reorganize online in this fashion will have to be dropped and then
re-created in order for the necessary internal changes to the index leaf pages.
To turn on online index reorganization for a particular index, specify a
MINPCTUSED value when the index is created. The MINPCTUSED value should be
set to less than one hundred (100). This value becomes the reorganization
threshold which is the percentage of used space on an index page that is the
minimum acceptable value before attempting to merge the index leaf page
with that of it’s neighbor. The recommended value for MINPCTUSED is one that
is less than 50 percent since the goal is to merge two neighboring index leaf
pages. A value of zero for MINPCTUSED, which is also the default, disables
online reorganization.

Index leaf pages that are freed for use following an online index
reorganization are available for re-use. However, the freed pages are available
only to other indexes in the same table. A full reorganization of the table will
free up pages for other object when working with a DMS storage model; or
will free up disk space when working with a SMS storage model.

Index non-leaf pages are not freed for use following an online index
reorganization. However, a full reorganization of the table will make the index
as small as possible. The leaf and non-leaf pages are reduced in number as
well as the levels of the index.

Avoiding the Need to Reorganize Tables

To reduce the need for reorganizing a table, do the following after you have
created the table:

» Alter table to add PCTFREE
» Create clustering index with PCTFREE on index

232 Administration Guide: Performance

* Sort the data
* Load the data.

Now you have a table with a clustering index. The clustering index, in
conjunction with PCTFREE on table, will preserve the original sorted order.
With sufficient space on pages, new data can be inserted on the correct pages
thereby maintaining the clustering characteristics of the clustering index. If, as
more data is inserted, and the pages of the table become full, records are
appended to the end of the table, and the table gradually becomes
unclustered.

It is recommended that you perform a REORG or a sort and LOAD after
creating a clustering index. A clustering index attempts to maintain a
particular order of data improving the CLUSTERRATIO or CLUSTERFACTOR
statistics collected by the RUNSTATS utility.

The amount of free space to be left on each page during a REORG is
determined by the PCTFREE value of the table. If this value has not been set,
REORG wiill fill up the pages as the data is being reorganized.

Performance Considerations for DMS Devices

If you are using Database Managed Storage (DMS) device containers for your
table spaces, you need to understand the following so you can effectively
administer your environment:

* File system caching
File system caching is performed as follows:

— For DMS file containers (and all SMS containers), the operating system
may cache pages in the file system cache

— For DMS device container table spaces, the operating system does not
cache pages in the file system cache.

Note: When working on Windows NT, the registry variable
DB2NTNOCACHE specifies whether or not DB2 will open
database files with a NOCACHE option. If db2ntnocache=ON, file
system caching is eliminated. If db2ntnocache=OFF, the operating
system caches DB2 files. This applies to all data except for files
that contain LONG FIELDS or LOBS. Eliminating system caching
allows more memory to be available to the database so that the
buffer pool or sortheap can be increased.

» Buffering of data
Table data read from disk is normally available in the database’s buffer pool

(see EManaging the Database Buffer Pool” on page 213). In some cases, a

Chapter 7. Operational Performance 233

data page can be freed from the buffer pool before the application has
actually used that page. (This can happen if the buffer pool space is
required for other data pages.) For table spaces using system managed
storage (SMS) or database managed storage (DMS) file containers, see the
description of file system caching above. This can eliminate 1/0 that would
otherwise have been required.

Table spaces using database managed storage (DMS) device containers do
not use the file system or its cache. Refer to the Windows NT exception
noted above. As a result, you may wish to increase the size of the database
buffer pool and reduce the size of the file system cache to offset the fact
that double buffering is not being done with DMS table spaces that use
device containers.

If you notice, through the use of system-level monitoring tools, that I/0 is
higher for a DMS table space using device containers compared to the
equivalent SMS table space, this difference could be due to the double
buffering discussed above.

* Using LOB or LONG data

When an application retrieves either LOB or LONG data, the database
manager does not use its buffers to cache the data. Every time an
application needs one of these pages, the database manager must retrieve it
from disk.

However, if LOB or LONG data is stored in SMS or DMS file containers,
file system caching may provide buffering and, as a result, better
performance.

Because system catalogs contain some LOB columns, it is recommended
that you keep them in SMS (or alternatively in DMS-file) table spaces.

Managing Initialization Overhead

The ACTIVATE DATABASE command starts up selected databases. Using this
command in a partitioned database results in an attempt to activate the
selected partitioned database on all database partitions. By using this
command, no application time is spent on database initialization or startup.

Databases that you have initialized using the ACTIVATE DATABASE
command must be shut down with the DEACTIVATE DATABASE command
or with the db2stop command; the last application disconnecting from the
database will not shut it down. For more information on the ACTIVATE and
DEACTIVATE commands, refer to the Command Reference manual.

If a database has not been started, and a CONNECT TO (or an implicit
connect) is encountered in an application, then the application must wait
while the Database Manager starts up the required database before it can do
any work with that database. This is a startup cost that is borne by the first

234 Administration Guide: Performance

application to access a particular database. In a partitioned database, this
startup cost is incurred on each database partition. Once the database is
started, all other applications can connect to and use the database without a
time cost associated with the database startup.

Database Agents

DB2 servers must facilitate communication between the database manager and
client and local applications. UNIX-based environments use an architecture
based on processes. For example, the DB2 communications listeners are created
as processes. Intel operating systems such as OS/2 and Windows NT use an
architecture based on threads to maximize performance. For example, the DB2
communications listeners are created as threads within the DB2 server’s
system controller process. For each database being accessed, various
processes/threads are started to deal with the various database tasks (for
example, prefetching, communication, and logging).

One of the most crucial processes/threads are those of database agents, which
facilitate the operations of applications with databases. Each process/thread of
a client application has a single coordinator agent that operates on a database.
Once the coordinator agent is created, it performs all database requests on
behalf of its application, and communicates to other agents using inter-process
communications (IPC) or remote communication protocols. Each agent
operates with its own private memory and shares Database Manager and
database global resources such as the buffer pool with other agents.

In partitioned database environments and environments with intra-partition
parallelism enabled, the coordinator agent distributes database requests to
subagents, and these agents perform the requests for the application. Once the
coordinator agent is created, it handles all database requests on behalf of its
application by coordinating the subagents that perform requests on the
database.

When a client disconnects from a database or detaches from an instance the
coordinating agent will be:

* Freed and marked as idle, if the maximum number of pool agents has not
been reached

* Terminated and its storage freed, if the maximum number of pool agents
has been reached.

When idle, agents are not performing work on behalf of any applications, are
waiting to be assigned, and reside in an agent pool. These agents are available
for requests from coordinator agents operating on behalf of client programs,
or for subagents operating on behalf of existing coordinator agents. The

Chapter 7. Operational Performance 235

number of available agents is dependent on the database manager
configuration parameters maxagents and num_poolagents.

If no idle agents exist when an agent is required, a new agent must be
dynamically created. Creating a new agent involves a certain amount of
overhead and as a result, improved CONNECT and ATTACH performance
can be noticed if there is an idle agent that can be activated for a client.

When a subagent is working on behalf of an application, it is considered to be
associated with that application. After completing the assigned work, it may be
placed in the agent pool, but it remains associated with the original
application. When the application requests additional work, the database
manager first checks the idle pool for associated agents when finding an agent
to work for the application.

When working in an environment requiring the use of DB2 Connect to
connect to remote systems there is an outbound connect pool. This connection
pool reduces the connect time (following the first connection) to a host. When
a disconnection from a host is requested, DB2 Connect drops the inbound
connection but keeps the outbound connection to the host in a pool. When a
new request is made to connect to the host, DB2 Connect reuses an existing
outbound connection (if available) from the pool.

Note: When using connection pooling, DB2 Connect is restricted to inbound
TCP/IP and to outbound TCP/IP and SNA connections. When working
with SNA, the security type must be NONE for the connection to be
placed in the pool.

With connection pooling, the active agent does not close its outbound
connection following disconnection, but goes into the agent pool with an
active connection to the remote host. This type of agent is called inactive
DRDA agent. The pool of inactive DRDA agents is a synonym for the
outbound connection pool.

Consider the following examples based on four different usage and workload
requirements:

1. In the first example, an average of 40 concurrent users connect to remote
host databases through DB2 Connect. At times the number of concurrent
connections peaks at about 50, but never exceeds 55. The transactions are
of short duration, and user connect and disconnect frequently.

With these conditions, the system administrator should configure
MAX_COORDAGENTS to 55 since he knows that the maximum number
of users what will ever try to connect through DB2 Connect at the same
time is 55. NUM_POOLAGENTS, the size of the agent pool, should be set
to 40 since, at any one time, that is the average number of users connected

236 Administration Guide: Performance

or trying to connect. This pool size guarantees enough existing remote
database connections to satisfy all inbound clients without having to
establish any new ones except when the workload peaks.

2. In this second example the workload is much higher with about 1 000
inbound clients. User connections are also of short duration. The system
administrator does not want to allow any more concurrent connections
than that. Therefore, the system administrator sets both
MAX_COORDAGENTS and NUM_POOLAGENTS to 1 000. This means
that the maximum number of inbound clients that may be concurrently
connected to the remote database(s) is 1 000. When all clients disconnect,
the pool will contain exactly 1 000 connected agents all waiting to service
new inbound clients.

3. The third example involves a single application connecting through DB2
Connect to just one remote database. The application remains connected
for long periods of time. In this scenario, the best agent and connection
pool configuration is to set MAX_COORDAGENTS to 1 since we know
that at most only one client will connect. NUM_POOLAGENTS may be set
to zero in this case since there is no frequent connection and disconnection
from the remote host. Setting NUM_POOLAGENTS to zero effectively
disables connection pooling since no agents with active connections to the
remote database are kept in the pool. For every new inbound client that
connects, a new agent is created and a new remote connection established
to service it.

4. The fourth example is a variation based on all three previous workload
scenarios. In this example, the system administrator wants to restrict
concurrent access to remote databases to just 100. Therefore,
MAX_COORDAGENTS is set to 100 and, in order to maximize connect
performance, NUM_POOLAGENTS is set to 100. However, later, there
may also be a need to connect locally to monitor the workload on the
system where DB2 Connect is installed. The expectation is that no more
than 5 concurrent monitor snapshots would occur at any one time so
MAX_COORDAGENTS is set to 105. This new configuration value allows
the maximum number of concurrent applications to grow beyond the
earlier upper limit of 100 to accommodate the occasional monitor snapshot
and/or instance attachment.

For partitioned database environments and environments with intra-partition
parallelism enabled, each partition (that is, each database server or node) has
its own pool of agents from which subagents are drawn. Because of this pool,
subagents do not have to be created and destroyed each time one is needed or
is finished its work. The subagents can remain as associated agents in the pool
and be used by the database manager for new requests from the application
they are associated with.

Chapter 7. Operational Performance 237

The following database manager configuration parameters affect the number
of database agents:

EMaximum Number of Agents (maxagents)” on page 360. Once the number

of agents reaches this value, all subsequent requests that require a new
agent are denied until the number of agents falls below the value. This
value applies to the total number of agents, whether coordinating agents or
subagents, that are working on all applications.

LAgent Pool Size (num_poolagents)” on page 362, The number of agents in

the agent pool cannot exceed this value.

Einitial Number of Agents in Pool (num_initagents)” on page 363. When the

database manager is started, a pool of idle agents is created based on this
value. This speeds up performance for initial queries.

w. For partitioned database environments and environments with
intra-partition parallelism enabled, this value limits the number of
coordinating agents.

EMaximum Number of Cancurrent Agents (maxcagents)” on page 358. This
value controls the number of tokens permitted by the Database Manager.
For each database transaction (unit of work) that occurs when a client is
connected to a database, a coordinating agent must obtain permission to
process the transaction (known as a processing token) from the Database
Manager. Only agents with a processing token are permitted by the
Database Manager to execute a unit of work against a database. If a token
is not available, the agent will wait until one is available, at which time the
requested unit of work will be processed.

This parameter can be useful in an environment in which peak usage
requirements exceed system resources (memory, CPU, and disk). In such an
environment, the peak load may cause excessive performance degradation
because of, for example, paging. You can use this parameter to control the
load and avoid the performance degradation.

For partitioned database environments and environments with intra-partition
parallelism enabled, the impact to performance and memory costs within the
system is strongly related to how your agent pool is tuned:

The database manager configuration parameter for agent pool size
(num_poolagents) affects the total number of subagents that can be kept
associated with applications on a partition (that is, node). If the pool size is
too small (and the pool is full), a subagent will disassociate itself from the
application it worked on and terminate. This situation leads to poor
performance, because subagents must be constantly created and
reassociated to applications.

238 Administration Guide: Performance

In addition, if the value of num_poolagents is too small, one application may
fill the pool with associated subagents. Thus, when another application
requires a new subagent and has no subagents in its associated agent pooal,
it will “steal” subagents from the agent pools of other applications. This
situation is rather costly, and causes poor performance.

* The above situations must be weighed against the resource costs of
allowing too many agents to be active at any given time.
For example, if the value of num_poolagents is too large, associated
subagents may sit unused in the pool for long periods of time. These
subagents use database manager resources that will not be available for
other tasks.

In addition to the database agents, there are other asynchronous activities
performed by the Database Manager which run as their own process (or
thread), including:

« Database 1/0 servers (or 170 prefetchers) (see EPrefetching Data into thd
Buffer Paal” on page 219)

- Database asynchronous page cleaners (see t‘Managing the Database Buffet
Poal” an page 213)

» Database loggers

« Database deadlock detectors

» Event monitors

« Communication and IPC listeners

» Table space container rebalancers.

For more information on identifying the various DB2 processes, refer to the
Troubleshooting Guide.

Using the Database System Monitor

The DB2 database manager maintains data about its operation, its
performance, and the applications using it. This data is maintained as the
database manager runs, and can provide important performance and
troubleshooting information. For example, you can find out:

» The number of applications connected to a database, their status, and which
SQL statements each application is executing, if any.

* Information that shows how well the database manager and database are
configured, and helps you to tune them.

* When deadlocks occurred for a specified database, which applications were
involved, and which locks were in contention.

Chapter 7. Operational Performance 239

* The list of locks held by an application or a database. If the application
cannot proceed because it is waiting for a lock, there is additional
information on the lock, including which application is holding it.

Because collecting some of this data introduces overhead on the operation of
DB2, monitor switches are available to control which information is collected.
To set monitor switches explicitly, use the UPDATE MONITOR SWITCHES
command or the sqlmon() API. (You must have SYSADM, SYSCTRL, or
SYSMAINT authority.)

There are two ways to access the data maintained by the database manager:
* Taking a snapshot

Use the GET SNAPSHOT command from the command line; the Control
Center on the OS/2, Windows 95, or Windows NT operating systems for a
graphical interface; or write your own application, using the sqlmonss() API
call.

The Control Center, available from the DB2 folder or with the db2cc
command, provides a performance monitor tool that samples monitor data
at regular intervals by taking snapshots. This graphical interface provides
either graphs or textual views of the snapshot data, in both detail and
summary form. You can also define performance variables using data
elements returned by the database monitor.

The Control Center’s Snapshot Monitor tool also allows you to define
exception conditions by specifying threshold values on performance
variables. When a threshold value is reached, you can predefine any of the
following actions to occur: notification through a window or audible alarm,
and/or execution of a script or program.

If you are taking a snapshot from the Control Center, you cannot perform
an action that either alters, changes, or deletes a database object (such as an
instance or database) while you are performing snapshot monitoring on
either that object, or on any it its child objects. (In addition, if you are
monitoring a partitioned database system, you cannot refresh the view of
partitioned database objects.) For example, you cannot monitor database A
if you want to remove its instance. If, however, you are monitoring the
instance only, you can alter database A.

To stop all monitoring for an instance (including any of its child objects),
select Stop all monitoring from the pop-up menu for the instance. You
should always stop monitoring from the instance, as this ensures that all
locks that are held by the performance monitor are released.

* Using an event monitor

An event monitor captures system monitor information after particular
events have occurred, such as the end of a transaction, the end of a
statement, or the detection of a deadlock. This information can be written to
files or to a named pipe.

240 Administration Guide: Performance

To use an event monitor:

1. Create its definition with the Control Center or the SQL statement
CREATE EVENT MONITOR. This statement stores the definition in
database system catalogs.

2. Activate the event monitor through the Control Center, or with the SQL
statement:

SET EVENT MONITOR evname STATE 1

If writing to a named pipe, start the application reading from the named
pipe before activating the event monitor. You can either write your own
application to do this, or use db2evmon. Once the event monitor is
active and starts writing events to the pipe, db2evmon will read them
as they are being generated and write them to standard output.

3. Read the trace. If using a file event monitor, you can view the binary
trace that it creates in either of the following ways:

— Use the db2evmon tool to format the trace to standard output.

— Click on the Event Analyzer icon in the Control Center (on the
Windows 95, Windows NT, or OS/2 systems) to use a graphical
interface to view the trace, search for keywords, and filter out
unwanted data.

Note: If the database system that you are monitoring is not running
on the same machine as the Control Center, you must copy the
event monitor file to the same machine as the Control Center
before you can view the trace. An alternative method is to
place the file in a shared file system accessible to both
machines.

For information on the system database monitor and the event monitor, refer
to the System Monitor Guide and Reference.

Extending Memory

Your machine may have more real memory than the maximum amount of
addressable memory (for example, addressable memory is usually between
2 GB and 4 GB on most platforms). You can configure any additional
memory beyond addressable memory as an extended storage cache. Such an
extended storage cache can be used by any of the defined buffer pools and
should improve the performance of the database manager. The extended
storage cache is defined in terms of memory segments.

DB2 makes use of addressable memory in your machine with buffer pools
(see EManaging the Database Buffer Pool” on page 213). The extended storage
cache is used by the buffer pools as a secondary level of caching (with the

Chapter 7. Operational Performance 241

buffer pools performing the first level of caching). Ideally buffer pools can
hold the data that is most frequently accessed, while the extended storage
cache can hold data that is accessed, but less frequently.

The following database configuration parameters influence the amount and
the size of the memory available for extended storage:

* num_estore_segs defines the number of extended storage memory segments.
The default for this configuration parameter is zero, which specifies that no
extended storage cache exists. (See L

Begments (num_estore_segs)” on page 353.)

 estore_seg_sz defines the size of each extended memory segment. This size is
limited by the platform on which the extended storage cache is being used.
See L i 2

)

Because an extended storage cache is an extension to a buffer pool, it must
always be associated with one or more specific buffer pools. Therefore, you
must declare which buffer pools can take advantage of a cache once it is
created. The CREATE and ALTER BUFFERPOOL statements have the
attributes NOT EXTENDED STORAGE and EXTENDED STORAGE that
control cache usage. By default neither IBMDEFAULTBP nor any newly
created buffer pool will use extended storage.

Note: If you are using buffer pools defined with different page sizes then the
extended storage support for buffer pools is deactivated.

The database manager cannot directly manipulate data that resides in the
extended storage cache. However, it can transfer data from the extended
storage cache to the buffer pool much faster than from disk storage.

When a row of data is needed from a page in an extended storage cache, the
entire page is read into the corresponding buffer pool.

A buffer pool and its associated extended storage cache, if defined, are created
when a database is activated or first connected to.

242 Administration Guide: Performance

Chapter 8. Using the Governor

You use the governor to monitor and change the behavior of applications that
run against a database.

The governor consists of two parts:
* A front-end utility
* A daemon

When you start the governor, you issue a start command from the governor
front-end utility, which then starts the governor daemon. By default, a
daemon is started on every partition in a partitioned database, but you can
also use the front-end utility to start a single daemon at a specific partition to
monitor the activity against the database partition found there. Or, a daemon
can monitor the activity on a single-partition database. See

Btopping the Governar” on page 244 for details.

Each governor daemon collects statistics about the applications running
against a database. It then checks these statistics against the rules that you
specified in a governor configuration file that applies to that specific database.
(See ECreating the Governor Configuration File” on page 247 for details.) The
governor then acts according to these rules. For example, a rule may indicate
that an application is using too much resource. In this situation, the governor
may change the application’s priority or force it off the database, according to
the instructions you specified in the governor configuration file.

If the action associated with a rule is to change the application’s priority, the
governor changes the priority of agents on the database partition on which
the governor detected the resource violation. If the action associated with a
rule is to force an application, the application is forced even if the governor
that detected the resource violation is running on the application’s coordinator
node or in a partitioned database environment.

The governor also logs any actions that it takes. You can query the log files to
review the actions that the governor has taken. For details, see

Eiles” on page 255 and F‘Querying Gavernar | ag Files” on page 256.

© Copyright IBM Corp. 1993, 1999 243

Starting and Stopping the Governor
You use the db2gov governor front-end utility to start or stop the governor (on
either all database partitions or on a single database partition). You require
SYSADM or SYSCTRL authority to use the utility.

The syntax for db2gov is as follows:

config-file — log-file ——»<

»—db2gov—— start— database L J
—[nodenum —node-num

stop — database
Lnodenum — node-numJ

Figure 18. Syntax for db2gov

The parameters are as follows:

start database
Starts the governor daemon to monitor the specified database. For
database, you can specify either the database name or the database
alias.

The database name you specify must be the same name as that
specified in the governor configuration file. The governor checks these
two names to ensure that you are using the correct configuration file.
If the front-end utility is started with one alias name and the governor
configuration file contains a different alias, an error is reported
because the governor cannot determine whether the names are aliases
for the same database.

If you are in a partitioned database environment, when you start the
governor on all partitions, the front-end utility first checks that the
configuration file does not contain errors. It then reads the node
configuration file and sends a command to each database partition to
start the governor front-end utility on each database partition with the
start option (which, in turn, starts the daemon at each database
partition).

Note: Because the governor monitors at the database level, one
daemon runs for each database that is being monitored. (In a
partitioned database environment, one daemon runs for each
database partition.) If the governor is running for more than
one database, there will be more than one daemon running at
that database server.

244 Administration Guide: Performance

nodenum node-num
Specifies the database partition on which to start the governor
daemon. The number is the same as that specified in the node
configuration file.

When you start the governor on a single database partition, the
front-end utility creates a daemon to validate the governor
configuration file. The governor daemon ensures that another daemon
is not already running on that partition.

config-file
Specifies the configuration file to use when monitoring the database.

The default location for the configuration file is the sq11ib directory. If
the specified file is not there, the front-end assumes that the specified
name is the full name of the file.

log-file
Specifies the base name of the file to which the governor writes log
records. The log file is stored in the Tog subdirectory of the sq11ib
directory. The number of the database partition on which the governor
is running is automatically appended to the log file name (for
example, mylog.0, mylog.1l, mylog.2).

stop database
Stops the governor daemon that is monitoring the specified database.

If you are in a partitioned database environment, the front-end utility
stops the governor on all database partitions by reading the node
configuration file, and then sending a command to each database
partition to call the governor front-end utility with the stop parameter.
This stops the daemon at each database partition.

nodenum node-num
Specifies the database partition on which to stop the governor
daemon. The number is the same as that specified in the node
configuration file.

When the front-end utility stops the governor daemon on a single
database partition, it communicates with the daemon on that database
partition by creating, moving, or deleting files in the tmp subdirectory
of the sq111ib directory. You should not attempt to delete or modify
these files.

Chapter 8. Using the Governor 245

The Governor Daemon

When the governor daemon is started (either by the db2gov front-end utility
or by waking up), it runs in a loop. The first task it does is to check whether
its governor configuration file has changed or has not yet been read. If either
condition is true, the daemon reads the rules in the file. This allows you to
change the behavior of the governor daemon while it is running.

After this, the governor daemon issues a snapshot request to obtain statistics
for each application and agent working on the database.

Note: On some platforms, the CPU statistics are not available from the DB2
Monitor. Where this is the case, the account rule and the CPU limit will
not be available.

The governor then checks the statistics for each application against the rules
in the governor configuration file. If a rule applies to an application, the
governor can: force the application; change the application’s priority, which
indirectly changes all the agent priorities of both agents and subagents that
are working for it on that node; or, change the schedule for the application
which, indirectly changes the agent priorities working on the application,
depending on the action specified by the rule. The governor writes a record of
any action it takes to a log file.

Note: The governor cannot be used as an alternate means to adjust agent
priorities if the agentpri database manager configuration parameter is
anything other than the system default. (This note does not apply to
0OS/2 or Windows NT platforms.)

When the governor finishes checking all of the applications, it sleeps for the
interval specified in the configuration file. Once this time has elapsed, the
governor wakes up and begins the execution loop again.

When the governor encounters an error or stop signal, it does cleanup
processing before ending. The cleanup processing resets all application agent
priorities (using a list of applications whose priorities have been set). It then
resets the priorities of any agents that are no longer working on an
application. This ensures that agents do not remain running with nondefault
priorities after the governor ends. If an error occurs, a message is written to
the db2diag.Tog file to indicate that the governor ended abnormally.

Note: The governor daemon is not a database application, and, therefore,
does not maintain a connection to the database. (It does have an
instance attachment, however.) The governor daemon can detect when
the database manager ends because it can issue snapshot requests.

246 Administration Guide: Performance

Creating the Governor Configuration File

When you start the governor, you specify the name of the configuration file
that contains the rules to be used to govern applications running against the
database. The governor acts based on these rules.

If your requirements for governing the database change, you can edit the
configuration file without stopping the governor. Each governor daemon will
detect that the file has changed, and reread it.

You must create the configuration file in a directory that is mounted across all
the database nodes, because the governor daemon on each node must be able
to read the same configuration file.

The configuration file consists of rules and comments. Most entries can be
specified in uppercase, lowercase, or mixed case characters. The exception is
applname which is case sensitive.

You delimit comments within the { } braces. The rules include:
* The database to which the rules apply.

* The length of time the governor sleeps before waking up to check the
applications.

* The rules that specify how to govern the applications. These rules are made
of smaller components called rule clauses.

Each rule in the file must be followed by a semicolon (;).

The following rules specify the database being monitored, and the interval at
which the daemon wakes up after working through its loop of activities

(which are described in 'The Governor Daeman” on page 246). Each of these

rules are only specified once in the file.

dbname
The name or alias of the database to be monitored.

account nnn
Account records are written containing CPU usage statistics for each
connection at the specified number of minutes.

Note: This option is not available in Windows NT or OS/2
environments.

If a short connect session occurs entirely within the account interval,
no log record is written. When log records are written, they contain
CPU statistics that reflect CPU usage since the previous log record for
the connection. If the governor is stopped then restarted, CPU usage

Chapter 8. Using the Governor 247

may be reflected in two log records; these can be identified through
the application IDs in the log records. For more information about

governor log files, see 'Gavernor | og Files” on page 255.

interval
The interval, in seconds, at which the daemon wakes up. If no interval
is specified, an interval of 120 seconds is used.

You combine the following rule clauses to form a rule (that is, the full rule is
followed by a semicolon, and not each individual clause). The clauses specify
the time during which the rule applies, the limit on resource that can be used,
and, optionally, specific users or applications and any action for the governor
to take if a limit specified in the rule is exceeded. The clauses can only be
specified once in a rule, but can be specified in more than one rule. The
clauses must be specified in the order shown. In the description that follows,
a [] indicates an optional clause.

[desc] Specifies a text description for the rule. The description must be
enclosed by either single or double quotation marks.

[time] Specifies the time period during which the rule is to be evaluated.

The time period must be specified in the following format time hh:mm
hh:mm, for example, time 8:00 18:00. If this clause is not specified, the
rule is valid 24 hours a day.

[authid]
Specifies one or more authorization ids (authid) under which the
application is executing. Multiple authids must be separated by a
comma (,), for example authid gene, michael, james. If this clause
does not appear in a rule, the rule applies to all authids.

[applname]
Specifies the name of the executable (or object file) that makes the
connection to the database.

Multiple application names must be separated by a comma (,), for
example, applname db2bp, batch, geneprog. If this clause does not
appear in a rule, the rule applies to all application names.

Notes:

1. Application names are case sensitive.

2. The database manager truncates all application names to 20
characters. You should ensure that the application you want to
govern is uniquely identified by the first 20 characters of its
application name; otherwise, an unintended application may be
governed.

Application names specified in the governor configuration file are
truncated to 20 characters to match their internal representation.

248 Administration Guide: Performance

setlimit

Specifies one or more limits for the governor to check. The limits can
only be -1 or greater than 0 (for example, cpu -1 Tocks 1000 rowssel
10000). At least one of the limits (cpu, locks, rowsread, uowtime) must
be specified, and any limit not specified by the rule is not limited by
that particular rule. The governor can check the following limits:

cpu nnn
Specifies the number of CPU seconds that can be consumed
by an application. If you specify -1, the governor does not
limit the application’s CPU usage.

Note: This option is not available in Windows NT or OS/2
environments.

locks nnn
Specifies the number of locks that an application can hold. If
you specify -1, the governor does not limit the number of
locks held by the application.

rowssel nnn
Specifies the number of rows that are returned to the
application. This value will only be non-zero at the
coordinator node. If you specify -1, the governor does not
limit the number of rows that can be selected.

uowtime nnn
Specifies the number of seconds that can elapse from the time
that a unit of work (UOW) first becomes active. If you specify
-1, the elapsed time is not limited.

Note: If you used the sqimon (Database System Monitor
Switch) API to deactivate the unit of work switch, this
will affect the ability of the governor to govern
applications based on the unit of work elapsed time.
The governor uses the monitor to collect information
about the system. If you turn off the switches in the
database manager configuration file, then it is turned
off for the entire instance, and governor will no longer
receive this information.

idle nnn
Specifies the number of idle seconds allowed for a connection
before a specified action is taken. If you specify -1, the
connection’s idle time is not limited.

Chapter 8. Using the Governor 249

rowsread nnn
Specifies the number of rows an application can select. If you
specify -1, there is no limit on the number of rows the
application can select.

Note: This limit is not the same as rowssel. The difference is
that rowsread is the count of the number of rows that
had to be read in order to return the result set. The
number of rows read includes reads of the catalog
tables by the engine and may be diminished when
indices are used.

[action]
Specifies the action to take if one or more of the specified limits is
exceeded. You can specify the following actions.

Note: If a limit is exceeded and the action clause is not specified, the
governor reduces the priority of agents working for the
application by 10.

priority nnn
Specifies a change to the priority of agents working for the
application. Valid values are from —20 to +20.

For this parameter to be effective:

* On UNIX-based platforms, the agentpri database manager
parameter must be set to the default value; otherwise, it
overrides the priority clause.

* On OS/2 and Windows NT platforms, the agentpri database
manager parameter and priority action may be used
together.

force Specifies to force the agent that is servicing the application.
(Issues a FORCE APPLICATION to terminate the coordinator
agent.)

schedule [class]
Scheduling improves the priorities of the agents working on
the applications with the goal of minimizing the average
response times while maintaining fairness across all
applications.

The governor enforces its schedule by setting priorities for the
agents working on the applications, using query cost estimates
from the DB2 internal query compiler. If the class option is
specified, all applications chosen by the rule are scheduled

250 Administration Guide: Performance

among themselves only. If this option is not specified, the
governor uses one or more classes, with scheduling done
within each class.

Within each class, how an application is prioritized is based
on:;

The number of locks held by the application within the
class. (An application holding up many other applications
due to locking is given a high priority.)

The application’s age. (An application in the system for a
long time is given a high priority.)

The application’s estimated remaining running time. (An
application close to finishing is given a high priority.)

Applications that are not covered by any schedule run with
the highest authority.

Note: If you used the sqimon (Database System Monitor

Switch) API to deactivate the statement switch, this will
affect the ability of the governor to govern applications
based on the statement elapsed time. The governor uses
the monitor to collect information about the system. If
you turn off the switches in the database manager
configuration file, then it is turned off for the entire
instance, and governor will no longer receive this
information.

The schedule action can:

Ensure that applications in different groups each get time
without all applications splitting time evenly.

For instance, if 12 applications (three short, five medium,
and six long) are running at the same time, they may all
have poor response times because they are splitting the
CPU. The database administrator can set up two groups,
medium-length applications and long-length applications.
Using priorities, the governor permits all the short
applications to run, and ensures that at most three medium
and three long applications run simultaneously. To achieve
this, the governor configuration file contains one rule for
medium-length applications, and another rule for long
applications. The following example shows a portion of a
governor configuration file that illustrates this point:

desc "Group together medium applications in 1 schedule class"
applname medql, medq2, medq3, medq4, medq5

setlimit cpu -1

action schedule class;

Chapter 8. Using the Governor 251

desc "Group together Tong applications in 1 schedule class"
applname longql, longq2, longq3, Tongg4, longg5, longgb
setlimit cpu -1
action schedule class;

* Ensure that each of several user groups (for example,
organizational departments) gets equal prioritization.

If one group is running a large number of applications, the
administrator can ensure that other groups are still able to
obtain reasonable response times for their applications. For
instance, in a case involving three departments (Finance,
Inventory, and Planning), all the Finance users could be put
into one group, all the Inventory users could be put into a
second, and all the Planning users could be put into a third
group. The processing power would be split more or less
evenly among the three departments. The following
example shows a portion of a governor configuration file
that illustrates this point:

desc "Group together Finance department users"

authid tom, dick, harry, mo, larry, curly

setlimit cpu -1

action schedule class;

desc "Group together Inventory department users"
authid pat, chris, jack, jill

setlimit cpu -1

action schedule class;

desc "Group together Planning department users"
authid tara, dianne, henrietta, maureen, Tinda, candy
setlimit cpu -1

action schedule class;

* Let the governor schedule all applications.

If the class option is not included with the action, the
governor creates its own classes based on how many
applications fall under the schedule action, and puts
applications into different classes based on the DB2 query
compiler’s cost estimate for the query the application is
running. The administrator can choose to have all
applications scheduled by not qualifying which applications
are chosen. That is, no applname or authid clauses are
supplied, and the setlimit clause causes no restrictions.

Note: If a limit is exceeded and the action clause is not specified, the

governor reduces the priority of agents working for the
application.

252 Administration Guide: Performance

If more than one rule applies to an application, the rule that is closest to the
end of the configuration file is applied to the application. An exception occurs
if -1 is specified for a clause in a rule. In this situation, the value specified for
the clause in the subsequent rule can only override the value previously
specified for the same clause: other clauses in the previous rule are still
operative. For example, one rule indicates that the priority of an application is
to be decreased if its elapsed time is greater than 1 hour, or if it selects more
than 100 000 rows (that is, rowssel 100000 uowtime 3600). A subsequent rule
indicates that the same application can have unlimited elapsed time (that is,
uowtime -1). In this situation, if the application runs for more than 1 hour, its
priority won’t be changed (that is, uowtime -1 overrides uowtime 3600), but if
it selects more than 100 000 rows, its priority will be lowered (as rowssel
100000 is still valid).

Eigure 19 on page 254 shows an example of a configuration file.

Chapter 8. Using the Governor 253

{ Wake up once a second, the database name is ibmsamp]l
do accounting every 30 minutes. }
interval 1; dbname ibmsampl; account 30;

desc "CPU restrictions apply 24 hours a day to everyone"
setlimit cpu 600 rowssel 1000000 rowsread 5000000;

desc "Allow no UOW to run for more than an hour"
setTimit uowtime 3600 action force;

desc 'Slow down a subset of applications'
appIname jointA, jointB, jointC, quryA
setlimit cpu 3 Tocks 1000 rowssel 500 rowsread 5000;

desc "Have governor prioritize these 6 long apps in 1 class"
applname longql, longqg2, longqg3, Tongg4, Tongg5, longgb
setTlimit cpu -1

action schedule class;

desc "Schedule all applications run by the planning dept"
authid planidl, planid2, planid3, planid4, planid5
setlimit cpu -1

action schedule;

desc "Schedule all CPU hogs in one class which will control consumption"
setlimit cpu 3600
action schedule class;

desc "Slow down the use of db2 CLP by the novice user"
authid novice

appIname db2bp.exe

setlimit cpu 5 Tocks 100 rowssel 250;

desc "During day hours do not let anyone run for more than 10 seconds"
time 8:30 17:00 setlimit cpu 10 action force;

desc "Allow users doing performance tuning to run some of
their applications during Tunch hour"
time 12:00 13:00 authid ming, geoffrey, john, bill
applname tpccl, tpcc2, tpcA, tpvG setlimit cpu 600 rowssel 120000 action force;

desc "Some people should not be Timited -- database administrator
and a few others. As this is the last specification in the
file, it will override what came before."
authid gene, hershel, janet setlimit cpu -1 locks -1 rowssel -1 uowtime -1;

desc "Increase the priority of an important application so it always
completes quickly"
appIname Vlapp setlimit cpu 1 Tocks 1 rowssel 1 action priority -20;

Figure 19. Example Governor Configuration File

254 Administration Guide: Performance

Governor Log Files

When a governor daemon forces an application, reads the governor
configuration file, changes an application’s priority, encounters an error or
warning, starts, or ends, it writes a record to a log file. A separate log file
exists for each governor daemon. This prevents file-locking bottlenecks that
would result from many governor daemons writing to the same file at the
same time. You can use the db2gov1g utility to merge the log files together and

Euerf them. This utility is described in EQuerying Gavernor L ag Files” an

The log files are stored in the Tog subdirectory of the sq11ib directory. You
provide the base name for the log file when you issue the db2gov command.
You should ensure that the log file name contains the database name, because
there will be a log file for each node of each database that is being governed.
In a partitioned database environment, the node number of the database
partition that the governor is running on is automatically appended to the log
file name to ensure that the filename is unique for each governor.

Each record in the log file has the following format:

Date Time
NodeNum RecType Message

The Date and Time field is in the yyyy-mm-dd-hh.mm.ss format, so that you
can merge the log files for each database partition by sorting on this field.

The NodeNum field indicates the number of the database partition on which
the governor is running.

The RecType field contains different values, depending on the type of log
record being written to the log. The values that can be recorded are:
» START to indicate that the governor was started
* FORCE to indicate that an application was forced
* PRIORITY to indicate that the priority of an application was changed
* ERROR to indicate an error
* WARNING to indicate a warning
* READCFG to indicate that the governor read the configuration file
* STOP to indicate that the governor was stopped
» ACCOUNT to indicate the application’s accounting statistics.
The fields are:
— authid
— appl_id

Chapter 8. Using the Governor 255

— written_usr_cpu
— written_sys_cpu
— appl_con_time
» SCHEDULE to indicate that a change in agent priorities occurred.

Because standard values are written, you can query the log files for different
types of actions. The Message field provides other nonstandard information
that varies according to the value under the Rectype field. For instance, a
FORCE or NICE record indicates application information in the Message field,
while an ERROR record includes an error message.

An example log file is as follows:

1995-12-11 14.54.52 0 START Database = TQTEST

1995-12-11 14.54.52 0 READCFG Config = /u/db2instance/sql1ib/tqtest.cfg
1995-12-11 14.54.53 0 ERROR SQLMON Error: SQLCode = -1032

1995-12-11 14.54.54 0 ERROR SQLMONSZ Error: SQLCode = -1032

Querying Governor Log Files

Each governor daemon writes to its own log file. You can use db2gov1g utility
to query the log file. You can list the log files for a single partition, or for all
database partitions, sorted by date and time. You can also query on the basis
of the RecType log field. The syntax for db2gov1g is as follows:

»»—db2govlg — log-file — database L

o
»4

nodenum — node-num J L rectype — record-type J

Figure 20. Syntax for db2govilg

The parameters are as follows:

log-file
The base name of the log file (or files) that you want to query.

database
The database that the governor is monitoring.

nodenum node-num
The node number of the database partition on which the governor is
running.

rectype record-type
The type of record that you want to query. The record types are:

e START

256 Administration Guide: Performance

* READCFG

» STOP

* FORCE

* NICE

* ERROR

* WARNING
* ACCOUNT

There are no authorization restrictions for using this utility. This allows all
users to query whether the governor has affected their application. If you
want to restrict access to this utility, you can change the group permissions for
the db2govig file.

Running the Governor and Database Manager Performance

The governor can affect database manager performance because it requests
snapshots of the database manager. If the governor uses too much CPU, you
can increase its wake-up interval to reduce its CPU usage.

Chapter 8. Using the Governor 257

258 Administration Guide: Performance

Chapter 9. Scaling Your Configuration

You may find that the size of your configuration is not appropriate for your
needs. You may have tried increasing your configuration memory, or storage
capacity, or both, but this has not provided you with sufficient improvement
to meet your current or future needs.

You should consider scaling your configuration as discussed in the remainder
of this chapter if:

* You had a single-partition configuration with a single processor that was
being used to its maximum capacity. As a result, you have decided to
change configurations and have:

— Determined a symmetric multiprocessor (SMP) configuration is your best
choice for a new environment. You perhaps made this choice because
you want to take advantage of the processing power available with more
than one processor. Each processor shares memory and storage system
resources. All of the processors are within one system, so there are no
additional considerations such as communication lines between systems,
perhaps no additional administration staff to support any new systems,
and coordination of tasks between systems is not an issue. DB2 Universal
Database supports this environment.

— Determined a partitioned database configuration is your best choice for a
new environment. You perhaps made this choice because you want to
take advantage of the processing power available with more than one
processor that is physically separate from the first. Each processor has its
own memory and storage system resources without having to share with
the other processor. While you may have the additional considerations
mentioned above (communications, staff, and coordination of tasks),
there are advantages to this choice such as the ability to balance data
and user access across more than one system. DB2 Universal Database
supports this environment.

* You currently have a SMP configuration and you are planning to add one
or more additional processors. In this case, you are already familiar with
those considerations associated with this type of environment. By adding
one or more additional processors, you are simply adding complexity to
your environment without adding new considerations. DB2 Universal
Database supports this environment.

* You have a partitioned database configuration and you are planning to add
one or more additional database partitions. In this case, you are already
familiar with those considerations associated with this type of environment.
By adding one or more additional database partitions, you are simply

© Copyright IBM Corp. 1993, 1999 259

adding complexity to your environment without adding new
considerations. DB2 Universal Database supports this environment.

* You have a partitioned database configuration and you are planning to add
one or more additional database partitions each of which may be in a SMP
configuration. DB2 Universal Database supports this environment.

When you scale your system by changing the environment, you should be
aware of the impact that such a change can have on your database procedures
such as backing up and restoring the database.

When you add a new database partition, you cannot drop or create a database
until the procedure is complete, and the new server is successfully integrated
into the system.

Adding Processors to a Machine

The first thing to be done is to ensure that you have installed one or more
additional processors in your machine. To allow the DB2 database manager to
take advantage of the new processors, there are configuration parameters that
should be reviewed and perhaps updated. (Some operating systems, like
Solaris, can dynamically vary processors on- and off-line.) The parameters that
are used to determine the number of processors used and may need to be
updated include:

You should also consider the parameters associated with applications that

may need to be updated. See [‘Parallel Pracessing of Applications” on page 56

for more information.

Utilities in DB2 such as load, backup, and restore can take advantage of the
additional processors. Refer to Data Movement Utilities Guide and Reference and
to Administration Guide, Design and Implementation for information on these
utilities.

260 Administration Guide: Performance

Adding Database Partitions to a Partitioned Database System

You can add database partitions to the partitioned database system either
when it is running, or when it is stopped. The following sections describe
how to do this task. Because adding a new server can be time consuming, you
may want to do it when the database manager is already running. The

procedure is described in EAdding Database Partitions to a Running System’l

The ADD NODE command is used to add a database partition to a system.
This command can be invoked:
* As an option on db2start
e Using:
— The command line processor ADD NODE command
— sqleaddn
— sqlepstart.

The method you use to invoke the command is dependent upon whether
your system is stopped (using db2start) or running (using any of the other
choices).

When a new database partition is added to the system using the ADD NODE
command, all existing databases in the instance are created on the new
database partition. You can also specify which containers for temporary table
spaces will be used with the databases that are created. The containers can be:

* The same as those defined for the catalog node for each database. (This is
the default.)

* The same as those defined for another database partition.

* Not created at all. The ALTER TABLESPACE statement must be used to add

temporary table space containers to each database before the database can
be used.

A database on the new partition cannot be used to contain data until one or
more nodegroups are altered to include the new database partition. See

tAdding and Dropping Database Partitions” on page 270 for more information

on how to alter a nodegroup.

Note: If there are no databases defined in the system and you are running
DB2 Enterprise - Extended Edition on a UNIX-based system, edit the
db2nodes.cfg file to add a new database partition definition; do not use
any of the following procedures, as an error will result. Refer to

Chapter 9. Scaling Your Configuration 261

“Altering a Nodegroup” in the Administration Guide, Design and
Implementation for more information on how to update the node
configuration file.

Windows NT Considerations: If you are using DB2 Enterprise - Extended
Edition on Windows NT and have no
databases in the instance, you should use the
DB2NCRT command to scale the database
system. For information about this command,
refer to the Command Reference. If, on the other
hand, you already have databases, you should
use the DB2START ADDNODE command, as
this ensures that a database partition is created
for each existing database when you scale the
system. For information about the DB2START
command and the parameters that you must
use on Windows NT, refer to the Command
Reference. On Windows NT, you should never
manually edit the node configuration file
(db2nodes.cfg), as this can introduce
inconsistencies into the file.

Adding Database Partitions to a Running System

You can add new database partitions to a partitioned database system while it
is running and while applications are connected to databases. However, a
newly added server does not become available to all databases until the
database manager is shut down and restarted.

To add a database partition to a multiple server system:

1. If the database partition is to be created on a server that already exists in
the system, go to the next step. Otherwise, do the following:

* On UNIX platforms,

a. Install the new server. This includes making executables accessible
(using shared file-system mounts or local copies), synchronizing
operating system files with those on existing processors, ensuring
that the sq11ib directory is accessible as a shared file system, and
ensuring that the relevant operating system parameters (such as the
maximum number of processes) are set to the appropriate values.

b. Register the host name with the name server or in the hosts file in
the etc directory on all database partitions.

* On Windows NT platforms,
a. Install the new server.

b. Run the ADD NODE command on the new server. This command
causes a database partition to be created locally for every database

262 Administration Guide: Performance

that already exists in the system. The database parameters for the
new database partitions are set to the default value, and each
database partition remains empty until you move data to it.

c. Go to point three (3).

2. Run the DB2START command on any database partition, specifying the
NODENUM, ADDNODE, HOSTNAME, PORT, and NETNAME
parameters. On the Windows NT platform, you must also specify the
COMPUTER, USER, and PASSWORD parameters. For more information
about the DB2START command, refer to the Command Reference.

You can also optionally specify the source for any temporary table space
container definitions that need to be created with the databases. If no table
space information is provided, the temporary table space container
definitions are retrieved from the catalog node for each database.

When the command completes, the new server is stopped. The node
configuration file is not updated with the new server information until
DB2STORP is executed. This ensures that the ADD NODE command (which
is called when the ADDNODE parameter is specified) runs on the correct
database partition. When the utility ends, the new server is stopped.

3. Stop the database manager by running the DB2STOP command.

When you stop all the database partitions in the system, the node
configuration file is updated to include the new database partition.

4. Start the database manager by running the DB2START command.

The newly added database partition is now started along with the rest of
the system.

When all the database partitions in the system are running, system-wide
activities, such as creating or dropping a database, can be done.

Note: You may have to issue the DB2START command twice for all
database partition servers to access the new db2nodes.cfqg file.

5. Optionally, take a backup of all databases on the new database partition.
Optionally, redistribute data to the new database partition. For details, see

o

Adding Database Partitions to a Stopped System

You can add new database partition to a partitioned database system while it
is stopped. The newly added server becomes available to all databases when
the database manager is started up again. You have two options. You can
either have the database manager update the node configuration file for you,
or you can do it manually. The preliminary steps for both procedures are the
same.

Chapter 9. Scaling Your Configuration 263

Note: You should not update the node configuration file manually while
working on Windows NT. Instead, you should use the database
manager to update this file.

To add a new database partition to a multiple server system:
1. Issue DB2STOP to stop all the database partitions.

2. If the server is to be created on a processor that already exists in the
system, go to the next step. Otherwise, do the following:

a. On UNIX platforms,

1) Install the new server. This includes making executables accessible
(using shared file-system mounts or local copies), synchronizing
operating system files with those on existing processors, ensuring
that the sq111ib directory is accessible as a shared file system, and
ensuring that the relevant operating system parameters (such as the
maximum number of processes) are set to the appropriate values.

2) Register the host name with the name server or in the hosts file in
the etc directory on all database partitions.

b. On Windows NT platforms,
1) Install the new server.

2) Run the ADD NODE command on the new server. This command
causes a database partition to be created locally for every database
that already exists in the system. The database parameters for the
new database partitions are set to the default value, and each
database partition remains empty until you move data to it.

3) Run the DB2START command to start the database system. Note
that the node configuration file (db2nodes.cfg) has already been
updated to include the new server during the installation of the
new Sserver.

4) Optionally redistribute data onto the new server. See m
Redistributing Data Across Database Partitions” on page 269 for

more details on how to do this.

c. If you want the database manager to update the db2nodes.cfg file for

you, continue with the mstructlons in

Note: On Windows NT, you should not edit the db2nodes.cfg file
manually, as this can introduce inconsistencies into the file.
Instead, you should have the database manager update this file.

If you want to update the db2nodes.cfg flle yourself continue with the
instructions in ad

264 Administration Guide: Performance

Having the Database Manager Update the Node Configuration File

Continue the procedure as follows:

1. Run the DB2START command on the new database partition specifying
NODENUM, ADDNODE, HOSTNAME, PORT, and NETNAME
parameters. On the Windows NT platform, you must also specify the
COMPUTER, USER, and PASSWORD parameters. For more information
about the DB2START command, refer to the Command Reference. The
values that you specify for these parameters are used to update the node
configuration file.

When the command completes, the new server is stopped. The node
configuration file is not updated with the new server information until
DB2STOP is executed. This ensures that the ADD NODE command (which
is called when the ADDNODE parameter is specified) runs on the correct
database partition. When the utility ends, the new server is stopped.

2. lIssue the DB2STOP command.

When you issue the DB2STOP command, the node configuration file is
updated to include the new server.

3. Issue the DB2START command to start the database system.

Note: You may have to issue the DB2START command twice for all
database partition servers to access the new node configuration file.

4. Optionally, take a backup of all databases on the new database partition.
5. Optionally, redistribute data to the new server. For details, see

Updating the Node Configuration File Manually

Note: On Windows NT, you should not edit the node configuration file
manually, as this can introduce inconsistencies into the file. Instead, you
should have the database manager update this file.

Continue the procedure as follows:
1. Edit the db2nodes.cfg file and add the new database partition to it.
2. Issue the following command to start the new node:

DB2START NODENUM nodenum

Specify the number you are assigning to the new database partitioned
server as the value of nodenum.

3. If the new server is to be a logical database partition (that is, it is not node
0), use db2set command to update the DB2NODE registry value,
specifying the number of the server you are adding.

4. Run the ADD NODE command on the new server.

Chapter 9. Scaling Your Configuration 265

This command also causes a database partition to be created locally for
every database that already exists in the system. The database parameters
for the new database partitions are set to the default value, and each
database partition remains empty until you move data to it.

5. When the ADD NODE command completes, issue the DB2START
command to start the other database partitions in the system.

You should not attempt to do any system-wide activities, such as creating
or dropping a database, until all database partitions are successfully
started.

6. Optionally, take a backup of all new database partitions on the new server.
7. Optionally, redistribute data to the new database partition. For details, see

Dropping a Database Partition from a System

You can drop a database partition by using the DB2STOP command with the
DROP NODENUM parameter, or the sqlepstp API. Before doing this, you
must first ensure that the database partition being dropped is not being used
by any database. To check, issue the DROP NODE VERIFY command.

You should ensure that all transactions for which this database partition was
the coordinator have all committed or rolled back successfully. This may
require doing crash recovery on other servers.

For example, if you drop the coordinator database partition (that is, the
coordinator node), and another database partition participating in a
transaction crashed before the coordinator node was dropped, the crashed
database partition will not be able to query the coordinator node for the
outcome of any indoubt transactions.

To drop a database partition from a partitioned database system:

1. Redistribute the data for every database that resides on this node. This
ensures that the partitioning map is kept current. For details, see

2. lIssue the DROP NODE VERIFY command or the sqledrpn API to verify
that the server is not in use.

Depending on the message you receive, proceed with either step 3 or step 4.

3. If you receive message SQL6034W (Node not used in any database), you
can do the following:

266 Administration Guide: Performance

a. Issue the DB2STOP command with the DROP NODENUM parameter
to drop the database partition. After the command completes
successfully, the system is stopped.

b. If you want to, start the database manager with the DB2START
command.

4. If you receive message SQL6035W (Node in use by database), do the
following:

a. Use the REDISTRIBUTE NODEGROUP command to redistribute the
data from the database partition you are dropping to other database
partitions from the database alias, as indicated in message SQL6035W.
You cannot drop the database partition until this is done.

b. Drop any event monitors defined on the database partition.

c. Return to step W and continue.

Chapter 9. Scaling Your Configuration 267

268 Administration Guide: Performance

Chapter 10. Redistributing Data Across Database Partitions

Only if you are working in a partitioned database environment do you need
to be concerned with redistribution of data. If you are in a single partition
database environment there is no need for you to use the information found
here.

You use the Data Redistribution utility to move data among the database
partitions in an existing nodegroup. You can use it to do the following:

» Balance data volumes and processing loads across database partitions.

This is useful if you have a database table in which all the data is accessed
on a regular basis.

* Introduce skew in the data distribution across database partitions.

This is useful if you have a database table in which only some of the data is
accessed on a regular basis. In this situation, you could redistribute the
table so that the infrequently accessed data is on a small humber of
database partitions in the nodegroup, and the frequently accessed data is
distributed over a larger number of partitions. This would improve access
performance and throughput on the most frequently run applications.

* Add database partitions to a nodegroup. (Provided for backward
compatibility only with DB2 for Parallel Edition. The recommended way to
add a database partition is to use the ALTER NODEGROUP command.)

* Drop database partitions from a nodegroup. (Provided for backward
compatibility only with DB2 for Parallel Edition. The recommended way to
drop a database partition is to use the ALTER NODEGROUP command.)

To preserve table collocation, this operation is applied to all tables in a
nodegroup, and redistribution is done at the nodegroup level rather than at
the table level.

To achieve the data distribution that you want, the utility uses a partitioning
map to move the rows of the tables among the database partitions of the
nodegroup. Depending on the option you specify, the utility can generate a
target partitioning map or can use an existing partitioning map as input.

Notes:

1. You should specify a log file size based on the log space requirements you
think that the Data Redistribution operation will need. You should also
ensure that the log is large enough to accommodate the INSERT and
DELETE operations done at each database partition where data is being
redistributed.

© Copyright IBM Corp. 1993, 1999 269

2. If you want to redistribute the data in a nodegroup that contains
replicated summary tables, you must first drop these tables, redistribute
the nodegroup, then re-create the tables. You cannot redistribute a
nodegroup that contains replicated summary tables.

How to Partition Data

By default, the Data Redistribution utility assumes that the same number of
rows hash to each hash partition, therefore it partitions the hash partitions
uniformly across all the database partitions of the nodegroup. If the same
number of rows do not hash to each hash partition, you can use a distribution
file to specify the current distribution. This file contains a value for each of the
4 096 hash partitions. Each value is used as the weight of the corresponding
hash partition. The Data Redistribution utility generates a target partitioning
map in which all the database partitions have about the same weight. Thus,
the distribution file can be used to achieve uniform data distribution even if
the data distribution is skewed.

The Autoloader utility can be used to create a data distribution file using the
ANALYZE option. You can use this file as input to the Data Redistribution
utility. Refer to the Administration Guide, Design and Implementation for more
information on the AutolLoader utility.

Alternatively, you can use the PARTITION and NODENUMBER SQL
functions to determine the current data distribution across hash partitions or
database partitions. (You use the PARTITION function to determine the
distribution across hash partitions.) You can use this information to derive
both a distribution file and a target partitioning map.

Adding and Dropping Database Partitions

You can use the ALTER NODEGROUP statement to add or drop database
partitions from a nodegroup. When adding database partitions, the partitions
must already be defined in the node configuration file.

Following the use of the ALTER NODEGROUP statement, a new partitioning
map is created. This new partitioning map can become the target partitioning
map when using the Data Redistribution utility. (The other way to create the
target partitioning map is to create it yourself.)

If you use the ALTER NODEGROUP statement with the WITHOUT
TABLESPACES clause, you must add table space containers to a new database

270 Administration Guide: Performance

partition (or partitions) before redistributing the data. For additional
information about the ALTER NODEGROUP statement, refer to the SQL
Reference.

Specifying a Target Partitioning Map

The Data Redistribution utility uses a partitioning map to do the data
redistribution. It can create its own target partitioning map, or you can
provide one for the utility to use. If you create one, the entry or entries
determine the type of nodegroup that results from the data redistribution:

* 1 entry for a single-partition nodegroup
* 4096 entries for a multipartition nodegroup

If the target partitioning map has more than one database partition, all tables
in the nodegroup must have a partitioning key defined.

The target partitioning map can only contain database partition numbers that
are defined in the SYSCAT.NODEGROUPDEF catalog table, excluding those
with an IN_USE value of 'T". (T’ means that the partition is not in the target
partitioning map.) All database partitions that have an IN_USE value of 'D’
(meaning to drop) and do not appear in the target partitioning map are
dropped when the redistribution operation has completed successfully.

How Data Is Redistributed Across Database Partitions

The Data Redistribution operation is done on the set of tables in the specified
nodegroup of a database. (The application must be connected to the database
at the catalog database partition before executing the operation.) The utility
uses both the source partitioning map and the target partitioning map to
identify which hash partitions have been assigned to a new location (that is, a
new database partition number). All rows that correspond to a partition that
has a new location are moved from the database partition specified in the
source partitioning map to the database partition specified in the target
partitioning map.

The Data Redistribution utility does the following:

1. Obtains a new partitioning map 1D for the target partitioning map, and
inserts it into the SYSCAT.PARTITIONMAPS catalog view.

2. Updates the REBALANCE_PMAP_ID column in the
SYSCAT.NODEGROUPS catalog view for the nodegroup with the new
partitioning map ID.

3. Adds any new database partitions to the SYSCAT.NODEGROUPDEF
catalog view.

Chapter 10. Redistributing Data Across Database Partitions 271

4. Sets the IN_USE column in the SYSCAT.NODEGROUPDEF catalog view
to 'D’ for any database partition that is to be dropped.

5. Does a COMMIT for the catalog updates.

6. Creates database files for all new database partitions.

7. Redistributes the data on a table-by-table basis for every table in the

nodegroup. This is described in EHow Data ls Redistributed in Tables

8. Deletes database files and deletes entries in the
SYSCAT.NODEGROUPDEF catalog view for database partitions that
were previously marked to be dropped.

9. Updates the nodegroup record in the SYSCAT.NODEGROUPS catalog
view to set PMAP_ID to the value of REBALANCE_PMAP_ID and
REBALANCE_PMAP_ID to NULL.

10. Deletes the old partitioning map from the SYSCAT.PARTITIONMAPS
catalog view.

11. Does a COMMIT for all changes.

How Data Is Redistributed in Tables

When doing data redistribution on a table, the utility does the following:
1. Locks the row for the table in the SYSTABLES catalog table.

2. Invalidates all packages that involve this table. The partitioning map ID
associated with the table will change because the table is being
redistributed. Because the packages are invalidated, the compiler must
obtain the new partitioning information for the table and generate
packages accordingly.

3. Locks the table in exclusive mode.
4. Redistributes the data in the table via DELETEs and INSERTS.
5. If the redistribution operation succeeds, it:

a. lIssues a COMMIT for the table.

b. Continues with the next table in the nodegroup.

If the operation fails before the table is fully redistributed, the utility:
a. lIssues a ROLLBACK on updates to the table.
b. Ends the entire redistribution operation and returns an error.

272 Administration Guide: Performance

Recovering From Redistribution Errors

After the redistribution operation begins to execute, a file is written to the
redist subdirectory of the sq11ib directory. This status file lists any
operations that are done on database partitions, the names of the tables that
were redistributed, and the completion status of the operation. If a table
cannot be redistributed, its name and the applicable SQLCODE is listed in the
file. If the redistribution operation cannot begin because of an incorrect input
parameter, the file is not written and an SQLCODE is returned.

The file has the following naming convention:

databasename.nodegroupname. timestamp (for UNIX platforms)
databasename\nodegroupname\date\time (for non-UNIX platforms)

Note: On non-UNIX platforms, only the first eight (8) bytes of the
nodegroupname are used.

If the data redistribution operation fails, some tables may be redistributed,
while others are not. This occurs because data redistribution is performed a
table at a time. You have two options for recovery:

* Use the CONTINUE option to continue the operation to redistribute the
remaining tables.

* Use the ROLLBACK option to undo the redistribution and set the
redistributed tables back to their original state. The rollback operation can
take about the same amount of time as the original redistribution operation.

Before you can use either option, a previous data redistribution operation
must have failed such that the REBALANCE_PMID column in the
SYSNODEGROUPS catalog table is set to a non-NULL value.

If you happen to delete the status file by mistake, you can still attempt a
CONTINUE operation.

Data Redistribution and Other Operations

You can do the following operations on objects of the nodegroup while the
utility is running. You cannot, however, do them on the table that is being
redistributed. You can:

* Create indexes on other tables. The CREATE INDEX statement uses the
partitioning map of the affected table.

* Drop other tables. The DROP TABLE statement uses the partitioning map
of the affected table.

* Drop indexes on other tables. The DROP INDEX statement uses the
partitioning map of the affected table.

Chapter 10. Redistributing Data Across Database Partitions 273

* Query other tables.
* Update other tables.

» Create new tables in a table space defined in the nodegroup. The CREATE
TABLE statement uses the target partitioning map.

* Create table spaces in the nodegroup.

You cannot do the following operations while the utility is running:
* Another redistribution operation on the nodegroup

An ALTER TABLE on any table in the nodegroup

* Drop the nodegroup

* Alter the nodegroup.

Following Data Redistribution

After completing the redistribution of data across a nodegroup, it is strongly
recommended that you do a RUNSTATS to update the statistics associated
with the tables that may have been redistributed.

For more information on the RUNSTATS command, refer to the Command
Reference manual.

274 Administration Guide: Performance

Chapter 11. Benchmark Testing

Benchmarking is a normal part of the application development life cycle. It is
a team effort involving both application developers and database
administrators (DBAs), and should be performed against your application in
order to determine and improve performance. Assuming that the application
code has been written as efficiently as possible, additional performance gains
can be realized from tuning the database and database manager configuration
parameters to meet the requirements of the application.

There are several different types of benchmarking. A transaction per second
benchmark would determine the throughput capabilities of the database
manager under certain limited laboratory conditions. An application
benchmark would test the same throughput capabilities, but under conditions
that are closer to those under which your application will run when it is
implemented. Benchmarking for the purpose of tuning configuration
parameters is based upon these “real-world” conditions, and involves
repeatedly running SQL taken from your application with varying parameter
values until your application runs as efficiently as possible.

The benchmarking methods described in this section are oriented towards the
configuration parameters. However, the same basic technique can be used for
tuning other factors that affect performance, such as:

* SQL statements

* Indexes

» Table space configuration
* Application code

* Hardware configuration.

Benchmarking is helpful in understanding how the database manager
responds under varying conditions. You could create scenarios that test
deadlock handling, utility performance, different methods of loading data,
transaction rate characteristics as more users are added, and even the effect on
the application of using a new release of the product.

The following topics are provided:

© Copyright IBM Corp. 1993, 1999 275

Benchmark Testing Methodology

This benchmarking technique is based on the scientific method. A repeatable
environment will be created in which the same test, run under the same
conditions, will yield comparable results.

Benchmarking can also begin by running the test application in a normal
environment. As a performance problem is narrowed down, specialized test
cases can be developed to limit the scope of the function that is being tested
and observed. The specialized test cases need not emulate an entire
application in order to obtain valuable information. Start with simple
measurements, and increase the complexity only when warranted.

Characteristics of good benchmarks (or measurements) include:
» Each test is repeatable.
* Each iteration of a test is started in the same system state.

* There are no functions or applications active in the system other than those
being measured (unless the scenario includes some amount of other activity
going on in the system).

Note: Applications that are started use memory even when they are
minimized or idle. This increases the likelihood of paging skewing
the results of the benchmark and violating the repeatability rule.

* The hardware and software used for benchmarking matches your
production environment.

As with any benchmarking, a scenario must be devised and then executed.
The following information applies these concepts to the DB2 environment.

Preparing for Benchmark Testing

The logical design of your application’s database should be complete before
performance benchmarking is started. Tables, views, and indexes need to be
set up and populated. Tables should be normalized, application packages
bound, and tables populated with realistic data.

You should have determined the final physical design of the database. The

database manager objects should be placed in their final disk locations, log
files sized, work files and backup locations determined, and backup

276 Administration Guide: Performance

procedures tested. In addition, packages should be checked to make sure that
performance options such as row blocking are enabled when possible.

You should have reached a point in the application’s programming and
testing phases that will enable you to create your benchmark programs (see
next section). An application’s practical limits may be revealed during the
benchmark testing; however, the purpose of the benchmark described here is
to measure performance, not to detect defects or abends.

Your benchmarking test program will need to run in as accurate a
representation of the final production environment as possible; ideally, on the
same model of server with the same memory and disk configurations. This is
especially important when the application will ultimately involve large
numbers of users and large amounts of data. The operating system itself and
any communications or file-serving facilities used directly by the benchmark
should also have been tuned.

It is also important to benchmark with a production-size database. An
individual SQL statement should return as much data and involve as much
sorting as it will once it is implemented in production. Adhering to this rule
will ensure that the application will incur representative memory
requirements.

The type of SQL statements to be benchmarked should be either representative
or worst-case, as described below:

Representative SQL
Representative SQL includes those statements that are executed
during typical operations of the application being benchmarked. The
statements that are selected will depend on the nature of the
application. For example, a data-entry application might test an
INSERT statement, while a banking transaction might test a FETCH,
an UPDATE, and several INSERTs. The frequency of execution and
volume of data processed by the statements chosen should be
considered average. If the volumes are excessive, the statements
should be considered under the worst-case category, even if they are
typical SQL statements.

Worst-case SQL
Statements falling in this category include:
« Statements that are executed frequently.
« Statements that have high volumes of data being processed.
« Statements that are time-critical.

Chapter 11. Benchmark Testing 277

For example, an application that is run when a telephone call is
received from a customer and the statements must be run to
retrieve and update the customer’s information while the customer
is waiting.

» Statements with the largest number of tables being joined or with
the most complex SQL in the application.

For example, a banking application that produces combined
customer statements of monthly activity for all their different types
of accounts. A common table may list customer address and
account numbers; however, several other tables must be joined to
process and integrate all of the necessary account transaction
information. Multiply the work necessary for one account by the
several thousand accounts that must be processed during the same
period, and the potential time savings drives the performance
requirements.

» Statements that have a poor access path, such as one that is not
executed very often and is not supported by the indexes that have
been created for the table(s) involved.

» Statements that have a long elapsed time.

» A statement that is only executed at application initialization but
has disproportionate resource requirements.

For example, an application that generates a list of account work
that must be processed during the day. When the application is
started, the first major SQL statement causes a 7-way join, which
creates a very large list of all the accounts for which this application
user is responsible. The statement might only be run a few times
per day, but takes several minutes to run when it has not been
tuned properly.

Creating a Benchmark Program

There are a variety of factors to consider when designing and implementing a
benchmark program. Since the main purpose of the program is to simulate a
user application, the overall structure of the program can vary. You can use
the entire application as the benchmark and simply introduce a means for
timing the SQL statements to be analyzed. For large or complex applications,
it may be more practical to just include blocks containing the important
statements.

To test the performance of specific SQL statements, another approach would
be to include these statements alone in the benchmark program along with
the necessary CONNECT, PREPARE, OPEN, and other statements and a
timing mechanism.

278 Administration Guide: Performance

Another factor to consider is the type of benchmark to use. One option is to
run a set of SQL statements repeatedly over a time interval. The ratio of the
number of statements executed and this time interval would give the
throughput for the application. Another option would be to simply determine
the time required to execute individual SQL statements.

Regardless of the type of benchmark program, an efficient timing system is
necessary to calculate the elapsed time, whether for individual SQL statements
or the application as a whole. For simulating applications in which individual
SQL statements would be executed in isolation, it may be important to
consider times for CONNECT, PREPARE, and COMMIT statements. However,
for programs processing many different statements, perhaps only a single
CONNECT or COMMIT is necessary, so focusing on just the execution time
for an individual statement may be the priority.

While the elapsed time for each query is an important factor in performance
analysis, it may not necessarily reveal bottlenecks. For example, information
on CPU usage, locking, and buffer pool 170 could show that the application is
170 bound instead of using the CPU to its full capacity. A benchmark
program should allow you to obtain this kind of data for a more detailed
analysis if needed.

Not all applications will need to send the entire set of rows retrieved from a
guery to some output device. For example, some may use the whole answer
set as input for another program (that is, none of the rows are sent to output).
Formatting data for screen output usually has high CPU cost and may not
reflect user need. In order to provide an accurate simulation, a benchmark
program should reflect the row handling of the specific application. If rows do
get sent to an output device, inefficient formatting could consume the majority
of CPU processing time and misrepresent the actual performance of the SQL
statement itself.

The db2batch Benchmark Tool: A benchmark tool (db2batch) is provided in
the misc subdirectory of your instance sql1ib directory. This tool takes many
of the points made above regarding the creating of a benchmark program into
consideration. This tool will read SQL statements from either a flat file or
standard input, dynamically describe and prepare the statements, and return
an answer set. It also provides the added flexibility of allowing you to control
the size of the answer set, as well as the number of rows that should be sent
from this answer set to an output device.

You can also specify the level of performance-related information supplied,
including the elapsed time, CPU and buffer pool usage, locking, and other
statistics collected from the database monitor. If you are timing a set of SQL
statements, db2batch will also summarize the performance results and provide

Chapter 11. Benchmark Testing 279

both arithmetic and geometric means. For more information on invocation
syntax, and options, type db2batch -h on a command line.

The Command Reference manual can also be referenced for more information
on db2batch.

The following is an example of how db2batch could be used with an input file
db2batch.sql:

-- db2batch.sql

--#SET PERF_DETAIL 3 ROWS_OUT 5

-- This query lists employees, the name of their department
-- and the number of activities to which they are assigned for
-- employees who are assigned to more than one activity Tess than
-- full-time.
--#COMMENT Query 1
select Tastname, firstnme,
deptname, count(*) as num_act
from employee, department, emp_act
where employee.workdept = department.deptno and
employee.empno = emp_act.empno and
emp_act.emptime < 1
group by Tastname, firstnme, deptname
having count(*) > 2;
--#SET PERF_DETAIL 1 ROWS_OUT 5
--#COMMENT Query 2
select Tastname, firstnme,
deptname, count(*) as num_act
from employee, department, emp_act
where employee.workdept = department.deptno and
employee.empno = emp_act.empno and
emp_act.emptime < 1
group by Tastname, firstnme, deptname
having count(*) <= 2;

Figure 21. Sample Benchmark Input File: db2batch.sql

Using the following invocation of the benchmark tool:
db2batch -d sample -f db2batch.sql

Produces the following output:

280 Administration Guide: Performance

--#SET PERF_DETAIL 3 ROWS_OUT 5
Query 1

Statement number: 1

select Tastname, firstnme,

deptname, count(*) as num_act

from employee, department, emp_act

where employee.workdept = department.deptno and
employee.empno = emp_act.empno and
emp_act.emptime < 1

group by Tastname, firstnme, deptname

having count(*) > 2

Figure 22. Sample Output From db2batch (Part 1)

Chapter 11. Benchmark Testing 281

LASTNAME FIRSTNME DEPTNAME NUM_ACT

JEFFERSON JAMES ADMINISTRATION SYSTEMS 3
JOHNSON SYBIL ADMINISTRATION SYSTEMS 4
NICHOLLS HEATHER INFORMATION CENTER 4
PEREZ MARIA ADMINISTRATION SYSTEMS 4
SMITH DANIEL ADMINISTRATION SYSTEMS 7
Number of rows retrieved is: 5

Number of rows sent to output is: 5

Elapsed Time is: 0.074 seconds

Locks held currently =
Lock escalations =
Total sorts =
Total sort time (ms) =
Sort overflows =
Buffer pool data logical reads =
Buffer pool data physical reads =
Buffer pool data writes =
Buffer pool index Togical reads =
Buffer pool index physical reads =
Buffer pool index writes =
Total buffer pool read time (ms) =
Total buffer pool write time (ms) =
Asynchronous pool data page reads =
Asynchronous pool data page writes =
Asynchronous pool index page reads =
Asynchronous pool index page writes =
Total elapsed asynchronous read time =
Total elapsed asynchronous write time =
Asynchronous read requests =
LSN Gap cleaner triggers =
Dirty page steal cleaner triggers =
Dirty page threshold cleaner triggers =
Direct reads =
Direct writes =
Direct read requests =
Direct write requests =
Direct read elapsed time (ms) =
Direct write elapsed time (ms) =
Rows selected =
Log pages read =
Log pages written =
Catalog cache Tlookups =
Catalog cache inserts =
Buffer pool data pages copied to ext storage

Buffer pool index pages copied to ext storage =
Buffer pool data pages copied from ext storage
Buffer pool index pages copied from ext storage =
Total Agent CPU Time (seconds) =
Post threshold sorts =
Piped sorts requested =
Piped sorts accepted =

RSN oNoNS NoNoNol No e NoNoloNoNoNo oo o NoNo N No No BN o NN N cRo i Ro i ol

n n
hSNoNoNoNo]

[$2 16, N N o)

Figure 23. Sample Output From db2batch (Part 1)

282 Administration Guide: Performance

--#SET PERF_DETAIL 1 ROWS_OUT 5

Query 2

Statement number: 2

select Tastname, firstnme,

deptname, count(*) as num_act

from employee, department, emp_act
where employee.workdept = department.deptno and
employee.empno = emp_act.empno and
emp_act.emptime < 1

group by Tastname, firstnme, deptname
having count(*) <= 2

LASTNAME FIRSTNME DEPTNAME NUM_ACT
GEYER JOHN SUPPORT SERVICES 2
GOUNOT JASON SOFTWARE SUPPORT 2
HAAS CHRISTINE SPIFFY COMPUTER SERVICE DIV. 2
JONES WILLIAM MANUFACTURING SYSTEMS 2
KWAN SALLY INFORMATION CENTER 2
Number of rows retrieved is: 8
Number of rows sent to output is: 5
Elapsed Time is: 0.037 seconds
Summary of Results

Elapsed Agent CPU Rows Rows
Statement # Time (s) Time (s) Fetched Printed
1 0.074 0.020 5 5
2 0.037 Not Collected 8 5
Arith. mean 0.055
Geom. mean 0.052

Figure 24. Sample Output from db2batch (Part 2)

The above sample output includes specific data elements returned by the
database system monitor. For more information about these and other monitor
elements, see the System Monitor Guide and Reference manual.

In the next example, just the summary table is produced.
db2batch -d sample -f db2batch.sql -r /dev/null,

Produces just the summary table. Using the -r option, outfilel was replaced

by /dev/null and outfile2 (which contains just the summary table) is empty,
so db2batch sends the output to the screen:

Chapter 11. Benchmark Testing 283

Summary of Results

Elapsed Agent CPU Rows Rows
Statement # Time (s) Time (s) Fetched Printed
1 0.074 0.020 5 5
2 0.037 Not Collected 8 5
Arith. mean 0.055
Geom. mean 0.052

Figure 25. Sample Output from db2batch -- Summary Table Only

This benchmarking tool also has a CLI option. With this option, you can
specify a cache size. In the following example, db2batch is run in CLI mode
with a cache size of 30 statements:

db2batch -d sample -f db2batch.sql -cli 30

Executing the

Benchmark Tests

One type of database benchmark involves choosing a configuration parameter
and running the test with different values for that parameter until the
maximum benefit is achieved. A single test should include executing the
application through several iterations (for example, 10 times) with the same
parameter value to get an average timing, which will better show the effect of
parameter changes.

When running your benchmark, the first iteration should be considered a
separate case from the subsequent iterations. This is because the results from
the first iteration will include some start-up activities (such as initializing the
buffer pool). Consequently, this iteration will take somewhat longer than the
others. Although the information from this iteration may be realistically valid,
it will not be statistically valid. Therefore, when calculating the average timing
for a specific set of parameter values, use the timings from the second and
subsequent iterations.

You may want to consider using the Performance Configuration SmartGuide
to create the first iteration of the benchmark. The questions asked as part of
the Performance Configuration SmartGuide will provide insight into some of
those things to consider when adjusting the configuration of your
environment for subsequent iterations during your benchmark activity. To use
the Performance Configuration SmartGuide, enter db2cc to get into the
Control Center and proceed from there.

If you are benchmarking using individual queries, you need to ensure that
you minimize the potential effects of previous queries. This can be
accomplished by flushing the buffer pool which can be done by reading a
number of pages (irrelevant to your query) to fill the buffer pool.

284 Administration Guide: Performance

After completing the iterations for a single set of parameter values, a single

parameter can be changed. However, between each iteration, the following
tasks should be performed to restore the benchmark environment to its

original state:

* Return the application data and database manager statistics to their original

state. If the catalog statistics were updated for the test, ensure the same
values for the statistics are used for every iteration. The data used in the

tests must be consistent if it is updated in the course of the tests. This can

be done by:

— Using the RESTORE utility to restore the entire database. The backup
copy of the database would be in its previous state, and ready for the
next test.

— Using the IMPORT or LOAD utility to restore an exported copy of the

data. This method allows you to restore only the data that has been
affected. REORG and RUNSTATS utilities should be run against the
tables and indexes containing this data.

* Return the application to its original state by re-BINDing it to the database.

The following are additional considerations when benchmarking on

0S/2:

» If paging occurs during the scenario, ensure that SWAPPER.DAT has

returned to the original size.

* Re-boot the system for repeatability, if necessary.

Output from the benchmark program should include an identifier for each
test, the iteration of the program execution, the statement number, and the

timing for the execution. A summary of benchmarking results after a series of

measurements might look like the following:

Test

Numbr
002
002
002
002
002
002
002
002
002
002
002

Iter.
Numbr

05

Stmt
Numbr

01

Timing
(hh:mm:ss.ss)
00:

Figure 26. Benchmark Sample Results

SQL Statement

CONNECT TO SAMPLE

OPEN cursor_01

FETCH
FETCH
FETCH
FETCH
FETCH
FETCH
FETCH
CLOSE

cursor_01
cursor_01
cursor_01
cursor_01
cursor_01
cursor_01
cursor_01
cursor_01

CONNECT RESET

Note: The data in the above report is shown for illustration purposes only. It

does not represent measured results.

Chapter 11. Benchmark Testing

285

Examining this report would indicate that the CONNECT (statement 01) took
1.34 seconds, the OPEN CURSOR (statement 10) took 2 minutes and 8.15
seconds, the FETCHES (statement 15) returned seven rows with the longest
delay being .28 seconds, the CLOSE CURSOR (statement 20) took .84 seconds,
and the CONNECT RESET (statement 99) took .03 seconds.

It might be beneficial for your program to output your data in a delimited
ASCII format so that it could later be imported into a database table or a
spreadsheet for further statistical analysis.

Sample output for a benchmark report might be:

PARAMETER VALUES FOR EACH BENCHMARK TEST
TEST NUMBER 001 002 003 004 005
locklist 63 63 63 63 63
>> buffpage 1000 1175 1250 1325 1400 <<
maxappls 8 8 8 8 8
applheapsz 48 48 48 48 48
dbheap 128 128 128 128 128
sortheap 256 256 256 256 256
max1locks 22 22 22 22 22
stmtheap 1024 1024 1024 1024 1024
SQL STMT AVERAGE TIMINGS (seconds)
01 01.34 01.34 01.35 01.35 01.36
10 02.15 02.00 01.55 01.24 01.00
15 00.22 00.22 00.22 00.22 00.22
20 00.84 00.84 00.84 00.84 00.84
99 00.03 00.03 00.03 00.03 00.03

Figure 27. Benchmark Sample Timings Report

Note: The data in the above report is shown for illustration purposes only. It
does not represent any measured results.

Examining the data in this example shows that changing the buffpage
parameter successively lowered the OPEN CURSOR times from 2.15 seconds
to 1.00 second. (The assumption is that there is only one (1) buffer pool with
the size (NPAGES) set to -1. This means the size of the buffer pool is
controlled by the buffpage parameter.)

In summary, the following steps/iterations may be followed to benchmark a
database application:

Step 1 Leave the database and database manager tuning parameters at their
default values except for:

* Those parameters significant to the workload and the objectives of
the test. (You rarely have enough time to perform benchmark

286 Administration Guide: Performance

testing to tune all of the parameters, so you may want to start by
using your best guess for some of the parameters and tune from
that point.)

* Log sizes, which should be determined during unit and system

testmg of your application. (See [‘Size of | ag Files (logfilsiz)” od

for more information.)

* Any parameters that must be changed to enable your application to
run (that is, the changes needed to prevent negative SQL return
codes from such events as running out of memory for the statement
heap).

Run your set of iterations for this initial case and calculate the average
timing.

Step 2 Select one and only one tuning parameter to be tested, and change its
value.

Step 3 Run another set of iterations and calculate the average timing.

Step 4 Depending on the results of the benchmark test, do one of the
following:

» If performance improves, change the value of the same parameter
and return to Step 3. Keep changing this parameter until the
maximum benefit is shown.

» If performance degrades or remains unchanged, return the
parameter to its previous value, return to Step 2, and select a new
parameter. Repeat this procedure until all parameters have been
tested.

Note: If you were to graph the performance results, you would be
looking for the point where the curve begins to plateau or
decline.

You can write a driver program to help you with your benchmark testing.
This driver program could be written using a language such as REXX or, for
UNIX-based platforms, using shell scripts.

This driver program would execute the benchmark program, pass it the
appropriate parameters, drive the test through multiple iterations, restore the
environment to a consistent state, set up the next test with new parameter
values, and collect/consolidate the test results. These driver programs can be
flexible enough that they could be used to run the entire set of benchmark
tests, analyze the results, and provide a report of the final and best parameter
values for the given test.

Chapter 11. Benchmark Testing 287

288 Administration Guide: Performance

Chapter 12. Configuring DB2

Configuration parameters are values that affect the operating characteristics of
a database or database management system.

Database manager configuration parameters exist on servers and clients;
however, only certain database manager configuration parameters can be set
on the client. These parameters are a subset of the database management
configuration parameters that can be set on the server. And then, depending
on the type of DB2 Universal Database product you are using, there are
additional issues relating to configuration parameters. For example, in DB2
Extended Enterprise Edition, one database manager configuration file is
shared between all database partition servers in the instance.

Database configuration parameters only reside on a server.

DB2 has been designed with an extensive array of tuning and configuration
parameters. These parameters fall into two general categories:

In addition to descriptions of the individual parameters, the following topics
are available:

« [‘Parameter Details hy Function” on page 303 (each functional area has its

own list of configuration parameters).

There may be performance-related environment or registry variables for
your specific platform that you should consider using in addition to the
performance-related configuration parameters.

You should review all of the parameter summaries in [ahle 17 on page 293

and [Mable 19 on page 299, and then focus on the descriptions and tuning of
those which will provide you with the greatest benefit in your working

environment.

© Copyright IBM Corp. 1993, 1999 289

Tuning Configuration Parameters

The disk space and memory allocated by the database manager on the basis
of default values of the parameters may be sufficient to meet your needs. In
some situations, however, you may not be able to achieve maximum
performance using these default values.

Since the default values are oriented towards machines with relatively small
memory and dedicated as database servers, you may need to modify them if
your environment has:

* Large databases

» Large numbers of connections

* High performance requirements for a specific application
* Unique query or transaction loads or types

» Different machine configuration or usage.

Each transaction processing environment is unique in one or more aspects.
These differences can have a profound impact on the performance of the
database manager when using the default configuration. For this reason, you
are strongly advised to tune your configuration for your environment.

Different types of applications and users have different response time
requirements and expectations. Applications could range from simple data
entry screens to strategic applications involving dozens of complex SQL
statements accessing dozens of tables per unit of work. For example, response
time requirements could vary considerably in a telephone customer service
application versus a batch report generation application.

The other related topics can be used to help you benchmark your application
to tune the configuration parameters:

« I‘Parameter Details by Function” on page 303 (each functional area has its

own list of configuration parameters)

» Database system monitor element descriptions in the System Monitor Guide
and Reference.

290 Administration Guide: Performance

Database Manager Parameters

Database manager parameters are stored in a file named db2systm. This file is
created when the instance of the database manager is created. In UNIX-based
environments, this file can be found in the sq11ib subdirectory for the
instance of the database manager. In all other environments, the default
location of this file is the instance subdirectory of the sq11ib directory. If the
DB2INSTPROF variable is set, the file is in the instance subdirectory of the
directory specified by the DB2INSTPROF variable.

In a partitioned database environment, this file resides on a shared file system
so that all database partition servers have access to the same file. The
configuration of the database manager is the same on all database partition
servers.

Most of the parameters either affect the amount of system resources that will
be allocated to a single instance of the database manager, or they configure
the setup of the database manager and the different communications
subsystems based on environmental considerations. In addition, there are
other parameters that serve informative purposes only and cannot be
changed. All of these parameters have global applicability independent of any
single database stored under that instance of the database manager.

The db2systm file cannot be directly edited. It can only be changed or viewed
using a supplied API or by a tool which calls that API.

Attention: If you edit the file using a method other than those provided by

the product, you may make your system unusable. We strongly recommend
that you do not change this file using methods other than those documented
and supported by DB2.

You may use one of the following methods to reset, update, and view the
database managerconfiguration parameters:

+ Using the DB2 Control Center. The DB2 Control Center provides the
Configure Instance notebook, which you can use to set the database
manager configuration parameters on either a client or a server. The DB2
Control Center also provides the Performance Configuration SmartGuide to
alter the value of configuration parameters on a server. This SmartGuide
generates values to parameters based on the responses you provide to a set
of questions, such as the workload and the type of transactions that run
against the database. See the online help available with the Control Center
for information on using these interfaces.

* Using the command line processor. Commands to change the settings can
be quickly and conveniently entered. See the Command Reference for more
information about the following commands:

Chapter 12. Configuring DB2 291

— GET DATABASE MANAGER CONFIGURATION (or GET DBM CFG)

— UPDATE DATABASE MANAGER CONFIGURATION (or UPDATE DBM
CFG)

— RESET DATABASE MANAGER CONFIGURATION (or RESET DBM
CFG).

» Using the application programming interfaces (APIs). The APIs can easily
be called from an application. See the Administrative APl Reference for more
information.

» Using the Client Configuration Assistant. You can only use the Client
Configuration Assistant to set the database manager configuration
parameters on a client.

After changing the parameters, the database manager must be stopped
(db2stop) and then restarted (db2start) for the new parameter values to take
effect. For clients, changes in the database manager configuration parameters
take effect the next time the client connects to a server. While new parameter
values are not immediately effective, viewing the parameter settings will
always show the latest updates.

Note: You do not need to restart the database manager if you update the
value of the dft_monswitches parameter; this parameter is updated
automatically when you change its value.

Database Manager Configuration Parameter Summary

The following table lists the parameters in the database manager configuration
file for database servers. When changing the database manager configuration
parameters, consider the detailed information for each parameter. Specific
operating environment information including defaults is part of each
parameter description.

The column “Performance Impact” in the following table provides an
indication of the relative importance of each parameter as it relates to system
performance. It is impossible for this column to apply accurately to all
environments; you should view this information as a generalization.

* High — indicates the parameter can have a significant impact on
performance. You should consciously decide the values of these parameters;
which, in some cases, will mean that you accept the default provided.

* Medium — indicates the parameter can have some impact on performance.
Your specific environment and needs will determine how much tuning
effort should be focused on these parameters.

* Low — indicates that the parameter has a less general or less significant
impact on performance.

292 Administration Guide: Performance

¢ None — indicates that the parameter does not directly impact performance.
While you do not have to tune these parameters for performance, they can
be very important for other aspects of your system configuration, such as
enabling communication support.

Table 17. Configurable Database Manager Configuration Parameters

Parameter Performance Impact Additional Information

agentpri High [‘Priority of Agents (agentpri)” on page 351

agent_stack_sz Low ‘ i _ _S7)”

aslheapsz High [‘Application Support | ayer Heap Sizd
(aslheapsz)” an page 332

audit_buf_sz High EAudit Buffer Size (audit buf sz)” on page 340

authentication Low : icati ication)”
bage44d

backbufsz Medium EDefault Backup Buffer Size (hackbufsz)” od

catalog_noauth None t:Catalaging Allowed without Authority
(catalog noauth)” on page 443

comm_bandwidth Medium ECommunications Bandwidth

conn_elapse Medium : i i _ z

cpuspeed Low (see note) ECPU Speed (cpuspeed)” an page 430

datalinks Low EEnable Data | inks Support (datalinks)” onl

dft_account_str None ‘ = _ _str)

dft_client_adpt None EDefault Client Adapter Numbed

dft_client_comm None EDefault Client Communication Protacol

dft_monswitches Medium FDefault Database System Manitor Switched

e dft_mon_bufpool =

e dft_mon_lock

e dft_mon_sort

e dft_mon_stmt

e dft_mon_table

e dft_mon_uow

dftdbpath None : ”

Chapter 12. Configuring DB2 293

Table 17. Configurable Database Manager Configuration Parameters (continued)

Parameter Performance Impact Additional Information
diaglevel Low E‘Diagnastic Frror Capture | evel (diaglevel)” od

hage 424
diagpath None ‘Di i 2
dir_cache Medium ‘Di _ i

hage 234
dir_obj_name None [‘Object Name in DCE Namespacd
dir_path_name None EDirectory Path Name in DCE Namespacd
dir_type None ‘Di i T2 Z
discover Medium EDiscovery Made (discover)” on page 4159
discover_comm Low ESearch Discovery Communications Protocold
discover_inst Low ‘Di i - 2
dos_rqrioblk High EDQS Requester 1/Q Block Size (dos rgriohlk)” ad
drda_heap_sz Low EDRDA Heap Size (drda heap sz)” on page 329
fem_num_anchors High ENumber of ECM Message Anchard

(fcm _num _anchars)” an page 414
fcm_num_buffers High ENumber of ECM Buffers (fom num huffers)” on
fem_num_connect High ENumber of ECM Connection Entried

(fcm num connect)” an page 420
fcm_num_rgb High ENumber of ECM Requiest Blacks (fem num rgh)d
federated Medium E'Eederated Database System Support (federated)’]
fileserver None EIPX/SPX File Server Name (fileserver)” onl
indexrec Medium E'Index Re-creation Time (indexrec)” on page 381
initdari_jvm Medium Einitialize DARI Pracess with VM (initdari jvm)]
intra_parallel High I‘Enable Intra-Partition Parallelism
ipx_socket None EIPX/SPX Sacket Number (ipx_socket)” on

294 Administration Guide:

Performance

Table 17. Configurable Database Manager Configuration Parameters (continued)

Parameter Performance Impact Additional Information

java_heap_sz High EMaximum Java Interpreter Heap Sizd

jdk11_path None flava Development Kit 1.1 Installation Path
Gakii_path)” 24

keepdari Medium : i ”
bhage 264

maxagents Medium ‘ i ”
lhage 364

maxcagents Medium EMaximum Number of Concurrent Agentd
(maxcagents)” on page 358

max_connretries Medium : i i - Z

max_coordagents Medium EMaximum Number of Coordinating Agentd
{max_coordagents)” on page 361

maxdari Medium EMaximum Number of DARI Processed

max_querydegree High EMaximum Query Degree of Parallelism
(max_querydegree)” on page 423

max_time_diff Medium EMaximum Time Difference Amaong Noded
[max_time_diffy” 21

maxtotfilop Medium EMaximum Total Files Open per Application

min_priv_mem Medium EMinimum Committed Private Memory

mon_heap_sz Low E‘Datahase System Monitor Heap Sizd
{mon_heap_sz)” an page 334

nname None : i 2

notifylevel Low ‘Nati ”

numdb Low EMaximum Number of Concurrently Active
Datahases (numdh)” an page 431

num_initagents Medium Elnitial Number of Agents in Pool
I T]

num_initdaris Medium EInitial Number of Fenced DARI Processes inl

num_poolagents High ‘ i ”

objectname None

[1IPX/SPX DB? Server Ohject Name (objectname)’]

Chapter 12. Configuring DB2 295

Table 17. Configurable Database Manager Configuration Parameters (continued)

Parameter Performance Impact Additional Information

priv_mem_thresh Medium EPrivate Memary Threshold (priv_mem_thresh)l

query_heap_sz Medium : —heap_s2)7

restbufsz Medium : =

resync_interval None ‘ i — =

route_obj_name None ERouting Information Ohject Namd

rqrioblk High Cli : - =

sheapthres High : =~

spm_log_file_sz Low ESync Point Manager Log Eile Sizd

spm_log_path Medium : i E i

Spm_max_resync Low LSyn;_Em_nLManagaLResync_AgenLumd
(spm_max_resync)” on page 3od

spm_name None ¢ i . I

ss_logon None ELQGQN Required for DR2START/DR2STQR
(ss_logon)” on page 444

start_stop_time Low : A ~Stop_ »

svcename None ¢ m

sysadm_group None System Administration Authority Group Namd
(sysadm_graup)” an page 424

sysctrl_group None t'System Control Authority Graup Namd
sl group)” an page 434

sysmaint_group None ESystem Maintenance Autharity Gronp Namd
[Sysmaint groipy” c 124

tm_database None ETransaction Manager Datahase Namd
[tm_datahase)” on page 378

tp_mon_name None ETransaction Pracessor Monitor Namel
(tp_mon_name)” on page 433

tpname None : i >

trust_allcints None ‘ — ”

296 Administration Guide: Performance

Table 17. Configurable Database Manager Configuration Parameters (continued)

Parameter Performance Impact Additional Information
trust_cIntauth None ETrusted Clients Authentication (trust clntauth)’]
udf_mem_sz Low [*UDFE Shared Memary Set Size (udf mem sz)” onl

Note: The cpuspeed parameter can have a significant impact on performance but you should use the
default value, except in very specific circumstances, as documented in the parameter description.

Table 18. Informational Database Manager Configuration Parameters

Parameter Additional Information
nodetype : i ”
release ECanfiguration File Release | evel (release)” od

page 301

Database Parameters

Parameters for an individual database are stored in a configuration file named
SQLDBCON. This file is stored along with other control files for the database in
the SQLnnnnn directory, where nnnnn is a number assigned when the database
was created. (For more information about the location of this directory, refer
to “Database Physical Directories” in the Administration Guide, Design and
Implementation.) Each database has its own configuration file, and most of the
parameters in the file specify the amount of resources allocated to that
database. The file also contains descriptive information, as well as flags that
indicate the status of the database.

The SQLDBCON file cannot be directly edited, and can only be changed or
viewed via a supplied API or by a tool which calls that API.

Attention: If you edit the file using a method other than those provided by
DB2, you may make the database unusable. We strongly recommend that you
do not change this file using methods other than those documented and
supported by DB2.

You may use one of the following three methods to reset, update, and view
the database configuration parameters:

* Using the Control Center. The DB2 Control Center provides both the
Configure Database notebook and the Performance Configuration
SmartGuide to alter the value of configuration parameters. This SmartGuide
generates values to parameters based on the responses you provide to a set
of questions, such as the workload and the type of transactions that run

Chapter 12. Configuring DB2 297

against the database. See the online help available with the Control
Centerfor information on using these interfaces.

In a partitioned database environment, the SQLDBCON file exists for each
database partition. In this environment, the Configure Database notebook
updates the configuration for individual database partitions. If you want to
have all the database partitions (or a subset of them) share the same
database configuration values, you can:

— Use the Configure Database notebook to update each database partition
configuration file separately.

— Use the db2_all command with a script to update the database
configuration files. For information about the db2_all command, refer to
the description of how to issue a command to multiple database
partition servers in the Administration Guide, Design and Implementation.

— Use an application to update multiple database configuration files.

Note: The Performance Configuration SmartGuide is not available in the
partitioned database environment.

» Using the command line processor. Commands to change the settings can
be quickly and conveniently entered. Refer to the Command Reference for
more information about the following commands:

- GET DATABASE CONFIGURATION (or GET DB CFG)
- UPDATE DATABASE CONFIGURATION (or UPDATE DB CFG)
- RESET DATABASE CONFIGURATION (or RESET DB CFG)

» Using the application programming interfaces (APIs). The APIs can easily
be called from a host-language program. Refer to the Administrative API
Reference for more information.

Updates to most changeable parameters will not take effect while applications
are connected to the database. All applications must first disconnect from the
database. (If the database was activated, then it must be deactivated and
reactivated.) Then, at the first new connect to the database, the changes will
take effect. You should note that some parameter changes, such as newlogpath,
logfilsiz and logprimary, may take a noticeable amount of time to take effect
due to the overhead associated with allocating space. You may wish to make a
test connection to the database so the change will be made at the time of the
test connection and any overhead will not affect other users. If you are
concerned about the overhead as discussed here, consider using the
ACTIVATE DATABASE command as described in the Command Reference.

Note: You do not need to disconnect from the database if you update the

value of the mincommit parameter; this parameter is updated
automatically when you change its value.

298 Administration Guide: Performance

Changing some database configuration parameters can influence the access
plan chosen by the SQL optimizer. These database parameters are discussed in
I'Configuration Parameters Affecting Query Optimization” on page 59. After
changing any of the parameters discussed there, you should consider
rebinding your applications to ensure the best access plan is being used for
your SQL statements.

While new parameter values may not be immediately effective, viewing the
parameter settings will always show the latest updates.

Note: A number of database configuration parameters (for example, userexit)
are described as having acceptable values of either “Yes” or “No”, or
“On” or “Off” in the help and other DB2 books. To clarify what may be
confusing, “Yes” should be considered equivalent to “On” and “No”
should be considered equivalent to “Off”.

Database Configuration Parameter Summary

The following table lists the parameters in the database configuration file.
When changing the database configuration parameters, consider the detailed
information for the parameter.

The column “Performance Impact” in the following table provides an
indication of the relative importance of each parameter as it relates to system
performance. It is impossible for this column to apply accurately to all
environments; you should view this information as a generalization.

* High — indicates the parameter can have a significant impact on
performance. You should consciously decide the values of these parameters;
which, in some cases, will mean that you accept the default provided.

* Medium — indicates the parameter can have some impact on performance.
Your specific environment and needs will determine how much tuning
effort should be focused on these parameters.

* Low — indicates that the parameter has a less general or less significant
impact on performance.

* None — indicates that the parameter does not directly impact performance.
While you do not have to tune these parameters for performance, they can
be very important for other aspects of your system configuration, such as
enabling communication support.

Table 19. Configurable Database Configuration Parameters

Parameter Performance Impact Additional Information
adsm_mgmtclass None EADSTAR Distributed Storage Managed
Management Class (adsm_mgmiclass)” on

Chapter 12. Configuring DB2 299

Table 19. Configurable Database Configuration Parameters (continued)

Parameter Performance Impact Additional Information

adsm_nodename None EADSTAR Distributed Storage Manager Nodd
Name (adsm nodename)” on page 384

adsm_owner None ['ADSTAR Distributed Storage Manager Owner
DName (adsm_owner)” on page 384

adsm_password None [‘ADSTAR Distributed Storage Manager Password
(adsm_password)” on page 384

app_ctl_heap_sz Medium [‘Application Control Heap Sizd
(app_ctl heap sz)” an page 314

applheapsz Medium [‘Application Heap Size (applheapsz)” on page 323

audit_buf sz Medium ‘ i i it_buf sz)”

autorestart Low EAuto Restart Enable (autorestart)” on page 380

avg_appls High EAverage Number of Active Applicationd
(avg_appls)” on page 354

buffpage High (when active) EBuffer Paol Size (huffpage)” on page 305

catalogcache_sz Medium : i . Sz)”

chngpgs_thresh High W

copyprotect None W

dbheap Medium EDatahase Heap (dbheap)” an page 308

dft_degree High EDefault Degree (dft degree)” on page 400

dft_extent_sz Medium EDefault Extent Size of Tahle Spaced
[df_extent_s2)” on page 351

dft_loadrec_ses Medium EDefault Number of | oad Recovery Sessiond
(dft loadrec ses)” on page 382

dft_prefetch_sz Medium EDefault Prefetch Size (dft prefetch sz)” on
hage 244

dft_queryopt Medium EDefault Query Optimization Clasd
(dft_queryopt)” an page 401

dft_sqlmathwarn None E'Continue upon Arithmetic Exceptiond
(dft_sglmathwarn)” on page 399

dir_obj_name None EQbject Name in DCE Namespacd

discover_db Medium ‘Di i _dhb)”

dichktime Medium [‘Time Interval for Checking DeadlocKd

300 Administration Guide:

Performance

Table 19. Configurable Database Configuration Parameters (continued)

Parameter Performance Impact Additional Information

dl_expint None I‘Data | inks Access Token Expiry Interval

dl_num_copies None EData | inks Number of Capies (dl_num_copies)’]

dl_time_drop None : i i _ _ ”
bhage 203

dl_token Low [‘Data L inks Token Algorithm (dl token)” on
lhage 303

dI_upper None [‘Data | inks Token in Upper Case (dl_upper)” on
bage 304

estore_seg_sz Medium EExtended Storage Memory Segment Sizd
(estore seg sz)” on page 351

indexrec Medium : = i i i i

indexsort Low (see Bod) Eindex Sart Flag (indexsort)” an page 344

locklist High when it affects : i i ist)”

escalation M

locktimeout Medium ELock Timeout (locktimeaut)” an page 344

logbufsz High : i 2

logfilsiz Medium ESize of Lag Files (lagfilsiz)” on page 364

logprimary Medium : i i i 2

logretain Low L og Retain Enahle (lagretain)” on page 374

logsecond Medium ‘ i ”

maxappls Medium EMaximum Number of Active Applicationd
[B 253

maxfilop Medium EMaximum Datahase Files Qpen per Application

maxlocks High when it affects EMaximum Percent af | ack | ist Befare Escalation

escalation (maxlacks)” on page 349

mincommit High ENumber of Commits to Group (mincommit)” od
hage 274

newlogpath Low : ”

num_db_backups None E‘Number of Database Backupd
(oum_db_backups)” on page 383

Chapter 12. Configuring DB2

301

Table 19. Configurable Database Configuration Parameters (continued)

Parameter Performance Impact Additional Information

num_estore_segs Medium ENumber of Extended Storage Memary Segmentd
(num_estore segs)” on page 352

num_freqvalues Low ENumber of Erequent Values Retained
um_t [Les)” |

num_iocleaners High ENumber of Asynchronous Page Cleanerd

num_ioservers High ‘ _ ”

num_quantiles Low ENumber of Quantiles for Columnd

pckcachesz High : i Z

rec_his_retentn None FRecovery History Retention Period

seqdetect High : i i i

softmax Medium ERecovery Range and Soft Checkpoint Interval
(softmax)” an page 374

sortheap High ‘ i i

stat_heap_sz Low : | _sZ)"”

stmtheap Medium ‘ ”

userexit Low ‘ i it)”

util_heap_sz Low tili i i _sz7)”

Note: Changing the indexsort parameter to a value other than the default can have a negative impact
on the performance of creating indexes. You should always try to use the default for this parameter.

Table 20. Informational Database Configuration Parameters

Parameter

Additional Information

backup_pending

codepage

codeset

collate_info

country

database_consistent

302 Administration Guide: Performance

Table 20. Informational Database Configuration Parameters (continued)

Parameter Additional Information

database_level I‘Database Release | evel (datahase level)” on
hage 301

log_retain_status t‘L og Retain Status Indicator (log_retain status)’]

loghead ‘Fi i 2

logpath tL ocation of | og Files (logpath)” on page 374

multipage_alloc EMultiPage File Allocation Fnabled

numsegs EDefault Number of SMS Containers (numsegs)’]
bn page 350

release Wﬂ

restore_pending . i ing)”

rollfwd_pending ERall Earward Pending Indicatad
territory ETerritory for the Database (territory)” on page 392
user_exit_status ElUser Exit Status Indicator (iser_exit status)” or

Parameter Details by Function

This following sections provide additional details to assist in understanding
and tuning the different configuration parameters. This discussion of the
individual parameters is organized based on their function or purpose:

The discussion of each parameter includes the following information:

Configuration Type Indicates which configuration file contains the
setting for the parameter:

Chapter 12. Configuring DB2 303

Parameter Type

» Database manager (which affects an

instance of the database manager and all
databases defined within that instance)

» Database (which affects a specific database)

Indicates whether or not you can change the
parameter value;

» Configurable

A range of values are possible and the
parameter may need to be tuned based on
the database administrator’s knowledge of
the applications and/or from benchmarking
experience.

Informational

These parameters are changed only by the
database manager itself and will contain
information such as the release of DB2 that
a database was created under or an
indication that a required backup is
pending.

Capacity Management

There are a number of configuration parameters at both the database and
database manager levels that can impact the throughput on your system.
These parameters are categorized in the following groups:

For an introduction to DB2’s memory management, see ‘How DB2 Used

Mﬁmw—page—zoﬂ” 3

304 Administration Guide: Performance

Database Shared Memory

The following parameters affect the database global memory allocated on your
system:

+ U'Sort Heap Size (sortheap)” an page 320, This parameter only affects

database global memory if you have shared sorts.

See Haw DR? Lses Memary” on page 204 for information about how

database global memory relates to the rest of the memory allocated by the
database manager.

Buffer Pool Size (buffpage)
Configuration Type Database

Parameter Type Configurable
Default [Range]

UNIX 1000 [2*maxappls - 524 288]
OS/2 and NT 250 [2*maxappls - 524 288]

Unit of Measure Pages (4 KB)

When Allocated When the first application connects to the
database

When Freed When last application disconnects from the
database

Related Parameters

Chapter 12. Configuring DB2 305

Kﬂllm—mleane'ts')—an—pa'g'ejéd_. i

Each database has at least one buffer pool (IBMDEFAULTBP, which is created
when the database is created), and can have more. All buffer pools reside in
global memory, which is available to all applications using the database. The
memory is allocated on the machine where the database is located. If the
buffer pools are large enough to keep the required data in memory, less disk
activity will occur. Conversely, if the buffer pools are not large enough, the
overall performance of the database can be severely curtailed and the
database manager can become 1/0-bound as a result of a high amount of disk
activity (170) required to process the data your application requires.

The buffpage parameter controls the size of a buffer pool when the CREATE
BUFFERPOOL or ALTER BUFFERPOOL statement was run with NPAGES -1;
otherwise, the buffpage parameter is ignored and the buffer pool will be
created with the number of pages specified by the NPAGES parameter.

To determine whether the buffpage parameter is active for a buffer pool, do a:
SELECT * from SYSCAT.BUFFERPOOLS.

Each buffer pool that has an NPAGES value of -1 uses buffpage.
Notes:

1. When a database is created in DB2 Version 5, one buffer pool
(IBMDEFAULTBP) is automatically created, and its NPAGES is set to 1 000
for UNIX-based platforms, and 250 for all other platforms.

2. When a database is migrated to DB2 Version 5, one buffer pool
(IBMDEFAULTBP) is automatically created, and its NPAGES is set to -1.

There is a trade-off between the buffer pool size and the memory allocations
of other system users. Memory requirements of database servers are so
important on multi-user high transaction rate servers, that database servers
and file or communication servers are often separated and reside on different
machines.

If your queries access nicknames, consider increasing the buffer pool size
when:

* The optimizer decides that most or all operations are completed locally.
When a query is processed, the optimizer will usually push down
operations to the data source where possible. As an example, a GROUP BY
operator is usually evaluated at the data source. It is possible, however, that
materializing the table at DB2 and performing an operation locally is the
least cost route. This situation could occur if the DB2 server workstation is
more powerful than the data source workstation.

306 Administration Guide: Performance

* Sort operations must be completed locally. Queries containing nicknames
are sorted according to the DB2 collating sequence. If a data source does
not have the same collating sequence, all sort operations are performed
locally.

All buffer pools are allocated when the first application connects to the

database, or when the database is explicitly activated. As an application

requests data out of the database, pages containing that data are transferred to

one of the buffer pools from disk. (Note that database data is stored in pages

within the tables on the disk.) Pages are not written back to disk until the

page is changed and one of the following occurs:

* All applications disconnect from the database

* The database is explicitly deactivated

* The database quiesces (that is, all connected applications have committed)

* Its space is required for another page that needs to be read into the buffer
pool

* A page cleaner is available (num_iocleaners) and is activated by the database
manager.

Recommendations:

* Instead of using the buffpage configuration parameter, you can use the
CREATE BUFFERPOOL and ALTER BUFFERPOOL SQL statements to
create and change buffer pools and their sizes.

* The size of the buffer pool is used by the optimizer in determining access
plans. You should consider rebinding applications (using the REBIND
PACKAGE command) after changing this parameter.

» Because the sizes of all the buffer pools can have a major impact on
performance, you should consider the following factors to ensure that
excessive page swapping does not occur;

— The amount of installed memory on your machine.

— The memory required by other applications running concurrently with
the database manager on the same machine.

Page swapping results when there is not enough memory to hold the page
that is being accessed. The result is that the page is written (“swapped”) to
temporary disk storage to make room for the other page. When the page on
the temporary disk storage is needed, it is “swapped back’ into memory.

* You may wish to allocate as much as 75% of the machine’s memory to the
database buffer pools when you have the following:

— Multiple users
— A machine used only as a database server
— A large amount of repeated access to the same data and index pages

Chapter 12. Configuring DB2 307

— One database on the machine.

» For every buffer pool page allocated, some space is used in the database
heap for internal control structures.

If the total size of the buffer pool (or buffer pools) is increased, you may
also need to increase dbheap.

 If the data source collating sequence matches the DB2 collating sequence,
ensure that the server option collating_sequence is set to indicate so.

You may use the database system monitor to calculate the buffer pool hit
ratio, which can help you tune your buffer pools. See the System Monitor Guide
and Reference.

Database Heap (dbheap)
Configuration Type Database

Parameter Type Configurable
Default [Range]
UNIX 1200 [32 — 60 000]

OS/2 and NT Database Server with local and
remote clients 600 [32 — 60 000]

0OS/2 and NT Database Server with local

clients 300 [32 - 60000]

Unit of Measure Pages (4 KB)

When Allocated First connection to the database

When Freed When last application disconnects from the
database

Related Parameters

There is one database heap per database, and the database manager uses it on
behalf of all applications connected to the database. It contains control block
information for tables, indexes, table spaces, and buffer pools. It also contains
space for the event monitor buffers, the log buffer, (logbufsz) and the catalog
cache (catalogcache_sz). Therefore, the size of the heap will be dependent on
the number of control blocks stored in the heap at a given time. The control
block information is kept in the heap until all applications disconnect from the
database.

308 Administration Guide: Performance

The minimum amount the database manager needs to get started is allocated
at the first connection. The data area is expanded as needed up to the
maximum specified by dbheap.

Recommendation: This value will need to be increased when an application
receives an error indicating that there is not enough storage available in the
database heap to process the statement.

You may use the database system monitor to track the highest amount of
memory that was used for the database heap. See the db_heap_top (maximum
database heap allocated) monitor element description in the System Monitor Guide
and Reference for more information.

When setting this parameter, you should consider:

* The value of logbufsz, because the log buffer is allocated from the database
heap.

* The value of catalogcache sz, because the catalog cache is allocated from the
database heap.

Catalog Cache Size (catalogcache_sz)
Configuration Type Database

Parameter Type Configurable
Default [Range]
UNIX 64 [1 — dbheap]

0OS/2 and NT Database Server with local and
remote clients 32 [1 — dbheap]

0OS/2 and NT Database Server with local
clients 16 [1 — dbheap]

Unit of Measure Pages (4 KB)

Related Parameters

This parameter indicates the maximum amount of space that the catalog cache
can use from the database heap (dbheap). The catalog cache is used to store
table descriptor information that is used when a table, view or alias is
referenced during the compilation of an SQL statement.

Use of this cache can help improve performance of binding SQL statements
(including dynamic SQL), if the same tables, views, or aliases have been
referenced in previous statements.

Chapter 12. Configuring DB2 309

Running any DDL statements against a table will purge that table’s entry in
the catalog cache. Otherwise a table entry is kept in the cache until space is
needed for a different table, but it will not be removed from the cache until
any units of work referencing that table have completed.

Recommendation: Start with the default value and tune it by using the
database system monitor.

See the System Monitor Guide and Reference for information about the following
monitor elements:

e cat_cache_lookups (catalog cache lookups)

» cat_cache_inserts (catalog cache inserts)

» cat_cache_overflows (catalog cache overflows)

» cat_cache_heap full (catalog cache heap full)

These database system monitor elements can help you determine whether you
should adjust this configuration parameter. When tuning this parameter, you
should increase it in small increments, for example, two pages at a time.

Note: The catalog cache only exists at the catalog node in a multinode
environment.

In general, more cache space is required if a unit of work contains several
dynamic SQL statements or if you are binding packages that contain a lot of
static SQL statements.

When you set the size of the catalog cache, also consider the size of the log
files (logbufsz), because both catalogcache_sz and logbufsz are allocated from the
database heap (dbheap).

Log Buffer Size (logbufsz)

Configuration Type Database
Parameter Type Configurable
Default [Range] 8[4-512]
Unit of Measure Pages (4 KB)

Related Parameters

310 Administration Guide: Performance

This parameter allows you to specify the amount of the database heap
(defined by the dbheap parameter) to use as a buffer for log records before
writing these records to disk. The log records are written to disk when one of
the following occurs:

* A transaction commits or a group of transactions commit, as defined by the
mincommit configuration parameter

* The log buffer is full
* As a result of some other internal database manager event.

This parameter must also be less than or equal to the dbheap parameter.
Buffering the log records will result in more efficient logging file 1/0 because
the log records will be written to disk less frequently and more log records
will be written at each time.

Recommendation: Increase the size of this buffer area if there is considerable
read activity on a dedicated log disk, or there is high disk utilization. When
increasing the value of this parameter, you should also consider the dbheap
parameter since the log buffer area uses space controlled by the dbheap
parameter.

You may use the database system monitor to determine how much of the log
buffer space is used for a particular transaction (or unit of work).

For more information see the log_space_used (unit of work log space used)
monitor element description in the System Monitor Guide and Reference.

When you set the log buffer size, also consider the size of the catalog cache
(catalogcache_sz), because both logbufsz_sz and catalogcache_sz are allocated from
the database heap (dbheap).

Utility Heap Size (util_heap_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range] 5000 [16 — 524 288]

Unit of Measure Pages (4 KB)

When Allocated As required by the database manager utilities
When Freed When the utility no longer needs the memory

Related Parameters

bage 312

Chapter 12. Configuring DB2 311

lhage 213

This parameter indicates the maximum amount of memory that can be used
simultaneously by the BACKUP, RESTORE and LOAD and load recovery
utilities.

Recommendation: Use the default value unless your utilities run out of space,
in which case you should increase this value. If memory on your system is
constrained, you may wish to lower the value of this parameter to limit the
memory used by the database utilities. If the parameter is set too low, you
may not be able to concurrently run utilities. You need to set this parameter
large enough to accommodate all of the buffers that you want to allocate for
the concurrent utilities.

Default Backup Buffer Size (backbufsz)
Configuration Type Database manager

Applies to

e Database Server with local and remote
clients

» Database Server with local clients

e Partitioned Database Server with local and
remote clients

e Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 1024 [8 — 524 288]

Unit of Measure Pages (4 KB)

When Allocated When the backup utility is called

When Freed When the backup utility completes its
processing

Related Parameters

This parameter specifies the size of the buffer used when backing up the
database if the buffer size is not explicitly specified when calling the backup
utility. For more information about the backup utility, refer to the Command
Reference.

312 Administration Guide: Performance

When backing up a database, the data is first copied to an internal buffer.
Data is then written from this buffer to the backup media when the buffer is
full.

Tuning this buffer size can help improve the performance of the backup utility
as well as minimize the impact on the performance of other concurrent
database operations.

Default Restore Buffer Size (restbufsz)
Configuration Type Database manager

Applies to

e Database Server with local and remote
clients

¢ Database Server with local clients

* Partitioned Database Server with local and
remote clients

¢ Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 1024 [16 — 524 288]

Unit of Measure Pages (4 KB)

When Allocated When the restore utility is called

When Freed When the restore utility completes its
processing

Related Parameters

This parameter specifies the size of the buffer used when restoring the
database if a buffer size is not explicitly specified when calling the restore
utility. For more information about the restore utility, refer to the Command
Reference.

When restoring a database, the data is first copied from the backup media to

an internal buffer. Data is then written from this buffer to the target database
media when the buffer is full.

Chapter 12. Configuring DB2 313

Tuning this buffer size can help improve the performance of the restore
database utility as well as minimize the impact on the performance of other
concurrent database operations.

Maximum Storage for Lock List (locklist)
Configuration Type Database

Parameter Type Configurable
Default [Range]
UNIX 100 [4 — 60000]

0OS/2 and NT Database Server with local and
remote clients 50 [4 — 60 000]

0OS/2 and NT Database Server with local

clients 25[4-60000]

Unit of Measure Pages (4 KB)

When Allocated When the first application connects to the
database

When Freed When last application disconnects from the
database

Related Parameters

This parameter indicates the amount of storage that is allocated to the lock
list. There is one lock list per database and it contains the locks held by all
applications concurrently connected to the database. Locking is the
mechanism that the database manager uses to control concurrent access to
data in the database by multiple applications. Both rows and tables can be
locked.

Each lock requires 32 or 64 bytes of the lock list, depending on whether other
locks are held on the object:

* 64 bytes are required to hold a lock on an object that has no other locks
held on it

» 32 bytes are required to record a lock on an object that has an existing lock
held on it.

314 Administration Guide: Performance

When the percentage of the lock list used by one application reaches maxlocks,
the database manager will perform lock escalation, from row to table, for the
locks held by the application (described below). Although the escalation
process itself does not take much time, locking entire tables (versus individual
rows) decreases concurrency, and overall database performance may decrease
for subsequent accesses against the affected tables. Suggestions of how to
control the size of the lock list are:

* Perform frequent COMMITs to release locks.

* When performing many updates, lock the entire table before updating
(using the SQL LOCK TABLE statement). This will use only one lock, keeps
others from interfering with the updates, but does reduce concurrency of
the data.

You can also use the LOCKSIZE parameter of the ALTER TABLE statement
to control how locking is done for a specific table. For details, refer to the
SQL Reference.

Use of the Repeatable Read isolation level may result in an automatic table

lock. For more information on isolation levels, see EChapter 2_Applicatiod

» Use the Cursor Stability isolation level when possible to decrease the
number of share locks held. If application integrity requirements are not
compromised use Uncommitted Read instead of Cursor Stability to further
decrease the amount of locking.

Once the lock list is full, performance can degrade since lock escalation will
generate more table locks and fewer row locks, thus reducing concurrency on
shared obijects in the database. Additionally there may be more deadlocks
between applications (since they are all waiting on a limited number of table
locks), which will result in transactions being rolled back. Your application
will receive an SQLCODE of -912 when the maximum number of lock
requests has been reached for the database.

Recommendation: If lock escalations are causing performance concerns you
may need to increase the value of this parameter or the maxlocks parameter.
You may use the database system monitor to determine if lock escalations are
occurring.

For more information see the lock_escals (lock escalations) monitor element
description in the System Monitor Guide and Reference.

The following steps may help in determining the number of pages required
for your lock list:

1. Calculate a lower bound for the size of your lock list:
(512 * 32 * maxappls) / 4096

Chapter 12. Configuring DB2 315

where 512 is an estimate of the average number of locks per application
and 32 is the number of bytes required for each lock against an object that
has an existing lock.

2. Calculate an upper bound for the size of your lock list:
(512 * 64 * maxappls) / 4096

where 64 is the number of bytes required for the first lock against an
object.

3. Estimate the amount of concurrency you will have against your data and
based on your expectations, choose an initial value for locklist that falls
between the upper and lower bounds that you have calculated.

4. Using the database system monitor, as described below, tune the value of
this parameter.

You may use the database system monitor to determine the maximum
number of locks held by a given transaction.

For more information see the locks_held_top (maximum number of locks held)
monitor element description in the System Monitor Guide and Reference.

This information can help you validate or adjust the estimated number of
locks per application. In order to perform this validation, you will have to
sample several applications, noting that the monitor information is provided
at a transaction level, not an application level.

You may also want to increase locklist if maxappls is increased, or if the
applications being run perform infrequent commits.

You should consider rebinding applications (using the REBIND PACKAGE
command) after changing this parameter.

For more information on application performance and influencing query
optimization, see L i icati 2

Package Cache Size (pckcachesz)

Configuration Type Database

Parameter Type Configurable

Default [Range] -1[-1,32-64000]

Unit of Measure Pages (4 KB)

When Allocated When the database is initialized
When Freed When the database is shutdown

316 Administration Guide: Performance

This parameter is allocated out of the database global memory, and is used for
caching static and dynamic SQL statements on a database. In a partitioned
databasesystem, there is one package cache for each database partition.

Caching packages allows the database manager to reduce its internal overhead
by eliminating the need to access the system catalogs when reloading a
package; or, in the case of dynamic SQL, eliminating the need for compilation.
Sections are kept in the package cache until one of the following occurs:

* The database is shut down
* The package or dynamic SQL statement is invalidated
* The cache runs out of space.

This caching of the section for a static or dynamic SQL statement can improve
performance especially when the same statement is used multiple times by
applications connected to a database. This is particularly important in a
transaction processing application.

By taking the default (-1) in a server or partitioned database environment, the
value used to calculate the page allocation is eight times the value specified
for the maxappls configuration parameter. The exception to this occurs if eight
times maxappls is less than 32. In this situation, the default value of -1 will set
pckcachesz to 32.

Recommendation: When tuning this parameter, you should consider whether
the extra memory being reserved for the package cache might be more
effective if it was allocated for another purpose, such as the buffer pool. For
this reason, you should use benchmarking techniques when tuning this
parameter.

Tuning this parameter is particularly important when several sections are used
initially and then only a few are run repeatedly. If the cache is too large,
memory is wasted holding copies of the initial sections.

See the System Monitor Guide and Reference for information about the following
monitor elements:

» pkg_cache_lookups (package cache lookups)

» pkg_cache_inserts (package cache inserts)

» pkg_cache_size top (largest package cache size)

» pkg_cache_num_overflows (number of package cache overflows)

These database system monitor elements can help you determine whether you
should adjust this configuration parameter.

Chapter 12. Configuring DB2 317

Note: The package cache is a working cache, so you cannot set this parameter
to zero. There must be sufficient memory allocated in this cache to hold
all sections of the SQL statements currently being executed. If there is
more space allocated than currently needed, then sections are cached.
These sections can simply be executed the next time they are needed
without having to load or compile them.

The limit specified by the pckcachesz parameter is a soft limit. This limit
may be exceeded, if required, if memory is still available in the
database shared set. You can use the pkg_cache_size_top monitor element
to determine the largest that the package cache has grown, and the
pkg_cache_num_overflows monitor element to determine how many times
the limit specified by the pckcachesz parameter has been exceeded.

Application Shared Memory

The following parameter specifies the work area that is used by all agents
(both coordinating and subagents) that work for an application:

Application Control Heap Size (app_ctl_heap_sz)

Configuration Type Database
Parameter Type Configurable
Default [Range]

Database Server with local and remote
clients 128 [1-64 000]

Database Server with local clients
64 [1-64 000] (for non-UNIX
platforms)

128 [1-64 000] (for
UNIX-based platforms)

Partitioned Database Server with local and
remote clients 256 [1-64 000]

Unit of Measure Pages (4 KB)

When Allocated When an application starts

When Freed When an application completes
Related Parameters ‘Enable Intra-Partition Parallelism

318 Administration Guide: Performance

This parameter determines the maximum size, in 4 KB pages, for the
application control shared memory. Application control heaps are allocated
from this shared memory.

One application control heap is allocated for each application at the database
where the application is active (or, in the case of a partitioned database
system, at each database partitionwhere the application is active). The heap is
allocated during connect processing by the first agent to receive a request for
the application at the database (or database partition). The heap is required to
share information between agents working on behalf of the same application
(in a partitioned database environment, the sharing occurs at the database
partition level: sharing does not occur across database partitions).

Notes:

1. In a partitioned database environment, this heap is used to store copies of
the executing sections of SQL statements for agents and subagents.
Symmetric multiprocessor agents (SMP) subagents, however, use
applheapsz, as do agents in all other environments.

2. Allocation only occurs for other databases that have the intra_parallel
parameter set on, and the CURRENT DEGREE special register set to a
value greater than one (1). For more information about the CURRENT
DEGREE special register, refer to the SQL Reference.

Recommendation: Initially, start with the default value. You may have to set
the value higher if you are running complex applications, or if you have a
system that contains a large number of database partitions.

Agent Private Memory

The following parameters affect the amount of memory used for each
database agent:

Chapter 12. Configuring DB2 319

+ EMaximum Java Interpreter Heap Size (java heap sz)” on page 34d. On
UNIX-based platforms, java_heap_sz is allocated per agent.

See EHow DB2 Uses Memary” on page 204 for information about how the

private agent memory relates to the rest of the memory allocated by the
database manager.

Sort Heap Size (sortheap)

Configuration Type Database

Parameter Type Configurable

Default [Range] 256 [16 — 524 288]

Unit of Measure Pages (4 KB)

When Allocated As needed to perform sorts

When Freed When sorting is complete

Related Parameters tSart Heap Threshold (sheapthres)’]

This parameter defines the maximum number of private memory pages to be
used for private sorts, or the maximum number of shared memory pages to
be used for shared sorts. If the sort is a private sort, then this parameter
affects agent private memory. If the sort is a shared sort, then this parameter
affects the database shared memory. Each sort has a separate sort heap that is
allocated as needed, by the database manager. This sort heap is the area
where data is sorted. If directed by the optimizer, a smaller sort heap than the
one specified by this parameter is allocated using information provided by the
optimizer.

Recommendation:

* Appropriate indexes can minimize the use of the sort heap.
* Increase the size of this parameter when frequent large sorts are required.

* When increasing the value of this parameter, you should examine whether
the sheapthres parameter in the database manager configuration file also
needs to be adjusted.

* The sort heap size is used by the optimizer in determining access paths.
You should consider rebinding applications (using the REBIND PACKAGE
command) after changing this parameter.

Sort Heap Threshold (sheapthres)
Configuration Type Database manager

320 Administration Guide: Performance

Applies to

¢ Database Server with local and remote
clients

« Database Server with local clients

¢ Partitioned Database Server with local and
remote clients

¢ Satellite Database Server with local clients
Parameter Type Configurable

Default [Range]

UNIX 20 000 [250 — 2 097 152]
OS/2 and NT 10000 [250 — 2 097 152]
Unit of Measure Pages (4 KB)

Related Parameters

Private and shared sorts use memory from two different memory sources. The
size of the shared sort memory area is statically predetermined (and not
preallocated) at the time of the first connection to a database based on the
value of sheapthres. The size of the private sort memory area is unrestricted.

The sheapthres parameter is used differently for private and shared sorts:

* For private sorts, this parameter is an instance-wide soft limit on the total
amount of memory that can be consumed by private sorts at any given
time. When the total private-sort memory consumption for an instance
reaches this limit, the memory allocated for additional incoming
private-sort requests will be considerably reduced.

» For shared sorts, this parameter is a database-wide hard limit on the total
amount of memory consumed by shared sorts at any given time. When this
limit is reached, no further shared-sort memory requests will be allowed
(until the total shared-sort memory consumption falls below the limit
specified by sheapthres).

Examples of those operations that use the sort heap include: hash joins and
operations where the table is in memory.

Explicit definition of the threshold prevents the database manager from using
excessive amounts of memory for large numbers of sorts.

Recommendation: Ideally, you sh