
IBM DB2 Universal Database

Administration Guide:
Performance
Version 6

SC09-2840-00

IBM

IBM DB2 Universal Database

Administration Guide:
Performance
Version 6

SC09-2840-00

IBM

Before using this information and the product it supports, be sure to read the general information under
“Appendix G. Notices” on page 689.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 1999. All rights reserved.
US Government Users Restricted Rights – Use duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book ix
Who Should Use This book x
How This Book is Structured. x

Part 1. Introduction to
Performance 1

Chapter 1. Elements of Performance . . 3
Tuning Guidelines 4
Performance Improvement Process 5
How Much Can a System be Tuned? . . . 6
A Less Formal Approach 6
Disk Storage 7
Putting It All Together 7

Part 2. Tuning Application
Performance 11

Chapter 2. Application Considerations 13
Concurrency 13

Repeatable Read 15
Read Stability 16
Cursor Stability 17
Uncommitted Read 17
Choosing the Isolation Level 18
Specifying the Isolation Level 18

Locking 20
Attributes of Locks 20
Locks and Application Performance . . 22
Factors Affecting Locking 29
LOCK TABLE Statement 33
CLOSE CURSOR WITH RELEASE . . . 35
Summary of Locking Considerations 35

Adjusting the Optimization Class 36
How Do You Set the Optimization Class? 40
How Much Optimization is Necessary? 40

Restrictions on Result Sets to Improve
Performance 43

FOR UPDATE Clause 44
FOR READ or FETCH ONLY Clause 44
OPTIMIZE FOR n ROWS Clause . . . 45
FETCH FIRST n ROWS ONLY Clause 47

DECLARE CURSOR WITH HOLD
Statement 47

Row Blocking 48
Tuning Queries 49

Using a SELECT-Statement 49
Guidelines When Using a
SELECT-Statement 50

Compound SQL 52
Performance Considerations and Character
Conversion. 52

Code Page Conversion 53
Extended UNIX Code (EUC) Code Page
Support 53

Stored Procedures 54
Activating a Database 55
Parallel Processing of Applications 56

Chapter 3. Environmental Considerations 59
Configuration Parameters Affecting Query
Optimization 59
Nodegroup Impact on Query Optimization 62
Table Space Impact on Query Optimization 62
Indexing Impact on Query Optimization 66

Indexing versus No Indexing. 66
Using the Index Advisor 67
Guidelines for Indexing 68
Performance Tips for Administering
Indexes 70

Server Options Affecting Federated
Database Queries. 73

Chapter 4. System Catalog Statistics . . 79
Collecting Statistics Using the RUNSTATS
Utility 81

The Database Partition Where
RUNSTATS is Executed 82
Analyzing Statistics 82

Collecting and Using Distribution Statistics 88
Understanding Distribution Statistics 89
When Should You Use Distribution
Statistics? 91
How Many Statistics Should You Keep? 92
How Does the Optimizer Use
Distribution Statistics? 93

© Copyright IBM Corp. 1993, 1999 iii

Collecting and Using Detailed Index
Statistics 98

Understanding Detailed Index Statistics 98
When Should You Use Detailed Index
Statistics? 100

User Update-Capable Catalog Statistics 100
Rules for Updating Catalog Statistics 102
Rules for Updating Table and Nickname
Statistics 103
Rules for Updating Column Statistics 103
Rules for Updating Distribution Statistics
for Columns 104
Rules for Updating Index Statistics . . . 105
Updating Statistics for User-Defined
Functions 106
Modeling Production Databases 108

Chapter 5. Understanding the SQL
Compiler 111
Overview of the SQL Compiler 111
Rewrite Query by the SQL Compiler . . . 115
Operation Merging 115

Example - View Merges 116
Example - Subquery to Join
Transformations 117
Example - Redundant Join Elimination 117
Example - Shared Aggregation 118
Example - Summary Tables 119

Operation Movement 120
Example - DISTINCT Elimination . . . 121
Example - General Predicate Pushdown 121
Example - Decorrelation 122

Predicate Translation 123
Example - Addition of Implied Predicates 123
Example - OR to IN Transformations 124

Accounting for Column Correlation . . . 125
Data Access Concepts and Optimization 126

Index Scan Concepts 127
Relation Scan versus Index Scan. . . . 136
Summary Table Scan 137
Predicate Terminology 138
Join Concepts 141
Replicated Summary Tables 149
Join Strategies in a Partitioned Database 149
Influence of Sorting on the Optimizer 157

Optimization Strategies for Intra-Partition
Parallelism 159

Parallel Scan Strategies 160
Parallel Sort Strategies 160
Parallel Temporary Tables 161

Parallel Aggregation Strategies 161
Parallel Join Strategies 162

Federated Database Query Compiler Phases 162
Pushdown Analysis 162
Remote SQL Generation and Global
Optimization 170

Chapter 6. SQL Explain Facility 177
Choosing an Explain Tool 178
Using the SQL Explain Facility 180
Introductory Concepts for Explain 182

Explain Information for Data Objects 183
Explain Information for Data Operators 184

How Explain Information is Organized 185
Explain Instance Information 185
Explain Snapshot Information 188
Explain Table Information 189

Obtaining Explain Data 191
Capturing Explain Table Information 191
Capturing Explain Snapshot Information 192

Guidelines on Using Explain Output . . . 193
Visual Explain. 195
SQL Advise Facility 196

Part 3. Tuning and Configuring
Your System 203

Chapter 7. Operational Performance . . 205
How DB2 Uses Memory 205

Setting Parameters That Affect Memory
Usage 212
FCM Requirements 213

Managing the Database Buffer Pool . . . 213
Managing Multiple Database Buffer Pools 217

Choosing One or Many Buffer Pools 218
Prefetching Data into the Buffer Pool . . . 219

Understanding Sequential Prefetching 220
Understanding List Prefetching 222
Prefetching and Intra-Partition
Parallelism 222

Configuring I/O Servers for Prefetching and
Parallel I/O 222

Enabling Parallel I/O 224
Allocating Multiple Pages at a Time . . 226

Sorting 226
Different Types of Sorting 227
Tuning the Parameters that Affect Sorting 227
Looking for Indicators of Sorting
Performance Problems 228

iv Administration Guide: Performance

Techniques for Managing Sorting
Performance 228

Reorganizing Table Data 229
Online Index Reorganization 232
Avoiding the Need to Reorganize Tables 232

Performance Considerations for DMS
Devices 233
Managing Initialization Overhead 234
Database Agents 235
Using the Database System Monitor . . . 239
Extending Memory 241

Chapter 8. Using the Governor 243
Starting and Stopping the Governor . . . 244
The Governor Daemon 246
Creating the Governor Configuration File 247
Governor Log Files 255
Querying Governor Log Files 256
Running the Governor and Database
Manager Performance 257

Chapter 9. Scaling Your Configuration 259
Adding Processors to a Machine 260
Adding Database Partitions to a Partitioned
Database System 261

Adding Database Partitions to a Running
System 262
Adding Database Partitions to a Stopped
System 263

Dropping a Database Partition from a
System 266

Chapter 10. Redistributing Data Across
Database Partitions 269
How to Partition Data 270
Adding and Dropping Database Partitions 270
Specifying a Target Partitioning Map . . . 271
How Data Is Redistributed Across Database
Partitions 271
How Data Is Redistributed in Tables . . . 272
Recovering From Redistribution Errors . . 273
Data Redistribution and Other Operations 273
Following Data Redistribution 274

Chapter 11. Benchmark Testing 275
Benchmark Testing Methodology 276
Preparing for Benchmark Testing 276
Creating a Benchmark Program 278
Executing the Benchmark Tests 284

Chapter 12. Configuring DB2 289
Tuning Configuration Parameters 290
Database Manager Parameters 291

Database Manager Configuration
Parameter Summary 292

Database Parameters 297
Database Configuration Parameter
Summary 299

Parameter Details by Function 303
Capacity Management 304

Database Shared Memory 305
Application Shared Memory 318
Agent Private Memory 319
Agent/Application Communication
Memory. 331
Database Manager Instance Memory 336
Locks 341
I/O and Storage 345
Agents 352
Database Application Remote Interface
(DARI) 364

Logging and Recovery 368
Database Log Files 368
Database Log Activity 375
Recovery 380
Distributed Unit of Work Recovery. . . 386

Database Management 390
Attributes 391
DB2 Data Links Manager 394
Status 396
Compiler Settings 399

Communications 404
Communication Protocol Setup 404
Distributed Services 409
DB2 Discovery 414

Parallel 417
Communications 417
Parallel Processing 423

Instance Management 425
Diagnostic 425
Database System Monitor Parameters 428
System Management 429
Instance Administration 437

Part 4. Appendixes 447

Appendix A. DB2 Registry and
Environment Variables 449

Appendix B. Sample Tables 489

Contents v

The Sample Database 490
To Install the Sample Database 490
To Erase the Sample Database 490
CL_SCHED Table 491
DEPARTMENT Table 491
EMPLOYEE Table 491
EMP_ACT Table 493
EMP_PHOTO Table 495
EMP_RESUME Table 496
IN_TRAY Table 496
ORG Table 497
PROJECT Table 497
SALES Table 498
STAFF Table 499
STAFFG Table 500

Sample Files with BLOB and CLOB Data
Type 501

Quintana Photo 501
Quintana Resume 502
Nicholls Photo 503
Nicholls Resume 503
Adamson Photo 505
Adamson Resume 505
Walker Photo 506
Walker Resume 506

Appendix C. Catalog Views 509
Updatable Catalog Views 510
“Roadmap” to Catalog Views 510
“Roadmap” to Updatable Catalog Views 513
SYSIBM.SYSDUMMY1 514
SYSCAT.ATTRIBUTES 515
SYSCAT.BUFFERPOOLNODES 517
SYSCAT.BUFFERPOOLS 518
SYSCAT.CASTFUNCTIONS 519
SYSCAT.CHECKS 520
SYSCAT.COLAUTH 521
SYSCAT.COLCHECKS 522
SYSCAT.COLDIST 523
SYSCAT.COLOPTIONS. 524
SYSCAT.COLUMNS. 525
SYSCAT.CONSTDEP 530
SYSCAT.DATATYPES 531
SYSCAT.DBAUTH 533
SYSCAT.EVENTMONITORS 534
SYSCAT.EVENTS. 536
SYSCAT.FULLHIERARCHIES 537
SYSCAT.FUNCDEP 538
SYSCAT.FUNCMAPOPTIONS 539
SYSCAT.FUNCMAPPARMOPTIONS . . . 540

SYSCAT.FUNCMAPPINGS 541
SYSCAT.FUNCPARMS 542
SYSCAT.FUNCTIONS 544
SYSCAT.HIERARCHIES 548
SYSCAT.INDEXAUTH 549
SYSCAT.INDEXCOLUSE 550
SYSCAT.INDEXDEP. 551
SYSCAT.INDEXES 552
SYSCAT.INDEXOPTIONS 555
SYSCAT.KEYCOLUSE 556
SYSCAT.NAMEMAPPINGS 557
SYSCAT.NODEGROUPDEF 558
SYSCAT.NODEGROUPS 559
SYSCAT.PACKAGEAUTH. 560
SYSCAT.PACKAGEDEP 561
SYSCAT.PACKAGES 562
SYSCAT.PARTITIONMAPS 566
SYSCAT.PASSTHRUAUTH 567
SYSCAT.PROCEDURES 568
SYSCAT.PROCOPTIONS 570
SYSCAT.PROCPARMOPTIONS 571
SYSCAT.PROCPARMS 572
SYSCAT.REFERENCES 574
SYSCAT.REVTYPEMAPPINGS 575
SYSCAT.SCHEMAAUTH 577
SYSCAT.SCHEMATA 578
SYSCAT.SERVEROPTIONS 579
SYSCAT.SERVERS 580
SYSCAT.STATEMENTS. 581
SYSCAT.TABAUTH 582
SYSCAT.TABCONST 584
SYSCAT.TABLES 585
SYSCAT.TABLESPACES 589
SYSCAT.TABOPTIONS 590
SYSCAT.TBSPACEAUTH 591
SYSCAT.TRIGDEP 592
SYSCAT.TRIGGERS 593
SYSCAT.TYPEMAPPINGS. 594
SYSCAT.USEROPTIONS 596
SYSCAT.VIEWDEP 597
SYSCAT.VIEWS 598
SYSCAT.WRAPOPTIONS 599
SYSCAT.WRAPPERS 600
SYSSTAT.COLDIST 601
SYSSTAT.COLUMNS 602
SYSSTAT.FUNCTIONS 604
SYSSTAT.INDEXES 606
SYSSTAT.TABLES 609

vi Administration Guide: Performance

Appendix D. Explain Tables and
Definitions 611
EXPLAIN_ARGUMENT Table 612
EXPLAIN_INSTANCE Table 616
EXPLAIN_OBJECT Table 618
EXPLAIN_OPERATOR Table 621
EXPLAIN_PREDICATE Table 623
EXPLAIN_STATEMENT Table 625
EXPLAIN_STREAM Table 627
ADVISE_INDEX Table 629
ADVISE_WORKLOAD Table 632
Table Definitions for Explain Tables . . . 633

EXPLAIN_ARGUMENT Table Definition 634
EXPLAIN_INSTANCE Table Definition 635
EXPLAIN_OBJECT Table Definition . . 636
EXPLAIN_OPERATOR Table Definition 637
EXPLAIN_PREDICATE Table Definition 638
EXPLAIN_STATEMENT Table Definition 639
EXPLAIN_STREAM Table Definition 640
ADVISE_INDEX Table Definition . . . 641
ADVISE_WORKLOAD Table Definition 643

Appendix E. SQL Explain Tools 645
Running db2expln and dynexpln 646
db2expln Syntax and Parameters 646
Usage Notes for db2expln 648
dynexpln Syntax and Parameters 650
Usage Notes for dynexpln. 652
Description of db2expln and dynexpln
Output 653

Table Access 654

Temporary Tables 659
Joins 662
Data Streams 664
Insert, Update, and Delete. 665
Row Identifier (RID) Preparation . . . 665
Aggregation 666
Parallel Processing 667
Miscellaneous Statements 670

Examples of db2expln and dynexpln
Output 672

Example One: No Parallelism Plan . . . 672
Example Two: Single-Partition Database
Plan with Intra-Partition Parallelism 674
Example Three: Multipartition Database
Plan with Inter-Partition Parallelism 678
Example Four: Multipartition Database
Plan with Inter-Partition and
Intra-Partition Parallelism 681

Appendix F. db2exfmt - Explain Table
Format Tool 687

Appendix G. Notices 689
Trademarks 690
Trademarks of Other Companies 690

Index 693

Contacting IBM 707

Contents vii

viii Administration Guide: Performance

About This Book

The Administration Guide in its two volumes provides information necessary
to use and administer the year 2000 ready, DB2* relational database
management system (RDBMS) products, including:
v Information required for designing, implementing and managing databases

(found in Administration Guide, Design and Implementation)
v Information regarding the configuring and tuning of your database

environment to improve performance (found in Administration Guide,
Performance).

Many of the tasks described in this book can be performed using different
interfaces:
v The Command Processor, which allows you to access and manipulate

databases from a graphical interface. From this interface, you can also
execute SQL statements and DB2 utility functions. Most examples in this
book illustrate the use of this interface. For more information about using
the command processor, see the Command Reference manual.

v The application programming interface, which allows you to execute DB2
utility functions within an application program. For more information about
using the application programming interface, see the Administrative API
Reference manual.

v The Control Center, which allows you to graphically perform
administrative tasks such as configuring the system, managing directories,
backing up and recovering the system, scheduling jobs, and managing
media. The Control Center also contains Replication Administration to
graphically set up the replication of data between systems. To invoke the
Control Center, use the db2cc command, or (for OS/2) select the Control
Center icon from the DB2 folder. For introductory help, select Getting
started from the Help pull-down of the Control Center window. The Visual
Explain and Performance Monitor tools are invoked from the Control
Center.
Error conditions when using the Control Center are recorded in the Control
Center Administration Engine Log (db2cc.log). This log records information
about the errors generated while using the Control Center. The log is
always active while the Control Center is active. The log file is kept in the
home directory of the executable that invokes the Control Center. That is, in
the bin subdirectory of the sqllib subdirectory. The file can be viewed and
updated using an ASCII file editor.
The log file records the error message type, a time stamp, a process
identifier (PID), a thread identifier (TID), and an SQL error message. The

© Copyright IBM Corp. 1993, 1999 ix

process ID and the thread ID are used to determine the originator of the log
message. Combined with the Control Center trace information, DB2 Service
and Support personnel are able to determine which Control Center task
caused the error. The information is only of use to the DB2 Service and
Support personnel.
The log file can be edited by an ASCII file editor to remove log records that
are no longer needed.

There are other tools available that you can use to perform administration
tasks. They include:
v The Script Center to store small applications called scripts. These scripts

may contain DB2 commands as well as operating system commands.
v The Alert Center to monitor the messages that result from other DB2

operations.
v The Tool Settings to change the settings for the Control Center, Alert

Center, and Replication.
v The Journal to schedule jobs to run unattended.

Who Should Use This book

This book is intended primarily for database administrators, system
administrators, security administrators and system operators who need to
design, implement and maintain a database to be accessed by local or remote
clients. It can also be used by programmers and other users who require an
understanding of the administration and operation of the DB2 relational
database management system.

This volume of the Administration Guide is concerned with Performance
Issues. That is, those topics and issues concerned with establishing, testing,
and improving all aspects of your applications and the DB2 UDB product
performance.

How This Book is Structured

The Administration Guide, Performance contains information about the following
major topics:

Introduction to Performance

v Part 1. Introduction to Performance, introduces concepts and considerations
for managing and improving DB2 UDB performance.

Tuning Application Performance

x Administration Guide: Performance

v Chapter 2. Application Considerations, describes some techniques for
improving database performance when designing your applications.

v Chapter 3. Environmental Considerations, describes some techniques for
improving database performance when setting up your database
environment.

v Chapter 4. System Catalog Statistics, describes how statistics about your
data can be collected and used to ensure optimal performance.

v Chapter 5. Understanding the SQL Compiler, describes what happens to an
SQL statement when it is compiled using the SQL compiler.

v Chapter 6. SQL Explain Facility, describes the Explain facility, which allows
you to examine the choices the SQL compiler has made to access your data.

Tuning and Configuring Your System

v Chapter 7. Operational Performance, provides an overview of how the
database manager uses memory and other considerations that affect
run-time performance.

v Chapter 8. Using the Governor, provides an introduction to the use of a
governor to control some aspects of database management.

v Chapter 9. Scaling Your Configuration, introduces some considerations and
tasks associated with increasing the size of your database systems.

v Chapter 10. Redistributing Data Across Database Partitions, discusses the
tasks required in a partitioned database environment to redistribute data
across partitions.

v Chapter 11. Benchmark Testing, provides an overview of benchmark testing
and how to perform benchmark testing.

v Chapter 12. Configuring DB2, discusses the database manager and database
configuration files and the values for the configuration parameters.

Appendixes

v Appendix A. DB2 Registry and Environment Variables, presents profile
registry values and environment variables.

v Appendix B. Sample Tables, contains a description of the sample tables
provided with the database manager.

v Appendix C. Catalog Views, contains a description of each system catalog
view, including column names and data types.

v Appendix D. Explain Tables and Definitions, provides information about the
tables used by the DB2 Explain facility and how to create those tables.

v Appendix E. SQL Explain Tools, provides information on using the DB2
explain tools: db2expln and dynexpln.

The other volume of the Administration Guide Administration Guide, Design
and Implementation) is concerned with the design and implementation of your

About This Book xi

databases. It presents logical and physical design issues; what should be done
to implement your design; distributed transaction issues; and high availability
topics.

The specific chapters and appendixes in that volume are briefly described here
beginning with:

Database Concepts

v Introduction to Concepts Within DB2 Universal Database presents an
overview of DB2 Universal Database including: using the Control Center,
the types of parallelism provided by DB2, and federated systems use.

Database Design and Implementation

v Designing Your Logical Database discusses the concepts and guidelines for
designing a logical database.

v Designing Your Physical Database discusses the guidelines for designing a
physical database, including considerations related to physical data storage.

v Implementing Your Design discusses the concepts and guidelines for
creating a database and the objects within a database.

v Controlling Database Access describes how you can control access to your
database’s resources.

v Auditing DB2 Activities describes how you can detect and monitor
unwanted or unanticipated access to data.

v Utilities for Moving Data is a one-page introduction to the different ways to
move data and to direct you to the Data Movement Utilities Guide and
Reference book.

v Recovering a Database discusses factors to consider when choosing
database and table space recovery methods, including backing up and
restoring a database or table space, and using the roll-forward recovery
method.

Distributed Transaction Processing

v Distributed Databases discusses how you can access multiple databases in a
single transaction.

v Using DB2 with an XA-Compliant Transaction Manager discusses how you
can use your databases in a distributed transaction processing environment
such as CICS.

High Availability Systems

v High Availability Cluster Multi-Processing (HACMP) on AIX discusses the
support of IBM High Availability Cluster Multi-Processing (HACMP) for
AIX by DB2.

xii Administration Guide: Performance

v High Availability Cluster Multi-Processing, Enhanced Scalability (HACMP
ES) for AIX discusses the support of IBM High Availability Cluster
Multi-Processing, Enhanced Scalability (HACMP ES) for AIX by DB2.

v High Availability in the Windows NT Environment discusses the support of
Microsoft Cluster Server for Windows NT by DB2.

v High Availability in the Solaris Operating Environment, Single-Partition
Database discusses the support of Sun Cluster 2.1 for the Sun Solaris
Operating System by DB2.

v High Availability in the Solaris Operating Environment, Partitioned
Database discusses the support of Sun Cluster 2.1 for the Sun Solaris
Operating System by DB2 Enterprise - Extended Edition.

Appendixes

v How the DB2 Library is Structured provides information about the
structure of the DB2 library, including SmartGuides, online help, messages,
and books.

v Planning Database Migration provides information about migrating
databases to Version 6.

v Incompatibilities Between Releases presents the incompatibilities introduced
from release to release up to, and including, Version 6.

v Memory Usage for DB2 Universal Database Version 6 presents memory
requirements for each DB2 feature.

v Naming Rules provides the rules to follow when naming databases and
objects.

v Using Distributed Computing Environment (DCE) Directory Services
provides information about how you can use DCE Directory Services.

v X/Open Distributed Transaction Processing Model provides an overview of
the X/Open Distributed Transaction Processing model and the DB2
database support provided.

v User Exit for Database Recovery discusses how user exit programs can be
used with database log files and describes some sample user exit programs.

v National Language Support (NLS) introduces DB2 National Language
Support including information about countries, languages, and code pages.

v Issuing Commands to Multiple Database Partition Servers discusses the use
of the db2_all and rah shell scripts to send commands to all partitions in a
partitioned database environment.

v How DB2 for Windows NT Works with Windows NT Security describes
how DB2 works with Windows NT security.

v Using the Windows NT Performance Monitor provides information on
registering DB2 with the Windows NT Performance Monitor and on how to
use the performance information.

About This Book xiii

v Configuring Multiple Logical Nodes describes how to configure multiple
logical nodes in a partitioned database environment.

v Using Virtual Interface (VI) Architecture describes how to enable Virtual
Interface Architecture for use with DB2 Universal Database.

xiv Administration Guide: Performance

Part 1. Introduction to Performance

© Copyright IBM Corp. 1993, 1999 1

2 Administration Guide: Performance

Chapter 1. Elements of Performance

Performance is the way a computer system behaves given a particular work
load. Performance is measured through one or more of the system’s response
time, throughput, and availability; and it is affected by:
v The resources available
v How well those resources are used and shared.

In general, you should undertake performance tuning when you want to
improve the cost-benefit ratio of your system. Specific goals could include:
v Processing a larger, or more demanding, work load without increasing

processing costs. (For example, increasing the work load without buying
new hardware or using more processor time.)

v Obtaining faster system response times, or higher throughput, without
increasing processing costs.

v Reducing processing costs without negatively affecting service to your
users.

Translating performance from technical terms to economic terms is difficult.
Performance tuning certainly costs money (through people’s time and through
processor time), so before you undertake a tuning project, weigh its costs
against its possible benefits. Some of these benefits are tangible:
v More efficient use of resources
v The ability to add more users to the system.

Other benefits such as greater user satisfaction because of quicker response
time, are intangible. All of these benefits should be considered.

There are SmartGuides integrated with DB2 that will assist you in completing
some performance-related administration tasks. These tasks are typically those
where you spend a little time and can achieve a significant performance
improvement. The SmartGuides take you through each task one step at a
time. SmartGuides are available through the Control Center and the Client
Configuration Assistant.

The Performance Configuration SmartGuide assist you to tune the
performance of a database by updating configuration parameters to match
your business requirements. This SmartGuide, and, to a less extent the Create
Database SmartGuide, can assist in improving the performance of a database.
Other SmartGuides are available to assist in the improvement of performance
of individual tables and general data access. The SmartGuides in this area

© Copyright IBM Corp. 1993, 1999 3

include: Create Table, Index, and Configure Multisite Update SmartGuides.
The SmartGuides can be found from the Control Center by clicking with the
right mouse button on an object.

Tuning Guidelines

The following guidelines should help you develop an overall approach to
performance tuning.

Remember the Law of Diminishing Returns: Your greatest performance benefits
usually come from your initial efforts. Further changes generally produce
smaller and smaller benefits and require more and more effort.

Do Not Tune Just for the Sake of Tuning: Tune to relieve identified constraints. If
you tune resources that are not the primary cause of performance problems,
this has little or no effect on response time until you have relieved the major
constraints, and it can actually make subsequent tuning work more difficult. If
there is any significant improvement potential, it lies in improving the
performance of the resources that are major factors in the response time.

Consider the Whole System: You can never tune one parameter or system in
isolation. Before you make any adjustments, consider how it will affect the
system as a whole.

Change One Parameter at a Time: Do not change more than one performance
tuning parameter at a time. Even if you are sure that all the changes will be
beneficial, you will have no way of evaluating how much each change
contributed. You also cannot effectively judge the trade-off you have made by
changing more than one parameter at a time. Every time you adjust a
parameter to improve one area, you almost always affect at least one other
area that you may not have considered.

Measure and Reconfigure by Levels: For the same reasons that you should only
change one parameter at a time, tune one level of your system at a time. You
can use the following list of levels within a system as a guide:
v Hardware
v Operating System
v Application Server and Requester
v Database
v SQL Statements
v Application Programs

Check for Hardware and Software Problems: Some performance problems may be
corrected by applying service either to your hardware, or to your software, or

4 Administration Guide: Performance

to both. Do not spend excessive time monitoring and tuning your system
when simply applying service may make it unnecessary.

Understand the Problem Before You Upgrade Your Hardware: Even if it seems that
additional storage or processor power could immediately improve
performance, take the time to understand where your bottlenecks are. You
may spend money on additional disk storage only to find that you do not
have the processing power or the channels to exploit it.

Put Fallback Procedures in Place Before You Start Tuning: As noted earlier, some
tuning can cause unexpected performance results. If this leads to poorer
performance, it should be reversed and alternative tuning tried. If the former
setup is saved in such a manner that it can be simply recalled, the backing out
of the incorrect information becomes much simpler.

Performance Improvement Process

Use the following process to improve the performance of any system:
1. Establish performance indicators.
2. Define performance objectives.
3. Develop a performance monitoring plan.
4. Carry out the plan.
5. Analyze your measurements to determine whether you have met your

objectives. If you have, consider reducing the number of measurements
you make because performance monitoring itself uses system resources.
Otherwise, continue with the next step.

6. Determine the major constraints in the system.
7. Decide where you can afford to make trade-offs and which resources can

bear additional load. (Nearly all tuning involves trade-offs among system
resources and the various elements of performance.)

8. Adjust the configuration of your system. If you think that it is feasible to
change more than one tuning option, implement one at a time. If there are
no options left at any level, you have reached the limits of your resources
and need to upgrade your hardware.

9. Return to Step 4 above and continue to monitor your system.

Periodically, or after significant changes to your system or work load:
v Return to Step 1 above.
v Re-examine your objectives and indicators.
v Refine your monitoring and tuning strategy.

Chapter 1. Elements of Performance 5

How Much Can a System be Tuned?

There are limits to how much you can improve the efficiency of a system.
Consider how much time and money you should spend on improving system
performance, and how much the spending of additional time and money will
help the users of the system.

Your system may perform adequately without any tuning at all, but it
probably will not perform to its potential. Each database is unique. As soon as
you develop your own database, and applications to use it, investigate the
tuning parameters available and learn how you can customize their settings to
reflect your situation. In some circumstances, there will only be a small benefit
from tuning a system; however, in most circumstances, the benefit may be
significant.

SmartGuides are available from within the Control Center to assist in tuning
the database parameters. The Performance Configuration SmartGuide can be
found by clicking the right mouse button on the database you want to tune
from the Control Center.

As your system encounters a performance bottleneck, it is more likely that
tuning will be effective. If you are close to the performance limits and you
increase the number of users on the system by about ten percent, the response
time is likely to rise by much more than ten percent. In this situation, you will
need to determine how to counterbalance this degradation in performance by
tuning your system. However, there is a point beyond which tuning cannot
help you. At that point, you should consider revising your goals and
expectations within that environment. Or, you should change your system
environment by considering: more disk storage, faster CPU, additional CPUs,
more main memory, faster communication links, or a combination of these
changes.

A Less Formal Approach

If you do not have enough time to set performance objectives and to monitor
and tune in a comprehensive manner, you can address performance by
listening to your users. Find out if they are having performance-releated
problems. You can usually locate the problem, or determine where to start
looking for the problem, by asking a few simple questions. For example, you
can ask your users:
v What do you mean by “slow response”? Is it ten percent slower than you

expect it to be, or tens of times slower?
v When did you notice the problems? Is it recent or has it always been there?

6 Administration Guide: Performance

v Do you know of other users who are complaining of the same problem?
Are those complaining one or two individuals or a whole group?

v (If a whole group of users are experiencing difficulties, are they connected
to the same terminal controller?)

v Are the problems you are experiencing related to a specific transaction or
application program?

v Do your problems appear during regular periods such as at lunch hour, or
are they continuous?

Disk Storage

How you manage disk storage affects performance in four ways:
v How Storage is Divided:

How you divide a limited amount of storage between indexes and data,
among table spaces, and among buffer pools, determines to a large degree
how each will perform in different situations.

v Wasted Storage:
Wasted storage in itself may not affect the performance of the system that is
using it, but it may represent a resource that could be used to improve
performance elsewhere.

v Distributing Disk I/O:
How well you balance the demand for disk I/O across several disk storage
devices, and controllers can affect how fast the database manager can
retrieve information from disks.

v Running Out of Storage:
Reaching the limit of available storage can degrade overall performance.

Putting It All Together

Tuning application performance is concerned with those performance topics
associated with your applications and their interaction with the database.
There are topics specific to applications themselves: Concurrency, Locking,
Optimization Classes, control of results sets on queries, row blocking, use of
compound SQL. In addition, there are brief discussions of: Character
conversion as it relates to application performance; stored procedures;
activation of databases; and the advantages of parallel processing. See
“Chapter 2. Application Considerations” on page 13 for more information.

There are topics specific to optimization of queries: Configuration parameters
affecting query optimization, the impact of node groups and table spaces on

Chapter 1. Elements of Performance 7

query optimization, and the large impact that indexes can have on query
optimization. See “Chapter 3. Environmental Considerations” on page 59 for
more information.

System catalog statistics have a significant influence on how well data is
accessed by applications. The following topics are associated with statistics:
The RUNSTATS utility, distribution statistics, index statistics, and those
statistics that can be updated by users. See “Chapter 4. System Catalog
Statistics” on page 79 for more information.

The SQL compiler takes each application and determines the best access plan
for that application. Each query within the application is evaluated and may
undergo several different operations designed to most clearly define the goal
of the query. Then different methods of access (scans and joins) are reviewed
for each query to determine the quickest way to retrieve the data requested by
the query. The affects of parallelism are also considered. See “Chapter 5.
Understanding the SQL Compiler” on page 111 for more information.

There are different tools available within the DB2 product to assist in the
understanding of what is happening with the queries of an application. These
tools are concerned with explaining what is affecting application performance.
See “Chapter 6. SQL Explain Facility” on page 177 for more information.

In addition to tuning individual applications, you should also consider the
performance of the database where those applications are running.
Performance of your database is determined in large part by how well
memory is used. There are many topics surrounding memory that are
concerned with performance: buffer pools, prefetching of data, parallel I/O,
sorting capabilities, the need to reorganize the data in tables, and the concept
of database agents. See “Chapter 7. Operational Performance” on page 205 for
more information.

There is a Governor that can be set up to manage how applications are using
the database. See “Chapter 8. Using the Governor” on page 243 for more
information.

The number of processors and the number of database partitions can be
increased to improve the performance of the database. See “Chapter 9. Scaling
Your Configuration” on page 259 for more information.

Once you have increased the number of database partitions, you will want to
ensure the data in the database is spread or redistributed correctly among the
database partitions. See “Chapter 10. Redistributing Data Across Database
Partitions” on page 269 for more information.

8 Administration Guide: Performance

To determine how well your database is performing, you can conduct
benchmark testing. The methodology for benchmark testing, how to prepare
for a benchmark test, the creation of a benchmark program, and the running
of benchmark tests are all topics of importance. See “Chapter 11. Benchmark
Testing” on page 275 for more information.

The very extensive set of database manager and database configuration
parameters are presented individually within “Chapter 12. Configuring DB2”
on page 289.

There is additional information that is related to these performance topics. The
appendices include the following:

v “Appendix A. DB2 Registry and Environment Variables” on page 449

v “Appendix B. Sample Tables” on page 489

v “Appendix C. Catalog Views” on page 509

v “Appendix D. Explain Tables and Definitions” on page 611

v “Appendix E. SQL Explain Tools” on page 645

v “Appendix F. db2exfmt - Explain Table Format Tool” on page 687.

Chapter 1. Elements of Performance 9

10 Administration Guide: Performance

Part 2. Tuning Application Performance

© Copyright IBM Corp. 1993, 1999 11

12 Administration Guide: Performance

Chapter 2. Application Considerations

There are a number of factors that can impact the runtime performance of
your application. This chapter describes the following topics that should be
considered when you are designing and coding your application:
v Concurrency
v Locking
v Adjusting the Optimization Class
v Restrictions on Result Sets to Improve Performance
v Row Blocking
v Tuning Queries
v Compound SQL
v Performance Considerations and Character Conversion
v Stored Procedures
v Activating a Database
v Parallel Processing of Applications.

You should also refer to the Application Development Guide and the CLI Guide
and Reference for additional information which can affect the performance of
your applications, for example:
v Writing programs using embedded static SQL
v Writing programs using embedded dynamic SQL
v Writing programs using DB2 Call Level Interface (CLI).

Concurrency

The integrity of the data in a relational database must be maintained as
multiple users access and change the data. Concurrency is the sharing of
resources by multiple interactive users or application programs at the same
time. The database manager controls this access to prevent undesirable effects,
such as:
v Lost updates. Two applications, A and B, might both read the same row from

the database and both calculate new values for one of its columns based on
the data these applications read. If A updates the row with its new value
and B then also updates the row, the update performed by A is lost.

v Access to uncommitted data. Application A might update a value in the
database, and application B might read that value before it was committed.

© Copyright IBM Corp. 1993, 1999 13

Then, if the value of A is not later committed, but backed out, the
calculations performed by B are based on uncommitted (and presumably
invalid) data.

v Nonrepeatable reads. Some applications involve the following sequence of
events: application A reads a row from the database, then goes on to
process other SQL requests. In the meantime, application B either modifies
or deletes the row and commits the change. Later, if application A attempts
to read the original row again, it receives the modified row or discovers
that the original row has been deleted.

v Phantom Read Phenomenon. The phantom read phenomenon occurs when:
1. Your application executes a query that reads a set of rows based on

some search criterion.
2. Another application inserts new data or updates existing data that

would satisfy your application’s query.
3. Your application repeats the query from step 1 (within the same unit of

work).

When the query is repeated (step 3), some additional (“phantom”) rows are
returned as part of the result set that were not returned when the query
was initially executed (step 1).

An isolation level determines how data is locked or isolated from other
processes while the data is being accessed. The isolation level will be in effect
for the duration of the unit of work. Applications that use a cursor declared
using the WITH HOLD clause will keep the chosen isolation level for the
duration of the unit of work in which the OPEN CURSOR was performed.
(For more information, refer to the SQL Reference manual.) See “Specifying the
Isolation Level” on page 18 for information on how the isolation level is
specified.

DB2 supports the following isolation levels:

v Repeatable Read
v Read Stability
v Cursor Stability
v Uncommitted Read.

(Note that some DRDA database servers support the no commit isolation level.
On other databases, it behaves like the uncommitted read isolation level. Refer
to the SQL Reference for information on this isolation level.)

See also:
v “Choosing the Isolation Level” on page 18

v “Specifying the Isolation Level” on page 18.

14 Administration Guide: Performance

It may be that you are working in a federated database system that supports
applications and users submitting SQL statements referencing two or more
database management systems (DBMSs) or databases in a single statement. A
DB2 federated system provides location transparency for database objects.
For example, if information about tables and views is moved, references to
that information (called nicknames) can be updated without changes to
applications that request the information. When an application accesses
nicknames, DB2 relies on the concurrency control protocols of data source
database managers to ensure isolation levels. (A data source consists of a
DBMS and data.) DB2 will attempt to match the requested level of isolation at
the data source with a logical equivalent; however, results may vary based on
data source capabilities. Refer to the Application Development Guide manual for
information on writing applications accessing nicknames.

Repeatable Read

Repeatable read (RR) locks all the rows an application references within a unit
of work. Using repeatable read, a SELECT statement issued by an application
twice within the same unit of work in which the cursor was opened, gives the
same result each time. With repeatable read, lost updates, access to
uncommitted data, and phantom rows are not possible.

The repeatable read application can retrieve and operate on the rows as many
times as needed until the unit of work completes. However, no other
applications can update, delete, or insert a row that would affect the result
table, until the unit of work completes. Repeatable read applications cannot
see uncommitted changes of other applications.

With repeatable read, every row that is referenced is locked, not just the rows
that are retrieved. Appropriate locking is performed so that another
application cannot insert or update a row that would be added to the list of
rows referenced by your query, if the query was re-executed. This prevents
phantom rows from occurring. This means that if you scan 10 000 rows and
apply predicates to them, locks are held on all 10 000 rows, even though only
10 rows qualify.

Note: The repeatable read isolation level ensures that all returned data
remains unchanged until the time the application sees the data, even
when temporary tables or row blocking are used.

Since repeatable read may acquire and hold a considerable number of locks,
these locks may exceed the number of locks available as a result of the locklist
and maxlocks configuration parameters. (See “Maximum Percent of Lock List
Before Escalation (maxlocks)” on page 342 and “Maximum Storage for Lock
List (locklist)” on page 314.) In order to avoid lock escalation, the optimizer
may elect to immediately acquire a single table level lock for an index scan, if

Chapter 2. Application Considerations 15

it believes that lock escalation is very likely to occur. (See “Lock Escalation”
on page 25 for a discussion of lock escalation.) This functions as though the
database manager has issued a LOCK TABLE statement on your behalf. If you
do not want a table level lock to be obtained ensure that enough locks are
available to the transaction or use the Read Stability isolation level.

Read Stability

Read stability (RS) locks only those rows that an application retrieves within a
unit of work. It ensures that any qualifying row read during a unit of work is
not changed by other application processes until the unit of work completes,
and that any row changed by another application process is not read until the
change is committed by that process. That is, “nonrepeatable read” behavior is
not possible.

Unlike repeatable read, with read stability, if your application issues the same
query more than once, you may see additional phantom rows (the phantom read
phenomenon). Recalling the example of scanning 10 000 rows, read stability
only locks the rows that qualify. Thus, with read stability, only 10 rows are
retrieved, and a lock is held only on those ten rows. Contrast this with
repeatable read, where in this example, locks would be held on all 10 000
rows. The locks that are held can be share, next share, update, or exclusive
locks. (For more information on lock attributes, see “Attributes of Locks” on
page 20.)

Note: The read stability isolation level ensures that all returned data remains
unchanged until the time the application sees the data, even when
temporary tables or row blocking are used.

One of the objectives of the read stability isolation level is to provide both a
high degree of concurrency as well as a stable view of the data. To assist in
achieving this objective, the optimizer ensures that table level locks are not
obtained until lock escalation occurs. (See “Lock Escalation” on page 25 for
more information about lock escalation).

The read stability isolation level is best for applications that include all of the
following:

v Operate in a concurrent environment
v Require qualifying rows to remain stable for the duration of the unit of

work
v Do not issue the same query more than once within the unit of work, or do

not require that the query get the same answer when issued more than
once in the same unit of work.

16 Administration Guide: Performance

Cursor Stability

Cursor stability (CS) locks any row accessed by a transaction of an application
while the cursor is positioned on the row. This lock remains in effect until the
next row is fetched or the transaction is terminated. However, if any data on a
row is changed, the lock must be held until the change is committed to the
database.

No other applications can update or delete a row that a cursor stability
application has retrieved while any updatable cursor is positioned on the row.
Cursor stability applications cannot see uncommitted changes of other
applications.

Recalling the example of scanning 10 000 rows, if you use cursor stability, you
will only have a lock on the row under your current cursor position. The lock
is removed when you move off that row (unless you update that row).

With cursor stability, both nonrepeatable read and the phantom read
phenomenon are possible. Cursor stability is the default isolation level and
should be used when you want the maximum concurrency while seeing only
committed rows from other applications.

Uncommitted Read

Uncommitted read (UR) allows an application to access uncommitted changes
of other transactions. The application also does not lock other applications out
of the row it is reading, unless the other application attempts to drop or alter
the table. Uncommitted read works differently for read-only and updatable
cursors.

Read-only cursors can access most uncommitted changes of other transactions.
However, tables, views, and indexes that are being created or dropped by
other transactions are not available while the transaction is processing. Any
other changes by other transactions can be read before they are committed or
rolled back.

Cursors that are updatable operating under the uncommitted read isolation
level will behave as if the isolation level was cursor stability.

Recalling the example of scanning 10 000 rows, if you use uncommitted read,
you do not acquire any row locks.

With uncommitted read, both nonrepeatable read behavior and the phantom
read phenomenon are possible.

Chapter 2. Application Considerations 17

The uncommitted read isolation level is most commonly used for queries on
read-only tables, or if you are only executing select-statements and you do not
care whether you see uncommitted data from other applications.

Choosing the Isolation Level

Table 1 summarizes the different isolation levels in terms of the undesirable
effects described in Application Development Guide manual.

Table 1. Summary of isolation levels

Isolation Level Access to
Uncommitted
Data

Nonrepeatable
Reads

Phantom Read
Phenomenon

Repeatable Read (RR) Not Possible Not Possible Not Possible

Read Stability (RS) Not Possible Not Possible Possible

Cursor Stability (CS) Not Possible Possible Possible

Uncommitted Read (UR) Possible Possible Possible

Table 2 provides a simple heuristic that may help you choose an initial
isolation level for your applications. Consider this table as a starting point,
and refer to the previous discussions of the various levels for factors that
might make another value more appropriate for your requirements.

Table 2. Guidelines for choosing an isolation level

Application Type High data stability
required

High data stability not
required

Read-write transactions RS CS

Read-only transactions RR UR

Choosing the appropriate isolation level for an application is very important
to avoid the phenomena that are intolerable for that application. The isolation
level affects not only the degree of isolation among applications but also the
performance characteristics of an individual application since the CPU and
memory resources, required to obtain and free locks, vary with the isolation
level. The potential for deadlock situations also varies with the isolation level.

Specifying the Isolation Level

The isolation level is specified at precompile time or when an application is
bound to a database. For an application written in a supported compiled
language, use the ISOLATION option of the command line processor PREP or
BIND commands. The isolation level can also be specified by using the PREP
or BIND APIs. If no isolation level is specified, the default of cursor stability is
used.

18 Administration Guide: Performance

If a bind file is created at precompile time, the isolation level is stored in the
bind file. If no isolation level is specified at bind time, the default is the
isolation level used during precompilation.

You can determine the isolation level of a package by executing the following
query:

SELECT ISOLATION FROM SYSCAT.PACKAGES
WHERE PKGNAME = 'XXXXXXXX'
AND PKGSCHEMA = 'YYYYYYYY'

where XXXXXXXX is the name of the package and YYYYYYYY is the schema name
of the package. Both of these names must be in all capital letters.

When a database is created, multiple bind files used to support the different
isolation levels for SQL in REXX are bound to the database (on those servers
that support REXX). Other command line processor packages are also bound
to the database when a database is created. Refer to the Application
Development Guide for more information about bind files.

REXX and the command line processor connect to a database using a default
isolation level of cursor stability. Changing to a different isolation level does
not change the connection state. It must be executed in the CONNECTABLE
AND UNCONNECTED state or in the IMPLICITLY CONNECTABLE state.
(Refer to the CONNECT TO statement in the SQL Reference for details about
connection states.) You cannot be connected to a database when issuing this
command.

The isolation level being used can be checked by a REXX application by
checking the value of the SQLISL REXX variable. The value is updated every
time the CHANGE SQLISL command is executed.

The DB2_RR_TO_RS profile registry variable can be used to prevent
Repeatable Read (RR) isolation level access to user tables. This registry value
can be set to “YES” using db2set in environments where RR isolation
semantics are not required. Before taking effect, you must stop and start the
database. Following the db2start, this change affects the entire instance. Once
set, if a request to access a user table using RR is received, the request is
modified internally to use the Read Stability (RS) isolation level instead. No
warning is given when this occurs.

If you are using the command line processor you may change the isolation
level using the CHANGE ISOLATION LEVEL command. Refer to the
Command Reference manual for more information.

For DB2 Call Level Interface (DB2 CLI), you may change the isolation level as
part of the DB2 CLI configuration. In addition, many commercially-written

Chapter 2. Application Considerations 19

applications also provide a method to allow you to choose the isolation level.
Refer to the CLI Guide and Reference manual for more information.

Locking

The database manager provides concurrency control and prevents
uncontrolled access by means of locks. A lock is a means of associating a
database manager resource with an application to control how other
applications can access the same resource. The application with which the
resource is associated is said to hold or own the lock.

The database manager imposes locks to prohibit applications from accessing
uncommitted data written by other applications (unless the uncommitted read
isolation level is used). This principle protects data integrity (that is, the
consistency and security of data). Locks can also prohibit the updating of
rows (such as for a repeatable read application).

To satisfy data integrity, the database manager acquires locks implicitly, under
database manager control. Except for the uncommitted read isolation level, it
is never necessary for an application to request a lock explicitly to ensure that
uncommitted data is hidden from other processes.

Because of the basic principle of locking, you do not need to take action to
control locks in most cases. Still, applications acquire locks on the basis of
certain general parameters. Knowledge of your local situation can help you
make better use of your system resources by changing those parameters. To
assist you, the following topics on locking are discussed:
v Attributes of Locks
v Locks and Application Performance
v Factors Affecting Locking
v LOCK TABLE Statement
v CLOSE CURSOR WITH RELEASE
v Summary of Locking Considerations.

Attributes of Locks

Database manager locks have the following basic attributes:

Object
The resource being locked. The only types of explicitly lockable
objects are tables. The database manager also imposes locks on other
types of resources, such as rows, tables and table spaces. The object
being locked represents the granularity of the lock.

20 Administration Guide: Performance

Duration
The length of time a lock is held. Lock durations are affected by
isolation levels which are discussed in “Concurrency” on page 13.

Mode The type of access allowed for the lock owner as well as the type of
access permitted for concurrent users of the locked object. It is
sometimes referred to as the state of the lock.

Modes and their effects are shown in order of increasing control over
resources:

Table 3. Lock Mode Summary

Lock Mode Applicable Object
Type

Description

IN (Intent None) Table spaces, tables The lock owner can read any data in the table, including
uncommitted data, but cannot change any of it. No row
locks are acquired by the lock owner. Other concurrent
applications can read or update the table.

IS (Intent Share) Table spaces, tables The lock owner can read data in the locked table, but not
change this data. When an application holds the IS table
lock, the application acquires an S or NS lock on each row
read. In either case, other applications can read or update
the table.

NS (Next Key
Share)

Rows This lock is acquired on rows of a table, instead of a Share
lock. The lock owner and all concurrent applications can
read, but not change, the locked row. This lock is acquired in
place of a share (S) lock on data that is read with the RS or
CS isolation levels.

S (Share) Rows, tables The lock owner and any concurrent applications can read,
but not change, the locked data. Individual rows can be
Share locked. If a table is Share locked, no row locks are
acquired by the lock owner. Other concurrent applications
can read the table.

IX (Intent
Exclusive)

Table spaces, tables The lock owner and concurrent applications can read and
change data in the table. When the owner reads data, it
acquires an S, NS, X, or U lock on each row. It also acquires
an X lock on each row that it updates. Other concurrent
applications can both read and update the table.

SIX (Share with
Intent Exclusive)

Tables The lock owner can both read and change data in the table.
The lock owner acquires X locks on the rows it updates, but
does not acquire locks on rows that it reads. Other
concurrent applications can read the table.

U (Update) Rows, tables The lock owner can update data in the locked object and
acquire X locks on the rows prior to updates. Other units of
work can read the data, but cannot attempt to update it.

Chapter 2. Application Considerations 21

Table 3. Lock Mode Summary (continued)

Lock Mode Applicable Object
Type

Description

NX (Next Key
Exclusive)

Rows This lock is acquired on the next row when a row is deleted
from an index or inserted into the index of a table. The lock
owner can read but not change the locked row. This is
similar to an X lock except that it is compatible with the NS
lock.

NW (Next Key
Weak Exclusive)

Rows This lock is acquired on the next row when a row is inserted
into the index of a non-catalog table. The lock owner can
read but not change the locked row. This is similar to X and
NX locks except that it is compatible with the W and NS
locks.

X (Exclusive) Rows, tables The lock owner can both read and change data in the locked
object. Tables can be Exclusive locked, meaning that no row
locks will be acquired. Only uncommitted read applications
can access the locked table.

W (Weak Exclusive) Rows This lock is acquired on the row when a row is inserted into
a non-catalog table. The lock owner can change the locked
row. This lock is similar to an X lock except that it is
compatible with the NW lock. Only uncommitted read
applications can access the locked row.

Z (Superxclusive) Table spaces, tables This lock is acquired on a table in certain conditions, such as
when the table is altered or dropped, an index on the table is
created or dropped, or a table is reorganized. No other
concurrent application can read or update the table.

Note that only tables and table spaces will obtain the “intent” lock
modes. That is, intent locks are not obtained for rows.

Locks and Application Performance

Application programmers need to be aware of several related factors
concerning the uses of locks and their effect on the performance of
applications. These factors include the following:
v Concurrency and Granularity
v Lock Compatibility
v Lock Conversion
v Lock Escalation
v Lock Waits and Timeouts
v Deadlocks.

22 Administration Guide: Performance

Concurrency and Granularity

A lock held by one application can prevent access by another application.
Therefore, for maximum concurrency, a row level lock is better than a table
lock. But locks require storage and processing time to manage. Therefore, for
minimizing storage and processing time, a single table lock is better than
many row locks.

You can define the size (granularity) of locks at row or table level through
ALTER TABLE. By default, row locks are used. With permanent table locks, as
defined by ALTER TABLE, only S and X table locks are used. Performance is
improved since the application does not need to acquire and release as many
row locks. You may prefer to get a permanent table lock using ALTER TABLE
rather than a single transaction table lock using LOCK TABLE statement in
the following cases:
v Your table is read-only, and you will always need S locks. A table level lock

will improve performance while allowing others to obtain S locks on the
table.

v The table will be accessed by a single user for maintenance, where the
person requires an X lock, for a limited period of time. Defining a table
level lock through ALTER TABLE on the table, will provide the person with
an X lock at a table level. Once the person is finished, they can use ALTER
TABLE to return the table to row level locking.

Use of this option will not prevent normal lock escalation from occurring.

In addition, note that using ALTER TABLE to push locks to the table level is a
global approach, affecting all applications and users that access that table.
Another choice is for individual applications to use the LOCK TABLE
statement. This allows you to go to table locks at an application level, not a
database level.

Lock Compatibility

Table 4 indicates whether a lock request is granted if another process holds or
is requesting a lock on the same resource in a given state. A no indicates that
the requestor must wait until all incompatible locks are released by other
processes. Note that a timeout can occur when waiting for a lock. A yes
indicates that the lock is granted (unless someone else is waiting for the
resource).

Chapter 2. Application Considerations 23

Table 4. Lock Type Compatibility

State of Held Resource

State Being
Requested

none IN IS NS S IX SIX U NX X Z NW W

none yes yes yes yes yes yes yes yes yes yes yes yes yes

IN yes yes yes yes yes yes yes yes yes yes no yes yes

IS yes yes yes yes yes yes yes yes no no no no no

NS yes yes yes yes yes no no yes yes no no yes no

S yes yes yes yes yes no no yes no no no no no

IX yes yes yes no no yes no no no no no no no

SIX yes yes yes no no no no no no no no no no

U yes yes yes yes yes no no no no no no no no

NX yes yes no yes no no no no no no no no no

X yes yes no no no no no no no no no no no

Z yes no no no no no no no no no no no no

NW yes yes no yes no no no no no no no no yes

W yes yes no no no no no no no no no yes no

Note:

I Intent

N None

NS Next Key Share

S Share

NX Next Key Exclusive

X Exclusive

U Update

Z Super Exclusive

NW Next Key Weak Exclusive

W Weak Exclusive

For details of these lock types, refer to the discussion in “Attributes of Locks” on page 20.

Note:

v yes - grant lock requested immediately

v no - wait for held lock to be released or timeout to occur

Assume that application A holds a lock on a table that application B also
wants to access. The database manager requests, on behalf of application B, a

24 Administration Guide: Performance

lock of some particular mode. If the mode of the lock held by A permits the
lock requested by B, the two locks (or modes) are said to be compatible.

If the lock mode requested for application B is not compatible with the lock
held by application A, application B cannot continue. Instead, it must wait not
only until application A releases its lock, but until all existing incompatible
locks are released.

Lock Conversion

Lock conversion occurs when a process accesses a data object on which it
already holds a lock, and the mode of access requires a more restrictive lock
than the one already held. A process can hold only one lock on a data object
at any time, although it can (indirectly through a query) request a lock many
times on the same data object. The operation of changing the mode of the lock
already held is called a conversion.

The conversion case for rows is simple: As an example, a conversion occurs if
an X is needed and an S or U is held.

There are more distinct lock modes for tables than for rows. IX (Intent
Exclusive) and S (Shared) locks are special cases, however. Neither S nor IX is
considered to be more restrictive than the other, so if one of these is held and
the other required, the resulting conversion is to a SIX (Share with Intent
Exclusive) lock. All other conversions result in the requested lock mode
becoming the mode of the lock held, if the requested mode is more restrictive.

A query to update a row can also produce a dual conversion. Suppose the
row had been read through an index access and was locked as S. The table
containing the row would have a covering intention lock. Suppose it is an IS
rather than an IX. Then, if the row is subsequently changed, the table lock is
converted to an IX, and the row to an X.

As a reminder, the application of locks usually takes place implicitly during
the execution of a query. Understanding the kinds of locks obtained for
different queries and table and index combinations can assist you in designing
and tuning your application. See “Factors Affecting Locking” on page 29 for
more information on this topic.

Lock Escalation

Lock escalation is an internal mechanism to reduce the number of locks held.
Escalation is from many row locks (in a single table) to a single table lock.

Lock escalation occurs when too many locks (of any type) are currently held.

Chapter 2. Application Considerations 25

Lock escalation can occur for a specific database agent if the agent exceeds its
allocation of the lock list (see “Maximum Percent of Lock List Before
Escalation (maxlocks)” on page 342).

Such escalation is handled internally; the only externally detectable result
might be a reduction in concurrent access on one or more tables. Normally, in
a properly configured database, lock escalation occurs infrequently.

An example of lock escalation is when an application designer uses an index
on a large table to increase performance and concurrency; however, the
application accesses a large percentage of records in the table. The database
manager is not able to predict (in this case) that so much of the table will be
locked, and locks each record individually rather than only locking the table
either S or X.

Sometimes, the process receiving the escalation request (internally) holds few
or no record locks on any table. The reason for this escalation is that one
process (or processes) can be holding many locks (although this amount is
below the database configuration parameter of locks per process) but not
quite enough to trigger the escalation request. The process might not request
another lock or access the database again except to end the transaction. Then
another process can request the lock or locks that trigger the escalation
request.

If lock escalation reduces concurrency to an unacceptable level, you can do
the following:

v Check the contents of the db2diag.log for information on escalations.
Information is recorded for each table being escalated. The type of
information recorded includes:
– The number of locks currently held.
– The number of locks needed before lock escalation is completed.
– The table identifier information and table name of each table being

escalated.
– The number of non-table locks currently held.
– The new table level lock to be acquired as part of the escalation.

Typically, this will be a “S” or Share lock, or an “X” or eXclusive lock.
– The internal return code of the result of the acquisition of the new table

lock level.

The current dynamic SQL statement may also be recorded. If it is, the
information recorded will include the current SQL statement prior to the
escalation of any table locks if the DIAGLEVEL database manager
configuration parameter is 4. If lock escalation fails, the information

26 Administration Guide: Performance

recorded will include the table for which the escalation failed and the
current SQL statement (if it is available, and not previously written) if the
DIAGLEVEL is 2 or higher.

With this information you will be able to carry out an appropriate action
based on the other points mentioned below.

To start this type of information recording, you should set the database
manager configuration parameter DIAGLEVEL to 3 which is the default, or
to 4.

v Increase the number of locks allowed by increasing the value of the
maxlocks and/or the locklist parameters in the database configuration file.
(See “Maximum Percent of Lock List Before Escalation (maxlocks)” on
page 342 and “Maximum Storage for Lock List (locklist)” on page 314.) This
might be the choice if concurrent access to the table by other processes is
most important. However, the overhead of obtaining record level locks can
induce more delay to other processes than is saved by concurrent access to
a table. (When changing these parameters in a partitioned database, ensure
that the parameters are updated on all partitions).

v Locate and adjust the offending process (or processes), which may or may
not be the one escalating or rolling back, and issue LOCK TABLE
statements explicitly.

v Change the degree of isolation. Note that this may lead to decreased
concurrency or reduced isolation.

v Increase the frequency of commits. This tends to reduce the number of
locks in existence at a given time. For more information about isolation
levels and concurrency, see “Concurrency” on page 13.

Lock Waits and Timeouts

Without lock timeout detection, in an abnormal situation, your application
may have to wait for a lock to be released. This might occur, for example,
when a transaction is waiting for a lock held by another user’s application,
and the other user has left their workstation without performing some
interaction to allow their application to commit their transaction which would
release the lock. Obviously, this results in poorer application performance. To
avoid stalling your program in such a case, you can use the locktimeout
configuration parameter to set the maximum time that any application waits
to obtain a lock. (See “Lock Timeout (locktimeout)” on page 344.)

Using this parameter helps avoid global deadlocks, especially in distributed
unit of work (DUOW) applications. If the lock times out, that is, if the time
that the lock request is pending is greater than the locktimeout value, your
application receives an error and your transaction is rolled back. For example,

Chapter 2. Application Considerations 27

if program1 tries to acquire a lock which is already held by program2, program1
returns SQLCODE -911 (SQLSTATE 40001) with reason code 68 if the timeout
is expired.

Deadlocks

In the database manager, contention for locks by processes using the database
can result in deadlocks. For example, Process 1 locks table A in X (exclusive)
mode and Process 2 locks table B in X mode; if Process 1 then tries to lock
table B in X mode and Process 2 tries to lock table A in X mode, the processes
will be in a deadlock. In a deadlock, both processes are suspended until their
second lock request is granted, and neither request is granted until one of the
processes performs a commit or rollback. This state remains indefinitely until
an external agent activates one of the processes and forces it to perform a
rollback.

Deadlocks in the lock system are handled in the database manager by an
asynchronous system background process called the deadlock detector. The
deadlock detector becomes active periodically as determined by the dlchktime
configuration parameter (see “Time Interval for Checking Deadlock
(dlchktime)” on page 341). When the deadlock detector becomes active, it
examines the lock system for deadlocks. If the database has been partitioned
then each partition sends lock graphs to the catalog node where global
deadlock detection takes place.

If a deadlock is found, the deadlock detector selects a deadlocked process to
roll back. The selected process is awakened, and it returns to the calling
application with SQLCODE -911 (SQLSTATE 40001), with reason code 2. The
database manager rolls back the selected process automatically. When the
rollback has completed, the locks belonging to the victim process are released,
and the other processes involved in the deadlock can eventually proceed.

Selecting the proper interval for the deadlock detector is necessary to ensure
good performance. An interval that is too short would cause unnecessary
overhead, and one that is too long would allow a deadlock to delay a process
for an unacceptable amount of time. For example, a wake up interval set to 30
minutes could allow a deadlock to exist for nearly 30 minutes. The application
designer must balance the possible delays in resolving deadlocks with the
overhead of detecting them.

In a partitioned database, the interval should be the same on all partitions
(the dlchktime configuration parameter must be updated to the same value on
all partitions). If the value is smaller at the catalog node than at other
partitions, phantom deadlocks may be detected. If the value is larger at the
catalog node than at other partitions, it may appear as if more than two
intervals pass before a deadlock is detected. If a large number of deadlocks

28 Administration Guide: Performance

are detected in a partitioned database, you should increase the value of the
dlchktime parameter to account for lock waits and communication waits.

Another problem can occur when an application with more than one
independent process accessing the database is structured in such a way as to
make deadlocks likely. An example is an application in which several
processes access the same table for reads and then writes. If the processes do
read-only SQL queries at first and then do SQL updates on the same table, the
chances of deadlocks occurring increase because of potential contention
between the processes for the same data. For instance, if two processes read
the table, and then update the table, they get into a state where process A is
trying to get an X lock on a row, on which process B has an S lock and vice
versa. The result could be a deadlock. To avoid these deadlocks, applications
that access data with the intention of modifying it should use the FOR
UPDATE OF clause when performing a select. This clause ensures that a U
lock is imposed when process A attempts to read the data.

You may want to consider defining a monitor that will record when deadlocks
occur. Use the CREATE EVENT statement described in the SQL Reference to
create the monitor.

In a federated system environment, when an application accesses nicknames,
it is possible that the data requested by the application is unavailable due to a
deadlock at a data source. When this happens, DB2 relies on the deadlock
handling facilities at the data source to resolve the lock. In the case of
deadlocks across more than one data source, DB2 relies on data source
timeout mechanisms to break the deadlock.

Factors Affecting Locking

The mode and granularity of database manager locks are determined by a
combination of factors: the type of processing the application performs, how it
accesses data, and several parameters that you can specify.

Application Processing

For the purpose of determining lock attributes, processing can be classified as
one of four types:

Read-only
This type includes all select-statements which are intrinsically
read-only (refer to the SQL Reference for information about cursors),
have an explicit FOR READ ONLY clause, or are ambiguous but for
which the SQL compiler presumes to be read-only due to the value of
the BLOCKING option specified on the PREP or BIND command. It
requires only Share locks (S or IS).

Chapter 2. Application Considerations 29

Intent to change
This type includes all select-statements with the FOR UPDATE clause,
or which the SQL compiler presumes to be intended for change as a
result of the interpretation of the ambiguous statement. It uses Share
and Update locks (S, U, and X for rows, IX, U, X for tables).

Change
This type includes UPDATE, INSERT, and DELETE, but not UPDATE
WHERE CURRENT OF or DELETE WHERE CURRENT OF. It
requires Exclusive locks (X or IX).

Cursor controlled
This type includes UPDATE WHERE CURRENT OF and DELETE
WHERE CURRENT OF. It also requires Exclusive locks (X or IX).

A statement that inserts, updates or deletes against a target table, based on the
result from a sub-select statement, does two types of processing. The locks for
the tables returned in the sub-select are determined by the rules for read-only
processing; for the target table, by the rules for change processing.

Access Paths

An access path is the method selected by the optimizer for retrieving data from
a specific table reference. (See “Data Access Concepts and Optimization” on
page 126.) The access path chosen by the optimizer can have a significant
effect on the lock modes. For example, when an index scan is used to locate a
specific row, the optimizer will likely choose row-level locking (IS) for the
table. This type of access would be used to select information for a single
employee from the EMPLOYEE table, that has an index on employee number
(EMPNO), with a statement such as the following:

SELECT *
FROM EMPLOYEE
WHERE EMPNO = '000310';

Similarly, when no index is used, the entire table must be scanned in sequence
to find the selected rows, and may acquire a single table level lock (S). For
example, this type of access might be used to select all the male employees,
using a statement such as this:

SELECT *
FROM EMPLOYEE
WHERE SEX = 'M';

The following tables provide an overview of which locks are obtained for
what kind of access plan. See “Application Processing” on page 29 for
definitions of the column headings. Also see “Data Access Concepts and
Optimization” on page 126 for definitions of the access method. Note that
cursor controlled type processing uses the lock mode of the underlying cursor

30 Administration Guide: Performance

until the application finds a row to update or delete. For this type of
processing, no matter what the lock mode of a cursor, an exclusive lock will
always be obtained to perform the update or delete.

In the following tables, if only one lock mode is shown, it is a table level lock
mode. If two lock modes are shown, the first is the table level lock mode and
the second is the row level lock mode.

Table 5. Lock Modes for Table Scans

Isolation Level Read-only Intent to Change Change

Access Method: Table scan with no predicates

RR S U X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Table Scan with predicates

RR S U U

RS IS / NS IX / U IX / U

CS IS / NS IX / U IX / U

UR IN IX / U IX / U

Table 6. Lock Modes for Index Scans

Isolation Level Read-only Intent to Change Change

Access Method: Index Scan with no predicates

RR S IX / U X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Index Scan a single qualifying row

RR IS / S IX / U IX / X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Index Scan with start and stop predicates only

RR IS / S IX / S IX / X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Chapter 2. Application Considerations 31

Table 6. Lock Modes for Index Scans (continued)

Isolation Level Read-only Intent to Change Change

Access Method: Index Scan with predicates

RR IS / S IX / S IX / U

RS IS / NS IX / U IX / U

CS IS / NS IX / U IX / U

UR IN IX / U IX / U

Table 7 shows the lock modes for cases in which reading of the data pages is
deferred to allow the list of rows to be:

v Further qualified using multiple indexes. See “Multiple Index Access” on
page 133 for more information.

v Sorted for efficient prefetching. See “Understanding List Prefetching” on
page 222 for more information.

The deferred access of the data pages implies that access to the row occurs in
two steps and this results in more complex locking scenarios. There are two
major categories which depend on the isolation level. Since the repeatable
read isolation level keeps all locks acquired until the end of the transaction,
the locks acquired in the first step are held and there is no need to acquire
further locks in the second step. For the read stability and cursor stability
isolation levels, locks must be acquired during the second step. To maximize
concurrency, we don’t acquire locks during the first step and rely on the
reapplication of all predicates to ensure that only qualifying rows are
returned.

Table 7. Lock Modes for Index Scans used for Deferred Data Page Access

Isolation Level Read-only Intent to Change Change

Access Method: Index Scan with no predicates

RR IS / S IX / S X

RS IN IN IN

CS IN IN IN

UR IN IN IN

Access Method: Deferred Data Page Access, after an index scan with no predicates

RR IN IX / S X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Index Scan with predicates

32 Administration Guide: Performance

Table 7. Lock Modes for Index Scans used for Deferred Data Page Access (continued)

Isolation Level Read-only Intent to Change Change

RR IS / S IX / S IX / S

RS IN IN IN

CS IN IN IN

UR IN IN IN

Access Method: Index Scan with start and stop predicates only

RR IS / S IX / S IX / X

RS IN IN IN

CS IN IN IN

UR IN IN IN

Access Method: Deferred Data Page Access, after an index scan with predicates

RR IN IX / S IX / S

RS IS / NS IX / U IX / U

CS IS / NS IX / U IX / U

UR IN IX / U IX / U

The access path is not controlled by the user; it is chosen by the Optimizer.

The access path used can affect the mode and granularity of a lock. For
example, in an application using the repeatable read (RR) isolation level, an
UPDATE query that uses a table scan without predicates, would use an X lock
on the table. If rows were located through an index, the database manager
might choose to lock individual rows of the table.

LOCK TABLE Statement

You can override the rules for acquiring initial lock modes by using the LOCK
TABLE statement in an application.

The statement locks an entire table. Only the table specified in the LOCK
TABLE statement is locked. Parent and dependent tables of the specified table
are not locked. You must determine whether locking other tables that can be
accessed is necessary to achieve the desired result in terms of concurrency and
performance. The lock is not released until the unit of work is committed or
rolled back.

If a table is normally shared among several users, you might want to lock it
for the following reasons:

Chapter 2. Application Considerations 33

LOCK TABLE IN SHARE MODE
You want to access data that is consistent in time; that is, data current
for a table at a specific point in time. If the table experiences frequent
activity, the only way to ensure that the entire table remains stable is
to lock it. For example, your application wants to take a snapshot of a
table. However, during the time your application needs to process
some rows of a table, other applications are updating rows you have
not yet processed. This is allowed with repeatable read, but this action
is not what you want.

As an alternative, your application can issue the LOCK TABLE IN
SHARE MODE statement: no rows can be changed, regardless of
whether you have retrieved them or not. You can then retrieve as
many rows as you need, knowing that the rows you have retrieved
have not been changed just before you retrieved them.

With LOCK TABLE IN SHARE MODE, other users can retrieve data
from the table, but they cannot update, delete, or insert rows into the
table.

LOCK TABLE IN EXCLUSIVE MODE
You want to update a large part of the table. It is less expensive and
more efficient to prevent all other users from accessing the table than
it is to lock each row as it is updated, and then unlock the row later
when all changes are committed.

With LOCK TABLE IN EXCLUSIVE MODE, all other users are locked
out; no other applications can access the table unless they are
uncommitted read applications.

For more details on the LOCK TABLE statement, refer to the SQL Reference
manual.

An alternative to the use of the LOCK TABLE statement is the ALTER TABLE
statement with the LOCKSIZE parameter. The LOCKSIZE parameter allows
for the selection of either ROW locks or TABLE locks. Whatever choice is
made becomes the granularity of the locks chosen when the table is next
accessed. The selection of ROW locks is no different from selecting the default
lock size when a table is created. The selection of TABLE locks may improve
the performance of queries by limiting the number of locks that need to be
acquired. However, concurrency may be reduced since all locks are held over
the complete table. Selecting either choice does not prevent normal lock
escalation from occurring. For more details on the ALTER TABLE statement,
refer to the SQL Reference manual.

34 Administration Guide: Performance

CLOSE CURSOR WITH RELEASE

When you close a cursor with the CLOSE CURSOR statement that includes
the WITH RELEASE clause, the database manager will attempt to release all
read locks (if any) that have been held for the cursor. Read locks are IS, S, and
U table locks as well as S, NS, and U row locks. For more information on lock
modes, see “Attributes of Locks” on page 20.

The WITH RELEASE clause has no effect for cursors that are operating under
the CS or UR isolation levels. When specified for cursors that are operating
under the RS or RR isolation levels, the WITH RELEASE clause ends some of
the guarantees of those isolation levels. Specifically, an RS cursor may
experience the nonrepeatable read phenomenon, and an RR cursor may
experience either the nonrepeatable read or phantom read phenomenon.

If a cursor that is originally RR or RS is reopened after being closed using the
WITH RELEASE clause, then new read locks will be acquired.

The DB2 CLI connection attribute SQL_ATTR_CLOSE_BEHAVIOR can be
used in CLI applications to achieve the same results. Refer to the
SQLSetConnectAttr() section of the CLI Guide and Reference for more
information.

Summary of Locking Considerations

The following are points to remember about locking:
v Small units of work (frequent COMMIT statements) promote concurrent

access of data by many users. Include COMMIT statements when your
application is logically at a point of consistency; that is, when the data you
have changed is consistent. When a COMMIT is issued, locks are released
(except for table locks associated with cursors declared WITH HOLD).

v Locks are acquired even if your application merely reads rows, so it is still
important to commit read-only units of work. This is because shared locks
are acquired by repeatable read, read stability, and cursor stability isolation
levels in read-only applications. With repeatable read and read stability, all
locks are held until a COMMIT is issued, preventing other processes from
updating the locked data, unless you close your cursor using the WITH
RELEASE clause. In addition, catalog locks are acquired even in
uncommitted read applications using dynamic SQL.

v The database manager ensures that your application does not retrieve
uncommitted data (rows that have been updated by other applications but
are not yet committed) unless you are using the uncommitted read isolation
level.

v You can lock the entire table that you want to protect by issuing a LOCK
TABLE statement:

Chapter 2. Application Considerations 35

– To allow other applications to retrieve, but not update, delete, or insert
rows

– To prevent other applications (other than those with an uncommitted
read isolation level) from accessing the rows of a table.

v When you close a cursor with the CLOSE CURSOR statement that includes
the WITH RELEASE clause, the database manager will attempt to release
all read locks (if any) that have been held for the cursor.

v When changing the configuration parameters affecting locking in a
partitioned database, ensure that the changes are made to all of the
partitions in the database.

Adjusting the Optimization Class

When an SQL query is compiled, a number of optimization techniques can be
used to determine the most efficient access plan for that query. Using more
optimization techniques results in:
1. Improvements in run-time performance
2. Increased query compilation time
3. Increased system resource usage.

For this reason, you may wish to limit the number of techniques applied to
optimizing your query by setting the optimization class. This can be
particularly useful if you have:
v Very small databases or very simple dynamic queries
v Limited memory available at compile time on your database server
v A desire to reduce the query compilation (for example, PREPARE) time.

You may select from any of the query optimization classes described below,
although class 0 and class 9 should be used only in special circumstances.
Class 5 is the default. Classes 0, 1, and 2 use the Greedy join enumeration
algorithm; for complex queries this algorithm considers far fewer alternative
plans, and incurs significantly less compilation time, than classes 3 and above.
Classes 3 and above use the Dynamic Programming join enumeration
algorithm; this algorithm considers far more alternative plans, and can incur
significantly more compilation time, than classes 0, 1, and 2 as the number of
tables increases.

0 - This class directs the optimizer to use a minimal amount of
optimization to generate an access plan. For example:
v Any non-uniform distribution statistics are not considered by the

optimizer.

36 Administration Guide: Performance

v Only basic query rewrite rules are applied (see “Rewrite Query by
the SQL Compiler” on page 115 for information about query
rewrite).

v Greedy join enumeration occurs (see “Search Strategies for Selecting
Optimal Join” on page 146).

v Only nested loop join and index scan access methods are enabled
(see “Join Concepts” on page 141 and “Index Scan Concepts” on
page 127).

v List prefetch and index ANDing are disabled as access methods.
v The star join strategy is not considered.

This class should only be used in special circumstances requiring the
lowest possible query compilation overhead. An application consisting
entirely of very simple dynamic SQL statements which access
well-indexed tables is a good example of where query optimization
class 0 is appropriate.

1 - This class directs the optimizer to use a degree of optimization which
is roughly comparable to DB2/6000 Version 1, plus some additional
low cost features not found in Version 1. In particular:
v Any non-uniform distribution statistics are not considered by the

optimizer.
v Only a subset of the query rewrite rules are applied, including

those provided in DB2/6000 Version 1.
v Greedy join enumeration (see “Search Strategies for Selecting

Optimal Join” on page 146.)

v List prefetch and index ANDing are disabled as access methods.

Optimization class 1 is quite similar to class 0 except that Merge Scan
joins and table scans are also available.

2 - This class directs the optimizer to use a degree of optimization which
significantly improves upon that of class 1, while keeping the
compilation cost significantly lower than classes 3 and above for
complex queries. In particular:
v All available statistics, including both frequency and quantile

non-uniform distribution statistics, are utilized.
v All of the query rewrite rules are applied, except computationally

intensive rules which are applicable only in very rare cases.
v Greedy join enumeration (see “Search Strategies for Selecting

Optimal Join” on page 146) is used.

v A wide range of access methods are considered, including list
prefetch.

Chapter 2. Application Considerations 37

v The star join strategy is considered, if applicable.

Optimization class 2 is quite similar to class 5 except that it uses
Greedy join enumeration rather than Dynamic Programming. This
class has the most optimization of all the optimization classes that use
the Greedy join enumeration algorithm, which considers fewer
alternatives for complex queries, and therefore consumes less
compilation time than classes 3 and above. It is therefore
recommended for very complex queries in a decision support or
online analytic processing (OLAP) environment. In such cases, there is
a good chance the same query is executed infrequently, so that its
access plan is unlikely to remain in the cache until the next occurrence
of the query.

3 - This class requests that a moderate amount of optimization be
performed to generate an access plan. This class comes closest to
matching the query optimization characteristics of DB2 for MVS/ESA
or OS/390. This optimization class has the following characteristics:
v Non-uniform distribution statistics, which track frequently

occurring values are used, if available.
v Most query rewrite rules, including subquery-to-join

transformations are applied.
v Dynamic programming join enumeration (see “Search Strategies for

Selecting Optimal Join” on page 146):

– Limited use of composite inner tables (see “Composite Tables” on
page 148)

– Limited use of Cartesian products for star schemas involving
“look-up” tables (see “Search Strategies for Star Join” on
page 147)

v A wide range of access methods are considered, including list
prefetch, index ANDing and star joins.

This class is suitable for a broad range of applications. Using this class
gives the optimizer a better chance of selecting an excellent access
plan for queries with four or more joins. However, the optimizer
might fail to consider a better plan which would be chosen with the
default query optimization class.

5 - This class directs the optimizer to use a significant amount of
optimization to generate an access plan. For example, class 5 has the
following characteristics:
v All available statistics including both frequency and quantile

non-uniform distribution statistics.

38 Administration Guide: Performance

v All of the query rewrite rules are applied including the routing of
queries to summary tables, except for those computationally
intensive rules which are applicable only in very rare cases.

v Dynamic programming join enumeration (see “Search Strategies for
Selecting Optimal Join” on page 146):

– Limited use of composite inner tables (see “Composite Tables” on
page 148)

– Limited use of Cartesian products for star schemas involving
“look-up” tables (see “Search Strategies for Star Join” on
page 147)

v A wide range of access methods are considered, including list
prefetch, index ANDing, and summary table routing.

When the optimizer detects that the additional resources and
processing time are not warranted for complex dynamic SQL queries,
optimization is reduced. The extent or size of the reduction is
dependent on the machine size and the number of predicates.

When the query optimizer reduces the amount of query optimization
performed, it continues to apply all the query rewrite rules that would
normally be applied. However, it does use the greedy join
enumeration method and reduces the number of access plan
combinations that are considered.

Query optimization class 5 is an excellent choice for a mixed
environment consisting of both transactions and complex queries. This
optimization class has been designed to apply the most valuable
query transformations and other query optimization techniques in an
efficient manner.

7 - This class directs the optimizer to use a significant amount of
optimization to generate an access plan. It is the same as query
optimization class 5 except that it does not reduce the amount of
query optimization for complex dynamic SQL queries.

9 - This class directs the optimizer to use all available optimization
techniques. These include:
v All available statistics
v All query rewrite rules
v All possibilities for join enumerations, including Cartesian products

and unlimited composite inners
v All access methods.

Chapter 2. Application Considerations 39

This class can greatly expand the number of possible access plans that
are considered by the optimizer. This class should be used to
determine whether more comprehensive optimization can generate a
better access plan for very complex and very long-running queries
using large tables. Explain and performance measurements should be
used to verify that a better plan has been found.

How Do You Set the Optimization Class?

The way to request a specific query optimization class depends on whether
you are using static or dynamic SQL.
v Static SQL statements use the optimization class specified on the PREP and

BIND commands. The QUERYOPT column in the SYSCAT.PACKAGES
catalog table records the optimization class used to bind the package. If the
package is rebound either implicitly or using the REBIND PACKAGE
command, this same optimization class will be used for the static SQL
statements. If you want to change the optimization class used for these
static SQL statements, you must use the BIND command. If you do not
specify the optimization class, DB2 uses the default optimization as
specified by dft_queryopt.

v Dynamic SQL statements use the optimization class specified by the
CURRENT QUERY OPTIMIZATION special register which is set using the
SQL SET statement. For example, the following statement sets the
optimization class to 1:

SET CURRENT QUERY OPTIMIZATION = 1

To ensure that a dynamic SQL statement always uses the same optimization
class, you may want to include this SET statement in your application
program. For more information, refer to the SQL Reference.

If the CURRENT QUERY OPTIMIZATION register has not been set,
dynamic statements will be bound using the default query optimization
class. The default value for both dynamic and static SQL is determined by
value of the configurable database parameter DFT_QUERYOPT. Class 5 is
the default query optimization class unless you have changed the default.
(For more information on this parameter, see “Default Query Optimization
Class (dft_queryopt)” on page 401.) The default values for the bind option
and the special register are taken from the DFT_QUERYOPT configuration
parameter.

How Much Optimization is Necessary?

Most statements will be adequately optimized using a reasonable amount of
resources with the default query optimization class. The query compilation
time and resource consumption, at a given optimization class, is primarily

40 Administration Guide: Performance

influenced by the complexity of the query, particularly the number of joins
and subqueries. However, compilation time and resource usage are also
affected by the amount of optimization performed for the various
optimization classes. For any optimization class, you can expect to see a
greater difference in query compilation time and resource consumption for a
very complex query than for a simple one.

The following may help you select which optimization class to use:
v Start by using the default query optimization class.
v If you wish to use a class other than the default, try class 1, 2 or 3 first.
v Use a low optimization class (0 or 1) for queries having very short

run-times, that is, queries taking less than one second. (See the following
discussion for additional criteria about when to choose a low optimization
class.)

v Use optimization class 1 or 2 if you have many tables with many of the join
predicates that are on the same column, and if compilation time is a
concern.

v Use a higher optimization class (3, 5, or 7) for long running queries, that is,
queries taking more than 30 seconds.

v Under normal circumstances, you should not use optimization class 9.
v For queries that run a long time, run the query using db2batch to

determine how much of the time is spent in compilation and how much is
spent in execution.
– If most of the time is spent in compilation then reduce the optimization

class.
– If most of the time is spent in execution then consider a higher

optimization class.

Note that query optimization classes 1, 2, 3, 5, and 7 are all suitable for
general purpose use.

Only if you require further reductions in query compilation time and you
know the kind of SQL (for example, extremely simple statements) that will be
executed should you consider class 0. This SQL will tend to have the
following characteristics:
v Access to a single or only a few tables
v Fetches a single or only a few rows
v Uses fully qualified, unique indexes.

Online transaction processing (OLTP) transactions are good examples of this
kind of SQL.

Chapter 2. Application Considerations 41

Complex queries may require different amounts of optimization to select the
best access plan. You may wish to consider using higher optimization classes
for queries exhibiting the following characteristics:
v Access to large tables
v A large number of predicates
v Many subqueries
v Many joins
v Many set operators, such as UNION and INTERSECT
v Many qualifying rows
v GROUP BY and HAVING operations
v Nested table expressions
v A large number of views.

Decision support queries or month-end reporting queries against fully
normalized databases are good examples of complex queries where at least
the default query optimization class should be used.

Another reason to use higher query optimization classes is SQL which was
produced by a query generator. Many query generators create SQL which is
not efficient. Poorly written queries, including those produced by a query
generator, may require additional optimization to make it possible to select a
good access plan. Using query optimization class 2 and higher can improve
poorly written SQL queries.

The use of static or dynamic SQL, and whether the same dynamic SQL is
repeatedly executed are also important considerations. For static SQL, the
query compilation time and resources are expended just once and the
resulting plan can be used many times. In general, static SQL should always
use the default query optimization class. Dynamic statements are bound and
executed at run time; therefore, you should consider whether the overhead of
additional optimization for dynamic statements improves your overall
performance. However, if the same dynamic SQL statement is executed
repeatedly, the selected access plan will be cached. For the purposes of
selecting a query optimization class, the statement can be treated like a static
SQL statement.

(Refer to the Application Development Guide for information on when to use
static and dynamic SQL.)

If you think you have a query that could benefit from additional optimization,
but you are not sure, or you are concerned about compilation time and
resource usage, you may want to perform some benchmark testing. This
testing can help you quantify the benefits obtained from different optimization
classes. See “Chapter 11. Benchmark Testing” on page 275 for general

42 Administration Guide: Performance

techniques and the specific use of the db2batch tool. When designing and
running your benchmark test, consider whether the SQL statements in your
application are static or dynamic:

v For dynamic SQL statements, your testing should compare the average run
time for the statement. You can use the following formula to help you
calculate the average run time:

compile time + sum of execution times for all iterations
--

number of iterations

where, the number of iterations represents the number of times that you
expect that the SQL statement will be executed each time it is compiled.

Note: Following the initial compilation, dynamic SQL statements are
recompiled when a change to the environment requires the statement
to be recompiled. Once cached, a SQL statement does not need to be
compiled again since subsequent PREPARE statements will re-use the
cached statement assuming the environment does not change. (See
“Catalog Cache Size (catalogcache_sz)” on page 309 and “Package
Cache Size (pckcachesz)” on page 316 for information about a cache
that can improve performance when working with dynamic SQL
statements.)

v For static SQL statements, your testing should compare the statement run
times.

Note: While you may also be interested in the compile time of static SQL,
the total (compile and run) time for the statement is difficult to use in
any meaningful context. Comparing the total time does not recognize
the fact that a static SQL statement can be run many times for each
time it is bound and that it is generally not bound during run time.

Restrictions on Result Sets to Improve Performance

A SELECT statement defines a set of rows which satisfy the search criteria.
The DB2 optimizer assumes the application will retrieve all the qualifying
rows. This assumption is most appropriate in OLTP and batch environments.
However, in “browse” applications it is common for a query to define a very
large potential answer set but only retrieve the first few rows, typically only
as many rows as are required to fill the screen.

The default assumption made by the optimizer to retrieve all qualifying rows
may not be the best for applications that are not updating or deleting
information from the stored data.

Chapter 2. Application Considerations 43

There are four ways of modifying the SELECT statement to limit or modify
the result table to improve performance. They are:
v FOR UPDATE clause
v FOR READ/FETCH ONLY clause
v OPTIMIZE FOR n ROWS clause
v FETCH FIRST n ROWS ONLY clause.

FOR UPDATE Clause

The FOR UPDATE clause identifies the columns that can be updated by a
subsequent positioned UPDATE statement. If the FOR UPDATE clause is
specified without column names, all updateable-columns of the table or view
are included. If column names are specified, each name must be unqualified
and must identify a column of the table or view.

The FOR UPDATE clause cannot be used when either of the following are
true:
v The cursor associated with the SELECT statement cannot be deleted.
v At least one of the selected columns is a non-updatable column of a catalog

table and has not been excluded in the FOR UPDATE clause.

The DB2 CLI connection attribute SQL_ATTR_ACCESS_MODE can be used in
CLI applications to achieve the same results. Refer to the SQLSetConnectAttr()
section of the CLI Guide and Reference for more information.

FOR READ or FETCH ONLY Clause

The FOR READ ONLY clause ensures that the result table is read-only. The
FOR FETCH ONLY clause has the same meaning.

Some result tables are read-only by definition. For example, the result table
from a SELECT on a view defined as read-only. You can still specify FOR
READ ONLY in such a case, but the clause has no effect.

For result tables where updates and deletes are allowed, specifying FOR
READ ONLY may improve the performance of FETCH operations. This
possible improvement in performance occurs when the database manager is
able to do blocking, and not exclusive locks, on the data. You should use the
FOR READ ONLY clause to improve performance except in cases where
queries are used in positioned UPDATE or DELETE statements.

The DB2 CLI connection attribute SQL_ATTR_ACCESS_MODE can be used in
CLI applications to achieve the same results. Refer to the SQLSetConnectAttr()
section of the CLI Guide and Reference for more information.

44 Administration Guide: Performance

OPTIMIZE FOR n ROWS Clause

The OPTIMIZE FOR clause provides a mechanism for an application to
declare its intent to retrieve only a subset of the result or to give priority to
the retrieval of the first few rows. Once this intent is understood, the
optimizer can give preference to access plans that minimize the response time
for retrieving the first few rows. Also, the number of rows that are sent to the
client as a single block (see “Row Blocking” on page 48) are bounded by the
value of “n” in the OPTIMIZE FOR clause. Therefore, the OPTIMIZE FOR
clause affects both how the qualifying rows are retrieved from the database by
the server, and how the qualifying rows are returned to the client.

For example, suppose you are querying the employee table for the employees
with the highest salary on a regular basis.

SELECT LASTNAME,FIRSTNAME,EMPNO,SALARY
FROM EMPLOYEE
ORDER BY SALARY DESC

You have defined a descending index on the SALARY column. However, since
employees are ordered by employee number, the salary index is likely to be
very poorly clustered. The optimizer, in trying to avoid many random
synchronous I/Os, would likely choose to use the list prefetch access method
(see “Understanding List Prefetching” on page 222) which requires the row
identifiers of all rows that qualify to be sorted. This can cause a delay before
the first qualifying rows can be returned to the application. By adding the
OPTIMIZE FOR clause to the statement as follows:

SELECT LASTNAME,FIRSTNAME,EMPNO,SALARY
FROM EMPLOYEE
ORDER BY SALARY DESC
OPTIMIZE FOR 20 ROWS

the optimizer would likely choose to use the SALARY index directly with the
knowledge that in all likelihood only the twenty employees with the highest
salaries would be retrieved. Regardless of how many rows could be blocked, a
block of rows is returned to the client every twenty rows.

Use of the OPTIMIZE FOR clause causes the optimizer to favor access plans
that avoid bulk operations or operations that interrupt the flow of rows, such
as sorts. You are most likely to influence an access path by using OPTIMIZE
FOR 1 ROW. As a result, using this clause could have the following effects:

v Join sequences with composite inners are less likely since they require a
temporary table.

v The join method could change. A nested loop join is the most likely choice,
because it has low overhead cost and is usually more efficient if you only
want to retrieve a few rows.

Chapter 2. Application Considerations 45

v An index that matches the ORDER BY clause is more likely to be picked.
This occurs because no sort would be needed for the ORDER BY.

v List prefetch is less likely to be picked since this access method requires a
sort.

v Sequential prefetch is less likely to be requested by DB2 because it infers
that you only want to see a small number of rows.

v In a join query, the table with the columns in the ORDER BY clause is likely
to be picked as the outer table if there is an index on that outer table that
gives the ordering needed for the ORDER BY clause.

Although the OPTIMIZE FOR clause applies to all optimization classes (see
“Adjusting the Optimization Class” on page 36), it works best for optimization
class 3 and higher. The use of the greedy join enumeration method (see
“Search Strategies for Selecting Optimal Join” on page 146) in optimization
classes below 3 sometimes results in access plans for multi-table joins that do
not lend themselves to quickly retrieving the first few rows.

The OPTIMIZE FOR clause does not prevent you from retrieving all the
qualifying rows. However the total elapsed time to retrieve all the qualifying
rows may be significantly greater than if the optimizer had been allowed to
optimize for the entire answer set.

If you have a packaged application that uses the call level interface (DB2 CLI
or ODBC) it is possible to have DB2 CLI automatically append an OPTIMIZE
FOR clause to the end of each query statement using the
OPTIMIZEFORNROWS keyword in the db2cli.ini configuration file. For
additional information refer to the CLI Guide and Reference manual.

When selecting data from nicknames, results may vary depending on data
source support. If the data source referenced by the nickname supports the
OPTIMIZE FOR clause, and the DB2 optimizer pushes down the entire query
containing the clause to the data source, then the clause is generated in the
remote SQL sent to the data source. If the data source does not support this
clause, or if the optimizer decides to execute the clause locally (least cost
plan), the OPTIMIZE FOR clause is applied locally at DB2. In this case, the
DB2 optimizer will continue to give preference to access plans that minimize
the response time for retrieving the first few rows of a query, but the options
available to the optimizer for generating plans are slightly delimited and
performance gains from the OPTIMIZE FOR clause may be negligible.

If both the FETCH FIRST clause and the OPTIMIZE FOR clause are specified,
the lower of the two values is used to influence the communications buffer
size. The two values are considered independent of each other for
optimization purposes. See “Using a SELECT-Statement” on page 49 for more
information on the interaction between these two clauses.

46 Administration Guide: Performance

FETCH FIRST n ROWS ONLY Clause

The OPTIMIZE FOR n ROWS clause does not prevent the retrieval of all
qualifying rows. (The total elapsed time to retrieve all qualifying rows may be
significantly greater than if the optimizer was allowed to optimize for the
entire answer set.)

The FETCH FIRST n ROWS ONLY clause sets the maximum number of rows
that can be retrieved from within a SELECT statement. Limiting the result
table to the first several rows can improve performance. Only n rows are
retrieved regardless of the number of rows there might be in the result table
based on a SELECT where this clause is not specified.

If both the FETCH FIRST clause and the OPTIMIZE FOR clause are specified,
the lower of the two values is used to influence the communications buffer
size. The two values are considered independent of each other for
optimization purposes. See “Using a SELECT-Statement” on page 49 for more
information on the interaction between these two clauses.

DECLARE CURSOR WITH HOLD Statement

When you declare a cursor with the DECLARE CURSOR statement that
includes the WITH HOLD clause, any open cursors remain open when the
transaction is committed. Further, all locks are released, except locks
protecting the current cursor position of open WITH HOLD cursors.

When you declare a cursor with the DECLARE CURSOR statement that
includes the WITH HOLD clause, all open cursors are closed when the
transaction ends with a ROLLBACK. Further, all locks are released and LOB
locators are freed.

The DB2 CLI connection attribute SQL_ATTR_CURSOR_HOLD can be used in
CLI applications to achieve the same results. For additional information refer
to the “SQLSetStmtAttr - Set Options Related to a Statement” section in the
CLI Guide and Reference manual.

If you have a packaged application that uses the call level interface (DB2 CLI
or ODBC) it is possible to have DB2 CLI automatically assume the WITH
HOLD clause for every declared cursor by using the CURSORHOLD keyword
in the db2cli.ini configuration file. Refer to the transaction configuration
keywords section of the CLI Guide and Reference for more information.

Chapter 2. Application Considerations 47

Row Blocking

Row blocking is a technique that reduces database manager overhead by
retrieving a block of rows in a single operation. These rows are stored in a
cache, and each FETCH request in the application gets the next row from the
cache. When all the rows in a block have been processed, another block of
rows is retrieved by the database manager.

The cache is allocated when an application issues an OPEN CURSOR request
and is deallocated when the cursor is closed. The size of the cache is
determined by a configuration parameter which is used to allocate memory
for the I/O block. The parameter used depends on whether the client is local
or remote:
v For local applications, the parameter aslheapsz is used to allocate the cache for

row blocking. (See “Application Support Layer Heap Size (aslheapsz)” on
page 332 for information about this parameter.)

v For remote applications, the parameter rqrioblk on the client workstation is
used to allocate the cache for row blocking. The cache is allocated on the
database client. (See “Client I/O Block Size (rqrioblk)” on page 333 for
information about this parameter.)

For local applications, you can use the following formula to estimate how
many rows are returned per block, where:

v aslheapsz is in pages of memory
v 4 096 is the number of bytes per page
v orl is the output row length in bytes:
Rows per block = aslheapsz * 4096 / orl

For remote applications, you can use the following formula to estimate how
many rows are returned per block, where:
v rqrioblk is in bytes of memory
v orl is the output row length in bytes:
Rows per block = rqrioblk / orl

Note that if you use the FETCH FIRST n ROWS ONLY clause or the
OPTIMIZE FOR n ROWS clause in a SELECT statement, the number of rows
per block will be the minimum of the following:
v The value calculated in the above formula
v The value of n in the FETCH FIRST clause
v The value of n in the OPTIMIZE FOR clause

48 Administration Guide: Performance

Use the BLOCKING option on the PREP and BIND commands to specify one
of the following types of row blocking:

UNAMBIG
Blocking occurs for read-only cursors and cursors not specified as
“FOR UPDATE OF”. Ambiguous cursors are treated as updateable.

ALL Blocking occurs for read-only cursors and cursors not specified as
“FOR UPDATE OF”. Ambiguous cursors are treated as read-only.

NO Blocking does not occur for any cursors. Ambiguous cursors are
treated as read-only.

For details of these types of row blocking, refer to the PREP and BIND
command descriptions in the Command Reference manual.

If no option is specified on the PREP and BIND commands, the default row
blocking type is UNAMBIG. For the command line processor and call level
interface, the default row blocking type is ALL.

Refer to the SQL Reference for more information about cursors.

Tuning Queries

This section provides specific considerations and guidelines to help you
fine-tune the SQL statements in an application program. As a general rule,
these guidelines may help design a program that minimizes the use of system
resources and the amount of time needed to access data in a very large table.
Depending on the amount of optimization that takes place when the SQL
statement is compiled, you may not need to fine-tune your SQL statements.
The SQL compiler can rewrite your SQL into more efficient forms. See
“Rewrite Query by the SQL Compiler” on page 115 and “Adjusting the
Optimization Class” on page 36.

It is also important to note that the access plan chosen by the optimizer is also
affected by other factors, including environmental considerations and system
catalog statistics. If you conduct benchmark testing of the performance of
your applications, you can make adjustments that can improve the access
plan.

Using a SELECT-Statement

The SQL language is a high-level language with much flexibility. As a result,
different select-statements can be written to retrieve the same data. However,
the performance can vary for the different forms and the different classes of
optimization.

Chapter 2. Application Considerations 49

It is important to note the SQL compiler (including the query rewrite and
optimization phases) must choose an access plan that will produce the result
set for the query you have coded. Therefore, as noted in many of the
following guidelines, you should code your query to obtain only the data that
you need. This ensures that the SQL compiler can choose the best access plan
for your needs.

Guidelines When Using a SELECT-Statement

The guidelines for using a select-statement are:
v Specify only those columns that are needed in the select list. Although it

may be simpler to specify all columns with an asterisk (*), needless
processing and returning of unwanted columns can result.

v Limit the number of rows selected by using predicates to restrict the answer
set to only those rows that you require. (See “Predicate Terminology” on
page 138 for more information about the different types of predicates and
their relative impact on performance.)

v When the number of rows you want to use is significantly less than the
total number of rows that could be returned, specify the OPTIMIZE FOR
clause for the select-statement. This clause affects both the choice of access
plans as well as the number of rows that are blocked in the communication
buffer. (For more information, see “Row Blocking” on page 48.)

v When the number of rows to be retrieved is small, there is no need to
specify the OPTIMIZE FOR k ROWS clause in addition to the FETCH
FIRST n ROWS ONLY clause. However, if n is large and you want optimize
by getting the first k rows quickly with a possible delay for the subsequent
k rows, specify both. The communication buffers are sized based on the
lesser of n and k.
SELECT EMPNAME, SALARY FROM EMPLOYEE

ORDER BY SALARY DESC
FETCH FIRST 100 ROWS ONLY
OPTIMIZE FOR 20 ROWS

v Specifying the FOR READ ONLY (or FOR FETCH ONLY) clause can
improve performance by allowing your query to take advantage of row
blocking. It can also improve data concurrency since exclusive locks will
never be held on the rows retrieved by a query with this clause specified. It
also allows additional query rewrites to take place. Specifying the FOR
READ ONLY (or FOR FETCH ONLY) clause along with BLOCKING ALL
BIND can similarly improve the performance of queries against nicknames
in a federated system.

v Specifying the FOR UPDATE OF clause can also improve performance, for
cursors that will be updated, by allowing the database manager to initially
choose more appropriate locking levels, thus avoiding potential deadlocks
(see “Deadlocks” on page 28) and lock conversions (see “Lock Conversion”
on page 25).

50 Administration Guide: Performance

v Avoid numeric data type conversions whenever possible. When comparing
values, it may be more efficient to use items that have the same data type.
If conversions are necessary, inaccuracies due to limited precision, and
performance costs due to run-time conversions, may result.
If possible, use the following data types:
– Character rather than varying character for short columns
– Integer rather than float or decimal
– Datetime rather than character.
– Numeric rather than character.

v SQL statements containing clauses or operations such as DISTINCT, or
ORDER BY, require data to be ordered to perform the operation. If you
want to decrease the chances that a sort operation will be used, omit the
specification of these clauses if they are not required.

v To check for existence of rows in a table, do not use:
SELECT COUNT(*) FROM TABLENAME

and check for a value of nonzero unless you know that the table will be
very small. As the table gets larger, counting all the rows will impact
performance. Instead it is suggested that you try to select a single row. This
can be done by either opening a cursor and fetching one row, or by doing a
single-row (SELECT INTO) selection. (Remember to check for the
SQLCODE -811 error if more than one row is found from the
select-statement.)

v If update activity is low and your tables are large, define indexes on
columns that are frequently used as predicates.

The following suggestions apply specifically to select-statements that access
several tables.
v Use join predicates when joining tables. (A join predicate is a comparison

between two columns from different tables in a join.)
v Define indexes on the columns in the join predicate to allow the join to be

processed more efficiently. This will also benefit UPDATE and DELETE
statements that contain select-statements that access several tables.

v If possible, avoid using expressions or OR clauses with join predicates. In
this case, some join techniques cannot be used by the database manager
and, as a result, the most efficient join method may not be chosen.

v If possible, ensure that the tables joined are both partitioned on the join
column in a partitioned database environment.

For more information see “Join Concepts” on page 141.

Also, refer to the Application Development Guide for more information on
coding SQL statements with joins and subqueries.

Chapter 2. Application Considerations 51

Compound SQL

Compound SQL allows you to group several SQL statements into a single
executable block. The SQL statements contained within the block
(sub-statements) could be executed individually; however, by creating and
executing a block of statements, you reduce the database manager overhead.
For remote clients, compound SQL also reduces the number of requests that
have to be transmitted across the network.

There are two types of compound SQL:
v Atomic

The application receives a response from the database manager when all
sub-statements have completed successfully, or when one sub-statement
ends in an error. If one sub-statement ends in an error, the entire block is
considered to have ended in an error, and any changes made to the
database within the block will be rolled back.

v Not Atomic

The application receives a response from the database manager when all
sub-statements have completed. All sub-statements within a block are
executed regardless of whether or not the preceding sub-statement
completed successfully. The group of statements can only be rolled back if
the unit of work containing the NOT ATOMIC compound SQL is rolled
back.

v Atomic compound SQL is not supported with DB2 Connect
v Compound SQL is supported within stored procedures (also known as

DARI routines)
v Compound SQL is supported through:

– Embedded static SQL (refer to the SQL Reference manual)
– DB2 Call Level Interface (refer to the CLI Guide and Reference manual).

Performance Considerations and Character Conversion

When your application and database are not using the same code page, a
mapping of the data from one code page to the other code page takes place, if
possible. To properly map data between application and database code pages,
some data conversion may be required.

This mapping and data conversion introduce a certain amount of overhead
into the processing time for applications that are running in a code page that
is different from the database code page. Your application’s performance can
be improved if the application and database are using the same code page or
the identity collating sequence.

52 Administration Guide: Performance

Code Page Conversion

Character conversion can occur in the following situations:
v When a client or application accessing a database is running in a code page

that is different from the code page of the database.
Database conversion will occur on the database server machine: From
the application code page to the database code page; and, from the
database code page to the application code page.

v When a client or application importing (or loading) a file runs in a code
page different from the file being imported (or loaded).

v When DB2 Connect is used to access data on a DRDA server.

Character conversion will not occur for:
v File names.
v Data targeted for, or coming from, a column assigned the FOR BIT DATA

attribute, or data used in an SQL operation whose result is FOR BIT or
BLOB data.

v A DB2 product or platform that does not have a supported conversion
function to, or from, EUC or UCS-2 installed. You receive an SQLCODE
-332 (SQLSTATE 57017) when running your application.

For more information about EUC code page support and National Language
Support (NLS) considerations, refer to the Administration Guide, Design and
Implementation.

Depending on the operating system environment DB2 database managers use
a conversion function and conversion tables, or DBCS conversion APIs, when
converting multi-byte code pages.

Note: Character string conversions between multi-byte code pages, like DBCS
with EUC, may result in either an increase or a decrease in the length
of the string.

Code points assigned to different characters in a country’s PC DBCS, EUC,
and UCS-2 code sets may produce different results when sorting the same
characters. If sorting is required across code sets for different countries, you
should refer to the Administration Guide, Design and Implementation.

Extended UNIX Code (EUC) Code Page Support

Use of host variables that use graphic data in C or C++ applications require
special considerations including special precompiler, application performance,
and application design issues.

Chapter 2. Application Considerations 53

If applications are developed requiring EUC code sets, you should see the
Administrative API Reference manual.

Database and client application support for graphic (that is, double byte
character) data must overcome the two bytes wide restriction when dealing
with many characters found in both the Japanese and Traditional Chinese
EUC code pages. Graphic data from these EUC code pages is stored and
manipulated using the UCS-2 code set.

Stored Procedures

In a database application environment, many situations are repetitive; for
example, receiving a fixed set of data, performing the same multiple requests
against a database, or returning a fixed set of data. Stored procedures permit
one call to a remote database to execute a preprogrammed procedure. One
call may represent several accesses to the database.

Processing a single SQL statement for a remote database requires sending two
transmissions: one request and one receive. However, an application can
contain many SQL statements. Without stored procedures, many transmissions
are required for an application to complete its work.

When a database client uses a stored procedure, it requires only two
transmissions for the entire process, thereby reducing the number of network
transmissions. To invoke a stored procedure, the requesting application must
connect to the database containing the procedure before calling it.

Typically these stored procedures are run in processes separate from the
database agents. This separation requires that the stored procedure and agent
processes must communicate through a router. To obtain the best possible
performance for a stored procedure, it is possible to identify a stored
procedure as being “trusted”, or “not fenced”, and as a result, run the
procedure directly in the database agent process. What do we mean by
“trusted” and “not fenced”?
v Not fenced refers to the fact that there is nothing separating the stored

procedure from the database control structures that are used by the
database agent.

v Trusted indicates that as an administrator, you are confident that the stored
procedure will not accidentally or maliciously damage the database control
structures. That is, you trust them to operate in a fashion which will not
jeopardize your database integrity.

Both of these terms mean the same thing, that is, if your stored procedure is
“not fenced”, then your stored procedure is “trusted”. Due to the associated
risk of damaging your database, you should only use not fenced stored

54 Administration Guide: Performance

procedures when you need to obtain the maximum possible performance
benefits. In addition, you should ensure that the procedure is well coded and
has been thoroughly tested before allowing it to run as a not fenced stored
procedure. If a fatal error does occur while running one of these not fenced
stored procedures, the database manager will determine whether the error
occurred in the application or database manager code, and perform the
appropriate recovery.

There are two ways to create a stored procedure as being not fenced:
v Use the CREATE PROCEDURE command and specify the NOT FENCED

clause.
v Put the procedure in a special directory, as defined in the Quick Beginnings

manual for your platform. (This method does not work for Java stored
procedures.)

To run a stored procedure, the end-user running the application that calls the
procedure must have one of the following privileges at run time:
v EXECUTE or CONTROL privilege for the package associated with the

stored procedure
v SYSADM or DBADM authority

For information on writing programs using stored procedures, refer to the
Application Development Guide manual.

Activating a Database

When a database is started, several types of data are cached. For example,
data buffers are cached in the buffer pool, and packages and dynamic SQL
statements are cached in the package cache.

If frequent, short periods occur during which no user is connected to the
database, and these periods are interspersed with other periods during which
a few users are connected to the database, the benefits provided by caching
are lost because the cache is frequently destroyed. To avoid this situation,
consider activating the database by issuing the following command:

DB2 ACTIVATE DATABASE database

This command activates the specified database and starts up all necessary
services, so that the database is available for connection and use by any
application. Databases initialized by ACTIVATE DATABASE can be shut down
by DEACTIVATE DATABASE or by db2stop. For more information about these
commands, refer to the Command Reference manual.

Chapter 2. Application Considerations 55

Parallel Processing of Applications

A type of parallel environment supported by DB2 is one which requires
symmetric multi-processor (SMP) machines. In this environment, more than
one processor shares access to the database. This allows parallel execution of
complex SQL requests which can be divided among the processors.

You can specify the degree of parallelism to implement when compiling your
application by using the CURRENT DEGREE special register, or the DEGREE
bind option. ″Degree″ simply refers to the number of concurrently executing
parts of a query. There is no strict relation between the number of processors
and the value selected for the degree of parallelism. The total number of
processors available for use in your hardware platform need not be requested
while running your applications; you can select more or less than this number.

Each degree of parallelism adds to the system memory and CPU overhead.

As a result of using a number of degrees of parallelism, some configuration
parameters could be modified to use this parallelism more effectively.
Configuration parameters controlling the amount of shared memory and
prefetching should be reviewed and modified as necessary in an environment
with a high degree of parallelism. See “Parallel” on page 417 for a list of
parameters related to parallel operations and partitioned database
environments.

There is a database manager configuration parameter, intra_parallel, that
enables or disables instance parallelism support. The default is ″NO″ for a
uni-processor system and ″YES″ for SMP machines. An upper limit, or
maximum, for the run time degree of parallelism is established in the
database configuration parameter, max_querydegree. There is a database
configuration parameter, dft_degree, to specify the default value for the
CURRENT DEGREE special register and the DEGREE bind option.

For more information on the application use and implications from using
more than one degree of parallelism, refer to the Application Development Guide
manual.

If a query is run with DEGREE = ANY, the database manager chooses the
degree of intra-partition parallelism based on a number of factors including
the number of processors and the characteristics of the query. The actual
degree used at runtime may be lower than the number of processors
depending on these factors.

The degree of parallelism is determined by the SQL optimizer when the
statement is compiled and may be adjusted before query execution depending
on the database activity. The degree of parallelism may be lower than that

56 Administration Guide: Performance

chosen by the SQL optimizer if the system is heavily utilized. This occurs
since intra-partition parallelism aggressively uses system resources to reduce
the elapsed time of the query which may adversely affect the performance of
other database users.

The degree of parallelism chosen by the SQL optimizer can be found by using
the SQL Explain Facility to display the access plan. The degree of parallelism
used at runtime can be found by using the database System Monitor. See
“Chapter 6. SQL Explain Facility” on page 177 and “Appendix E. SQL Explain
Tools” on page 645 for more information on the SQL Explain Facility and
related tools. Refer to the System Monitor Guide and Reference for additional
monitor information.

Note: The ″degree″ of parallelism can be set independent of the hardware
environment. This means that you can use a degree of parallelism
without having an SMP machine. For example, ″I/O-bound″ queries on
a uni-processor machine may benefit from declaring a degree of ″2″ or
more. In this case, the uni-processor may not have to wait for input or
output tasks to complete before working on a new query. Declaring a
degree of ″2″ or more does not directly control I/O parallelism on a
uni-processor machine. Utilities such as LOAD can control I/O
parallelism independent from such a declaration. The keyword ANY can
also be used when changing the dft_degree. The use of ANY means that
the optimizer determines the degree of intra-partition parallelism.

In many cases, database agents are used to coordinate parallel execution. See
“Database Agents” on page 235 for more information, and a list of the various
database manager configuration parameters that affect database agents.

Chapter 2. Application Considerations 57

58 Administration Guide: Performance

Chapter 3. Environmental Considerations

In addition to the factors you should consider when you are designing and
coding your application (described in “Chapter 2. Application Considerations”
on page 13), there are environmental factors that can influence the access plan
chosen for your application:

v Configuration Parameters Affecting Query Optimization
v Nodegroup Impact on Query Optimization
v Table Space Impact on Query Optimization
v Indexing Impact on Query Optimization
v Server Options Affecting Federated Database Queries.

Also see “Chapter 4. System Catalog Statistics” on page 79 for more
information about factors that affect the SQL optimizer.

When tuning your applications and environment, you should rebind your
applications after you make changes in any of the above areas. This ensures
that the best access plan is being used.

Configuration Parameters Affecting Query Optimization

Several configuration parameters affect the access plan chosen by the SQL
compiler. Many of these are appropriate to a single-partition database and
some are only appropriate to a partitioned database. When working with
configuration parameters in a partitioned database, it is recommended that the
values used for each parameter be the same on all partitions.

When working in a federated system, if the majority of your queries access
nicknames then consider the type of query you are sending before changing
your environment. For example, the buffer pool does not cache pages from
data sources; as such, increasing the buffpage parameter value does not
guarantee that the optimizer will consider additional alternatives when
creating an access plan for queries containing nicknames. (Data sources are
DBMSs and data within the federated system.) Also, the optimizer may decide
that local materialization of data source tables is the least cost route or a
necessary step for a sort operation. In that case, increasing the resources
available to DB2 Universal Database may speed performance. For additional
information, see “Server Options Affecting Federated Database Queries” on
page 73 and “Database Shared Memory” on page 305.

© Copyright IBM Corp. 1993, 1999 59

Following is a list of configuration parameters that affect the access plan
chosen by the SQL compiler:

v “Buffer Pool Size (buffpage)” on page 305.
When selecting the access plan, the optimizer considers the I/O cost of
fetching pages from disk to the buffer pool. In its calculations, the optimizer
will estimate the number of I/Os required to satisfy a query. This estimate
includes a prediction of buffer pool usage, since additional physical I/Os
are not required to read rows in a page that is already in the buffer pool.
The optimizer considers the value of the npages column in the
BUFFERPOOLS system catalog tables in estimating whether a page will be
found in the buffer pool.
The I/O costs of reading the tables can have an impact on :

– How two tables are joined, as described in “Outer versus Inner
Determination” on page 145.

– Whether an unclustered index will be used to read the data (see
“Clustered Indexes” on page 134).

You can have more than one buffer pool in a database. You can also have
more than one buffer pool in a partitioned database. The new buffer pool
can be selectively added to each of the partitions in the database or across
all partitions. The npages column in the BUFFERPOOLS and
BUFFERPOOLSNODE system catalog tables are used for estimating in a
partitioned database.

v “Default Degree (dft_degree)” on page 400.
The dft_degree configuration parameter specifies the default value for the
CURRENT DEGREE special register and the DEGREE bind option. A value
of one (1) means no intra-partition parallelism. A value of minus one (-1)
means the optimizer determines the degree of intra-partition parallelism
based on the number of processors and the type of query.

v “Default Query Optimization Class (dft_queryopt)” on page 401.
When compiling SQL queries, you can use the query optimization class to
direct the optimizer to use different degrees of optimization. For more
information on selecting a suitable query optimization class, see “Adjusting
the Optimization Class” on page 36.

v “Average Number of Active Applications (avg_appls)” on page 354.
The avg_appls parameter is used by the SQL optimizer to help estimate how
much of the buffer pool will be available at run-time for the access plan
chosen. Higher values for this parameter can influence the optimizer to
choose an access plan for queries that will be more conservative in its buffer
pool usage. A value of 1 for this parameter will cause the optimizer to treat
the entire buffer pool as being available to the application.

60 Administration Guide: Performance

v “Sort Heap Size (sortheap)” on page 320.
A sort is considered to be “piped” if it does not require a temporary table
to store the final, sorted list of data. That is, the results of the sort can be
read in a single, sequential access. Piped sorts result in better performance
than non-piped sorts and will be used if possible. (See “Influence of Sorting
on the Optimizer” on page 157 for a definition of non-piped sorts compared
to piped sorts.)
When choosing an access plan, the optimizer estimates the cost of the sort
operations, including evaluating whether a sort can be piped, by:

– Estimating the amount of data to be sorted
– Looking at the sortheap parameter to determine if there is enough space

for the sort to be piped.
v “Maximum Storage for Lock List (locklist)” on page 314 and “Maximum

Percent of Lock List Before Escalation (maxlocks)” on page 342.
When the isolation level (see “Concurrency” on page 13) being used is
repeatable read (RR), the SQL optimizer will consider the values of the
locklist and maxlocks parameters to determine whether it is likely that row
level locks will be escalated to a table level lock. If the optimizer predicts
that lock escalation will occur for a table access, then it will choose a table
level lock for the access plan, rather than incurring the overhead of lock
escalation during the execution of the query.

v “CPU Speed (cpuspeed)” on page 430.
The CPU speed is used by the SQL optimizer to estimate the cost of
performing certain operations. The optimizer uses these CPU cost
estimations along with various I/O cost estimations to select the best access
plan for a query.
The CPU speed of a machine can have a significant influence on the access
plan chosen. This configuration parameter is automatically set to an
appropriate value when the database is installed or migrated. You should
only adjust this parameter if you are modelling a production environment
on a test system, or to assess the impact of a hardware change. Using this
parameter to model a different hardware environment allows you to
observe the access plan that will be chosen for that environment.

v “Statement Heap Size (stmtheap)” on page 322.
The size of the statement heap does not influence the optimizer in choosing
different access paths; however, it can affect the amount of optimization that
will be performed for complex SQL statements.
If the stmtheap parameter is not set large enough, you may receive an SQL
warning indicating that there is not enough memory available to process
the statement. For example, SQLCODE +437 (SQLSTATE 01602) can indicate
that the amount of optimization that has been used to compile a statement

Chapter 3. Environmental Considerations 61

is less than the amount that you requested when you specified the query
optimization class. (See “Adjusting the Optimization Class” on page 36 for
more information.)

v “Maximum Query Degree of Parallelism (max_querydegree)” on page 423.
When this parameter has a value of ″ANY″, then the optimizer chooses the
degree of parallelism to be used. If other than ″ANY″ is present, then the
user-specified value is used to determine the degree of parallelism for the
application.

v “Communications Bandwidth (comm_bandwidth)” on page 430.
Communications bandwidth is used by the optimizer to determine access
paths. The optimizer uses the value in this parameter to estimate the cost of
performing certain operations between the database partition servers of a
partitioned database.

For additional information, see “Tuning Configuration Parameters” on
page 290.

Nodegroup Impact on Query Optimization

In partitioned databases, collocation of tables is recognized by the optimizer
and used when determining the best access plan for a query. The assumption
is that tables that are frequently involved in join queries should, when
divided among partitions in a partitioned database, ideally have the rows
from each table being joined located on the same database partition. During
the join operation, the collocation of the data from both tables that are part of
the join would prevent the need to move data from one partition to another.
Placing both tables in the same nodegroup ensures that the data from the
tables is collocated together.

Refer to Administration Guide, Design and Implementation for more information
on collocating tables.

Also, within a partitioned database, the spreading of the data over more
partitions reduces the estimated time (or cost) to execute a query. The number
of tables, the location of the data in those tables, and the type of query
(whether a join is required as noted above) all affect the cost of the query.

Table Space Impact on Query Optimization

Certain characteristics of your table spaces can affect the access plan chosen
by the SQL compiler:
v Container characteristics

62 Administration Guide: Performance

Container characteristics can have a significant impact on the I/O cost
associated when executing a query. When selecting an access plan the SQL
optimizer considers these I/O costs, including any cost differences for
accessing data from different table spaces. Two columns in the
SYSCAT.TABLESPACES system catalog are used by the optimizer to help
estimate the I/O costs of accessing data from a table space:
– OVERHEAD, which provides an estimate (in milliseconds) of the time

required by the container before any data is read into memory. This
overhead activity includes the container’s I/O controller overhead as
well as the disk latency time, which includes the disk seek time.
You may use the following formula to help you estimate the overhead
cost:

OVERHEAD = average seek time in milliseconds
+ (0.5 * rotational latency)

where:
- 0.5 represents an average overhead of one half rotation
- Rotational latency is calculated, in milliseconds for each full rotation,

as follows:
(1 / RPM) * 60 * 1000

where you:
v Divide by rotations per minute to get minutes per rotation
v Multiply by 60 seconds per minute
v Multiply by 1000 milliseconds per second.

As an example, let the rotations per minute for the disk be 7 200. This
would produce, using the rotational latency formula,

(1 / 7200) * 60 * 1000 = 8.328 milliseconds

which can then be used in the calculation of the OVERHEAD estimate
with an assumed average seek time of 11 milliseconds:

OVERHEAD = 11 + (0.5 * 8.328)
= 15.164

giving an estimated OVERHEAD value of about 15 milliseconds.
– TRANSFERRATE, which provides an estimate (in milliseconds) of the

time required to read one page of data into memory.
If each table space container is a single physical disk then you may use
the following formula to help you estimate the transfer cost in
milliseconds per page:

TRANSFERRATE = (1 / spec_rate) * 1000 / 1 024 000 * page_size

Chapter 3. Environmental Considerations 63

where:
- spec_rate represents the disk specification for the transfer rate, in MB

per second
- Divide by spec_rate to get Seconds per MB
- Multiply by 1000 milliseconds per second
- Divide by 1 024 000 bytes per MB
- Multiply by the page size in bytes (for example, 4 096 bytes for a 4 KB

page)

As an example, suppose the specification rate for the disk is 3 MB per
second. This would produce the following calculation

TRANSFERRATE = (1 / 3) * 1000 / 1024000 * 4096
= 1.333248

giving an estimated TRANSFERRATE value of about 1.3 milliseconds per
page.

If the table space containers are not single physical disks but rather are
arrays of disks (such as RAID), then there are additional considerations
when attempting to determine the TRANSFERRATE to use. If the array
is relatively small then you can multiply the spec_rate by the number of
disks, assuming that the bottleneck is at the disk level. However, if the
number of disks in the array making up the container is large, then the
bottleneck may not be at the disk level, but rather be at one of the other
I/O subsystem components such as disk controllers, I/O busses, or the
system bus. In this case, you cannot assume that the I/O throughput
capability is the product of the spec_rate and the number of disks.
Instead, you must measure the actual I/O rate (in MBs) during a
sequential scan. For example, a sequential scan could be select count(*)
from big_table and will be MBs in size. Divide the result by the number
of containers that make up the table space in which big_table resides.
Use the result as a substitute for spec_rate in the formula given above.
For example, a measured sequential I/O rate of 100 MBs while scanning
a table in a four container table space would imply 25 MBs per container,
or a TRANSFERRATE of (1/25) * 1000 / 1024000 * 4096 = 0.16
milliseconds per page.

Each of the containers assigned to a table space may reside on different
physical disks. For best results, all physical disks used for a given table
space should have the same OVERHEAD and TRANSFERRATE
characteristics. If these characteristics are not the same, you should use the
average when setting the values for OVERHEAD and TRANSFERRATE.

64 Administration Guide: Performance

You can obtain media specific values for these columns from the hardware
specifications or through experimentation. These values may be specified on
the CREATE TABLESPACE and ALTER TABLESPACE statements.

Experimentation becomes especially important in the environment mention
above where you may have a disk array as a container. You should create a
simple query that moves data and use it in conjunction with a
platform-specific measuring utility. You can then re-run the query with
different container configurations within your table space. You can use the
CREATE and ALTER TABLESPACE statements to change how data is
transferred in your environment.

The I/O cost information through these two vaules could influence the
optimizer in a number of ways, including whether or not to use an index to
access the data, and which table to select for the inner and outer tables in a
join.

v Prefetching
When considering the I/O cost of accessing data from a table space, the
optimizer will also consider the potential impact that prefetching data and
index pages from disk can have on the query performance. Prefetching data
and index pages can reduce the overhead and waiting time associated with
reading the data into the buffer pool. For more information, see
“Prefetching Data into the Buffer Pool” on page 219.
The optimizer uses the information from the PREFETCHSIZE and
EXTENTSIZE columns in SYSCAT.TABLESPACES to estimate the amount of
prefetching that will occur for a table space.

– EXTENTSIZE can only be set when creating a table space (for example
using the CREATE TABLESPACE statement). The default extent size is 32
pages (of 4 KB each) and is usually sufficient.

– PREFETCHSIZE can be set when creating a table space and also using
the ALTER TABLESPACE statement. The default prefetch size is
determined by the value of the DFT_PREFETCH_SZ database configuration
parameter which varies depending on the operating system. You should
review the recommendations for sizing this parameter in the “Default
Prefetch Size (dft_prefetch_sz)” on page 349 description and make
changes as needed to improve the movement of data.

The following shows an example of the syntax to change the characteristics of
the RESOURCE table space:

ALTER TABLESPACE RESOURCE
PREFETCHSIZE 64
OVERHEAD 19.3
TRANSFERRATE 0.9

Chapter 3. Environmental Considerations 65

After making any changes to your table spaces you should consider rebinding
your applications and use the RUNSTATS utility to collect the latest statistics
about the indexes to ensure the best access plans are being used.

Indexing Impact on Query Optimization

It is important to remember that you do not decide when an index should be
used; the database manager makes the decision based on the available table
and index information. However, you play an important role in the process by
creating the necessary indexes that can improve performance. It is also
important for you to collect statistics about the indexes (using the RUNSTATS
utility) after you create an index, or change the prefetch size (as mentioned
above), and on an ongoing basis to keep the statistics up to date. This means
you must understand the kinds of indexes that you can create and the ways
to create them.

Indexing versus No Indexing

For each table referenced in a database query, if no index exists on the table,
then a table scan must be performed on that table. The larger the table, the
longer a table scan takes. A table scan occurs when the database manager
sequentially accesses every row of a table. This can be compared to an index
scan that occurs when the database manager accesses data using an index.
(See “Index Scan Concepts” on page 127.)

An index will be selected for use if the optimizer estimates that an index scan
will be faster than a table scan. Index files generally are smaller and require
less time to read than an entire table, particularly as tables grow larger. In
addition, the entire index may not need to be scanned. The predicates applied
to the index reduce the number of rows to be read from the data pages.

Each index entry consists of a search-key value and a pointer to the row
containing that value. The values can be searched in reverse direction only if
the ALLOW REVERSE SCANS parameter was specified in the CREATE
INDEX statement. It is therefore possible to bracket the search, given the right
predicate. An index can also be used to obtain rows in an ordered sequence,
eliminating the need for the database manager to sort the rows after they are
read from the table. Specifying ALLOW REVERSE SCANS enables the index
to be used to directly obtain rows in sequence, in forward and reverse order.
Refer to the SQL Reference for additional details.

A unique index may contain include columns in addition to the search-key
value and row pointer.

66 Administration Guide: Performance

Note: You cannot control whether an index is used by the database manager.
For example, the result of a query cannot be guaranteed to be produced
in an ordered sequence simply by the existence of an index on the table
being queried. The database manager may use this index during the
processing of the query but is not required to. Only the existence of an
ORDER BY clause can “guarantee” the order of a result set.

Indexes can reduce access time significantly; however, indexes can also have
adverse effects on performance. Before creating indexes, consider the effects of
multiple indexes on disk space and processing time:

v Each index takes up a certain amount of storage or disk space. The exact
amount is dependent on the size of the table and the size and number of
columns included in the index.

v Each INSERT or DELETE operation performed on a table requires
additional updating of each index on that table. This is also true for each
UPDATE operation that changes an index key.

v The LOAD utility rebuilds or appends to any existing indexes.
v The indexfreespace MODIFIED BY parameter can be specified on the

LOAD command to override the index PCTFREE used when the index was
created.

v Each index potentially adds an alternative access path for a query, which
the optimizer will consider, and therefore increases the query compilation
time.

Indexes should be carefully chosen to address the needs of the application
program.

To determine whether an index is used in a specific package you may use the
SQL Explain facility, described in “Chapter 6. SQL Explain Facility” on
page 177.

Using the Index Advisor

The DB2 Index Advisor is a tool to assist you in choosing an optimal set of
indices for your table data. There are different ways to get to this tool:
v You can access this tool through the Control Center by requesting the Index

SmartGuide.
v The tool can be accessed from the command line and is called db2advis.

More information on the DB2 Index Advisor can be found in “SQL Advise
Facility” on page 196.

Chapter 3. Environmental Considerations 67

Guidelines for Indexing

Which indexes should be created depends on the data and its intended uses.
The following guidelines can help you determine which indexes would be
most useful:
v Define primary keys and unique keys, wherever they apply, by using the

CREATE UNIQUE INDEX statement. (Refer to the SQL Reference for more
information.) Unique indexes can help the optimizer avoid performing
certain operations such as sorts.

v Define unique indexes with include columns to improve the performance of
data retrieval. Columns are good candidates for INCLUDE columns of
unique indexes if they:
– Are accessed frequently and therefore would benefit from index-only

access
– Are not required to limit the range of index scans
– Do not affect the ordering or uniqueness of the index key.

Refer to the chapter “Creating an Index or Index Specification” in
Administration Guide, Design and Implementation for more information on
INCLUDE columns.

v Use indexes to optimize frequent queries to tables with more than a few
data pages, as can be determined by the NPAGES column in the
SYSCAT.TABLES catalog view:
– Create an index on any column you will use when joining tables.
– Create an index on any column from which you will be searching for

particular values on a regular basis.
v Decide between ascending and descending ordering of keys based on which

order will be primarily used or requested. The values can be searched in
reverse direction only if the ALLOW REVERSE SCANS parameter was
specified in the CREATE INDEX statement. Although indexes can be
scanned in both forward and reverse directions, a forward scan of the index
(that is, in the order specified at the time the index is created) performs
slightly better than a reverse scan of the index. Refer to the SQL Reference
for additional details.

v Avoid creating indexes that are partial keys of other index keys on the
columns. For example, if there is an index on columns a, b, and c, then a
second index on columns a and b is not generally useful.

v Use indexes on foreign keys to improve performance of delete and update
operations on the parent table.

v Use indexes on columns that will frequently be used to sort the data.

68 Administration Guide: Performance

v In creating a multiple-column index, if you have more than one choice for
the first key column, choose the one most often specified with the “=”
predicate or specify the columns with the greatest number of distinct values
first.

v Creating indexes, arbitrarily on all columns, not only consumes much disk
space, but also causes prepare times to be large. This will be particularly
true for complex queries, against which an optimization class with dynamic
programming join enumeration is used. (See “Adjusting the Optimization
Class” on page 36).

v The following provides a rule-of-thumb for the typical number of indexes
you will define for a table. This number is based on the primary use of
your database:
– For online transaction processing (OLTP) environments, you should only

have one or two indexes
– For query (read-only) environments, you could have more than five

indexes
– For mixed query/OLTP environments, you could have between two and

five indexes.
v Consider defining a clustering index to help keep newly inserted rows

clustered according to that index. A clustering index should significantly
reduce the need for reorganizing the table.

Note: When a clustering index is defined, the table should be loaded with a
free space reserved on each data page to allow inserts to take place
on those pages. (Free space is reserved by using the PCTFREE
keyword on the ALTER TABLE statement; or, the pagefreespace
MODIFIED BY clause of the LOAD command.)

v Consider using the PCTFREE keyword when creating indexes. PCTFREE
reserves space on index pages for future updates to the index. This may
reduce the frequency of page splits and increase performance.

v Consider using the MINPCTUSED option when creating indexes.
MINPCTUSED specifies the threshold for the minimum amount of used
space on an index leaf page and enables online index reorganization. This
could reduce the need for offline reorganization of the data and the index.

The following are typical circumstances in which creating an index can
improve performance:
v An index can be created on columns that are used in WHERE clauses of the

queries and transactions that are most frequently processed.
The WHERE clause:

WHERE WORKDEPT='A01' OR WORKDEPT='E21'

Chapter 3. Environmental Considerations 69

will generally benefit from an index on WORKDEPT, unless those values occur
frequently.

v An index can be created on a column or columns to order the rows in
collating sequence. Ordering is required not only in the ORDER BY clause,
but also by other features, such as the DISTINCT and GROUP BY clauses.
The following example uses the DISTINCT clause:

SELECT DISTINCT WORKDEPT
FROM EMPLOYEE

The database manager can use an index defined for ascending or
descending order on WORKDEPT to eliminate duplicate values. This same
index could also be used to group values in the following example with a
GROUP BY clause:

SELECT WORKDEPT, AVERAGE(SALARY)
FROM EMPLOYEE

GROUP BY WORKDEPT

v An index can be created to name each column that is referenced in a
statement. When an index is specified in this way, the resulting index-only
access means data can be retrieved more efficiently by avoiding table access.
For example, assume the following SQL statement is issued:

SELECT LASTNAME
FROM EMPLOYEE
WHERE WORKDEPT IN ('A00','D11','D21')

If an index is defined for the WORKDEPT and LASTNAME columns of the
EMPLOYEE table, the statement might be processed more efficiently by
scanning the index than by scanning the entire table. Note that since the
predicate is on WORKDEPT, this column should be the first column of the
index.

v Include columns on an index is another way to improve the use of indexes
on tables. Using the previous example, you could define unique index as:

CREATE UNIQUE INDEX x ON employee (workdept) INCLUDE (lastname)

Specifying lastname as an include column rather than as part of the index
key means that lastname is stored only on the leaf pages of the index.

Performance Tips for Administering Indexes

The following can help you understand how performance can be impacted by
properly using and managing indexes:
1. Index Creation

When creating indexes on large tables, and having an SMP machine,
consider setting intra_parallel to YES (1) or SYSTEM (-1) to take advantage
of parallel performance improvements.

70 Administration Guide: Performance

Multiple processors can be used to scan and sort data. The only time when
it is not advantageous to have multiple processors during index creation
occurs when the indexsort database configuration parameter is NO. (The
default for the parameter is YES). The parameter controls whether sorting
of index keys is done during index creation.

2. Index Table Space

Indexes may be stored in a different table space from that used to store
other table data. This can allow for more efficient use of disk storage by
reducing the movement of read/write heads. You can also create your
index table spaces so they will be stored on faster physical devices.
A table space may also be assigned a separate buffer pool which may
protect the index pages from being pushed out of the buffer by the
presence of lots of data pages.
When indexes are not placed in separate table spaces, both data and index
pages use the same extent size and prefetch quantity. If you use a different
table space for indexes, you have the option of selecting different values
for all the characteristics of a table space. Since indexes are typically
smaller than tables and are spread over fewer containers, it is common to
find smaller extent sizes such as 8 and 16. For more information see,
“Index Page Prefetch” on page 136. Use of faster devices for a table space
will be considered by the SQL optimizer, as described in “Table Space
Impact on Query Optimization” on page 62. Refer to Administration Guide,
Design and Implementation for more information about table spaces.

3. Degree of Clustering

If your SQL statement requires ordering (for example, ORDER BY, GROUP
BY, DISTINCT) and there is an appropriate index to satisfy the ordering,
there may be times that the database manager does not choose the index.
This could happen when:
v Index clustering is poor (see the CLUSTERRATIO and

CLUSTERFACTOR columns of SYSCAT.INDEXES)
v The table is small enough that it is cheaper to scan the table and sort

the answer set in memory
v There are competing indexes for accessing the table.

It is recommended that you perform a REORG, or a sort and LOAD, after
creating a clustering index. In general a table can only be clustered on one
index. Your tables and indexes should be built in the sequence of the
clustering index for that table. A clustering index attempts to maintain a
particular order of data, improving the CLUSTERRATIO or
CLUSTERFACTOR statistics collected by the RUNSTATS utility.

You should also consider using PCTFREE when altering a table before
loading or reorganizing that table. In order for clustering to be maintained,

Chapter 3. Environmental Considerations 71

each table needs to have space available on each data page for additional
inserts. When the space is available, additional inserts are able to be
clustered with the existing data. As a result, you will want to consider
loading your data into the table after leaving a percentage of free space on
each page for the clustering of additional data. You can do this by first
creating the table, then altering the table with the PCTFREE parameter. In
a similar way, before reorganizing your data, you should consider altering
the table with the PCTFREE parameter. Otherwise, the reorganization will
eliminate all extra space if PCTFREE has not been set.

Clustering is not currently maintained during updates. That is, if one
updates a record such that its key value in the clustering index is changed,
the record will not necessarily be moved to a new page to maintain the
clustering order. To maintain clustering, instead of using UPDATE, use
DELETE and then INSERT.

4. RUNSTATS Utility

After creating a new index, you should use the RUNSTATS utility to
collect index statistics. These statistics allow the optimizer to determine
whether using the index can improve access performance. See “Collecting
Statistics Using the RUNSTATS Utility” on page 81 for more information
on this topic.

5. Reorganizing an Index

To get the best performance you can from your indexes, you should
consider reorganizing your indexes periodically. Updates to your tables
may cause index page prefetch to become less effective. To keep the
effectiveness of index page prefetch you must reorganize the index.
You can reorganize the index by either dropping and re-creating the index,
or by using the REORG utility. For more information, see “Reorganizing
Table Data” on page 229.
To prevent having to re-organize often, you can specify PCTFREE when
creating an index. Specifying the PCTFREE parameter during index
creation results in free space being left on each index leaf page as it is
created. As a result, during future activity involving the index, records can
be inserted into the index with less likelihood of causing index page splits.
Index page splits cause index pages to not be contiguous nor sequential.
This results in decreased ability to perform index page prefetching.
Choosing an appropriate PCTFREE for an index may eliminate or reduce
the frequency when you have to reorganize indexes.

Note: The PCTFREE specified when you create the index is used when the
index is re-created during reorganization.

72 Administration Guide: Performance

Dropping and re-creating the index gets a new set of pages that are
roughly contiguous and sequential. This improves index page prefetch
when it occurs.

Although more costly to accomplish, the REORG utility also ensures
clustering of the data pages. This clustering has greater benefit for index
scans accessing a significant number of data pages.

If you work in a symmetric multi-processor (SMP) system environment,
the REORG utility will use multiple processors when intra_parallel is YES
or ANY.

6. Use EXPLAIN

Periodically, run EXPLAIN on your most frequently used queries and
check that each of your indexes is used at least once. If an index is not
used in any query, consider dropping that index.
Also, use EXPLAIN to see if table scans on large tables are processed as
the inner of nested loop joins. This would indicate that an index on the
join predicate column is either missing or thought to be ineffective at
applying the join predicate. Or, perhaps the join predicate is not present.

7. Volatile Tables

A volatile table is defined as a table whose contents can vary from empty
to very large at run time. Generating an access plan that uses a volatile
table can result in the optimizer favoring the use of a table scan rather
than an index scan to access the volatile table.
Declaring a table “volatile” using the ALTER TABLE...VOLATILE
statement can allow the optimizer to use an index scan on the volatile
table. Refer to Administration Guide, Design and Implementation or the SQL
Reference for additional information on this topic.

Server Options Affecting Federated Database Queries

A federated system is composed of a DB2 DBMS (the federated database) and
one or more data sources. Data sources are identified to the federated
database when you issue CREATE SERVER statements. When you issue these
statements, you can also provide server options that refine and control aspects
of federated system operations involving DB2 and the specified data source.
Server options can be changed later using ALTER SERVER statements. Refer
to the SQL Reference for more information about the CREATE SERVER and
ALTER SERVER statements.

Note: You must install the distributed join installation option and set the
database manager parameter FEDERATED to YES before you can create
servers and specify server options.

Chapter 3. Environmental Considerations 73

Server options and their values facilitate query pushdown analysis, global
optimization and other aspects of federated database operations. For example:
in the CREATE SERVER statement, you can specify certain performance
statistics as server option values. That is, you can set the cpu_ratio option to a
value that indicates the relative speeds of the data source’s and federated
server’s CPUs. And you can set the io_ratio option to a value that indicates the
relative rates of the data source’s and federated server’s I/O devices. When
you run CREATE SERVER, this data is added to the catalog view
SYSCAT.SERVEROPTIONS, and the optimizer uses it in developing its access
plan for the data source. If a statistic changes (as might happen, for instance,
if the data source CPU is upgraded), you can use the ALTER SERVER
statement to update SYSCAT.SERVEROPTIONS with this change. The
optimizer then uses your update in developing its next access plan for the
data source.

74 Administration Guide: Performance

Table 8. Server Options and Their Settings

Option Valid Settings Default
Setting

collating_sequence Specifies whether the data source uses the same default
collating sequence as the federated database, based on the
code set and the country information. If a data source has a
collating sequence that differs from DB2’s collating sequence,
most operations depending on DB2’s collating sequence
cannot be remotely evaluated at a data source. An example is
executing MAX column functions against a nickname
character column at a data source with a different collating
sequence. Because results might differ if the MAX function is
evaluated at the remote data source, DB2 will perform the
aggregate operation and the MAX function locally.

If your query contains an equal sign, it is possible to
push-down that portion of the query even if the collating
sequences are different (set to ’N’). For example, the predicate
C1 = ’A’ could be pushed-down to a data source. Of course,
such queries cannot be pushed-down when the collating
sequence at the data source is case-insensitive. When a data
source is case-insensitive, the results from C1= ’A’ and C1 =
’a’ are the same, which is not acceptable in a case-sensitive
environment (DB2).

Administrators can create federated databases with a
particular collating sequence that matches the data source
collating sequence. This approach may speed performance if
all data sources use the same collating sequence or if most or
all column functions are directed against data sources that use
the same collating sequence.

’Y’ Data source’s collating sequence is the same as
federated database’s.

’N’ Data source’s collating sequence is not the same as
federated database’s.

’I’ Data source’s collating sequence is different from
federated database’s and is case-insensitive (for
example, ’TOLLESON’ and ’TolLESon’ are considered
equal).

’N’

comm_rate Specifies the communication rate between a federated server
and its associated data sources. Expressed in megabytes per
second.

’2.0’

Chapter 3. Environmental Considerations 75

Table 8. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

connectstring Specifies initialization properties needed to connect to an OLE
DB provider. For the complete syntax and semantics of the
connection string, see the ″Data Link API of the OLE DB Core
Components″ in the Microsoft OLE DB 2.0 Programmer’s
Reference and Data Access SDK, Microsoft Press, 1998.

None

cpu_ratio Indicates how much faster or slower a data source’s CPU runs
than the federated server’s CPU.

’1.0’

dbname Name of the data source database that you want the federated
server to access. Required for DB2 family data sources; does
not apply to Oracle** data sources.

None.

fold_id (See notes 1 and 4
at the end of this table.)

Applies to user IDs that the federated server sends to data
sources for authentication. Valid values are:

’U’ The federated server folds the user ID to uppercase
before sending it to the data source. This is a logical
choice for DB2 Family and Oracle** data sources (See
note 2 at end of this table.)

’N’ The federated server does nothing to the user ID
before sending it to the data source. (See note 2 at
end of this table.)

’L’ The federated server folds the user ID to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the user ID to the data source in uppercase. If the user
ID fails, the server tries sending it in lowercase.

None.

fold_pw (See notes 1, 3
and 4 at the end of this
table.)

Applies to passwords that the federated server sends to data
sources for authentication. Valid values are:

’U’ The federated server folds the password to uppercase
before sending it to the data source. This is a logical
choice for DB2 Family and Oracle** data sources.

’N’ The federated server does nothing to the password
before sending it to the data source.

’L’ The federated server folds the password to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the password to the data source in uppercase. If the
password fails, the server tries sending it in lowercase.

None.

io_ratio Denotes how much faster or slower a data source’s I/O
system runs than the federated server’s I/O system.

’1.0’

76 Administration Guide: Performance

Table 8. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

node Name by which a data source is defined as an instance to its
RDBMS. Required for all data sources.

For a DB2 family data source, this name is the node specified
in the federated database’s DB2 node directory. To view this
directory, issue the db2 list node directory command.

For an Oracle** data source, this name is the server name
specified in the Oracle** tnsnames.ora file. To access this name
on the Windows NT platform, specify the View Configuration
Information option of the Oracle** SQL Net Easy
Configuration tool.

None.

password Specifies whether passwords are sent to a data source.

’Y’ Passwords are always sent to the data source and
validated. This is the default value.

’N’ Passwords are not sent to the data source (regardless
of any user mappings) and not validated.

’ENCRYPTION’
Passwords are always sent to the data source in
encrypted form and validated. Valid only for DB2
Family data sources that support encrypted
passwords.

’Y’

plan_hints Specifies whether plan hints are to be enabled. Plan hints are
statement fragments that provide extra information for data
source optimizers. This information can, for certain query
types, improve query performance. The plan hints can help
the data source optimizer decide whether to use an index,
which index to use, or which table join sequence to use.

’Y’ Plan hints are to be enabled at the data source if the
data source supports plan hints.

’N’ Plan hints are not to be enabled at the data source.

’N’

pushdown
’Y’ DB2 will consider letting the data source evaluate

operations.

’N’ DB2 will retrieve only columns from the remote data
source and will not let the data source evaluate other
operations, such as joins.

’Y’

Chapter 3. Environmental Considerations 77

Table 8. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

varchar_no_trailing_blanks Specifies if this data source uses non-blank padded varchar
comparison semantics. For varying-length character strings
that contain no trailing blanks, some DBMS’ s
non-blank-padded comparison semantics return the same
results as DB2’s comparison semantics. If you are certain that
all VARCHAR table/view columns at a data source contain no
trailing blanks, consider setting this server option to ’Y’ for a
data source. This option is often used with Oracle** data
sources. Ensure that you consider all objects that can
potentially have nicknames (including views).

’Y’ This data source has non-blank-padded comparison
semantics similar to DB2’s.

’N’ This data source does not have the same
non-blank-padded comparison semantics as DB2’s.

’N’

Notes on Table 8 on page 75:

1. This field is applied regardless of the value specified for authentication.
2. Because DB2 stores user IDs in uppercase, the values ‘N’ and ‘U’ are

logically equivalent to each other.
3. The setting for fold_pw has no effect when the setting for password is ‘N’.

Because no password is sent, case cannot be a factor.
4. Avoid null settings for either of these options. A null setting may seem

attractive because DB2 will make multiple attempts to resolve user IDs
and passwords; however, performance might suffer (it is possible that DB2
will send a user ID and password four times before successfully passing
data source authentication).

78 Administration Guide: Performance

Chapter 4. System Catalog Statistics

When optimizing SQL queries, the decisions made by the SQL compiler are
heavily influenced by the optimizer’s model of the database contents. This
data model is used by the optimizer to estimate the costs of alternative access
paths that could be used to resolve a particular query.

A key element in the data model is the set of statistics gathered about the data
contained in the database and stored in the system catalog tables. This
includes statistics for tables, nicknames, indexes, columns, and user-defined
functions (UDFs). A change in the data statistics can result in a change in the
choice of access plan selected as the most efficient method of accessing the
desired data.

Examples of the statistics available which help define the data model to the
optimizer include:
v The number of pages in a table and the number of pages that are not

empty
v The degree to which rows have been moved from their original page to

other (overflow) pages.
v The number of rows in a table
v The number of distinct values in a column
v The degree of clustering of an index. That is, the extent to which the

physical sequence of rows in a table follows an index.
v The number of index levels and the number of leaf pages in each index
v The number of occurrences of frequently used column values (see

“Collecting and Using Distribution Statistics” on page 88)

v The distribution of column values across the range of values present in the
column (see “Collecting and Using Distribution Statistics” on page 88)

v Cost estimates for user-defined functions (UDFs).

Statistics for objects are updated in the system catalog tables only when
explicitly requested. Some or all of the statistics may be updated by:
v Using the RUNSTATS (run statistics) utility (see “Collecting Statistics Using

the RUNSTATS Utility” on page 81)

v Using LOAD, with statistics collection options specified
v Coding SQL UPDATE statements that operate against a set of predefined

catalog views (see “User Update-Capable Catalog Statistics” on page 100).
Note that statistics for user-defined functions must be updated using this

© Copyright IBM Corp. 1993, 1999 79

technique (see “Updating Statistics for User-Defined Functions” on page 106
). Except for UDFs, the catalogs should only be updated manually for
modeling a production environment on a test system or for “what-if
analysis”. Statistics should not be updated on production systems.

Within a federated database system, the only way to gather new statistics for
nicknames from the data source is to drop the nickname, run the equivalent of
RUNSTATS at the data source, and then re-create the nickname. Whenever a
nickname is created, statistics on the underlying table are gathered from the
data source catalog.

You must drop and then re-create nicknames if the data definition information
in the underlying table changes. For example, if a column is added to a table
definition.

In addition you should consider re-creating the nickname if query
performance degrades. Another approach is to manually update statistics in
the SYSSTAT.TABLES.

Use caution when creating a nickname for a view. The statistical information,
such as the number of rows this nickname will return, might not reflect the
real cost to evaluate this view. If the view is defined on a single base table
with no column functions applied on the SELECT list, the statistical
information available to the optimizer should be accurate. If the view is
complex, consider creating new views over nicknames for the view base tables
at the DB2 Universal Database server in the federated database system so the
optimizer can generate an efficient plan to access the data.

Additional Information:

The SYSCAT and SYSSTAT catalogs contain information on the statistics
gathered. See “Appendix C. Catalog Views” on page 509:

v For information about all the catalog views and the columns they contain.
v For information about all the update-capable catalog views and the

columns they contain. You can also refer to this section if you are only
interested in the statistical columns of the catalog table.

v For information about table statistics.
v For information about column statistics.
v For information about column distribution statistics.
v For information about index statistics.
v For information about user-defined function statistics.

80 Administration Guide: Performance

Collecting Statistics Using the RUNSTATS Utility

The RUNSTATS utility updates statistics in the system catalog tables to help
with the query optimization process. Without these statistics, the database
manager could make a decision that would adversely affect the performance
of an SQL statement. The RUNSTATS utility allows you to collect statistics on
the data contained in the tables, indexes, or both tables and indexes.

Use the RUNSTATS utility to collect statistics based on both the table and the
index data to provide accurate information to the access plan selection process
in the following situations:
v When a table has been loaded with data, and the appropriate indexes have

been created.
v When a table has been reorganized with the REORG utility.
v When there have been extensive updates, deletions, and insertions that

affect a table and its indexes. (“Extensive” in this case may mean that 10 to
20 percent of the table and index data has been affected.)

v Before binding application programs whose performance is critical
v When comparison with previous statistics is desired. Running statistics on a

periodic basis permits the discovery of performance problems at an early
stage, as described below.

v When the prefetch quantity is changed.
v When you have used the REDISTRIBUTE NODEGROUP utility.

When you are working in a partitioned database, collect the statistics related
to a table and its indexes by executing the RUNSTATS operation at a single
node. (The node at which the utility executes is determined by whether the
node at which you issue the command contains table data or not. See “The
Database Partition Where RUNSTATS is Executed” on page 82 for details.)
Because the statistics stored in the catalogs are supposed to represent
table-level information, the node-level statistics collected by the database
manager are multiplied where appropriate by the number of nodes across
which the table is partitioned. This provides an approximation of the actual
statistics that would be collected by executing RUNSTATS at every node and
aggregating these statistics.

Note: The DB2 query optimizer assumes that attribute values (data) are
placed equally and evenly across the database partitions of the system.
If the placement of data is not equal, you should run this command on
a database partition that you think has a representative table
distribution.

Chapter 4. System Catalog Statistics 81

The Database Partition Where RUNSTATS is Executed

When you invoke RUNSTATS on a table, you must be connected to the
database in which the table is stored, but the database partition from which
you issue the command does not have to contain a partition for this table:
v If you issue RUNSTATS from a database partition that contains a partition

for the table, the utility executes at this database partition.
v If you issue RUNSTATS from a database partition that does not contain a

table partition, the request is sent to the first database partition in the
nodegroup that holds a partition for the table. The utility then executes at
this database partition.

Analyzing Statistics

Analyzing the statistics can indicate when reorganization is necessary. Some of
these indications are:
v Clustering of indexes

If cluster ratio statistics are collected, their value will be in the range from 0
to 100. If cluster factor statistics are collected, their value will be a number
between 0 and 1. Only one of these two clustering statistics will be
recorded in the SYSCAT.INDEXES catalog. In general, only one of the
indexes in a table can have a high degree of clustering. A value of -1 is
used to indicate that no statistics are available.
If you wish to compare ratio values, multiply the cluster factor by 100 to
obtain a percentage value for the amount of clustering.
Index scans that are not index-only accesses might perform better with
higher cluster ratios. A low cluster ratio leads to more I/O for this type of
scan, since after the first access of each data page, it is less likely that the
page is still in the buffer pool the next time it is accessed. Increasing the
buffer size can improve the performance of an unclustered index. (See
“Understanding List Prefetching” on page 222 for information about how
the database manager can improve index scan performance for indexes
with low cluster ratios and see “Clustered Indexes” on page 134 for
information about how the optimizer uses index statistics.)
If the table data was initially clustered with respect to a certain index, and
the above clustering information indicates that the data is now poorly
clustered for that same index, you may wish to reorganize the table to
re-cluster the data with respect to that index.

v Overflow of rows
The overflow number indicates the number of rows that do not fit on their
original pages. This can occur when VARCHAR columns are updated with
longer values. In such cases, a pointer is kept at the row’s original location.
This can hurt performance, because the database manager must follow the

82 Administration Guide: Performance

pointer to find the row’s contents, which increases the processing time and
may also increase the number of I/Os.
As the number of overflow rows grows higher, the potential benefit of
reorganizing your table data also increases. Reorganizing the table data will
eliminate the overflowing of rows.

v Comparison of file pages
The number of pages with rows can be compared with the total number of
pages that a table contains. Empty pages will be read for a table scan.
Empty pages can occur when entire ranges of rows are deleted.
As the number of empty pages grows higher, so does the need for a table
reorganization. Reorganizing the table can compress the amount of space
used by a table, by reclaiming these empty pages. In addition to more
efficient use of disk space, reclaiming unused pages can also improve the
performance of table scan, since fewer pages will be read into the buffer
pool.

v Number of leaf pages
The number of leaf pages predicts how many index page I/Os are needed
for a complete scan of an index.
Random update activity can cause page splits to occur that increase the size
of the index beyond the minimum amount of space required. When indexes
are rebuilt during the reorganization of a table, it is possible to build each
index with the minimum amount of space possible. For more information
on the minimum space requirements for an index, see “Indexing Impact on
Query Optimization” on page 66 or refer to “Creating an Index or an Index
Specification” section in the Administration Guide, Design and Implementation.

Note: A default of ten percent free space is left on each index page when
the indexes are rebuilt. You can increase the free space amount by
using the PCTFREE parameter when first creating the index. Then,
whenever you reorganize the index, the PCTFREE value is used.
Having a free space larger than ten percent may be important if you
wish to reduce the number of times you need to reorganize the
index. The free space is used to accommodate additional index
inserts.

RUNSTATS can also help you determine how performance is related to
changes in your database. The statistics show the data distribution within a
table. When used routinely, RUNSTATS provides data about tables and
indexes over a period of time, thereby allowing performance trends to be
identified for your data model as it evolves over time.

Ideally, you should rebind application programs after running statistics,
because the query optimizer may choose a different access plan given the new
statistics.

Chapter 4. System Catalog Statistics 83

If you do not have enough time available to collect all of the statistics at one
time, you may choose to periodically run RUNSTATS to update only a portion
of the statistics that could be gathered. If inconsistencies are found as a result
of activity on the table between the periods where you run RUNSTATS with a
selective partial update, then a warning message (SQL0437W, reason code 6)
is issued. For example, you first use RUNSTATS to gather table distribution
statistics. Subsequently, you use RUNSTATS to gather index statistics. If
inconsistencies are detected as a result of activity on the table, then the table
distribution statistics are dropped and the warning message is issued. It is
recommended that you run RUNSTATS to gather table distribution statistics
when this happens.

You should periodically use RUNSTATS to gather both table and index
statistics at once, to ensure that the index statistics are synchronized with the
table statistics. Index statistics retain most of the table and column statistics
collected from the last run of RUNSTATS. If the table has been modified
extensively since the last time its table statistics were gathered, gathering only
the index statistics for that table will leave the two sets of statistics out of
synchronization.

You may wish to collect statistics based only on index data in the following
situations:

v A new index has been created since the utility was performed and you do
not want to re-collect statistics on the table data.

v There have been a lot of changes to the data that affect the first column of
an index.

The RUNSTATS utility allows you to collect varying levels of statistics. For
tables, you can collect basic level statistics or you can also collect distribution
statistics for the column values within a table (see “Collecting and Using
Distribution Statistics” on page 88). For indexes, you can collect basic level
statistics or you can also collect detailed statistics which can help the
optimizer better estimate the I/O cost of an index scan. (See “Clustered
Indexes” on page 134 for information about these “detailed” statistics).

Note: Statistics are not collected for LONG or large object (LOB) columns. For
row types, the table level statistics NPAGES, FPAGES, and OVERFLOW
are not collected for a sub-table.

The following tables show the catalog statistics that are updated by the
RUNSTATS utility:

84 Administration Guide: Performance

Table 9. Table Statistics (SYSCAT.TABLES and SYSSTAT.TABLES)

Statistic Description RUNSTATS Option

Table Indexes

FPAGES number of pages being
used by a table

Yes Yes

NPAGES number of pages
containing rows

Yes Yes

OVERFLOW number of rows that
overflow

Yes No

CARD number of rows in table
(cardinality)

Yes Yes (Note 2)

Note:

1. For a partitioned database, the values for each statistic are estimated from the value of the count at
the database partition multiplied by the number of database partitions.

2. If the table has no indices defined and you request statistics for indexes, no new CARD statistics are
updated. The previous CARD statistics are retained.

Table 10. Column Statistics (SYSCAT.COLUMNS and SYSSTAT.COLUMNS)

Statistic Description RUNSTATS Option

Table Indexes

COLCARD column cardinality Yes (Note 1) Yes (Note 2)

AVGCOLLEN average length of
column

Yes Yes (Note 2)

HIGH2KEY second highest value in
column

Yes Yes (Note 2)

LOW2KEY second lowest value in
column

Yes Yes (Note 2)

NUMNULLS the number of NULLs in
a column

Yes Yes (Note 2)

Note:

1. COLCARD is estimated for all columns in the table. In a partitioned database, if the column is the
single-column partitioning key for the table, the value of the count is estimated as the count at the
database partition multiplied by the number of database partitions.

2. Column statistics are gathered for the first column in the index key.

Table 11. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES)

Statistic Description RUNSTATS Option

Table Indexes

NLEAF number of index leaf
pages

No Yes (Note 3)

Chapter 4. System Catalog Statistics 85

Table 11. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

NLEVELS number of index levels No Yes

CLUSTERRATIO degree of clustering of
table data

No Yes (Note 2)

CLUSTERFACTOR finer degree of
clustering

No Detailed (Notes 1,2)

DENSITY Ratio (percentage) of
SEQUENTIAL_PAGES
to number of pages in
the range of pages
occupied by the index
(Note 4)

No Yes

FIRSTKEYCARD number of distinct
values in first column of
the index

No Yes (Note 3)

FIRST2KEYCARD number of distinct
values in first two
columns of the index

No Yes (Note 3)

FIRST3KEYCARD number of distinct
values in first three
columns of the index

No Yes (Note 3)

FIRST4KEYCARD number of distinct
values in first four
columns of the index

No Yes (Note 3)

FULLKEYCARD number of distinct
values in all columns of
the index

No Yes (Note 3)

PAGE_FETCH_PAIRS page fetch estimates for
different buffer sizes

No Detailed (Notes 1,2)

SEQUENTIAL_PAGES number of leaf pages
located on disk in index
key order, with few or
no large gaps between
them

No Yes

86 Administration Guide: Performance

Table 11. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

Note:

1. Detailed index statistics are gathered by specifying the DETAILED clause on the RUNSTATS
command, or by specifying A, Y or X for the statsopt parameter when calling the RUNSTATS API.

2. CLUSTER_FACTOR and PAGE_FETCH_PAIRS are not collected with the DETAILED clause unless
the table is of a respectable size. If the table is greater than about 25 pages, then CLUSTERFACTOR
and PAGE_FETCH_PAIRS statistics are collected. In this case, CLUSTERRATIO is -1 (not collected).
If the table is a relatively small table, only CLUSTERRATIO is filled in by RUNSTATS while
CLUSTERFACTOR and PAGE_FETCH_PAIRS are not. If the DETAILED clause is not specified, only
the CLUSTERRATIO statistic is collected.

3. For a partitioned database, the value is estimated from the value of the count at the database
partition multiplied by the number of database partitions.

4. This statistic measures the percentage of pages in the file containing the index that belongs to that
table. For a table having only one index defined on it, DENSITY should normally be 100. DENSITY
is used by the optimizer to estimate how many irrelevant pages from other indexes might be read,
on average, if the index pages were prefetched.

Table 12. Column Distribution Statistics (SYSCAT.COLDIST and SYSSTAT.COLDIST)

Statistic Description RUNSTATS Option

Table Indexes

DISTCOUNT If TYPE is Q, the
number of distinct
values that are less than
or equal to COLVALUE
statistics

Distribution (Note 2) No

TYPE Indicator of whether
row provides
frequent-value or
quantile statistics

Distribution No

SEQNO Frequency ranking of a
sequence number to
help uniquely identify
the row in the table

Distribution No

COLVALUE Data value for which
frequency or quantile
statistic is collected

Distribution No

VALCOUNT Frequency with which
the data value occurs in
column, or for quantiles,
the number of values
less than or equal to the
data value (COLVALUE)

Distribution No

Chapter 4. System Catalog Statistics 87

Table 12. Column Distribution Statistics (SYSCAT.COLDIST and SYSSTAT.COLDIST) (continued)

Statistic Description RUNSTATS Option

Table Indexes

Note:

1. Column distribution statistics are gathered by specifying the WITH DISTRIBUTION clause on the
RUNSTATS command, or by specifying A, D or Y for the statsopt parameter when calling the
RUNSTATS API. Note that distribution statistics may not be gathered unless there is a sufficient
lack of uniformity in the column values.

2. DISTCOUNT is collected only for columns that are the first key column in an index.

3. In a partitioned database, VALCOUNT is the estimated value of the count at the database partition
multiplied by the number of database partitions. The exception to this is where the TYPE is ’F’ and
the column is the single-column partitioning key of the table, in which case VALCOUNT is simply
the count at the database partition.

For more information about column distribution statistics, see “Collecting and
Using Distribution Statistics”.

Statistics for user-defined functions are not collected by the RUNSTATS utility.
You must manually update the statistics for these functions. See “User
Update-Capable Catalog Statistics” on page 100 and “Updating Statistics for
User-Defined Functions” on page 106.

Collecting and Using Distribution Statistics

The database manager can collect, maintain, and use “frequent-value
statistics” and “quantiles”, two types of statistics that estimate, in a concise
way, the distribution of the data values in a column. Use of these statistics by
the optimizer can lead to significantly more accurate estimates of the number
of rows in a column that satisfy given equality or range predicates. These
more accurate estimates in turn increase the likelihood that the optimizer will
choose an optimal plan.

You may collect statistics about the distribution of these data values by using
the WITH DISTRIBUTION clause on the RUNSTATS command. While
collecting these additional statistics results in additional overhead for the
RUNSTATS utility, the SQL compiler can use this information to help ensure
the best access plan is chosen.

In some cases, the database manager will not collect distribution statistics and
no error will be returned. For example:
v The num_freqvalues and num_quantiles configuration parameters are set to

zero (0) to indicate that you do not want to collect distribution statistics.
For more information about these parameters, see:

88 Administration Guide: Performance

– “How Many Statistics Should You Keep?” on page 92

– “Number of Frequent Values Retained (num_freqvalues)” on page 402

– “Number of Quantiles for Columns (num_quantiles)” on page 403.

v The distribution of the data is known without the use of distribution
statistics. For example, a column that does not have any data value
appearing more than once, that is, each data value in the column is unique.

v The data type is one for which statistics are not collected. That is, the
column is defined using a long field or large object data type.

v In the case of quantiles, there is only one non-NULL value in the column.

Distribution statistics are exact for the first column of indexes. For each
additional column, the database manager uses hashing and sampling
techniques to estimate the distribution statistics because calculating exact
statistics would require too much time and memory to be practical. These
techniques are accepted statistical methods with accepted degrees of accuracy.

The following topics provide information to help you understand and use
these distribution statistics:
v Understanding Distribution Statistics.
v When Should You Use Distribution Statistics?
v How Many Statistics Should You Keep?
v How Does the Optimizer Use Distribution Statistics?
v Modeling Production Databases.
v Rules for Updating Distribution Statistics for Columns.

Understanding Distribution Statistics

For a fixed number N>=1, the N most frequent values in a column consist of the
data value having the highest frequency (that is, number of duplicates), the
data value having the second highest frequency, and so forth, down to the
data value having the Nth highest frequency. The corresponding frequent-value
statistics consist of these “N” data values, together with the frequencies of
these values in the column.

The K-quantile for a column is the smallest data value, V, such that at least “K”
rows have data values less than or equal to V. A K-quantile can be computed
by sorting the rows in the column according to increasing data values; the
K-quantile is the data value in the Kth row of the sorted column.

For example, consider the following column of data:
C1
--
B

Chapter 4. System Catalog Statistics 89

E
Y
B
F
G
E
A
J
K
E
L

This column can be sorted to obtain the following ordered values:
C1'
--
A
B
B
E
E
E
F
G
J
K
L
Y

There are nine distinct data values in column C1. For N = 2, the frequent
value statistics are:

SEQNO COLVALUE VALCOUNT
----- --------- --------

1 E 3
2 B 2

If the number of quantiles being collected is 5 (see “Number of Quantiles for
Columns (num_quantiles)” on page 403), then the K-quantiles for this column
for K = 1, 3, 6, 9, and 12 are:

SEQNO COLVALUE VALCOUNT
----- --------- --------

1 A 1
2 B 3
3 E 6
4 J 9
5 Y 12

In this example, the 6-quantile is equal to E since the sixth row in the sorted
column has a data value equal to E (and 6 rows in the original column have
data values less than or equal to E).

90 Administration Guide: Performance

The same quantile value may occur more than once, if it is a common value.
A maximum of two quantiles will be stored for a given value. The first of
these two quantiles has a COLCOUNT that gives the number of rows strictly
less than COLVALUE, and the second of the two quantiles gives the number
of rows less than or equal to COLVALUE.

When Should You Use Distribution Statistics?

To decide whether distribution statistics should be kept for a given table, two
factors should be considered:
1. The use of static or dynamic SQL.

Distribution statistics are most useful for dynamic SQL and static SQL that
does not use host variables. When using SQL with host variables, the
optimizer makes limited use of distribution statistics.

2. The lack of uniformity in the data distributions.
Keeping distribution statistics is advisable if at least one column in the
table has a highly “non-uniform” distribution of data and the column
appears frequently in equality or range predicates; that is, in clauses such
as the following:

WHERE C1 = KEY;
WHERE C1 IN (KEY1, KEY2, KEY3);
WHERE (C1 = KEY1) OR (C1 = KEY2) OR (C1 = KEY3);
WHERE C1 <= KEY;
WHERE C1 BETWEEN KEY1 AND KEY2;

There can be two types of non-uniformity in a data distribution, possibly
occurring together:
v One type of non-uniformity occurs when the data, instead of being

evenly spread out between the highest and lowest data value, is
clustered in some sub-interval, as in the following column, where the
data is clustered in the range (5,10):

C1

0.0
5.1
6.3
7.1
8.2
8.4
8.5
9.1

93.6
100.0

It can be useful to keep quantiles when this type of non-uniformity is
present.

Chapter 4. System Catalog Statistics 91

The following example shows a query that can be used to help
determine whether a high degree of non-uniformity exists in a column.

SELECT C1, COUNT(*) AS OCCURRENCES
FROM T1

GROUP BY C1
ORDER BY OCCURRENCES DESC;

v Another type of non-uniformity occurs when certain data values have a
much higher frequency than other data values, as in a column having
data values with the following frequencies:

Data Value Frequency
---------- ---------

20 5
30 10
40 10
50 25
60 25
70 20
80 5

It can be useful to keep both quantiles and frequent-value statistics
when this type of non-uniformity is present.

You may collect distribution statistics by using the WITH DISTRIBUTION
clause on the RUNSTATS command, or by specifying D, E, or A for the
statsopt parameter when calling the RUNSTATS API. For more information,
refer to the Command Reference or the Administrative API Reference manuals.

How Many Statistics Should You Keep?

Keeping a large number of column distribution statistics can lead to improved
selection of access plans by the optimizer, but the cost of collecting these
statistics and compiling your queries increases accordingly. The size of the
statistics heap (see “Statistics Heap Size (stat_heap_sz)” on page 324) may
place limitations on the number of statistics that can be computed and stored.

When distribution statistics are requested, the database manager stores a
default of the 10 most frequent values for a column. Keeping between 10 and
100 frequent values should suffice for most practical situations. Ideally,
enough frequent-value statistics should be retained so that the frequencies of
the remaining values are either approximately equal to each other or
negligible compared to the frequencies of the most frequent values.

To set the number of frequent values to collect, use the num_freqvalues
configuration parameter, as described in “Number of Frequent Values
Retained (num_freqvalues)” on page 402. The database manager may collect
less than this number of frequent value statistics, because these statistics will
only be collected for data values that occur more than once. If collecting only
quantile statistics, this parameter can be set to zero.

92 Administration Guide: Performance

When distribution statistics are requested, the database manager stores a
default of 20 quantiles for a column. This value guarantees a maximum
estimation error of approximately 2.5% for any simple single-sided range
predicate (>, >=, <, or <=), and a maximum error of 5% for any BETWEEN
predicate. A rough rule of thumb for determining the number of quantiles is:

v Determine the maximum error that is tolerable in estimating the number of
rows of any range query, as a percentage, P

v The number of quantiles should be approximately 100/P if the predicate is
a BETWEEN predicate, and 50/P if the predicate is any other type of range
predicate (<, <=, >, or >=).

For example, 25 quantiles should result in a maximum estimate error of 4%
for BETWEEN predicates and of 2% for ″>″ predicates. In general, at least 10
quantiles should be kept, and more than 50 quantiles should be necessary
only for extremely non-uniform data.

To set the number of quantiles, use the num_quantiles configuration parameter
as described in “Number of Quantiles for Columns (num_quantiles)” on
page 403. If collecting only frequent value statistics, this parameter can be set
to zero. Setting this parameter to “1” will also result in no quantile statistics
being gathered since the entire range of values will fit in one quantile.

How Does the Optimizer Use Distribution Statistics?

Why collect and store distribution statistics? The answer lies in the fact that
an optimizer needs to estimate the number of rows in a column that satisfy an
equality or range predicate in order to select the least expensive access plan.
The more accurate the estimate, the greater the likelihood that the optimizer
will choose the optimal access plan. For example, consider the query

SELECT C1, C2
FROM TABLE1

WHERE C1 = 'NEW YORK'
AND C2 <= 10

and suppose that there is an index on C1 and an index on C2. One possible
access plan is to use the index on C1 to retrieve all rows with C1 = 'NEW
YORK' and then check each retrieved row to see if C2 <= 10. An alternative
plan is to use the index on C2 to retrieve all rows with C2 <= 10 and then
check each retrieved row to see if C1 = 'NEW YORK'. Typically, the primary cost
in executing the above query is the cost of the retrieving the rows, and so it is
desirable to choose the plan the that requires the minimum number of
retrievals. To choose the best plan, it is necessary to estimate the number of
rows that satisfy each predicate.

Chapter 4. System Catalog Statistics 93

When you do not request distribution statistics, the optimizer maintains only
the second-highest data value (HIGH2KEY), second-lowest data value
(LOW2KEY), number of distinct values (COLCARD), and number of rows
(CARD) for a column. The number of rows that satisfy an equality or range
predicate is then estimated under the assumption that the frequencies of the
data values in a column are all equal and the data values are evenly spread
out over the interval (LOW2KEY, HIGH2KEY). Specifically, the number of
rows satisfying an equality predicate C1 = KEY is estimated as
CARD/COLCARD, and the number of rows satisfying a range predicate C1
BETWEEN KEY1 AND KEY2 is estimated as:

KEY2 - KEY1
------------------- x CARD (1)
HIGH2KEY - LOW2KEY

These estimates are accurate only when the true distribution of data values in
a column is reasonably uniform. When distribution statistics are unavailable
and either the frequencies of the data values differ widely from each other or
the data values are clustered in a few sub-intervals of the interval
(LOW_KEY,HIGH_KEY), the estimates can be off by orders of magnitude and
the optimizer may choose a less than optimal access plan.

When distribution statistics are available, the errors described above can be
greatly reduced by using frequent-value statistics to compute the number of
rows that satisfy an equality predicate and using frequent-value statistics and
quantiles to compute the number of rows that satisfy a range predicate.

Example of Impact on Equality Predicates:

Consider first a predicate of the form C1 = KEY. If KEY is one of the N most
frequent values, then the optimizer simply uses the frequency of KEY that is
stored in the catalog. If KEY is not one of the N most frequent values, the
optimizer estimates the number of rows that satisfy the predicate under the
assumption that the (COLCARD - N) non-frequent values have a uniform
distribution. That is, the number of rows is estimated as:

CARD - NUM_FREQ_ROWS
-------------------- (2)

COLCARD - N

where NUM_FREQ_ROWS is the total number of rows with a value equal to
one of the N most frequent values.

For example, consider a column (C) for which the frequency of the data values
is as follows:

Data Value Frequency
---------- ---------

1 2

94 Administration Guide: Performance

2 3
3 40
4 4
5 1

Suppose that frequent-value statistics based on only the most frequent value
(that is, N = 1) are available. For this column, CARD = 50 and COLCARD = 5.
For the predicate C = 3, exactly 40 rows satisfy it. Assuming a uniform data
distribution, the number of rows that satisfy the predicate is estimated as 50/5
= 10, an error of -75%. Using frequent-value statistics, the number of rows is
estimated as 40, with no error.

Similarly, 2 rows satisfy the predicate C = 1. Without frequent-value statistics,
the number of rows that satisfy the predicate is estimated as 10, an error of
400%. You may use the following formula to calculate the estimation error (as
a percentage):

estimated rows - actual rows
----------------------------- X 100

actual rows

Using the frequent value statistics (N = 1), the optimizer will estimate the
number of rows containing this value using the formula (2) given above, for
example:

(50 - 40)
--------- = 3
(5 - 1)

and the error is reduced by an order of magnitude as shown below:
3 - 2

------- = 50%
2

The number of rows that satisfy a range predicate can be estimated using
quantiles, as illustrated by the following examples. Consider a column (C)
given by:

C

0.0
5.1
6.3
7.1
8.2
8.4
8.5
9.1

93.6
100.0

and suppose that K-quantiles are available for K = 1, 4, 7, and 10:

Chapter 4. System Catalog Statistics 95

K K-quantile
--- ----------
1 0.0
4 7.1
7 8.5
10 100.0

First consider the predicate C <= 8.5. For the data given above, exactly 7 rows
satisfy this predicate. Assuming a uniform data distribution and using
formula (1) from above, with KEY1 replaced by LOW2KEY, the number of
rows that satisfy the predicate is estimated as:

8.5 - 5.1
---------- x 10 *= 0
93.6 - 5.1

where *= means “approximately equal to”. The error in this estimation is
approximately -100%.

Using quantiles, the number of rows that satisfy this same predicate (C <=
8.5) is estimated by locating 8.5 as one of the K-quantile values and using the
corresponding value of K, namely 7, as the estimate. In this case, the error is
reduced to 0.

Now consider the predicate C <= 10. Exactly 8 rows satisfy this predicate.
Unlike the previous example, the value 10 is not one of the stored K-quantiles.
Assuming a uniform data distribution and using formula (1), the number of
rows that satisfy the predicate is estimated as 1, an error of -86%.

Using quantiles, the optimizer estimates the number of rows that satisfy the
predicate as r_1 + r_2, where r_1 is the number of rows satisfying the
predicate C <= 8.5 and r_2 is the number of rows satisfying the predicate C >
8.5 AND C <= 10.. As in the above example, r_1 = 7. To estimate r_2 the
optimizer uses linear interpolation:

100.0 - 10.0
r_2 *= ------------ x (# rows with value > 8.5 and <= 100.0)

100.0 - 8.5
100.0 - 10.0

= ----------- x (10 - 7)
100.0 - 8.5

*= 3

The final estimate is r_1 + r_2 *= 10, and the absolute error is reduced by
more than a factor of 3.

The reason that the use of quantiles improves the accuracy of the estimates in
the above examples is that the real data values are ″clustered″ in the range 5 -
10, but the standard estimation formulas assume that the data values are
spread out evenly between 0 and 100.

96 Administration Guide: Performance

The use of quantiles also improves accuracy when there are significant
differences in the frequencies of different data values. Consider a column
having data values with the following frequencies:

Data Value Frequency
---------- ---------

20 5
30 5
40 15
50 50
60 15
70 5
80 5

Suppose that K-quantiles are available for K = 5, 25, 75, 95, and 100:
K K-quantile

---- ----------
5 20

25 40
75 50
95 70

100 80

Also suppose that frequent value statistics are available based on the 3 most
frequent values.

Consider the predicate C BETWEEN 20 AND 30. From the distribution of the data
values, you can see that exactly 10 rows satisfy this predicate. Assuming a
uniform data distribution and using formula (1), the number of rows that
satisfy the predicate is estimated as:

30 - 20
------- x 100 = 25
70 - 30

which has an error of 150%.

Using frequent-value statistics and quantiles, the number of rows that satisfy
the predicate is estimated as r_1 + r_2, where r_1 is the number of rows that
satisfy the predicate (C = 20) and r_2 is the number of rows that satisfy the
predicate C > 20 AND C <= 30. Using formula (2), r_1 is estimated as:

100 - 80
-------- = 5
7 - 3

Using linear interpolation, r_2 is estimated as:
30 - 20
------- x (# rows with value > 20 and <= 40)
40 - 20

Chapter 4. System Catalog Statistics 97

30 - 20
= ------- x (25 - 5)
40 - 20

= 10,

yielding a final estimate of 15 and reducing the error by a factor of 3.

Collecting and Using Detailed Index Statistics

As an option, you may collect more detailed statistics on indexes that help the
optimizer better estimate the cost of accessing a table using that index. This
can be done in one of two ways: First, you can use the DETAILED clause on
the RUNSTATS command; or, second, you can specify A, Y, or X for the
satsopt parameter when calling the RUNSTATS API. The DETAILED statistics
PAGE_FETCH_PAIRS and CLUSTERFACTOR will be collected only if the
table is of a sufficient size: around 25 pages. In this case, CLUSTERFACTOR
will be a value between 0 and 1; and CLUSTERRATIO will be -1 (not
collected). For tables smaller than 25 pages, CLUSTERFACTOR will be -1 (not
collected), and CLUSTERRATIO will be a value between 0 and 100; even if
the DETAILED clause is specified for an index on that table.

Understanding Detailed Index Statistics

The DETAILED statistics attempt to capture, in a concise way, the number of
physical I/Os that will be required to access the data pages of a table when a
complete index scan is performed under different buffer sizes. As RUNSTATS
scans through the pages of the index, it models the different buffer sizes, and
gathers estimates of how often a page fault occurs. For example, with only 1
(one) buffer page available, every new page reference by the index will result
in a page fault, and, in a worse case, every row could reference a different
page, resulting in at most CARDINALITY I/Os. At the other extreme, when
the buffer is big enough to hold the entire table (subject to the maximum
buffer size), then each of the table’s NPAGES pages will be physically read
exactly once. The number of physical I/Os must therefore be a monotone,
non-increasing function of the buffer size.

RUNSTATS fits a piece-wise linear curve to these estimates, which is stored as
a string of 11 pairs in the PAGE_FETCH_PAIRS statistic. The first value in
each pair is a hypothetical buffer size, and the second value in each pair is the
estimated number of physical I/Os to fetch the data pages in a complete scan
of the index, with a buffer of that size totally available to that index scan. The
optimizer then uses the PAGE_FETCH_PAIRS statistic to estimate the number
of physical I/Os for data-page fetches in any complete or partial index scan
using that index.

98 Administration Guide: Performance

The shape of the curve stored in PAGE_FETCH_PAIRS for an index will
depend upon the clustering behavior of that index.

There are three types of curves that are possible:
1. Curve 1 (dashed-line) is a highly-unclustered index that needs a buffer

almost as large as the table before re-referenced pages are found in the
buffer. This represents a situation in which references to the same page are
widely spread throughout the index’s key values, so a medium-sized
buffer isn’t sufficient to avoid re-referencing the same page multiple times.
This is the worst scenario, as it requires the most buffer space to perform
well. The optimizer is likely to use the list prefetch access strategy for such
indexes, in an attempt to cluster the data-page accesses for the qualifying
key values of the index. If this index is used frequently, it should be a
prime candidate for reorganization.

1

1

Cardinality

Npages
Buffer Size

P
hy

si
ca

l I
/O

s

Npages

Figure 1. Three Curves for Clustered and Unclustered Indexes

Chapter 4. System Catalog Statistics 99

2. Curve 2 (solid-line) is more locally unclustered. For very small buffers, it is
as unclustered as curve 1, but once a few buffer pages are available to
contain the most recently referenced data, the data-page hit ratio improves
significantly. This represents the somewhat favorable situation in which,
although the index isn’t particularly clustered, references to the same data
pages are in a close proximity to one another among the index’s key
values.

3. Curve three (dotted-line) is somewhere between these two extremes,
improving at a uniform rate as the buffer is increased. This is usually the
more common case for unclustered indexes, and represents what the
optimizer will assume in the absence of DETAILED indexes.

When Should You Use Detailed Index Statistics?

You should use DETAILED index statistics when your queries reference
columns that are not all in the index. In addition, DETAILED index statistics
should be used when:
v There are multiple unclustered indexes with varying degrees of clustering
v The degree of clustering is non-uniform among the key values
v The values in the index are updated non-uniformly.

It may be quite hard to determine these situations without previous
knowledge, and without attempting to force an index scan under varying
buffer sizes and using the monitor to observe the physical I/Os that result.
Probably the cheapest way to determine whether any of these situations are
occurring is to collect the DETAILED statistics for an index and retain them if
the PAGE_FETCH_PAIRS that result are non-linear.

User Update-Capable Catalog Statistics

The ability to update selected system catalog statistics allows you to:
v Model query performance on a development system using production

system statistics
v Perform “what if” query performance analysis.

You should not update statistics on a production system because you may
hinder the optimizer from finding the best access plan for your query.

To update the values of these statistical columns, use the SQL UPDATE
statement against the views defined in the SYSSTAT schema. You can update
statistics for:
v Tables for which you hold explicit CONTROL privilege. You can also

update statistics for columns and indexes for these tables.

100 Administration Guide: Performance

v Nicknames for which you hold explicit CONTROL privilege in a federated
database system. You can also update statistics for columns and indexes for
these nicknames. Note that the update only affects local metadata (data
source table statistics are not changed). These updates affect only the global
access strategy generated by the DB2 optimizer.

v User-defined functions (UDFs) that you own (see “Updating Statistics for
User-Defined Functions” on page 106 for guidance).

You can also update these statistics if your user ID has explicit DBADM
authority for the database; that is, your user ID is recorded as having DBADM
authority in the SYSCAT.DBAUTH table. Belonging to a DBADM group does
not explicitly provide this authority.

Using these views, a DBADM can see statistics rows for all users. A user
without DBADM authority can only see those rows which contain statistics
for objects over which they have CONTROL privilege.

The following shows an example of updating the table statistics for the
EMPLOYEE table:

UPDATE SYSSTAT.TABLES
SET CARD = 10000,

NPAGES = 1000,
FPAGES = 1000,
OVERFLOW = 2

WHERE TABSCHEMA = 'userid'
AND TABNAME = 'EMPLOYEE'

You must be careful when updating catalog statistics. Arbitrary updates can
have a serious impact on the performance of subsequent queries. You may
wish to use any of the following methods to replace any updates you applied
to these tables:

v ROLLBACK the unit of work in which the changes have been made
(assuming the unit of work has not been committed).

v Using the RUNSTATS utility you can recalculate and refresh the catalog
statistics.

v Update the catalog statistics to indicate that statistics have not been
gathered. (For example, setting column NPAGES to -1 indicates that the
number-of-pages statistic has not been collected.)

v Replace the catalog statistics with the data they contained prior to your
update. This method would only be possible if you used the db2look tool, as
described in “Modeling Production Databases” on page 108, to capture the
statistics before you made any changes.

In a some cases, the optimizer may determine that some particular statistical
value or combination of values are not valid, it will use default values and

Chapter 4. System Catalog Statistics 101

issue a warning. Such circumstances are rare, however, since most of the
validation is done when updating the statistics.

Additional Information: For information about updating catalog statistics,
see:

v “Rules for Updating Catalog Statistics”

v “Rules for Updating Table and Nickname Statistics” on page 103

v “Rules for Updating Column Statistics” on page 103

v “Rules for Updating Distribution Statistics for Columns” on page 104

v “Rules for Updating Index Statistics” on page 105

v “Updating Statistics for User-Defined Functions” on page 106

v “Modeling Production Databases” on page 108.

Rules for Updating Catalog Statistics

When you update catalog statistics, the most important general rule is to
ensure that valid values, ranges, and formats of the various statistics are
stored in the statistic views. It is also important to preserve the consistency of
relationships between various statistics.

For example, COLCARD in SYSSTAT.COLUMNS must be less than CARD in
SYSSTAT.TABLES (the number of distinct values in a column can’t be greater
than the number of rows). Assume that you want to reduce COLCARD from
100 to 25, and CARD from 200 to 50. If you update SYSCAT.TABLES first, you
should get an error (since CARD would be less than COLCARD). The correct
order is to update COLCARD in SYSCAT.COLUMNS first, then update CARD
in SYSSTAT.TABLES. The situation occurs in reverse if you want to increase
COLCARD to 250 from 100, and CARD to 300 from 200. In this case, you
must update CARD first, then COLCARD.

When a conflict is detected between an updated statistic and another statistic,
an error is issued. However, errors may not always be issued when conflicts
arise. In some situations, the conflict is difficult to detect and report in an
error, especially if the two related statistics are in different catalogs. For this
reason, you should be careful to avoid causing such conflicts.

The most common checks you should make, before updating a catalog
statistic, are:
1. Numeric statistics must be -1 or greater than or equal to zero.
2. Numeric statistics representing percentages (for example, CLUSTERRATIO

in SYSSTAT.INDEXES) must be between 0 and 100.

102 Administration Guide: Performance

Note: For row types, the table level statistics NPAGES, FPAGES, and
OVERFLOW are not updatable for a sub-table.

Rules for Updating Table and Nickname Statistics

There are only four statistic values that you can update in SYSTAT.TABLES:
CARD, FPAGES, NPAGES, and OVERFLOW. Keep in mind that:
1. CARD must be greater than all COLCARD values in SYSSTAT.COLUMNS

that correspond to that table.
2. CARD must be greater than NPAGES.
3. FPAGES must be greater than NPAGES.
4. NPAGES must be less than or equal to any ″Fetch″ value in the

PAGE_FETCH_PAIRS column of any index (assuming this statistic is
relevant for the index).

5. CARD must not be less than or equal to any ″Fetch″ value in the
PAGE_FETCH_PAIRS column of any index (assuming this statistic is
relevant for the index).

When working within a federated database system, use caution when
manually providing/updating statistics on a nickname over a remote view.
The statistical information, such as the number of rows this nickname will
return, might not reflect the real cost to evaluate this remote view and thus
might mislead the DB2 optimizer. Situations that can benefit from statistics
updates include remote views defined on a single base table with no column
functions applied on the SELECT list. Complex views may require a complex
tuning process which might require that each query be tuned. Consider
creating local views over nicknames instead so the DB2 optimizer knows how
to derive the cost of the view more accurately.

Rules for Updating Column Statistics

When you are updating statistics in SYSSTAT.COLUMNS, follow the
guidelines below. For details on updating column distribution statistics, see
“Rules for Updating Distribution Statistics for Columns” on page 104.

1. HIGH2KEY and LOW2KEY (in SYSSTAT.COLUMNS) must adhere to the
following rules:
v The datatype of any HIGH2KEY, LOW2KEY value must correspond to

the datatype of the user column for which the statistic is attributed.
Because HIGH2KEY is a VARCHAR column, you must enclose the
value in quotation marks. For example, to set HIGH2KEY to 25 for an
INTEGER user column, your update statement would include SET
HIGH2KEY = '25'.

v The length of HIGH2KEY, LOW2KEY values must be the smaller of 33
or the maximum length of the target column’s datatype.

Chapter 4. System Catalog Statistics 103

v HIGH2KEY must be greater than LOW2KEY whenever there are 3 or
more distinct values in the corresponding column. In the case of less
than 3 distinct values in the column, HIGH2KEY can be equal to
LOW2KEY.

2. The cardinality of a column (COLCARD statistic in SYSSTAT.COLUMNS)
cannot be greater than the cardinality of its corresponding table (CARD
statistic in SYSSTAT.TABLES).

3. The cardinality of a column (NUMNULLS statistic in
SYSSTAT.COLUMNS) cannot be greater than the cardinality of its
corresponding table (CARD statistic in SYSSTAT.TABLES).

4. No statistics are supported for columns with datatypes: LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB.

Rules for Updating Distribution Statistics for Columns

“User Update-Capable Catalog Statistics” on page 100 provides general
information about how to update catalog statistics. You may wish to refer to
that section before attempting to update column distribution statistics.

In order for all the statistics in the catalog to be consistent, you must exercise
care when updating the distribution statistics. Specifically, for each column,
the catalog entries for the frequent data statistics and quantiles must satisfy
the following constraints:

1. Frequent value statistics (in the SYSSTAT.COLDIST catalog)
v The values in column VALCOUNT must be non-increasing for

increasing values of SEQNO.
v The number of values in column COLVALUE must be less than or equal

to the number of distinct values in the column, which is stored in
column COLCARD in catalog view SYSSTAT.COLUMNS.

v The sum of the values in column VALCOUNT must be less than or
equal to the number of rows in the column, which is stored in column
CARD in catalog view SYSSTAT.TABLES.

v In most cases, the values in the column COLVALUE should lie between
the second-highest and second-lowest data values for the column, which
are stored in columns HIGH2KEY and LOW2KEY, respectively, in
catalog view SYSSTAT.COLUMNS. There may be one frequent value
greater than HIGH2KEY and one frequent value less than LOW2KEY.

2. Quantiles (in the SYSSTAT.COLDIST catalog)
v The values in column COLVALUE must be non-decreasing for

increasing values of SEQNO
v The values in column VALCOUNT must be strictly increasing for

increasing values of SEQNO

104 Administration Guide: Performance

v The largest value in column COLVALUE must have a corresponding
entry in column VALCOUNT equal to the number of rows in the
column

v In most cases, the values in the column COLVALUE should lie between
the second-highest and second-lowest data values for the column, which
are stored in columns HIGH2KEY and LOW2KEY, respectively, in
catalog view SYSSTAT.COLUMNS.

Suppose that distribution statistics are available for a column C1 with “R”
rows and you wish to modify the statistics to correspond to a column with
the same relative proportions of data values, but with “(F x R)” rows. To scale
up the frequent-value statistics by a factor of F, each entry in column
VALCOUNT must be multiplied by F. Similarly, to scale up the quantiles by a
factor of F, each entry in column VALCOUNT must be multiplied by F. If
these rules are not followed, the optimizer may use the wrong filter factor
causing unpredictable performance when you run the query.

Rules for Updating Index Statistics

When you update the statistics in SYSSTAT.INDEXES, follow the rules
described below:
1. PAGE_FETCH_PAIRS (in SYSSTAT. INDEXES) must adhere to the

following rules:
v Individual values in the PAGE_FETCH_PAIRS statistic must be

separated by a series of blank delimiters.
v Individual values in the PAGE_FETCH_PAIRS statistic must not be

longer than 10 digits and must be less than the maximum integer value
(MAXINT = 2147483647).

v There must always be a valid PAGE_FETCH_PAIRS value if the
CLUSTERFACTOR is greater than zero.

v There must be exactly 11 pairs in a single PAGE_FETCH_PAIR statistic.
v Buffer size entries of PAGE_FETCH_PAIRS must be ascending in value.
v If the buffer size value is the same as that in the previous pair, the page

fetch value must be the same as that in the previous pair.
v Any buffer size value in a PAGE_FETCH_PAIRS entry cannot be greater

than MIN(NPAGES, 524287) where NPAGES is the number of pages in
the corresponding table (in SYSSTAT.TABLES).

v “Fetches” entries of PAGE_FETCH_PAIRS must be descending in value,
with no individual “Fetches” entry being less than NPAGES. “Fetch”
size values in a PAGE_FETCH_PAIRS entry cannot be greater than the
CARD (cardinality) statistic of the corresponding table.

v If buffer size value is the same in two consecutive pairs, then page fetch
value must also be the same in both the pairs (in SYSSTAT.TABLES).

Chapter 4. System Catalog Statistics 105

A valid PAGE_FETCH_UPDATE is:
PAGE_FETCH_PAIRS =
'100 380 120 360 140 340 160 330 180 320 200 310 220 305 240 300
260 300 280 300 300 300'

where
NPAGES = 300
CARD = 10000
CLUSTERRATIO = -1
CLUSTERFACTOR = 0.9

2. CLUSTERRATIO and CLUSTERFACTOR (in SYSSTAT.INDEXES) must
adhere to the following rules:
v Valid values for CLUSTERRATIO are -1 or between 0 and 100.
v Valid values for CLUSTERFACTOR are -1 or between 0 and 1.
v At least one of the CLUSTERRATIO and CLUSTERFACTOR values must

be -1 at all times.
v If CLUSTERFACTOR is a positive value, it must be accompanied by a

valid PAGE_FETCH_PAIR statistic.
3. The following rules apply to FIRSTKEYCARD, FIRST2KEYCARD,

FIRST3KEYCARD, FIRST4KEYCARD, and FULLKEYCARD:
v FIRSTKEYCARD must be equal to FULLKEYCARD for a single-column

index.
v FIRSTKEYCARD must be equal to COLCARD for the corresponding

column.
v If any of these index statistics are not relevant, you should set them to

-1. For example, if you have an index with only 3 columns, set
FIRST4KEYCARD to -1.

v For multiple column indexes, if all the statistics are relevant, the
relationship between them must be:
FIRSTKEYCARD <= FIRST2KEYCARD <= FIRST3KEYCARD <= FIRST4KEYCARD

<= FULLKEYCARD <= CARD

4. The following rules apply to SEQUENTIAL_PAGES and DENSITY:
v Valid values for SEQUENTIAL_PAGES are -1 or between 0 and NLEAF.
v Valid values for DENSITY are -1 or between 0 and 100.

Updating Statistics for User-Defined Functions

Using the SYSSTAT.FUNCTIONS catalog view, you may update statistics for
user-defined functions (UDFs). If these statistics are available, the optimizer
will use them when estimating costs for various access plans. If statistics are
not available the statistic column values will be -1 and the optimizer will use
default values that assume a simple UDF.

106 Administration Guide: Performance

The following table provides information about the statistic columns that you
may update for UDFs:

Table 13. Function Statistics (SYSCAT.FUNCTIONS and SYSSTAT.FUNCTIONS)

Statistic Description

IOS_PER_INVOC Estimated number of read/write requests
executed each time a function is executed.

INSTS_PER_INVOC Estimated number of machine instructions
executed each time a function is executed.

IOS_PER_ARGBYTE Estimated number of read/write requests
executed per input argument byte.

INSTS_PER_ARGBYTES Estimated number of machine instructions
executed per input argument byte.

PERCENT_ARGBYTES Estimated average percent of input
argument bytes that the function will
actually process.

INITIAL_IOS Estimated number of read/write requests
executed only the first/last time the
function is invoked.

INITIAL_INSTS Estimated number of machine instructions
executed only the first/last time the
function is invoked.

CARDINALITY Estimated number of rows generated by a
table function.

For example, consider a UDF (EU_SHOE) that converts an American shoe size
to the equivalent European shoe size. (These two shoe sizes could be UDTs.)
For this UDF, you should set the statistic columns as follows:
v INSTS_PER_INVOC should be set to the estimated number of machine

instructions required to:
– Invoke EU_SHOE
– Initialize the output string
– Return the result.

v INSTS_PER_ARGBYTE should be set to the estimated number of machine
instructions required to convert the input string into a European shoe size.

v PERCENT_ARGBYTES would be set to 100 indicating that the entire input
string is to be converted

v INITIAL_INSTS, IOS_PER_INVOC, IOS_PER_ARGBYTE, and INITIAL_IOS
should all be set to 0, since this UDF only performs computations.

PERCENT_ARGBYTES would be used by a function that does not always
process the entire input string. For example, consider a UDF (LOCATE) that
accepts two arguments as input and returns the starting position of the first

Chapter 4. System Catalog Statistics 107

occurrence of the first argument within the second argument. Assume that the
length of the first argument is small enough to be insignificant relative to the
second argument and, on average, 75 percent of the second argument is
searched. Based on this information, PERCENT_ARGBYTES should be set to
75. The above estimate of the average of 75 percent is based on the following
additional assumptions:
v Half the time the first argument will not be found resulting in the entire

second argument being searched
v The first argument is equally likely to appear anywhere within the second

argument, resulting in half of the second argument being searched (on
average) when the first argument is found.

INITIAL_INSTS or INITIAL_IOS can be used to record the estimated number
of machine instructions or read/write requests performed only the first or last
time the function is invoked. This could be used, for example, to record the
cost of setting up a scratchpad area.

To obtain information about I/Os and instructions used by a user-defined
function, you can use output provided by your programming language
compiler or by monitoring tools available for your operating system.

Modeling Production Databases

Sometimes you may wish to have your test system contain a subset of your
production system’s data. However, access plans selected for such a test
system are not necessarily the same as those that would be selected on the
production system, unless the catalog statistics and the configuration
parameters for the test system are updated to match those of the production
system.

A productivity tool, db2look, is provided that can be run against the
production database to generate the update statements required to make the
catalog statistics of the test database match those in production. These update
statements can be generated by using db2look in mimic mode (-m option). In
this case, db2look will generate a command processor script containing all the
statements required to mimic the catalog statistics of the production database.
This can be useful when analyzing SQL statements through Visual Explain in
a test environment.

You can recreate database data objects, including tables, views, indexes, and
other objects in a database, by extracting DDL statements with db2look -e. You
can run the command processor script created from this command against
another database to recreate the database. You can use the -e option with the
-m option.

108 Administration Guide: Performance

After running the update statements produced by db2look against the test
system, the test system can be used to validate the access plans to be
generated in production. Since the optimizer uses the type and configuration
of the table spaces to estimate I/O costs, the test system must have the same
table space geometry or layout. That is, the same number of containers of the
same type: either SMS or DMS.

The db2look tool is found under the bin subdirectory.

For more information on how to use this productivity tool, type the following
on a command line:

db2look -h

You can also refer to the Command Reference manual for more information on
this tool.

The Control Center also provides an interface to the db2look utility called
“Generate SQL - Object Name”. Using the control center allows for the results
file from the utility to be integrated into the Script Center. You can also
schedule the db2look command from the Control Center. One difference when
using the Control Center is that only single table analysis can be done as
opposed to a maximum of thirty tables in a single call using the db2look
command. You should also be aware that LaTex and Graphical outputs are not
supported from the Control Center.

Chapter 4. System Catalog Statistics 109

110 Administration Guide: Performance

Chapter 5. Understanding the SQL Compiler

When an SQL query is compiled, a number of steps are performed before the
“best” access plan is either executed or written to the system catalog tables
containing information about application packages.

In a partitioned database environment, all of the work done on a SQL query
by the SQL Compiler takes place at the database partition to which you
connect. Once the executable access plan is created, the compiled query is
distributed to all database partitions in the database.

The following topics provide more information about the steps performed by
the SQL Compiler:
v Overview of the SQL Compiler
v Rewrite Query by the SQL Compiler
v Operation Merging
v Operation Movement
v Predicate Translation
v Data Access Concepts and Optimization
v Optimization Strategies for Intra-Partition Parallelism.
v Federated Database Query Compiler Phases.

The following sections also provide information about factors external to the
compiler which can affect the results produced by the compiler:
v “Chapter 2. Application Considerations” on page 13

v “Chapter 3. Environmental Considerations” on page 59

v “Chapter 4. System Catalog Statistics” on page 79.

“Chapter 6. SQL Explain Facility” on page 177 describes how you can examine
the access plan chosen by the SQL compiler.

Overview of the SQL Compiler

The SQL compiler performs several steps before producing an access plan that
you can execute. These steps are shown in Figure 2 on page 112.

© Copyright IBM Corp. 1993, 1999 111

This diagram shows that the Query Graph Model is a key component of the
SQL compiler. The query graph model is an internal, in-memory database that is
used to represent the query throughout the query compilation process as
described below:

v Parse Query

The first task of the SQL compiler is to analyze the SQL query to validate
the syntax. If any syntax errors are detected, the SQL compiler stops

SQL Query

Visual
Explain

db2exfmt
Tool

db2expln
Tool

SQL Compiler

Check
Semantics

Rewrite
Query

Optimize
Access Plan

Generate
Executable Code

Execute Plan

Query
Graph
Model

Access
Plan

Parse Query

Executable
Plan

Explain
Tables

Pushdown
Analysis

Remote SQL
Generation

Figure 2. Steps performed by SQL Compiler

112 Administration Guide: Performance

processing and the appropriate SQL error is returned to the application
attempting to compile the SQL statement. When parsing is complete, an
internal representation of the query is created.

v Check Semantics

The second task of the compiler is to further validate the SQL statement by
checking to ensure that the parts of the statement make sense given the
other parts. A simple example of this semantic checking ensures that the
data type of the column specified for the YEAR scalar function is a datetime
data type. Also during this second stage, the compiler adds the behavioral
semantics to the query graph model, including the effects of referential
constraints, table check constraints, triggers, and views.
The query graph model contains all of the semantics of queries, including
query blocks, subqueries, correlations, derived tables, expressions, data
types, data type conversions, code page conversions, and partitioning keys.

v Rewrite Query

The third phase of the SQL compiler uses the global semantics provided in
the query graph model to transform the query into a form that can be
optimized more easily. For example, the compiler might move a predicate,
altering the level at which it is applied and potentially improving query
performance. This type of operation movement is called general predicate
pushdown. See “Rewrite Query by the SQL Compiler” on page 115 for more
information.
Working in a partitioned database environment, some query operations are
more computationally intensive like those involving:

– Aggregation
– Redistribution of rows
– Correlated subqueries.

In this environment, with some queries, decorrelation can occur as part of
the rewrite of the query.

Any transformations that occur on a query are written back to the query
graph model. That is, the query graph model represents the rewritten query.

v Pushdown Analysis (Federated Databases)

The major task of this step is to recommend to the DB2 optimizer whether
an operation can be remotely evaluated (“pushed-down”) at a data source.
This type of pushdown activity is specific to data source queries and
represents an extension to general predicate pushdown operations.
This step is bypassed unless you are executing federated database queries.
See “Pushdown Analysis” on page 162 for more information.

v Optimize Access Plan

Chapter 5. Understanding the SQL Compiler 113

The SQL optimizer portion of the SQL compiler uses the query graph
model as input, and generates many alternative execution plans for
satisfying the user’s request. It estimates the execution cost of each
alternative plan, using the statistics for tables, indexes, columns and
functions, and chooses the plan with the smallest estimated execution cost.
The optimizer uses the query graph model to analyze the query semantics
and to obtain information about a wide variety of factors, including
indexes, base tables, derived tables, subqueries, correlations and recursion.
The optimizer portion can also consider a third type of pushdown
operation: aggregation and sort, which can improve performance by pushing
the evaluation of these operations to the Data Management Services
component. See “Aggregation and Sort Pushdown Operators” on page 158
for more information.
The optimizer also considers whether there are different sized buffer pools
when determining page size selection. That the environment includes a
partitioned database is also considered as well as the ability to enhance the
chosen plan for the possibility of intra-query parallelism in a symmetric
multi-processor (SMP) environment. This information is used by the
optimizer to help select the best access plan for the query. See “Data Access
Concepts and Optimization” on page 126 for more information.
The output from this step of the SQL compiler is an “access plan”. This
access plan provides the basis for the information captured in the Explain
tables. The information used to generate the access plan can be captured
with an explain snapshot. (See “Chapter 6. SQL Explain Facility” on
page 177 for more information on Explain topics.)

v Remote SQL Generation (Federated Databases)

The final plan selected by the DB2 optimizer can consist of a set of steps
that might operate on a remote data source. For those operations that will
be performed by each data source, the remote SQL generation step creates
an efficient SQL statement based on the data source SQL dialect.
This step is bypassed unless you are executing federated database queries.
See “Remote SQL Generation and Global Optimization” on page 170 for
more information.

v Generate “Executable” Code

The final step of the SQL Compiler uses the access plan and the query graph
model to create an executable access plan, or section, for the query. This
code generation step uses information from the query graph model to avoid
repetitive execution of expressions that only need to be computed once for
a query. Examples for which this optimization is possible include code page
conversions and the use of host variables.
Information about access plans for static SQL is stored in the system catalog
tables. When the package is executed, the database manager will use the
information stored in the system catalog tables to determine how to access

114 Administration Guide: Performance

the data and provide results for the query. It is this information that is used
by the db2expln tool. (See “Chapter 6. SQL Explain Facility” on page 177 for
more information on Explain topics.)

It is recommended that RUNSTATS be done periodically on tables used in
queries where good performance is desired. The optimizer will then be better
equipped with relevant statistical information on the nature of the data. If
RUNSTATS is not done (or the optimizer suspects that RUNSTATS was done
on empty or near empty tables), the optimizer may either use defaults or
attempt to derive certain statistics based on the number of file pages used to
store the table on disk (FPAGES).

Rewrite Query by the SQL Compiler

The SQL compiler includes a rewrite query stage which transforms SQL
statements into forms that can be optimized more easily, and as a result, can
improve the access path chosen. Rewriting queries is particularly important
for queries which are very complex, including those queries with many
subqueries or many joins. Query generator tools often create these types of
very complex queries.

You can influence the number of query rewrite rules that are applied to an
SQL statement by changing the optimization class (see “Adjusting the
Optimization Class” on page 36).

You can see some of the results of the query rewrite through the use of the
Explain facility or Visual Explain.

There are three major categories of rewriting that the SQL compiler may
perform:

v Operation Merging
v Operation Movement
v Predicate Translation.

Operation Merging

The SQL compiler will rewrite queries to merge query operations, in an
attempt to construct the query so that it has the fewest number of operations,
especially SELECT operations. The following examples are provided to
illustrate some of the operations that can be merged by the SQL compiler:
v Example - View Merges

Chapter 5. Understanding the SQL Compiler 115

Using views in a SELECT statement can restrict the join order of the table
and can also introduce redundant joining of tables. By merging the views
during query rewrite, these restrictions can be lifted.

v Example - Subquery to Join Transformations
The use of subqueries in a SELECT statement can force a join method and
the selection of inner and outer tables for the join. During query rewrite,
the subquery can sometimes be merged into the main query as a join,
which gives the optimizer more choices to choose the most efficient access
plan.

v Example - Redundant Join Elimination
During query rewrite redundant joins can be removed to further simplify
the SELECT statement that will be optimized.

v Example - Shared Aggregation
When using different functions, rewriting the query can reduce the number
of calculations that need to be done.

v Example - Summary Tables
If they exist, summary tables can be used instead of regular tables. They are
of smaller size and therefore require less processing.

Example - View Merges

Suppose you have access to the following two views of the EMPLOYEE table,
one showing employees with a high level of education and the other view
showing employees earning more than $35,000:

CREATE VIEW EMP_EDUCATION (EMPNO, FIRSTNME, LASTNAME, EDLEVEL) AS
SELECT EMPNO, FIRSTNME, LASTNAME, EDLEVEL

FROM EMPLOYEE
WHERE EDLEVEL > 17
CREATE VIEW EMP_SALARIES (EMPNO, FIRSTNAME, LASTNAME, SALARY) AS
SELECT EMPNO, FIRSTNME, LASTNAME, SALARY

FROM EMPLOYEE
WHERE SALARY > 35000

Now suppose you perform the following query to list the employees who
have a high education level and who are earning more than $35,000:

SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY
FROM EMP_EDUCATION E1,

EMP_SALARIES E2
WHERE E1.EMPNO = E2.EMPNO

During query rewrite, these two views could be merged to create the
following query:

116 Administration Guide: Performance

SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY
FROM EMPLOYEE E1,

EMPLOYEE E2
WHERE E1.EMPNO = E2.EMPNO
AND E1.EDLEVEL > 17
AND E2.SALARY > 35000

By merging the SELECT statements from the two views with the user-written
SELECT statement, the optimizer can consider more choices when selecting an
access plan. In addition, if the two views that have been merged use the same
base table, additional rewriting may be performed as described in “Example -
Redundant Join Elimination”.

Example - Subquery to Join Transformations

The SQL compiler will take a query containing a subquery, such as:
SELECT EMPNO, FIRSTNME, LASTNAME, PHONENO
FROM EMPLOYEE
WHERE WORKDEPT IN

(SELECT DEPTNO
FROM DEPARTMENT

WHERE DEPTNAME = 'OPERATIONS')

and convert it to a join query of the form:
SELECT DISTINCT EMPNO, FIRSTNME, LASTNAME, PHONENO
FROM EMPLOYEE EMP,

DEPARTMENT DEPT
WHERE EMP.WORKDEPT = DEPT.DEPTNO
AND DEPT.DEPTNAME = 'OPERATIONS'

A join is generally much more efficient to execute than a subquery.

Example - Redundant Join Elimination

Queries can sometimes be written or generated which have unnecessary joins.
Queries such as the following could also be produced during the query
rewrite stage as described in “Example - View Merges” on page 116.

SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY
FROM EMPLOYEE E1,

EMPLOYEE E2
WHERE E1.EMPNO = E2.EMPNO
AND E1.EDLEVEL > 17
AND E2.SALARY > 35000

In this query, the SQL compiler can eliminate the join and simplify the query
to:

Chapter 5. Understanding the SQL Compiler 117

SELECT EMPNO, FIRSTNME, LASTNAME, EDLEVEL, SALARY
FROM EMPLOYEE

WHERE EDLEVEL > 17
AND SALARY > 35000

Another example assumes that a referential constraint exists between the
EMPLOYEE and DEPARTMENT sample tables on the department number.
First, a view is created.

CREATE VIEW PEPLVIEW
AS SELECT FIRSTNME, LASTNAME, SALARY, DEPTNO, DEPTNAME, MGRNO

FROM EMPLOYEE E DEPARTMENT D
WHERE E.WORKDEPT = D.DEPTNO

Then a query such as the following:
SELECT LASTNAME, SALARY

FROM PEPLVIEW

becomes
SELECT LASTNAME, SALARY

FROM EMPLOYEE
WHERE WORKDEPT NOT NULL

Note that in this situation, even if the user knows that the query can be
re-written, they may not be able to do so because they do not have access to
the underlying tables. They may only have access to the view (shown above).
Therefore, this type of optimization has to be performed within the database
manager.

Redundancy in referential integrity joins is likely where:

v Views are defined with joins
v Queries are automatically generated.

For example, there are automated tools in query managers which prevent
users from writing optimized queries.

Example - Shared Aggregation

Using multiple functions within a query can generate several calculations
which take time. Reducing the number of calculations to be done within the
query results in an improved plan. The SQL compiler takes a query using
multiple functions such as:

SELECT SUM(SALARY+BONUS+COMM) AS OSUM,
AVG(SALARY+BONUS+COMM) AS OAVG,
COUNT(*) AS OCOUNT

FROM EMPLOYEE;

and transforms the query in the following way:

118 Administration Guide: Performance

SELECT OSUM,
OSUM/OCOUNT
OCOUNT

FROM (SELECT SUM(SALARY+BONUS+COMM) AS OSUM,
COUNT(*) AS OCOUNT

FROM EMPLOYEE) AS SHARED_AGG;

This rewrite reduces the query from 2 sums and 2 counts to 1 sum and 1
count.

Example - Summary Tables

Following is an example of a multidimensional analysis that could take
advantage of summary tables. A summary table is created with the sum and
count of sales for each level of:
v Product hierarchy
v Location hierarchy
v Time hierarchy, composed of year, month, day.

A wide range of queries can pick up their answers from this stored aggregate
data. The following example calculates the sum of product group sales, by
state, by month. Queries that can take advantage of such pre-computed sums
would include:
v Sales by month and product group
v Total sales for years after 1990
v Sales for 1995 or 1996
v Sum of sales for a product group or product line
v Sum of sales for a specific product group or product line AND for 1995,

1996
v Sum of sales for a specific country.

While the precise answer is not included in the summary table for any of
these queries, the cost of computing the answer using the summary table
could be significantly less than using a large base table, because a portion of
the answer is already computed. For example:

CREATE TABLE PG_SALESSUM
AS (

SELECT l.id AS prodline, pg.id AS pgroup,
loc.country, loc.state
YEAR(pdate) AS year, MONTH(pdate) AS month,
SUM(ti.amount) AS amount,
COUNT(*) AS count

FROM cube.transitem AS ti, cube.trans AS t,
cube.loc AS loc, cube.pgroup AS pg,
cube.prodline AS l

WHERE ti.transid = t.id
AND ti.pgid = pg.id

Chapter 5. Understanding the SQL Compiler 119

AND pg.lineid = l.id
AND t.locid = loc.id
AND YEAR(pdate) > 1990

GROUP BY l.id, pg.id, loc.country, loc.state,
year(pdate), month(pdate)

)
DATA INITIALLY DEFERRED REFRESH DEFERRED;

REFRESH TABLE SALESCUBE;

The following are sample queries that would obtain significant performance
improvements because they are able to use the results in the summary table
that are already computed. The first example returns the total sales for 1995
and 1996:

SET CURRENT REFRESH AGE=ANY

SELECT YEAR(pdate) AS year, SUM(ti.amount) AS amount
FROM cube.transitem AS ti, cube.trans AS t,

cube.loc AS loc, cube.pgroup AS pg,
cube.prodline AS l

WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = l.id
AND t.locid = loc.id
AND YEAR(pdate) IN (1995, 1996)

GROUP BY year(pdate);

The second example returns the total sales by product group for 1995 and
1996:

SET CURRENT REFRESH AGE=ANY

SELECT pg.id AS "PRODUCT GROUP",
SUM(ti.amount) AS amount

FROM cube.transitem AS ti, cube.trans AS t,
cube.loc AS loc, cube.pgroup AS pg,
cube.prodline AS l

WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = l.id
AND t.locid = loc.id
AND YEAR(pdate) IN (1995, 1996)

GROUP BY pg.id;

Operation Movement

The SQL compiler will rewrite queries to move query operations in an
attempt to construct the query with the minimum number of operations and
predicates. The following examples are provided to illustrate some of the
operations that can be moved by the SQL compiler:
v Example - DISTINCT Elimination

120 Administration Guide: Performance

During query rewrite, the optimizer can move where the DISTINCT
operation is performed, to reduce the cost of this operation. In the example
provided, the DISTINCT operation is removed completely.

v Example - General Predicate Pushdown
During query rewrite, the order of applying predicates can be changed so
that more selective predicates are applied to the query as early as possible.

v Example - Decorrelation
When in a partitioned database environment the movement of results sets
between database partitions is costly. Reducing the size of what must be
broadcast to other database partitions and/or the number of broadcasts is
one of the objectives when rewriting queries.

Example - DISTINCT Elimination

If the EMPNO column was defined as the primary key of the EMPLOYEE
table, the following query:

SELECT DISTINCT EMPNO, FIRSTNME, LASTNAME
FROM EMPLOYEE

would be rewritten by removing the DISTINCT clause:
SELECT EMPNO, FIRSTNME, LASTNAME
FROM EMPLOYEE

In the above example, since the primary key is being selected, the SQL
compiler knows that each row returned will already be unique. In this case,
the DISTINCT key word is redundant. If the query was not rewritten, the
optimizer would build a plan with the necessary processing (a sort, for
example) to ensure that the columns are distinct.

Example - General Predicate Pushdown

Altering the level at which a predicate is normally applied can result in
improved performance. For example, given the following view which
provides a list of all employees in department “D11”:

CREATE VIEW D11_EMPLOYEE
(EMPNO, FIRSTNME, LASTNAME, PHONENO, SALARY, BONUS, COMM)

AS SELECT EMPNO, FIRSTNME, LASTNAME, PHONENO, SALARY, BONUS, COMM
FROM EMPLOYEE

WHERE WORKDEPT = 'D11'

And given the following query:
SELECT FIRSTNME, PHONENO
FROM D11_EMPLOYEE

WHERE LASTNAME = 'BROWN'

Chapter 5. Understanding the SQL Compiler 121

The query rewrite stage of the compiler will push the predicate LASTNAME =
'BROWN' up into the view D11_EMPLOYEE. This allows the predicate to be
applied sooner and potentially more efficiently. The actual query that could be
executed in this example is:

SELECT FIRSTNME, PHONENO
FROM EMPLOYEE

WHERE LASTNAME = 'BROWN'
AND WORKDEPT = 'D11'

Pushdown of predicates is not limited to views. Other situations in which
predicates may be pushed down include UNIONs, GROUP BYs, and derived
tables (nested table expressions or common table expressions).

Example - Decorrelation

In a partitioned database environment, the SQL compiler can rewrite the
following query:

Find all the employees who are working on programming projects and are
underpaid.

SELECT P.PROJNO, E.EMPNO, E.LASTNAME, E.FIRSTNAME,
E.SALARY+E.BONUS+E.COMM AS COMPENSATION

FROM EMPLOYEE E, PROJECT P
WHERE P.EMPNO = E.EMPNO
AND P.PROJNAME LIKE '%PROGRAMMING%'
AND E.SALARY+E.BONUS+E.COMM <
(SELECT AVG(E1.SALARY+E1.BONUS+E1.COMM)

FROM EMPLOYEE E1, PROJECT P1
WHERE P1.PROJNAME LIKE '%PROGRAMMING%'
AND P1.PROJNO = A.PROJNO
AND E1.EMPNO = P1.EMPNO)

Since this query is correlated, and since both PROJECT and EMPLOYEE are
unlikely to be partitioned on PROJNO, the broadcast of each project to each
database partition is possible. In addition, the subquery would have to be
evaluated many times.

The SQL compiler can rewrite the query as follows:
v Determine the distinct list of employees working on programming projects,

DIST_PROJS, otherwise we’ll aggregate on non-distinct project numbers
multiple times, yielding incorrect results:

WITH DIST_PROJS(PROJNO, EMPNO) AS
(SELECT DISTINCT PROJNO, EMPNO
FROM PROJECT P1
WHERE P1.PROJNAME LIKE '%PROGRAMMING%')

v Using the distinct list of employees working on the programming projects,
join this to the employee table, to get the average compensation per project,
AVG_PER_PROJ:

122 Administration Guide: Performance

AVG_PER_PROJ(PROJNO, AVG_COMP) AS
(SELECT P2.PROJNO, AVG(E1.SALARY+E1.BONUS+E1.COMM)
FROM EMPLOYEE E1, DIST_PROJS P2
WHERE E1.EMPNO = P2.EMPNO
GROUP BY P2.PROJNO)

v Then the new query would be:
SELECT P.PROJNO, E.EMPNO, E.LASTNAME, E.FIRSTNAME,

E.SALARY+E.BONUS+E.COMM AS COMPENSATION
FROM PROJECT P, EMPLOYEE E, AVG_PER_PROG A

WHERE P.EMPNO = E.EMPNO
AND P.PROJNAME LIKE '%PROGRAMMING%'
AND P.PROJNO = A.PROJNO
AND E.SALARY+E.BONUS+E.COMM < A.AVG_COMP

The rewritten SQL query computes the AVG_COMP per project (AVG_PRE_PROJ)
and can then broadcast the result to all database partitions containing the
EMPLOYEE table.

Predicate Translation

The SQL compiler will rewrite queries to translate existing predicates to more
optimal predicates for the specific query. The following examples are provided
to illustrate some of the predicates that could be translated by the SQL
compiler:
v Example - Addition of Implied Predicates

During query rewrite, predicates can be added to the query to allow the
optimizer to consider additional table joins when selecting the best access
plan for the query.

v Example - OR to IN Transformations
During query rewrite, an OR predicate can be translated into an IN
predicate to allow for a more efficient access plan to be chosen. The SQL
compiler can also translate an IN predicate into an OR predicate if this
transformation would allow a more efficient access plan to be chosen.

Example - Addition of Implied Predicates

The following query produces a list of the managers whose departments
report to “E01” and the projects for which those managers are responsible:

SELECT DEPT.DEPTNAME DEPT.MGRNO, EMP.LASTNAME, PROJ.PROJNAME
FROM DEPARTMENT DEPT,

EMPLOYEE EMP,
PROJECT PROJ

WHERE DEPT.ADMRDEPT = 'E01'
AND DEPT.MGRNO = EMP.EMPNO
AND EMP.EMPNO = PROJ.RESPEMP

The query rewrite will add the following implied predicate:

Chapter 5. Understanding the SQL Compiler 123

DEPT.MGRNO = PROJ.RESPEMP

As a result of this rewrite, the optimizer can consider additional joins when it
is trying to select the best access plan for the query.

In addition to the above predicate transitive closure, query rewrite will also
derive additional local predicates based on the transitivity implied by equality
predicates. For example, the following query lists the names of the
departments (whose department number is greater than “E00”) and
employees who work in that department.

SELECT EMPNO, LASTNAME, FIRSTNAME, DEPTNO, DEPTNAME
FROM EMPLOYEE EMP,

DEPARTMENT DEPT
WHERE EMP.WORKDEPT = DEPT.DEPTNO
AND DEPT.DEPTNO > 'E00'

For this query, the rewrite stage will add the following implied predicate:
EMP.WORKDEPT > 'E00'

As a result of this rewrite, the optimizer reduces the number of rows to be
joined.

Example - OR to IN Transformations

Suppose an OR clause connects two or more simple equality predicates on the
same column, as in the following example:

SELECT *
FROM EMPLOYEE

WHERE DEPTNO = 'D11'
OR DEPTNO = 'D21'
OR DEPTNO = 'E21'

If there is no index on the DEPTNO column, converting the OR clause to the
following IN predicate will allow the query to be processed more efficiently:

SELECT *
FROM EMPLOYEE

WHERE DEPTNO IN ('D11', 'D21', 'E21')

Note: In some cases, the database manager may convert an IN predicate to a
set of OR clauses so that index ORing may be performed. See “Multiple
Index Access” on page 133 for more information about index ORing.

124 Administration Guide: Performance

Accounting for Column Correlation

You may have applications which contain queries constructed with joins that
have more than one join predicate joining two tables. While this may sound
complicated, such a situation is not unusual where you are attempting to
determine relationships between similar, related columns between tables.

For example, a manufacturer makes products from raw material of various
colors, elasticities and qualities. The finished product has the same color and
elasticity as the raw material from which it is made. The manufacturer issues
the query:

SELECT PRODUCT.NAME, RAWMATERIAL.QUALITY FROM PRODUCT, RAWMATERIAL
WHERE PRODUCT.COLOR = RAWMATERIAL.COLOR
AND PRODUCT.ELASTICITY = RAWMATERIAL.ELASTICITY

This query returns the names and raw material quality of all products. There
are two join predicates:

PRODUCT.COLOR = RAWMATERIAL.COLOR
PRODUCT.ELASTICITY = RAWMATERIAL.ELASTICITY

When the DB2 UDB optimizer chooses a plan for executing this query, it
calculates how selective each of the two predicates are, and assumes that they
are independent, that is, that all variations of elasticity occur for each color,
and that conversely for each level of elasticity there is raw material of every
color. It then uses statistics on how many levels of elasticity and how many
different colors there are in each table to calculate the overall selectivity of the
pair of predicates. Based on this it may choose, for example, a Nested Loop
Join in preference to a Merge Join, or vice versa.

However, it may be that these two predicates are not independent. For
example, it may be that the highly elastic materials are available in only a few
colors, and the very inelastic materials are only available in a few other colors
(different from the elastic ones). Then the combined selectivity of the
predicates is less (eliminates fewer rows) so the query will return more rows.
To see this, imagine the extreme case where there is just one level of elasticity
for each color and vice versa. Now either one of the predicates logically could
be omitted entirely since it is implied by the other. The optimizer’s choice of
plan may no longer be the best, for example it may be that the Nested Loop
join plan is selected but the Merge Join would be faster.

With other database products, database administrators have tried to solve this
performance problem by updating statistics in the catalog to try to make one
of the predicates appear to be less selective, but this approach can cause
unwanted side-effects on other queries.

Chapter 5. Understanding the SQL Compiler 125

DB2 UDB’s optimizer attempts to detect and compensate for correlation of
join predicates if you:
1. Set the DB2 registry variable DB2_CORRELATED_PREDICATES=Y (or any

value indicating true). This registry variable will take effect after issuing a
db2start.

2. Define unique indexes on the correlated columns, that is, on the columns
of a table which appear in the correlated predicates.

In the above example, you could define a unique index covering either:
PRODUCT.COLOR, PRODUCT.ELASTICITY

or
RAWMATERIAL.COLOR, RAWMATERIAL.ELASTICITY

or both.

In order for correlation to be detected, the non-include columns of this index
must be correlated columns, and no other columns. The index may optionally
contain include columns.

In general there may be more than 2 correlated columns in join predicates so
you should ensure that you define the unique index to cover all of them.

In many cases the correlated columns in one table form its primary key. A
primary key is always unique so if there’s a primary key on the correlated
columns, there’s no need to define another unique index.

After doing this, ensure that statistics on tables are up to date and that they
have not been altered away from the true values for any reason, for example
to attempt to influence the optimizer.

When DB2_CORRELATED_PREDICATES is true, the optimizer will use the
KEYCARD information of unique index statistics to detect cases of correlation,
and dynamically adjust combined selectivities of the correlated predicates,
thus obtaining a more accurate estimate of the join size and cost.

Data Access Concepts and Optimization

When compiling an SQL statement, the SQL optimizer estimates the execution
cost of different ways of satisfying your request. Based on this evaluation, the
optimizer selects what it believes to be the optimal access plan. An access plan
specifies the order of operations required to resolve an SQL statement. When
an application program is bound, a package is created. This package contains

126 Administration Guide: Performance

access plans for all of the static SQL statements in that application program.
Access plans for dynamic SQL statements are created at the time that the
application is executed.

There are two ways of accessing data in a table: by directly reading the table
(relation scan), or by first accessing an index on that table (index scan).

A relation scan occurs when the database manager sequentially accesses every
row of a table. See “Index Scan Concepts” to learn how an index scan works
and see “Relation Scan versus Index Scan” on page 136 to understand under
what conditions each type of scan is used.

The following topics describe other methods that can also be used in an access
plan to access data in a table, and to produce the results for your query:

v “Predicate Terminology” on page 138

v “Join Concepts” on page 141

v “Join Strategies in a Partitioned Database” on page 149

v “Influence of Sorting on the Optimizer” on page 157.

Other Related Topics:

v “Adjusting the Optimization Class” on page 36, provides information about
controlling the number of alternative access plans evaluated by the SQL
compiler

v “Chapter 6. SQL Explain Facility” on page 177, provides information about
how you can obtain information about the access plan chosen by the SQL
compiler.

Index Scan Concepts

An index scan occurs when the database manager accesses an index to do any
or all of the following:
v Narrow down the set of qualifying rows (by scanning the rows in a certain

range of the index) before accessing the base table. The index scan range (the
start and stop points of the scan) is determined by the values in the query
against which index columns are being compared.

v Order the output.
v Fully retrieve the requested data. If all of the requested data is in the index,

the base table will not be accessed. This is known as an Index-only access.

Scans may also be performed on indexes in the direction opposite to that with
which they were defined. Refer to the ALLOW REVERSE SCANS option on
the CREATE INDEX statement in the SQL Reference for more information.

Chapter 5. Understanding the SQL Compiler 127

The following additional topics are provided:
v Index Structure
v Index Scans to Delimit a Range
v Index Scans to Order Data
v Index-Only Access
v Multiple Index Access
v Clustered Indexes
v Index Page Prefetch.

Index Structure

The database manager uses a B+ tree structure for storing its indexes. A B+
tree has one or more levels, as shown in the following diagram (where RID
means row ID):

The top level is called the root node. The bottom level consists of leaf nodes,
where the actual index key values are stored, as well as a pointer to the actual
row in the table. Levels between the root and leaf node levels are called
intermediate nodes.

In looking for a particular index key value, Index Manager searches the index
tree, starting at the root node. The root contains one key for each node at the

‘E ’ ‘Z ’‘N ’

‘F ’ ‘N ’‘L ’

(‘F’,rid) (‘M’,rid)
(‘N’,rid)

(‘G’,rid)
(‘I’,rid)
(‘K’,rid)

ROOT
NODE

INTERMEDIATE
NODES

LEAF
NODES

.

.

.

.

.

.

Figure 3. B+ Tree Structure

128 Administration Guide: Performance

next level. The value of each of these keys is the largest existing key value for
the corresponding node at the next level. For example, if an index has three
levels as shown in Figure 3 on page 128, then to find an index key value,
Index Manager would search the root node for the first key value greater than
or equal to the key being looked for. This root node key would point to a
specific intermediate node. The same procedure would be followed with that
intermediate node to determine which leaf node to go to. The final index key
would be found in the leaf node. Using Figure 3 on page 128, the key being
looked for is “I”. The first key in the root node greater than or equal to “I” is
“N”. This points to the middle node at the next level. The first key in that
intermediate node that is greater than or equal to “I” is “L”. This points to a
specific leaf node where the index key for “I” along with its corresponding
row ID(s) are found (the row ID of the corresponding rows in the base table).

Note: At the leaf node level there can be previous leaf pointers. This can be of
great benefit since once finding a particular key value in the index by
traversing the tree, the Index Manager can scan through the leaf nodes
in either direction to retrieve a range of values. This ability to scan in
either direction is only possible if the index was created using the
ALLOW REVERSE SCANS parameter.

Refer to the options on the CREATE INDEX statement in the SQL Reference for
more information.

Index Scans to Delimit a Range

In determining whether an index can be used for a particular query, the
optimizer evaluates each column of the index starting with the first column to
see if it can be used to satisfy:
v Any of the EQUAL predicates in the statement’s WHERE clause
v Any other predicates in the WHERE clause.

A predicate is an element of a search condition in a WHERE clause that
expresses or implies a comparison operation. Predicates that can be used to
delimit the range of an index scan are those involving an index column in
which one of the following is true:
v The index column is being tested for equality against a constant, a host

variable, an expression that evaluates to a constant, or a keyword
v The test against the index column is “IS NULL” or “IS NOT NULL”
v The test is for equality against a basic subquery (that is, one that does not

contain ANY, ALL, or SOME), and the subquery does not have a correlated
column reference to its immediate parent query block (that is, the SELECT
for which this subquery is a subselect).

v The test is an inequality predicate meeting the conditions described below.

Chapter 5. Understanding the SQL Compiler 129

For example, given an index with the following definition:
INDEX IX1: NAME ASC,

DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

the following predicates could be used in delimiting the range of the scan of
index IX1:

WHERE NAME = :hv1
AND DEPT = :hv2

or
WHERE MGR = :hv1

AND NAME = :hv2
AND DEPT = :hv3

Note that in the second example the WHERE predicates do not have to be
specified in the same order as the key columns appear in the index. And,
although host variables are used in the examples, parameter markers,
expressions, or constants would have the same effect.

A single index created using the ALLOW REVERSE SCANS parameter on the
CREATE INDEX statement can be scanned in a forward or a backward
direction. That is, such indexes support scans in the direction defined when
the index was created and scans in the opposite or reverse direction. The
statement could look something like this:

CREATE INDEX iname ON tname (cname DESC) ALLOW REVERSE SCANS

In this case, the index (iname) is formed based on DESCending values in
cname. By allowing reverse scans, although the index on the column is defined
for scans in descending order, a scan can be done in ascending order. The
actual use of the index in both directions is not controlled by you but by the
optimizer when creating and considering access plans.

In the following WHERE clause, only the predicates for NAME and DEPT
would be used in delimiting the range of the index scan, but not the
predicates for SALARY or YEARS:

WHERE NAME = :hv1
AND DEPT = :hv2
AND SALARY = :hv4
AND YEARS = :hv5

This is because there is a key column (MGR) separating these columns from
the first two index key columns, so the ordering would be off. However, once

130 Administration Guide: Performance

the range is determined by the NAME = :hv1 and DEPT = :hv2 predicates, the
remaining predicates can be evaluated against the remaining index key
columns.

In addition to the equality predicates described above, certain inequality
predicates may be used to delimit the range of an index scan. The following
discusses the two types of inequality predicates: strict inequality and inclusive
inequality.

Strict Inequality Predicates: The strict inequality operators which can be used
for range delimiting predicates are > and <.

For delimiting a range for an index scan, only one column with strict
inequality predicates will be considered. In the following example, the
predicates on the NAME and DEPT columns can be used to delimit the range,
but the predicate on the MGR column cannot be used.

WHERE NAME = :hv1
AND DEPT > :hv2
AND DEPT < :hv3
AND MGR < :hv4

Inclusive Inequality Predicates: The following are inclusive inequality
operators which can be used for range delimiting predicates:
v >= and <=
v BETWEEN
v LIKE

For delimiting a range for an index scan, multiple columns with inclusive
inequality predicates will be considered. In the following example, all of the
predicates can be used to delimit the range of the index scan:

WHERE NAME = :hv1
AND DEPT >= :hv2
AND DEPT <= :hv3
AND MGR <= :hv4

To further illustrate this example, suppose that :hv2 = 404, :hv3 = 406, and
:hv4 = 12345. The database manager will scan the index for all of
departments 404 and 405, but it will stop scanning department 406 when it
reaches the first manager that has an employee number (MGR column)
greater than 12345.

For additional information, see “Range Delimiting and Index SARGable
Predicates” on page 139.

Chapter 5. Understanding the SQL Compiler 131

Index Scans to Order Data

If the query involves ordering, an index can be used to order the data if the
ordering columns appear consecutively in the index, starting from the first
index key column. (Ordering or sorting can result from operations such as
ORDER BY, DISTINCT, GROUP BY, “= ANY” subquery, “> ALL” subquery,
“< ALL” subquery, INTERSECT or EXCEPT, UNION.) An exception to this is
when the index key columns are compared for equality against “constant
values” (that is, any expression that evaluates to a constant). In this case the
ordering column can be other than the first index key columns. For example,
in the query:

WHERE NAME = 'JONES'
AND DEPT = 'D93'

ORDER BY MGR

the index could be used to order the rows since NAME and DEPT will always
be the same values and will thus be ordered. Another way of saying this is
that the preceding WHERE and ORDER BY clauses are equivalent to:

WHERE NAME = 'JONES'
AND DEPT = 'D93'

ORDER BY NAME, DEPT, MGR

A unique index can also be used to truncate an order requirement. For
example, given the following index definition and order by clause:

UNIQUE INDEX IX0: PROJNO ASC
SELECT PROJNO, PROJNAME, DEPTNO

FROM PROJECT
ORDER BY PROJNO, PROJNAME

additional ordering on the PROJNAME column is not required since the IX0
index ensures that PROJNO is unique. This uniqueness ensures that there is
only one PROJNAME value for each PROJNO value.

Index-Only Access

In some cases, all of the required data can be retrieved from the index without
accessing the table. This is known as an index-only access.

To illustrate an index-only access, consider the following index definition:
INDEX IX1: NAME ASC,

DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

and the following query can be satisfied by accessing only the index, and
without reading the base table:

132 Administration Guide: Performance

SELECT NAME, DEPT, MGR, SALARY
FROM EMPLOYEE

WHERE NAME = 'SMITH'

In other cases, there may be columns that do not appear in the index. To
obtain the data for these columns, rows of the base table must be read. For
example, given the IX1 index, the following query needs to access the base
table to obtain the PHONENO and HIREDATE column data:

SELECT NAME, DEPT, MGR, SALARY, PHONENO, HIREDATE
FROM EMPLOYEE
WHERE NAME = 'SMITH'

By creating a unique index with include columns, you can improve the
performance of data retrieval by increasing the number of access attempts
based solely on indexes.

To illustrate the use of include columns, consider the following index
definition:

CREATE UNIQUE INDEX IX1 ON EMPLOYEE
(NAME ASC)
INCLUDE (DEPT, MGR, SALARY, YEARS)

This creates a unique index which enforces uniqueness of the NAME column
yet stores and maintains data for DEPT, MGR, SALARY, and YEARS columns.

The following query can be satisfied by accessing only the index and without
reading the base table:

SELECT NAME, DEPT, MGR, SALARY
FROM EMPLOYEE
WHERE NAME='SMITH'

Multiple Index Access

In all of the above examples, a single index scan was performed to produce
the results. To satisfy the predicates of a WHERE clause, the optimizer can
choose to scan multiple indexes. For example, given the following two index
definitions:

INDEX IX2: DEPT ASC
INDEX IX3: JOB ASC,

YEARS ASC

the following predicates could be resolved using these two indexes:
WHERE DEPT = :hv1
OR (JOB = :hv2
AND YEARS >= :hv3)

Chapter 5. Understanding the SQL Compiler 133

In this example, scanning index IX2 will produce a list of row IDs (RIDs) that
satisfy the DEPT = :hv1 predicate. Scanning index IX3 will produce a list of
RIDs satisfying the JOB = :hv2 AND YEARS >= :hv3 predicate. These two lists
of RIDs can be combined and duplicates removed before accessing the table.
This is known as index ORing.

Index ORing may also be used for predicates using the IN expression, as in
the following example:

WHERE DEPT IN (:hv1, :hv2, :hv3)

With index ORing you are looking to eliminate duplicate RIDs, however with
index ANDing you are looking for RIDs that occur in every index scanned.
Index ANDing may occur with applications where there are multiple indexes
on corresponding columns within the same table and a query using multiple
“and” predicates is run against that table. Multiple index scans against each
indexed column in such a query produce qualifying rows that have their RID
values hashed to dynamically create bitmaps. The second bitmap is used to
probe the first bitmap to generate the qualifying rows that are fetched to
create the final returned data set.

For example, given the following two index definitions:
INDEX IX4: SALARY ASC
INDEX IX5: COMM ASC

the following predicates could be resolved using these two indexes:
WHERE SALARY BETWEEN 20000 AND 30000

AND COMM BETWEEN 1000 AND 3000

In this example, scanning index IX4 produces a dynamic bitmap index
satisfying the SALARY BETWEEN 20000 AND 30000 predicate. Scanning IX5 and
probing the dynamic bitmap index for IX4 results in the list of qualifying
RIDs that satisfy both predicates. This is known as “dynamic bitmap
ANDing”. It only occurs if the table has sufficient cardinality and the columns
have sufficient values in the qualifying range, or sufficient duplication if
equality predicates are used.

Note: In the accessing of any single table, DB2 does not combine index
ANDing and index ORing.

Clustered Indexes

When selecting the access plan, the optimizer considers the I/O cost of
fetching pages from disk to the buffer pool. In its calculations, the optimizer
will estimate the number of I/Os required to satisfy a query. This estimate
includes a prediction of buffer pool usage, since additional I/Os are not
required to read rows in a page that is already in the buffer pool.

134 Administration Guide: Performance

For index scans, the optimizer uses information from the system catalog tables
(SYSCAT.INDEXES) to help estimate I/O cost of reading data pages into the
buffer pool. The following columns from the SYSCAT.INDEXES table are used:
v CLUSTERRATIO indicating the degree to which the table data in relation to

this index is clustered. A higher number means that the rows are ordered
on the data pages in index key sequence. Therefore, all of the rows on a
data page can be read while the page is in buffer. If the value of this
column is -1, the optimizer will attempt to use PAGE_FETCH_PAIRS and
CLUSTERFACTOR.
or

v PAGE_FETCH_PAIRS containing several pairs of numbers which model the
number of I/Os required to read the data pages into buffer pools of various
sizes together with CLUSTERFACTOR. When collecting statistics for an
index, this information is considered a detailed statistic.

If statistics are not available, the optimizer will use default values for the
statistics, which assume poor clustering of the data to the index. See also
“Chapter 4. System Catalog Statistics” on page 79 and “Collecting Statistics
Using the RUNSTATS Utility” on page 81.

You can specify a clustering index that will be used both to cluster the rows
during a table reorganization and to preserve this characteristic during insert
processing. (See “Reorganizing Table Data” on page 229 for information about
table reorganization.) Subsequent updates and inserts may make the index
less well clustered (as measured by the statistics gathered by RUNSTATS), so
you may need to periodically reorganize the table. To reduce the frequency of
reorganization on a volatile database, use the PCTFREE parameter when
altering a table. This will allow for additional inserts to be clustered with the
existing data.

The degree to which the data is clustered with respect to the index can have a
significant impact on performance and you should try to keep one of the
indexes on the table close to 100 percent clustered.

In general, only one index can be one hundred percent clustered, except in
those cases where the keys are a superset of the keys of the clustering index;
or, where there is de facto correlation between the key columns of the two
indexes.

See “Performance Tips for Administering Indexes” on page 70 for more
information on performance reasons to use clustering indexes. Refer to the
SQL Reference, CREATE INDEX, for more information on how to create a
clustering index.

Chapter 5. Understanding the SQL Compiler 135

Clustering Page Reads Using List Prefetch: If the optimizer uses an index to
access rows, it can defer reading the data pages until all the RIDs (row
identifiers) have been obtained from the index. For example, given the
previously defined index IX1:

INDEX IX1: NAME ASC,
DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

and the following search criteria:
WHERE NAME BETWEEN 'A' and 'I'

the optimizer could perform an index scan on IX1 to determine the rows (and
data pages) to retrieve. If the data was not clustered according to this index,
list prefetch will include a step to sort the list of RIDs obtained from the index
scan. See “Understanding List Prefetching” on page 222 for more information.

Index Page Prefetch

When appropriate, the database manager detects sequential access to index
pages and will generate prefetch requests. This will significantly reduce the
elapsed time for nonselective index scans, and selective index scans accessing
a significant portion of the index.

The optimizer uses index statistics such as DENSITY and
SEQUENTIAL_PAGES, the characteristics of the table spaces in which the
index resides, and the effect of any range delimiting predicates, to estimate the
amount of index page prefetch that will occur. These estimates are factored
into the overall cost estimate for using a particular index.

See “Understanding Sequential Prefetching” on page 220 for more information.

Relation Scan versus Index Scan

The optimizer will choose a relation scan when an index cannot be used for
the query, or if the optimizer determines that an index scan would be more
costly. An index scan could be more costly when:
v The table is small
v Index clustering is low
v Most of the table is accessed.

You may use the SQL Explain facilities to determine whether your access plan
uses a relation scan or an index scan. See “Chapter 6. SQL Explain Facility” on
page 177.

136 Administration Guide: Performance

Summary Table Scan

Query rewrite will access a summary table if it determines that the query can
be answered by using the data in the summary table instead of accessing the
base table or tables.

Note: The optimization level must be 5 or greater for the optimizer to be able
to consider a summary table scan.

Following is an example of a multidimensional analysis that could take
advantage of summary tables. A summary table is created with the sum and
count of sales for each level of:
v Product hierarchy
v Location hierarchy
v Time hierarchy, composed of year, month, day.

A wide range of queries can pick up their answers from this stored aggregate
data. The following example calculates the sum of product group sales, by
state, by month. Queries that can take advantage of such pre-computed sums
would include:
v Sales by month and product group
v Total sales for years after 1990
v Sales for 1995 or 1996
v Sum of sales for a product group or product line
v Sum of sales for a specific product group or product line AND for 1995,

1996
v Sum of sales for a specific country.

While the precise answer is not included in the summary table for any of
these queries, the cost of computing the answer using the summary table
could be significantly less than using a large base table, because a portion of
the answer is already computed. For example:

CREATE TABLE PG_SALESSUM
AS (

SELECT l.id AS prodline, pg.id AS pgroup,
loc.country, loc.state
YEAR(pdate) AS year, MONTH(pdate) AS month,
SUM(ti.amount) AS amount,
COUNT(*) AS count

FROM cube.transitem AS ti, cube.trans AS t,
cube.loc AS loc, cube.pgroup AS pg,
cube.prodline AS l

WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = l.id
AND t.locid = loc.id

Chapter 5. Understanding the SQL Compiler 137

AND YEAR(pdate) > 1990
GROUP BY l.id, pg.id, loc.country, loc.state,

year(pdate), month(pdate)
)

DATA INITIALLY DEFERRED REFRESH DEFERRED;

REFRESH TABLE SALESCUBE;

The following are sample queries that would obtain significant performance
improvements because they are able to use the results in the summary table
that are already computed. The first example returns the total sales for 1995
and 1996:

SET CURRENT REFRESH AGE=ANY

SELECT YEAR(pdate) AS year, SUM(ti.amount) AS amount
FROM cube.transitem AS ti, cube.trans AS t,

cube.loc AS loc, cube.pgroup AS pg,
cube.prodline AS l

WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = l.id
AND t.locid = loc.id
AND YEAR(pdate) IN (1995, 1996)

GROUP BY year(pdate);

The second example returns the total sales by product group for 1995 and
1996:

SET CURRENT REFRESH AGE=ANY

SELECT pg.id AS "PRODUCT GROUP",
SUM(ti.amount) AS amount

FROM cube.transitem AS ti, cube.trans AS t,
cube.loc AS loc, cube.pgroup AS pg,
cube.prodline AS l

WHERE ti.transid = t.id
AND ti.pgid = pg.id
AND pg.lineid = l.id
AND t.locid = loc.id
AND YEAR(pdate) IN (1995, 1996)

GROUP BY pg.id;

Predicate Terminology

A user application requests a set of rows from the database with an SQL
statement, qualifying the specific rows desired through the use of predicates.
When the optimizer decides how to evaluate an SQL statement, each predicate
falls into one of four categories. The category is determined by how and when
that predicate is used in the evaluation process. These categories are listed
below, ordered in terms of performance from best to worst:
1. Range delimiting predicates

138 Administration Guide: Performance

2. Index SARGable predicates
3. Data SARGable predicates
4. Residual predicates.

SARGable refers to something that can be used as a search argument.

“Summary of Predicate Usage” on page 140 provides a comparison of the
characteristics that affect the performance of the various predicate categories.

Range Delimiting and Index SARGable Predicates

Range delimiting predicates are those used to bracket an index scan. They
provide start and/or stop key values for the index search. Index SARGable
predicates are not used to bracket a search, but can be evaluated from the
index because the columns involved in the predicate are part of the index key.
For example, given the previously defined index IX1 (in the section “Index
Scan Concepts” on page 127) and the following WHERE clause:

WHERE NAME = :hv1
AND DEPT = :hv2
AND YEARS > :hv5

the first two predicates (NAME = :hv1, DEPT = :hv2) would be range
delimiting predicates, while YEARS > :hv5 would be an index SARGable
predicate.

The database manager will make use of the index data in evaluating these
predicates rather than reading the base table. These index SARGable predicates
reduce the number of data pages accessed by reducing the set of rows that
need to be read from the table. These types of predicates do not affect the
number of index pages that are accessed.

Data SARGable Predicates

Predicates that cannot be evaluated by Index Manager, but can be evaluated
by Data Management Services are called data SARGable predicates. Typically,
these predicates require the access of individual rows from a base table. If
required, Data Management Services will retrieve the columns needed to
evaluate the predicate, as well as any others to satisfy the columns in the
SELECT list that could not be obtained from the index.

For example, given a single index defined on the PROJECT table:
INDEX IX0: PROJNO ASC

And given the following query, the DEPTNO = 'D11' predicate is considered to
be data SARGable.

Chapter 5. Understanding the SQL Compiler 139

SELECT PROJNO, PROJNAME, RESPEMP
FROM PROJECT

WHERE DEPTNO = 'D11'
ORDER BY PROJNO

Residual Predicates

Residual predicates, typically, are those that require I/O beyond the simple
accessing of a base table. Examples of residual predicates include those using
correlated subqueries, using quantified subqueries (subqueries with ANY,
ALL, SOME, or IN), or reading LONG VARCHAR or LOB data (stored in a
file separate from the table). These predicates are evaluated by Relational Data
Services.

Sometimes predicates, which are applied to the index only, have to be
reapplied when the data page is accessed. For example, access plans using
index ORing or index ANDing, (see “Multiple Index Access” on page 133),
always reapply the predicates as residual predicates, when the data page is
accessed.

Summary of Predicate Usage

The use of predicates in a query can help to reduce the amount of data read
to satisfy the query. Different categories of predicates have different impacts
on the performance of a query and these impacts are considered by the
optimizer. The following table shows the ranking of the different types of
predicates and how each type of predicate can influence performance.

Table 14. Summary of Predicate Type Characteristics

Characteristic Predicate Type

Range
Delimiting

Index
SARGable

Data
SARGable

Residual

Reduce index
I/O

Yes No No No

Reduce data
page I/O

Yes Yes No No

Reduce number
of rows passed
internally

Yes Yes Yes No

Reduce number
of qualifying
rows

Yes Yes Yes Yes

140 Administration Guide: Performance

Join Concepts

A join is where rows from one table are concatenated to rows of one or more
other tables. For example, given the following two tables:

TABLE1 TABLE2
----------------- -----------------
PROJ PROJ_ID PROJ_ID NAME

------ ------- ------- ------
A 1 1 Sam
B 2 3 Joe
C 3 4 Mary
D 4 1 Sue

2 Mike

Joining Table1 and Table2 where the ID columns are equal would be
represented by the following SQL statement:

SELECT PROJ, x.PROJ_ID, NAME
FROM TABLE1 x, TABLE2 y
WHERE x.PROJ_ID = y.PROJ_ID

and would yield the following set of result rows:
PROJ PROJ_ID NAME

------ ------- ------
A 1 Sam
A 1 Sue
B 2 Mike
C 3 Joe
D 4 Mary

When joining two tables, one table is selected as the outer table and the other
as the inner. The outer table is accessed first and is only scanned once.
Whether the inner table is scanned multiple times depends on the type of join
and which indexes are present. Whether your query joins two tables or more
than two tables, the optimizer will only join two tables at a time. If needed,
temporary, intermediary results tables will be created.

The optimizer will choose one of the two join methods (nested loop join or
merge join) depending on the existence of a join predicate (defined in “Merge
Join” on page 143), as well as various costs involved as determined by table
and index statistics.

Nested Loop Join

A nested loop join is performed in one of two ways:
1. By scanning through the inner table for each accessed row of the outer

table
For example, if column A in tables T1 and T2 has the following values:

Chapter 5. Understanding the SQL Compiler 141

Outer Table T1: column A Inner Table T2: column A
------------------------ ------------------------

2 3
3 2
3 2

3
1

The steps for doing the nested loop:
v Read the first row from T1. The value for A is “2”
v Scan T2 until a match (“2”) is found, and then join the two rows
v Scan T2 until the next match (“2”) is found, and then join the two rows
v Scan T2 to the end of the table
v Go back to T1 and read the next row (“3”)
v Scan T2, starting at the first row, until a match (“3”) is found, and then

join the two rows
v Scan T2 until the next match (“3”) is found, and then join the two rows
v Scan T2 to the end of the table
v Go back to T1 and read the next row (“3”)
v Scan T2 as before, joining all rows which match (“3”).

2. By doing an index lookup on the inner table for each accessed row of the
outer table.
This method can be used for the specified predicates if there is a predicate
of the following form:

expr(outer_table.column) relop inner_table.column

where relop is a relative operator (for example =, >, >=, <, or <=) and
expr is a valid expression on the outer table. The following are examples:

OUTER.C1 + OUTER.C2 <= INNER.C1

and
OUTER.C4 < INNER.C3

This method could be a way to significantly reduce the number of rows
accessed in the inner table for each access of the outer table (although it
depends on a number of factors, including the selectivity of the join
predicate).

When evaluating a nested loop join, the optimizer will also determine
whether or not to sort the outer table before performing the join. By ordering
the outer table, based on the join columns, the number of read operations to
access pages from disk for the inner table may be reduced, since it is more
likely they will already be in the buffer pool. If the join uses a highly

142 Administration Guide: Performance

clustered index to access the inner table, the number of index pages accessed
may be minimized if the outer table has been sorted.

In addition, the optimizer may also choose to perform the sort before the join,
if it expects that the join will make a later sort more expensive. A later sort
could be required to support a GROUP BY, DISTINCT, ORDER BY or merge
join.

Merge Join

Merge join (sometimes known as merge scan join or sort merge join) requires
a predicate of the form table1.column = table2.column. This is called an
equality join predicate. Merge join requires ordered input on the joining
columns, either through index access or by sorting. In order for a merge join
to be used, the join column cannot be a LONG field column or a large object
(LOB) column.

The joined tables are scanned simultaneously. The outer table of the merge
join is scanned just once. The inner table is also scanned once unless there are
repeated values in the outer table. If there are repeated values in the outer
table, a group of rows in the inner table may be scanned again. For example,
if column A in tables T1 and T2 has the following values:

Outer Table T1: column A Inner Table T2: column A
------------------------ ------------------------

2 1
3 2
3 2

3
3

The steps for doing the merge join are:
v Read the first row from T1. The value for A is “2”
v Scan T2 until a match is found, and then join the two rows
v Keep scanning T2 while the columns match, joining rows.
v When the “3” in T2 is read, go back to T1 and read the next row
v The next value in T1 is “3”, which matches T2, so join the rows
v Keep scanning T2 while the columns match, joining rows
v The end of T2 is reached
v Go back to T1 to get the next row — note that the next value in T1 is the

same as the previous value from T1, so T2 is scanned again starting at the
first “3” in T2 (the database manager remembers this position).

Chapter 5. Understanding the SQL Compiler 143

Hash Join

Hash join requires one or more predicates of the form table1.columnX =
table2.columnY, and for which the column types are the same. For columns of
type CHAR, the length must be the same. For columns of type DECIMAL, the
precision and scale must be the same. The column type cannot be a LONG
field column, or a large object (LOB) column.

First, one table (called the INNER table) is scanned and the rows copied into
memory buffers drawn from the sort heap allocation (see the “Sort Heap Size
(sortheap)” on page 320 database configuration parameter). The memory
buffers are divided into partitions based on a “hash code” computed from the
column(s) of the join predicate(s). If the size of the first table exceeds the
available sort heap space, buffers from selected partitions are written to
temporary tables. After finishing the processing of the INNER table, the
second table (called the OUTER table) is scanned. Rows of the OUTER table
are matched to rows from the INNER table by first comparing a “hash code”
generated from the columns of the join predicate(s). Then, if the “hash code”
of the OUTER row matches the “hash code” of the INNER row, the actual join
predicate columns are compared.

OUTER table rows corresponding to partitions not written to a temporary
table are matched immediately with INNER table rows in memory. Otherwise,
if the corresponding INNER table partition was written to a temporary table,
the OUTER row is also written to a temporary table. Finally, matching pairs of
partitions from temporary tables are read and the “hash codes” of their rows
are matched and join predicates checked.

To realize the performance benefits of hash join, it may be necessary to change
the value of the sortheap database configuration parameter, and the sheapthres
database manager configuration parameter.

For decision support queries, hash join access plans use more sort heap space
than do non-hash join plans. When sheapthres is set to be relatively close to
sortheap (that is, less than a factor of two or three per concurrent query), a
hash join runs with much less memory than the optimizer anticipated. When
executing with limited memory, hash joins can be very slow. The problem
occurs in queries with multiple sorts and hash joins, in which the first sorts or
hash joins acquire most of the available memory.

The solution is to configure sheapthres to be large enough (relative to sortheap).

144 Administration Guide: Performance

Outer versus Inner Determination

When joining, how are the inner and outer tables determined? The following
are general guidelines for how the optimizer decides which table will be the
inner and which will be the outer.

In the case of a hash join, the inner table is kept in memory buffers. If there
are too few memory buffers, then the hash join is obliged to spill. The
optimizer attempts to avoid this and so will pick the smaller of the two tables
as the inner table, and the larger one as the outer table.

The order in which the tables are accessed is particularly important for a
nested loop join because the outer table is accessed once but the inner table is
accessed once for each row of the outer table. The optimizer chooses the outer
and inner tables based on cost estimates. These cost estimates are influenced
by the following factors:
v Size

The smaller table is often chosen to be the outer table to reduce the number
of times the inner table must be re-accessed. However, prefetch can cause
just the opposite to be true. Prefetching can reduce the cost of accessing a
large table substantially. However, usually prefetching is only effective for
the outer table of a join. Therefore, the larger table may be accessed first.
See “Prefetching Data into the Buffer Pool” on page 219 for more
information.

v Predicates
A table is more likely to be chosen as the outer table if selective predicates
can be applied to it because the inner table is only accessed for rows which
satisfy the predicates applied to the outer table.

v Buffering
If the entire inner table must be scanned for each row of the outer table
(that is, an index lookup cannot be performed on the inner table), the
smaller of the two tables may be chosen as the inner table to take
advantage of buffering. This will be influenced by table size and buffer pool
size. Note that since join decisions are influenced by buffer pool size, the
access plan for your applications may change, if you rebind your
applications to the database, after changing the buffer pool size.
Your ability to create more than one buffer pool, and change the size of that
buffer pool, and control the table spaces that use that buffer pool, can affect
when buffering is used within inner and outer tables.

v Indexes
If it is possible to do an index lookup on one of the tables, then that table is
a good candidate to use as the inner table. It could then be accessed with
an index key lookup using the outer table’s join key predicate as one of the
key values. If a table does not have an index, it would not be a good

Chapter 5. Understanding the SQL Compiler 145

candidate for the inner table since in that case the entire inner table would
have to be scanned for every row of the outer table.

v Order requirements
The table associated with a required order might be assessed first. For
example, if the output of the join between t1 and t2 was to be ordered on
t1.c, accessing t1 as the outer with an index on t1.c might be a good choice.
The output of the join would be ordered and no sort would be required.

SELECT * FROM t1, t2
WHERE t1.a = t2.b
ORDER BY t1.c

The order in which the tables are accessed is somewhat less important for a
merge join because both the inner and outer tables are read only once.
However, portions of the inner table which correspond to duplicate join
values in the outer are kept in an in-memory buffer. The buffer is reread if the
next outer row is the same as the previous outer row, otherwise the buffer is
reset. If the number of duplicate join values exceeds the capacity of the
in-memory buffer, not all of the duplicates are kept. This will only happen
when the duplication on any value is large and the value has a matching
value in the outer table.

With all of these considerations for duplicate values, in most cases it is the
table with fewer duplicates that will be chosen as the outer table in a join.
Ultimately, however, the optimizer chooses the outer and inner tables based
on detailed cost estimates.

Search Strategies for Selecting Optimal Join

The optimizer can determine optimal join methods using different search
strategies. The search strategy that will be used is determined by the
optimization class in use (see “Adjusting the Optimization Class” on page 36).
The search strategies and their characteristics are:

v Greedy join enumeration
– Efficient with respect to space and time
– Single direction enumeration; that is, once a join method is selected for

two tables, it will not be changed during further optimization
– May miss best access plan when joining many tables. If your query only

joins two or three tables, the access plan chosen by the greedy join
enumeration will be the same as the access plan chosen by dynamic
programming join enumeration. This is particularly true if the query has
many join predicates (either explicitly specified, or implicitly generated
through predicate transitive closure) on the same column.

v Dynamic programming join enumeration

146 Administration Guide: Performance

– Space and time requirements grow exponentially larger as the number of
tables being joined increases

– Efficient and exhaustive search for best access plan
– Similar to strategy used by DB2 for MVS/ESA.

The join enumeration algorithm is a key determinant of the number of plan
combinations that are explored by the optimizer.

Search Strategies for Star Join

In general, the tables referenced in a query should be connected by join
predicates. If two tables are joined without the presence of a join predicate,
the Cartesian product of the two tables is formed. That is, every qualifying
row of the first table is joined with every qualifying row of the second,
creating a result table consisting of the cross product of the size of the two
tables that is typically very large. Since such a plan is unlikely to perform
very well, the optimizer avoids even determining the cost of such an access
plan. The only exception to this occurs when the optimization class is set to 9,
or the following special case for “Star Schemas”. For more information, see
“Adjusting the Optimization Class” on page 36.

The cases where access plans involving Cartesian products perform well are
usually large decision support databases designed with the Star Schema
technique. The star schema is a database design in which the bulk of the raw
data is kept in a single large table with many columns and is commonly
known as a “fact” table. Many of the columns contain encoded values that
characterize the dimensions of the particular datum stored in the fact table. In
order to allow easy analysis of some subset of the facts, dimension tables are
used to decode the encoded values. A typical query would consist of multiple
local predicates referencing decoded values in the dimension tables and
would contain join predicates connecting the dimension tables to the fact
table. For these kinds of queries it may be beneficial to perform the Cartesian
product of multiple small dimension tables before accessing the large fact
table. This technique is beneficial when multiple join predicates match a
multi-column index.

DB2 has the ability to recognize queries against databases designed with star
schemas having at least three (3) dimension tables, and to increase the search
space to include potential plans that involve forming the Cartesian product of
dimension tables. If the plan involving the Cartesian products has the lowest
estimated cost, it will be selected by the optimizer.

The Star Schema technique discussed above was focussed on the situation
where primary key indexes were used in the join. Another scenario could
involve foreign key indexes. Given that the foreign key columns in the fact

Chapter 5. Understanding the SQL Compiler 147

table are single-column indexes and that there is a relatively high selectivity
across all dimension tables, the following Star Join technique can be used:

1. Each dimension table is processed by:
v Performing a semi-join between the dimension table and the foreign key

index on the fact table
v Hashing the row ID (RID) values to dynamically create a bitmap.

2. Each bitmap is used with “and” predicates against the previous bitmap
(see “Multiple Index Access” on page 133).

3. Determine the surviving RIDs after processing the last bitmap.
4. Optionally sort these RIDs.
5. Fetch a base table row.
6. Re-join the fact table with each of its dimension tables, accessing the

dimension tables’ columns that are needed for the SELECT clause
7. Reapply the predicates (residual predicates)

Using this technique, there is no requirement to have multi-column indexes.

Composite Tables

Another important parameter determines the shape of the sequence of joins in
a query. The result of joining a pair of tables is a new table known as a
composite. Typically, this resulting composite table becomes the outer table of
a join with another inner table. This is known as a “composite outer”. In some
situations, particularly when using the greedy join enumeration technique, it
is useful to take the result of joining two tables and make that the inner table
of a later join. When the inner table of a join itself consists of the result of
joining two or more tables, we say that the plan contains a “composite inner”.
For example, in the following query:
SELECT COUNT(*)
FROM T1, T2, T3, T4
WHERE T1.A = T2.A AND

T3.A = T4.A AND
T2.Z = T3.Z

it may be beneficial to join table T1 and T2 (T1xT2), then join T3 to T4 (
T3xT4) and finally select the first join result as the outer and the second join
result as the inner. In the final plan ((T1xT2) x (T3xT4)) the join result
(T3xT4) is known as a composite inner. Depending on the query optimization
class, the optimizer places different constraints on the maximum number of
tables that may be the inner table of a join. Composite inners are allowed with
optimization classes 5, 7, and 9.

148 Administration Guide: Performance

Replicated Summary Tables

By using replicated summary tables in a partitioned database environment,
you can improve performance by having the database manage pre-computed
values of the base table data. For example, the query below would benefit
from creating the replicated summary table below. The following assumptions
are made:
v The SALES table is in the multipartition nodegroup REGIONTABLESPACE,

and is partitioned on the REGION column.
v The EMPLOYEE and DEPARTMENT tables are in a single-partition

nodegroup.
CREATE TABLE R_EMPLOYEE
AS (

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT
FROM EMPLOYEE

)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE
IN REGIONTABLESPACE
REPLICATED;

REFRESH TABLE R_EMPLOYEE;

The following example calculates sales by employee, the total for the
department, and the grand total:

SELECT d.mgrno, e.empno, SUM(s.sales)
FROM department AS d, employee AS e, sales as S
WHERE s.sales_person = e.lastname

AND e.workdept = d.deptno
GROUP BY ROLLUP(d.mgrno, e.empno)
ORDER BY d.mgrno, e.empno;

Instead of using the EMPLOYEE table, which is on only one database
partition, the database manager will use the R_EMPLOYEE table, which is
replicated on each of the database partitions that the SALES tables is on. The
performance enhancement occurs because the employee information does not
have to be moved across the network to each database partition to calculate
the join.

Join Strategies in a Partitioned Database

The following sections describe the join strategies that are possible in a
partitioned database environment. The DB2 optimizer automatically selects
the best join strategy depending on the requirements of each application. The
join strategies are presented here to help you understand what is happening
in each strategy. A “table queue” is a mechanism for transferring rows
between database partitions, or between processors in a single partition
database.

Chapter 5. Understanding the SQL Compiler 149

In the descriptions that follow, a directed table queue is one whose rows are
hashed to one of the receiving database partitions. A broadcast table queue is
one whose rows are sent to all of the receiving database partitions (that is, it
is not hashed). In the diagrams for this section q1, q2, and q3 refer to table
queues in the examples. Also the tables that are referenced are divided across
two database partitions for the purpose of these scenarios. The arrows
indicate the direction in which the table queues are sent. The coordinator
node is partition 0.

One consideration for those tables involved in frequent joins in a partitioned
database is that of table collocation. Table collocation provides the means in a
partitioned database to locate data from one table with the data from another
table at the same partition based on the same partitioning key. Once
collocated, data to be joined can participate in a query without having to be
moved to another database partition as part of the query activity. Only the
answer set for the join is moved to the coordinator node. Refer to “Table
Collocation” in the Administration Guide, Design and Implementation for more
information on this subject.

For information on join dependencies, refer to the SQL Reference manual.

Collocated Joins

For the optimizer to consider a collocated join, the joined tables must be
collocated, and all pairs of the corresponding partitioning key must
participate in the equijoin predicates. An example is shown in Figure 4 on
page 151.

Note: Replicated summary tables enhance the likelihood of collocated joins.
See “Replicated Summary Tables” on page 149for more information.

150 Administration Guide: Performance

Broadcast Outer-Table Joins

This parallel join strategy can be used if there are no equijoin predicates
between the joined tables. It can also be used in other situations in which it is
the most cost-effective join method. Typically, this would occur when there is
one very large table and one very small table, neither of which is partitioned
on the join predicate columns. Rather than partition both tables, it may be
“cheaper” to broadcast the smaller table to the larger table. An example is
shown in Figure 5 on page 152.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

RESULTS

Both the LINEITEM and ORDERS tables are partitioned on the

ORDERKEY column. The join is done locally at each database partition.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
ORDERS

• Apply
predicates

• Scan
LINEITEM

• Apply
predicates

• Join
• Insert into q1

• Scan
ORDERS

• Apply
predicates

• Scan
LINEITEM

• Apply
predicates

• Join
• Insert into q1

q1

q1

Figure 4. Collocated Join Example

Chapter 5. Understanding the SQL Compiler 151

Directed Outer-Table Joins

In this join strategy, each row of the outer table is sent to one database
partition of the inner table (based on the partitioning attributes of the inner
table). The join occurs on this database partition. An example is shown in
Figure 6 on page 153.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

The ORDERS table is sent to all database partitions that have the LINEITEM table.
Table queue q2 is broadcast to all database partitions of the inner table.

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert q1

q2 q2

q1

q1

q2q2

Figure 5. Broadcast Outer-Table Join Example

152 Administration Guide: Performance

Directed Inner-Table and Outer-Table Joins

With this strategy, rows of the outer and inner tables are directed to a set of
database partitions, based on the values of the joining columns. The join
occurs on these database partitions. An example is shown in Figure 7 on
page 154.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

The LINEITEM table is partitioned on the ORDERKEY column.
The ORDERS table is partitioned on a different column.
The ORDERS table is hashed and sent to the correct LINEITEM
table database partition.
In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert into q1

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert into q1

q2 q2

q1

q1

q2q2

Figure 6. Directed Outer-Table Join Example

Chapter 5. Understanding the SQL Compiler 153

Broadcast Inner-Table Joins

With this strategy, the inner table is broadcast to all the database partitions of
the outer join table. An example is shown in Figure 8 on page 155.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

Neither table is partitioned on the ORDERKEY column.

Both tables are hashed and are sent to new database

partitions where they are joined.

Both table queue q2 and q3 are directed.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q2q2

q3 q3

q2

q3

q1

q1

q2

q3

Figure 7. Directed Inner-Table and Outer-Table Join Example

154 Administration Guide: Performance

Directed Inner-Table Joins

With this strategy, each row of the inner table is sent to one database partition
of the outer join table (based on the partitioning attributes of the outer table).
The join occurs on this database partition. An example is shown in Figure 9 on
page 156.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
LINEITEM

• Apply
predicates

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q3 q3

q2

q1

q1

q2

q3

The LINEITEM table is sent to all database partitions that have the ORDERS table.
Table queue q3 is broadcast to all database partitions of the outer table.

Figure 8. Broadcast Inner-Table Join Example

Chapter 5. Understanding the SQL Compiler 155

Table Queues

A table queue is used:
v To pass table data from one database partition to another when using

inter-partition parallelism
v To pass table data within a database partition when using intra-partition

parallelism
v To pass table data within a database partition when using a single partition

database.

Each table queue is used to pass the data in a single direction.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

The ORDERS table is partitioned on the ORDERKEY column.

The LINEITEM table is partitioned on a different column.

The LINEITEM table is hashed and sent to the correct ORDERS table database partition.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q3 q3

q2

q1

q1

q2

q3

Figure 9. Directed Inner-Table Join Example

156 Administration Guide: Performance

The compiler decides where table queues are required, and includes them in
the plan. When the plan is executed, the connections between the database
partitions initiate the table queues. The table queues close as processes end.

There are several types of table queues:
v Asynchronous table queues. These table queues are known as asynchronous

because they read rows in advance of any FETCH being issued by the
application. When the FETCH is issued, the row is retrieved from the table
queue.
Asynchronous table queues are used when you specify the FOR FETCH
ONLY clause on the SELECT statement. If you are only fetching rows, the
asynchronous table queue is faster.

v Synchronous table queues. These table queues are known as synchronous
because they read one row for each FETCH that is issued by the
application. At each database partition, the cursor is positioned on the next
row to be read from that database partition.
Synchronous table queues are used when you do not specify the FOR
FETCH ONLY clause on the SELECT statement. In a partitioned database
environment, if you are updating rows, the database manager will use the
synchronous table queues.

v Merging table queues. These table queues preserve order.
v Non-merging table queues. These table queues are also known as “regular”

table queues. They do not preserve order.
v Listener table queues. These table queues are use with correlated subqueries.

Correlation values are passed down to the subquery and the results are
passed back up to the parent query block using this type of table queue.

Influence of Sorting on the Optimizer

When the optimizer chooses an access plan, it considers the performance
impact of sorting data. Sorting occurs when no index exists to satisfy the
requested ordering of fetched rows. Sorting could also occur when the sort is
determined by the optimizer to be less expensive than an index scan. The
optimizer may carry out one of the following actions when sorting the data:
v “Piping” the results of the sort when the query is executed. See “Piped

versus Non-Piped Sorts” and “Configuration Parameters Affecting Query
Optimization” on page 59.

v Internal handling of the sort within the database manager. See
“Aggregation and Sort Pushdown Operators” on page 158.

Piped versus Non-Piped Sorts

At the completion of a sort, if the final sorted list of data can be read in a
single sequential pass, the results can be piped. Piping is quicker than the use

Chapter 5. Understanding the SQL Compiler 157

of other (non-piped) means of communicating the results of the sort. The
optimizer chooses to pipe the results of a sort whenever possible.

Independent of whether a sort is piped, the time to sort will depend on a
number of factors, including the number of rows to be sorted, the key size
and the row width. If the rows to be sorted occupy more than the space
available in the sort heap, several sort passes are performed, where each pass
sorts a subset of the entire set of rows. Each sort pass is stored in a temporary
table in the buffer pool. (As part of the buffer pool management, it is possible
that pages from this temporary table may be written to disk.) Once all the sort
passes are complete, these sorted subsets must be merged into a single sorted
set of rows. If the sort is piped, as the rows are merged they are handed
directly to Relational Data Services.

For more information, see “Looking for Indicators of Sorting Performance
Problems” on page 228, or the discussion of the sortheap configuration
parameter in “Configuration Parameters Affecting Query Optimization” on
page 59.

Aggregation and Sort Pushdown Operators

In some cases, the optimizer can choose to pushdown a sort or aggregation
operation to the Data Management Services component from the Relational
Data Services component. Pushing down these operations improves
performance by allowing the Data Management Services component to pass
data directly to a sort or aggregation routine. Without this pushdown, Data
Management Services would first pass this data to Relational Data Services,
which would then interface with the sort or aggregation routines. For
example, the following query benefits from this optimization:

SELECT WORKDEPT, AVG(SALARY) AS AVG_DEPT_SALARY
FROM EMPLOYEE
GROUP BY WORKDEPT

Aggregation in Sort

When sorting is used to produce the order required for a GROUP BY
operation the optimizer has the option of performing some or all of the
GROUP BY’s aggregation while doing the sort. This is advantageous if the
number of rows in each group is large. It is even more advantageous if doing
some of the grouping during the sort reduces or eliminates the need for the
sort to spill to disk.

When aggregation in sort is used, there are up to three (3) stages of
aggregation required to ensure proper results are calculated. The first stage of
aggregation, “partial aggregation,” calculates the aggregate values until the
sort heap is filled. Partial aggregation is the process whereby unaggregated

158 Administration Guide: Performance

data is taken in and partial aggregates are produced. If the sort heap is filled,
the rest of the data is spilled to disk and includes all of the partial
aggregations that have been calculated in the current filling of the sort heap.
Following the reset of the sort heap, new aggregations are started.

The second stage of aggregation, “intermediate aggregation,” takes all of the
spilled sort runs, and aggregates further on the grouping keys. The
aggregation cannot be completed because the grouping key columns are a
subset of the partitioning key columns. Intermediate aggregation takes in
existing partial aggregates and produce new partial aggregates. This stage is
optional, and is used for both intra-partition parallelism, and for
inter-partition parallelism. In the last case, the grouping is finished when a
global grouping key is available. In inter-partition parallelism, this would
occur when the grouping key is a subset of the partitioning key dividing
groups across partitions, and thus requiring repartitioning to complete the
aggregation. A similar case exists in intra-partition parallelism when each
agent finishes merging it’s spilled sort runs before reducing to a single agent
to complete the aggregation.

The last stage of aggregation, “final aggregation,” takes all of the partial
aggregates and completes the aggregation. Final aggregation takes in partial
aggregates and produces final aggregates. This step always takes place in a
GROUP BY operator. Sort cannot do complete aggregation because there is no
way to guarantee that the sort will not split. Complete aggregation takes in
unaggregated data and produces final aggregates. This method of aggregation
is typically used when grouping data that is already in the correct order and
when partitioning does not prohibit it’s use.

Optimization Strategies for Intra-Partition Parallelism

The optimizer may choose an access plan so that a query is executed in
parallel within a database partition if a degree of parallelism is specified when
the SQL statement is compiled.

At execution time, multiple database agents called “subagents” are created to
execute the query. The number of subagents is less than or equal to the degree
of parallelism determined when the SQL statement was compiled. For more
information on setting the degree of parallelism for SQL statements see
“Parallel Processing of Applications” on page 56. For more information on
agents and subagents, see “Database Agents” on page 235.

In a partitioned database, the degree of parallelism applies to each partition.
For example, the portion of the query that is executing at a given database
partition is further parallelized based on the degree of parallelism determined
at that database partition for that SQL statement.

Chapter 5. Understanding the SQL Compiler 159

The access plan is parallelized by dividing it into a portion that is run by each
subagent and a portion that is run by the coordinating agent. The subagents
pass data through table queues to the coordinating agent or to other
subagents. In a partitioned database, subagents may send or receive data
through table queues from subagents in other database partitions.

This section describes parallelization strategies within a single database
partition.

Parallel Scan Strategies

Relational scans and index scans can be performed in parallel on the same
table or index. For parallel relational scans, the table is divided into ranges of
pages or rows. A range of pages or rows is assigned to a subagent. A
subagent scans its assigned range and is assigned another range when it has
completed its work on the current range.

For parallel index scans, the index is divided into ranges of records based on
index key values and the number of index entries for a key value. The parallel
index scan proceeds like the parallel table scan with subagents being assigned
a range of records. A subagent is assigned a new range when it has complete
its work on the current range.

The scan unit (either a page or a row) and the scan granularity are
determined by the optimizer.

The parallel scan provides an even distribution of work among the subagents.
The goal of the parallel scan is to balance the load among the subagents and
keep them equally busy. If the number of busy subagents equals the number
of available processors and the disks are not overworked with I/O requests,
then the machine resources are being used effectively.

Other access plan operations may cause data imbalance as the query executes.
The optimizer chooses parallel strategies so that data balance is maintained.

Parallel Sort Strategies

The optimizer may choose one of the following parallel sort strategies:

Round-robin Sort

This is also known as a “redistribution sort”. This is an efficient shared
memory sort that attempts to redistribute the data as evenly as possible to all
subagents. It uses a round-robin clock type algorithm to provide the even
distribution. It first creates an individual sort for each subagent. During the
insert phase, subagents insert into each of the individual sorts in a
round-robin fashion. This achieves a more even distribution of data.

160 Administration Guide: Performance

Partitioned Sort

This is similar to the round-robin sort in that a sort is created for each
subagent. The subagents apply a hash function to the sort columns to
determine into which sort a row should be inserted. For example, if the inner
and outer of a merge join are a partitioned sort, a subagent can use merge join
to join the corresponding partitions. This allows the merge join to execute in
parallel.

Replicated Sort

This sort is used where all subagents require all the sort output. One sort is
created and subagents are synchronized during insertion into the sort. When
the sort is completed, each subagent reads the entire sort. This sort may be
used to rebalance the data stream if the number of rows is small.

Shared Sort

This sort is the same as a replicated sort, except the subagents open a parallel
scan on the sorted result. This distributes the data among the subagents in a
way similar to the round-robin sort.

Parallel Temporary Tables

Subagents can cooperate to produce a temporary table by inserting rows into
the same table. This is called a shared temporary table. The subagents can
open private scans or parallel scans on the shared temporary table depending
on whether the data stream is to be replicated or partitioned.

Parallel Aggregation Strategies

Aggregation operations can be performed in parallel by subagents. An
aggregation operation requires the data to be ordered on the grouping
columns. If a subagent can be guaranteed to receive all the rows for a set of
grouping column values, it can perform a complete aggregation. This can
happen if the stream is already partitioned on the grouping columns because
of a previous partitioned sort.

Otherwise the subagent can perform a partial aggregation and use another
strategy to complete the aggregation. Some of these strategies are:
v Send the partially aggregated data to the coordinator agent through a

merging table queue. The coordinator completes the aggregation.
v Insert the partially aggregated data into a partitioned sort. The sort is

partitioned on the grouping columns. This guarantees that all rows for a set
of grouping columns are contained in one sort partition.

v If the stream needs to be replicated for balance reasons, the partially
aggregated data can be inserted into a replicated sort. Each subagent

Chapter 5. Understanding the SQL Compiler 161

completes the aggregation using the replicated sort, and receives an
identical copy of the aggregation result.

Parallel Join Strategies

Join operations can be performed in parallel by subagents. Parallel join
strategies are determined by the characteristics of the data stream.

A join can be parallelized by partitioning and/or replicating the data stream
on the inner and outer of the join. For example, a nested loop join can be
parallelized if its outer stream is partitioned due to a parallel scan and the
inner stream is reevaluated independently by each subagent. A merged join
can be parallelized if its inner and outer streams are value-partitioned due to
partitioned sorts.

Federated Database Query Compiler Phases

This section describes additional query processing phases in a federated
database system. It also provides recommendations for improving federated
database query performance. Major topics include:
v “Pushdown Analysis”

v “Remote SQL Generation and Global Optimization” on page 170.

Pushdown Analysis

Pushdown analysis tells the DB2 optimizer if an operation can be performed
at a remote data source. An operation can be a function, such as relational
operator, system or user functions, or an SQL operator (GROUP BY, ORDER
BY, and so on).

Functions that cannot be pushed-down can significantly impact query
performance. Consider the effect of forcing a selective predicate to be
evaluated locally instead of at the data source. This approach could require
DB2 to retrieve the entire table from the remote data source and then filter it
locally against the predicate. If your network is constrained—and the table is
large—query performance could suffer.

Operators that are not pushed-down can also significantly impact query
performance. For example, having a GROUP BY operator aggregate remote
data locally could, once again, require DB2 to retrieve the entire table from the
remote data source.

As an example, assume that nickname N1 references the data source table
EMPLOYEE in a DB2 for OS/390 data source. Further, assume that the table

162 Administration Guide: Performance

has 10,000 rows, one of the columns contains the last names of employees,
and one of the columns contains salaries. Given the statement:

SELECT LASTNAME, COUNT(*) FROM N1
WHERE LASTNAME > 'B' AND SALARY > 50000
GROUP BY LASTNAME;

several possibilities are considered:
v If the collating sequences at DB2 and DB2 for OS/390 are the same, it is

likely that the query predicate will be pushed-down to DB2 for OS/390. It
is usually more efficient to filter and group results at the data source
instead of copying the entire table to DB2 and performing the operations
locally. Pushdown analysis in federated systems determines if operations
can be performed at the data source. In this case, the predicate and the
GROUP BY operation can take place at the data source.

v If the collating sequence is not the same, pushdown analysis will determine
that the entire predicate cannot be evaluated at the data source; however,
the optimizer may decide to pushdown the SALARY > 1000 portion of the
predicate. The range comparison must still be done at DB2.

v If the collating sequence is the same, and the optimizer knows that the
local DB2 server is very fast, it is possible that the optimizer will decide
that performing the GROUP BY operation locally at DB2 is the best (least cost)
approach. The predicate will be evaluated at the data source. This is an
example of pushdown analysis combined with global optimization. DB2
will consider the available paths and then choose a plan that is the most
efficient.

In general, the goal is to ensure that functions and operators can be
considered for evaluation on data sources by the optimizer. Many factors can
affect whether a function or an SQL operator is evaluated at a remote data
source. The key factors are discussed in three groups: server characteristics,
nickname characteristics, and query characteristics.

Server Characteristics Affecting Pushdown Opportunities

The following sections contain data source-specific factors that can affect
pushdown opportunities. In general, these factors exist because DB2 lets you
use a rich SQL dialect to submit queries. This dialect may offer more
functionality than the SQL dialect supported by a server accessed during a
DB2 query. DB2 can compensate for the lack of function at a data server, but
doing so may require that the operation take place at DB2.

SQL Capabilities: Each data source supports a variation of the SQL dialect
and different levels of functionality. For example, consider the GROUP BY list.
Most data sources support the GROUP BY operator; but, some have
restrictions on the number of items on the GROUP BY list or restrictions on

Chapter 5. Understanding the SQL Compiler 163

whether an expression is allowed on the GROUP BY list. If there is a
restriction at the remote data source, DB2 might have to perform the GROUP
BY operation locally.

SQL Restrictions: Each data source can have different SQL restrictions. For
example, some data sources require parameter markers to bind in values to
remote SQL statements. Therefore, parameter marker restrictions must be
checked to ensure that each data source can support such a bind mechanism.
If DB2 cannot determine a good method to bind in a value for a function, this
function must be evaluated locally.

SQL Limits: DB2 might allow the use of larger integers than its remote data
sources; however, limit-exceeding values cannot be embedded in statements
sent to data sources. Therefore, the function or operator that operates on this
constant must be evaluated locally.

Server Specifics: Several factors fall into this category. One example is
sorting NULL values (highest, lowest, or depending on the ordering). For
example, if the NULL value is sorted at a data source differently from DB2,
ORDER BY operations on a nullable expression cannot be remotely evaluated.

Collating Sequence: Configuring a federated database to use the same
collating sequence that a data source uses and then setting the
collating_sequence server option to ’Y’ allows the optimizer to consider
″pushing-down″ character range comparison predicates.

When a query from a federated server requires sorting, the place where the
sorting is processed depends on several factors. If the federated database’s
collating sequence is the same as that of the data source where the queried
data is stored, the sort may take place at the data source. If collating
sequences are the same, the optimizer can decide if a local sort or a sort at the
data source is the most efficient way to complete the query. Likewise, if a
query requires a comparison of character data, this comparison can also be
performed at the data source.

Numeric comparisons, in general can be done at either location even if the
collating sequence is different. You may get unusual results, however, if the
weighting of null characters is different between the federated database and
the data source. Likewise, for comparison statements, be careful if you are
submitting statements to a case-insensitive data source. The weights assigned
to the characters ″I″ and ″i″ in a case-insensitive data source are the same.
DB2, by default, is case sensitive and would assign different weights to the
characters.

If the collating sequences of the federated database and the data source differ,
DB2 retrieves the data to the federated database, so that it can do the sorting

164 Administration Guide: Performance

and comparison locally. The reason is that users expect to see the query
results ordered according to the collating sequence defined for the federated
server; by ordering the data locally, the federated server ensures that this
expectation is fulfilled.

Retrieving data for local sorts and comparisons usually decreases
performance. Therefore, consider configuring the federated database to use the
same collating sequences that your data sources use. That way, performance
might increase, because the federated server can allow sorts and comparisons
to take place at data sources. For example, in DB2 UDB for OS/390, sorts
defined by ORDER BY clauses are implemented by a collating sequence based
on an EBCDIC code page. If you want to use the federated server to retrieve
DB2 for OS/390 data sorted in accordance with ORDER BY clauses, it is
advisable to configure the federated database so that it uses a predefined
collating sequence based on the EBCDIC code page.

If the collating sequences at the federated database and the data source differ,
and you need to see the data ordered in the data source’s sequence, you can
submit your query in pass-through mode, or define the query in a data source
view.

See the Administration Guide, Design and Implementation for more information
about collating sequences and how to set them; see Table 8 on page 75 for
more information about the collating_sequence server option.

Server Options: Several server options can affect pushdown opportunities. In
particular, review your settings for collating_sequence, varchar_no_trailing_blanks,
and pushdown. See “Server Options Affecting Federated Database Queries” on
page 73 for information on setting these options.

DB2 Type Mapping and Function Mapping Factors: The default local data
type mappings provided by DB2 (see the Application Development Guide for
data type tables) are designed so that sufficient buffer space is given to each
data source data type (to avoid loss of data). A user can choose to customize
the type mapping for a specific data source to suit specific applications. For
example, if you are accessing an Oracle data source column with a DATE data
type (which by default is mapped to the DB2 TIMESTAMP data type), you
could change the local data type to the DB2 DATE data type.

DB2 can compensate for functions not supported by a data source. There are
three cases where function compensation will occur:

v This function simply does not exist at the remote data source.
v The function does exist; however, the characteristics of the operand violate

function restrictions. An example of this situation is the IS NULL relational

Chapter 5. Understanding the SQL Compiler 165

operator. Most data sources support it, but some may have restrictions,
such as only allowing a column name on the left hand side of the IS NULL
operator.

v The function, if evaluated remotely, may return a different result. An
example of this situation is the ’>’ (greater than) operator. For those data
sources with different collating sequences, the greater than operator may
return different results than if it is evaluated locally by DB2.

Nickname Characteristics Affecting Pushdown Opportunities

The following sections contain nickname-specific factors that can affect
pushdown opportunities.

Local Data Type of a Nickname Column: Ensure that the local data type of
a column does not prevent a predicate from being evaluated at the data
source. As mentioned earlier, the default data type mappings are provided to
avoid any possible overflow. However, a joining predicate between two
columns of different lengths might not be considered at the data source whose
joining column is shorter, depending on how DB2 binds in the longer column.
This situation can affect the number of possibilities in a joining sequence
evaluated by the DB2 optimizer. For example, Oracle data source columns
created using the INTEGER or INT data type are given the type
NUMBER(38). A nickname column for this Oracle data type will be given the
local data type FLOAT because the range of a DB2 integer is from 2**31 to
(-2**31)-1, which is roughly equal to NUMBER(9). In this case, joins between a
DB2 integer column and an Oracle integer column cannot take place at the
DB2 data source (shorter joining column); however, if the domain of this
Oracle integer column can be accommodated by the DB2 INTEGER data type,
change its local data type with the ALTER NICKNAME statement so that the
join can take place at the DB2 data source.

Column Options: The ALTER NICKNAME SQL statement can be used to
add or change column options for nicknames.

One of these options is ″varchar_no_trailing_blanks″. It can be used to identify
a column that contains no trailing blanks. The compiler pushdown analysis
step will then take this information into account when checking all operations
performed on columns so indicated. Based on this indication, DB2 may
generate a different but equivalent form of a predicate to be used in the
remote SQL statement sent to a data source. A user might see a different
predicate being evaluated against the data source, but the net result should be
equivalent.

Another column option is numeric_string. Use this option to indicate if the
values in that column are always numbers without trailing blanks.

166 Administration Guide: Performance

See Table 15 for column option values and defaults.

Table 15. Column Options and Their Settings

Option Valid Settings Default
Setting

numeric_string
‘Y’ Yes, this column contains only strings of numeric data.

IMPORTANT: If this column contains only numeric
strings followed by trailing blanks, it is inadvisable to
specify ‘Y’.

‘N’ No, this column is not limited to strings of numeric
data.

By setting numeric_string to ‘Y’ for a column, you are
informing the optimizer that this column contains no blanks
that could interfere with sorting of the column’s data. This
option is helpful when the collating sequence of a data source is
different from DB2. Columns marked with this option will not
be excluded from local (data source) evaluation because of a
different collating sequence.

‘N’

varchar_no_trailing_blanks Indicates whether trailing blanks are absent from a specific
VARCHAR column:

‘Y’ Yes, trailing blanks are absent from this VARCHAR
column.

‘N’ No, trailing blanks are not absent from this VARCHAR
column.

If data source VARCHAR columns contain no padded blanks,
then the optimizer’s strategy for accessing them depends in part
on whether they contain trailing blanks. By default, the
optimizer “assumes” that they actually do contain trailing
blanks. On this assumption, it develops an access strategy that
involves modifying queries so that the values returned from
these columns are the ones that the user expects. If, however, a
VARCHAR column has no trailing blanks, and you let the
optimizer know this, it can develop a more efficient access
strategy. To tell the optimizer that a specific column has no
trailing blanks, specify that column in the ALTER NICKNAME
statement (for syntax, see the SQL Reference).

‘N‘

Query Characteristics Affecting Pushdown Opportunities

A query can reference an SQL operator that might involve nicknames from
multiple data sources. When DB2 must combine the results from two
referenced data sources using one operator, such as a set operator (e.g.
UNION), the operation must take place at DB2. The operator cannot be
evaluated at a remote data source directly.

Chapter 5. Understanding the SQL Compiler 167

Analyzing and Understanding Pushdown Analysis Decisions

Rewriting SQL statements can provide additional pushdown opportunities for
DB2 query processing. This section introduces tools for determining where a
query is evaluated, lists common questions (and suggested areas to
investigate) associated with query analysis, and closes with a brief section
about data source upgrades.

Analyzing Where a Query is Evaluated: There are two utilities provided
with DB2 that show where queries are evaluated:
v Visual explain. Start it with the db2cc or the db2vexp command. Use it to

view the query access plan graph. The execution location for each operator
is included in the detailed display of an operator.
If a query is completely pushed down, you should see a RETURN operator
on top of an RQUERY operator. The RETURN operator is a standard DB2
operator; the RQUERY operator is unique to federated database operations.
RQUERY sends an SQL SELECT statement to a data source to retrieve the
query result. The SELECT statement is generated using the SQL dialect
supported by the data source. It can contain any valid query for that data
source.

v SQL explain. Start it with the db2expln or the dynexpln command. Use it
to view the access plan strategy as text.

Understanding Why a Query is Evaluated at a Data Source or at DB2: This
section lists typical plan analysis questions and areas to investigate to increase
pushdown opportunities. Key questions include:
v Why isn’t this predicate being evaluated remotely?

This question arises when a predicate is very selective and thus could be
used to filter rows and reduce network traffic. Remote predicate evaluation
also affects whether a join between two tables of the same data source can
be evaluated remotely.
Areas to examine include:
– Subquery predicates. Does this predicate contain a subquery that

pertains to another data source? Does this predicate contain a subquery
involving an SQL operator that is not supported by this data source? Not
all data sources support set operators in a predicate.

– Predicate functions. Does this predicate contain a function that cannot be
evaluated by this remote data source? Relational operators are classified
as functions.

– Predicate bind requirements. Does this predicate, if remotely evaluated,
require bind-in of some value? If so, would it violate SQL restrictions at
this data source?

168 Administration Guide: Performance

– Global optimization. The optimizer may have decided that local
processing is more cost effective. See “Remote SQL Generation and
Global Optimization” on page 170 for more information.

v Why isn’t the GROUP BY operator evaluated remotely?
There are several areas you can check:
– Is the input to the GROUP BY operator evaluated remotely? If the

answer is no, examine the input.
– Does the data source have any restrictions on this operator? Examples

include:
- Limited number of GROUP BY items
- Limited byte counts of combined GROUP BY items
- Column specification only on the GROUP BY list

– Does the data source support this SQL operator?
– Global optimization. The optimizer may have decided that local

processing is more cost effective. See “Remote SQL Generation and
Global Optimization” on page 170 for more information.

v Why isn’t the set operator evaluated remotely?
There are several areas you can check:
– Are both of its operands completely evaluated at the same remote data

source? If the answer is no and it should be yes, examine each operand.
– Does the data source have any restrictions on this set operator? For

example, are large objects or long fields valid input for this specific set
operator?

v Why isn’t the ORDER BY operation evaluated remotely?
Consider:
– Is the input to the ORDER BY operation evaluated remotely? If the

answer is no, examine the input.
– Does the ORDER BY clause contain a character expression? If yes, does

the remote data source not have the same collating sequence as DB2?
– Does the data source have any restrictions on this operator? For example,

is there a limited number of ORDER BY items? Does the data source
restrict column specification to the ORDER BY list?

Data Source Upgrades and Customization: Although the DB2 SQL compiler
has much information about data source SQL support, this data may need
adjustment over time because data sources can be upgraded and/or
customized. In such cases, make enhancements known to DB2 by changing
local catalog information. Use DB2 DDL statements (such as CREATE
FUNCTION MAPPING and ALTER SERVER) to update the catalog. See the
SQL Reference for more information.

Chapter 5. Understanding the SQL Compiler 169

Remote SQL Generation and Global Optimization

This phase helps produce a globally optimal access strategy to evaluate a
query. For a federated database query, the access strategy may involve
breaking down the original query into a set of remote query units and then
combining the results.

Using the output of pushdown analysis as a recommendation, the optimizer
decides whether each operation will be evaluated locally at DB2 or remotely
at a data source. The decision is based on the output of its cost model, which
includes not only the cost to evaluate the operation but also the cost to
transmit the data or messages between DB2 and data sources.

The goal is to produce an optimized query; however, many factors can affect
the output from global optimization and thus affect query performance. The
key factors are discussed in two groups: server characteristics and nickname
characteristics.

Server Characteristics/Options Affecting Global Optimization

Data source server factors that can affect global optimization include the:
v Relative ratio of CPU speed

Use the cpu_ratio server option to indicate how much faster or slower the
data source CPU speed is compared with the DB2 CPU. A low ratio
indicates that the data source workstation CPU is faster than the DB2
workstation CPU. With low ratios, the DB2 optimizer is more likely to
consider pushing-down CPU-intensive operations to the data source. See
“Server Options Affecting Federated Database Queries” on page 73 for more
information about this ratio.

v Relative ratio of I/O speed
Use the io_ratio server option to indicate how much faster or slower the
data source system I/O speed is compared with the DB2 system. A low
ratio indicates that the data source workstation I/O speed is faster than the
DB2 workstation I/O speed. For low ratios, the DB2 optimizer will consider
pushing-down I/O-intensive operations to the data source. See “Server
Options Affecting Federated Database Queries” on page 73 for more
information about this ratio.

v Communication rate between DB2 and the data source
Use the comm_rate server option to indicate network capacity. Low rates
(indicating a slow network communication between DB2 and the data
source) encourage the DB2 optimizer to reduce the number of messages
sent to or from this data source. If the rate is set to 0, the optimizer

170 Administration Guide: Performance

produces a query requiring minimal network traffic. See “Server Options
Affecting Federated Database Queries” on page 73 for more information
about this ratio.

v Data source collating sequence
Use the collating_sequence server option to indicate if a data source collating
sequence matches the local DB2 database collating sequence. If this option
is not set to ’Y’, the optimizer considers the data retrieved from this data
source as unordered. See “Collating Sequence” on page 164 for more
information about collating sequence performance issues.

v Remote plan hints
Use the plan_hints server option to indicate if plan hints are supported at a
data source. Plan hints are statement fragments that provide extra
information for data source optimizers. This information can, for certain
query types, improve query performance. The plan hints can help the data
source optimizer decide whether to use an index, which index to use, or
which table join sequence to use.
If plan hints are enabled, the query sent to the data source contains
additional information. For example, a statement sent to an Oracle
optimizer with plan hints could look like this:

SELECT /*+ INDEX (table1, t1index)*/
col1
FROM table1

The plan hint is the string /*+ INDEX (table1, t1index)*/.
v Information in the DB2 optimizer knowledge base

DB2 has an optimizer knowledge base that contains data about native data
sources. The DB2 optimizer does not generate remote access plans that
cannot be generated by specific DBMSs. In other words, DB2 avoids
generating plans that optimizers at remote data sources cannot understand
or accept.

Nickname Characteristics Affecting Global Optimization

The following sections contain nickname-specific factors that can affect global
optimization.

Index Considerations: DB2 can use information about indexes at data
sources to optimize queries. For this reason, it is important that the index
information available to DB2 is current. The index information for nicknames
is initially acquired at create nickname time. Index information is not gathered
for view nicknames.

Creating Index Specifications on Nicknames: You can create an index
specification for a nickname. Index specifications build an index definition

Chapter 5. Understanding the SQL Compiler 171

(not an actual index) in the catalog for use by the DB2 optimizer. Use the
CREATE INDEX SPECIFICATION ONLY statement to create index
specifications. The syntax for creating an index specification on a nickname is
similar to the syntax for creating an index on a local table. See the
Administration Guide, Design and Implementation for more information.

Consider creating index specifications when:
v DB2 is unable to retrieve any index information from a data source during

nickname creation.
v You want an index for a view nickname.
v You want to encourage the DB2 optimizer to use a specific nickname as the

inner table of a nested loop join. The user can create an index on the joining
column if none exists.

Consider your needs before issuing CREATE INDEX statements against a
nickname for a view. In one case, if the view is a simple SELECT on a table
with an index, creating indexes on the nickname (locally) that match the
indexes on the table at the data source can significantly improve query
performance. However, if indexes are created locally over views that are not
simple select statements (for example, a view created by joining two tables),
query performance may suffer. For example, if an index is created over a view
that is a join of two tables, the optimizer may choose that view as the inner
element in a nested loop join. The query will have poor performance because
the join will be evaluated several times. An alternative is to create nicknames
for each of the tables referenced in the data source view and create a local
view at DB2 that references both nicknames.

Catalog Statistics Considerations: Catalog statistics describe the overall size
of nicknames and the range of values in associated columns. They are used by
the optimizer when calculating the least cost path for processing queries
containing nicknames. Nickname statistics are stored in the same catalog
views as table statistics. See “Chapter 4. System Catalog Statistics” on page 79
and “Rules for Updating Table and Nickname Statistics” on page 103 for more
information about statistic types and how to update them locally.

While DB2 can retrieve the statistical data held at a data source, it cannot
automatically detect updates to existing statistical data at data sources.
Furthermore, DB2 has no mechanism for handling object definition or
structural changes (adding a column) to objects at data sources. If the
statistical data or structural data for an object has changed, you have two
choices:

v Run the equivalent of RUNSTATS at the data source. Then, drop the current
nickname. Re-create the nickname. Use this approach if structural
information has changed.

172 Administration Guide: Performance

v Manually update the statistics in the SYSSTAT.TABLES view. This approach
requires fewer steps but it will not work if structural information has
changed.

Analyzing and Understanding Global Optimization Decisions

This section introduces tools for analyzing query optimization and presents
common questions (and suggested areas to investigate) associated with query
optimization.

Analyzing Query Optimization: There are two utilities provided with DB2
that show global access plans:
v Visual explain. Start it with the db2cc or the db2vexp command. Use it to

view the query access plan graph. The execution location for each operator
is included in the detailed display of an operator. You can also find the
remote SQL statement generated for each data source in the RQUERY
(select operation) operator. By examining the details of each operator, you
can see the number of rows estimated by the DB2 optimizer as input to and
output from each operator. You can also see the estimated cost to execute
each operator including the communications cost. See “Appendix E. SQL
Explain Tools” on page 645 for more information.

v SQL explain. Start it with the db2expln or dynexpln command. Use it to
view the access plan strategy as text. SQL explain does not provide cost
information; however, you can get the access plan generated by the remote
optimizer for those data sources supported by the remote explain function.
See “Appendix E. SQL Explain Tools” on page 645 for more information.

Understanding DB2 Optimization Decisions: This section lists optimization
questions and key areas to investigate to improve performance. Key questions
include:

v Why isn’t a join between two nicknames of the same data source being
evaluated remotely?
Areas to examine include:
– Join operations. Can the data source support them?
– Join predicates. Can the join predicate be evaluated at the remote data

source? If the answer is no, examine the join predicate. See
“Understanding Why a Query is Evaluated at a Data Source or at DB2”
on page 168 for more information.

– Number of rows in the join result (with visual explain). Does the join
produce a much larger set of rows than the two nicknames combined?
Do the numbers make sense? If the answer is no, consider updating the
nickname statistics manually (SYSSTAT.TABLES).

v Why isn’t the GROUP BY operator being evaluated remotely?

Chapter 5. Understanding the SQL Compiler 173

Areas to examine include:
– Operator syntax. Verify that the operator can be evaluated at the remote

data source. See “Understanding Why a Query is Evaluated at a Data
Source or at DB2” on page 168 for more information.

– Number of rows. Check the estimated number of rows in the GROUP BY
operator input and output using visual explain. Are these two numbers
very close? If the answer is yes, the DB2 optimizer considers it more
efficient to evaluate this GROUP BY locally. Also, do these two numbers
make sense? If the answer is no, consider updating the nickname
statistics manually (SYSSTAT.TABLES).

v Why is the statement not being completely evaluated by the remote data
source?
The DB2 Optimizer performs cost-based optimization. Even if pushdown
analysis indicates that every operator can be evaluated at the remote data
source, the optimizer still relies on its cost estimate to generate a globally
optimal plan. There are a great many factors that can contribute to that
plan. For example, even though the remote data source can process every
operation in the original query, its CPU speed is much slower than DB2’s
and thus it may turn out to be more beneficial to perform the operations at
DB2 instead. If results are not satisfactory, verify your server statistics in
SYSCAT.SERVEROPTIONS.

v Why does a plan generated by the optimizer, and completely evaluated at a
remote data source, have much worse performance than the original query
executed directly at the remote data source?
Areas to examine include:
– The remote SQL statement generated by the DB2 optimizer. Ensure that

it is identical to the original query. Check for predicate ordering changes.
A good query optimizer should not be sensitive to the predicate ordering
of a query; unfortunately, not all DBMS optimizers are identical, and
thus it is likely that the optimizer of the remote data source may
generate a different plan based on the input predicate ordering. If this is
true, this is a problem inherent in the remote optimizer. Consider either
modifying the predicate ordering on the input to DB2 or contacting the
service organization of the remote data source for assistance.
Also, check for predicate replacements. A good query optimizer should
not be sensitive to equivalent predicate replacements; unfortunately, not
all DBMS optimizers are identical, and thus it is possible that the
optimizer of the remote data source may generate a different plan based
on the input predicate. For example, some optimizers cannot generate
transitive closure statements for predicates.

– The number of returned rows. You can get this number from Visual
Explain. If the query returns a large number of rows, network traffic is a
potential bottleneck.

174 Administration Guide: Performance

– Additional functions. Does the remote SQL statement contain additional
functions compared with the original query? Some of the extra functions
may be generated to convert data types. Ensure that they are necessary.

Chapter 5. Understanding the SQL Compiler 175

176 Administration Guide: Performance

Chapter 6. SQL Explain Facility

The SQL explain facility is part of the SQL Compiler that can be used to
capture information about the environment where the static or dynamic SQL
statement is compiled. The information captured allows you to understand
the structure and potential execution performance of SQL statements,
including:
v Sequence of operations to process the query
v Cost information
v Predicates and selectivity estimates
v Statistics for all objects referenced in the SQL statement at the time of the

explain.

This information can help you:
v Understand the execution plan chosen for a query
v Assist in designing application programs
v Determine when an application should be rebound
v Assist in database design.

The following topics are provided:
v “Choosing an Explain Tool” on page 178

v “Using the SQL Explain Facility” on page 180

v “Introductory Concepts for Explain” on page 182

v “How Explain Information is Organized” on page 185

v “Obtaining Explain Data” on page 191

v “Guidelines on Using Explain Output” on page 193

v “Visual Explain” on page 195

v “SQL Advise Facility” on page 196.

The explain output is stored in relational tables and, as an option, in a format
which may be graphically displayed using the Visual Explain tool. You should
consider using the explain tables to find those queries that are of interest to
you. For more information on the tables used by the explain facility and how
to create those tables, see “Appendix D. Explain Tables and Definitions” on
page 611.

© Copyright IBM Corp. 1993, 1999 177

Choosing an Explain Tool

DB2 provides the most comprehensive explain facility in the industry with
detailed optimizer information on the access plan chosen for an explained
SQL statement. Several methods are provided to give you the flexibility you
need to capture and access explain information.

Detailed optimizer information that allows for in-depth analysis of an access
plan is kept in explain tables separate from the actual access plan itself. There
are three ways to get information from the explain tables:
1. Write your own queries (based on the explain table descriptions as shown

in “Appendix D. Explain Tables and Definitions” on page 611)

2. Use the db2exfmt tool
3. Use Visual Explain (to view explain snapshot information)

The explain tables are accessible on all supported platforms and contain
information for both static and dynamic SQL statements. You can access the
explain tables using SQL statements which allows for easy manipulation of
the output and for comparison among different queries, or for comparisons of
the same query over time. When using the explain tables, you are required to
create your own statements to access the tables. If you wish the information
from the explain tables to be presented in a predefined format, you can use
the db2exfmt tool. For more information about this tool, see “Appendix F.
db2exfmt - Explain Table Format Tool” on page 687.

Note: The location of this tool (and others like db2batch, dynexpln, db2vexp,
and db2_all) is in the misc subdirectory of the sqllib directory. If this tool
has been moved from this path, then the command line entry
mentioned above may not work.

Visual Explain allows for the analysis of access plan and optimizer
information from the explain tables through a graphical interface. Both static
and dynamic SQL statements can be analyzed using this tool. Visual Explain
is typically invoked from within the Control Center. The Control Center is
available from the command line by typing db2cc. Also, Visual Explain can be
invoked directly from the command line for a single SQL statement using the
db2vexp command. On some platforms, Visual Explain can be invoked using a
folder from within the DB2 Universal Database folder. Visual Explain is not
available on all supported platforms. You should refer to the Quick Beginnings
manual for your platform to see if Visual Explain is supported. Visual Explain
does allow you to view snapshots captured or taken on another platform. For
example, a Windows NT Client can graph snapshots generated on a DB2 for
HP-UX server. To do this, both of the platforms must be at a Version 5 level or
later. The output from Visual Explain is not easily manipulated for further
analysis nor is the information accessible to other applications. For more

178 Administration Guide: Performance

information on the db2vexp command, type db2vexp -h on the command line or
refer to the Command Reference manual. For other information on Visual
Explain, you should refer to the online help in the Control Center by typing
db2cc.

Information about access plans for static SQL statements is generated and
stored in the system catalog as part of a package. To see the access plan
information available for one or more packages, the db2expln tool is available
from the command line. db2expln shows the actual implementation of the
chosen access plan. It does not show optimizer information.

The dynexpln tool, which uses db2expln within it, provides a quick way to
explain dynamic SQL statements that contain no parameter markers. This use
of db2expln from within dynexpln is done by transforming the input SQL
statement into a static statement within a pseudo-package. When this occurs,
the information may not always be completely accurate. If complete accuracy
is desired, you should use the Explain facility.

The db2expln tool does provide a relatively compact and English-like overview
of what operations will occur at run-time by examining the actual access plan
generated (see 114 for more information on how the code is generated).
Additional details on using db2expln and interpreting the output can be found
in “Appendix E. SQL Explain Tools” on page 645.

Table 16 summarizes the different tools available with the DB2 explain facility
and their individual characteristics. Use this table to select the tool most
suitable for your environment and needs.

Table 16. Explain Facility Tools

Desired Characteristics
Visual
Explain db2vexp

Explain
tables db2exfmt db2expln dynexpln

GUI-interface Yes Yes

Text output Yes Yes Yes

“Quick and dirty” static SQL
analysis

Yes

Static SQL supported Yes Yes Yes Yes

Dynamic SQL supported Yes Yes Yes Yes Yes*

CLI applications supported Yes Yes Yes

Available to DRDA Application
Requesters

Yes

Detailed optimizer information Yes Yes Yes Yes

Suited for analysis of multiple
statements

Yes Yes Yes Yes

Chapter 6. SQL Explain Facility 179

Table 16. Explain Facility Tools (continued)

Desired Characteristics
Visual
Explain db2vexp

Explain
tables db2exfmt db2expln dynexpln

Information accessible from
within an application

Yes

Note:

* Indirectly using db2expln; there are some limitations.

Using the SQL Explain Facility

The different means of capturing explain information include using:
1. EXPLAIN and EXPLSNAP BIND/PREP options
2. CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT

special registers
3. EXPLAIN SQL statement
4. db2vexp tool (also directly calls Visual Explain to display the information)

There are three reasons you may wish to collect and use explain data:
1. To understand the steps (the access plan) that the Database Manager must

perform to satisfy your query. “Data Access Concepts and Optimization”
on page 126 provides information which you may need to reference if you
wish to understand the explain output.

2. To help evaluate your performance tuning initiatives. There are a number
of actions you can take to help improve the performance of your queries.
Many of these possible actions are described in subtopics of the following:
v “Chapter 2. Application Considerations” on page 13

v “Chapter 3. Environmental Considerations” on page 59

v “Chapter 4. System Catalog Statistics” on page 79.

After making a change in any of these areas, you can use the SQL explain
facility to determine the impact, if any, that the change has on the access
plan chosen. For example, if you add an index based on the
recommendations provided in “Indexing Impact on Query Optimization”
on page 66, the explain data can help you determine whether the index is,
in fact, being used as you expected.

While the explain output will provide you with information to allow you
to determine the access plan that was chosen and its relative cost, the only

180 Administration Guide: Performance

way to accurately measure the performance improvement for a query is to
use benchmark testing techniques, as described in “Chapter 11. Benchmark
Testing” on page 275.

3. To help you understand the reasons for changes in query performance,
you need to have the explain information both before and after your
change in order to analyze the impact. Therefore, when compiling a SQL
statement to the database, you should:
v Use the explain facility to capture the plan information before your

changes, and save the resulting explain tables.
v Save and/or print the current catalog statistics if you do not want to, or

cannot, access Visual Explain to view this information. (The db2look
productivity tool, described in “Modeling Production Databases” on
page 108, could be used to help perform this task.)

v Save and/or print the data definition language (DDL) statements,
including those for CREATE TABLE, CREATE VIEW, CREATE INDEX,
CREATE TABLESPACE.

The above information provides you with a before picture that you can use
as a reference point for future analysis. For dynamic SQL statements, you
can also collect this information when you run your application for the
first time. For static SQL statements, you can also collect this information
at bind time.

When you wish to analyze the reason for a performance change, you can
compare the before data to information you collect about the query and
environment when you are starting your analysis (the after data).

As a simple example, your analysis could show that an index is no longer
being used as part of the access path. Using the catalog statistics
information in Visual Explain, you might notice that the number of index
levels (NLEVELS column) is now substantially higher than when the
query was first bound to the database. You might then choose to:
v Reorganize the index
v Collect new statistics for your table and indexes
v Gather explain information when rebinding your query.

Following these actions, you might notice that the index is once again
being used in the access plan and that performance of the query is no
longer a problem.

Chapter 6. SQL Explain Facility 181

Introductory Concepts for Explain

You can use explain information to analyze the access plan that the optimizer
has chosen based on the choices described in “Data Access Concepts and
Optimization” on page 126. For example, explain information may indicate
that an index scan (see “Index Scan Concepts” on page 127) was chosen by the
optimizer. In addition, it can also allow you to determine the following:

v How many index columns are used as search criteria, as described in
“Range Delimiting and Index SARGable Predicates” on page 139

v Whether index-only access is used, as described in “Index-Only Access” on
page 132

v Whether list prefetch will be used to read the pages, as described in
“Understanding List Prefetching” on page 222.

As another example, the explain information could also help you understand
how two tables are joined:

v The join method
v The order in which the tables are joined
v The occurrence and type of sorts.

Although you can use explain for SELECT, SELECT INTO, UPDATE, INSERT,
VALUES, VALUES INTO, and DELETE SQL statements, the primary use of
explain is to observe the access paths for the SELECT parts of your
statements.

To satisfy an SQL query, the Database Manager typically:
v Uses one or more data objects (a table, an index, or both)
v Performs one or more operations (for example, table scan, index scan, and

join)
v Returns the result set to the calling application.

For a simple SQL query, such as:
SELECT DEPTNO, DEPTNAME

FROM DEPARTMENT

the following, graphical representation of the steps performed could be
displayed by Visual Explain:

182 Administration Guide: Performance

The following topics discuss the type of details you can view for objects and
operators:
v “Explain Information for Data Objects”

v “Explain Information for Data Operators” on page 184

Explain Information for Data Objects

A single access plan may use one or more data objects to satisfy the SQL
statement.

Object Statistics: The explain facility records facts about the object, such as:
v The creation time
v The last time that statistics were collected for the object (see “Chapter 4.

System Catalog Statistics” on page 79)

v An indication of whether or not the data in the object is ordered
v The number of columns in the object
v The estimated number of rows in the object
v The number of pages that the object occupies in the buffer pool
v The total estimated overhead, in milliseconds, for a single random I/O to

the specified table space where this object is stored
v The estimated transfer rate, in milliseconds, to read a 4K page from the

specified table space

RETURN

TBSCAN

DEPARTMENT

The table object called
DEPARTMENT.

The TBSCAN operator
which performs a table
scan on the DEPARTMENT
table.

The RETURN operator
which gives the query
results back to the
calling application.

Figure 10. Graphical Display of Explain Output

Chapter 6. SQL Explain Facility 183

v Prefetch and extent sizes, in 4K pages
v The degree of data clustering with the index
v The number of leaf pages used by this object’s index and the number of

levels in the tree
v The number of distinct full key values in this object’s index
v The total number of overflow records in the table.

Explain Information for Data Operators

A single access plan may perform several operations on the data to satisfy the
SQL statement and provide results back to you. The SQL compiler determines
the operations required; for example, a table scan, an index scan, a nested
loop join, or a group-by. Details of many of these operators are provided in
“Data Access Concepts and Optimization” on page 126.

In addition to showing the various operators used in an access plan, explain
information is also available for each operator as well as the cumulative
effects of the access plan.

Estimated Cost Information: The following estimated, cumulative costs can
be displayed for the operators. These costs are for the chosen access plan, up
to and including the operator for which the information is captured.

v The total cost (in timerons)
v The number of 4 KB page I/Os
v The number of CPU instructions
v The cost (in timerons) of fetching the first row, including any initial

overhead required
v The communication cost (in frames).

Timerons are a made-up, relative unit of measure.

Operator Properties: The following information is recorded by the explain
facility to describe the properties of each operator:
v The set of tables that have been accessed
v The set of columns that have been accessed
v The columns on which the data is ordered, if the optimizer determined that

this ordering can be used by subsequent operators
v The set of predicates that have been applied
v The estimated number of rows that will be returned (cardinality).

184 Administration Guide: Performance

How Explain Information is Organized

All explain information is organized around the concept of an explain
instance. An explain instance represents one invocation of the explain facility
for one or more SQL statements. An explain instance represents the explain
information for:
v All the eligible SQL statements in one package for static SQL statements
v One particular SQL statement for dynamic SQL statements
v Each EXPLAIN SQL statement (whether dynamic or static).

The explain information captured within one explain instance includes the
SQL Compilation environment as well as the access plan chosen to satisfy the
SQL statement being compiled. Explain information is organized into 3
subsets:

Explain Instance Information Compilation environment information
captured for each explain instance.

Explain Snapshot Information
Information used by Visual Explain.

Explain Table Information Information collected when explain table
information is requested.

Explain Instance Information

Explain instance information is stored in the EXPLAIN_INSTANCE table.
Additional specific information about each SQL statement explained within an
explain instance is stored in the EXPLAIN_STATEMENT table.

Explain Instance Identification: You can uniquely identify each explain
instance and correlate the information for the SQL statements to a given
invocation of the facility with this information:
v The user who requested the explain information
v When the explain request began
v The name of the package from which the explained SQL statement came
v The schema of the package from which the explained SQL statement came.
v An indication whether a snapshot was part of the explain request.

Environmental Settings: Environmental information concerning how the SQL
compiler optimized your queries is captured. The environmental information
includes the following:
v The version and release number for the level of DB2 being used.
v The degree of parallelism used to compile the query. The CURRENT

DEGREE special register, the DEGREE bind option, the SET RUNTIME

Chapter 6. SQL Explain Facility 185

DEGREE API, and the dft_degree configuration parameter may be used to
determine the degree of parallelism to be used when compiling a particular
query.

v Whether the SQL statement was dynamic or static.
v The query optimization class used to compile the query. See “Adjusting the

Optimization Class” on page 36 for more information.

v The type of cursor blocking specified when compiling the query. For more
information about cursors, refer to the SQL Reference manual. For more
information about cursor blocking, see “Row Blocking” on page 48.

v The isolation level used when compiling the query. See “Concurrency” on
page 13 for more information.

v The values of various configuration parameters when the query was
compiled. See “Configuration Parameters Affecting Query Optimization” on
page 59 for more information about the configuration parameters that can
affect query optimization, including the following parameters that are
recorded when an explain snapshot is taken:

– “Buffer Pool Size (buffpage)” on page 305

– “Sort Heap Size (sortheap)” on page 320

– “Average Number of Active Applications (avg_appls)” on page 354

– “Database Heap (dbheap)” on page 308

– “Maximum Storage for Lock List (locklist)” on page 314

– “Maximum Percent of Lock List Before Escalation (maxlocks)” on
page 342

– “CPU Speed (cpuspeed)” on page 430

– “Communications Bandwidth (comm_bandwidth)” on page 430.

SQL Statement Identification: For each explain instance, multiple SQL
statements may have been explained. Along with information that uniquely
identifies the explain instance, the following information helps identify each
individual SQL statement.

v The type of statement: SELECT, DELETE, INSERT, UPDATE, positioned
DELETE, positioned UPDATE.

v The statement and section number of the package issuing the SQL
statement, as recorded in SYSCAT.STATEMENTS catalog view.

Within the EXPLAIN_STATEMENT table, the QUERYTAG and QUERYNO
fields contain identifiers and are set for you as part of the explain process.

186 Administration Guide: Performance

For dynamic explain SQL statements submitted during a CLP or CLI session,
when EXPLAIN MODE or EXPLAIN SNAPSHOT is active, the QUERYTAG is
set to “CLP” or “CLI”. When this happens, the QUERYNO is defaulted to a
number that is incremented by one or more for each statement.

For all other dynamic explain SQL statements (not from CLP, CLI, or using
the EXPLAIN SQL statement) the QUERYTAG is set to blanks, and the
QUERYNO will always be “1”.

Cost Estimation: For each statement explained, an estimate of the relative cost
of executing the chosen access plan is recorded. This cost is given using a
made-up, relative unit of measure called timerons. Estimates of elapsed times
are not provided, for the following reasons:
v The SQL optimizer does not estimate elapsed time but rather resource

consumption.
v The optimizer does not model all factors that can affect elapsed time; it

ignores those that do not affect the efficiency of the access plan. The elapsed
time is affected by a number of run-time factors including: the system
workload; the amount of resource contention; the amount of parallel
processing and I/O; the cost of returning rows to the user; and the
communication time between the client and server.

Statement Text: For each statement explained, two versions of the text of the
SQL statement are recorded. One version is the text as received by the SQL
Compiler. The other is a version of the statement text that has been
reverse-translated from the internal compiler representation of the query. This
translation, while looking similar to other SQL statements, does not
necessarily follow correct SQL syntax nor does it necessarily reflect the actual
content of the internal representation as a whole. This translation is provided
simply to allow an understanding of the SQL context from which the SQL
optimizer chose the access plan. Comparing the user-written statement text to
the internal representation of the SQL statement can help you to understand
how the SQL compiler has rewritten your query for better optimization. (See
“Rewrite Query by the SQL Compiler” on page 115.) It also shows you other
elements in the environment affecting your statement such as triggers and
constraints. Some keywords used by this “optimized” text are:

$Cn The name of a derived column, where n
represents an integer value.

$CONSTRAINT$ The tag used to indicate the name of a
constraint added to the original SQL statement
during compilation. Seen in conjunction with
the $WITH_CONTEXT$ prefix.

$DERIVED.Tn The name of a derived table, where n
represents an integer value.

Chapter 6. SQL Explain Facility 187

$INTERNAL_FUNC$ The tag used to indicate the presence of a
function used by the SQL Compiler for the
explained query but not available for general
use.

$INTERNAL_PRED$ The tag used to indicate the presence of a
predicate added by the SQL Compiler during
compilation of the explained query. Again,
such a predicate is not available for general
use. An internal predicate is used by the
compiler to satisfy additional context added to
the original SQL statement as the result of
triggers and constraints.

RID The tag used to identify the Row Identifier
(RID) column for a particular row.

$TRIGGER$ The tag used to indicate the name of a trigger
added to the original SQL statement during
compilation. Seen in conjunction with the
$WITH_CONTEXT$ prefix.

$WITH_CONTEXT$(...) This prefix will appear at the start of the text
when additional triggers or constraints have
been added into the original SQL statement.
Following this prefix will appear a list of the
names of any triggers or constraints affecting
the compilation and resolution of the SQL
statement.

Explain Snapshot Information

When an explain snapshot is requested, additional explain information is
recorded describing the access plan selected by the SQL optimizer. This
information is stored in the SNAPSHOT column of the
EXPLAIN_STATEMENT table in the format required by Visual Explain. This
format is not usable by other applications.

Additional information on the contents of the explain snapshot information is
available from Visual Explain itself and in:
v “Explain Information for Data Objects” on page 183

v “Explain Information for Data Operators” on page 184.

188 Administration Guide: Performance

Explain Table Information

When explain table information is requested, additional information is
recorded describing the access plan selected by the SQL optimizer. This
information is stored in the following explain tables:
v EXPLAIN_ARGUMENT. This table represents the unique characteristics for

each individual operator, if any.
v EXPLAIN_INSTANCE. This table is the main control table for all Explain

information. Each row of data in the Explain tables is explicitly linked to
one unique row in this table. Basic information about the source of the SQL
statements being explained and environment information is kept in this
table.

v EXPLAIN_OBJECT. This table identifies those data objects required by the
access plan generated to satisfy the SQL statement.

v EXPLAIN_OPERATOR. This table contains all the operators needed to
satisfy the SQL statement by the SQL compiler.

v EXPLAIN_PREDICATE. This table identifies which predicates are applied
by a specific operator.

v EXPLAIN_STATEMENT. This table contains the text of the SQL statement
as it exists for the different levels of Explain information. The original SQL
statement as entered by the user is stored in this table along with the
version used (by the optimizer) to choose an access plan to satisfy the SQL
statement.

v EXPLAIN_STREAM. This table represents the input and output data
streams between individual operators and data objects. The data objects
themselves are represented in the EXPLAIN_OBJECT table. The operators
involved in a data stream are represented in the EXPLAIN_OPERATOR
table.

v ADVISE_WORKLOAD. This table allows users to describe their workload
to the database. Each row in the workload represents a SQL statement, and
is described by an associated frequency. This table is used by the db2advis
tool and the Index SmartGuide, to pick up and store work and information.

v ADVISE_INDEX. This table stores information about recommended indexes.
The table is populated by the SQL compiler, the db2advis utility, the Index
SmartGuide, or a user. This table is used in two ways:
– To get recommended indexes.
– To evaluate indexes based on input about proposed indexes.

All of the tables above are not created by default. They can be created by
running the EXPLAIN.DDL script found in the misc subdirectory of the
SQLLIB subdirectory. Connect to the database where the Explain and Advise

Chapter 6. SQL Explain Facility 189

tables are required. Then issue the command: db2 -tf EXPLAIN.DDL and the
tables will be created. The tables could also be automatically created by the
Index SmartGuide, if necessary.

Each rectangular object node of Visual Explain corresponds to a row in the
EXPLAIN_OBJECT table. Each octagonal “operator” node of Visual Explain
corresponds to a row in the EXPLAIN_OPERATOR table. Each link between
operators or operator’s objects corresponds to a row of the
EXPLAIN_STREAM table.

The explain table information is similar in content to that recorded for an
explain snapshot, however, this information is stored in ordinary relational
tables which can be accessed using standard SQL statements.

Explain tables, like the Visual Explain access plan graph, are designed to
reflect the relationships between operators and data objects within the access
plan. The following diagram shows the relationships between these tables.

It is possible to have explain tables that are common to more than one user.
The explain tables can be defined for one user. Aliases can then be defined
using the same name for each additional user pointing to the defined tables.
Each user sharing the common explain tables must have insert permission on
those tables.

See “Appendix E. SQL Explain Tools” on page 645 for more information on the
Explain tables and how to create the tables. Additional information on the
contents of the explain table information is available in:

v “Explain Information for Data Objects” on page 183

Explain Predicate
Table

Explain Argument
Table

Explain Stream
Table

Explain Object
Table

Explain Operator
Table

Figure 11. Overview of Explain Table Relationships (not all tables are shown).

190 Administration Guide: Performance

v “Explain Information for Data Operators” on page 184.

The db2exfmt tool provided in the misc subdirectory under the sqllib
directory can be used to format the contents of the explain tables into a
legible, organized output.

Obtaining Explain Data

Before you can obtain explain data for an SQL statement, you must have a set
of explain tables defined using the same schema as the authorization ID that
invokes the explain facility. See “Table Definitions for Explain Tables” on
page 633 for information on how to create the tables.

Capturing Explain Table Information

Once these tables are defined, explain data is captured when an SQL
statement is compiled and explain data has been requested:
v For static SQL statements, explain table information will be captured when

either EXPLAIN ALL or EXPLAIN YES options are specified on the BIND
or PREP command; or, a static EXPLAIN SQL statement is used in the
source program.

v For dynamic SQL statements, explain table information will be captured for
any of the following situations:
– An EXPLAIN SQL statement. All explain information is captured and

placed in the explain tables unless the FOR SNAPSHOT clause is used.
An example of an EXPLAIN SQL statement:

EXPLAIN PLAN FOR <any valid DELETE, INSERT, SELECT, SELECT INTO,
UPDATE, VALUES, or VALUES INTO SQL statement>

– The CURRENT EXPLAIN MODE special register is set to YES. This
setting will cause the SQL compiler to capture explain data and allow
the SQL statement to execute, returning the results of the query.

– The CURRENT EXPLAIN MODE special register is set to EXPLAIN. This
setting will cause the SQL compiler to capture explain data, but will not
execute the SQL statement.

– The CURRENT EXPLAIN MODE special register is set to RECOMMEND
INDEXES. This setting will cause the SQL compiler to capture explain
data and the recommended indexes to be placed in the ADVISE_INDEX
table; however, the SQL statement is not executed.

– The CURRENT EXPLAIN MODE special register is set to EVALUATE
INDEXES. This setting will cause the SQL compiler to use indexes placed
in the ADVISE_INDEX table by the you. The user inserts a new row for
each index they want evaluated. The required information for each index

Chapter 6. SQL Explain Facility 191

is: index name, table name, and the columns names that make up the
index being evaluated. Once entered, you set the special register. Then
the SQL compiler scans the ADVISE_INDEX table where the field
USE_INDEX=“Y” and assume those indexes exist. All dynamic
statements executed in that mode are explained as if these virtual
indexes were available. The SQL compiler then chooses to use the virtual
indexes if they improve the performance of the statements. Otherwise,
the indexes are ignored. By reviewing the EXPLAIN results, you can see
if the indexes proposed by you were used by the SQL compiler. If they
were used, then this is the indication that you have proposed an index
that should be considered to be implemented to improve access to those
tables.

– The EXPLAIN ALL option has been specified on the BIND or PREP
command. This setting will cause the SQL compiler to capture explain
data for dynamic SQL at run-time, even if the setting of the CURRENT
EXPLAIN MODE special register is NO. The SQL statement will also
execute, returning the results of the query.

Note: Explain information is only captured when the SQL statement is
compiled. Following the initial compilation, dynamic SQL statements
are only recompiled when a change to the environment requires the
statement be recompiled. If the same PREPARE statement is issued
consecutively for the same SQL statement, the SQL statement will
only be compiled, and explain data captured, the first time the
PREPARE statement is issued, assuming the environment does not
change.

For more information about using the EXPLAIN SQL statement or about
using the CURRENT EXPLAIN MODE registers, refer to the SQL Reference
manual. For more information about the BIND and PREP commands, refer to
the Command Reference manual.

Capturing Explain Snapshot Information

Explain snapshot data is captured when an SQL statement is compiled and
explain data has been requested:
v For static SQL statements, an explain snapshot will be captured when either

EXPLSNAP ALL or EXPLSNAP YES options are specified on the BIND or
PREP command; or, a static EXPLAIN SQL statement, using a FOR
SNAPSHOT or WITH SNAPSHOT clause, is used in the source program.

v For dynamic SQL statements, an explain snapshot will be captured in any
of the following situations:
– An EXPLAIN SQL statement using a FOR SNAPSHOT or a WITH

SNAPSHOT clause. The FOR SNAPSHOT clause has no explain table
information captured except the information associated with explain

192 Administration Guide: Performance

snapshot. The WITH SNAPSHOT clause has all explain table information
captured in addition to the information associated with explain snapshot.
An example of an explain snapshot using the EXPLAIN SQL statement:

EXPLAIN PLAN FOR SNAPSHOT FOR <any valid DELETE, INSERT, SELECT,
SELECT INTO, UPDATE, VALUES, or VALUES INTO SQL statement>

Only an explain snapshot is taken and the captured information is
placed in the EXPLAIN_INSTANCE and EXPLAIN_STATEMENT tables.

– The CURRENT EXPLAIN SNAPSHOT special register is set to YES. This
setting will cause the SQL compiler to take a snapshot of explain data
and allow the SQL statement to execute, returning the results of the
query.

– The CURRENT EXPLAIN SNAPSHOT special register is set to
EXPLAIN. This setting will cause the SQL compiler to take a snapshot of
explain data, but will not execute the SQL statement.

– The EXPLSNAP ALL option has been specified on the BIND or PREP
command. This setting will cause the SQL compiler to take a snapshot of
explain data at run-time, even if the setting of the CURRENT EXPLAIN
SNAPSHOT special register is NO. The SQL statement will also execute,
returning the results of the query.

Note: Explain information is only captured when the SQL statement is
compiled. Following the initial compilation, dynamic SQL statements
are only recompiled when a change to the environment requires the
statement be recompiled. If the same PREPARE statement is issued
consecutively for the same SQL statement, the SQL statement will
only be compiled, and explain data captured, the first time the
PREPARE statement is issued, assuming the environment does not
change.

For more information about using the EXPLAIN SQL statement and the FOR
SNAPSHOT or WITH SNAPSHOT clauses, or about using the CURRENT
EXPLAIN SNAPSHOT registers, refer to the SQL Reference manual. For more
information about the BIND and PREP commands, refer to the Command
Reference manual.

Guidelines on Using Explain Output

There are a number of ways in which analyzing the explain data can help you
to tune your queries and environment. For example:
v Are Indexes Being Used?

As discussed in “Indexing Impact on Query Optimization” on page 66, the
proper indexes can have a significant benefit on performance. Using the
explain output, you can determine if the indexes you have created to help a

Chapter 6. SQL Explain Facility 193

specific set of queries are being used. In the explain output, you should
look for index usage in the following areas:

– Join predicates
– Local predicates
– GROUP BY clause
– ORDER BY clause
– The select list.

You can also use the explain facility to evaluate whether a different index
can be used instead of an existing index, or no index at all. After creating a
new index, collect statistics for that index (using the RUNSTATS command)
and recompile your query. Over time you may notice through the explain
data that instead of an index scan, a table scan is now being used. This can
result from a change in the clustering of the table data. If the index that
was previously being used now has a low cluster ratio, you may want to:
– Reorganize your table to cluster the data according to that index
– Use the RUNSTATS command to update the catalog statistics for the

table and index
– Recompile your query
– Re-examine the explain output to determine whether reorganizing your

table has impacted the access plan.
v Is the Type of Access Appropriate for Your Application?

You can analyze the explain output and look for types of access to the data
that, as a rule, are not optimal for the type of application you are running.
For example:
– Online Transaction Processing (OLTP) Queries

OLTP applications are prime candidates to use index scans with range
delimiting predicates, because they tend to return only a few rows that
are qualified using an equality predicate against a key column. If your
OLTP queries are using a table scan, you may want to analyze the
explain data to determine the reasons why an index scan was not used.

– Browse-Only Queries

The search criteria for a “browse” type query may be very vague,
causing a large number of rows to qualify. If the user will usually only
look at a few screens of the output data, you may want to try to ensure
that the entire answer set need not be computed before some results are
returned. In this case, the goals of the user are different from the basic
operating principle of the optimizer, which attempts to minimize
resource consumption for the entire query, not just the first few screens
of data.
For example, if the explain output shows that both merge scan join and
sort operators were used in the access plan, then the entire answer set

194 Administration Guide: Performance

will be materialized in a temporary table before any rows are returned to
the application. In this case, you can attempt to change the access plan
by using the OPTIMIZE FOR clause on the SELECT statement. (For more
information on the OPTIMIZE FOR clause, see “OPTIMIZE FOR n
ROWS Clause” on page 45.) In this way, the optimizer can attempt to
choose an access plan that does not produce the entire answer set in a
temporary table before returning the first rows to the application.

v What Type of Join Method is Being Used?

If a query joins two tables, you can check the type of join processing being
used. Joins involving more rows, such as those in decision-support queries,
usually run faster with a merge join. Joins involving only a few rows, such
as OLTP queries, typically run faster with nested loop joins. However, there
may be extenuating circumstances in either case, such as the use of local
predicates or indexes, that would change how these typical joins would
work. (See “Nested Loop Join” on page 141 and “Merge Join” on page 143
for information about how these two join methods operate.)

Visual Explain

Visual Explain can be used to study queries in more detail when compared to
the other methods, especially those that contain more complex sequences of
operations. Visual Explain is not available on all supported platforms. You
should check the Quick Beginnings for your platform to see if Visual Explain is
supported.

Visual Explain lets you view the access plan for explained SQL statements as
a graph. You can use the information available from the graph to tune your
SQL queries for better performance. Visual Explain also lets you dynamically
explain a SQL statement and view the resulting access plan graph.

The optimizer chooses an access plan and Visual Explain displays the
information as an access plan graph in which tables and indexes, and each
operation on them, are represented as nodes, and the flow of data is
represented by the links between the nodes.

To display an access plan graph, you must have created an explain snapshot.
From an access plan graph, you can view the details for:
v Tables and indexes (and their associated columns)
v Operators (such as table scans, sorts, and joins)
v Table spaces and functions.

You can also use Visual Explain to:

Chapter 6. SQL Explain Facility 195

v View the statistics that were used at the time of optimization. You can then
compare these statistics to the current catalog statistics to help you
determine whether rebinding the package might improve performance.

v Determine whether or not an index was used to access a table. If an index
was not used, Visual Explain can help you determine which columns might
benefit from being indexed.

v View the effects of performing various tuning techniques by comparing the
before and after versions of the access plan graph for a query.

v Obtain information about each operation in the access plan, including the
total estimated cost and number of rows retrieved (cardinality).

For additional detail on Visual Explain, you should refer to the online
information available through the Control Center. The Control Center can be
accessed by typing db2cc on the command line.

SQL Advise Facility

The Index Advisor is a management tool that reduces the need for you to
design and define suitable indexes for your data.

The Index Advisor is good for:
v Finding the best indexes for a problem query.
v Finding the best indexes for a set of queries (a workload), subject to

resource limits which are optionally applied.
v Testing out an index on a workload without having to create the index.

There are concepts associated with the SQL Advise Facility. First, there is a
workload. A workload is a set of SQL statements which the database manager
has to process over a given period of time. The SQL statements can include:
SELECT, INSERT, UPDATE, and DELETE statements. For example, over a one
month period of time your database manager may have to process 1 000
INSERTs, 10 000 UPDATEs, 10 000 SELECTs, and 1 000 DELETEs. The
information in the workload is concerned with the type and frequency of the
SQL statements over a given period of time. The advising engine uses this
workload information in conjunction with the database information to
recommend indexes. The goal of the advising engine is to minimize the total
workload cost.

Second, there is a concept of a virtual index. Virtual indexes are indexes which
do not exist in the current database schema. These indexes could be either
recommendations that the Advise Facility has made to you, or indexes that
you are looking to the Advise Facility to evaluate for you. These indexes
could also be those the Advise Facility considers as part of the process and

196 Administration Guide: Performance

then discards because they are not going to be recommended. Virtual indexes
are passed back and forth from you to the Advise Facility using the
ADVISE_INDEX table.

The Advise Facility uses a workload and statistics from the database to
generate recommended indexes.

The Advise Facility uses two tables which are extensions to the EXPLAIN
tables:
v ADVISE_WORKLOAD

This table is where you describe the workload to be considered. Each row
in the table represents an SQL statement and is described by an associated
frequency. There is an identifier for each workload that is a field of the table
called “WORKLOAD_NAME”. All SQL statements which are part of the
same workload should have the same WORKLOAD_NAME.
To create this table, run the EXPLAIN.DDL script found in the misc
subdirectory of the sqllib subdirectory. If not already created, the Index
SmartGuide can also create the table.
The Index SmartGuide and the db2advis tool use the table to pick up and
store workload information.

v ADVISE_INDEX
This table stores information about recommended indexes. Information is
placed into this table from the SQL compiler, the Index SmartGuide, the
db2advis tool, or you.
The table is used in two ways:
– To get recommended indexes from the Advise Facility
– To evaluate indexes.

To create this table, run the EXPLAIN.DDL script found in the misc
subdirectory of the sqllib subdirectory. If not already created, the Index
SmartGuide can also create the table.

The process for using the Index Advisor involves inputs, invocation of the
advisor, outputs, and some special cases that should be considered.

There are three ways to create the input for the Index Advisor:
v Capturing a workload.

That is, using one of the following ways to create the SQL to be evaluated:
– Using the monitor to get dynamic SQL.
– Using the SYSSTMT catalog view to get static SQL.
– Adding statements and frequencies by cutting and pasting the values

into the EVALUATE_INDEXES table.

Chapter 6. SQL Explain Facility 197

v Modifying the workload frequencies to increase or decrease the importance
of queries.

v Determining the constraints, if any, on the data.

There are four ways to invoke the Index Advisor:
v Using the Control Center.

This is the recommended way to use the Index Advisor. From the Control
Center, expand the object tree until you find the indexes folder. Click with
mouse button two on the indexes folder and select Create–>Index using
SmartGuide from the pop-up menu. The Index SmartGuide opens. There is
extensive help with the Index SmartGuide and it is easy to use. The
SmartGuide also contains features to construct a workload by looking for
recently executed SQL, or looking through the recently used packages, or
by manually adding SQL statements.

v Using the command line processor.
On the command line enter db2advis. The db2advis starts by reading in a
workload from one of three locations:
– From the command line
– From the statements in a text file
– From the ADVISE_WORKLOAD table after you have inserted rows with

the proposed workload (SQL and frequency).

The tool then uses the CURRENT EXPLAIN MODE register to obtain
recommended indexes, combined with an internal optimization algorithm
for picking out the best indexes. The output goes to your terminal screen,
the ADVISE_INDEX table, and an output file, if desired.

For example, you may wish the tool to recommend indexes for a simple
query “select count(*) from sales where region = ’Quebec’”
$ db2advis -d sample \
-s "select count(*) from sales where region = 'Quebec'" \
-t 1
performing auto-bind

Bind is successful. Used bindfile: /home3/valentin/sqllib/bnd/db2advis.bnd

Calculating initial cost (without recommended indexes) [31.198040] timerons
Initial set of proposed indexes is ready.
Found maximum set of [1] recommended indexes
Cost of workload with all indexes included [2.177133] timerons
cost without index [0] is [31.198040] timerons. Derived benefit is
[29.020907]
total disk space needed for initial set [1] MB
total disk space constrained to [-1] MB
1 indexes in current solution
[31.198040] timerons (without indexes)
[2.177133] timerons (with current solution)

198 Administration Guide: Performance

[%93.02] improvement

Trying variations of the solution set.
Time elapsed.
LIST OF RECOMMENDED INDEXES
===========================
index[1], 1MB CREATE INDEX WIZ689 ON VALENTIN.SALES (REGION DESC)
===========================
Index Advisor tool is finished.

The db2advis tool can be used to recommend indexes for a workload as
well. You can create an input file called “sample.sql”:
--#SET FREQUENCY 100
select count(*) from sales where region = ?;
--#SET FREQUENCY 3
select projno, sum(comm) tot_comm from employee, emp_act
where employee.empno = emp_act.empno and

employee.job='DESIGNER'
group by projno
order by tot_comm desc;
--#SET FREQUENCY 50
select * from sales where sales_date = ?;

Then executes the following command:
$ db2advis -d sample -i sample.sql -t 0
found [3] SQL statements from the input file

Calculating initial cost (without recommmended indexes) [62.331280] timerons
Initial set of proposed indexes is ready.
Found maximum set of [2] recommended indexes
Cost of workload with all indexes included [29.795755] timerons
cost without index [0] is [58.816662] timerons. Derived benefit is
[29.020907]
cost without index [1] is [33.310373] timerons. Derived benefit is
[3.514618]
total disk space needed for initial set [2] MB
total disk space constrained to [-1] MB
2 indexes in current solution

[62.331280] timerons (without indexes)
[29.795755] timerons (with current solution)
[%52.20] improvement

Trying variations of the solution set.
Time elapsed.
LIST OF RECOMMENDED INDEXES
===========================
index[1], 1MB CREATE INDEX WIZ119 ON VALENTIN.SALES (SALES_DATE DESC,
SALES_PERSON DESC)
index[2], 1MB CREATE INDEX WIZ63 ON VALENTIN.SALES (REGION DESC)
===========================
Index Advisor tool is finished.

Chapter 6. SQL Explain Facility 199

v Using self-directed methods involving the EXPLAIN modes and PREP
options.
For example, the CURRENT EXPLAIN MODE special register is set to
RECOMMEND INDEXES. This setting will cause the SQL compiler to
capture explain data and the recommended indexes to be placed in the
ADVISE_INDEX table; however, the SQL statement is not executed.
Or, the CURRENT EXPLAIN MODE special register is set to EVALUATE
INDEXES. This setting will cause the SQL compiler to use indexes placed in
the ADVISE_INDEX table by the you. The user inserts a new row for each
index they want evaluated. The required information for each index is:
index name, table name, and the columns names that make up the index
being evaluated. Once entered, you set the special register. Then the SQL
compiler scans the ADVISE_INDEX table where the field USE_INDEX=“Y”
and assume those indexes exist. All dynamic statements executed in that
mode are explained as if these virtual indexes were available. The SQL
compiler then chooses to use the virtual indexes if they improve the
performance of the statements. Otherwise, the indexes are ignored. By
reviewing the EXPLAIN results, you can see if the indexes proposed by you
were used by the SQL compiler. If they were used, then this is the
indication that you have proposed an index that should be considered to be
implemented to improve access to those tables.

v Using the Call Level Interface (CLI).
If you are using this interface to write applications, you can also use the
advisor.

There are different ways to use the results from the advisor:
v Interpreting the output from the Index Advisor.

To see what indexes were recommended by the Advise Facility, you can use
the following query:

SELECT CAST(CREATION_TEXT as CHAR(200))
FROM ADVISE_INDEX

v Applying the recommendations of the Index Advisor.
v Knowing when to drop an index.

To get better recommendations for a specific query, it is suggested that you
advise that query by itself. You can use the Index SmartGuide to recommend
indexes for a single query by building a workload which contains only that
query.

A sample workload can be collected from Event Monitor output. The Event
Monitor can be used to collect dynamic SQL executions. Then these
statements can be fed back to the Advise Facility.

200 Administration Guide: Performance

The Index SmartGuide is a simple, straight-forward, easy to use, visual
interface providing an excellent way to access the Advise Facility.

Chapter 6. SQL Explain Facility 201

202 Administration Guide: Performance

Part 3. Tuning and Configuring Your System

© Copyright IBM Corp. 1993, 1999 203

204 Administration Guide: Performance

Chapter 7. Operational Performance

The following topics provide information on how you can influence
performance of an SQL query during run-time:
v How DB2 Uses Memory
v Managing the Database Buffer Pool
v Managing Multiple Database Buffer Pools
v Prefetching Data into the Buffer Pool
v Configuring I/O Servers for Prefetching and Parallel I/O
v Sorting
v Reorganizing Table Data
v Performance Considerations for DMS Devices
v Managing Initialization Overhead
v Database Agents
v Using the Database System Monitor
v Extending Memory.

The following chapters also provide information on how performance can be
influenced:
v “Chapter 2. Application Considerations” on page 13

v “Chapter 3. Environmental Considerations” on page 59

v “Chapter 4. System Catalog Statistics” on page 79.

You may also refer to Administration Guide, Design and Implementation physical
database design considerations.

How DB2 Uses Memory

Many of the configuration parameters available in DB2 affect memory usage
on the system. Some may affect memory on the server, some on the client,
and some on both. Furthermore, memory is allocated and de-allocated at
different times and from different areas of the system.

A system administrator should also take into consideration balancing overall
memory usage on the system. Different applications running on the operating
system may use memory in different ways. For example, some applications
may use the file system cache, while the Database Manager uses its own

© Copyright IBM Corp. 1993, 1999 205

buffer pool for data caching instead of the operating system facility. See
“Setting Parameters That Affect Memory Usage” on page 212 for additional
considerations.

Figure 12 shows that the Database Manager uses different types of memory.

Memory is allocated for each instance of the Database Manager at the
following times:

v When the Database Manager is started (db2start), the area marked
“Database Manager Shared Memory” is allocated, and this area remains
allocated until the Database Manager is stopped (db2stop). This area
contains information that is needed by the Database Manager to manage
activity across all database connections. When the first application connects
to a database, both global and private memory areas are allocated.

v When a database is activated or connected to for the first time, the
“database global memory” is allocated. The database global memory is

Database Manager
Shared Memory

. . .

. . .

. . .

Database
Global Memory

Application
Global Memory

* - 1 (one) can be the coordinating agent.
- only 1 per application

Agent
Private Memory

Database
Global Memory

Application
Global Memory

Agent
Private Memory

(numdb)

(maxappls)

(maxagents)

(1)

(1)

(1)
*

Figure 12. Types of memory used by the Database Manager

206 Administration Guide: Performance

used across all applications that might connect to the database and contains
memory areas such as the buffer pools, lock list, database heap and utility
heap.

v When an application connects to a database, the “application global
memory” is allocated (this occurs only in a partitioned database
environment, or if the intra_parallel configuration parameter is enabled).
This memory is used by agents working on behalf of the application to
share data and coordinate activities amongst themselves.

v When an agent is assigned to work for a particular application (as the result
of a connect request, or, in a parallel environment, a new SQL request),
“agent private memory” is allocated for that agent. The agent private
memory area is allocated for the agent and contains memory allocations
that will be used only by this specific agent, such as the sort heap and the
application heap.
Once a database is already in use by one application, any subsequent
connecting applications will only have agent private memory and
application global shared memory allocated on their behalf.

Figure 12 on page 206 shows how configuration parameter settings can affect
memory. In particular, the parameters in the following list can limit the
amount of memory that is allocated for specific purposes. (In a partitioned
database environment, this memory is required on every database partition.)

v numdb defines the maximum number of concurrent active databases (in use
by different applications). Since each database has its own global memory
area, the amount of memory that can potentially be allocated grows if the
value of this parameter increases.

v maxappls defines the maximum number of applications that can
simultaneously connect to a single database. It affects the amount of
memory that can potentially be allocated for “Agent Private Memory” and
“Application Global Memory” for that database. (Note that this parameter
can be set differently for every database.)

v maxagents (and max_coordagents for parallel environments) limit the number
of Database Manager agents that can exist simultaneously across all active
databases. Along with maxappls, these parameters limit the amount of
memory allocated for “Agent Private Memory” and “Application Global
Memory”. (For information on agents, see “Database Agents” on page 235.)

Figure 13 on page 208 summarizes how much memory is used to support
applications. The following configuration parameters allow you to control the
size of this memory, by limiting the number of ″memory segments″ (portions
of logical memory) and their size.

Chapter 7. Operational Performance 207

Database Manager Shared Memory
Memory space is required for the database manager to run. This space
can be very large, especially in intra-partition and inter-partition
parallelism environments. You can predict and control the size of this
space by reviewing the following sections:

Database Manager Shared Memory
(including FCM)

Utility Heap
()until_heap_sz

Backup Buffer
()backbufsz

Restore Buffer
()restbufsz

Package Cache
(pckcachesz)

Database Heap
()dbheap

Log Buffer
()logbufsz

Catalog Cache
()catalogcache_sz

Database Global Memory

Buffer Pools
(buffpage)

Extended Memory Cache

Lock List ()locklist

()app_ctl_heap_sz

Application Global Memory

Application
Heap

()applheapsz

Agent Stack
()agent_stack_sz

DRDA Heap
(drda_heap_sz)

UDF Memory
()udf_mem_sz

Statement Heap
()stmtheap

Statistics Heap
()stat_heap_sz

Sort Heap
()sortheap

Query Heap ()query_heap_sz Client I/O Block ()rqrioblk

Agent/Application
Shared Memory

Application Support
Layer Heap (aslheapsz)

Client I/O Block ()rqrioblk

User or Application Process
(Local Client)

User or Application Process
(Remote Client)

Note: Box size does not indicate relative size of memory.

Agent Private Memory

Figure 13. How Memory Is Used by the Database Manager

208 Administration Guide: Performance

v “Database Agents” on page 235. Agents running on behalf of
applications require substantial memory space, especially if the
value of maxagents is not appropriate.

v “FCM Requirements” on page 213. For partitioned database
systems, the fast communications manager (FCM) requires
substantial memory space, especially if the value of fcm_num_buffers
is not appropriate.
The FCM memory requirements are either allocated from the FCM
Buffer Pool, or from both the Database Manager Shared Memory
and the FCM Buffer Pool, depending on whether or not the
partitioned database system uses multiple logical nodes. See the
following description of the FCM Buffer Pool for details.

FCM Buffer Pool
If you have a partitioned database system that does not have multiple
logical nodes, the Database Manager Shared Memory and FCM Buffer
Pool are as shown in Figure 14.

If you have a partitioned database system that uses multiple logical
nodes, the Database Manager Shared Memory and FCM Buffer Pool
are as shown in Figure 15 on page 210.

Database Manager Shared Memory

Database Global Memory

FCM Buffers ()fcm_num_buffers FCM Control Block

Global Control Block

FCM Message Anchors ()fcm_num_anchors

FCM Connection Entries ()fcm_num_connect

FCM Request Block ()fcm_num_rqb

FCM Buffer Pool
()one for each host

Figure 14. FCM Buffer Pool when Multiple Logical Nodes Are Not Used

Chapter 7. Operational Performance 209

Database Global Memory
Database Global Memory is affected by the following configuration
parameters:

v The number of memory segments is limited by numdb (see
“Maximum Number of Concurrently Active Databases (numdb)” on
page 431).

v The maximum size of memory segments is determined by the
values of the following parameters:
– “Buffer Pool Size (buffpage)” on page 305 (if a buffer pool size is

-1), or the explicit sizes that were specified when the buffer pools
were created or altered

– “Maximum Storage for Lock List (locklist)” on page 314

– “Database Heap (dbheap)” on page 308

– “Utility Heap Size (util_heap_sz)” on page 311

– “Extended Storage Memory Segment Size (estore_seg_sz)” on
page 351

– “Number of Extended Storage Memory Segments
(num_estore_segs)” on page 352.

– “Package Cache Size (pckcachesz)” on page 316.

Database Manager Shared Memory

FCM Buffers ()fcm_num_buffers

FCM Buffer Pool

Database Global Memory

FCM Connection Entries ()fcm_num_connect

FCM Request Block ()fcm_num_rqb
Legend

One for all logical hosts
One for each logical host

* FCM Control Block*

FCM Message Anchors ()fcm_num_anchors

*

Global Control Block

!

!

! !

Figure 15. FCM Buffer Pool when Multiple Logical Nodes Are Used

210 Administration Guide: Performance

Application Global Memory
Application Global Memory is affected by the following configuration
parameter:

v “Application Control Heap Size (app_ctl_heap_sz)” on page 318.

For parallel systems, space is also required for the application control
heap, which is shared between the agents that are working on behalf
of the same application at one database partition. The heap is
allocated when the first agent to receive a request from the application
requests a connection. The agent can be either a coordinating agent or
a subagent (see “Database Agents” on page 235).

Agent Private Memory

v The number of memory segments is limited by the lower of:
– The total of maxappls for all active databases (see “Maximum

Number of Active Applications (maxappls)” on page 353)

– The value of maxagents (see “Maximum Number of Agents
(maxagents)” on page 360).

v The maximum size of memory segments is determined by the
values of the following parameters:
– “Application Heap Size (applheapsz)” on page 323

– “Sort Heap Size (sortheap)” on page 320

– “Statement Heap Size (stmtheap)” on page 322

– “Statistics Heap Size (stat_heap_sz)” on page 324

– “Query Heap Size (query_heap_sz)” on page 324

– “DRDA Heap Size (drda_heap_sz)” on page 325

– “UDF Shared Memory Set Size (udf_mem_sz)” on page 326

– “Agent Stack Size (agent_stack_sz)” on page 328.

Agent/Application Shared Memory

v The total number of agent/application shared memory segments
(for local clients) is limited by the lower of:
– The total of maxappls for all active databases (see “Maximum

Number of Active Applications (maxappls)” on page 353)

– The value of maxagents (see “Maximum Number of Agents
(maxagents)” on page 360), or (for parallel systems)
max_coordagents (see “Maximum Number of Coordinating Agents
(max_coordagents)” on page 361).

v Agent/Application Shared Memory is also affected by the
following:

Chapter 7. Operational Performance 211

– “Application Support Layer Heap Size (aslheapsz)” on page 332.

– “Client I/O Block Size (rqrioblk)” on page 333.

Setting Parameters That Affect Memory Usage

Parameters that allocate memory should never be set at their highest values,
even on systems with the maximum amount of memory installed, unless such
a value has been carefully justified. Many of the parameters can allow the
Database Manager to very easily and quickly take up all of the available
memory on a machine. In addition, the management of a large amount of
memory can take significant additional work on the part of the Database
Manager and thus incur even more overhead.

Some UNIX-based operating systems allocate swap space when a process
allocates memory and not when it is paged out to swap space. In these cases,
you should ensure the total shared memory size is backed with the equivalent
amount of paging space.

For most of the configuration parameters, memory is only committed as it is
required. These parameters reflect the maximum size of a particular memory
heap. The notable exceptions to this rule are the following parameters for
which memory is fully committed based on the parameter value:
v “Buffer Pool Size (buffpage)” on page 305 (if a buffer pool size is -1), or the

explicit sizes that were specified when the buffer pools were created or
altered

v “Sort Heap Threshold (sheapthres)” on page 320

v “Maximum Storage for Lock List (locklist)” on page 314

v “Application Support Layer Heap Size (aslheapsz)” on page 332

v “Number of FCM Message Anchors (fcm_num_anchors)” on page 418

v “Number of FCM Buffers (fcm_num_buffers)” on page 418

v “Number of FCM Connection Entries (fcm_num_connect)” on page 420

v “Number of FCM Request Blocks (fcm_num_rqb)” on page 420.

The appropriate values for these types of parameters can best be determined
by benchmarking, where typical and worst-case SQL statements are run
against the server and the values of the parameters are modified until the
point of diminishing return for performance is found. If performance versus
parameter values were graphed, the point where the curve begins to plateau
or decline would indicate the point at which additional allocation provides no
additional value to the application and is therefore simply wasting memory.
(See “Chapter 11. Benchmark Testing” on page 275.)

212 Administration Guide: Performance

The upper limits of memory allocation for several parameters may be beyond
the memory capabilities of existing hardware and operating systems. These
limits were chosen to allow for future growth.

For valid parameter ranges, see the parameter descriptions in “Chapter 12.
Configuring DB2” on page 289.

FCM Requirements

Start with default values when configuring the following Fast
Communications Manager (FCM) configuration parameters:
v “Number of FCM Buffers (fcm_num_buffers)” on page 418

v “Number of FCM Request Blocks (fcm_num_rqb)” on page 420

v “Number of FCM Connection Entries (fcm_num_connect)” on page 420

v “Number of FCM Message Anchors (fcm_num_anchors)” on page 418.

To tune these parameters, use the database system monitor to monitor the low
water mark for the free buffers, free message anchors, free connection entries,
and the free request blocks. If the low water mark is less than 10 percent of
the number of the corresponding free data item, increase the value of the
corresponding parameter. For information on the database system monitor, see
“Using the Database System Monitor” on page 239.

Refer to Administration Guide, Design and Implementation for information on
enabling FCM communications.

Managing the Database Buffer Pool

A buffer pool is an area of storage into which database pages (containing table
rows or index entries) are temporarily read and changed. The purpose of the
buffer pool is to improve database system performance. Data can be accessed
much faster from memory than from a disk. Therefore, the fewer times the
Database Manager needs to read from or write to a disk, the better the
performance.

The configuration of one or more buffer pools is the single most important
tuning area, since it is here that most of the data manipulation takes place for
applications connected to the database (excluding large objects and long field
data).

When an application accesses a row of a table for the first time, the database
manager places the page containing that row in the buffer pool. The next time

Chapter 7. Operational Performance 213

any application requests data, the buffer pool is checked first. If the requested
data is found on pages kept in the buffer pool, the database manager does not
need to go out to disk storage to retrieve the requested data. Avoiding the
need to retrieve data from disk storage results in faster performance.

The storage associated with the buffer pool is allocated when a database is
activated or when the first application connects to the database. Applications
are the primary beneficiaries of the buffer pool; once applications are all
disconnected, the storage associated with the buffer pool is de-allocated.

Pages stay in the buffer pool until the database is shut down, or until the
space occupied by a page is required for another page. The space chosen in
the buffer pool to bring in another page is selected using criteria such as the
following:
v The last reference to a page
v The likelihood of the page being referenced again by the last agent that

looked at the page
v The type of page
v Whether or not a page was changed in memory but not written out to disk.

(Changed pages are always written to disk before being overwritten.)

Note: After changed pages are written out to disk, they are not removed from
the buffer pool unless the space they occupy is needed for other pages.
Until they are overwritten, they can be accessed again if their data is
needed.

When creating a buffer pool, by default the page size is 4 KB. You can choose
to have the page size set at one of 4 KB, 8 KB, 16 KB, or 32 KB when creating
the buffer pool. If buffer pools are created using one page size, only table
spaces created using the identical page size can be associated with them. You
cannot alter the page size of the buffer pool following its creation.

Pages in the buffer pool can have different attributes:
v In-use pages are currently being read or updated. They can be read, but not

updated, by other agents.
v “Dirty” pages are pages where data has been changed but has not yet been

written to disk. After a page is written to disk, it is considered “clean”, and
remains in the buffer pool. The space occupied by clean pages can be used
for new pages, and is available for migration to an associated extended
storage cache (if defined).

Pages can be written from the buffer pool to disk when the percentage of
space occupied by changed pages in the buffer pool has exceeded the value
specified by the chngpgs_thresh configuration parameter. You also may need to

214 Administration Guide: Performance

configure the database to include more than one page-cleaner agent. These
agents write out changed pages to disk so that the database agents can find
usable space in the buffer pool.

Page cleaner agents perform I/O that would otherwise have to be performed
by the database agents. As a result, your applications can run faster, because
transactions are not forced to wait while their database agents write pages to
disk. (Page-cleaner agents are sometimes referred to as asynchronous page
cleaners or asynchronous buffer writers because they can run in parallel with the
database agents.)

To change the number of page-cleaner agents, use the num_iocleaners
configuration parameter (the default is to create one page-cleaner agent). For
information, see “Number of Asynchronous Page Cleaners (num_iocleaners)”
on page 346.

Writing pages to disk also allows for faster recovery of the database should a
system crash occur, because the Database Manager is able to rebuild more of
the buffer pool from disk rather than having to use the database log files. As a
result, page cleaning is requested if the size of the log that would need to be
read during recovery exceeds the following maximum:

logfilsiz * softmax

where:

v logfilsiz represents the size of the log files (see “Size of Log Files (logfilsiz)”
on page 368)

v softmax represents the percentage of log files to be recovered following a
database crash (see “Recovery Range and Soft Checkpoint Interval
(softmax)” on page 376).
For example, if the value of softmax is 250, then 2.5 log files will contain
the changes that need to be recovered if a crash occurs.

You may use the database system monitor to help you track the number of
times that page cleaning is requested to minimize log read time during
recovery. For more information refer to the pool_lsn_gap_clns (buffer pool log
space cleaners triggered) monitor element description in the System Monitor
Guide and Reference manual.

The size of the log that would need to be read during recovery is the
difference between the location of the following in the log:

v The most recently written log record
v The log record that describes the oldest change to data in the buffer pool.

Chapter 7. Operational Performance 215

The following figure illustrates how the work of managing the buffer pool can
be shared between page-cleaner agents and database agents, compared to the
database agents performing all of the I/O.

Without Page Cleaners

With Page Cleaners

Buffer Pool

Buffer Pool

Database Agent

Database Agent

Asynchronous
Page Cleaner

Database Agent

Database Agent

Oops, there is no
room for this page

1.

There is room for
this page

Write the
pages to disk

Take out
dirty pages

Now I can
put this page in

3.

2. I have to move a
dirty page

A

A

Buffer Pool

A

AA

Figure 16. Asynchronous Page Cleaner. “Dirty” pages are written out to disk.

216 Administration Guide: Performance

Managing Multiple Database Buffer Pools

Each database requires at least one buffer pool. However, depending on your
needs you may choose to create several buffer pools, each of a different size,
for a single database. The CREATE, ALTER, and DROP BUFFERPOOL
statements allow you to create, change, or remove a buffer pool. You can
specify which data is cached in a buffer pool with the CREATE TABLESPACE
and ALTER TABLESPACE statements.

The buffpage configuration parameter specifies the size of any buffer pool, if
the buffer pool’s size is specified as -1 in the SYSCAT.BUFFERPOOLS catalog
view. (Otherwise this parameter is ignored.) A buffer pool’s size can be set
with the DDL statements ALTER BUFFERPOOL or CREATE BUFFERPOOL.

A new database has a default buffer pool called IBMDEFAULTBP with a size
determined by the platform. Once a database is created or migrated, then
other buffer pools can be created for it.

When working on your database design, you may have determined that tables
with 8 KB page sizes were best. As a result, you should create a buffer pool
with an 8 KB page size (along with one or more table spaces with the same
page size).

In a partitioned database environment, each buffer pool for a database has the
same default definition on all database partitions (unless it was otherwise
specified in the CREATE BUFFERPOOL statement, or the buffer pool’s size
was changed for a particular database partition with the ALTER
BUFFERPOOL statement).

When you create a table space with a page size of 4 KB and do not assign it
to a specific buffer pool, the table space is assigned to the default buffer pool.
If you create a table space with a page size greater than 4 KB (8 KB, 16 KB, 32
KB) you should assign it to a buffer pool that uses a page size that is the
same. If this buffer pool is currently not active, DB2 will attempt to assign the
table space to an active buffer pool that uses an identical page size (if one is
available). This assignment, if made, is temporary. When the database is
activated again, and the originally specified buffer pool is active, then DB2
assigns the table space to that buffer pool.

You cannot use the ALTER TABLESPACE statement to add the table space to
a buffer pool that uses a different page size.

When creating or altering buffer pools, the total memory that is required by
all buffer pools must be available to the database manager so that all of the
buffer pools can be allocated when the database is started. Should this
memory not be available when a database is started, the Database Manager

Chapter 7. Operational Performance 217

attempts to start the default buffer pool (IBMDEFAULTBP) and one of each
buffer pool defined with a different page size, but only with a minimal size of
16 pages each. The size of this minimal buffer pool can be overridden with
the registry variable DB2_OVERRIDE_BPF. See “Appendix A. DB2 Registry
and Environment Variables” on page 449 for more information on this and
other registry and environment variables. A warning message is returned with
each failed attempt to start a buffer pool; the database continues in this
operational state until its configuration is changed and the database can be
fully restarted.

The reason for allowing the database manager to start with minimal-sized
values is to allow you to connect to the database. You can then immediately
reconfigure the buffer pool sizes; or, to perform other critical tasks. Do not
consider operating the database for an extended time in such a state.

Note: Although the size and attributes associated with the default buffer pool
can be changed, it cannot be dropped. Also, there is a minimum size
for each buffer pool that is based on the platform being used.

There are advantages to having a large amount of memory allocated to buffer
pools. For example, larger buffer pool sizes:

v Enable often-requested data pages to be kept in the buffer pool, allowing
for quicker access. Fewer I/O operations can reduce I/O contention,
thereby providing better response time and reducing the processor resource
needed for I/O operations.

v Provide the opportunity to achieve higher transaction rates with the same
response time.

v Prevent I/O contention for frequently used disk storage devices such as
catalog tables and frequently referenced user tables and indexes. Sorts
required by queries also benefit from reduced I/O contention on the disk
storage devices containing the temporary table spaces.

Choosing One or Many Buffer Pools

If any of the following conditions apply to your system, you should use only
a single buffer pool:
v The total buffer space is less than 10 000 4 KB pages.
v People with the application knowledge to do specialized tuning are not

available.
v You are working on a test system.

If your system is not constrained by these conditions, then consider using
more than one buffer pool for the following potential performance
improvements:

218 Administration Guide: Performance

v You can put temporary table spaces into a separate buffer pool to provide
better performance for queries that require temporary storage, especially
sort-intensive queries.

v If you have data that must be accessed repeatedly and quickly by many
short update transaction applications, then you should consider moving the
table space containing the data into a separate buffer pool. If this buffer
pool is sized appropriately, its pages have a better chance of being found,
contributing to a lower response time and a lower transaction cost.

v You can isolate data into separate buffer pools to favor certain applications,
data, and indexes. For example, you might want to put tables and indexes
that are updated frequently into a buffer pool that is separate from those
tables and indexes that are frequently queried but infrequently updated.
This change will reduce the impact of the frequent updates (on the first set
of tables) on the frequent queries (on the second set of tables).

v You can use smaller buffer pools for the data accessed by applications that
are seldom used, especially in the case where an application requires very
random access into a very large table. In such a case, there is no need to
keep the data in buffer pool memory for longer than a single query. It is
better to keep a small buffer pool for this data, and free up the extra
memory for other uses (for example, for other buffer pools).

v After separating different activities and data into separate buffer pools,
good and relatively inexpensive performance diagnosis data can be
produced from statistics and accounting traces.

Prefetching Data into the Buffer Pool

Prefetching index and data pages into the buffer pool can help improve
performance by reducing the time spent waiting for I/O to complete. To
prefetch pages means that one or more pages are retrieved from disk in
anticipation of their use. There are two categories of prefetch:
v Sequential prefetch is a mechanism that reads consecutive pages into the

buffer pool before the pages are required by the application. (See
“Understanding Sequential Prefetching” on page 220.)

v List prefetch, or list sequential prefetch, is a way to access data pages
efficiently, even when the data pages needed are not consecutive. (See
“Understanding List Prefetching” on page 222.)

These two methods of reading data pages are in addition to a normal read. A
normal read is used when just one or a few consecutive pages are retrieved.
During a normal read, one page of data is transferred.

For further information on enabling prefetching, see also “Configuring I/O
Servers for Prefetching and Parallel I/O” on page 222.

Chapter 7. Operational Performance 219

Understanding Sequential Prefetching

Reading several consecutive pages into the buffer pool using a single I/O
operation can greatly reduce the overhead associated with running your
application. In addition, performing multiple I/O operations in parallel to
read in several ranges of pages at the same time can help reduce the time
your application needs to wait for I/O operations to complete.

Prefetching is started when the Database Manager determines that sequential
I/O is appropriate and that prefetching may help to improve performance. In
cases such as table scans and table sorts, the Database Manager can easily
determine that sequential prefetch will improve I/O performance. In these
cases, the Database Manager automatically starts sequential prefetch. The
following example could require a table scan and would be a good candidate
for sequential prefetch:

SELECT NAME FROM EMPLOYEE

The number of pages that the Database Manager will prefetch can be defined
for each table space using the PREFETCHSIZE clause with either the CREATE
TABLESPACE or ALTER TABLESPACE statements. The value specified is
maintained in the PREFETCHSIZE column of the SYSCAT.TABLESPACES
system catalog table.

It is a good practice to explicitly set the PREFETCHSIZE value as a multiple
of the EXTENTSIZE value for your table space and the number of table space
containers. (The extent size is the number of pages that the database manager
writes to a container before using a different container; refer to “Designing
and Choosing Table Spaces” in the Administration Guide, Design and
Implementation.) For example, if the extent size is 16 pages and the table space
has two containers, you could choose to set the prefetch quantity to 32 pages.

The Database Manager monitors buffer pool usage to ensure that prefetching
of data does not remove pages from the buffer pool if those pages are needed
by another unit of work. To avoid problems, the Database Manager may
choose to limit the number of pages being prefetched to a quantity less than
you specified for the table space.

The setting of the prefetch size can have significant performance implications,
particularly for large table scans. You can use the database system monitor
and other system monitor tools to help you tune PREFETCHSIZE for your
table spaces. For example, you can gather information about whether:
v There are I/O waits for your query, using monitoring tools available for

your operating system.

220 Administration Guide: Performance

v Prefetch is occurring, by looking at the pool_async_data_reads (buffer pool
asynchronous data reads) data element provided by the database system
monitor. Refer to the System Monitor Guide and Reference for more
information.

If there are I/O waits and the query is prefetching data, you can try
increasing the value of PREFETCHSIZE. It is possible that the prefetcher is not
the cause of the I/O wait, in which case increasing the PREFETCHSIZE value
will not improve the performance of your query.

In all types of prefetch, multiple I/O operations may be performed in parallel
when the prefetch size is a multiple of the extent size for the table space and
the extents of the table space are in separate containers. For better
performance the containers should be configured to use separate physical
devices. For more information on parallel prefetching, see “Configuring I/O
Servers for Prefetching and Parallel I/O” on page 222.

Understanding Sequential Detection

There are cases for which it is not immediately obvious whether sequential
prefetch will improve performance. In these cases, the Database Manager can
monitor I/O and if sequential page reading is occurring the Database
Manager can activate prefetching. Prefetching in this case can be activated and
deactivated by the Database Manager when it deems it appropriate. This type
of sequential prefetch is known as sequential detection and applies to both
index and data pages. You may use the seqdetect configuration parameter (see
“Sequential Detection Flag (seqdetect)” on page 349) to control whether the
Database Manager should perform sequential detection. If sequential detection
is turned on, it could determine that the following SQL statement would
benefit from sequential prefetch:

SELECT NAME FROM EMPLOYEE
WHERE EMPNO BETWEEN 100 AND 3000

In this example, the optimizer may have chosen to scan the table using an
index on the EMPNO column. If the table is highly clustered with respect to
this index, then the data page reads will be almost sequential and prefetching
may improve performance. In this case, data page prefetch will occur.

Index page prefetch may also occur in this example. If a large number of
index pages have to be examined and the database manager detects that
sequential page reading of the index pages is occurring, then index page
prefetching will occur.

Chapter 7. Operational Performance 221

Understanding List Prefetching

List prefetch, or list sequential prefetch, is a way to access data pages efficiently,
even when the data pages needed are not contiguous. List prefetch can be
used in conjunction with either single or multiple index access.

Prefetching and Intra-Partition Parallelism

Prefetching is very important to the performance of intra-partition parallelism,
which uses multiple subagents when scanning an index or a table. These
parallel scans introduce larger data consumption rates, which require higher
prefetch rates.

The cost of inadequate prefetching is higher for parallel scans than serial
scans. If prefetching does not occur when executing a serial scan, the query
runs more slowly because the agent always needs to wait for I/O. If
prefetching does not occur when executing a parallel scan, all subagents may
need to wait for one subagent that is waiting for I/O.

Because of its importance, prefetching is performed more aggressively with
intra-partition parallelism. The sequential detection mechanism tolerates larger
gaps between adjacent pages so that the pages can be considered sequential.
The width of these gaps increases with the number of subagents involved in
the scan.

Configuring I/O Servers for Prefetching and Parallel I/O

To enable prefetching, the Database Manager starts separate threads of
control, known as I/O servers, to perform page reading. As a result, the query
processing is divided into two parallel activities: data processing (CPU) and
data page I/O. The I/O servers wait for prefetch requests from the CPU
processing activity. These prefetch requests contain a description of the I/O
needed to satisfy the anticipated data needs. The reason for prefetching
determines when and how the Database Manager generates the prefetch
requests. (See “Understanding Sequential Prefetching” on page 220 and
“Understanding List Prefetching” for more information.)

The following figure illustrates how I/O servers are used to prefetch data into
a buffer pool.

222 Administration Guide: Performance

The following steps are illustrated in Figure 17:

�1� The user application passes the SQL request to the database agent.

�2�, �3�
The database agent determines that prefetching should be used to
obtain the data required to satisfy the SQL request and writes a
prefetch request to the I/O server queue.

Buffer Pool

Database Agent Database Agent

Asynchronous
Prefetch

Request

Database Agent

I/O ServerI/O Server

I/O Server
Queue

5

6

4

3

2

Logical
Buffer

Read

Big
Block
Read

Create
4K pages

User
Application

User
Application

User
Application

1

Figure 17. Prefetching Data using I/O Servers

Chapter 7. Operational Performance 223

�4�, �5�
The first available I/O server will read the prefetch request from the
queue and read the data from the table space into the buffer pool.
Depending on the number of prefetch requests in the queue and the
number of I/O servers configured by the num_ioservers configuration
parameter, multiple I/O servers can be fetching data from the table
space at the same time.

�6� The database agent performs the necessary actions against the data
pages in the buffer pool in order to return the result of the SQL
request back to the user application.

Configuring enough I/O servers with the num_ioservers configuration
parameter can greatly enhance the performance of queries for which
prefetching of data can be used. Having some extra I/O servers configured
will not hurt performance because extra I/O servers are not used and their
memory pages will get paged out. Each I/O server process is numbered and
the Database Manager will always use the lowest numbered process that is
available and, as a result, some of the upper numbered processes may never
be used.

To determine the number of I/O servers that you should configure, consider
the following:

v The amount of concurrent activity against the database. That is, the number
of database agents that could be writing prefetch requests to the I/O server
queue at any given time.

v The highest degree to which the I/O servers can work in parallel. For more
information, see “Enabling Parallel I/O”.

Enabling Parallel I/O

For situations in which multiple containers exist for a table space, the
Database Manager can initiate parallel I/O. Parallel I/O refers to the ability of
the Database Manager to use multiple I/O servers to process the I/O
requirements of a single query. Each I/O server is assigned the I/O workload
for a separate container, allowing several containers to be read in parallel.
Performing I/O in parallel can result in significant improvements to I/O
throughput.

While a separate I/O server will handle the workload for each container, the
actual number of I/O servers that can perform I/O in parallel will be limited
to the number of physical devices over which the requested data is spread.
This also means you need as many I/O servers as the number of physical
devices.

224 Administration Guide: Performance

How parallel I/O is initiated and used is dependent on the reason for
performing the I/O:
v Sequential prefetch

For sequential prefetch, parallel I/O is initiated when the prefetch size is a
multiple of the extent size for a table space. Each prefetch request is then
broken into multiple, smaller, requests along the extent boundaries. These
smaller requests are then assigned to different I/O servers.

v List prefetch

For list prefetch, each list of pages is divided into smaller lists according to
the container in which the data pages are stored. These smaller lists are
then assigned to different I/O servers.

v Database or table space backup and restore

For backing up or restoring data, the number of parallel I/O requests are
equal to the backup buffer size divided by the extent size up to a maximum
value equal to the number of containers.

v Database or table space restore

For restoring data, the parallel I/O requests are initiated and split in a
manner that is the same as that used for sequential prefetch. Instead of
restoring the data into the buffer pool, the data is moved directly from the
restore buffer to disk.

v Load

When loading data you can specify the level of I/O parallelism with the
LOAD command’s DISK_PARALLELISM option. (If it is not specified, a
default is used based on the cumulative number of table space containers
for all table spaces associated with the table.)

For optimal performance of parallel I/O, ensure that:
v There are enough I/O servers. You should configure the number of I/O

servers to be slightly higher than the number of containers used for all
table spaces within the database.

v The extent size and prefetch size are sensible for the table space. Prefetch
size should not be too large, to prevent over-use of the buffer pool. (An
ideal size is a multiple of the extent size and the number of table space
containers.) The extent size should be fairly small, with a good value being
in the range of 8 to 32 pages.

v The containers are configured to reside on separate physical drives.
v All containers are the same size to ensure a consistent degree of parallelism.

If one or more containers are smaller than the others, they will reduce the
potential for optimized parallel prefetch. For example:
– After a smaller container is filled up, additional data is stored in the

remaining containers, causing the containers to become unbalanced.
Unbalanced containers reduce the performance of parallel prefetching,

Chapter 7. Operational Performance 225

because the number of containers from which data can be prefetched
may be less than the total number of containers.

– If a smaller container is added at a later date and the data is rebalanced,
the smaller container will contain less data than the other containers. Its
small amount of data relative to the other containers will not optimize
parallel prefetching.

– If one container is larger and all of the other containers fill up, it will be
the only container to store additional data. The database manager will
not be able to use parallel prefetch to access this additional data.

v There is adequate I/O capacity when using intra-partition parallelism.
Intra-partition parallelism can be used on SMP machines to reduce a
query’s elapsed time by running the query on multiple processors.
Sufficient I/O capacity is required to keep each processor busy, usually
requiring additional physical drives to provide the I/O capacity.
Prefetching must occur at higher rates to use I/O capacity effectively. The
prefetch size should be higher for prefetching to occur at higher rates. The
prefetch size should be a multiple of the extent size and the number of
table space containers. Ideally, containers should be configured to reside on
separate physical drives.
The number of physical drives required could depend on the speed and
capacity of the drives and the I/O bus, and on the speed of the processors.

Allocating Multiple Pages at a Time

SMS table spaces are expanded on demand. This expansion is done a single
page at a time by default. However, in certain work loads (for example, when
doing a bulk insert) you can increase performance by using the db2empfa tool
to tell DB2 to expand the table space in groups of pages or extents. The
db2empfa tool is located in the bin subdirectory of the sqllib directory. Running
it causes the multipage_alloc database configuration parameter to be set to YES.
For more information on this tool, refer to the Command Reference.

Another way to make the best use of your available memory is discussed in
“Extending Memory” on page 241.

Sorting

Sorting is often required for a query, and the proper configuration of the sort
heap areas can be crucial to the query’s performance. Sorting is required
when:
v No index exists to satisfy a requested ordering (for example a SELECT

statement that uses the ORDER BY clause)
v An index exists but sorting would be more efficient than using the index

226 Administration Guide: Performance

v Creating an index (if the indexsort configuration parameter is set to yes).

Different Types of Sorting

Sorting involves two steps:
1. A sort phase
2. Return of the results of the sort phase.

How the sort is handled within these two steps results in different categories
or types by which we can describe the sort. When considering the sort phase,
the sort can be categorized as “overflowed” or “non-overflowed”. When
considering the return of the results of the sort phase, the sort can be
categorized as “piped” or “non-piped”.

Overflowed and Non-Overflowed
If the information being sorted cannot fit entirely into the sort heap (a
block of memory that is allocated each time a sort is performed) it
overflows into temporary database tables. Sorts that do not overflow
always perform better than those that do.

Piped and Non-Piped
If sorted information can return directly without requiring a
temporary table to store a final, sorted list of data, it is referred to as a
“piped sort”. If the sorted information requires a temporary table to
be returned, it is referred to as a “non-piped sort”. A piped sort
always performs better than a non-piped sort.

Tuning the Parameters that Affect Sorting

The following situations affect the performance of sorting:
v The settings for the following configuration parameters:

“Sort Heap Size (sortheap)” on page 320
Specifies the amount of memory to be used for each sort

“Sort Heap Threshold (sheapthres)” on page 320
Controls the total amount of memory for sorting available across
the entire instance for all sorts.

v Statements that involve a large amount of sorting
v Missing indexes that could help avoid unnecessary sorting
v Application logic that does not minimize sorting
v Parallel sorting, which improves the performance of sorts but can only

occur if the statement uses intra-partition parallelism (see “Enabling Parallel
I/O” on page 224).

Chapter 7. Operational Performance 227

Looking for Indicators of Sorting Performance Problems

To tell if you have an overall problem with sorting, look at the total CPU time
spent sorting compared to the time spent on the whole application. The
database system monitor can help (see “Using the Database System Monitor”
on page 239). In particular, the Performance Monitor (which is made up of
the “Snapshot Monitor” and “Event Monitor” and is available from the
Control Center), shows total sort time by default, along with other times such
as I/O and lock wait.

If total sort time is a large proportion of the other times then look at the
following values, which are also shown by default:

Percentage of overflowed sorts
This variable (on the performance details view of the Snapshot
Monitor) shows the percentage of sorts that overflowed. If the
percentage of overflowed sorts is high, increase the sortheap and/or
sheapthres configuration parameters if there were any post-threshold
sorts. (To determine if there were any post threshold sorts, use the
Snapshot Monitor.)

Post threshold sorts
If post threshold sorts are high, increase sheapthres and/or decrease
sortheap.

In general, make the overall sort memory available across the instance
(sheapthres) as large as possible without causing excessive paging. It is possible
for a sort to be done entirely in sort memory. However, if this causes the
operating system to perform excessive page swapping to accommodate that
sort memory you can lose the advantage of a large sort heap. So, whenever
you adjust the sorting configuration parameters, use an operating system
monitor to track any changes in system paging.

Note: With the improvement in the DB2 partial key binary sorting technique
to include non-integer data type keys, some additional memory is
required when sorting long keys. If you believe long keys are being
used, increase the sortheap configuration parameter.

Also note that in a piped sort, the sort heap does not get freed until the
application closes the cursor associated with that sort. So a piped sort can use
up memory until the cursor is closed.

Techniques for Managing Sorting Performance

You can use the database system monitor and benchmarking techniques to
help set the sortheap and sheapthres configuration parameters. Do the following
for each database manager and its databases:

228 Administration Guide: Performance

v Set up and run a representative workload.
v For each applicable database, collect average values for the following

performance variables over the benchmark workload period:
– Total sort heap in use
– Active sorts

These performance variables are shown on the performance details view of
the Snapshot Monitor.

v Set sortheap to the average total sort heap in use for each database.
v Set the sheapthres by doing the following:

1. Determine which database in the instance has the largest sortheap value.
2. Determine the average size of the sort heap for this database.

If this is too difficult to determine, use 80% of the maximum sort heap
3. Set sheapthres to the average number of active sorts times the average

size of the sort heap computed above.
This is a recommended initial setting. You can then use benchmark
techniques to refine this value.

You can also identify particular applications and statements where sorting is a
significant performance problem:
v Set up event monitors at the application and statement level to help you

identify applications with the longest total sort time.
v Within each of these applications, find the statements with the longest total

sort time.
v Tune these statements using a tool such as Visual Explain.
v Ensure that appropriate indexes exist. You can use Visual Explain to

identify all the sort operations for a given statement. Then investigate
whether or not an appropriate index exists for each table accessed by the
statement.

Note: You can search through the explain tables to identify which queries
have sort operations. (See “Appendix E. SQL Explain Tools” on
page 645.)

Reorganizing Table Data

The performance of SQL statements that use indexes can be impaired after
many updates, deletes, or inserts have been made. Generally, newly inserted
rows cannot be placed in a physical sequence that is the same as the logical
sequence defined by the index (unless you use clustered indexes). This means

Chapter 7. Operational Performance 229

that the Database Manager must perform additional read operations to access
the data, because logically sequential data may be on different physical data
pages that are not sequential.

In general, reorganizing a table takes more time than running statistics.
Performance may be improved sufficiently by obtaining the current statistics
for your data and rebinding your applications, so try this first. If this does not
improve performance, the data in the tables and indexes may not be arranged
efficiently, so reorganization may help. The information in this section applies
not only to reorganizing your own tables, but also to the system catalog tables
which may also require reorganization.

The REORGCHK command returns information about the physical
characteristics of a table, and whether or not it would be beneficial to
reorganize that table. This command can be used through the command line
processor. Refer to the Command Reference for more information, including
how to interpret the command output.

The REORG utility optionally rearranges data into a physical sequence
according to a specified index. REORG has an option to specify the order of
rows in a table with an index, thereby clustering the table data according to
the index and improving the CLUSTERRATIO or CLUSTERFACTOR statistics
collected by the RUNSTATS utility. As a result, SQL statements requiring rows
in the indexed order can be processed more efficiently. REORG also stores the
tables more compactly by removing unused, empty space (though if you
specified PCTFREE when you used ALTER TABLE, that space remains
unused).

Do not use the REORG or REORGCHK commands with nicknames.

The REORG utility requires that all other applications that would normally be
working against the affected table data and indexes be offline. You may have a
work environment where you wish to limit the amount of time your
applications cannot work against the data. In this environment, you might
consider using the online index reorganization utility.

You may wish to consider the following factors to determine when to
reorganize your table data:
v The volume of insert, update, and delete activity
v Any significant change to the performance of queries which use an index

with a high cluster ratio
v Running statistics (RUNSTATS) does not improve the performance of

queries
v The REORGCHK command indicates a need to reorganize your table

230 Administration Guide: Performance

v The cost of reorganizing your table, including the CPU time, the elapsed
time, and the reduced concurrency resulting from the REORG utility
locking the table until the reorganization is complete.

To execute the REORG utility, you must have SYSADM, SYSMAINT,
SYSCTRL or DBADM authority, or CONTROL privilege on the table.

The REORG utility uses temporary tables that can be significantly larger than
the original table, if columns were added to a table, or a table has LOB
columns. If these temporary tables are larger, the resulting permanent table,
created by the REORG utility, will also be larger.

The REORG utility allows you to specify a temporary table space, which is
used to create the temporary REORG table. If a temporary table space is not
specified, the REORG utility will create the temporary REORG tables in the
table space that contains the table being reorganized. The following guidelines
can assist you in determining whether to use a temporary table space:
v It is generally recommended that you specify a temporary SMS table space.
v Do not specify a temporary table space if you think that the REORG table

will fit in the same DMS table space as the base table. In this case, the
REORG utility will operate much faster than if a temporary table space was
specified, but the table space will need enough available free space for a
second copy of the table. This second copy could be smaller or larger than
the original table, depending on how much unused space exists in the
original table and on whether the reorganization will expand the size of
LOBs. Using the same DMS table space also increases the amount of space
required for logging, because a log record is written for each extent
consumed by the reorganized table.

v Using a temporary DMS table space is generally not recommended since
you can only have one REORG in progress using this type of table space.

Remember that you may be reorganizing a table within a table space that is
using greater than 4 KB pages (8 KB, 16 KB, or 32 KB) pages. During the
reorganization, the temporary table space used during the reorganization must
have the same size pages as the base table space.

If the REORG utility does not complete successfully, do not delete any
temporary files, tables or table spaces. These files and tables are used by the
Database Manager to roll back the changes made by the REORG utility, or to
complete the reorganization, depending on how far the reorganization had
progressed before the failure.

In a partitioned database, the REORG utility reorganizes data on each
partition. If the utility fails on any partition, only the failing partition is rolled
back. If you specify a directory path to store temporary tables, this path is

Chapter 7. Operational Performance 231

extended by the Database Manager at each database partition. Therefore, if
you specify a path that is shared by other database partitions, the temporary
files are stored in different subdirectories (identified by node name) under this
path.

Online Index Reorganization

An online reorganization is possible by providing a user-definable threshold
for the maximum amount of free space on an index leaf page. When there is a
deletion of an index key from a leaf page and the threshold is crossed, the
neighboring index leaf pages are checked to determine if two leaf pages can
be merged. If there is sufficient space on a page for a merge of two
neighboring pages to take place, the merge occurs without having to take the
database offline.

This online reorganization of the index is only possible with indexes created
in this release and those following this release. Existing indexes requiring the
ability to reorganize online in this fashion will have to be dropped and then
re-created in order for the necessary internal changes to the index leaf pages.
To turn on online index reorganization for a particular index, specify a
MINPCTUSED value when the index is created. The MINPCTUSED value should be
set to less than one hundred (100). This value becomes the reorganization
threshold which is the percentage of used space on an index page that is the
minimum acceptable value before attempting to merge the index leaf page
with that of it’s neighbor. The recommended value for MINPCTUSED is one that
is less than 50 percent since the goal is to merge two neighboring index leaf
pages. A value of zero for MINPCTUSED, which is also the default, disables
online reorganization.

Index leaf pages that are freed for use following an online index
reorganization are available for re-use. However, the freed pages are available
only to other indexes in the same table. A full reorganization of the table will
free up pages for other object when working with a DMS storage model; or
will free up disk space when working with a SMS storage model.

Index non-leaf pages are not freed for use following an online index
reorganization. However, a full reorganization of the table will make the index
as small as possible. The leaf and non-leaf pages are reduced in number as
well as the levels of the index.

Avoiding the Need to Reorganize Tables

To reduce the need for reorganizing a table, do the following after you have
created the table:
v Alter table to add PCTFREE
v Create clustering index with PCTFREE on index

232 Administration Guide: Performance

v Sort the data
v Load the data.

Now you have a table with a clustering index. The clustering index, in
conjunction with PCTFREE on table, will preserve the original sorted order.
With sufficient space on pages, new data can be inserted on the correct pages
thereby maintaining the clustering characteristics of the clustering index. If, as
more data is inserted, and the pages of the table become full, records are
appended to the end of the table, and the table gradually becomes
unclustered.

It is recommended that you perform a REORG or a sort and LOAD after
creating a clustering index. A clustering index attempts to maintain a
particular order of data improving the CLUSTERRATIO or CLUSTERFACTOR
statistics collected by the RUNSTATS utility.

The amount of free space to be left on each page during a REORG is
determined by the PCTFREE value of the table. If this value has not been set,
REORG will fill up the pages as the data is being reorganized.

Performance Considerations for DMS Devices

If you are using Database Managed Storage (DMS) device containers for your
table spaces, you need to understand the following so you can effectively
administer your environment:
v File system caching

File system caching is performed as follows:
– For DMS file containers (and all SMS containers), the operating system

may cache pages in the file system cache
– For DMS device container table spaces, the operating system does not

cache pages in the file system cache.

Note: When working on Windows NT, the registry variable
DB2NTNOCACHE specifies whether or not DB2 will open
database files with a NOCACHE option. If db2ntnocache=ON, file
system caching is eliminated. If db2ntnocache=OFF, the operating
system caches DB2 files. This applies to all data except for files
that contain LONG FIELDS or LOBS. Eliminating system caching
allows more memory to be available to the database so that the
buffer pool or sortheap can be increased.

v Buffering of data

Table data read from disk is normally available in the database’s buffer pool
(see “Managing the Database Buffer Pool” on page 213). In some cases, a

Chapter 7. Operational Performance 233

data page can be freed from the buffer pool before the application has
actually used that page. (This can happen if the buffer pool space is
required for other data pages.) For table spaces using system managed
storage (SMS) or database managed storage (DMS) file containers, see the
description of file system caching above. This can eliminate I/O that would
otherwise have been required.
Table spaces using database managed storage (DMS) device containers do
not use the file system or its cache. Refer to the Windows NT exception
noted above. As a result, you may wish to increase the size of the database
buffer pool and reduce the size of the file system cache to offset the fact
that double buffering is not being done with DMS table spaces that use
device containers.
If you notice, through the use of system-level monitoring tools, that I/O is
higher for a DMS table space using device containers compared to the
equivalent SMS table space, this difference could be due to the double
buffering discussed above.

v Using LOB or LONG data

When an application retrieves either LOB or LONG data, the database
manager does not use its buffers to cache the data. Every time an
application needs one of these pages, the database manager must retrieve it
from disk.
However, if LOB or LONG data is stored in SMS or DMS file containers,
file system caching may provide buffering and, as a result, better
performance.
Because system catalogs contain some LOB columns, it is recommended
that you keep them in SMS (or alternatively in DMS-file) table spaces.

Managing Initialization Overhead

The ACTIVATE DATABASE command starts up selected databases. Using this
command in a partitioned database results in an attempt to activate the
selected partitioned database on all database partitions. By using this
command, no application time is spent on database initialization or startup.

Databases that you have initialized using the ACTIVATE DATABASE
command must be shut down with the DEACTIVATE DATABASE command
or with the db2stop command; the last application disconnecting from the
database will not shut it down. For more information on the ACTIVATE and
DEACTIVATE commands, refer to the Command Reference manual.

If a database has not been started, and a CONNECT TO (or an implicit
connect) is encountered in an application, then the application must wait
while the Database Manager starts up the required database before it can do
any work with that database. This is a startup cost that is borne by the first

234 Administration Guide: Performance

application to access a particular database. In a partitioned database, this
startup cost is incurred on each database partition. Once the database is
started, all other applications can connect to and use the database without a
time cost associated with the database startup.

Database Agents

DB2 servers must facilitate communication between the database manager and
client and local applications. UNIX-based environments use an architecture
based on processes. For example, the DB2 communications listeners are created
as processes. Intel operating systems such as OS/2 and Windows NT use an
architecture based on threads to maximize performance. For example, the DB2
communications listeners are created as threads within the DB2 server’s
system controller process. For each database being accessed, various
processes/threads are started to deal with the various database tasks (for
example, prefetching, communication, and logging).

One of the most crucial processes/threads are those of database agents, which
facilitate the operations of applications with databases. Each process/thread of
a client application has a single coordinator agent that operates on a database.
Once the coordinator agent is created, it performs all database requests on
behalf of its application, and communicates to other agents using inter-process
communications (IPC) or remote communication protocols. Each agent
operates with its own private memory and shares Database Manager and
database global resources such as the buffer pool with other agents.

In partitioned database environments and environments with intra-partition
parallelism enabled, the coordinator agent distributes database requests to
subagents, and these agents perform the requests for the application. Once the
coordinator agent is created, it handles all database requests on behalf of its
application by coordinating the subagents that perform requests on the
database.

When a client disconnects from a database or detaches from an instance the
coordinating agent will be:
v Freed and marked as idle, if the maximum number of pool agents has not

been reached
v Terminated and its storage freed, if the maximum number of pool agents

has been reached.

When idle, agents are not performing work on behalf of any applications, are
waiting to be assigned, and reside in an agent pool. These agents are available
for requests from coordinator agents operating on behalf of client programs,
or for subagents operating on behalf of existing coordinator agents. The

Chapter 7. Operational Performance 235

number of available agents is dependent on the database manager
configuration parameters maxagents and num_poolagents.

If no idle agents exist when an agent is required, a new agent must be
dynamically created. Creating a new agent involves a certain amount of
overhead and as a result, improved CONNECT and ATTACH performance
can be noticed if there is an idle agent that can be activated for a client.

When a subagent is working on behalf of an application, it is considered to be
associated with that application. After completing the assigned work, it may be
placed in the agent pool, but it remains associated with the original
application. When the application requests additional work, the database
manager first checks the idle pool for associated agents when finding an agent
to work for the application.

When working in an environment requiring the use of DB2 Connect to
connect to remote systems there is an outbound connect pool. This connection
pool reduces the connect time (following the first connection) to a host. When
a disconnection from a host is requested, DB2 Connect drops the inbound
connection but keeps the outbound connection to the host in a pool. When a
new request is made to connect to the host, DB2 Connect reuses an existing
outbound connection (if available) from the pool.

Note: When using connection pooling, DB2 Connect is restricted to inbound
TCP/IP and to outbound TCP/IP and SNA connections. When working
with SNA, the security type must be NONE for the connection to be
placed in the pool.

With connection pooling, the active agent does not close its outbound
connection following disconnection, but goes into the agent pool with an
active connection to the remote host. This type of agent is called inactive
DRDA agent. The pool of inactive DRDA agents is a synonym for the
outbound connection pool.

Consider the following examples based on four different usage and workload
requirements:
1. In the first example, an average of 40 concurrent users connect to remote

host databases through DB2 Connect. At times the number of concurrent
connections peaks at about 50, but never exceeds 55. The transactions are
of short duration, and user connect and disconnect frequently.
With these conditions, the system administrator should configure
MAX_COORDAGENTS to 55 since he knows that the maximum number
of users what will ever try to connect through DB2 Connect at the same
time is 55. NUM_POOLAGENTS, the size of the agent pool, should be set
to 40 since, at any one time, that is the average number of users connected

236 Administration Guide: Performance

or trying to connect. This pool size guarantees enough existing remote
database connections to satisfy all inbound clients without having to
establish any new ones except when the workload peaks.

2. In this second example the workload is much higher with about 1 000
inbound clients. User connections are also of short duration. The system
administrator does not want to allow any more concurrent connections
than that. Therefore, the system administrator sets both
MAX_COORDAGENTS and NUM_POOLAGENTS to 1 000. This means
that the maximum number of inbound clients that may be concurrently
connected to the remote database(s) is 1 000. When all clients disconnect,
the pool will contain exactly 1 000 connected agents all waiting to service
new inbound clients.

3. The third example involves a single application connecting through DB2
Connect to just one remote database. The application remains connected
for long periods of time. In this scenario, the best agent and connection
pool configuration is to set MAX_COORDAGENTS to 1 since we know
that at most only one client will connect. NUM_POOLAGENTS may be set
to zero in this case since there is no frequent connection and disconnection
from the remote host. Setting NUM_POOLAGENTS to zero effectively
disables connection pooling since no agents with active connections to the
remote database are kept in the pool. For every new inbound client that
connects, a new agent is created and a new remote connection established
to service it.

4. The fourth example is a variation based on all three previous workload
scenarios. In this example, the system administrator wants to restrict
concurrent access to remote databases to just 100. Therefore,
MAX_COORDAGENTS is set to 100 and, in order to maximize connect
performance, NUM_POOLAGENTS is set to 100. However, later, there
may also be a need to connect locally to monitor the workload on the
system where DB2 Connect is installed. The expectation is that no more
than 5 concurrent monitor snapshots would occur at any one time so
MAX_COORDAGENTS is set to 105. This new configuration value allows
the maximum number of concurrent applications to grow beyond the
earlier upper limit of 100 to accommodate the occasional monitor snapshot
and/or instance attachment.

For partitioned database environments and environments with intra-partition
parallelism enabled, each partition (that is, each database server or node) has
its own pool of agents from which subagents are drawn. Because of this pool,
subagents do not have to be created and destroyed each time one is needed or
is finished its work. The subagents can remain as associated agents in the pool
and be used by the database manager for new requests from the application
they are associated with.

Chapter 7. Operational Performance 237

The following database manager configuration parameters affect the number
of database agents:
v “Maximum Number of Agents (maxagents)” on page 360. Once the number

of agents reaches this value, all subsequent requests that require a new
agent are denied until the number of agents falls below the value. This
value applies to the total number of agents, whether coordinating agents or
subagents, that are working on all applications.

v “Agent Pool Size (num_poolagents)” on page 362. The number of agents in
the agent pool cannot exceed this value.

v “Initial Number of Agents in Pool (num_initagents)” on page 363. When the
database manager is started, a pool of idle agents is created based on this
value. This speeds up performance for initial queries.

v “Maximum Number of Coordinating Agents (max_coordagents)” on
page 361. For partitioned database environments and environments with
intra-partition parallelism enabled, this value limits the number of
coordinating agents.

v “Maximum Number of Concurrent Agents (maxcagents)” on page 358. This
value controls the number of tokens permitted by the Database Manager.
For each database transaction (unit of work) that occurs when a client is
connected to a database, a coordinating agent must obtain permission to
process the transaction (known as a processing token) from the Database
Manager. Only agents with a processing token are permitted by the
Database Manager to execute a unit of work against a database. If a token
is not available, the agent will wait until one is available, at which time the
requested unit of work will be processed.
This parameter can be useful in an environment in which peak usage
requirements exceed system resources (memory, CPU, and disk). In such an
environment, the peak load may cause excessive performance degradation
because of, for example, paging. You can use this parameter to control the
load and avoid the performance degradation.

For partitioned database environments and environments with intra-partition
parallelism enabled, the impact to performance and memory costs within the
system is strongly related to how your agent pool is tuned:

v The database manager configuration parameter for agent pool size
(num_poolagents) affects the total number of subagents that can be kept
associated with applications on a partition (that is, node). If the pool size is
too small (and the pool is full), a subagent will disassociate itself from the
application it worked on and terminate. This situation leads to poor
performance, because subagents must be constantly created and
reassociated to applications.

238 Administration Guide: Performance

In addition, if the value of num_poolagents is too small, one application may
fill the pool with associated subagents. Thus, when another application
requires a new subagent and has no subagents in its associated agent pool,
it will “steal” subagents from the agent pools of other applications. This
situation is rather costly, and causes poor performance.

v The above situations must be weighed against the resource costs of
allowing too many agents to be active at any given time.
For example, if the value of num_poolagents is too large, associated
subagents may sit unused in the pool for long periods of time. These
subagents use database manager resources that will not be available for
other tasks.

In addition to the database agents, there are other asynchronous activities
performed by the Database Manager which run as their own process (or
thread), including:
v Database I/O servers (or I/O prefetchers) (see “Prefetching Data into the

Buffer Pool” on page 219)

v Database asynchronous page cleaners (see “Managing the Database Buffer
Pool” on page 213)

v Database loggers
v Database deadlock detectors
v Event monitors
v Communication and IPC listeners
v Table space container rebalancers.

For more information on identifying the various DB2 processes, refer to the
Troubleshooting Guide.

Using the Database System Monitor

The DB2 database manager maintains data about its operation, its
performance, and the applications using it. This data is maintained as the
database manager runs, and can provide important performance and
troubleshooting information. For example, you can find out:
v The number of applications connected to a database, their status, and which

SQL statements each application is executing, if any.
v Information that shows how well the database manager and database are

configured, and helps you to tune them.
v When deadlocks occurred for a specified database, which applications were

involved, and which locks were in contention.

Chapter 7. Operational Performance 239

v The list of locks held by an application or a database. If the application
cannot proceed because it is waiting for a lock, there is additional
information on the lock, including which application is holding it.

Because collecting some of this data introduces overhead on the operation of
DB2, monitor switches are available to control which information is collected.
To set monitor switches explicitly, use the UPDATE MONITOR SWITCHES
command or the sqlmon() API. (You must have SYSADM, SYSCTRL, or
SYSMAINT authority.)

There are two ways to access the data maintained by the database manager:
v Taking a snapshot

Use the GET SNAPSHOT command from the command line; the Control
Center on the OS/2, Windows 95, or Windows NT operating systems for a
graphical interface; or write your own application, using the sqlmonss() API
call.
The Control Center, available from the DB2 folder or with the db2cc
command, provides a performance monitor tool that samples monitor data
at regular intervals by taking snapshots. This graphical interface provides
either graphs or textual views of the snapshot data, in both detail and
summary form. You can also define performance variables using data
elements returned by the database monitor.
The Control Center’s Snapshot Monitor tool also allows you to define
exception conditions by specifying threshold values on performance
variables. When a threshold value is reached, you can predefine any of the
following actions to occur: notification through a window or audible alarm,
and/or execution of a script or program.
If you are taking a snapshot from the Control Center, you cannot perform
an action that either alters, changes, or deletes a database object (such as an
instance or database) while you are performing snapshot monitoring on
either that object, or on any it its child objects. (In addition, if you are
monitoring a partitioned database system, you cannot refresh the view of
partitioned database objects.) For example, you cannot monitor database A
if you want to remove its instance. If, however, you are monitoring the
instance only, you can alter database A.
To stop all monitoring for an instance (including any of its child objects),
select Stop all monitoring from the pop-up menu for the instance. You
should always stop monitoring from the instance, as this ensures that all
locks that are held by the performance monitor are released.

v Using an event monitor

An event monitor captures system monitor information after particular
events have occurred, such as the end of a transaction, the end of a
statement, or the detection of a deadlock. This information can be written to
files or to a named pipe.

240 Administration Guide: Performance

To use an event monitor:
1. Create its definition with the Control Center or the SQL statement

CREATE EVENT MONITOR. This statement stores the definition in
database system catalogs.

2. Activate the event monitor through the Control Center, or with the SQL
statement:
SET EVENT MONITOR evname STATE 1

If writing to a named pipe, start the application reading from the named
pipe before activating the event monitor. You can either write your own
application to do this, or use db2evmon. Once the event monitor is
active and starts writing events to the pipe, db2evmon will read them
as they are being generated and write them to standard output.

3. Read the trace. If using a file event monitor, you can view the binary
trace that it creates in either of the following ways:
– Use the db2evmon tool to format the trace to standard output.
– Click on the Event Analyzer icon in the Control Center (on the

Windows 95, Windows NT, or OS/2 systems) to use a graphical
interface to view the trace, search for keywords, and filter out
unwanted data.

Note: If the database system that you are monitoring is not running
on the same machine as the Control Center, you must copy the
event monitor file to the same machine as the Control Center
before you can view the trace. An alternative method is to
place the file in a shared file system accessible to both
machines.

For information on the system database monitor and the event monitor, refer
to the System Monitor Guide and Reference.

Extending Memory

Your machine may have more real memory than the maximum amount of
addressable memory (for example, addressable memory is usually between
2 GB and 4 GB on most platforms). You can configure any additional
memory beyond addressable memory as an extended storage cache. Such an
extended storage cache can be used by any of the defined buffer pools and
should improve the performance of the database manager. The extended
storage cache is defined in terms of memory segments.

DB2 makes use of addressable memory in your machine with buffer pools
(see “Managing the Database Buffer Pool” on page 213). The extended storage
cache is used by the buffer pools as a secondary level of caching (with the

Chapter 7. Operational Performance 241

buffer pools performing the first level of caching). Ideally buffer pools can
hold the data that is most frequently accessed, while the extended storage
cache can hold data that is accessed, but less frequently.

The following database configuration parameters influence the amount and
the size of the memory available for extended storage:

v num_estore_segs defines the number of extended storage memory segments.
The default for this configuration parameter is zero, which specifies that no
extended storage cache exists. (See “Number of Extended Storage Memory
Segments (num_estore_segs)” on page 352.)

v estore_seg_sz defines the size of each extended memory segment. This size is
limited by the platform on which the extended storage cache is being used.
(See “Extended Storage Memory Segment Size (estore_seg_sz)” on
page 351.)

Because an extended storage cache is an extension to a buffer pool, it must
always be associated with one or more specific buffer pools. Therefore, you
must declare which buffer pools can take advantage of a cache once it is
created. The CREATE and ALTER BUFFERPOOL statements have the
attributes NOT EXTENDED STORAGE and EXTENDED STORAGE that
control cache usage. By default neither IBMDEFAULTBP nor any newly
created buffer pool will use extended storage.

Note: If you are using buffer pools defined with different page sizes then the
extended storage support for buffer pools is deactivated.

The database manager cannot directly manipulate data that resides in the
extended storage cache. However, it can transfer data from the extended
storage cache to the buffer pool much faster than from disk storage.

When a row of data is needed from a page in an extended storage cache, the
entire page is read into the corresponding buffer pool.

A buffer pool and its associated extended storage cache, if defined, are created
when a database is activated or first connected to.

242 Administration Guide: Performance

Chapter 8. Using the Governor

You use the governor to monitor and change the behavior of applications that
run against a database.

The governor consists of two parts:
v A front-end utility
v A daemon

When you start the governor, you issue a start command from the governor
front-end utility, which then starts the governor daemon. By default, a
daemon is started on every partition in a partitioned database, but you can
also use the front-end utility to start a single daemon at a specific partition to
monitor the activity against the database partition found there. Or, a daemon
can monitor the activity on a single-partition database. See “Starting and
Stopping the Governor” on page 244 for details.

Each governor daemon collects statistics about the applications running
against a database. It then checks these statistics against the rules that you
specified in a governor configuration file that applies to that specific database.
(See “Creating the Governor Configuration File” on page 247 for details.) The
governor then acts according to these rules. For example, a rule may indicate
that an application is using too much resource. In this situation, the governor
may change the application’s priority or force it off the database, according to
the instructions you specified in the governor configuration file.

If the action associated with a rule is to change the application’s priority, the
governor changes the priority of agents on the database partition on which
the governor detected the resource violation. If the action associated with a
rule is to force an application, the application is forced even if the governor
that detected the resource violation is running on the application’s coordinator
node or in a partitioned database environment.

The governor also logs any actions that it takes. You can query the log files to
review the actions that the governor has taken. For details, see “Governor Log
Files” on page 255 and “Querying Governor Log Files” on page 256.

© Copyright IBM Corp. 1993, 1999 243

Starting and Stopping the Governor

You use the db2gov governor front-end utility to start or stop the governor (on
either all database partitions or on a single database partition). You require
SYSADM or SYSCTRL authority to use the utility.

The syntax for db2gov is as follows:

The parameters are as follows:

start database
Starts the governor daemon to monitor the specified database. For
database, you can specify either the database name or the database
alias.

The database name you specify must be the same name as that
specified in the governor configuration file. The governor checks these
two names to ensure that you are using the correct configuration file.
If the front-end utility is started with one alias name and the governor
configuration file contains a different alias, an error is reported
because the governor cannot determine whether the names are aliases
for the same database.

If you are in a partitioned database environment, when you start the
governor on all partitions, the front-end utility first checks that the
configuration file does not contain errors. It then reads the node
configuration file and sends a command to each database partition to
start the governor front-end utility on each database partition with the
start option (which, in turn, starts the daemon at each database
partition).

Note: Because the governor monitors at the database level, one
daemon runs for each database that is being monitored. (In a
partitioned database environment, one daemon runs for each
database partition.) If the governor is running for more than
one database, there will be more than one daemon running at
that database server.

db2gov
nodenum

nodenum
stop

node-num

node-num

config-file log-filestart database

database

Figure 18. Syntax for db2gov

244 Administration Guide: Performance

nodenum node-num
Specifies the database partition on which to start the governor
daemon. The number is the same as that specified in the node
configuration file.

When you start the governor on a single database partition, the
front-end utility creates a daemon to validate the governor
configuration file. The governor daemon ensures that another daemon
is not already running on that partition.

config-file
Specifies the configuration file to use when monitoring the database.

The default location for the configuration file is the sqllib directory. If
the specified file is not there, the front-end assumes that the specified
name is the full name of the file.

log-file
Specifies the base name of the file to which the governor writes log
records. The log file is stored in the log subdirectory of the sqllib
directory. The number of the database partition on which the governor
is running is automatically appended to the log file name (for
example, mylog.0, mylog.1, mylog.2).

stop database
Stops the governor daemon that is monitoring the specified database.

If you are in a partitioned database environment, the front-end utility
stops the governor on all database partitions by reading the node
configuration file, and then sending a command to each database
partition to call the governor front-end utility with the stop parameter.
This stops the daemon at each database partition.

nodenum node-num
Specifies the database partition on which to stop the governor
daemon. The number is the same as that specified in the node
configuration file.

When the front-end utility stops the governor daemon on a single
database partition, it communicates with the daemon on that database
partition by creating, moving, or deleting files in the tmp subdirectory
of the sqllib directory. You should not attempt to delete or modify
these files.

Chapter 8. Using the Governor 245

The Governor Daemon

When the governor daemon is started (either by the db2gov front-end utility
or by waking up), it runs in a loop. The first task it does is to check whether
its governor configuration file has changed or has not yet been read. If either
condition is true, the daemon reads the rules in the file. This allows you to
change the behavior of the governor daemon while it is running.

After this, the governor daemon issues a snapshot request to obtain statistics
for each application and agent working on the database.

Note: On some platforms, the CPU statistics are not available from the DB2
Monitor. Where this is the case, the account rule and the CPU limit will
not be available.

The governor then checks the statistics for each application against the rules
in the governor configuration file. If a rule applies to an application, the
governor can: force the application; change the application’s priority, which
indirectly changes all the agent priorities of both agents and subagents that
are working for it on that node; or, change the schedule for the application
which, indirectly changes the agent priorities working on the application,
depending on the action specified by the rule. The governor writes a record of
any action it takes to a log file.

Note: The governor cannot be used as an alternate means to adjust agent
priorities if the agentpri database manager configuration parameter is
anything other than the system default. (This note does not apply to
OS/2 or Windows NT platforms.)

When the governor finishes checking all of the applications, it sleeps for the
interval specified in the configuration file. Once this time has elapsed, the
governor wakes up and begins the execution loop again.

When the governor encounters an error or stop signal, it does cleanup
processing before ending. The cleanup processing resets all application agent
priorities (using a list of applications whose priorities have been set). It then
resets the priorities of any agents that are no longer working on an
application. This ensures that agents do not remain running with nondefault
priorities after the governor ends. If an error occurs, a message is written to
the db2diag.log file to indicate that the governor ended abnormally.

Note: The governor daemon is not a database application, and, therefore,
does not maintain a connection to the database. (It does have an
instance attachment, however.) The governor daemon can detect when
the database manager ends because it can issue snapshot requests.

246 Administration Guide: Performance

Creating the Governor Configuration File

When you start the governor, you specify the name of the configuration file
that contains the rules to be used to govern applications running against the
database. The governor acts based on these rules.

If your requirements for governing the database change, you can edit the
configuration file without stopping the governor. Each governor daemon will
detect that the file has changed, and reread it.

You must create the configuration file in a directory that is mounted across all
the database nodes, because the governor daemon on each node must be able
to read the same configuration file.

The configuration file consists of rules and comments. Most entries can be
specified in uppercase, lowercase, or mixed case characters. The exception is
applname which is case sensitive.

You delimit comments within the { } braces. The rules include:
v The database to which the rules apply.
v The length of time the governor sleeps before waking up to check the

applications.
v The rules that specify how to govern the applications. These rules are made

of smaller components called rule clauses.

Each rule in the file must be followed by a semicolon (;).

The following rules specify the database being monitored, and the interval at
which the daemon wakes up after working through its loop of activities
(which are described in “The Governor Daemon” on page 246). Each of these
rules are only specified once in the file.

dbname
The name or alias of the database to be monitored.

account nnn
Account records are written containing CPU usage statistics for each
connection at the specified number of minutes.

Note: This option is not available in Windows NT or OS/2
environments.

If a short connect session occurs entirely within the account interval,
no log record is written. When log records are written, they contain
CPU statistics that reflect CPU usage since the previous log record for
the connection. If the governor is stopped then restarted, CPU usage

Chapter 8. Using the Governor 247

may be reflected in two log records; these can be identified through
the application IDs in the log records. For more information about
governor log files, see “Governor Log Files” on page 255.

interval
The interval, in seconds, at which the daemon wakes up. If no interval
is specified, an interval of 120 seconds is used.

You combine the following rule clauses to form a rule (that is, the full rule is
followed by a semicolon, and not each individual clause). The clauses specify
the time during which the rule applies, the limit on resource that can be used,
and, optionally, specific users or applications and any action for the governor
to take if a limit specified in the rule is exceeded. The clauses can only be
specified once in a rule, but can be specified in more than one rule. The
clauses must be specified in the order shown. In the description that follows,
a [] indicates an optional clause.

[desc] Specifies a text description for the rule. The description must be
enclosed by either single or double quotation marks.

[time] Specifies the time period during which the rule is to be evaluated.

The time period must be specified in the following format time hh:mm
hh:mm, for example, time 8:00 18:00. If this clause is not specified, the
rule is valid 24 hours a day.

[authid]
Specifies one or more authorization ids (authid) under which the
application is executing. Multiple authids must be separated by a
comma (,), for example authid gene, michael, james. If this clause
does not appear in a rule, the rule applies to all authids.

[applname]
Specifies the name of the executable (or object file) that makes the
connection to the database.

Multiple application names must be separated by a comma (,), for
example, applname db2bp, batch, geneprog. If this clause does not
appear in a rule, the rule applies to all application names.

Notes:

1. Application names are case sensitive.
2. The database manager truncates all application names to 20

characters. You should ensure that the application you want to
govern is uniquely identified by the first 20 characters of its
application name; otherwise, an unintended application may be
governed.
Application names specified in the governor configuration file are
truncated to 20 characters to match their internal representation.

248 Administration Guide: Performance

setlimit
Specifies one or more limits for the governor to check. The limits can
only be -1 or greater than 0 (for example, cpu -1 locks 1000 rowssel
10000). At least one of the limits (cpu, locks, rowsread, uowtime) must
be specified, and any limit not specified by the rule is not limited by
that particular rule. The governor can check the following limits:

cpu nnn
Specifies the number of CPU seconds that can be consumed
by an application. If you specify -1, the governor does not
limit the application’s CPU usage.

Note: This option is not available in Windows NT or OS/2
environments.

locks nnn
Specifies the number of locks that an application can hold. If
you specify -1, the governor does not limit the number of
locks held by the application.

rowssel nnn
Specifies the number of rows that are returned to the
application. This value will only be non-zero at the
coordinator node. If you specify -1, the governor does not
limit the number of rows that can be selected.

uowtime nnn
Specifies the number of seconds that can elapse from the time
that a unit of work (UOW) first becomes active. If you specify
-1, the elapsed time is not limited.

Note: If you used the sqlmon (Database System Monitor
Switch) API to deactivate the unit of work switch, this
will affect the ability of the governor to govern
applications based on the unit of work elapsed time.
The governor uses the monitor to collect information
about the system. If you turn off the switches in the
database manager configuration file, then it is turned
off for the entire instance, and governor will no longer
receive this information.

idle nnn
Specifies the number of idle seconds allowed for a connection
before a specified action is taken. If you specify -1, the
connection’s idle time is not limited.

Chapter 8. Using the Governor 249

rowsread nnn
Specifies the number of rows an application can select. If you
specify -1, there is no limit on the number of rows the
application can select.

Note: This limit is not the same as rowssel. The difference is
that rowsread is the count of the number of rows that
had to be read in order to return the result set. The
number of rows read includes reads of the catalog
tables by the engine and may be diminished when
indices are used.

[action]
Specifies the action to take if one or more of the specified limits is
exceeded. You can specify the following actions.

Note: If a limit is exceeded and the action clause is not specified, the
governor reduces the priority of agents working for the
application by 10.

priority nnn
Specifies a change to the priority of agents working for the
application. Valid values are from −20 to +20.

For this parameter to be effective:
v On UNIX-based platforms, the agentpri database manager

parameter must be set to the default value; otherwise, it
overrides the priority clause.

v On OS/2 and Windows NT platforms, the agentpri database
manager parameter and priority action may be used
together.

force Specifies to force the agent that is servicing the application.
(Issues a FORCE APPLICATION to terminate the coordinator
agent.)

schedule [class]
Scheduling improves the priorities of the agents working on
the applications with the goal of minimizing the average
response times while maintaining fairness across all
applications.

The governor enforces its schedule by setting priorities for the
agents working on the applications, using query cost estimates
from the DB2 internal query compiler. If the class option is
specified, all applications chosen by the rule are scheduled

250 Administration Guide: Performance

among themselves only. If this option is not specified, the
governor uses one or more classes, with scheduling done
within each class.

Within each class, how an application is prioritized is based
on:
v The number of locks held by the application within the

class. (An application holding up many other applications
due to locking is given a high priority.)

v The application’s age. (An application in the system for a
long time is given a high priority.)

v The application’s estimated remaining running time. (An
application close to finishing is given a high priority.)

Applications that are not covered by any schedule run with
the highest authority.

Note: If you used the sqlmon (Database System Monitor
Switch) API to deactivate the statement switch, this will
affect the ability of the governor to govern applications
based on the statement elapsed time. The governor uses
the monitor to collect information about the system. If
you turn off the switches in the database manager
configuration file, then it is turned off for the entire
instance, and governor will no longer receive this
information.

The schedule action can:
v Ensure that applications in different groups each get time

without all applications splitting time evenly.
For instance, if 12 applications (three short, five medium,
and six long) are running at the same time, they may all
have poor response times because they are splitting the
CPU. The database administrator can set up two groups,
medium-length applications and long-length applications.
Using priorities, the governor permits all the short
applications to run, and ensures that at most three medium
and three long applications run simultaneously. To achieve
this, the governor configuration file contains one rule for
medium-length applications, and another rule for long
applications. The following example shows a portion of a
governor configuration file that illustrates this point:
desc "Group together medium applications in 1 schedule class"
applname medq1, medq2, medq3, medq4, medq5
setlimit cpu -1
action schedule class;

Chapter 8. Using the Governor 251

desc "Group together long applications in 1 schedule class"
applname longq1, longq2, longq3, longq4, longq5, longq6
setlimit cpu -1
action schedule class;

v Ensure that each of several user groups (for example,
organizational departments) gets equal prioritization.
If one group is running a large number of applications, the
administrator can ensure that other groups are still able to
obtain reasonable response times for their applications. For
instance, in a case involving three departments (Finance,
Inventory, and Planning), all the Finance users could be put
into one group, all the Inventory users could be put into a
second, and all the Planning users could be put into a third
group. The processing power would be split more or less
evenly among the three departments. The following
example shows a portion of a governor configuration file
that illustrates this point:
desc "Group together Finance department users"
authid tom, dick, harry, mo, larry, curly
setlimit cpu -1
action schedule class;

desc "Group together Inventory department users"
authid pat, chris, jack, jill
setlimit cpu -1
action schedule class;

desc "Group together Planning department users"
authid tara, dianne, henrietta, maureen, linda, candy
setlimit cpu -1
action schedule class;

v Let the governor schedule all applications.
If the class option is not included with the action, the
governor creates its own classes based on how many
applications fall under the schedule action, and puts
applications into different classes based on the DB2 query
compiler’s cost estimate for the query the application is
running. The administrator can choose to have all
applications scheduled by not qualifying which applications
are chosen. That is, no applname or authid clauses are
supplied, and the setlimit clause causes no restrictions.

Note: If a limit is exceeded and the action clause is not specified, the
governor reduces the priority of agents working for the
application.

252 Administration Guide: Performance

If more than one rule applies to an application, the rule that is closest to the
end of the configuration file is applied to the application. An exception occurs
if -1 is specified for a clause in a rule. In this situation, the value specified for
the clause in the subsequent rule can only override the value previously
specified for the same clause: other clauses in the previous rule are still
operative. For example, one rule indicates that the priority of an application is
to be decreased if its elapsed time is greater than 1 hour, or if it selects more
than 100 000 rows (that is, rowssel 100000 uowtime 3600). A subsequent rule
indicates that the same application can have unlimited elapsed time (that is,
uowtime -1). In this situation, if the application runs for more than 1 hour, its
priority won’t be changed (that is, uowtime -1 overrides uowtime 3600), but if
it selects more than 100 000 rows, its priority will be lowered (as rowssel
100000 is still valid).

Figure 19 on page 254 shows an example of a configuration file.

Chapter 8. Using the Governor 253

{ Wake up once a second, the database name is ibmsampl
do accounting every 30 minutes. }
interval 1; dbname ibmsampl; account 30;

desc "CPU restrictions apply 24 hours a day to everyone"
setlimit cpu 600 rowssel 1000000 rowsread 5000000;

desc "Allow no UOW to run for more than an hour"
setlimit uowtime 3600 action force;

desc 'Slow down a subset of applications'
applname jointA, jointB, jointC, quryA
setlimit cpu 3 locks 1000 rowssel 500 rowsread 5000;

desc "Have governor prioritize these 6 long apps in 1 class"
applname longq1, longq2, longq3, longq4, longq5, longq6
setlimit cpu -1
action schedule class;

desc "Schedule all applications run by the planning dept"
authid planid1, planid2, planid3, planid4, planid5
setlimit cpu -1
action schedule;

desc "Schedule all CPU hogs in one class which will control consumption"
setlimit cpu 3600
action schedule class;

desc "Slow down the use of db2 CLP by the novice user"
authid novice
applname db2bp.exe
setlimit cpu 5 locks 100 rowssel 250;

desc "During day hours do not let anyone run for more than 10 seconds"
time 8:30 17:00 setlimit cpu 10 action force;

desc "Allow users doing performance tuning to run some of
their applications during lunch hour"

time 12:00 13:00 authid ming, geoffrey, john, bill
applname tpcc1, tpcc2, tpcA, tpvG setlimit cpu 600 rowssel 120000 action force;

desc "Some people should not be limited -- database administrator
and a few others. As this is the last specification in the
file, it will override what came before."

authid gene, hershel, janet setlimit cpu -1 locks -1 rowssel -1 uowtime -1;

desc "Increase the priority of an important application so it always
completes quickly"

applname V1app setlimit cpu 1 locks 1 rowssel 1 action priority -20;

Figure 19. Example Governor Configuration File

254 Administration Guide: Performance

Governor Log Files

When a governor daemon forces an application, reads the governor
configuration file, changes an application’s priority, encounters an error or
warning, starts, or ends, it writes a record to a log file. A separate log file
exists for each governor daemon. This prevents file-locking bottlenecks that
would result from many governor daemons writing to the same file at the
same time. You can use the db2govlg utility to merge the log files together and
query them. This utility is described in “Querying Governor Log Files” on
page 256.

The log files are stored in the log subdirectory of the sqllib directory. You
provide the base name for the log file when you issue the db2gov command.
You should ensure that the log file name contains the database name, because
there will be a log file for each node of each database that is being governed.
In a partitioned database environment, the node number of the database
partition that the governor is running on is automatically appended to the log
file name to ensure that the filename is unique for each governor.

Each record in the log file has the following format:
Date Time

NodeNum RecType Message

The Date and Time field is in the yyyy-mm-dd-hh.mm.ss format, so that you
can merge the log files for each database partition by sorting on this field.

The NodeNum field indicates the number of the database partition on which
the governor is running.

The RecType field contains different values, depending on the type of log
record being written to the log. The values that can be recorded are:

v START to indicate that the governor was started
v FORCE to indicate that an application was forced
v PRIORITY to indicate that the priority of an application was changed
v ERROR to indicate an error
v WARNING to indicate a warning
v READCFG to indicate that the governor read the configuration file
v STOP to indicate that the governor was stopped
v ACCOUNT to indicate the application’s accounting statistics.

The fields are:
– authid

– appl_id

Chapter 8. Using the Governor 255

– written_usr_cpu

– written_sys_cpu

– appl_con_time

v SCHEDULE to indicate that a change in agent priorities occurred.

Because standard values are written, you can query the log files for different
types of actions. The Message field provides other nonstandard information
that varies according to the value under the Rectype field. For instance, a
FORCE or NICE record indicates application information in the Message field,
while an ERROR record includes an error message.

An example log file is as follows:

Querying Governor Log Files

Each governor daemon writes to its own log file. You can use db2govlg utility
to query the log file. You can list the log files for a single partition, or for all
database partitions, sorted by date and time. You can also query on the basis
of the RecType log field. The syntax for db2govlg is as follows:

The parameters are as follows:

log-file
The base name of the log file (or files) that you want to query.

database
The database that the governor is monitoring.

nodenum node-num
The node number of the database partition on which the governor is
running.

rectype record-type
The type of record that you want to query. The record types are:
v START

1995-12-11 14.54.52 0 START Database = TQTEST
1995-12-11 14.54.52 0 READCFG Config = /u/db2instance/sqllib/tqtest.cfg
1995-12-11 14.54.53 0 ERROR SQLMON Error: SQLCode = -1032
1995-12-11 14.54.54 0 ERROR SQLMONSZ Error: SQLCode = -1032

db2govlg
nodenum rectypenode-num record-type

log-file database

Figure 20. Syntax for db2govlg

256 Administration Guide: Performance

v READCFG
v STOP
v FORCE
v NICE
v ERROR
v WARNING
v ACCOUNT

There are no authorization restrictions for using this utility. This allows all
users to query whether the governor has affected their application. If you
want to restrict access to this utility, you can change the group permissions for
the db2govlg file.

Running the Governor and Database Manager Performance

The governor can affect database manager performance because it requests
snapshots of the database manager. If the governor uses too much CPU, you
can increase its wake-up interval to reduce its CPU usage.

Chapter 8. Using the Governor 257

258 Administration Guide: Performance

Chapter 9. Scaling Your Configuration

You may find that the size of your configuration is not appropriate for your
needs. You may have tried increasing your configuration memory, or storage
capacity, or both, but this has not provided you with sufficient improvement
to meet your current or future needs.

You should consider scaling your configuration as discussed in the remainder
of this chapter if:
v You had a single-partition configuration with a single processor that was

being used to its maximum capacity. As a result, you have decided to
change configurations and have:
– Determined a symmetric multiprocessor (SMP) configuration is your best

choice for a new environment. You perhaps made this choice because
you want to take advantage of the processing power available with more
than one processor. Each processor shares memory and storage system
resources. All of the processors are within one system, so there are no
additional considerations such as communication lines between systems,
perhaps no additional administration staff to support any new systems,
and coordination of tasks between systems is not an issue. DB2 Universal
Database supports this environment.

– Determined a partitioned database configuration is your best choice for a
new environment. You perhaps made this choice because you want to
take advantage of the processing power available with more than one
processor that is physically separate from the first. Each processor has its
own memory and storage system resources without having to share with
the other processor. While you may have the additional considerations
mentioned above (communications, staff, and coordination of tasks),
there are advantages to this choice such as the ability to balance data
and user access across more than one system. DB2 Universal Database
supports this environment.

v You currently have a SMP configuration and you are planning to add one
or more additional processors. In this case, you are already familiar with
those considerations associated with this type of environment. By adding
one or more additional processors, you are simply adding complexity to
your environment without adding new considerations. DB2 Universal
Database supports this environment.

v You have a partitioned database configuration and you are planning to add
one or more additional database partitions. In this case, you are already
familiar with those considerations associated with this type of environment.
By adding one or more additional database partitions, you are simply

© Copyright IBM Corp. 1993, 1999 259

adding complexity to your environment without adding new
considerations. DB2 Universal Database supports this environment.

v You have a partitioned database configuration and you are planning to add
one or more additional database partitions each of which may be in a SMP
configuration. DB2 Universal Database supports this environment.

When you scale your system by changing the environment, you should be
aware of the impact that such a change can have on your database procedures
such as backing up and restoring the database.

When you add a new database partition, you cannot drop or create a database
until the procedure is complete, and the new server is successfully integrated
into the system.

Adding Processors to a Machine

The first thing to be done is to ensure that you have installed one or more
additional processors in your machine. To allow the DB2 database manager to
take advantage of the new processors, there are configuration parameters that
should be reviewed and perhaps updated. (Some operating systems, like
Solaris, can dynamically vary processors on- and off-line.) The parameters that
are used to determine the number of processors used and may need to be
updated include:
v “Enable Intra-Partition Parallelism (intra_parallel)” on page 424

v “Default Degree (dft_degree)” on page 400

v “Maximum Query Degree of Parallelism (max_querydegree)” on page 423.

You should also consider the parameters associated with applications that
may need to be updated. See “Parallel Processing of Applications” on page 56
for more information.

Utilities in DB2 such as load, backup, and restore can take advantage of the
additional processors. Refer to Data Movement Utilities Guide and Reference and
to Administration Guide, Design and Implementation for information on these
utilities.

260 Administration Guide: Performance

Adding Database Partitions to a Partitioned Database System

You can add database partitions to the partitioned database system either
when it is running, or when it is stopped. The following sections describe
how to do this task. Because adding a new server can be time consuming, you
may want to do it when the database manager is already running. The
procedure is described in “Adding Database Partitions to a Running System”
on page 262.

The ADD NODE command is used to add a database partition to a system.
This command can be invoked:

v As an option on db2start

v Using:
– The command line processor ADD NODE command
– sqleaddn

– sqlepstart.

The method you use to invoke the command is dependent upon whether
your system is stopped (using db2start) or running (using any of the other
choices).

When a new database partition is added to the system using the ADD NODE
command, all existing databases in the instance are created on the new
database partition. You can also specify which containers for temporary table
spaces will be used with the databases that are created. The containers can be:
v The same as those defined for the catalog node for each database. (This is

the default.)
v The same as those defined for another database partition.
v Not created at all. The ALTER TABLESPACE statement must be used to add

temporary table space containers to each database before the database can
be used.

A database on the new partition cannot be used to contain data until one or
more nodegroups are altered to include the new database partition. See
“Adding and Dropping Database Partitions” on page 270 for more information
on how to alter a nodegroup.

Note: If there are no databases defined in the system and you are running
DB2 Enterprise - Extended Edition on a UNIX-based system, edit the
db2nodes.cfg file to add a new database partition definition; do not use
any of the following procedures, as an error will result. Refer to

Chapter 9. Scaling Your Configuration 261

“Altering a Nodegroup” in the Administration Guide, Design and
Implementation for more information on how to update the node
configuration file.

Windows NT Considerations: If you are using DB2 Enterprise - Extended
Edition on Windows NT and have no
databases in the instance, you should use the
DB2NCRT command to scale the database
system. For information about this command,
refer to the Command Reference. If, on the other
hand, you already have databases, you should
use the DB2START ADDNODE command, as
this ensures that a database partition is created
for each existing database when you scale the
system. For information about the DB2START
command and the parameters that you must
use on Windows NT, refer to the Command
Reference. On Windows NT, you should never
manually edit the node configuration file
(db2nodes.cfg), as this can introduce
inconsistencies into the file.

Adding Database Partitions to a Running System

You can add new database partitions to a partitioned database system while it
is running and while applications are connected to databases. However, a
newly added server does not become available to all databases until the
database manager is shut down and restarted.

To add a database partition to a multiple server system:
1. If the database partition is to be created on a server that already exists in

the system, go to the next step. Otherwise, do the following:
v On UNIX platforms,

a. Install the new server. This includes making executables accessible
(using shared file-system mounts or local copies), synchronizing
operating system files with those on existing processors, ensuring
that the sqllib directory is accessible as a shared file system, and
ensuring that the relevant operating system parameters (such as the
maximum number of processes) are set to the appropriate values.

b. Register the host name with the name server or in the hosts file in
the etc directory on all database partitions.

v On Windows NT platforms,
a. Install the new server.
b. Run the ADD NODE command on the new server. This command

causes a database partition to be created locally for every database

262 Administration Guide: Performance

that already exists in the system. The database parameters for the
new database partitions are set to the default value, and each
database partition remains empty until you move data to it.

c. Go to point three (3).
2. Run the DB2START command on any database partition, specifying the

NODENUM, ADDNODE, HOSTNAME, PORT, and NETNAME
parameters. On the Windows NT platform, you must also specify the
COMPUTER, USER, and PASSWORD parameters. For more information
about the DB2START command, refer to the Command Reference.
You can also optionally specify the source for any temporary table space
container definitions that need to be created with the databases. If no table
space information is provided, the temporary table space container
definitions are retrieved from the catalog node for each database.
When the command completes, the new server is stopped. The node
configuration file is not updated with the new server information until
DB2STOP is executed. This ensures that the ADD NODE command (which
is called when the ADDNODE parameter is specified) runs on the correct
database partition. When the utility ends, the new server is stopped.

3. Stop the database manager by running the DB2STOP command.
When you stop all the database partitions in the system, the node
configuration file is updated to include the new database partition.

4. Start the database manager by running the DB2START command.
The newly added database partition is now started along with the rest of
the system.
When all the database partitions in the system are running, system-wide
activities, such as creating or dropping a database, can be done.

Note: You may have to issue the DB2START command twice for all
database partition servers to access the new db2nodes.cfg file.

5. Optionally, take a backup of all databases on the new database partition.
6. Optionally, redistribute data to the new database partition. For details, see

“Chapter 10. Redistributing Data Across Database Partitions” on page 269.

Adding Database Partitions to a Stopped System

You can add new database partition to a partitioned database system while it
is stopped. The newly added server becomes available to all databases when
the database manager is started up again. You have two options. You can
either have the database manager update the node configuration file for you,
or you can do it manually. The preliminary steps for both procedures are the
same.

Chapter 9. Scaling Your Configuration 263

Note: You should not update the node configuration file manually while
working on Windows NT. Instead, you should use the database
manager to update this file.

To add a new database partition to a multiple server system:
1. Issue DB2STOP to stop all the database partitions.
2. If the server is to be created on a processor that already exists in the

system, go to the next step. Otherwise, do the following:
a. On UNIX platforms,

1) Install the new server. This includes making executables accessible
(using shared file-system mounts or local copies), synchronizing
operating system files with those on existing processors, ensuring
that the sqllib directory is accessible as a shared file system, and
ensuring that the relevant operating system parameters (such as the
maximum number of processes) are set to the appropriate values.

2) Register the host name with the name server or in the hosts file in
the etc directory on all database partitions.

b. On Windows NT platforms,
1) Install the new server.
2) Run the ADD NODE command on the new server. This command

causes a database partition to be created locally for every database
that already exists in the system. The database parameters for the
new database partitions are set to the default value, and each
database partition remains empty until you move data to it.

3) Run the DB2START command to start the database system. Note
that the node configuration file (db2nodes.cfg) has already been
updated to include the new server during the installation of the
new server.

4) Optionally redistribute data onto the new server. See “Chapter 10.
Redistributing Data Across Database Partitions” on page 269 for
more details on how to do this.

c. If you want the database manager to update the db2nodes.cfg file for
you, continue with the instructions in “Having the Database Manager
Update the Node Configuration File” on page 265.

Note: On Windows NT, you should not edit the db2nodes.cfg file
manually, as this can introduce inconsistencies into the file.
Instead, you should have the database manager update this file.

If you want to update the db2nodes.cfg file yourself, continue with the
instructions in “Updating the Node Configuration File Manually” on
page 265.

264 Administration Guide: Performance

Having the Database Manager Update the Node Configuration File

Continue the procedure as follows:
1. Run the DB2START command on the new database partition specifying

NODENUM, ADDNODE, HOSTNAME, PORT, and NETNAME
parameters. On the Windows NT platform, you must also specify the
COMPUTER, USER, and PASSWORD parameters. For more information
about the DB2START command, refer to the Command Reference. The
values that you specify for these parameters are used to update the node
configuration file.
When the command completes, the new server is stopped. The node
configuration file is not updated with the new server information until
DB2STOP is executed. This ensures that the ADD NODE command (which
is called when the ADDNODE parameter is specified) runs on the correct
database partition. When the utility ends, the new server is stopped.

2. Issue the DB2STOP command.
When you issue the DB2STOP command, the node configuration file is
updated to include the new server.

3. Issue the DB2START command to start the database system.

Note: You may have to issue the DB2START command twice for all
database partition servers to access the new node configuration file.

4. Optionally, take a backup of all databases on the new database partition.
5. Optionally, redistribute data to the new server. For details, see

“Chapter 10. Redistributing Data Across Database Partitions” on page 269.

Updating the Node Configuration File Manually

Note: On Windows NT, you should not edit the node configuration file
manually, as this can introduce inconsistencies into the file. Instead, you
should have the database manager update this file.

Continue the procedure as follows:
1. Edit the db2nodes.cfg file and add the new database partition to it.
2. Issue the following command to start the new node:

DB2START NODENUM nodenum

Specify the number you are assigning to the new database partitioned
server as the value of nodenum.

3. If the new server is to be a logical database partition (that is, it is not node
0), use db2set command to update the DB2NODE registry value,
specifying the number of the server you are adding.

4. Run the ADD NODE command on the new server.

Chapter 9. Scaling Your Configuration 265

This command also causes a database partition to be created locally for
every database that already exists in the system. The database parameters
for the new database partitions are set to the default value, and each
database partition remains empty until you move data to it.

5. When the ADD NODE command completes, issue the DB2START
command to start the other database partitions in the system.
You should not attempt to do any system-wide activities, such as creating
or dropping a database, until all database partitions are successfully
started.

6. Optionally, take a backup of all new database partitions on the new server.
7. Optionally, redistribute data to the new database partition. For details, see

“Chapter 10. Redistributing Data Across Database Partitions” on page 269.

Dropping a Database Partition from a System

You can drop a database partition by using the DB2STOP command with the
DROP NODENUM parameter, or the sqlepstp API. Before doing this, you
must first ensure that the database partition being dropped is not being used
by any database. To check, issue the DROP NODE VERIFY command.

You should ensure that all transactions for which this database partition was
the coordinator have all committed or rolled back successfully. This may
require doing crash recovery on other servers.

For example, if you drop the coordinator database partition (that is, the
coordinator node), and another database partition participating in a
transaction crashed before the coordinator node was dropped, the crashed
database partition will not be able to query the coordinator node for the
outcome of any indoubt transactions.

To drop a database partition from a partitioned database system:
1. Redistribute the data for every database that resides on this node. This

ensures that the partitioning map is kept current. For details, see
“Chapter 10. Redistributing Data Across Database Partitions” on page 269.

2. Issue the DROP NODE VERIFY command or the sqledrpn API to verify
that the server is not in use.

Depending on the message you receive, proceed with either step 3 or step 4.
3. If you receive message SQL6034W (Node not used in any database), you

can do the following:

266 Administration Guide: Performance

a. Issue the DB2STOP command with the DROP NODENUM parameter
to drop the database partition. After the command completes
successfully, the system is stopped.

b. If you want to, start the database manager with the DB2START
command.

4. If you receive message SQL6035W (Node in use by database), do the
following:
a. Use the REDISTRIBUTE NODEGROUP command to redistribute the

data from the database partition you are dropping to other database
partitions from the database alias, as indicated in message SQL6035W.
You cannot drop the database partition until this is done.

b. Drop any event monitors defined on the database partition.
c. Return to step 2 on page 266 and continue.

Chapter 9. Scaling Your Configuration 267

268 Administration Guide: Performance

Chapter 10. Redistributing Data Across Database Partitions

Only if you are working in a partitioned database environment do you need
to be concerned with redistribution of data. If you are in a single partition
database environment there is no need for you to use the information found
here.

You use the Data Redistribution utility to move data among the database
partitions in an existing nodegroup. You can use it to do the following:
v Balance data volumes and processing loads across database partitions.

This is useful if you have a database table in which all the data is accessed
on a regular basis.

v Introduce skew in the data distribution across database partitions.
This is useful if you have a database table in which only some of the data is
accessed on a regular basis. In this situation, you could redistribute the
table so that the infrequently accessed data is on a small number of
database partitions in the nodegroup, and the frequently accessed data is
distributed over a larger number of partitions. This would improve access
performance and throughput on the most frequently run applications.

v Add database partitions to a nodegroup. (Provided for backward
compatibility only with DB2 for Parallel Edition. The recommended way to
add a database partition is to use the ALTER NODEGROUP command.)

v Drop database partitions from a nodegroup. (Provided for backward
compatibility only with DB2 for Parallel Edition. The recommended way to
drop a database partition is to use the ALTER NODEGROUP command.)

To preserve table collocation, this operation is applied to all tables in a
nodegroup, and redistribution is done at the nodegroup level rather than at
the table level.

To achieve the data distribution that you want, the utility uses a partitioning
map to move the rows of the tables among the database partitions of the
nodegroup. Depending on the option you specify, the utility can generate a
target partitioning map or can use an existing partitioning map as input.

Notes:

1. You should specify a log file size based on the log space requirements you
think that the Data Redistribution operation will need. You should also
ensure that the log is large enough to accommodate the INSERT and
DELETE operations done at each database partition where data is being
redistributed.

© Copyright IBM Corp. 1993, 1999 269

2. If you want to redistribute the data in a nodegroup that contains
replicated summary tables, you must first drop these tables, redistribute
the nodegroup, then re-create the tables. You cannot redistribute a
nodegroup that contains replicated summary tables.

How to Partition Data

By default, the Data Redistribution utility assumes that the same number of
rows hash to each hash partition, therefore it partitions the hash partitions
uniformly across all the database partitions of the nodegroup. If the same
number of rows do not hash to each hash partition, you can use a distribution
file to specify the current distribution. This file contains a value for each of the
4 096 hash partitions. Each value is used as the weight of the corresponding
hash partition. The Data Redistribution utility generates a target partitioning
map in which all the database partitions have about the same weight. Thus,
the distribution file can be used to achieve uniform data distribution even if
the data distribution is skewed.

The AutoLoader utility can be used to create a data distribution file using the
ANALYZE option. You can use this file as input to the Data Redistribution
utility. Refer to the Administration Guide, Design and Implementation for more
information on the AutoLoader utility.

Alternatively, you can use the PARTITION and NODENUMBER SQL
functions to determine the current data distribution across hash partitions or
database partitions. (You use the PARTITION function to determine the
distribution across hash partitions.) You can use this information to derive
both a distribution file and a target partitioning map.

Adding and Dropping Database Partitions

You can use the ALTER NODEGROUP statement to add or drop database
partitions from a nodegroup. When adding database partitions, the partitions
must already be defined in the node configuration file.

Following the use of the ALTER NODEGROUP statement, a new partitioning
map is created. This new partitioning map can become the target partitioning
map when using the Data Redistribution utility. (The other way to create the
target partitioning map is to create it yourself.)

If you use the ALTER NODEGROUP statement with the WITHOUT
TABLESPACES clause, you must add table space containers to a new database

270 Administration Guide: Performance

partition (or partitions) before redistributing the data. For additional
information about the ALTER NODEGROUP statement, refer to the SQL
Reference.

Specifying a Target Partitioning Map

The Data Redistribution utility uses a partitioning map to do the data
redistribution. It can create its own target partitioning map, or you can
provide one for the utility to use. If you create one, the entry or entries
determine the type of nodegroup that results from the data redistribution:
v 1 entry for a single-partition nodegroup
v 4 096 entries for a multipartition nodegroup

If the target partitioning map has more than one database partition, all tables
in the nodegroup must have a partitioning key defined.

The target partitioning map can only contain database partition numbers that
are defined in the SYSCAT.NODEGROUPDEF catalog table, excluding those
with an IN_USE value of ’T’. (’T’ means that the partition is not in the target
partitioning map.) All database partitions that have an IN_USE value of ’D’
(meaning to drop) and do not appear in the target partitioning map are
dropped when the redistribution operation has completed successfully.

How Data Is Redistributed Across Database Partitions

The Data Redistribution operation is done on the set of tables in the specified
nodegroup of a database. (The application must be connected to the database
at the catalog database partition before executing the operation.) The utility
uses both the source partitioning map and the target partitioning map to
identify which hash partitions have been assigned to a new location (that is, a
new database partition number). All rows that correspond to a partition that
has a new location are moved from the database partition specified in the
source partitioning map to the database partition specified in the target
partitioning map.

The Data Redistribution utility does the following:
1. Obtains a new partitioning map ID for the target partitioning map, and

inserts it into the SYSCAT.PARTITIONMAPS catalog view.
2. Updates the REBALANCE_PMAP_ID column in the

SYSCAT.NODEGROUPS catalog view for the nodegroup with the new
partitioning map ID.

3. Adds any new database partitions to the SYSCAT.NODEGROUPDEF
catalog view.

Chapter 10. Redistributing Data Across Database Partitions 271

4. Sets the IN_USE column in the SYSCAT.NODEGROUPDEF catalog view
to ’D’ for any database partition that is to be dropped.

5. Does a COMMIT for the catalog updates.
6. Creates database files for all new database partitions.
7. Redistributes the data on a table-by-table basis for every table in the

nodegroup. This is described in “How Data Is Redistributed in Tables”.

8. Deletes database files and deletes entries in the
SYSCAT.NODEGROUPDEF catalog view for database partitions that
were previously marked to be dropped.

9. Updates the nodegroup record in the SYSCAT.NODEGROUPS catalog
view to set PMAP_ID to the value of REBALANCE_PMAP_ID and
REBALANCE_PMAP_ID to NULL.

10. Deletes the old partitioning map from the SYSCAT.PARTITIONMAPS
catalog view.

11. Does a COMMIT for all changes.

How Data Is Redistributed in Tables

When doing data redistribution on a table, the utility does the following:
1. Locks the row for the table in the SYSTABLES catalog table.
2. Invalidates all packages that involve this table. The partitioning map ID

associated with the table will change because the table is being
redistributed. Because the packages are invalidated, the compiler must
obtain the new partitioning information for the table and generate
packages accordingly.

3. Locks the table in exclusive mode.
4. Redistributes the data in the table via DELETEs and INSERTs.
5. If the redistribution operation succeeds, it:

a. Issues a COMMIT for the table.
b. Continues with the next table in the nodegroup.

If the operation fails before the table is fully redistributed, the utility:
a. Issues a ROLLBACK on updates to the table.
b. Ends the entire redistribution operation and returns an error.

272 Administration Guide: Performance

Recovering From Redistribution Errors

After the redistribution operation begins to execute, a file is written to the
redist subdirectory of the sqllib directory. This status file lists any
operations that are done on database partitions, the names of the tables that
were redistributed, and the completion status of the operation. If a table
cannot be redistributed, its name and the applicable SQLCODE is listed in the
file. If the redistribution operation cannot begin because of an incorrect input
parameter, the file is not written and an SQLCODE is returned.

The file has the following naming convention:
databasename.nodegroupname.timestamp (for UNIX platforms)
databasename\nodegroupname\date\time (for non-UNIX platforms)

Note: On non-UNIX platforms, only the first eight (8) bytes of the
nodegroupname are used.

If the data redistribution operation fails, some tables may be redistributed,
while others are not. This occurs because data redistribution is performed a
table at a time. You have two options for recovery:
v Use the CONTINUE option to continue the operation to redistribute the

remaining tables.
v Use the ROLLBACK option to undo the redistribution and set the

redistributed tables back to their original state. The rollback operation can
take about the same amount of time as the original redistribution operation.

Before you can use either option, a previous data redistribution operation
must have failed such that the REBALANCE_PMID column in the
SYSNODEGROUPS catalog table is set to a non-NULL value.

If you happen to delete the status file by mistake, you can still attempt a
CONTINUE operation.

Data Redistribution and Other Operations

You can do the following operations on objects of the nodegroup while the
utility is running. You cannot, however, do them on the table that is being
redistributed. You can:
v Create indexes on other tables. The CREATE INDEX statement uses the

partitioning map of the affected table.
v Drop other tables. The DROP TABLE statement uses the partitioning map

of the affected table.
v Drop indexes on other tables. The DROP INDEX statement uses the

partitioning map of the affected table.

Chapter 10. Redistributing Data Across Database Partitions 273

v Query other tables.
v Update other tables.
v Create new tables in a table space defined in the nodegroup. The CREATE

TABLE statement uses the target partitioning map.
v Create table spaces in the nodegroup.

You cannot do the following operations while the utility is running:
v Another redistribution operation on the nodegroup
v An ALTER TABLE on any table in the nodegroup
v Drop the nodegroup
v Alter the nodegroup.

Following Data Redistribution

After completing the redistribution of data across a nodegroup, it is strongly
recommended that you do a RUNSTATS to update the statistics associated
with the tables that may have been redistributed.

For more information on the RUNSTATS command, refer to the Command
Reference manual.

274 Administration Guide: Performance

Chapter 11. Benchmark Testing

Benchmarking is a normal part of the application development life cycle. It is
a team effort involving both application developers and database
administrators (DBAs), and should be performed against your application in
order to determine and improve performance. Assuming that the application
code has been written as efficiently as possible, additional performance gains
can be realized from tuning the database and database manager configuration
parameters to meet the requirements of the application.

There are several different types of benchmarking. A transaction per second
benchmark would determine the throughput capabilities of the database
manager under certain limited laboratory conditions. An application
benchmark would test the same throughput capabilities, but under conditions
that are closer to those under which your application will run when it is
implemented. Benchmarking for the purpose of tuning configuration
parameters is based upon these “real-world” conditions, and involves
repeatedly running SQL taken from your application with varying parameter
values until your application runs as efficiently as possible.

The benchmarking methods described in this section are oriented towards the
configuration parameters. However, the same basic technique can be used for
tuning other factors that affect performance, such as:
v SQL statements
v Indexes
v Table space configuration
v Application code
v Hardware configuration.

Benchmarking is helpful in understanding how the database manager
responds under varying conditions. You could create scenarios that test
deadlock handling, utility performance, different methods of loading data,
transaction rate characteristics as more users are added, and even the effect on
the application of using a new release of the product.

The following topics are provided:
v “Benchmark Testing Methodology” on page 276

v “Preparing for Benchmark Testing” on page 276

v “Creating a Benchmark Program” on page 278

v “Executing the Benchmark Tests” on page 284.

© Copyright IBM Corp. 1993, 1999 275

Benchmark Testing Methodology

This benchmarking technique is based on the scientific method. A repeatable
environment will be created in which the same test, run under the same
conditions, will yield comparable results.

Benchmarking can also begin by running the test application in a normal
environment. As a performance problem is narrowed down, specialized test
cases can be developed to limit the scope of the function that is being tested
and observed. The specialized test cases need not emulate an entire
application in order to obtain valuable information. Start with simple
measurements, and increase the complexity only when warranted.

Characteristics of good benchmarks (or measurements) include:
v Each test is repeatable.
v Each iteration of a test is started in the same system state.
v There are no functions or applications active in the system other than those

being measured (unless the scenario includes some amount of other activity
going on in the system).

Note: Applications that are started use memory even when they are
minimized or idle. This increases the likelihood of paging skewing
the results of the benchmark and violating the repeatability rule.

v The hardware and software used for benchmarking matches your
production environment.

As with any benchmarking, a scenario must be devised and then executed.
The following information applies these concepts to the DB2 environment.
v “Preparing for Benchmark Testing”

v “Creating a Benchmark Program” on page 278

v “Executing the Benchmark Tests” on page 284.

Preparing for Benchmark Testing

The logical design of your application’s database should be complete before
performance benchmarking is started. Tables, views, and indexes need to be
set up and populated. Tables should be normalized, application packages
bound, and tables populated with realistic data.

You should have determined the final physical design of the database. The
database manager objects should be placed in their final disk locations, log
files sized, work files and backup locations determined, and backup

276 Administration Guide: Performance

procedures tested. In addition, packages should be checked to make sure that
performance options such as row blocking are enabled when possible.

You should have reached a point in the application’s programming and
testing phases that will enable you to create your benchmark programs (see
next section). An application’s practical limits may be revealed during the
benchmark testing; however, the purpose of the benchmark described here is
to measure performance, not to detect defects or abends.

Your benchmarking test program will need to run in as accurate a
representation of the final production environment as possible; ideally, on the
same model of server with the same memory and disk configurations. This is
especially important when the application will ultimately involve large
numbers of users and large amounts of data. The operating system itself and
any communications or file-serving facilities used directly by the benchmark
should also have been tuned.

It is also important to benchmark with a production-size database. An
individual SQL statement should return as much data and involve as much
sorting as it will once it is implemented in production. Adhering to this rule
will ensure that the application will incur representative memory
requirements.

The type of SQL statements to be benchmarked should be either representative
or worst-case, as described below:

Representative SQL
Representative SQL includes those statements that are executed
during typical operations of the application being benchmarked. The
statements that are selected will depend on the nature of the
application. For example, a data-entry application might test an
INSERT statement, while a banking transaction might test a FETCH,
an UPDATE, and several INSERTs. The frequency of execution and
volume of data processed by the statements chosen should be
considered average. If the volumes are excessive, the statements
should be considered under the worst-case category, even if they are
typical SQL statements.

Worst-case SQL
Statements falling in this category include:
v Statements that are executed frequently.
v Statements that have high volumes of data being processed.
v Statements that are time-critical.

Chapter 11. Benchmark Testing 277

For example, an application that is run when a telephone call is
received from a customer and the statements must be run to
retrieve and update the customer’s information while the customer
is waiting.

v Statements with the largest number of tables being joined or with
the most complex SQL in the application.
For example, a banking application that produces combined
customer statements of monthly activity for all their different types
of accounts. A common table may list customer address and
account numbers; however, several other tables must be joined to
process and integrate all of the necessary account transaction
information. Multiply the work necessary for one account by the
several thousand accounts that must be processed during the same
period, and the potential time savings drives the performance
requirements.

v Statements that have a poor access path, such as one that is not
executed very often and is not supported by the indexes that have
been created for the table(s) involved.

v Statements that have a long elapsed time.
v A statement that is only executed at application initialization but

has disproportionate resource requirements.
For example, an application that generates a list of account work
that must be processed during the day. When the application is
started, the first major SQL statement causes a 7-way join, which
creates a very large list of all the accounts for which this application
user is responsible. The statement might only be run a few times
per day, but takes several minutes to run when it has not been
tuned properly.

Creating a Benchmark Program

There are a variety of factors to consider when designing and implementing a
benchmark program. Since the main purpose of the program is to simulate a
user application, the overall structure of the program can vary. You can use
the entire application as the benchmark and simply introduce a means for
timing the SQL statements to be analyzed. For large or complex applications,
it may be more practical to just include blocks containing the important
statements.

To test the performance of specific SQL statements, another approach would
be to include these statements alone in the benchmark program along with
the necessary CONNECT, PREPARE, OPEN, and other statements and a
timing mechanism.

278 Administration Guide: Performance

Another factor to consider is the type of benchmark to use. One option is to
run a set of SQL statements repeatedly over a time interval. The ratio of the
number of statements executed and this time interval would give the
throughput for the application. Another option would be to simply determine
the time required to execute individual SQL statements.

Regardless of the type of benchmark program, an efficient timing system is
necessary to calculate the elapsed time, whether for individual SQL statements
or the application as a whole. For simulating applications in which individual
SQL statements would be executed in isolation, it may be important to
consider times for CONNECT, PREPARE, and COMMIT statements. However,
for programs processing many different statements, perhaps only a single
CONNECT or COMMIT is necessary, so focusing on just the execution time
for an individual statement may be the priority.

While the elapsed time for each query is an important factor in performance
analysis, it may not necessarily reveal bottlenecks. For example, information
on CPU usage, locking, and buffer pool I/O could show that the application is
I/O bound instead of using the CPU to its full capacity. A benchmark
program should allow you to obtain this kind of data for a more detailed
analysis if needed.

Not all applications will need to send the entire set of rows retrieved from a
query to some output device. For example, some may use the whole answer
set as input for another program (that is, none of the rows are sent to output).
Formatting data for screen output usually has high CPU cost and may not
reflect user need. In order to provide an accurate simulation, a benchmark
program should reflect the row handling of the specific application. If rows do
get sent to an output device, inefficient formatting could consume the majority
of CPU processing time and misrepresent the actual performance of the SQL
statement itself.

The db2batch Benchmark Tool: A benchmark tool (db2batch) is provided in
the misc subdirectory of your instance sqllib directory. This tool takes many
of the points made above regarding the creating of a benchmark program into
consideration. This tool will read SQL statements from either a flat file or
standard input, dynamically describe and prepare the statements, and return
an answer set. It also provides the added flexibility of allowing you to control
the size of the answer set, as well as the number of rows that should be sent
from this answer set to an output device.

You can also specify the level of performance-related information supplied,
including the elapsed time, CPU and buffer pool usage, locking, and other
statistics collected from the database monitor. If you are timing a set of SQL
statements, db2batch will also summarize the performance results and provide

Chapter 11. Benchmark Testing 279

both arithmetic and geometric means. For more information on invocation
syntax, and options, type db2batch -h on a command line.

The Command Reference manual can also be referenced for more information
on db2batch.

The following is an example of how db2batch could be used with an input file
db2batch.sql:

Using the following invocation of the benchmark tool:
db2batch -d sample -f db2batch.sql

Produces the following output:

-- db2batch.sql
-- ------------
--#SET PERF_DETAIL 3 ROWS_OUT 5

-- This query lists employees, the name of their department
-- and the number of activities to which they are assigned for
-- employees who are assigned to more than one activity less than
-- full-time.
--#COMMENT Query 1
select lastname, firstnme,

deptname, count(*) as num_act
from employee, department, emp_act
where employee.workdept = department.deptno and

employee.empno = emp_act.empno and
emp_act.emptime < 1

group by lastname, firstnme, deptname
having count(*) > 2;
--#SET PERF_DETAIL 1 ROWS_OUT 5
--#COMMENT Query 2
select lastname, firstnme,

deptname, count(*) as num_act
from employee, department, emp_act
where employee.workdept = department.deptno and

employee.empno = emp_act.empno and
emp_act.emptime < 1

group by lastname, firstnme, deptname
having count(*) <= 2;

Figure 21. Sample Benchmark Input File: db2batch.sql

280 Administration Guide: Performance

--#SET PERF_DETAIL 3 ROWS_OUT 5
Query 1

Statement number: 1

select lastname, firstnme,
deptname, count(*) as num_act
from employee, department, emp_act
where employee.workdept = department.deptno and
employee.empno = emp_act.empno and
emp_act.emptime < 1
group by lastname, firstnme, deptname
having count(*) > 2

Figure 22. Sample Output From db2batch (Part 1)

Chapter 11. Benchmark Testing 281

LASTNAME FIRSTNME DEPTNAME NUM_ACT

JEFFERSON JAMES ADMINISTRATION SYSTEMS 3
JOHNSON SYBIL ADMINISTRATION SYSTEMS 4
NICHOLLS HEATHER INFORMATION CENTER 4
PEREZ MARIA ADMINISTRATION SYSTEMS 4
SMITH DANIEL ADMINISTRATION SYSTEMS 7
Number of rows retrieved is: 5
Number of rows sent to output is: 5
Elapsed Time is: 0.074 seconds
Locks held currently = 0
Lock escalations = 0
Total sorts = 5
Total sort time (ms) = 0
Sort overflows = 0
Buffer pool data logical reads = 13
Buffer pool data physical reads = 5
Buffer pool data writes = 0
Buffer pool index logical reads = 3
Buffer pool index physical reads = 0
Buffer pool index writes = 0
Total buffer pool read time (ms) = 23
Total buffer pool write time (ms) = 0
Asynchronous pool data page reads = 0
Asynchronous pool data page writes = 0
Asynchronous pool index page reads = 0
Asynchronous pool index page writes = 0
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
Asynchronous read requests = 0
LSN Gap cleaner triggers = 0
Dirty page steal cleaner triggers = 0
Dirty page threshold cleaner triggers = 0
Direct reads = 8
Direct writes = 0
Direct read requests = 4
Direct write requests = 0
Direct read elapsed time (ms) = 0
Direct write elapsed time (ms) = 0
Rows selected = 5
Log pages read = 0
Log pages written = 0
Catalog cache lookups = 3
Catalog cache inserts = 3
Buffer pool data pages copied to ext storage = 0
Buffer pool index pages copied to ext storage = 0
Buffer pool data pages copied from ext storage = 0
Buffer pool index pages copied from ext storage = 0
Total Agent CPU Time (seconds) = 0.02
Post threshold sorts = 0
Piped sorts requested = 5
Piped sorts accepted = 5

Figure 23. Sample Output From db2batch (Part 1)

282 Administration Guide: Performance

The above sample output includes specific data elements returned by the
database system monitor. For more information about these and other monitor
elements, see the System Monitor Guide and Reference manual.

In the next example, just the summary table is produced.
db2batch -d sample -f db2batch.sql -r /dev/null,

Produces just the summary table. Using the -r option, outfile1 was replaced
by /dev/null and outfile2 (which contains just the summary table) is empty,
so db2batch sends the output to the screen:

--#SET PERF_DETAIL 1 ROWS_OUT 5
Query 2
Statement number: 2
select lastname, firstnme,
deptname, count(*) as num_act
from employee, department, emp_act
where employee.workdept = department.deptno and
employee.empno = emp_act.empno and
emp_act.emptime < 1
group by lastname, firstnme, deptname
having count(*) <= 2
LASTNAME FIRSTNME DEPTNAME NUM_ACT

GEYER JOHN SUPPORT SERVICES 2
GOUNOT JASON SOFTWARE SUPPORT 2
HAAS CHRISTINE SPIFFY COMPUTER SERVICE DIV. 2
JONES WILLIAM MANUFACTURING SYSTEMS 2
KWAN SALLY INFORMATION CENTER 2
Number of rows retrieved is: 8
Number of rows sent to output is: 5
Elapsed Time is: 0.037 seconds
Summary of Results
==================

Elapsed Agent CPU Rows Rows
Statement # Time (s) Time (s) Fetched Printed
1 0.074 0.020 5 5
2 0.037 Not Collected 8 5
Arith. mean 0.055
Geom. mean 0.052

Figure 24. Sample Output from db2batch (Part 2)

Chapter 11. Benchmark Testing 283

This benchmarking tool also has a CLI option. With this option, you can
specify a cache size. In the following example, db2batch is run in CLI mode
with a cache size of 30 statements:

db2batch -d sample -f db2batch.sql -cli 30

Executing the Benchmark Tests

One type of database benchmark involves choosing a configuration parameter
and running the test with different values for that parameter until the
maximum benefit is achieved. A single test should include executing the
application through several iterations (for example, 10 times) with the same
parameter value to get an average timing, which will better show the effect of
parameter changes.

When running your benchmark, the first iteration should be considered a
separate case from the subsequent iterations. This is because the results from
the first iteration will include some start-up activities (such as initializing the
buffer pool). Consequently, this iteration will take somewhat longer than the
others. Although the information from this iteration may be realistically valid,
it will not be statistically valid. Therefore, when calculating the average timing
for a specific set of parameter values, use the timings from the second and
subsequent iterations.

You may want to consider using the Performance Configuration SmartGuide
to create the first iteration of the benchmark. The questions asked as part of
the Performance Configuration SmartGuide will provide insight into some of
those things to consider when adjusting the configuration of your
environment for subsequent iterations during your benchmark activity. To use
the Performance Configuration SmartGuide, enter db2cc to get into the
Control Center and proceed from there.

If you are benchmarking using individual queries, you need to ensure that
you minimize the potential effects of previous queries. This can be
accomplished by flushing the buffer pool which can be done by reading a
number of pages (irrelevant to your query) to fill the buffer pool.

Summary of Results
==================

Elapsed Agent CPU Rows Rows
Statement # Time (s) Time (s) Fetched Printed
1 0.074 0.020 5 5
2 0.037 Not Collected 8 5
Arith. mean 0.055
Geom. mean 0.052

Figure 25. Sample Output from db2batch -- Summary Table Only

284 Administration Guide: Performance

After completing the iterations for a single set of parameter values, a single
parameter can be changed. However, between each iteration, the following
tasks should be performed to restore the benchmark environment to its
original state:
v Return the application data and database manager statistics to their original

state. If the catalog statistics were updated for the test, ensure the same
values for the statistics are used for every iteration. The data used in the
tests must be consistent if it is updated in the course of the tests. This can
be done by:
– Using the RESTORE utility to restore the entire database. The backup

copy of the database would be in its previous state, and ready for the
next test.

– Using the IMPORT or LOAD utility to restore an exported copy of the
data. This method allows you to restore only the data that has been
affected. REORG and RUNSTATS utilities should be run against the
tables and indexes containing this data.

v Return the application to its original state by re-BINDing it to the database.
The following are additional considerations when benchmarking on
OS/2:

v If paging occurs during the scenario, ensure that SWAPPER.DAT has
returned to the original size.

v Re-boot the system for repeatability, if necessary.

Output from the benchmark program should include an identifier for each
test, the iteration of the program execution, the statement number, and the
timing for the execution. A summary of benchmarking results after a series of
measurements might look like the following:

Note: The data in the above report is shown for illustration purposes only. It
does not represent measured results.

Test Iter. Stmt Timing SQL Statement
Numbr Numbr Numbr (hh:mm:ss.ss)
002 05 01 00:00:01.34 CONNECT TO SAMPLE
002 05 10 00:02:08.15 OPEN cursor_01
002 05 15 00:00:00.24 FETCH cursor_01
002 05 15 00:00:00.23 FETCH cursor_01
002 05 15 00:00:00.28 FETCH cursor_01
002 05 15 00:00:00.21 FETCH cursor_01
002 05 15 00:00:00.20 FETCH cursor_01
002 05 15 00:00:00.22 FETCH cursor_01
002 05 15 00:00:00.22 FETCH cursor_01
002 05 20 00:00:00.84 CLOSE cursor_01
002 05 99 00:00:00.03 CONNECT RESET

Figure 26. Benchmark Sample Results

Chapter 11. Benchmark Testing 285

Examining this report would indicate that the CONNECT (statement 01) took
1.34 seconds, the OPEN CURSOR (statement 10) took 2 minutes and 8.15
seconds, the FETCHES (statement 15) returned seven rows with the longest
delay being .28 seconds, the CLOSE CURSOR (statement 20) took .84 seconds,
and the CONNECT RESET (statement 99) took .03 seconds.

It might be beneficial for your program to output your data in a delimited
ASCII format so that it could later be imported into a database table or a
spreadsheet for further statistical analysis.

Sample output for a benchmark report might be:

Note: The data in the above report is shown for illustration purposes only. It
does not represent any measured results.

Examining the data in this example shows that changing the buffpage
parameter successively lowered the OPEN CURSOR times from 2.15 seconds
to 1.00 second. (The assumption is that there is only one (1) buffer pool with
the size (NPAGES) set to -1. This means the size of the buffer pool is
controlled by the buffpage parameter.)

In summary, the following steps/iterations may be followed to benchmark a
database application:

Step 1 Leave the database and database manager tuning parameters at their
default values except for:
v Those parameters significant to the workload and the objectives of

the test. (You rarely have enough time to perform benchmark

PARAMETER VALUES FOR EACH BENCHMARK TEST
TEST NUMBER 001 002 003 004 005
locklist 63 63 63 63 63

>> buffpage 1000 1175 1250 1325 1400 <<
maxappls 8 8 8 8 8
applheapsz 48 48 48 48 48
dbheap 128 128 128 128 128
sortheap 256 256 256 256 256
maxlocks 22 22 22 22 22
stmtheap 1024 1024 1024 1024 1024
SQL STMT AVERAGE TIMINGS (seconds)
01 01.34 01.34 01.35 01.35 01.36
10 02.15 02.00 01.55 01.24 01.00
15 00.22 00.22 00.22 00.22 00.22
20 00.84 00.84 00.84 00.84 00.84
99 00.03 00.03 00.03 00.03 00.03

Figure 27. Benchmark Sample Timings Report

286 Administration Guide: Performance

testing to tune all of the parameters, so you may want to start by
using your best guess for some of the parameters and tune from
that point.)

v Log sizes, which should be determined during unit and system
testing of your application. (See “Size of Log Files (logfilsiz)” on
page 368 for more information.)

v Any parameters that must be changed to enable your application to
run (that is, the changes needed to prevent negative SQL return
codes from such events as running out of memory for the statement
heap).

Run your set of iterations for this initial case and calculate the average
timing.

Step 2 Select one and only one tuning parameter to be tested, and change its
value.

Step 3 Run another set of iterations and calculate the average timing.

Step 4 Depending on the results of the benchmark test, do one of the
following:
v If performance improves, change the value of the same parameter

and return to Step 3. Keep changing this parameter until the
maximum benefit is shown.

v If performance degrades or remains unchanged, return the
parameter to its previous value, return to Step 2, and select a new
parameter. Repeat this procedure until all parameters have been
tested.

Note: If you were to graph the performance results, you would be
looking for the point where the curve begins to plateau or
decline.

You can write a driver program to help you with your benchmark testing.
This driver program could be written using a language such as REXX or, for
UNIX-based platforms, using shell scripts.

This driver program would execute the benchmark program, pass it the
appropriate parameters, drive the test through multiple iterations, restore the
environment to a consistent state, set up the next test with new parameter
values, and collect/consolidate the test results. These driver programs can be
flexible enough that they could be used to run the entire set of benchmark
tests, analyze the results, and provide a report of the final and best parameter
values for the given test.

Chapter 11. Benchmark Testing 287

288 Administration Guide: Performance

Chapter 12. Configuring DB2

Configuration parameters are values that affect the operating characteristics of
a database or database management system.

Database manager configuration parameters exist on servers and clients;
however, only certain database manager configuration parameters can be set
on the client. These parameters are a subset of the database management
configuration parameters that can be set on the server. And then, depending
on the type of DB2 Universal Database product you are using, there are
additional issues relating to configuration parameters. For example, in DB2
Extended Enterprise Edition, one database manager configuration file is
shared between all database partition servers in the instance.

Database configuration parameters only reside on a server.

DB2 has been designed with an extensive array of tuning and configuration
parameters. These parameters fall into two general categories:
v “Database Manager Parameters” on page 291

v “Database Parameters” on page 297.

In addition to descriptions of the individual parameters, the following topics
are available:

v “Tuning Configuration Parameters” on page 290.

v “Parameter Details by Function” on page 303 (each functional area has its
own list of configuration parameters).

v “Appendix A. DB2 Registry and Environment Variables” on page 449.
There may be performance-related environment or registry variables for
your specific platform that you should consider using in addition to the
performance-related configuration parameters.

v “Chapter 7. Operational Performance” on page 205.

v “Chapter 11. Benchmark Testing” on page 275.

You should review all of the parameter summaries in Table 17 on page 293
and Table 19 on page 299, and then focus on the descriptions and tuning of
those which will provide you with the greatest benefit in your working
environment.

© Copyright IBM Corp. 1993, 1999 289

Tuning Configuration Parameters

The disk space and memory allocated by the database manager on the basis
of default values of the parameters may be sufficient to meet your needs. In
some situations, however, you may not be able to achieve maximum
performance using these default values.

Since the default values are oriented towards machines with relatively small
memory and dedicated as database servers, you may need to modify them if
your environment has:
v Large databases
v Large numbers of connections
v High performance requirements for a specific application
v Unique query or transaction loads or types
v Different machine configuration or usage.

Each transaction processing environment is unique in one or more aspects.
These differences can have a profound impact on the performance of the
database manager when using the default configuration. For this reason, you
are strongly advised to tune your configuration for your environment.

Different types of applications and users have different response time
requirements and expectations. Applications could range from simple data
entry screens to strategic applications involving dozens of complex SQL
statements accessing dozens of tables per unit of work. For example, response
time requirements could vary considerably in a telephone customer service
application versus a batch report generation application.

The other related topics can be used to help you benchmark your application
to tune the configuration parameters:
v “Database Manager Parameters” on page 291

v “Database Parameters” on page 297

v “Parameter Details by Function” on page 303 (each functional area has its
own list of configuration parameters)

v “Chapter 7. Operational Performance” on page 205

v “Chapter 11. Benchmark Testing” on page 275

v Database system monitor element descriptions in the System Monitor Guide
and Reference.

290 Administration Guide: Performance

Database Manager Parameters

Database manager parameters are stored in a file named db2systm. This file is
created when the instance of the database manager is created. In UNIX-based
environments, this file can be found in the sqllib subdirectory for the
instance of the database manager. In all other environments, the default
location of this file is the instance subdirectory of the sqllib directory. If the
DB2INSTPROF variable is set, the file is in the instance subdirectory of the
directory specified by the DB2INSTPROF variable.

In a partitioned database environment, this file resides on a shared file system
so that all database partition servers have access to the same file. The
configuration of the database manager is the same on all database partition
servers.

Most of the parameters either affect the amount of system resources that will
be allocated to a single instance of the database manager, or they configure
the setup of the database manager and the different communications
subsystems based on environmental considerations. In addition, there are
other parameters that serve informative purposes only and cannot be
changed. All of these parameters have global applicability independent of any
single database stored under that instance of the database manager.

The db2systm file cannot be directly edited. It can only be changed or viewed
using a supplied API or by a tool which calls that API.

Attention: If you edit the file using a method other than those provided by
the product, you may make your system unusable. We strongly recommend
that you do not change this file using methods other than those documented
and supported by DB2.

You may use one of the following methods to reset, update, and view the
database managerconfiguration parameters:
v Using the DB2 Control Center. The DB2 Control Center provides the

Configure Instance notebook, which you can use to set the database
manager configuration parameters on either a client or a server. The DB2
Control Center also provides the Performance Configuration SmartGuide to
alter the value of configuration parameters on a server. This SmartGuide
generates values to parameters based on the responses you provide to a set
of questions, such as the workload and the type of transactions that run
against the database. See the online help available with the Control Center
for information on using these interfaces.

v Using the command line processor. Commands to change the settings can
be quickly and conveniently entered. See the Command Reference for more
information about the following commands:

Chapter 12. Configuring DB2 291

– GET DATABASE MANAGER CONFIGURATION (or GET DBM CFG)
– UPDATE DATABASE MANAGER CONFIGURATION (or UPDATE DBM

CFG)
– RESET DATABASE MANAGER CONFIGURATION (or RESET DBM

CFG).
v Using the application programming interfaces (APIs). The APIs can easily

be called from an application. See the Administrative API Reference for more
information.

v Using the Client Configuration Assistant. You can only use the Client
Configuration Assistant to set the database manager configuration
parameters on a client.

After changing the parameters, the database manager must be stopped
(db2stop) and then restarted (db2start) for the new parameter values to take
effect. For clients, changes in the database manager configuration parameters
take effect the next time the client connects to a server. While new parameter
values are not immediately effective, viewing the parameter settings will
always show the latest updates.

Note: You do not need to restart the database manager if you update the
value of the dft_monswitches parameter; this parameter is updated
automatically when you change its value.

Database Manager Configuration Parameter Summary

The following table lists the parameters in the database manager configuration
file for database servers. When changing the database manager configuration
parameters, consider the detailed information for each parameter. Specific
operating environment information including defaults is part of each
parameter description.

The column “Performance Impact” in the following table provides an
indication of the relative importance of each parameter as it relates to system
performance. It is impossible for this column to apply accurately to all
environments; you should view this information as a generalization.
v High — indicates the parameter can have a significant impact on

performance. You should consciously decide the values of these parameters;
which, in some cases, will mean that you accept the default provided.

v Medium — indicates the parameter can have some impact on performance.
Your specific environment and needs will determine how much tuning
effort should be focused on these parameters.

v Low — indicates that the parameter has a less general or less significant
impact on performance.

292 Administration Guide: Performance

v None — indicates that the parameter does not directly impact performance.
While you do not have to tune these parameters for performance, they can
be very important for other aspects of your system configuration, such as
enabling communication support.

Table 17. Configurable Database Manager Configuration Parameters

Parameter Performance Impact Additional Information

agentpri High “Priority of Agents (agentpri)” on page 357

agent_stack_sz Low “Agent Stack Size (agent_stack_sz)” on page 328

aslheapsz High “Application Support Layer Heap Size
(aslheapsz)” on page 332

audit_buf_sz High “Audit Buffer Size (audit_buf_sz)” on page 340

authentication Low “Authentication Type (authentication)” on
page 440

backbufsz Medium “Default Backup Buffer Size (backbufsz)” on
page 312

catalog_noauth None “Cataloging Allowed without Authority
(catalog_noauth)” on page 442

comm_bandwidth Medium “Communications Bandwidth
(comm_bandwidth)” on page 430

conn_elapse Medium “Connection Elapse Time (conn_elapse)” on
page 417

cpuspeed Low (see note) “CPU Speed (cpuspeed)” on page 430

datalinks Low “Enable Data Links Support (datalinks)” on
page 396

dft_account_str None “Default Charge-Back Account (dft_account_str)”
on page 435

dft_client_adpt None “Default Client Adapter Number
(dft_client_adpt)” on page 414

dft_client_comm None “Default Client Communication Protocol
(dft_client_comm)” on page 413

dft_monswitches

v dft_mon_bufpool

v dft_mon_lock

v dft_mon_sort

v dft_mon_stmt

v dft_mon_table

v dft_mon_uow

Medium “Default Database System Monitor Switches
(dft_monswitches)” on page 428

dftdbpath None “Default Database Path (dftdbpath)” on page 443

Chapter 12. Configuring DB2 293

Table 17. Configurable Database Manager Configuration Parameters (continued)

Parameter Performance Impact Additional Information

diaglevel Low “Diagnostic Error Capture Level (diaglevel)” on
page 425

diagpath None “Diagnostic Data Directory Path (diagpath)” on
page 426

dir_cache Medium “Directory Cache Support (dir_cache)” on
page 338

dir_obj_name None “Object Name in DCE Namespace
(dir_obj_name)” on page 411

dir_path_name None “Directory Path Name in DCE Namespace
(dir_path_name)” on page 410

dir_type None “Directory Services Type (dir_type)” on page 409

discover Medium “Discovery Mode (discover)” on page 415

discover_comm Low “Search Discovery Communications Protocols
(discover_comm)” on page 416

discover_inst Low “Discover Server Instance (discover_inst)” on
page 416

dos_rqrioblk High “DOS Requester I/O Block Size (dos_rqrioblk)” on
page 335

drda_heap_sz Low “DRDA Heap Size (drda_heap_sz)” on page 325

fcm_num_anchors High “Number of FCM Message Anchors
(fcm_num_anchors)” on page 418

fcm_num_buffers High “Number of FCM Buffers (fcm_num_buffers)” on
page 418

fcm_num_connect High “Number of FCM Connection Entries
(fcm_num_connect)” on page 420

fcm_num_rqb High “Number of FCM Request Blocks (fcm_num_rqb)”
on page 420

federated Medium “Federated Database System Support (federated)”
on page 436

fileserver None “IPX/SPX File Server Name (fileserver)” on
page 407

indexrec Medium “Index Re-creation Time (indexrec)” on page 381

initdari_jvm Medium “Initialize DARI Process with JVM (initdari_jvm)”
on page 366

intra_parallel High “Enable Intra-Partition Parallelism
(intra_parallel)” on page 424

ipx_socket None “IPX/SPX Socket Number (ipx_socket)” on
page 408

294 Administration Guide: Performance

Table 17. Configurable Database Manager Configuration Parameters (continued)

Parameter Performance Impact Additional Information

java_heap_sz High “Maximum Java Interpreter Heap Size
(java_heap_sz)” on page 340

jdk11_path None “Java Development Kit 1.1 Installation Path
(jdk11_path)” on page 436

keepdari Medium “Keep DARI Process Indicator (keepdari)” on
page 364

maxagents Medium “Maximum Number of Agents (maxagents)” on
page 360

maxcagents Medium “Maximum Number of Concurrent Agents
(maxcagents)” on page 358

max_connretries Medium “Node Connection Retries (max_connretries)” on
page 421

max_coordagents Medium “Maximum Number of Coordinating Agents
(max_coordagents)” on page 361

maxdari Medium “Maximum Number of DARI Processes
(maxdari)” on page 365

max_querydegree High “Maximum Query Degree of Parallelism
(max_querydegree)” on page 423

max_time_diff Medium “Maximum Time Difference Among Nodes
(max_time_diff)” on page 421

maxtotfilop Medium “Maximum Total Files Open per Application
(maxtotfilop)” on page 356

min_priv_mem Medium “Minimum Committed Private Memory
(min_priv_mem)” on page 329

mon_heap_sz Low “Database System Monitor Heap Size
(mon_heap_sz)” on page 336

nname None “NetBIOS Workstation Name (nname)” on
page 405

notifylevel Low “Notify Level (notifylevel)” on page 427

numdb Low “Maximum Number of Concurrently Active
Databases (numdb)” on page 431

num_initagents Medium “Initial Number of Agents in Pool
(num_initagents)” on page 363

num_initdaris Medium “Initial Number of Fenced DARI Processes in
Pool (num_initdaris)” on page 367

num_poolagents High “Agent Pool Size (num_poolagents)” on page 362

objectname None “IPX/SPX DB2 Server Object Name (objectname)”
on page 408

Chapter 12. Configuring DB2 295

Table 17. Configurable Database Manager Configuration Parameters (continued)

Parameter Performance Impact Additional Information

priv_mem_thresh Medium “Private Memory Threshold (priv_mem_thresh)”
on page 330

query_heap_sz Medium “Query Heap Size (query_heap_sz)” on page 324

restbufsz Medium “Default Restore Buffer Size (restbufsz)” on
page 313

resync_interval None “Transaction Resync Interval (resync_interval)” on
page 387

route_obj_name None “Routing Information Object Name
(route_obj_name)” on page 412

rqrioblk High “Client I/O Block Size (rqrioblk)” on page 333

sheapthres High “Sort Heap Threshold (sheapthres)” on page 320

spm_log_file_sz Low “Sync Point Manager Log File Size
(spm_log_file_sz)” on page 389

spm_log_path Medium “Sync Point Manager Log File Path
(spm_log_path)” on page 388

spm_max_resync Low “Sync Point Manager Resync Agent Limit
(spm_max_resync)” on page 390

spm_name None “Sync Point Manager Name (spm_name)” on
page 388

ss_logon None “LOGON Required for DB2START/DB2STOP
(ss_logon)” on page 444

start_stop_time Low “Start and Stop Timeout (start_stop_time)” on
page 422

svcename None “TCP/IP Service Name (svcename)” on page 405

sysadm_group None “System Administration Authority Group Name
(sysadm_group)” on page 437

sysctrl_group None “System Control Authority Group Name
(sysctrl_group)” on page 439

sysmaint_group None “System Maintenance Authority Group Name
(sysmaint_group)” on page 439

tm_database None “Transaction Manager Database Name
(tm_database)” on page 386

tp_mon_name None “Transaction Processor Monitor Name
(tp_mon_name)” on page 433

tpname None “APPC Transaction Program Name (tpname)” on
page 406

trust_allclnts None “Trust All Clients (trust_allclnts)” on page 444

296 Administration Guide: Performance

Table 17. Configurable Database Manager Configuration Parameters (continued)

Parameter Performance Impact Additional Information

trust_clntauth None “Trusted Clients Authentication (trust_clntauth)”
on page 445

udf_mem_sz Low “UDF Shared Memory Set Size (udf_mem_sz)” on
page 326

Note: The cpuspeed parameter can have a significant impact on performance but you should use the
default value, except in very specific circumstances, as documented in the parameter description.

Table 18. Informational Database Manager Configuration Parameters

Parameter Additional Information

nodetype “Machine Node Type (nodetype)” on page 434

release “Configuration File Release Level (release)” on
page 391

Database Parameters

Parameters for an individual database are stored in a configuration file named
SQLDBCON. This file is stored along with other control files for the database in
the SQLnnnnn directory, where nnnnn is a number assigned when the database
was created. (For more information about the location of this directory, refer
to “Database Physical Directories” in the Administration Guide, Design and
Implementation.) Each database has its own configuration file, and most of the
parameters in the file specify the amount of resources allocated to that
database. The file also contains descriptive information, as well as flags that
indicate the status of the database.

The SQLDBCON file cannot be directly edited, and can only be changed or
viewed via a supplied API or by a tool which calls that API.

Attention: If you edit the file using a method other than those provided by
DB2, you may make the database unusable. We strongly recommend that you
do not change this file using methods other than those documented and
supported by DB2.

You may use one of the following three methods to reset, update, and view
the database configuration parameters:
v Using the Control Center. The DB2 Control Center provides both the

Configure Database notebook and the Performance Configuration
SmartGuide to alter the value of configuration parameters. This SmartGuide
generates values to parameters based on the responses you provide to a set
of questions, such as the workload and the type of transactions that run

Chapter 12. Configuring DB2 297

against the database. See the online help available with the Control
Centerfor information on using these interfaces.
In a partitioned database environment, the SQLDBCON file exists for each
database partition. In this environment, the Configure Database notebook
updates the configuration for individual database partitions. If you want to
have all the database partitions (or a subset of them) share the same
database configuration values, you can:
– Use the Configure Database notebook to update each database partition

configuration file separately.
– Use the db2_all command with a script to update the database

configuration files. For information about the db2_all command, refer to
the description of how to issue a command to multiple database
partition servers in the Administration Guide, Design and Implementation.

– Use an application to update multiple database configuration files.

Note: The Performance Configuration SmartGuide is not available in the
partitioned database environment.

v Using the command line processor. Commands to change the settings can
be quickly and conveniently entered. Refer to the Command Reference for
more information about the following commands:
– GET DATABASE CONFIGURATION (or GET DB CFG)
– UPDATE DATABASE CONFIGURATION (or UPDATE DB CFG)
– RESET DATABASE CONFIGURATION (or RESET DB CFG)

v Using the application programming interfaces (APIs). The APIs can easily
be called from a host-language program. Refer to the Administrative API
Reference for more information.

Updates to most changeable parameters will not take effect while applications
are connected to the database. All applications must first disconnect from the
database. (If the database was activated, then it must be deactivated and
reactivated.) Then, at the first new connect to the database, the changes will
take effect. You should note that some parameter changes, such as newlogpath,
logfilsiz and logprimary, may take a noticeable amount of time to take effect
due to the overhead associated with allocating space. You may wish to make a
test connection to the database so the change will be made at the time of the
test connection and any overhead will not affect other users. If you are
concerned about the overhead as discussed here, consider using the
ACTIVATE DATABASE command as described in the Command Reference.

Note: You do not need to disconnect from the database if you update the
value of the mincommit parameter; this parameter is updated
automatically when you change its value.

298 Administration Guide: Performance

Changing some database configuration parameters can influence the access
plan chosen by the SQL optimizer. These database parameters are discussed in
“Configuration Parameters Affecting Query Optimization” on page 59. After
changing any of the parameters discussed there, you should consider
rebinding your applications to ensure the best access plan is being used for
your SQL statements.

While new parameter values may not be immediately effective, viewing the
parameter settings will always show the latest updates.

Note: A number of database configuration parameters (for example, userexit)
are described as having acceptable values of either “Yes” or “No”, or
“On” or “Off” in the help and other DB2 books. To clarify what may be
confusing, “Yes” should be considered equivalent to “On” and “No”
should be considered equivalent to “Off”.

Database Configuration Parameter Summary

The following table lists the parameters in the database configuration file.
When changing the database configuration parameters, consider the detailed
information for the parameter.

The column “Performance Impact” in the following table provides an
indication of the relative importance of each parameter as it relates to system
performance. It is impossible for this column to apply accurately to all
environments; you should view this information as a generalization.
v High — indicates the parameter can have a significant impact on

performance. You should consciously decide the values of these parameters;
which, in some cases, will mean that you accept the default provided.

v Medium — indicates the parameter can have some impact on performance.
Your specific environment and needs will determine how much tuning
effort should be focused on these parameters.

v Low — indicates that the parameter has a less general or less significant
impact on performance.

v None — indicates that the parameter does not directly impact performance.
While you do not have to tune these parameters for performance, they can
be very important for other aspects of your system configuration, such as
enabling communication support.

Table 19. Configurable Database Configuration Parameters

Parameter Performance Impact Additional Information

adsm_mgmtclass None “ADSTAR Distributed Storage Manager
Management Class (adsm_mgmtclass)” on
page 384

Chapter 12. Configuring DB2 299

Table 19. Configurable Database Configuration Parameters (continued)

Parameter Performance Impact Additional Information

adsm_nodename None “ADSTAR Distributed Storage Manager Node
Name (adsm_nodename)” on page 385

adsm_owner None “ADSTAR Distributed Storage Manager Owner
Name (adsm_owner)” on page 385

adsm_password None “ADSTAR Distributed Storage Manager Password
(adsm_password)” on page 384

app_ctl_heap_sz Medium “Application Control Heap Size
(app_ctl_heap_sz)” on page 318

applheapsz Medium “Application Heap Size (applheapsz)” on page 323

audit_buf_sz Medium “Audit Buffer Size (audit_buf_sz)” on page 340

autorestart Low “Auto Restart Enable (autorestart)” on page 380

avg_appls High “Average Number of Active Applications
(avg_appls)” on page 354

buffpage High (when active) “Buffer Pool Size (buffpage)” on page 305

catalogcache_sz Medium “Catalog Cache Size (catalogcache_sz)” on
page 309

chngpgs_thresh High “Changed Pages Threshold (chngpgs_thresh)” on
page 345

copyprotect None “Copy Protection Enable (copyprotect)” on
page 393

dbheap Medium “Database Heap (dbheap)” on page 308

dft_degree High “Default Degree (dft_degree)” on page 400

dft_extent_sz Medium “Default Extent Size of Table Spaces
(dft_extent_sz)” on page 351

dft_loadrec_ses Medium “Default Number of Load Recovery Sessions
(dft_loadrec_ses)” on page 382

dft_prefetch_sz Medium “Default Prefetch Size (dft_prefetch_sz)” on
page 349

dft_queryopt Medium “Default Query Optimization Class
(dft_queryopt)” on page 401

dft_sqlmathwarn None “Continue upon Arithmetic Exceptions
(dft_sqlmathwarn)” on page 399

dir_obj_name None “Object Name in DCE Namespace
(dir_obj_name)” on page 411

discover_db Medium “Discover Database (discover_db)” on page 414

dlchktime Medium “Time Interval for Checking Deadlock
(dlchktime)” on page 341

300 Administration Guide: Performance

Table 19. Configurable Database Configuration Parameters (continued)

Parameter Performance Impact Additional Information

dl_expint None “Data Links Access Token Expiry Interval
(dl_expint)” on page 394

dl_num_copies None “Data Links Number of Copies (dl_num_copies)”
on page 395

dl_time_drop None “Data Links Time After Drop (dl_time_drop)” on
page 395

dl_token Low “Data Links Token Algorithm (dl_token)” on
page 395

dl_upper None “Data Links Token in Upper Case (dl_upper)” on
page 396

estore_seg_sz Medium “Extended Storage Memory Segment Size
(estore_seg_sz)” on page 351

indexrec Medium “Index Re-creation Time (indexrec)” on page 381

indexsort Low (see 302) “Index Sort Flag (indexsort)” on page 348

locklist High when it affects
escalation

“Maximum Storage for Lock List (locklist)” on
page 314

locktimeout Medium “Lock Timeout (locktimeout)” on page 344

logbufsz High “Log Buffer Size (logbufsz)” on page 310

logfilsiz Medium “Size of Log Files (logfilsiz)” on page 368

logprimary Medium “Number of Primary Log Files (logprimary)” on
page 370

logretain Low “Log Retain Enable (logretain)” on page 378

logsecond Medium “Number of Secondary Log Files (logsecond)” on
page 372

maxappls Medium “Maximum Number of Active Applications
(maxappls)” on page 353

maxfilop Medium “Maximum Database Files Open per Application
(maxfilop)” on page 355

maxlocks High when it affects
escalation

“Maximum Percent of Lock List Before Escalation
(maxlocks)” on page 342

mincommit High “Number of Commits to Group (mincommit)” on
page 375

newlogpath Low “Change the Database Log Path (newlogpath)” on
page 373

num_db_backups None “Number of Database Backups
(num_db_backups)” on page 383

Chapter 12. Configuring DB2 301

Table 19. Configurable Database Configuration Parameters (continued)

Parameter Performance Impact Additional Information

num_estore_segs Medium “Number of Extended Storage Memory Segments
(num_estore_segs)” on page 352

num_freqvalues Low “Number of Frequent Values Retained
(num_freqvalues)” on page 402

num_iocleaners High “Number of Asynchronous Page Cleaners
(num_iocleaners)” on page 346

num_ioservers High “Number of I/O Servers (num_ioservers)” on
page 348

num_quantiles Low “Number of Quantiles for Columns
(num_quantiles)” on page 403

pckcachesz High “Package Cache Size (pckcachesz)” on page 316

rec_his_retentn None “Recovery History Retention Period
(rec_his_retentn)” on page 383

seqdetect High “Sequential Detection Flag (seqdetect)” on
page 349

softmax Medium “Recovery Range and Soft Checkpoint Interval
(softmax)” on page 376

sortheap High “Sort Heap Size (sortheap)” on page 320

stat_heap_sz Low “Statistics Heap Size (stat_heap_sz)” on page 324

stmtheap Medium “Statement Heap Size (stmtheap)” on page 322

userexit Low “User Exit Enable (userexit)” on page 379

util_heap_sz Low “Utility Heap Size (util_heap_sz)” on page 311

Note: Changing the indexsort parameter to a value other than the default can have a negative impact
on the performance of creating indexes. You should always try to use the default for this parameter.

Table 20. Informational Database Configuration Parameters

Parameter Additional Information

backup_pending “Backup Pending Indicator (backup_pending)” on
page 397

codepage “Code Page for the Database (codepage)” on
page 392

codeset “Codeset for the Database (codeset)” on page 392

collate_info “Collating Information (collate_info)” on page 393

country “Country code for the Database (country)” on
page 392

database_consistent “Database is Consistent (database_consistent)” on
page 397

302 Administration Guide: Performance

Table 20. Informational Database Configuration Parameters (continued)

Parameter Additional Information

database_level “Database Release Level (database_level)” on
page 391

log_retain_status “Log Retain Status Indicator (log_retain_status)”
on page 398

loghead “First Active Log File (loghead)” on page 374

logpath “Location of Log Files (logpath)” on page 374

multipage_alloc “MultiPage File Allocation Enabled
(multipage_alloc)” on page 398

numsegs “Default Number of SMS Containers (numsegs)”
on page 350

release “Configuration File Release Level (release)” on
page 391

restore_pending “Restore Pending (restore_pending)” on page 398

rollfwd_pending “Roll Forward Pending Indicator
(rollfwd_pending)” on page 397

territory “Territory for the Database (territory)” on page 392

user_exit_status “User Exit Status Indicator (user_exit_status)” on
page 398

Parameter Details by Function

This following sections provide additional details to assist in understanding
and tuning the different configuration parameters. This discussion of the
individual parameters is organized based on their function or purpose:
v “Capacity Management” on page 304

v “Logging and Recovery” on page 368

v “Database Management” on page 390

v “Communications” on page 404

v “Parallel” on page 417

v “Instance Management” on page 425.

The discussion of each parameter includes the following information:

Configuration Type Indicates which configuration file contains the
setting for the parameter:

Chapter 12. Configuring DB2 303

v Database manager (which affects an
instance of the database manager and all
databases defined within that instance)

v Database (which affects a specific database)

Parameter Type Indicates whether or not you can change the
parameter value:
v Configurable

A range of values are possible and the
parameter may need to be tuned based on
the database administrator’s knowledge of
the applications and/or from benchmarking
experience.

v Informational

These parameters are changed only by the
database manager itself and will contain
information such as the release of DB2 that
a database was created under or an
indication that a required backup is
pending.

Capacity Management

There are a number of configuration parameters at both the database and
database manager levels that can impact the throughput on your system.
These parameters are categorized in the following groups:
v “Database Shared Memory” on page 305

v “Application Shared Memory” on page 318

v “Agent Private Memory” on page 319

v “Agent/Application Communication Memory” on page 331

v “Database Manager Instance Memory” on page 336

v “Locks” on page 341

v “I/O and Storage” on page 345

v “Agents” on page 352

v “Database Application Remote Interface (DARI)” on page 364.

For an introduction to DB2’s memory management, see “How DB2 Uses
Memory” on page 205.

304 Administration Guide: Performance

Database Shared Memory

The following parameters affect the database global memory allocated on your
system:
v “Buffer Pool Size (buffpage)”.

v “Database Heap (dbheap)” on page 308.

v “Catalog Cache Size (catalogcache_sz)” on page 309.

v “Log Buffer Size (logbufsz)” on page 310.

v “Utility Heap Size (util_heap_sz)” on page 311.

v “Default Backup Buffer Size (backbufsz)” on page 312.

v “Default Restore Buffer Size (restbufsz)” on page 313.

v “Maximum Storage for Lock List (locklist)” on page 314.

v “Package Cache Size (pckcachesz)” on page 316.

v “Sort Heap Size (sortheap)” on page 320. This parameter only affects
database global memory if you have shared sorts.

See “How DB2 Uses Memory” on page 205 for information about how
database global memory relates to the rest of the memory allocated by the
database manager.

Buffer Pool Size (buffpage)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 1000 [2*maxappls - 524 288]

OS/2 and NT 250 [2*maxappls - 524 288]

Unit of Measure Pages (4 KB)

When Allocated When the first application connects to the
database

When Freed When last application disconnects from the
database

Related Parameters

v “Changed Pages Threshold
(chngpgs_thresh)” on page 345

v “Database Heap (dbheap)” on page 308

Chapter 12. Configuring DB2 305

v “Number of Asynchronous Page Cleaners
(num_iocleaners)” on page 346

Each database has at least one buffer pool (IBMDEFAULTBP, which is created
when the database is created), and can have more. All buffer pools reside in
global memory, which is available to all applications using the database. The
memory is allocated on the machine where the database is located. If the
buffer pools are large enough to keep the required data in memory, less disk
activity will occur. Conversely, if the buffer pools are not large enough, the
overall performance of the database can be severely curtailed and the
database manager can become I/O-bound as a result of a high amount of disk
activity (I/O) required to process the data your application requires.

The buffpage parameter controls the size of a buffer pool when the CREATE
BUFFERPOOL or ALTER BUFFERPOOL statement was run with NPAGES -1;
otherwise, the buffpage parameter is ignored and the buffer pool will be
created with the number of pages specified by the NPAGES parameter.

To determine whether the buffpage parameter is active for a buffer pool, do a:
SELECT * from SYSCAT.BUFFERPOOLS.

Each buffer pool that has an NPAGES value of -1 uses buffpage.

Notes:

1. When a database is created in DB2 Version 5, one buffer pool
(IBMDEFAULTBP) is automatically created, and its NPAGES is set to 1 000
for UNIX-based platforms, and 250 for all other platforms.

2. When a database is migrated to DB2 Version 5, one buffer pool
(IBMDEFAULTBP) is automatically created, and its NPAGES is set to -1.

There is a trade-off between the buffer pool size and the memory allocations
of other system users. Memory requirements of database servers are so
important on multi-user high transaction rate servers, that database servers
and file or communication servers are often separated and reside on different
machines.

If your queries access nicknames, consider increasing the buffer pool size
when:
v The optimizer decides that most or all operations are completed locally.

When a query is processed, the optimizer will usually push down
operations to the data source where possible. As an example, a GROUP BY
operator is usually evaluated at the data source. It is possible, however, that
materializing the table at DB2 and performing an operation locally is the
least cost route. This situation could occur if the DB2 server workstation is
more powerful than the data source workstation.

306 Administration Guide: Performance

v Sort operations must be completed locally. Queries containing nicknames
are sorted according to the DB2 collating sequence. If a data source does
not have the same collating sequence, all sort operations are performed
locally.

All buffer pools are allocated when the first application connects to the
database, or when the database is explicitly activated. As an application
requests data out of the database, pages containing that data are transferred to
one of the buffer pools from disk. (Note that database data is stored in pages
within the tables on the disk.) Pages are not written back to disk until the
page is changed and one of the following occurs:
v All applications disconnect from the database
v The database is explicitly deactivated
v The database quiesces (that is, all connected applications have committed)
v Its space is required for another page that needs to be read into the buffer

pool
v A page cleaner is available (num_iocleaners) and is activated by the database

manager.

Recommendations:

v Instead of using the buffpage configuration parameter, you can use the
CREATE BUFFERPOOL and ALTER BUFFERPOOL SQL statements to
create and change buffer pools and their sizes.

v The size of the buffer pool is used by the optimizer in determining access
plans. You should consider rebinding applications (using the REBIND
PACKAGE command) after changing this parameter.

v Because the sizes of all the buffer pools can have a major impact on
performance, you should consider the following factors to ensure that
excessive page swapping does not occur:
– The amount of installed memory on your machine.
– The memory required by other applications running concurrently with

the database manager on the same machine.

Page swapping results when there is not enough memory to hold the page
that is being accessed. The result is that the page is written (“swapped”) to
temporary disk storage to make room for the other page. When the page on
the temporary disk storage is needed, it is “swapped back” into memory.

v You may wish to allocate as much as 75% of the machine’s memory to the
database buffer pools when you have the following:
– Multiple users
– A machine used only as a database server
– A large amount of repeated access to the same data and index pages

Chapter 12. Configuring DB2 307

– One database on the machine.
v For every buffer pool page allocated, some space is used in the database

heap for internal control structures.
If the total size of the buffer pool (or buffer pools) is increased, you may
also need to increase dbheap.

v If the data source collating sequence matches the DB2 collating sequence,
ensure that the server option collating_sequence is set to indicate so.

You may use the database system monitor to calculate the buffer pool hit
ratio, which can help you tune your buffer pools. See the System Monitor Guide
and Reference.

Database Heap (dbheap)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 1200 [32 – 60 000]

OS/2 and NT Database Server with local and
remote clients 600 [32 – 60 000]

OS/2 and NT Database Server with local
clients 300 [32 – 60 000]

Unit of Measure Pages (4 KB)

When Allocated First connection to the database

When Freed When last application disconnects from the
database

Related Parameters

v “Catalog Cache Size (catalogcache_sz)” on
page 309

v “Log Buffer Size (logbufsz)” on page 310

There is one database heap per database, and the database manager uses it on
behalf of all applications connected to the database. It contains control block
information for tables, indexes, table spaces, and buffer pools. It also contains
space for the event monitor buffers, the log buffer, (logbufsz) and the catalog
cache (catalogcache_sz). Therefore, the size of the heap will be dependent on
the number of control blocks stored in the heap at a given time. The control
block information is kept in the heap until all applications disconnect from the
database.

308 Administration Guide: Performance

The minimum amount the database manager needs to get started is allocated
at the first connection. The data area is expanded as needed up to the
maximum specified by dbheap.

Recommendation: This value will need to be increased when an application
receives an error indicating that there is not enough storage available in the
database heap to process the statement.

You may use the database system monitor to track the highest amount of
memory that was used for the database heap. See the db_heap_top (maximum
database heap allocated) monitor element description in the System Monitor Guide
and Reference for more information.

When setting this parameter, you should consider:

v The value of logbufsz, because the log buffer is allocated from the database
heap.

v The value of catalogcache_sz, because the catalog cache is allocated from the
database heap.

Catalog Cache Size (catalogcache_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 64 [1 – dbheap]

OS/2 and NT Database Server with local and
remote clients 32 [1 – dbheap]

OS/2 and NT Database Server with local
clients 16 [1 – dbheap]

Unit of Measure Pages (4 KB)

Related Parameters

v “Database Heap (dbheap)” on page 308

v “Log Buffer Size (logbufsz)” on page 310

This parameter indicates the maximum amount of space that the catalog cache
can use from the database heap (dbheap). The catalog cache is used to store
table descriptor information that is used when a table, view or alias is
referenced during the compilation of an SQL statement.

Use of this cache can help improve performance of binding SQL statements
(including dynamic SQL), if the same tables, views, or aliases have been
referenced in previous statements.

Chapter 12. Configuring DB2 309

Running any DDL statements against a table will purge that table’s entry in
the catalog cache. Otherwise a table entry is kept in the cache until space is
needed for a different table, but it will not be removed from the cache until
any units of work referencing that table have completed.

Recommendation: Start with the default value and tune it by using the
database system monitor.

See the System Monitor Guide and Reference for information about the following
monitor elements:

v cat_cache_lookups (catalog cache lookups)
v cat_cache_inserts (catalog cache inserts)
v cat_cache_overflows (catalog cache overflows)
v cat_cache_heap_full (catalog cache heap full)

These database system monitor elements can help you determine whether you
should adjust this configuration parameter. When tuning this parameter, you
should increase it in small increments, for example, two pages at a time.

Note: The catalog cache only exists at the catalog node in a multinode
environment.

In general, more cache space is required if a unit of work contains several
dynamic SQL statements or if you are binding packages that contain a lot of
static SQL statements.

When you set the size of the catalog cache, also consider the size of the log
files (logbufsz), because both catalogcache_sz and logbufsz are allocated from the
database heap (dbheap).

Log Buffer Size (logbufsz)

Configuration Type Database

Parameter Type Configurable

Default [Range] 8 [4 – 512]

Unit of Measure Pages (4 KB)

Related Parameters

v “Catalog Cache Size (catalogcache_sz)” on
page 309

v “Database Heap (dbheap)” on page 308

v “Number of Commits to Group
(mincommit)” on page 375

310 Administration Guide: Performance

This parameter allows you to specify the amount of the database heap
(defined by the dbheap parameter) to use as a buffer for log records before
writing these records to disk. The log records are written to disk when one of
the following occurs:

v A transaction commits or a group of transactions commit, as defined by the
mincommit configuration parameter

v The log buffer is full
v As a result of some other internal database manager event.

This parameter must also be less than or equal to the dbheap parameter.
Buffering the log records will result in more efficient logging file I/O because
the log records will be written to disk less frequently and more log records
will be written at each time.

Recommendation: Increase the size of this buffer area if there is considerable
read activity on a dedicated log disk, or there is high disk utilization. When
increasing the value of this parameter, you should also consider the dbheap
parameter since the log buffer area uses space controlled by the dbheap
parameter.

You may use the database system monitor to determine how much of the log
buffer space is used for a particular transaction (or unit of work).

For more information see the log_space_used (unit of work log space used)
monitor element description in the System Monitor Guide and Reference.

When you set the log buffer size, also consider the size of the catalog cache
(catalogcache_sz), because both logbufsz_sz and catalogcache_sz are allocated from
the database heap (dbheap).

Utility Heap Size (util_heap_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range] 5000 [16 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated As required by the database manager utilities

When Freed When the utility no longer needs the memory

Related Parameters

v “Default Backup Buffer Size (backbufsz)” on
page 312

Chapter 12. Configuring DB2 311

v “Default Restore Buffer Size (restbufsz)” on
page 313

This parameter indicates the maximum amount of memory that can be used
simultaneously by the BACKUP, RESTORE and LOAD and load recovery
utilities.

Recommendation: Use the default value unless your utilities run out of space,
in which case you should increase this value. If memory on your system is
constrained, you may wish to lower the value of this parameter to limit the
memory used by the database utilities. If the parameter is set too low, you
may not be able to concurrently run utilities. You need to set this parameter
large enough to accommodate all of the buffers that you want to allocate for
the concurrent utilities.

Default Backup Buffer Size (backbufsz)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 1024 [8 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated When the backup utility is called

When Freed When the backup utility completes its
processing

Related Parameters

v “Default Restore Buffer Size (restbufsz)” on
page 313

v “Utility Heap Size (util_heap_sz)” on
page 311

This parameter specifies the size of the buffer used when backing up the
database if the buffer size is not explicitly specified when calling the backup
utility. For more information about the backup utility, refer to the Command
Reference.

312 Administration Guide: Performance

When backing up a database, the data is first copied to an internal buffer.
Data is then written from this buffer to the backup media when the buffer is
full.

Tuning this buffer size can help improve the performance of the backup utility
as well as minimize the impact on the performance of other concurrent
database operations.

Default Restore Buffer Size (restbufsz)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 1024 [16 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated When the restore utility is called

When Freed When the restore utility completes its
processing

Related Parameters

v “Default Backup Buffer Size (backbufsz)” on
page 312

v “Utility Heap Size (util_heap_sz)” on
page 311

This parameter specifies the size of the buffer used when restoring the
database if a buffer size is not explicitly specified when calling the restore
utility. For more information about the restore utility, refer to the Command
Reference.

When restoring a database, the data is first copied from the backup media to
an internal buffer. Data is then written from this buffer to the target database
media when the buffer is full.

Chapter 12. Configuring DB2 313

Tuning this buffer size can help improve the performance of the restore
database utility as well as minimize the impact on the performance of other
concurrent database operations.

Maximum Storage for Lock List (locklist)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 100 [4 – 60 000]

OS/2 and NT Database Server with local and
remote clients 50 [4 – 60 000]

OS/2 and NT Database Server with local
clients 25 [4 – 60 000]

Unit of Measure Pages (4 KB)

When Allocated When the first application connects to the
database

When Freed When last application disconnects from the
database

Related Parameters

v “Maximum Percent of Lock List Before
Escalation (maxlocks)” on page 342

v “Maximum Number of Active Applications
(maxappls)” on page 353

This parameter indicates the amount of storage that is allocated to the lock
list. There is one lock list per database and it contains the locks held by all
applications concurrently connected to the database. Locking is the
mechanism that the database manager uses to control concurrent access to
data in the database by multiple applications. Both rows and tables can be
locked.

Each lock requires 32 or 64 bytes of the lock list, depending on whether other
locks are held on the object:

v 64 bytes are required to hold a lock on an object that has no other locks
held on it

v 32 bytes are required to record a lock on an object that has an existing lock
held on it.

314 Administration Guide: Performance

When the percentage of the lock list used by one application reaches maxlocks,
the database manager will perform lock escalation, from row to table, for the
locks held by the application (described below). Although the escalation
process itself does not take much time, locking entire tables (versus individual
rows) decreases concurrency, and overall database performance may decrease
for subsequent accesses against the affected tables. Suggestions of how to
control the size of the lock list are:
v Perform frequent COMMITs to release locks.
v When performing many updates, lock the entire table before updating

(using the SQL LOCK TABLE statement). This will use only one lock, keeps
others from interfering with the updates, but does reduce concurrency of
the data.
You can also use the LOCKSIZE parameter of the ALTER TABLE statement
to control how locking is done for a specific table. For details, refer to the
SQL Reference.
Use of the Repeatable Read isolation level may result in an automatic table
lock. For more information on isolation levels, see “Chapter 2. Application
Considerations” on page 13.

v Use the Cursor Stability isolation level when possible to decrease the
number of share locks held. If application integrity requirements are not
compromised use Uncommitted Read instead of Cursor Stability to further
decrease the amount of locking.

Once the lock list is full, performance can degrade since lock escalation will
generate more table locks and fewer row locks, thus reducing concurrency on
shared objects in the database. Additionally there may be more deadlocks
between applications (since they are all waiting on a limited number of table
locks), which will result in transactions being rolled back. Your application
will receive an SQLCODE of -912 when the maximum number of lock
requests has been reached for the database.

Recommendation: If lock escalations are causing performance concerns you
may need to increase the value of this parameter or the maxlocks parameter.
You may use the database system monitor to determine if lock escalations are
occurring.

For more information see the lock_escals (lock escalations) monitor element
description in the System Monitor Guide and Reference.

The following steps may help in determining the number of pages required
for your lock list:
1. Calculate a lower bound for the size of your lock list:

(512 * 32 * maxappls) / 4096

Chapter 12. Configuring DB2 315

where 512 is an estimate of the average number of locks per application
and 32 is the number of bytes required for each lock against an object that
has an existing lock.

2. Calculate an upper bound for the size of your lock list:
(512 * 64 * maxappls) / 4096

where 64 is the number of bytes required for the first lock against an
object.

3. Estimate the amount of concurrency you will have against your data and
based on your expectations, choose an initial value for locklist that falls
between the upper and lower bounds that you have calculated.

4. Using the database system monitor, as described below, tune the value of
this parameter.

You may use the database system monitor to determine the maximum
number of locks held by a given transaction.

For more information see the locks_held_top (maximum number of locks held)
monitor element description in the System Monitor Guide and Reference.

This information can help you validate or adjust the estimated number of
locks per application. In order to perform this validation, you will have to
sample several applications, noting that the monitor information is provided
at a transaction level, not an application level.

You may also want to increase locklist if maxappls is increased, or if the
applications being run perform infrequent commits.

You should consider rebinding applications (using the REBIND PACKAGE
command) after changing this parameter.

For more information on application performance and influencing query
optimization, see “Part 2. Tuning Application Performance” on page 11.

Package Cache Size (pckcachesz)

Configuration Type Database

Parameter Type Configurable

Default [Range] -1 [-1, 32 – 64 000]

Unit of Measure Pages (4 KB)

When Allocated When the database is initialized

When Freed When the database is shutdown

316 Administration Guide: Performance

This parameter is allocated out of the database global memory, and is used for
caching static and dynamic SQL statements on a database. In a partitioned
databasesystem, there is one package cache for each database partition.

Caching packages allows the database manager to reduce its internal overhead
by eliminating the need to access the system catalogs when reloading a
package; or, in the case of dynamic SQL, eliminating the need for compilation.
Sections are kept in the package cache until one of the following occurs:
v The database is shut down
v The package or dynamic SQL statement is invalidated
v The cache runs out of space.

This caching of the section for a static or dynamic SQL statement can improve
performance especially when the same statement is used multiple times by
applications connected to a database. This is particularly important in a
transaction processing application.

By taking the default (-1) in a server or partitioned database environment, the
value used to calculate the page allocation is eight times the value specified
for the maxappls configuration parameter. The exception to this occurs if eight
times maxappls is less than 32. In this situation, the default value of -1 will set
pckcachesz to 32.

Recommendation: When tuning this parameter, you should consider whether
the extra memory being reserved for the package cache might be more
effective if it was allocated for another purpose, such as the buffer pool. For
this reason, you should use benchmarking techniques when tuning this
parameter.

Tuning this parameter is particularly important when several sections are used
initially and then only a few are run repeatedly. If the cache is too large,
memory is wasted holding copies of the initial sections.

See the System Monitor Guide and Reference for information about the following
monitor elements:
v pkg_cache_lookups (package cache lookups)
v pkg_cache_inserts (package cache inserts)
v pkg_cache_size_top (largest package cache size)
v pkg_cache_num_overflows (number of package cache overflows)

These database system monitor elements can help you determine whether you
should adjust this configuration parameter.

Chapter 12. Configuring DB2 317

Note: The package cache is a working cache, so you cannot set this parameter
to zero. There must be sufficient memory allocated in this cache to hold
all sections of the SQL statements currently being executed. If there is
more space allocated than currently needed, then sections are cached.
These sections can simply be executed the next time they are needed
without having to load or compile them.

The limit specified by the pckcachesz parameter is a soft limit. This limit
may be exceeded, if required, if memory is still available in the
database shared set. You can use the pkg_cache_size_top monitor element
to determine the largest that the package cache has grown, and the
pkg_cache_num_overflows monitor element to determine how many times
the limit specified by the pckcachesz parameter has been exceeded.

Application Shared Memory

The following parameter specifies the work area that is used by all agents
(both coordinating and subagents) that work for an application:
v “Application Control Heap Size (app_ctl_heap_sz)”

Application Control Heap Size (app_ctl_heap_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range]

Database Server with local and remote
clients 128 [1–64 000]

Database Server with local clients
64 [1–64 000] (for non-UNIX
platforms)

128 [1–64 000] (for
UNIX-based platforms)

Partitioned Database Server with local and
remote clients 256 [1–64 000]

Unit of Measure Pages (4 KB)

When Allocated When an application starts

When Freed When an application completes

Related Parameters “Enable Intra-Partition Parallelism
(intra_parallel)” on page 424

318 Administration Guide: Performance

This parameter determines the maximum size, in 4 KB pages, for the
application control shared memory. Application control heaps are allocated
from this shared memory.

One application control heap is allocated for each application at the database
where the application is active (or, in the case of a partitioned database
system, at each database partitionwhere the application is active). The heap is
allocated during connect processing by the first agent to receive a request for
the application at the database (or database partition). The heap is required to
share information between agents working on behalf of the same application
(in a partitioned database environment, the sharing occurs at the database
partition level: sharing does not occur across database partitions).

Notes:

1. In a partitioned database environment, this heap is used to store copies of
the executing sections of SQL statements for agents and subagents.
Symmetric multiprocessor agents (SMP) subagents, however, use
applheapsz, as do agents in all other environments.

2. Allocation only occurs for other databases that have the intra_parallel
parameter set on, and the CURRENT DEGREE special register set to a
value greater than one (1). For more information about the CURRENT
DEGREE special register, refer to the SQL Reference.

Recommendation: Initially, start with the default value. You may have to set
the value higher if you are running complex applications, or if you have a
system that contains a large number of database partitions.

Agent Private Memory

The following parameters affect the amount of memory used for each
database agent:
v “Sort Heap Size (sortheap)” on page 320.

v “Sort Heap Threshold (sheapthres)” on page 320.

v “Statement Heap Size (stmtheap)” on page 322.

v “Application Heap Size (applheapsz)” on page 323.

v “Statistics Heap Size (stat_heap_sz)” on page 324.

v “Query Heap Size (query_heap_sz)” on page 324.

v “DRDA Heap Size (drda_heap_sz)” on page 325.

v “UDF Shared Memory Set Size (udf_mem_sz)” on page 326.

v “Agent Stack Size (agent_stack_sz)” on page 328.

v “Minimum Committed Private Memory (min_priv_mem)” on page 329.

Chapter 12. Configuring DB2 319

v “Private Memory Threshold (priv_mem_thresh)” on page 330.

v “Maximum Java Interpreter Heap Size (java_heap_sz)” on page 340. On
UNIX-based platforms, java_heap_sz is allocated per agent.

See “How DB2 Uses Memory” on page 205 for information about how the
private agent memory relates to the rest of the memory allocated by the
database manager.

Sort Heap Size (sortheap)

Configuration Type Database

Parameter Type Configurable

Default [Range] 256 [16 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated As needed to perform sorts

When Freed When sorting is complete

Related Parameters “Sort Heap Threshold (sheapthres)”

This parameter defines the maximum number of private memory pages to be
used for private sorts, or the maximum number of shared memory pages to
be used for shared sorts. If the sort is a private sort, then this parameter
affects agent private memory. If the sort is a shared sort, then this parameter
affects the database shared memory. Each sort has a separate sort heap that is
allocated as needed, by the database manager. This sort heap is the area
where data is sorted. If directed by the optimizer, a smaller sort heap than the
one specified by this parameter is allocated using information provided by the
optimizer.

Recommendation:

v Appropriate indexes can minimize the use of the sort heap.
v Increase the size of this parameter when frequent large sorts are required.
v When increasing the value of this parameter, you should examine whether

the sheapthres parameter in the database manager configuration file also
needs to be adjusted.

v The sort heap size is used by the optimizer in determining access paths.
You should consider rebinding applications (using the REBIND PACKAGE
command) after changing this parameter.

Sort Heap Threshold (sheapthres)

Configuration Type Database manager

320 Administration Guide: Performance

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range]

UNIX 20 000 [250 – 2 097 152]

OS/2 and NT 10 000 [250 – 2 097 152]

Unit of Measure Pages (4 KB)

Related Parameters “Sort Heap Size (sortheap)” on page 320

Private and shared sorts use memory from two different memory sources. The
size of the shared sort memory area is statically predetermined (and not
preallocated) at the time of the first connection to a database based on the
value of sheapthres. The size of the private sort memory area is unrestricted.

The sheapthres parameter is used differently for private and shared sorts:

v For private sorts, this parameter is an instance-wide soft limit on the total
amount of memory that can be consumed by private sorts at any given
time. When the total private-sort memory consumption for an instance
reaches this limit, the memory allocated for additional incoming
private-sort requests will be considerably reduced.

v For shared sorts, this parameter is a database-wide hard limit on the total
amount of memory consumed by shared sorts at any given time. When this
limit is reached, no further shared-sort memory requests will be allowed
(until the total shared-sort memory consumption falls below the limit
specified by sheapthres).

Examples of those operations that use the sort heap include: hash joins and
operations where the table is in memory.

Explicit definition of the threshold prevents the database manager from using
excessive amounts of memory for large numbers of sorts.

Recommendation: Ideally, you should set this parameter to a reasonable
multiple of the largest sortheap parameter you have in your database manager
instance. This parameter should be at least two times the largest sortheap
defined for any database within the instance.

Chapter 12. Configuring DB2 321

If you are doing private sorts and your system is not memory constrained, an
ideal value for this parameter can be calculated using the following steps:
1. Calculate the typical sort heap usage for each database:

(typical number of concurrent agents running against the database)
* (sortheap, as defined for that database)

2. Calculate the sum of the above results, which provides the total sort heap
that could be used under typical circumstances for all databases within the
instance.

For information about performing sorts in an SMP environment, see “Parallel
Sort Strategies” on page 160.

You should use benchmarking techniques to tune this parameter to find the
proper balance between sort performance and memory usage. See
“Chapter 11. Benchmark Testing” on page 275 for more information. Also see
“Sorting” on page 226 for more information on sorting.

You can use the database system monitor to track the sort activity.

For more information see the following monitor element description in the
System Monitor Guide and Reference:

v post_threshold_sorts (post threshold sorts)

Statement Heap Size (stmtheap)

Configuration Type Database

Parameter Type Configurable

Default [Range] 2048 [128 – 60 000]

Unit of Measure Pages (4 KB)

When Allocated For each statement during precompiling or
binding

When Freed When precompiling or binding of each
statement is complete

The statement heap is used as a work space for the SQL compiler during
compilation of an SQL statement. This parameter specifies the size of this
work space.

This area does not stay permanently allocated, but is allocated and released
for every SQL statement handled. Note that for dynamic SQL statements, this
work area will be used during execution of your program; whereas, for static
SQL statements, it is used during the bind process but not during program
execution.

322 Administration Guide: Performance

Recommendation: In most cases the default value of this parameter will be
acceptable. If you have very large SQL statements and the database manager
issues an error (that the statement is too complex) when it attempts to
optimize a statement, you should increase the value of this parameter in
regular increments (such as 256 or 1024) until the error situation is resolved.

Application Heap Size (applheapsz)

Configuration Type Database

Parameter Type Configurable

Default [Range] 128 [16 – 60 000]

64 [16 – 60 000] (multipartition)

Unit of Measure Pages (4 KB)

When Allocated When an agent is initialized to do work for an
application

When Freed When an agent completes the work to be done
for an application

Related Parameters “Application Control Heap Size
(app_ctl_heap_sz)” on page 318

This parameter defines the number of private memory pages available to be
used by the database manager on behalf of a specific agent or subagent.

The heap is allocated when an agent or subagent is initialized for an
application. The amount allocated will be the minimum amount needed to
process the request given to the agent or subagent. As the agent or subagent
requires more heap space to process larger SQL statements, the database
manager will allocate memory as needed, up to the maximum specified by
this parameter.

Note: In a partitioned database environment, the application control heap
(app_ctl_heap_sz) is used to store copies of the executing sections of SQL
statements for agents and subagents. SMP subagents, however, use
applheapsz, as do agents in all other environments.

Recommendation: Increase the value of this parameter if your applications
receive an error indicating that there is not enough storage in the application
heap.

The application heap (applheapsz) is allocated out of agent private memory.

Chapter 12. Configuring DB2 323

Statistics Heap Size (stat_heap_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range] 4384 [1096 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated When the RUNSTATS utility is started

When Freed When the RUNSTATS utility is completed

Related Parameters

v “Number of Frequent Values Retained
(num_freqvalues)” on page 402

v “Number of Quantiles for Columns
(num_quantiles)” on page 403

This parameter indicates the maximum size of the heap used in collecting
statistics using the RUNSTATS command.

Recommendation: The default value is appropriate when no distribution
statistics are collected or when distribution statistics are only being collected
for relatively narrow tables. The minimum value is not recommended when
distribution statistics are being gathered, as only tables containing 1 or 2
columns will fit in the heap.

You should adjust this parameter based on the number of columns for which
statistics are being collected. Narrow tables, with relatively few columns,
require less memory for distribution statistics to be gathered. Wide tables,
with many columns, require significantly more memory. If you are gathering
distribution statistics for tables which are very wide and require a large
statistics heap, you may wish to collect the statistics during a period of low
system activity so you do not interfere with the memory requirements of
other users.

Query Heap Size (query_heap_sz)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

324 Administration Guide: Performance

Parameter Type Configurable

Default [Range] 1000 [2 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated When an application (either local or remote)
connects to the database

When Freed When the application disconnects from the
database, or detaches from the instance

Related Parameters “Application Support Layer Heap Size
(aslheapsz)” on page 332

This parameter specifies the maximum amount of memory that can be
allocated for the query heap. A query heap is used to store each query in the
agent’s private memory. The information for each query consists of the input
and output SQLDA, the statement text, the SQLCA, the package name,
creator, section number, and consistency token. This parameter is provided to
ensure that an application does not consume unnecessarily large amounts of
virtual memory within an agent.

The query heap is also used as the source of memory for the memory
allocated for blocking cursors. This memory consists of a cursor control block
and a fully resolved output SQLDA.

The initial query heap allocated will be the same size as the application
support layer heap, as specified by the aslheapsz parameter. The query heap
size must be greater than or equal to two (2), and must be greater than or
equal to the aslheapsz parameter. If this query heap is not large enough to
handle a given request, it will be reallocated to the size required by the
request (not exceeding query_heap_sz). If this new query heap is more than 1.5
times larger than aslheapsz, the query heap will be reallocated to the size of
aslheapsz when the query ends.

Recommendation: In most cases the default value will be sufficient. As a
minimum, you should set query_heap_sz to a value at least five times larger
than aslheapsz. This will allow for queries larger than aslheapsz and provide
additional memory for three or four blocking cursors to be open at a given
time.

If you have very large LOBs, you may need to increase the value of this
parameter so the query heap will be large enough to accommodate those
LOBs.

DRDA Heap Size (drda_heap_sz)

Configuration Type Database manager

Chapter 12. Configuring DB2 325

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 128 [16 – 60 000]

Unit of Measure Pages (4 KB)

When Allocated

v The DRDA Application Server (AS) allocates
a DRDA heap each time a DRDA
Application Requester (AR) connects to a
DB2 database

v DB2 Connect allocates a DRDA heap each
time it connects to a DRDA AS.

When Freed When a DRDA AR disconnects from the
database

This parameter indicates the number of pages to allocate for the memory used
by DB2 Connect and the DRDA Application Server Support Feature. The
following items affect the amount of memory allocated out of this heap:
v The number of cursors opened by an application
v The number of input host variables
v The number of items in the select list
v The size of input and output data
v The length of SQL statements being bound or prepared.

Recommendation: Use the default value unless you receive an error code
indicating that you do not have enough DRDA heap.

UDF Shared Memory Set Size (udf_mem_sz)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients

326 Administration Guide: Performance

v Partitioned Database Server with local and
remote clients

v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 256 [128 – 60 000]

Unit of Measure Pages (4 KB)

When Allocated When a UDF starts

When Freed When a UDF completes

This parameter is common to both fenced and unfenced User Defined
Functions (UDFs). For a fenced UDF, it specifies the default allocation for
memory to be shared between the database process and the UDF. In a
single-partition database environment, there is only one shared memory set.
In a partitioned database environment, there is a shared memory set for each
database partition server, and all application agents and sub-agents running
on that server use the same shared memory set.

For an unfenced UDF it specifies the size of the private memory set. In a
single-partition database environment, the heap is allocated from private
memory. In a partitioned database environment, the heap is allocated from the
Application Global memory for each database partition server and all agents
and subagents running on behalf of the application on that database partition
server use the same shared memory set.

For both fenced and unfenced UDFs, this memory is used to pass data to a
UDF and back to a database.

If no UDFs are used in applications, the memory is not allocated. If both
fenced and unfenced UDFs are running in the same application, two memory
allocations result: one for fenced UDFs, and one for unfenced UDFs.

For more information about user-defined functions, refer to the Application
Development Guide and the SQL Reference.

Recommendation: The default setting should be adequate for all cases not
involving the passing of LOB data to a UDF. For cases which pass LOB data
to a UDF, you may need to increase the amount of memory allocated. You
should set the value of this parameter at least 2 pages larger than the size of
the input arguments and the result of the external function.

Note: The memory requirement for UDFs tends to be additive, so the number
of UDFs referenced in an application will affect the optimal setting for
this parameter.

Chapter 12. Configuring DB2 327

Agent Stack Size (agent_stack_sz)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range]

OS/2 64 [8 – 1000]

Windows NT 16 [8 – 1000]

Unit of Measure Pages (4 KB)

When Allocated When an agent is initialized to do work for an
application

When Freed When an agent completes the work to be done
for an application

The agent stack is the virtual memory that is allocated by DB2 for each agent.
This memory is committed when it is required to process an SQL statement.
You can use this parameter to optimize memory utilization of the server for a
given set of applications. More complex queries will use more stack space,
compared to the space used for simple queries.

This parameter does not apply to UNIX-based platforms.

Recommendation: In most cases you should be able to use the default stack
size. Only if your environment includes many highly complex queries should
you need to increase the value of this parameter. If the stack size is not large
enough to process your SQL statement, an error entry will be logged to the
db2diag.log file, and an SQL code will be issued. You need to increase
agent_stack_sz and restart the database instance.

You may be able to reduce the stack size in order to make more address space
available to other clients, if your environment matches the following:
v Contains only simple applications (for example light OLTP), in which there

are never complex queries
v Requires a relatively large number of concurrent clients (for example, more

than 100).

328 Administration Guide: Performance

The agent stack size and the number of concurrent clients are inversely
related: a larger stack size reduces the potential number of concurrent clients
that can be running. This occurs because address space is limited on the OS/2
and Windows NT platforms. For example, on OS/2, assume that you have 400
MB of address space (though the amount depends on the config.sys file). If
you set the value for agent_stack_sz to 1 MB, you will not be able to get more
than 400 agents. (In fact, because of other requirements for address space,
such as buffer pools, you will probably get far fewer agents.) This means that
if you have set maxagents to a larger value (for example, 5000), you will never
approach this limit.

Minimum Committed Private Memory (min_priv_mem)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 32 [32 – 112 000]

Unit of Measure Pages (4 KB)

When Allocated When the database manager is started

When Freed When the database manager is stopped

Related Parameters “Private Memory Threshold
(priv_mem_thresh)” on page 330

This parameter specifies the number of pages that the database server process
will reserve as private virtual memory, when a database manager instance is
started (db2start). If the server requires more private memory, it will try to
obtain more from the operating system when required.

This parameter does not apply to UNIX-based systems.

Recommendation: Use the default value.

You should only change the value of this parameter if you want to commit
more memory to the database server. This action will save on allocation time.
You should be careful, however, that you do not set that value too high, as it
can impact the performance of non-DB2 applications.

Chapter 12. Configuring DB2 329

Private Memory Threshold (priv_mem_thresh)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 1296 [-1; 32 – 112 000]

32 [-1; 32 – 112 000] on Satellite Database
Server with local clients

Unit of Measurement Pages (4 KB)

Related Parameters “Minimum Committed Private Memory
(min_priv_mem)” on page 329

This parameter is used to determine the amount of unused agent private
memory that will be kept allocated, ready to be used by new agents that are
started. It does not apply to UNIX-based platforms.

When an agent is terminated, instead of automatically deallocating all of the
memory that was used by that agent, the database manager will only
deallocate excess memory allocations, which is determined by the following
formula:

Private memory allocated -
(private memory used + priv_mem_thresh)

If this formula produces a negative result, no action will be taken.

The following table provides an example to illustrate when memory will be
allocated and deallocated. This example uses 100 as an arbitrary setting for
priv_mem_thresh.

330 Administration Guide: Performance

Description of Action Memory
Allocated

Memory Used

A number of agents are running and have
allocated memory.

1000 1000

A new agent is started and uses 100 pages of
memory.

1100 1100

A agent using 200 pages of memory terminates.
(Notice that 100 pages of memory is freed, while
100 pages is kept allocated for future possible
use.)

1000 900

A agent using 50 pages of memory terminates.
(Notice that 50 pages of memory is freed and 100
extra pages are still allocated, compared to what
is being used by the existing agents.)

950 850

A new agent is started and requires 150 pages of
memory. (100 of the 150 pages are already
allocated and the database manager only needs
to allocate 50 additional pages for this agent.)

1000 1000

A value of “-1”, will cause this parameter to use the value of the
min_priv_mem parameter.

Recommendation: When setting this parameter, you should consider the
client connection/disconnection patterns as well as the memory requirements
of other processes on the same machine.

If there is only a brief period during which many clients are concurrently
connected to the database, a high threshold will prevent unused memory from
being decommitted and made available to other processes. This case results in
poor memory management which can affect other processes which require
memory.

If the number of concurrent clients is more uniform and there are frequent
fluctuations in this number, a high threshold will help to ensure memory is
available for the client processes and reduce the overhead to allocate and
deallocate memory.

Agent/Application Communication Memory

The following parameters affect the amount of memory that is allocated to
allow data to be passed between your application and agent processes:
v “Application Support Layer Heap Size (aslheapsz)” on page 332

v “Client I/O Block Size (rqrioblk)” on page 333

Chapter 12. Configuring DB2 331

v “DOS Requester I/O Block Size (dos_rqrioblk)” on page 335

See “How DB2 Uses Memory” on page 205 for information about how this
agent/application shared memory relates to the rest of the memory allocated
by the database manager.

Application Support Layer Heap Size (aslheapsz)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 15 [1 – 524 288]

Unit of Measure Pages (4 KB)

When Allocated When the database manager agent process is
started for the local application

When Freed When the database manager agent process is
terminated

Related Parameters “Query Heap Size (query_heap_sz)” on
page 324

The application support layer heap represents a communication buffer
between the local application and its associated agent. This buffer is allocated
as shared memory by each database manager agent that is started.

If the request to the database manager, or its associated reply, do not fit into
the buffer they will be split into two or more send-and-receive pairs. The size
of this buffer should be set to handle the majority of requests using a single
send-and-receive pair. The size of the request is based on the storage required
to hold:

v The input SQLDA
v All of the associated data in the SQLVARs
v The output SQLDA
v Other fields which do not generally exceed 250 bytes.

332 Administration Guide: Performance

In addition to this communication buffer, this parameter is also used to
determine the I/O block size when a blocking cursor is opened. This memory
for blocked cursors is allocated out of the application’s private address space,
so you should determine the optimal amount of private memory to allocate
for each application program. If the database client cannot allocate space for a
blocking cursor out of an application’s private memory, a non-blocking cursor
will be opened.

The data sent from the local application is received by the database manager
into a set of contiguous memory allocated from the query heap. The aslheapsz
parameter is used to determine the initial size of the query heap (for both
local and remote clients). The maximum size of the query heap is defined by
the query_heap_sz parameter.

Recommendation: If your application’s requests are generally small and the
application is running on a memory constrained system, you may wish to
reduce the value of this parameter. If your queries are generally very large,
requiring more than one send and receive request, and your system is not
constrained by memory, you may wish to increase the value of this parameter.

Use the following formula to calculate the number of pages for aslheapsz:
aslheapsz >= (sizeof(input SQLDA)

+ sizeof(each input SQLVAR)
+ sizeof(output SQLDA)
+ 250) / 4096

You should also consider the effect of this parameter on the number and
potential size of blocking cursors. Large row blocks may yield better
performance if the number or size of rows being transferred is large (for
example, if the amount of data is greater than 4096 bytes). However, there is a
trade-off in that larger record blocks increase the size of the working set
memory for each connection.

Larger record blocks may also cause more fetch requests than are actually
required by the application. You can control the number of fetch requests
using the OPTIMIZE FOR clause on the SELECT statement in your
application. For more information about the OPTIMIZE FOR clause, see
“OPTIMIZE FOR n ROWS Clause” on page 45.

Client I/O Block Size (rqrioblk)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client

Chapter 12. Configuring DB2 333

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 32 767 [4096 – 65 535]

Unit of Measure Bytes

When Allocated

v When a remote client application issues a
connection request for a server database

v When a blocking cursor is opened,
additional blocks are opened at the client

When Freed

v When the remote application disconnects
from the server database

v When the blocking cursor is closed

Related Parameters “DOS Requester I/O Block Size
(dos_rqrioblk)” on page 335

This parameter specifies the size of the communication buffer between remote
applications and their database agents on the database server. When a
database client requests a connection to a remote database, this
communication buffer is allocated on the client. On the database server, a
communication buffer of 32767 bytes is initially allocated, until a connection is
established and the server can determine the value of rqrioblk at the client.
Once the server knows this value, it will reallocate its communication buffer if
the client’s buffer is not 32767 bytes.

In addition to this communication buffer, this parameter is also used to
determine the I/O block size at the database client when a blocking cursor is
opened. This memory for blocked cursors is allocated out of the application’s
private address space, so you should determine the optimal amount of private
memory to allocate for each application program. If the database client cannot
allocate space for a blocking cursor out of an application’s private memory, a
non-blocking cursor will be opened.

Recommendation: For non-blocking cursors, a reason for increasing the value
of this parameter would be if the data (for example, large object data) to be
transmitted by a single SQL statement is so large that the default value is
insufficient.

334 Administration Guide: Performance

You should also consider the effect of this parameter on the number and
potential size of blocking cursors. Large row blocks may yield better
performance if the number or size of rows being transferred is large (for
example, if the amount of data is greater than 4096 bytes). However, there is a
trade-off in that larger record blocks increase the size of the working set
memory for each connection.

Larger record blocks may also cause more fetch requests than are actually
required by the application. You can control the number of fetch requests
using the OPTIMIZE FOR clause on the SELECT statement in your
application. For more information on the OPTIMIZE FOR clause, see
“OPTIMIZE FOR n ROWS Clause” on page 45.

DOS Requester I/O Block Size (dos_rqrioblk)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 4096 [4096 – 65 535]

Unit of Measurement Bytes

When Allocated

v When a remote DOS or Windows 3.1 client
issues a connection request to a server
database

v When a blocking cursor is opened,
additional blocks are opened at the client

When Freed

v When the remote application disconnects
from the database

v When a blocking cursor is closed

Related Parameters “Client I/O Block Size (rqrioblk)” on page 333

This parameter specifies the size of the communication buffer between
DOS/Windows applications and their database agents on the database server.

Chapter 12. Configuring DB2 335

This parameter is similar to the rqrioblk parameter, except it allows you to set
a different value for blocks used with DOS/Windows clients. In a DB2
configuration file, you can set both the rqrioblk parameter (used for OS/2
clients) and the dos_rqrioblk parameter (used for DOS clients).

In addition to this communication buffer, this parameter is also used to
determine the I/O block size at the database client when a blocking cursor is
opened. This memory for blocked cursors is allocated out of the application’s
private address space, so you should determine the optimal amount of private
memory to allocate for each application program. If the database client cannot
allocate space for a blocking cursor out of an application’s private memory, a
non-blocking cursor will be opened.

Recommendation: For non-blocking cursors, a reason for increasing the value
of this parameter would be if the data (for example, large object data) to be
transmitted by a single SQL statement is so large that the default value is
insufficient.

You should also consider the effect of this parameter on the number and
potential size of blocking cursors. Large row blocks may yield better
performance if the number or size of rows being transferred is large (for
example, if the amount of data is greater than 4096 bytes). However, there is a
trade-off in that larger record blocks increase the size of the working set
memory for each connection.

Larger record blocks may also cause more fetch requests than are actually
required by the application. You can control the number of fetch requests
using the OPTIMIZE FOR clause on the SELECT statement in your
application. For more information on the OPTIMIZE FOR clause, see
“OPTIMIZE FOR n ROWS Clause” on page 45.

Database Manager Instance Memory

The following parameters affect memory that is allocated and used at an
instance level:
v “Database System Monitor Heap Size (mon_heap_sz)”

v “Directory Cache Support (dir_cache)” on page 338

v “Audit Buffer Size (audit_buf_sz)” on page 340

v “Maximum Java Interpreter Heap Size (java_heap_sz)” on page 340

Database System Monitor Heap Size (mon_heap_sz)

Configuration Type Database manager

Applies to

336 Administration Guide: Performance

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range]

UNIX 56 [0 – 60 000]

OS/2 and Windows NT Database Server with
local and remote clients and Satellite
Database Server with local clients

24 [0 – 60 000]

OS/2 and Windows NT Database Server with
local clients 12 [0 – 60 000]

Unit of Measure Pages (4 KB)

When Allocated When the database manager is started with
the db2start command

When Freed When the database manager is stopped with
the db2stop command

Related Parameters “Default Database System Monitor Switches
(dft_monswitches)” on page 428

This parameter determines the amount of the memory, in pages, to allocate for
database system monitor data. Memory is allocated from the monitor heap
when you perform database monitoring activities such as taking a snapshot,
turning on a monitor switch, resetting a monitor, or activating an event
monitor.

A value of zero prevents the database manager from collecting database
system monitor data.

Recommendation: The amount of memory required for monitoring activity
depends on the number of monitoring applications (applications taking
snapshots or event monitors), which switches are set, and the level of
database activity.

The following formula provides an approximation of the number of pages
required for the monitor heap:

Chapter 12. Configuring DB2 337

(number of monitoring applications + 1) *
(number of databases *
(800 + (number of tables accessed * 20)
+ ((number of applications connected + 1) *

(200 + (number of table spaces * 100)))))
/ 4096

If the available memory in this heap runs out, one of the following will occur:

v A level 2 error message is written to the db2alert.log and db2diag.log files,
when the first application connects to the database for which this event
monitor is defined.

v An error code is returned to your application, if an event monitor being
started dynamically using the SET EVENT MONITOR statement fails.

v An error code is returned to your application, if a monitor command or API
subroutine fails.

Directory Cache Support (dir_cache)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] Yes [Yes; No]

When Allocated

v When an application issues its first connect,
the private cache is allocated

v When a database manager instance is
started (db2start), the shared cache is
allocated.

When Freed

v When an the application process terminates,
the private cache is freed

v When a database manager instance is
stopped (db2stop), the shared cache is freed.

338 Administration Guide: Performance

By setting dir_cache to “yes” the database, node and DCS directory files will
be cached in memory. The use of the directory cache reduces connect costs by
eliminating directory file I/O and minimizing the directory searches required
to retrieve directory information. There are two types of directory caches:
v A private cache that is allocated and used for each application process, on

the machine at which the application is running.
v A shared cache that is allocated and used for some of the internal database

manager processes.

Note: Only the private cache is applicable to Windows, Windows 95,
Windows 98, and Windows NT environments.

For private caches, when an application issues its first connect, each directory
file is read and the information is cached in private memory for this
application. The cache is used by the application process on subsequent
connect requests and is maintained for the life of the application process. If a
database is not found in the private cache, the directory files are searched for
the information, but the cache is not updated. If the application modifies a
directory entry, the next connect within that application will cause the cache
for this application to be refreshed. The private cache for other applications
will not be refreshed. When the application process terminates, the cache is
freed. (To refresh the directory cache used by a command line processor
session, issue a db2 terminate command.)

For shared caches, when a database manager instance is started (db2start),
each directory file is read and the information is cached in shared memory.
This cache is used by some of the database manager processes and is
maintained until the instance is stopped (db2stop). If a directory entry is not
found in this cache, the directory files are searched for the information. This
shared cache is never refreshed during the time the instance is running.

Recommendation: Use directory caching if your directory files do not change
frequently and performance is critical.

In addition, on remote clients, directory caching can be beneficial if your
applications issue several different connection requests. In this case, caching
reduces the number of times a single application must read the directory files.

Directory caching can also improve the performance of taking database
system monitor snapshots. In addition, you should explicitly reference the
database name on the snapshot call, instead of using database aliases.

Note: Errors may occur when performing snapshot calls if directory caching
is turned on and if databases are cataloged, uncataloged, created, or
dropped after the database manager is started.

Chapter 12. Configuring DB2 339

Audit Buffer Size (audit_buf_sz)

Configuration Type Database manager

Applies To

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 0 [0 – 65 000]

Unit of Measure Pages (4 KB)

When Allocated When DB2 is started

When Freed When DB2 is stopped

This parameter specifies the size of the buffer used when auditing the
database. For more information about the audit facility, refer to “Auditing
DB2 Activities” in Administration Guide, Design and Implementation.

The default value for this parameter is zero (0). If the value is zero (0), the
audit buffer is not used. If the value is greater than zero (0), space is allocated
for the audit buffer where the audit records will be placed when they are
generated by the audit facility. The value times 4 KB pages is the amount of
space allocated for the audit buffer. The audit buffer cannot be allocated
dynamically; DB2 must be stopped and then restarted before the new value
for this parameter takes effect.

By changing this parameter from the default to some value larger than zero
(0), the audit facility writes records to disk asynchronously compared to the
execution of the statements generating the audit records. This improves DB2
performance over leaving the parameter value at zero (0). The value of zero
(0) means the audit facility writes records to disk synchronously with (at the
same time as) the execution of the statements generating the audit records.
The synchronous operation during auditing decreases the performance of
applications running in DB2.

Maximum Java Interpreter Heap Size (java_heap_sz)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

340 Administration Guide: Performance

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 512 [0 - 4 096]

Unit of Measure Pages (4 KB)

When Allocated When a Java application starts

When Freed When a Java application completes

Related Parameters “Java Development Kit 1.1 Installation Path
(jdk11_path)” on page 436

This parameter determines the maximum size of the heap that is used by the
Java interpreter.

There is one heap for each DB2 process (one for each agent or subagent on
UNIX-based platforms, and one for each instance in other platforms), and
there is also one heap for each fenced UDF and fenced stored procedure
process. In all situations, only the agents or processes that run Java UDFs or
stored procedures ever allocate this memory. On partitioned database systems,
the heap is multiplied by the number of database partition servers.

Locks

The following parameters influence how locking is managed in your
environment:
v “Time Interval for Checking Deadlock (dlchktime)”

v “Maximum Percent of Lock List Before Escalation (maxlocks)” on page 342

v “Lock Timeout (locktimeout)” on page 344

See also “Maximum Storage for Lock List (locklist)” on page 314.

“Locking” on page 20 provides a general overview of how the database
manager uses locking to maintain data integrity.

Time Interval for Checking Deadlock (dlchktime)

Configuration Type Database

Parameter Type Configurable

Default [Range] 10 000 (10 seconds) [1000 – 600 000]

Chapter 12. Configuring DB2 341

Unit of Measure Milliseconds

Related Parameters

v “Maximum Storage for Lock List (locklist)”
on page 314

v “Maximum Percent of Lock List Before
Escalation (maxlocks)”

A deadlock occurs when two or more applications connected to the same
database wait indefinitely for a resource. The waiting is never resolved
because each application is holding a resource that the other needs to
continue.

The deadlock check interval defines the frequency at which the database
manager checks for deadlocks among all the applications connected to a
database.

Notes:

1. In a partitioned database environment, this parameter applies to the
catalog node only.

2. In a partitioned database environment, a deadlock is not flagged until after
the second iteration.

Recommendation: Increasing this parameter decreases the frequency of
checking for deadlocks, thereby increasing the time that application programs
must wait for the deadlock to be resolved.

Decreasing this parameter increases the frequency of checking for deadlocks,
thereby decreasing the time that application programs must wait for the
deadlock to be resolved but increasing the time that the database manager
takes to check for deadlocks. If the deadlock interval is too small, it can
decrease run-time performance, because the database manager is frequently
performing deadlock detection. If this parameter is set lower to improve
concurrency, you should ensure that maxlocks and locklist are set appropriately
to avoid unnecessary lock escalation, which can result more lock contention
and as a result, more deadlock situations.

Maximum Percent of Lock List Before Escalation (maxlocks)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 10 [1 – 100]

342 Administration Guide: Performance

OS/2 and Windows NT
22 [1 – 100]

Unit of Measure Percentage

Related Parameters

v “Maximum Storage for Lock List (locklist)”
on page 314

v “Maximum Number of Active Applications
(maxappls)” on page 353

Lock escalation is the process of replacing row locks with table locks, reducing
the number of locks in the list. This parameter defines a percentage of the lock
list held by an application that must be filled before the database
managerperforms escalation. When the number of locks held by any one
application reaches this percentage of the total lock list size, lock escalation
will occur for the locks held by that application. Lock escalation also occurs if
the lock list runs out of space.

The database manager determines which locks to escalate by looking through
the lock list for the application and finding the table with the most row locks.
If after replacing these with a single table lock, the maxlocks value is no longer
exceeded, lock escalation will stop. If not, it will continue until the percentage
of the lock list held is below the value of maxlocks. The maxlocks parameter
multiplied by the maxappls parameter cannot be less than 100.

Recommendation: When setting maxlocks, you should consider the size of the
lock list (locklist):

maxlocks = 100 *
(512 locks per application
* 32 bytes per lock
* 2) / (locklist * 4096 bytes)

This sample formula allows any application to hold twice the average number
of locks.

You can increase maxlocks if few applications run concurrently since there will
not be a lot of contention for the lock list space in this situation.

You may use the database system monitor to help you track and tune this
configuration parameter.

For more information see the locks_held_top (maximum number of locks held)
monitor element description in the System Monitor Guide and Reference.

Chapter 12. Configuring DB2 343

The control of lock escalation through this parameter is important to the
optimizer since it uses this parameter to determine access paths. You should
consider rebinding applications (using the REBIND PACKAGE command)
after changing this parameter.

Lock Timeout (locktimeout)

Configuration Type Database

Parameter Type Configurable

Default [Range] -1 [-1; 0 – 30 000]

Unit of Measurement Seconds

Related Parameters

v “Maximum Storage for Lock List (locklist)”
on page 314

v “Maximum Percent of Lock List Before
Escalation (maxlocks)” on page 342

This parameter specifies the number of seconds that an application will wait
to obtain a lock. This helps avoid global deadlocks for applications.

If you set this parameter to 0, locks are not waited for. In this situation, if no
lock is available at the time of the request, the application immediately
receives a -911.

If you set this parameter to -1, lock timeout detection is turned off. In this
situation a lock will be waited for (if one is not available at the time of the
request) until either of the following:

v The lock is granted
v A deadlock occurs.

Recommendation: In a transaction processing (OLTP) environment, you can
use an initial starting value of 30 seconds. In a query-only environment you
could start with a higher value. In both cases, you should use benchmarking
techniques to tune this parameter.

The value should be set to quickly detect waits that are occurring because of
an abnormal situation, such as a transaction that is stalled (possibly as a result
of a user leaving their workstation). You should set it high enough so valid
lock requests do not time-out because of peak workloads, during which time,
there is more waiting for locks.

You may use the database system monitor to help you track the number of
times an application (connection) experienced a lock timeout or that a

344 Administration Guide: Performance

database detected a timeout situation for all applications that were connected.
For more information see the locks_timeouts (number of lock timeouts) monitor
element description in the System Monitor Guide and Reference.

High values of the lock_timeout monitor element can be caused by:
v Too low a value for this configuration parameter.
v An application (transaction) that is holding lock(s) for an extended period.

You can use the database system monitor to further investigate these
applications.

v A concurrency problem, that could be caused by lock escalations (from the
row-level to a table-level). See “Maximum Percent of Lock List Before
Escalation (maxlocks)” on page 342 and “Maximum Storage for Lock List
(locklist)” on page 314 for more information.

For more information on the use of this parameter see “Lock Waits and
Timeouts” on page 27.

I/O and Storage

The following parameters can influence I/O and storage costs related to the
operation of your database:
v “Changed Pages Threshold (chngpgs_thresh)”

v “Number of Asynchronous Page Cleaners (num_iocleaners)” on page 346

v “Number of I/O Servers (num_ioservers)” on page 348

v “Index Sort Flag (indexsort)” on page 348

v “Sequential Detection Flag (seqdetect)” on page 349

v “Default Prefetch Size (dft_prefetch_sz)” on page 349

v “Default Number of SMS Containers (numsegs)” on page 350

v “Default Extent Size of Table Spaces (dft_extent_sz)” on page 351

v “Extended Storage Memory Segment Size (estore_seg_sz)” on page 351

v “Number of Extended Storage Memory Segments (num_estore_segs)” on
page 352

Changed Pages Threshold (chngpgs_thresh)

Configuration Type Database

Parameter Type Configurable

Default [Range] 60 [5 – 99]

Unit of Measure Percentage

Chapter 12. Configuring DB2 345

Related Parameters “Number of Asynchronous Page Cleaners
(num_iocleaners)”

Asynchronous page cleaners will write changed pages from the buffer pool (or
the buffer pools) to disk before the space in the buffer pool is required by a
database agent. This means that the agents will not wait for a changed page
to be written out, before being able to read a page, and your application’s
transactions should run faster.

You may use this parameter to specify the level (percentage) of changed pages
at which the asynchronous page cleaners will be started, if they are not
currently active. When the page cleaners are started, they will build a list of
the pages to write to disk. Once they have completed writing those pages to
disk, they will become inactive again and wait for the next trigger to start.

In a read-only (for example, query) environment, these page cleaners are not
used.

Recommendation: For databases with a heavy update transaction workload,
you can generally ensure that there are enough clean pages in the buffer pool
by setting the parameter value to be equal-to or less-than the default value. A
percentage larger than the default can help performance if your database has
a small number of very large tables.

Number of Asynchronous Page Cleaners (num_iocleaners)

Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [0 – 255]

Unit of Measure Counter

Related Parameters

v “Buffer Pool Size (buffpage)” on page 305

v “Changed Pages Threshold
(chngpgs_thresh)” on page 345

This parameter allows you to specify the number of asynchronous page
cleaners for a database. These page cleaners write changed pages from the
buffer pool to disk before the space in the buffer pool is required by a
database agent. This means that the agents will not wait for changed pages to
be written out, before being able to read a page. As a result, your
application’s transactions should run faster.

If you set the parameter to zero (0), no page cleaners are started and as a
result, the database agents will perform all of the page writes from the buffer

346 Administration Guide: Performance

pool to disk. This parameter can have a significant performance impact on a
database stored across many physical storage devices, since in this case there
is a greater chance that one of the devices will be idle. If no page cleaners are
configured, your applications may encounter periodic log full conditions.

If the applications for a database primarily consist of transactions that update
data, an increase in the number of cleaners will speed up performance.
Increasing the page cleaners will also decrease recovery time from soft
failures, such as power outages, because the contents of the database on disk
will be more up-to-date at any given time.

Recommendation: Consider the following factors when setting the value for
this parameter:

v Application type
– If it is a query-only database that will not have updates, set this

parameter to be zero (0). The exception would be if the query work load
results in many TEMP tables being created (you can determine this by
using the explain utility).

– If transactions are run against the database, set this parameter to be
between one and the number of physical storage devices used for the
database.

v Workload
Environments with high update transaction rates may require more page
cleaners to be configured.

v Buffer pool sizes (buffpage)
Environments with large buffer pools may also require more page cleaners
to be configured.

You may use the database system monitor to help you tune this configuration
parameter using information from the event monitor about write activity from
a buffer pool:
v The parameter can be reduced if both of the following conditions are true:

– pool_data_writes is approximately equal to pool_async_data_writes

– pool_index_writes is approximately equal to pool_async_index_writes.
v The parameter should be increased if either of the following conditions are

true:
– pool_data_writes is much greater than pool_async_data_writes

– pool_index_writes is much greater than pool_async_index_writes.

For more information see the following monitor elements descriptions in the
System Monitor Guide and Reference:
v pool_data_writes (buffer pool data writes)

Chapter 12. Configuring DB2 347

v pool_index_writes (buffer pool index writes)
v pool_async_data_writes (buffer pool asynchronous data writes)
v pool_async_index_writes (buffer pool asynchronous index writes).

Number of I/O Servers (num_ioservers)

Configuration Type Database

Parameter Type Configurable

Default [Range] 3 [1 – 255]

1 [1 – 255] on Satellite Database Server with
local clients

Unit of Measure Counter

When Allocated When an application connects to a database

When Freed When an application disconnects from a
database

Related Parameters

v “Default Prefetch Size (dft_prefetch_sz)” on
page 349

v “Sequential Detection Flag (seqdetect)” on
page 349

I/O servers are used on behalf of the database agents to perform prefetch I/O
and asynchronous I/O by utilities such as backup and restore. This parameter
specifies the number of I/O servers for a database. No more than this number
of I/Os for prefetching and utilities can be in progress for a database at any
time. An I/O server waits while an I/O operation that it initiated is in
progress. Non-prefetch I/Os are scheduled directly from the database agents
and as a result are not constrained by num_ioservers.

Recommendation: In order to fully exploit all the I/O devices in the system, a
good value to use is generally one or two more than the number of physical
devices on which the database resides. It is better to configure additional I/O
servers, since there is minimal overhead associated with each I/O server and
any unused I/O servers will remain idle.

For more information, see “Prefetching Data into the Buffer Pool” on page 219
and “Configuring I/O Servers for Prefetching and Parallel I/O” on page 222.

Index Sort Flag (indexsort)

Configuration Type Database

Parameter Type Configurable

348 Administration Guide: Performance

Default [Range] Yes [Yes; No]

This parameter indicates whether sorting of index keys will occur during
index creation. Performance of index creation is enhanced by performing a
sort first, particularly for indexes with low cluster ratios or cluster factors.
Performance of queries can also be better if indexes are created with a sort.
The cost of this performance enhancement is the increased disk space required
for the sort, which could require twice the amount of space as creating an
index without performing an initial sort.

Recommendation: Use the default setting (“Yes”), unless you do not have
enough disk space. Note that the disk space required for this sort is
approximately equal to the amount of space needed to SELECT the columns
of the index from the table with an ORDER BY clause on those columns.

If you have a symmetric multiprocessor (SMP) environment and specify “No”
for this parameter, the multiple processing that is possible in an SMP
environment is not used during index creation.

Sequential Detection Flag (seqdetect)

Configuration Type Database

Parameter Type Configurable

Default [Range] Yes [Yes; No]

Related Parameters “Default Prefetch Size (dft_prefetch_sz)”

The database manager can monitor I/O and if sequential page reading is
occurring the database manager can activate I/O prefetching. This type of
sequential prefetch is known as sequential detection. You may use the seqdetect
configuration parameter to control whether the database manager should
perform sequential detection.

If this parameter is set to “no”, prefetching takes place only if the database
manager knows it will be useful, for example table sorts, table scans, or list
prefetch.

Recommendation: In most cases, you should use the default value for this
parameter. Try turning sequential detection off, only if other tuning efforts
were unable to correct serious query performance problems.

Default Prefetch Size (dft_prefetch_sz)

Configuration Type Database

Parameter Type Configurable

Chapter 12. Configuring DB2 349

Default [Range]

UNIX 32 [0 – 32 767]

OS/2 and Windows NT
16 [0 – 32 767]

Unit of Measure Pages (4KB)

Related Parameters

v “Default Extent Size of Table Spaces
(dft_extent_sz)” on page 351

v “Number of I/O Servers (num_ioservers)”
on page 348

When a table space is created, PREFETCHSIZE n can be optionally specified,
where n is the number of pages the database manager will read if prefetching
is being performed. If you do not specify the prefetch size on the CREATE
TABLESPACE statement, the database manager uses the value given by this
parameter.

For more information, see “Prefetching Data into the Buffer Pool” on page 219.

Recommendation: Using system monitoring tools, you can determine if your
CPU is idle while the system is waiting for I/O. Increasing the value of this
parameter may help if the table spaces being used do not have a prefetch size
defined for them.

This parameter provides the default for the entire database, and it may not be
suitable for all table spaces within the database. For example, a value of 32
may be suitable for a table space with an extent size of 32 pages, but not
suitable for a table space with an extent size of 25 pages. Ideally, you should
explicitly set the prefetch size for each table space.

To help minimize I/O for table spaces defined with the default extent size
(dft_extent_sz), you should set this parameter as a factor or whole multiple of
the value of the dft_extent_sz parameter. For example, if the dft_extent_sz
parameter is 32, you could set dft_prefetch_sz to 16 (a factor of 32) or to 64 (a
whole multiple of 32). If the prefetch size is a multiple of the extent size, the
database manager may perform I/O in parallel, if the following conditions are
true:

v The extents being prefetched are on different physical devices
v Multiple I/O servers are configured (num_ioservers).

Default Number of SMS Containers (numsegs)

Configuration Type Database

350 Administration Guide: Performance

Parameter Type Informational

Unit of Measure Counter

This parameter, which only applies to SMS table spaces, indicates the number
of containers that will be created within the default table spaces. This
parameter will show the information used when you created your database,
whether it was specified explicitly or implicitly on the CREATE DATABASE
command. The CREATE TABLESPACE statement does not use this parameter
in any way.

Refer to “Database Physical Directories” in the Administration Guide, Design
and Implementation for more information.

Default Extent Size of Table Spaces (dft_extent_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range] 32 [2 – 256]

Unit of Measure Pages (4 KB)

Related Parameters “Default Prefetch Size (dft_prefetch_sz)” on
page 349

When a table space is created, EXTENTSIZE n can be optionally specified,
where n is the extent size. If you do not specify the extent size on the
CREATE TABLESPACE statement, the database manager uses the value given
by this parameter.

Refer to “Designing and Choosing Table Spaces” in the Administration Guide,
Design and Implementation for more information.

Recommendation: In many cases, you will want to explicitly specify the
extent size when you create the table space. Before choosing a value for this
parameter, you should understand how you would explicitly choose an extent
size for the CREATE TABLESPACE statement. For more information see
“Table Space Impact on Query Optimization” on page 62.

Extended Storage Memory Segment Size (estore_seg_sz)

Configuration Type Database

Parameter Type Configurable

Default [Range] 16 000 [0 – 1048575]

Unit of Measure Pages (4 KB)

Chapter 12. Configuring DB2 351

Related Parameters “Number of Extended Storage Memory
Segments (num_estore_segs)”

This parameter specifies the number of pages in each of the extended memory
segments in the database. There are platform-dependent considerations when
setting this configuration parameter.

Recommendation: This parameter only has an effect when extended storage is
available, and is used as shown by the num_estore_segs parameter. When
specifying the number of pages to be used in each extended memory segment,
you should also consider the number of extended memory segments by
reviewing and modifying the num_estore_segs parameter. For more information
about extended storage, see “Extending Memory” on page 241.

Number of Extended Storage Memory Segments (num_estore_segs)

Configuration Type Database

Parameter Type Configurable

Default [Range] 0 [0 – 214 7483 647]

Related Parameters “Extended Storage Memory Segment Size
(estore_seg_sz)” on page 351

This parameter specifies the number of extended storage memory segments
available for use by the database.

The default is no extended storage memory segments.

Recommendation: Only use this parameter to establish the use of extended
storage memory segments if your platform environment has more memory
than the maximum address space and you wish to use this memory. When
specifying the number of segments, you should also consider the size of the
each of the segments by reviewing and modifying the estore_seg_sz parameter.

When both the num_estore_segs and estore_seg_sz configuration parameters are
set, you should specify which buffer pools will use the extended memory
through the CREATE/ALTER BUFFERPOOL statements. For more information
about extended storage, see “Extending Memory” on page 241.

Agents

The following parameters can influence the number of applications that can
be run concurrently and achieve optimal performance:
v “Maximum Number of Active Applications (maxappls)” on page 353

v “Average Number of Active Applications (avg_appls)” on page 354

352 Administration Guide: Performance

v “Maximum Database Files Open per Application (maxfilop)” on page 355

v “Maximum Total Files Open per Application (maxtotfilop)” on page 356

v “Priority of Agents (agentpri)” on page 357

v “Maximum Number of Agents (maxagents)” on page 360

v “Maximum Number of Concurrent Agents (maxcagents)” on page 358

v “Maximum Number of Coordinating Agents (max_coordagents)” on
page 361

v “Agent Pool Size (num_poolagents)” on page 362

v “Initial Number of Agents in Pool (num_initagents)” on page 363

Maximum Number of Active Applications (maxappls)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 40 [1 – 64000]

OS/2 and Windows NT Database Server with
local and remote clients

20 [1 – 64000]

OS/2 and Windows NT Database Server with
local clients 10 [1 – 64000]

Unit of Measure Counter

Related Parameters

v “Maximum Number of Agents (maxagents)”
on page 360

v “Maximum Number of Coordinating Agents
(max_coordagents)” on page 361

v “Maximum Percent of Lock List Before
Escalation (maxlocks)” on page 342

v “Maximum Storage for Lock List (locklist)”
on page 314

v “Average Number of Active Applications
(avg_appls)” on page 354

This parameter specifies the maximum number of concurrent applications that
can be connected (both local and remote) to a database. Since each application

Chapter 12. Configuring DB2 353

that attaches to a database causes some private memory to be allocated,
allowing a larger number of concurrent applications will potentially use more
memory.

The value of this parameter must be equal to or greater than the sum of the
connected applications, plus the number of these same applications that may
be concurrently in the process of completing a two-phase commit or rollback.
Then add to this sum the anticipated number of indoubt transactions that
might exist at any one time. Refer to “Recovering from Problems During
Two-Phase Commit” in the Administration Guide, Design and Implementation for
more information on indoubt transactions.

When an application attempts to connect to a database, but maxappls has
already been reached, an error is returned to the application indicating that
the maximum number of applications have been connected to the database.

In a partitioned database environment, this is the maximum number of
applications that can be concurrently active against a database partition. This
parameter limits the number of active applications against the database
partition on a database partition server, regardless of whether the server is the
coordinator node for the application or not. The catalog node in a partitioned
database environment requires a higher value for maxappls than is the case for
other types of environments because, in the partitioned database environment,
every application requires a connection to the catalog node.

Recommendation: Increasing the value of this parameter without lowering
the maxlocks parameter or increasing the locklist parameter could cause you to
reach the database limit on locks (locklist) rather than the application limit and
as a result cause pervasive lock escalation problems.

To a certain extent, the maximum number of applications is also governed by
maxagents. An application can only connect to the database, if there is an
available connection (maxappls) as well as an available agent (maxagents). In
addition, the maximum number of applications is also controlled by the
max_coordagents configuration parameter, because no new applications (that is,
coordinator agents) can be started if max_coordagents has been reached.

Average Number of Active Applications (avg_appls)

Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [1 – maxappls]

Unit of Measure Counter

Related Parameters

354 Administration Guide: Performance

v “Maximum Number of Active Applications
(maxappls)” on page 353

This parameter is used by the SQL optimizer to help estimate how much
buffer pool will be available at run-time for the access plan chosen. Increasing
this parameter can influence the optimizer to choose an access plan for
queries that will be more conservative in its buffer pool usage.

Recommendation: When running DB2 in a multi-user environment,
particularly with complex queries and a large buffer pool, you may want the
SQL optimizer to know that multiple query users are using your system so
that the optimizer should be more conservative in assumptions of buffer pool
availability.

When setting this parameter, you should estimate the number of heavy query
applications that typically use the database. This estimate should exclude all
light OLTP applications. If you have trouble estimating this number, you can
multiply the following:

v An average number of all applications running against your database. The
database system monitor can provide information about the number of
applications at any given time and using a sampling technique, you can
calculate an average over a period of time. The information from the
database system monitor includes both OLTP and non-OLTP applications.

v Your estimate of the percentage of heavy query applications.

As with adjusting other configuration parameters that affect the optimizer,
you should adjust this parameter in small increments. This allows you to
minimize path selection differences.

You should consider rebinding applications (using the REBIND PACKAGE
command) after changing this parameter.

Maximum Database Files Open per Application (maxfilop)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 64 [2 – 1950]

OS/2 and Windows NT
64 [2 – 32 768]

Unit of Measure Counter

Related Parameters

Chapter 12. Configuring DB2 355

v “Maximum Total Files Open per
Application (maxtotfilop)”

v “Maximum Number of Active Applications
(maxappls)” on page 353

This parameter specifies the maximum number of file handles that can be
open for each database agent. If opening a file causes this value to be
exceeded, some files in use by this agent are closed. If maxfilop is too small,
the overhead of opening and closing files so as not to exceed this limit will
become excessive and may degrade performance.

Both SMS table spaces and DMS table space file containers are treated as files
in the database manager’s interaction with the operating system, and file
handles are required. More files are generally used by SMS table spaces
compared to the number of containers used for a DMS file table space.
Therefore, if you are using SMS table spaces, you will need a larger value for
this parameter compared to what you would require for DMS file table
spaces.

You can also use this parameter to ensure that the overall total of file handles
used by the database manager does not exceed the operating system limit by
limiting the number of handles per agent to a specific number; the actual
number will vary depending on the number of agents running concurrently.

Maximum Total Files Open per Application (maxtotfilop)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 16 000 [100 – 32 768]

Unit of Measure Counter

Related Parameters “Maximum Database Files Open per
Application (maxfilop)” on page 355

356 Administration Guide: Performance

This parameter defines the maximum number of files that can be opened by
all agents and other threads executing in a single database manager instance.
If opening a file causes this value to be exceeded, an error is returned to your
application.

Note: This parameter does not apply to UNIX-based platforms.

Recommendation: When setting this parameter, you should consider the
number of file handles that could be used for each database in the database
manager instance. To estimate an upper limit for this parameter:

1. Calculate the maximum number of file handles that could be opened for
each database in the instance, using the following formula:

maxappls * maxfilop

2. Calculate the sum of above results and verify that it does not exceed the
parameter maximum.

If a new database is created, you should re-evaluate the value for this
parameter.

You should also validate the total file handles that may be used on your
system does not exceed the system maximum using the following formula:

(sum of maxtotfilop for all instances on machine)
+ (estimate of file handles required by other applications)
<= 65535

Priority of Agents (agentpri)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range]

AIX -1 [41 - 125]

Other UNIX
-1 [41 - 128]

Windows NT
-1 [0 - 6]

Chapter 12. Configuring DB2 357

OS/2 -1 [200 - 231; 300 - 331; 400 - 431]

This parameter controls the priority given both to all agents, and to other
database manager instance processes and threads, by the operating system
scheduler. In a partitioned database environment, this also includes both
coordinating and parallel agents, the parallel system controllers, and the FCM
daemons. This priority determines how CPU time is given to the DB2
processes, agents, and threads relative to the other processes and threads
running on the machine. When the parameter is set to -1, no special action is
taken and the database manager is scheduled in the normal way that the
operating system schedules all processes and threads. When the parameter is
set to a value other than -1, the database manager will create its processes and
threads with a static priority set to the value of the parameter. Therefore, this
parameter allows you to control the priority with which the database manager
processes and threads will execute on your machine.

You can use this parameter to increase database manager throughput. The
values for setting this parameter are dependent on the operating system on
which the database manager is running. For example, in a UNIX-based
environment, numerically low values yield high priorities. When the
parameter is set to a value between 41 and 125, the database manager creates
its agents with a UNIX static priority set to the value of the parameter. This is
important in UNIX-based environments because numerically low values yield
high priorities for the database manager, but other processes (including
applications and users) may experience delays because they cannot obtain
enough CPU time. You should balance the setting of this parameter with the
other activity expected on the machine.

In an OS/2 environment, higher numeric values yield higher priorities.

Recommendation: The default value should be used initially. This value
provides a good compromise between response time to other
users/applications and database manager throughput.

If database performance is a concern, you can use benchmarking techniques to
determine the optimum setting for this parameter. You should take care when
increasing the priority of the database manager because performance of other
user processes can be severely degraded especially when the CPU utilization
is very high. Increasing the priority of the database manager processes and
threads can have significant performance benefits.

Note: If you set this parameter to a non-default value on UNIX-based
platforms, you cannot use the governor to alter agent priorities.

Maximum Number of Concurrent Agents (maxcagents)

Configuration Type Database manager

358 Administration Guide: Performance

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] -1 (max_coordagents) [-1; 1 – max_coordagents]

Unit of Measure Counter

Related Parameters

v “Maximum Number of Active Applications
(maxappls)” on page 353

v “Maximum Number of Agents (maxagents)”
on page 360

v “Maximum Number of Coordinating Agents
(max_coordagents)” on page 361

The maximum number of database manager coordinator agents that can be
concurrently executing a database manager transaction. This parameter is
used to control the load on the system during periods of high simultaneous
application activity. For example, you may have a system requiring a large
number of connections but with a limited amount of memory to serve those
connections. Adjusting this parameter can be useful in such an environment,
where a period of high simultaneous activity could cause excessive operating
system paging.

This parameter does not limit the number of applications that can have
connections to a database. It only limits the number of database manager
agents that can be processed concurrently by the database manager at any one
time, thereby limiting the usage of system resources during times of peak
processing.

A value of −1 indicates that the limit is max_coordagents.

Recommendation: In most cases the default value for this parameter will be
acceptable. In cases where the high concurrency of applications is causing
problems, you can use benchmark testing to tune this parameter to optimize
your performance.

Chapter 12. Configuring DB2 359

Maximum Number of Agents (maxagents)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 200 [1 – 64 000]

400 [1 – 64 000] on Partitioned Database
Server with local and remote clients

10 [1 – 64 000] on Satellite Database Server
with local clients

Unit of Measure Counter

Related Parameters

v “Maximum Number of Active Applications
(maxappls)” on page 353

v “Maximum Number of Concurrent Agents
(maxcagents)” on page 358

v “Maximum Number of Coordinating Agents
(max_coordagents)” on page 361

v “Maximum Number of DARI Processes
(maxdari)” on page 365

v “Minimum Committed Private Memory
(min_priv_mem)” on page 329

v “Agent Pool Size (num_poolagents)” on
page 362

This parameter indicates the maximum number of database manager agents,
whether coordinating agents or subagents, available at any given time to
accept application requests. If you want to limit the number of coordinating
agents, use the max_coordagents parameter.

This parameter can be useful in memory constrained environments to limit
the total memory usage of the database manager, because each additional
agent requires additional memory.

360 Administration Guide: Performance

Recommendation: The value of maxagents should be at least the sum of the
values for maxappls in each database allowed to be accessed concurrently. If
the number of databases is greater than the numdb parameter, then the safest
course is to use the product of numdb with the largest value for maxappls.

Each additional agent requires some resource overhead that is allocated at the
time the database manager is started.

Maximum Number of Coordinating Agents (max_coordagents)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] -1 (maxagents - num_initagents)

[-1, 0–maxagents]

For partitioned database environments and
environments in which intra_parallel is set to
“Yes”, the default is maxagents -
num_initagents; otherwise, the default is
maxagents. This ensures that, in
non-partitioned database environments,
max_coordagents always equals maxagents,
unless the system is configured for
intra-partition parallelism.

If you do not have a partitioned database
environment, and have not enabled the
intra_parallel parameter, max_coordagents must
equal maxagents.

Related Parameters

v “Initial Number of Agents in Pool
(num_initagents)” on page 363

v “Agent Pool Size (num_poolagents)” on
page 362

v “Maximum Number of Agents (maxagents)”
on page 360

Chapter 12. Configuring DB2 361

v “Enable Intra-Partition Parallelism
(intra_parallel)” on page 424

This parameter determines the maximum number of coordinating agents that
can exist at one time on a server in a partitioned or non-partitioned database
environment.

One coordinating agent is acquired for each local or remote application that
connects to a database or attaches to an instance. Requests that require an
instance attachment include CREATE DATABASE, DROP DATABASE, and
Database System Monitor commands.

Agent Pool Size (num_poolagents)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] -1 [-1, 0-maxagents]

Using the default, the value for a server with
a non-partitioned database and local clients is
the larger of maxagents/50 or max_querydegree.

Using the default, the value for a server with
a non-partitioned database and local and
remote clients is the larger of maxagents/50 x
max_querydegree or maxagents -
max_coordagents.

Using the default, the value for an database
partition server is the larger of maxagents/10 x
max_querydegree or maxagents -
max_coordagents.

Related Parameters

v “Initial Number of Agents in Pool
(num_initagents)” on page 363

v “Maximum Number of Agents (maxagents)”
on page 360

362 Administration Guide: Performance

v “Maximum Query Degree of Parallelism
(max_querydegree)” on page 423

v “Maximum Number of Coordinating Agents
(max_coordagents)” on page 361

This parameter is a guideline for how large you want the agent pool to grow
(and replaces the max_idleagents parameter that was used in DB2 Version 2).

The agent pool contains subagents and idle agents. Idle agents can be used as
parallel subagents or as coordinating agents. If more agents are created than is
indicated by the value of this parameter, they will be terminated when they
finish executing their current request, rather than be returned to the pool.

If the value for this parameter is 0, agents will be created as needed, and may
be terminated when they finish executing their current request. If the value is
maxagents, and the pool is full of associated subagents, the server cannot be
used as a coordinator node, because no new coordinating agents can be
created.

Recommendation: If you run a decision-support environment in which few
applications connect concurrently, set num_poolagents to a small value to avoid
having an agent pool that is full of idle agents.

If you run a transaction-processing environment in which many applications
are concurrently connected, increase the value of num_poolagents to avoid the
costs associated with the frequent creation and termination of agents.

Initial Number of Agents in Pool (num_initagents)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 0 [0–num_poolagents]

Related Parameters

v “Maximum Number of Agents (maxagents)”
on page 360

Chapter 12. Configuring DB2 363

v “Agent Pool Size (num_poolagents)” on
page 362

v “Maximum Number of Coordinating Agents
(max_coordagents)” on page 361

This parameter determines the initial number of idle agents that are created in
the agent pool at DB2START time.

Database Application Remote Interface (DARI)

The following parameters can affect the Database Application Remote
Interface (DARI) applications:
v “Keep DARI Process Indicator (keepdari)”

v “Maximum Number of DARI Processes (maxdari)” on page 365

v “Initialize DARI Process with JVM (initdari_jvm)” on page 366

v “Initial Number of Fenced DARI Processes in Pool (num_initdaris)” on
page 367

Note: The term DARI refers to stored procedures.

Keep DARI Process Indicator (keepdari)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] Yes [Yes; No]

Related Parameters “Maximum Number of DARI Processes
(maxdari)” on page 365

This parameter indicates whether or not a DARI process is kept after a DARI
call is complete. DARI processes are created as separate system entities in
order to isolate user-written DARI code from the database manager agent
process. This parameter is only applicable on database servers.

364 Administration Guide: Performance

If keepdari is set to no, a new DARI process is created and destroyed for each
DARI invocation. If keepdari is set to yes, a DARI process is reused for
subsequent DARI calls. When the database manager is stopped, all
outstanding DARI processes will be terminated.

Setting this parameter to yes will result in additional system resources being
consumed by the database manager for each DARI process that is activated,
up to the value contained in the maxdari parameter. This is only true when no
existing DARI process is available to process a subsequent DARI call. This
parameter is ignored if maxdari is set to 0.

Recommendation: In an environment in which the number of DARI requests
is large relative to the number of non-DARI requests, and system resources
are not constrained, then this parameter can be set to yes. This will improve
the DARI performance by avoiding the initial DARI process creation overhead
since an existing DARI process will be used to process the call.

For example, in an OLTP debit-credit banking transaction application, the
code to perform each transaction could be performed in a stored procedure
which executes in a DARI process. In this application, the main workload is
performed out of DARI processes. If this parameter is set to no, each
transaction incurs the overhead of creating a new DARI process, resulting in a
significant performance reduction. If, however, this parameter is set to yes,
each transaction would try to use an existing DARI process, which would
avoid this overhead.

Maximum Number of DARI Processes (maxdari)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] -1 (max_coordagents) [-1; 0 – max_coordagents]

Unit of Measure Counter

Related Parameters

v “Maximum Number of Agents (maxagents)”
on page 360

Chapter 12. Configuring DB2 365

v “Keep DARI Process Indicator (keepdari)”
on page 364

v “Initial Number of Fenced DARI Processes
in Pool (num_initdaris)” on page 367

v “Maximum Number of Coordinating Agents
(max_coordagents)” on page 361

This parameter indicates the maximum number of DARI process that may
reside at the database server. Once this limit is reached, no new DARIrequests
may be invoked. This parameter is only applicable on database servers.

There can be no more than one DARI process active per coordinating agent,
so the maximum number of DARI processes is also dictated by the maximum
number of coordinating agents (max_coordagents).

Recommendation: If your environment features the use of the DARI facility
within the database manager, then this parameter can be used to ensure that
an appropriate number of DARI processes are available to handle the DARI
calls made at any one time within the database manager.

If the parameter is set to −1, the maximum number of DARIprocesses will be
the same as the value set in the max_coordagents parameter.

If you find that the default value is not appropriate for your environment
because an inappropriate amount of system resource is being given to DARI
processes which is affecting performance of the database manager, the
following may be useful in providing a starting point for tuning this
parameter:

maxdari = # of applications allowed to make DARI calls at one time

If keepdari is set to yes, then each DARIprocess that is created will continue to
exist and use system resources even after the DARI call has been processed
and returned to the agent.

If your environment is tightly constrained and you cannot afford the process
resources associated with DARI, you can disable DARIby setting this
parameter to zero (0).

Initialize DARI Process with JVM (initdari_jvm)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

366 Administration Guide: Performance

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] No [Yes; No]

Related Parameters

v “Maximum Number of DARI Processes
(maxdari)” on page 365

v “Initial Number of Fenced DARI Processes
in Pool (num_initdaris)”

v “Keep DARI Process Indicator (keepdari)”
on page 364

This parameter indicates whether each fenced DARI process will load the Java
Virtual Machine (JVM) when starting. This parameter will reduce the initial
startup time for fenced Java stored procedures, especially when used in
conjunction with the num_initdaris parameter. This parameter could increase
the initial load time for non-Java fenced stored procedures as they do not
require the JVM.

Initial Number of Fenced DARI Processes in Pool (num_initdaris)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 0 [0 – maxdari]

Related Parameters

v “Maximum Number of DARI Processes
(maxdari)” on page 365

v “Initialize DARI Process with JVM
(initdari_jvm)” on page 366

Chapter 12. Configuring DB2 367

v “Keep DARI Process Indicator (keepdari)”
on page 364

This parameter indicates the initial number of idle fenced DARI processes that
are created in the DARI pool at DB2START time. Setting this parameter will
reduce the initial startup time for fenced stored procedures. This parameter is
ignored if keepdari is not specified.

Logging and Recovery

Recovering your environment can be very important to prevent the loss of
critical data. A number of parameters are available to help you manage your
environment and to ensure that you can perform adequate recovery of your
data or transactions. These parameters are grouped into the following
categories:
v “Database Log Files”

v “Database Log Activity” on page 375

v “Recovery” on page 380

v “Distributed Unit of Work Recovery” on page 386.

Database Log Files

The following parameters provide information about number, size and status
of the files used for database logging:
v “Size of Log Files (logfilsiz)”

v “Number of Primary Log Files (logprimary)” on page 370

v “Number of Secondary Log Files (logsecond)” on page 372

v “Change the Database Log Path (newlogpath)” on page 373

v “Location of Log Files (logpath)” on page 374

v “First Active Log File (loghead)” on page 374

Size of Log Files (logfilsiz)

Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 1000 [4 – 65 535]

Windows NT 250 [4 – 65 535]

368 Administration Guide: Performance

OS/2 250 [4 – 4 095]

Unit of Measure Pages (4 KB)

Related Parameters

v “Number of Primary Log Files
(logprimary)” on page 370

v “Number of Secondary Log Files
(logsecond)” on page 372

v “Recovery Range and Soft Checkpoint
Interval (softmax)” on page 376

This parameter defines the size of each primary and secondary log file. The
size of these log files limits the number of log records that can be written to
them before they become full and a new log file is required.

The use of primary and secondary log files as well as the action taken when a
log file becomes full are dependent on the type of logging that is being
performed:

v Circular logging
A primary log file can be reused when the changes recorded in it have been
committed. If the log file size is small and applications have processed a
large number of changes to the database without committing the changes, a
primary log file can quickly become full. If all primary log files become full,
the database manager will allocate secondary log files to hold the new log
records.

v Log Retention logging
When a primary log file is full, the log is archived and a new primary log
file is allocated.

Recommendation: You must balance the size of the log files with the number
of primary log files:
v The value of the logfilsiz should be increased if the database has a large

number of update, delete and/or insert transactions running against it
which will cause the log file to become full very quickly.

Note: The total log file size limit is 4 GB. That is, the number of log files
(logprimary + logsecond) multiplied by the size of each log file in bytes
(logfilsiz * 4096) must be less than 4 GB.

A log file that is too small can affect system performance because of the
overhead of archiving old log files, allocating new log files, and waiting for
a usable log file.

Chapter 12. Configuring DB2 369

v The value of the logfilsiz should be reduced if disk space is scarce, since
primary logs are preallocated at this size.
A log file that is too large can reduce your flexibility when managing
archived log files and copies of log files, since some media may not be able
to hold an entire log file.

If you are using log retention, the current active log file is closed and
truncated when the last application disconnects from a database. When the
next connection to the database occurs, the next log file is used. Therefore, if
you understand the logging requirements of your concurrent applications you
may be able to determine a log file size which will not allocate excessive
amounts of wasted space.

Refer to “Configuration Parameters for Database Logging” in the
Administration Guide, Design and Implementation for more information on this
parameter.

Number of Primary Log Files (logprimary)

Configuration Type Database

Parameter Type Configurable

Default [Range] 3 [2 – 128]

Unit of Measure Counter

When Allocated

v The database is created
v A log is moved to a different location

(which occurs when the logpath parameter is
updated)

v Following a increase in the value of this
parameter (logprimary), during the next
database connection after all users have
disconnected

v A log file has been archived and a new log
file is allocated (the logretain or userexit
parameter must be enabled)

v If the logfilsiz parameter has been changed,
the active log files are re-sized during the
next database connection after all users
have disconnected.

When Freed Not freed unless this parameter decreases. If
decreased, unneeded log files are deleted
during the next connection to the database.

370 Administration Guide: Performance

Related Parameters

v “Size of Log Files (logfilsiz)” on page 368

v “Number of Secondary Log Files
(logsecond)” on page 372

v “Log Retain Enable (logretain)” on page 378

v “User Exit Enable (userexit)” on page 379

The primary log files establish a fixed amount of storage allocated to the
recovery log files. This parameter allows you to specify the number of
primary log files to be preallocated.

Under circular logging, the primary logs are used repeatedly in sequence.
That is, when a log is full, the next primary log in the sequence is used if it is
available. A log is considered available if all units of work with log records in
it have been committed or rolled-back. If the next primary log in sequence is
not available, then a secondary log is allocated and used. Additional
secondary logs are allocated and used until the next primary log in the
sequence becomes available or the limit imposed by the logsecond parameter is
reached. These secondary log files are dynamically deallocated as they are no
longer needed by the database manager.

The number of primary and secondary log files must comply with the
following equation:

v (logprimary + logsecond) <= 128

Recommendation: The value chosen for this parameter depends on a number
of factors, including the type of logging being used, the size of the log files,
and the type of processing environment (for example, length of transactions
and frequency of commits).

Increasing this value will increase the disk requirements for the logs because
the primary log files are preallocated during the very first connection to the
database.

If you find that secondary log files are frequently being allocated, you may be
able to improve system performance by increasing the log file size (logfilsiz) or
by increasing the number of primary log files.

For databases that are not frequently accessed, in order to save disk storage,
set the parameter to 2. For databases enabled for roll-forward recovery, set the
parameter larger to avoid the overhead of allocating new logs almost
immediately.

Chapter 12. Configuring DB2 371

You may use the database system monitor to help you size the primary log
files.

For more information see the following monitor element descriptions in the
System Monitor Guide and Reference:
v sec_log_used_top (maximum secondary log space used)

v tot_log_used_top (maximum total log space used)

v sec_logs_allocated (secondary logs allocated currently)

Observation of these monitor values over a period of time will aid in better
tuning decisions, as average values may be more representative of your
ongoing requirements.

Number of Secondary Log Files (logsecond)

Configuration Type Database

Parameter Type Configurable

Default [Range] 2 [0 – 126]

Unit of Measure Counter

When Allocated As needed when logprimary is insufficient (see
detail below)

When Freed Over time as the database manager
determines they will no longer be required.

Related Parameters

v “Size of Log Files (logfilsiz)” on page 368

v “Number of Primary Log Files
(logprimary)” on page 370

v “Log Retain Enable (logretain)” on page 378

v “User Exit Enable (userexit)” on page 379

This parameter specifies the number of secondary log files that are created
and used for recovery log files (only as needed). When the primary log files
become full, the secondary log files (of size logfilsiz) are allocated one at a time
as needed, up to a maximum number as controlled by this parameter. An
error code will be returned to the application, and the database will be
shutdown, if more secondary log files are required than are allowed by this
parameter.

See “Number of Primary Log Files (logprimary)” on page 370 for more
information about how secondary logs are used.

372 Administration Guide: Performance

Recommendation: Use secondary log files for databases that have periodic
needs for large amounts of log space. For example, an application that is run
once a month may require log space beyond that provided by the primary log
files. Since secondary log files do not require permanent file space they are
advantageous in this type of situation.

Change the Database Log Path (newlogpath)

Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any valid path or device]

Related Parameters

v “Location of Log Files (logpath)” on
page 374

v “Database is Consistent
(database_consistent)” on page 397

This parameter allows you to specify a string of up to 242 bytes to change the
location where the log files are stored. The string can point to either a path
name, or to a raw device. If the string points to a path name, it must be a
fully qualified path name, not a relative path name.

Note: In a partitioned database environment, the node number is
automatically appended to the path. This is done to maintain the
uniqueness of the path in multiple logical node configurations.

To specify a device, specify a string that the operating system identifies as a
device. For example:

v On Windows NT, \\.\d: or \\.\PhysicalDisk5

Note: You must have Windows NT Version 4.0 with Service Pack 3
installed to be able to write logs to a device.

v On UNIX-based platforms, /dev/rdblog8

Note: You can only specify a device on AIX, Windows NT, and Solaris
platforms.

The new setting does not become the value of logpath until both of the
following occur:
v The database is in a consistent state, as indicated by the database_consistent

parameter.
v All users are disconnected from the database

Chapter 12. Configuring DB2 373

When the first new connection is made to the database, the database manager
will move the logs to the new location specified by logpath.

Recommendation: Ideally, the log files will be on a physical disk which does
not have high I/O. For instance, avoid putting the logs on the same disk as
the operating system or high volume databases. This will allow for efficient
logging activity with a minimum of overhead such as waiting for I/O.

You may use the database system monitor to track the number of I/O’s
related to database logging.

For more information, see the following monitor element descriptions in the
System Monitor Guide and Reference:
v log_reads (number of log pages read)

v log_writes (number of log pages written).

The preceding data elements return the amount of I/O activity related to
database logging. You can use an operating system monitor tool to collect
information about other disk I/O activity, then compare the two types of I/O
activity.

Location of Log Files (logpath)

Configuration Type Database

Parameter Type Informational

Related Parameters “Change the Database Log Path (newlogpath)”
on page 373

This parameter contains the current path being used for logging purposes.
You cannot change this parameter directly as it is set by the database manager
after a change to the newlogpath parameter becomes effective.

When a database is created, the recovery log file for it is created in a
subdirectory of the directory containing the database. The default is a
subdirectory named SQLOGDIR under the directory created for the database.

First Active Log File (loghead)

Configuration Type Database

Parameter Type Informational

This parameter contains the name of the log file that is currently active.

374 Administration Guide: Performance

Database Log Activity

The following parameters can influence the type and performance of database
logging:
v “Number of Commits to Group (mincommit)”

v “Recovery Range and Soft Checkpoint Interval (softmax)” on page 376

v “Log Retain Enable (logretain)” on page 378

v “User Exit Enable (userexit)” on page 379

Number of Commits to Group (mincommit)

Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [1 – 25]

Unit of Measure Counter

This parameter allows you to delay the writing of log records to disk until a
minimum number of commits have been performed. This delay can help
reduce the database manager overhead associated with writing log records
and as a result improve performance when you have multiple applications
running against a database and many commits are requested by the
applications within a very short time frame.

This grouping of commits will only occur when the value of this parameter is
greater than one and when the number of applications connected to the
database is greater than or equal to the value of this parameter. When commit
grouping is being performed, application commit requests are held until either
one second has elapsed or the number of commit requests equals the value of
this parameter.

Changes to the value specified for this parameter take effect immediately; you
do not have to wait until all applications disconnect from the database.

Recommendation: Increase this parameter from its default value if multiple
read/write applications typically request concurrent database commits. This
will result in more efficient logging file I/O as it will occur less frequently and
write more log records each time it does occur.

You could also sample the number of transactions per second and adjust this
parameter to accommodate the peak number of transactions per second (or
some large percentage of it). Accommodating peak activity would minimize
the overhead of writing log records during heavy load periods.

Chapter 12. Configuring DB2 375

If you increase mincommit, you may also need to increase the logbufsz
parameter to avoid having a full log buffer force a write during these heavy
load periods. In this case, the logbufsz should be equal to:

mincommit * (log space used, on average, by a transaction)

You may use the database system monitor to help you tune this parameter in
the following ways:
v Calculating the peak number of transactions per second:

Taking monitor samples throughout a typical day, you can determine your
heavy load periods. You can calculate the total transactions by adding the
following monitor elements:
– commit_sql_stmts (commit statements attempted)

– rollback_sql_stmts (rollback statements attempted)

Using this information and the available timestamps, you can calculate the
number of transactions per second.

v Calculating the log space used per transaction:
Using sampling techniques over a period of time and a number of
transactions, you can calculate an average of the log space used with the
following monitor element:
– log_space_used (unit of work log space used)

For more information about the database system monitor, see the System
Monitor Guide and Reference.

Recovery Range and Soft Checkpoint Interval (softmax)

Configuration Type Database

Parameter Type Configurable

Default [Range] 100 [1 – 100 * logprimary]

Unit of Measure Percentage of total number of primary log
files

Related Parameters

v “Size of Log Files (logfilsiz)” on page 368

v “Number of Primary Log Files
(logprimary)” on page 370

This parameter is used to:

v Influence the number of logs that need to be recovered following a crash
(such as a power failure). For example, if the default value is used, the
database manager will try to keep the number of logs that need to be

376 Administration Guide: Performance

recovered to 1. If you specify 300 as the value of this parameter, the
database manager will try to keep the number of logs that need to be
recovered to 3.
To influence the number of logs required for crash recovery, the database
manager uses this parameter to trigger the page cleaners to ensure that
pages older than the specified recovery window are already written to disk.

v Determine the frequency of soft checkpoints.

At the time of a database failure resulting from an event such as a power
failure, there may have been changes to the database which:
v Have not been committed, but updated the data in the buffer pool
v Have been committed, but have not been written from the buffer pool to

the disk
v Have been committed and written from the buffer pool to the disk.

When a database is restarted, the log files will be used to perform a crash
recovery of the database which ensures that the database is left in a consistent
state (that is, all committed transactions are applied to the database and all
uncommitted transactions are not applied to the database).

To determine which records from the log file need to be applied to the
database, the database manager uses a log control file. This log control file is
periodically written to disk, and, depending on the frequency of this event,
the database manager may be applying log records of committed transactions
or applying log records that describe changes that have already been written
from the buffer pool to disk. These log records have no impact on the
database, but applying them introduces some overhead into the database
restart process.

The log control file is always written to disk when a log file is full, and
during soft checkpoints. You can use this configuration parameter to trigger
additional soft checkpoints.

The timing of soft checkpoints is based on the difference between the “current
state” and the “recorded state”, given as a percentage of the logfilsiz. The
“recorded state” is determined by the oldest valid log record indicated in the
log control file on disk, while the “current state” is determined by the log
control information in memory. (The oldest valid log record is the first log
record that the recovery process would read.) The soft checkpoint will be
taken if the value calculated by the following formula is greater than or equal
to the value of this parameter:

((space between recorded and current states) / logfilsiz) * 100 * logprimary

Recommendation: You may want to increase or reduce the value of this
parameter, depending on whether your acceptable recovery window is greater

Chapter 12. Configuring DB2 377

than or less than one log file. Lowering the value of this parameter will cause
the database manager both to trigger the page cleaners more often and to take
more frequent soft checkpoints. These actions can reduce both the number of
log records that need to be processed and the number of redundant log
records that are processed during crash recovery.

Note however, that more page cleaner triggers and more frequent soft
checkpoints increase the overhead associated with database logging, which
can impact the performance of the database manager. Also, more frequent soft
checkpoints may not reduce the time required to restart a database, if you
have:
v Very long transactions with few commit points.
v A very large buffer pool and the pages containing the committed

transactions are not written back to disk very frequently. (Note that the use
of asynchronous page cleaners can help avoid this situation. See “Number
of Asynchronous Page Cleaners (num_iocleaners)” on page 346.)

In both of these cases, the log control information kept in memory does not
change frequently and there is no advantage in writing the log control
information to disk, unless it has changed.

Log Retain Enable (logretain)

Configuration Type Database

Parameter Type Configurable

Default [Range] No [Recovery; Capture; No]

Related Parameters

v “User Exit Enable (userexit)” on page 379

v “Log Retain Status Indicator
(log_retain_status)” on page 398

v “Backup Pending Indicator
(backup_pending)” on page 397

The values are as follows:

v No, to indicate that logs are not retained.
v Recovery, to indicate that the logs are retained, and can be used for forward

recovery. In addition, if you are using data replication, the Capture program
can write the updates recorded in the logs to the change table.

v Capture, to indicate that the logs are only retained so that the Capture
program can write the updates to the change table. You cannot use the logs
for forward recovery.

378 Administration Guide: Performance

If logretain is set to “Recovery” or userexit is set to “Yes”, the active log files
will be retained and become online archive log files for use in roll-forward
recovery. This is called log retention logging.

After logretain is set to “Recovery” or userexit is set to “Yes” (or both), you
must make a full backup of the database. This state is indicated by the
backup_pending flag parameter.

If logretain is set to “No” and userexit is set to “No”, roll-forward recovery is
not available for the database.

When logretain is set to “Capture”, the Capture program calls the PRUNE
LOGFILE command to delete log files when the Capture program completes.
You should not set logretain to “Capture” if you want to perform roll-forward
recovery on the database.

If logretain is set to “No” and userexit is set to “No”, logs are not retained. In
this situation, the database manager deletes all log files in the logpath directory
(including online archive log files), allocates new active log files, and reverts
to circular logging.

User Exit Enable (userexit)

Configuration Type Database

Parameter Type Configurable

Default [Range] No [Yes; No]

Related Parameters

v “Log Retain Enable (logretain)” on page 378

v “User Exit Status Indicator
(user_exit_status)” on page 398

v “Backup Pending Indicator
(backup_pending)” on page 397

If this parameter is enabled, log retention logging is performed regardless of
how the logretain parameter is set. This parameter also indicates that a user
exit program should be used to archive and retrieve the log files. Log files are
archived when the database manager closes the log file. They are retrieved
when the ROLLFORWARD utility needs to use them to restore a database.

After logretain, or userexit, or both of these parameters are enabled, you must
make a full backup of the database. This state is indicated by the
backup_pending flag parameter.

Chapter 12. Configuring DB2 379

If both of these parameters are de-selected, roll-forward recovery becomes
unavailable for the database because logs will no longer be retained. In this
case, the database manager deletes all log files in the logpath directory
(including online archive log files), allocates new active log files, and reverts
to circular logging.

Refer to “User Exit for Database Recovery” in the Administration Guide, Design
and Implementation for more information on the user exit program.

Recovery

The following parameters affect various aspects of database recovery:
v “Auto Restart Enable (autorestart)”

v “Index Re-creation Time (indexrec)” on page 381

v “Default Number of Load Recovery Sessions (dft_loadrec_ses)” on page 382

v “Recovery History Retention Period (rec_his_retentn)” on page 383

v “Number of Database Backups (num_db_backups)” on page 383

See also “Distributed Unit of Work Recovery” on page 386.

The following parameters are used when working with ADSTAR Distributed
Storage Manager (ADSM):

v “ADSTAR Distributed Storage Manager Management Class
(adsm_mgmtclass)” on page 384

v “ADSTAR Distributed Storage Manager Password (adsm_password)” on
page 384

v “ADSTAR Distributed Storage Manager Node Name (adsm_nodename)” on
page 385

v “ADSTAR Distributed Storage Manager Owner Name (adsm_owner)” on
page 385

Auto Restart Enable (autorestart)

Configuration Type Database

Parameter Type Configurable

Default [Range] On [On; Off]

When this parameter is set on, the database manager automatically calls the
restart database utility, if needed, when an application connects to a database.
Crash recovery is the operation performed by the restart database utility. It is
performed if the database terminated abnormally while applications were

380 Administration Guide: Performance

connected to it. An abnormal termination of the database could be caused by
a power failure or a system software failure. It applies any committed
transactions that were in the database buffer pool but were not written to disk
at the time of the failure. It also backs out any uncommitted transactions that
may have been written to disk.

If autorestart is not enabled, then an application that attempts to connect to a
database which needs to have crash recovery performed (needs to be
restarted) will receive a SQL1015N error. In this case, the application can call
the restart database utility, or you can restart the database by selecting the
restart operation of the recovery tool.

Index Re-creation Time (indexrec)

Configuration Type Database and Database Manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range]

UNIX Database Manager
restart [restart; access]

OS/2 and Windows NT Database Manager
access [restart; access]

Database Use system setting [system;
restart; access]

Related Parameters “Auto Restart Enable (autorestart)” on
page 380

This parameter indicates when the database manager will attempt to rebuild
invalid indexes. There are three possible settings for this parameter:

SYSTEM use system setting which will cause invalid indexes to be
rebuilt at the time specified in the database manager
configuration file. (Note: This setting is only valid for database
configurations.)

ACCESS during index access which will cause invalid indexes to be
rebuilt when the index is first accessed.

Chapter 12. Configuring DB2 381

RESTART during database restart which will cause invalid indexes to be
rebuilt when a RESTART DATABASE command is either
explicitly or implicitly issued. Note that a RESTART
DATABASE command is implicitly issued if the autorestart
parameter is enabled.

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

Indexes can become invalid when fatal disk problems occur. If this happens to
the data itself, the data could be lost. However, if this happens to an index,
the index can be recovered by re-creating it. If an index is rebuilt while users
are connected to the database, two problems could occur:

v An unexpected degradation in response time may occur as the index file is
re-created. Users accessing the table and using this particular index would
wait while the index was being rebuilt.

v Unexpected locks may be held after index re-creation, especially if the user
transaction that caused the index to be re-created never performed a
COMMIT or ROLLBACK.

Recommendation: The best choice for this option on a high-user server and if
restart time is not a concern, would be to have the index rebuilt at
DATABASE RESTART time as part of the process of bringing the database
back online after a crash.

Setting this parameter to “ACCESS” will result in a degradation of the
performance of the database manager while the index is being re-created. Any
user accessing that specific index or table would have to wait until the
re-creating is complete.

If this parameter is set to “RESTART”, the time taken to restart the database
will be longer due to index re-creation but normal processing would not be
impacted once the database has been brought back online.

Default Number of Load Recovery Sessions (dft_loadrec_ses)

Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [1 – 30 000]

Unit of Measurement Counter

This parameter specifies the default number of sessions that will be used
during the recovery of a table load. The value should be set to an optimal
number of I/O sessions to be used to retrieve a load copy. The retrieval of a

382 Administration Guide: Performance

load copy is an operation similar to restore. You can override this parameter
through entries in the copy location file specified by the environment variable
DB2LOADREC.

The default number of buffers used for load retrieval is two more than the
value of this parameter. You can also override the number of buffers in the
copy location file.

This parameter is applicable only if roll forward recovery is enabled.

Refer to Data Movement Utilities Guide and Reference for more information
about load recovery.

Number of Database Backups (num_db_backups)

Configuration Type Database

Parameter Type Configurable

Default [Range] 12 [1 – 32768]

Related Parameters “Recovery History Retention Period
(rec_his_retentn)”

This parameter specifies the number of database backups to retain for a
database. After the specified number of backups is reached, old backups are
marked as expired in the recovery history file. Recovery history file entries for
the table space backups and load copy backups that are related to the expired
database backup are also marked as expired. When a backup is marked as
expired, the physical backups can be removed from where they are stored (for
example, disk, tape, ADSM). The next database backup will prune the expired
entries from the recovery history file.

When a database backup is marked as expired in the history file, any
corresponding file backups linked through a DB2 Data Links Manager will be
removed from its archive server.

The rec_his_retentn configuration parameter should be set to a value
compatible with the value of num_db_backups. For example, if num_db_backup
is set to a large value, the value for rec_his_retentn should be large enough to
support that number of backups.

Recovery History Retention Period (rec_his_retentn)

Configuration Type Database

Parameter Type Configurable

Default [Range] 366 [-1; 0 – 30 000]

Chapter 12. Configuring DB2 383

Unit of Measure Days

Related Parameters “Number of Database Backups
(num_db_backups)” on page 383

This parameter is used to specify the number of days that historical
information on backups should be retained. If the recovery history file is not
needed to keep track of backups, restores, and loads, this parameter can be set
to a small number.

If value of this parameter is -1, the recovery history file can only be pruned
explicitly using the available commands or APIs. If the value is not -1, the
recovery history file is pruned after every full database backup.

The value of this parameter will override the value of the num_db_backups
parameter, but rec_his_retentn and num_db_backups must work together. If the
value for num_db_backups is large, the value for rec_his_retentn should be large
enough to support that number of backups.

No matter how small the retention period, the most recent full database
backup plus its restore set will always be kept, unless you use the PRUNE
utility with the FORCE option. For more information about this utility, refer to
the Command Reference.

ADSTAR Distributed Storage Manager Management Class
(adsm_mgmtclass)

Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any string]

The ADSTAR Distributed Storage Manager management class tells how the
ADSM server should manage the backup versions of the objects being backed
up.

The default is that there is no ADSM management class.

The management class is assigned from the ADSTAR Distributed Storage
Manager administrator. Once assigned, you should set this parameter to the
management class name. When performing any ADSM backup, the database
manager uses this parameter to pass the management class to ADSM.

ADSTAR Distributed Storage Manager Password (adsm_password)

Configuration Type Database

Parameter Type Configurable

384 Administration Guide: Performance

Default [Range] Null [any string]

This parameter is used to override the default setting for the password
associated with the ADSTAR Distributed Storage Manager (ADSM) product.
The password is needed to allow you to restore a database that was backed
up to ADSM from another node.

Note: If the adsm_nodename is overridden during a backup done with DB2 (for
example, with the BACKUP DATABASE command), the adsm_password
may also have to be set.

The default is that you can only restore a database from ADSM on the same
node from which you did the backup. It is possible for the adsm_nodename to
be overridden during a backup done with DB2.

Refer to “ADSTAR Distributed Storage Manager” in the Administration Guide,
Design and Implementation for more information on ADSTAR Distributed
Storage Manager.

ADSTAR Distributed Storage Manager Node Name (adsm_nodename)

Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any string]

This parameter is used to override the default setting for the node name
associated with the ADSTAR Distributed Storage Manager (ADSM) product.
The node name is needed to allow you to restore a database that was backed
up to ADSM from another node.

The default is that you can only restore a database from ADSM on the same
node from which you did the backup. It is possible for the adsm_nodename to
be overridden during a backup done through DB2 (for example, with the
BACKUP DATABASE command).

Refer to “ADSTAR Distributed Storage Manager” in the Administration Guide,
Design and Implementation for more information on ADSTAR Distributed
Storage Manager.

ADSTAR Distributed Storage Manager Owner Name (adsm_owner)

Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any string]

Chapter 12. Configuring DB2 385

This parameter is used to override the default setting for the owner associated
with the ADSTAR Distributed Storage Manager (ADSM) product. The owner
name is needed to allow you to restore a database that was backed up to
ADSM from another node. It is possible for the adsm_owner to be overridden
during a backup done through DB2 (for example, with the BACKUP
DATABASE command).

Note: The owner name is case sensitive.

The default is that you can only restore a database from ADSM on the same
node from which you did the backup.

Refer to “ADSTAR Distributed Storage Manager” in the Administration Guide,
Design and Implementation for more information on ADSTAR Distributed
Storage Manager.

Distributed Unit of Work Recovery

The following parameters affect the recovery of Distributed Unit of Work
(DUOW) transactions:
v “Transaction Manager Database Name (tm_database)”

v “Transaction Resync Interval (resync_interval)” on page 387

v “Sync Point Manager Log File Path (spm_log_path)” on page 388

v “Sync Point Manager Name (spm_name)” on page 388

v “Sync Point Manager Log File Size (spm_log_file_sz)” on page 389

v “Sync Point Manager Resync Agent Limit (spm_max_resync)” on page 390

Transaction Manager Database Name (tm_database)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 1ST_CONN [any valid database name]

386 Administration Guide: Performance

This parameter identifies name of the Transaction Manager (TM) database for
each DB2 instance. A TM database can be a local database or a remote
database that is not accessed through DRDA protocols. The TM database is a
database that is used as a logger and coordinator, and is used to perform
recovery for indoubt transactions.

You may set this parameter to 1ST_CONN which will set the TM database to
be the first database to which a user connects.

Refer to “Distributed Databases” in the Administration Guide, Design and
Implementation for more information on distributed unit of work.

Recommendation: For simplified administration and operation you may wish
to create a few databases over a number of instances and use these databases
exclusively as TM databases.

Transaction Resync Interval (resync_interval)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 180 [1 – 60 000]

Unit of Measurement Seconds

This parameter specifies the time interval in seconds for which a Transaction
Manager (TM), Resource Manager (RM) or Sync Point Manager (SPM) should
retry the recovery of any outstanding indoubt transactions found in the TM,
the RM, or the SPM. This parameter is applicable when you have transactions
running in a distributed unit of work (DUOW) environment.

Refer to “Distributed Databases” in the Administration Guide, Design and
Implementation for more information on distributed unit of work.

Recommendation: If, in your environment, indoubt transactions will not
interfere with other transactions against your database, you may wish to
increase the value of this parameter. If you are using a DB2 Connect gateway
to access DRDA2 Application Servers, you should consider the effect indoubt

Chapter 12. Configuring DB2 387

transactions may have at the Application Servers even though there will be no
interference with local data access. If there are no indoubt transactions, the
performance impact will be minimal.

Sync Point Manager Log File Path (spm_log_path)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default sqllib/spmlog [any valid path or device]

This parameter specifies the directory where the Sync Point Manager (SPM)
logs are written. By default, the logs are written to the sqllib/spmlog
directory, which, in a high-volume transaction environment, can cause an I/O
bottleneck. Use this parameter to have the SPM log files placed on a faster
disk than the current sqllib/spmlog directory. This allows for better
concurrency among the SPM agents.

For more information on the Sync Point Manager, refer to the Installation and
Configuration Supplement.

Refer to “Recovery of Indoubt Transactions on the Host” in the Administration
Guide, Design and Implementation for more information on recovery of indoubt
DRDA transactions.

Sync Point Manager Name (spm_name)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

388 Administration Guide: Performance

Default Null [any valid database name]

This parameter identifies the name of the Sync Point Manager (SPM) instance
to the database manager. The spm_name must be defined in the system
database directory and, if remote, in the node directory.

For more information on the Sync Point Manager, refer to the Installation and
Configuration Supplement.

Refer to “Recovery of Indoubt Transactions on the Host” in the Administration
Guide, Design and Implementation for more information on recovery of indoubt
DRDA transactions.

Sync Point Manager Log File Size (spm_log_file_sz)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 256 [4 – 1 000]

Unit of Measure Pages (4 KB)

This parameter identifies the Sync Point Manager (SPM) log file size in 4K
pages. The log file is contained in the spmlog sub-directory under sqllib and
is created the first time SPM is started.

For more information on the Sync Point Manager, refer to the Installation and
Configuration Supplement.

Refer to “Recovery of Indoubt Transactions on the Host” in the Administration
Guide, Design and Implementation for more information on recovery of indoubt
DRDA transactions.

Recommendation: The Sync Point Manager log file size should be large
enough to maintain performance, but small enough to prevent wasted space.
The size required depends on the number of transactions using protected
conversations, and how often COMMIT or ROLLBACK is issued.

To change the size of the SPM log file:

Chapter 12. Configuring DB2 389

1. Determine that there are no indoubt transactions by using the LIST DRDA
INDOUBT TRANSACTIONS command.

2. If there are none, stop the database manager.
3. Update the Database Manager Configuration with a new SPM log file size.
4. Go to the $HOME/sqllib directory and issue rm -fr spmlog to delete the

current SPM log. (Note: This shows the AIX command. Other systems may
require a different remove or delete command.)

5. Start the database manager. (A new SPM log of the specified size is created
during the startup of the database manager.)

Sync Point Manager Resync Agent Limit (spm_max_resync)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 20 [10 – 256]

This parameter identifies the number of agents that can simultaneously
perform resync operations.

Refer to “Recovery of Indoubt Transactions on the Host” in the Administration
Guide, Design and Implementation for more information on recovery of indoubt
DRDA transactions.

For more information on the Sync Point Manager, refer to the Installation and
Configuration Supplement.

Database Management

A number of parameters are available which provide information about your
database or influence the management of your database. These are grouped as
follows:
v “Attributes” on page 391

v “DB2 Data Links Manager” on page 394

v “Status” on page 396

390 Administration Guide: Performance

v “Compiler Settings” on page 399.

Attributes

The following parameters provide general information about the database:
v “Configuration File Release Level (release)”

v “Database Release Level (database_level)”

v “Territory for the Database (territory)” on page 392

v “Country code for the Database (country)” on page 392

v “Codeset for the Database (codeset)” on page 392

v “Code Page for the Database (codepage)” on page 392

v “Collating Information (collate_info)” on page 393

v “Copy Protection Enable (copyprotect)” on page 393

With the exception of copyprotect, these parameters are provided for
informational purposes only.

Configuration File Release Level (release)

Configuration Type Database manager, Database

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Informational

Related Parameters “Database Release Level (database_level)”

This parameter specifies the release level of the configuration file.

Database Release Level (database_level)

Configuration Type Database

Parameter Type Informational

Related Parameters “Configuration File Release Level (release)”

Chapter 12. Configuring DB2 391

This parameter indicates the release level of the database manager which can
use the database. In the case of an incomplete or failed migration, this
parameter will reflect the release level of the unmigrated database and may
differ from the release parameter (the release level of the database
configuration file). Otherwise the value of database_level will be identical to
value of the release parameter.

Territory for the Database (territory)

Configuration Type Database

Parameter Type Informational

Related Parameters “Country code for the Database (country)”

This parameter shows the territory used to create the database. Territory is
used by the database manager to determine country parameter values. For
more information about how the database manager uses the territory, see the
Quick Beginnings .

Country code for the Database (country)

Configuration Type Database

Parameter Type Informational

Related Parameters “Territory for the Database (territory)”

This parameter shows the country code used to create the database. The
country parameter is derived based on the territory parameter. For more
information, see the Quick Beginnings .

Codeset for the Database (codeset)

Configuration Type Database

Parameter Type Informational

Related Parameters “Code Page for the Database (codepage)”

This parameter shows the codeset that was used to create the database.
Codeset is used by the database manager to determine codepage parameter
values. For more information about how the database manager uses the
codeset, see the Quick Beginnings .

Code Page for the Database (codepage)

Configuration Type Database

392 Administration Guide: Performance

Parameter Type Informational

Related Parameters “Codeset for the Database (codeset)” on
page 392

This parameter shows the code page that was used to create the database. The
codepage parameter is derived based on the codeset parameter. For more
information, see the Quick Beginnings .

Collating Information (collate_info)

This parameter can only be displayed using the GET DATABASE
CONFIGURATION API. It cannot be displayed through the command line
processor or the Control Center.

Configuration Type Database

Parameter Type Informational

This parameter provides 260 bytes of database collating information. The first
256 bytes specify the database collating sequence, where byte “n” contains the
sort weight of the code point whose underlying decimal representation is “n”
in the code page of the database.

The last 4 bytes contain internal information about the type of the collating
sequence. You can treat it as an integer applicable to the platform of the
database. There are three values:
v 0 – The sequence contains non-unique weights
v 1 – The sequence contains all unique weights
v 2 – The sequence is the identity sequence, for which strings are compared

byte for byte.

If you use this internal type information, you need to consider byte reversal
when retrieving information for a database on a different platform.

You can specify the collating sequence at database creation time.

Copy Protection Enable (copyprotect)

Configuration Type Database

Parameter Type Configurable

Default [Range] No [Yes; No]

This parameter enables the copy-protect attribute and is disabled by default.
Prior to Version 2 of the database manager, the default was to enable the
copy-protect attribute.

Chapter 12. Configuring DB2 393

This parameter does not apply to UNIX-based environments.

The backup database and restore database utilities are not affected by the
copyprotect parameter. It is possible to back up a copy-protected database,
restore it to a different workstation, and then catalog and access the database.

Attention: Remove copy-protection from all databases before reinstalling
either the database manager or the operating system. If you do not remove
copy-protection, you will receive an error when you attempt to access the
database. After you have reinstalled, you can enable copy-protection.

DB2 Data Links Manager

The following parameters relate to DB2 Data Links Manager:
v “Data Links Access Token Expiry Interval (dl_expint)”

v “Data Links Number of Copies (dl_num_copies)” on page 395

v “Data Links Time After Drop (dl_time_drop)” on page 395

v “Data Links Token Algorithm (dl_token)” on page 395

v “Data Links Token in Upper Case (dl_upper)” on page 396

v “Enable Data Links Support (datalinks)” on page 396

Data Links Access Token Expiry Interval (dl_expint)

Configuration Type Database

Parameter Type Configurable

Default [Range] 60 [-1, 1 – 31 536 000]

Unit of Measure Seconds

This parameter specifies the interval of time (in seconds) for which the
generated file access control token is valid. The number of seconds the token
is valid begins from the time it is generated. The Data Links Filesystem Filter
checks the validity of the token against this expiry time.

For information about file access control tokens, refer to the DB2 Data Links
Manager Quick Beginnings book.

The default value for this parameter is sixty (60) seconds. Minus one (-1)
implies that the token will effectively not expire.

This parameter applies to the DATALINK columns that specify “READ
PERMISSION DB”.

394 Administration Guide: Performance

Data Links Number of Copies (dl_num_copies)

Configuration Type Database

Parameter Type Configurable

Default [Range] 0 [0 – 15]

This parameter specifies the number of additional copies of a file to be made
in the archive server (such as an ADSM server) when a file is linked to the
database.

The default value for this parameter is zero (0).

This parameter applies to the DATALINK columns that specify
“Recovery=Yes”.

Data Links Time After Drop (dl_time_drop)

Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [0 – 365]

Unit of Measure Days

This parameter specifies the interval of time (in days) files would be retained
on an archive server (such as an ADSM server) after a DROP DATABASE is
issued.

The default value for this parameter is one (1) day. A value of zero (0) means
that the files are deleted immediately from the archive server when the DROP
command or statement is issued. (The actual file is not deleted unless the ON
UNLINK DELETE parameter was specified for the DATALINK column.)

This parameter applies to the DATALINK columns that specify
“Recovery=Yes”.

Data Links Token Algorithm (dl_token)

Configuration Type Database

Parameter Type Configurable

Default [Range] MAC0 [MAC0; MAC1]

This parameter specifies the algorithm used in the generation of DATALINK
file access control tokens. The value of MAC1 (message authentication code)
generates a more secure message authentication code than MAC0, but also has
more performance overhead.

Chapter 12. Configuring DB2 395

For information about file access control tokens, refer to the DB2 Data Links
Manager Quick Beginnings book.

This parameter applies to the DATALINK columns that specify “READ
PERMISSION DB”.

Data Links Token in Upper Case (dl_upper)

Configuration Type Database

Parameter Type Configurable

Default [Range] NO [YES; NO]

The parameter indicates whether the file access control tokens use upper case
letters. A value of “YES” specifies that all letters in an access control token are
upper case. A value of “NO” specifies that the token can contain both upper
case and lower case letters.

For information about file access control tokens, refer to the DB2 Data Links
Manager Quick Beginnings book.

This parameter applies to the DATALINK columns that specify “READ
PERMISSION DB”.

Enable Data Links Support (datalinks)

Configuration Type Database manager

Parameter Type Configurable

Default [Range] NO [YES; NO]

This parameter specifies whether Data Links support is enabled. A value of
“YES” specifies that Data Links support is enabled for Data Links Manager
linking files stored in native filesystems (for example, JFS on AIX). A value of
“NO” specifies that Data Links support is not enabled.

Status

The following parameters provide information about the state of the database:
v “Backup Pending Indicator (backup_pending)” on page 397

v “Database is Consistent (database_consistent)” on page 397

v “Roll Forward Pending Indicator (rollfwd_pending)” on page 397

v “Log Retain Status Indicator (log_retain_status)” on page 398

v “User Exit Status Indicator (user_exit_status)” on page 398

v “Restore Pending (restore_pending)” on page 398

396 Administration Guide: Performance

v “MultiPage File Allocation Enabled (multipage_alloc)” on page 398

Backup Pending Indicator (backup_pending)

Configuration Type Database

Parameter Type Informational

If set on, this parameter indicates that you must do a full backup of the
database before accessing the it. This parameter is only on if the database
configuration is changed so that the database moves from being
nonrecoverable to recoverable (that is, initially both the logretain and userexit
parameters were set to NO, then either one or both of these parameters is set
to YES, and the update to the database configuration is accepted).

Database is Consistent (database_consistent)

Configuration Type Database

Parameter Type Informational

This parameter indicates whether the database is in a consistent state.

YES indicates that all transactions have been committed or rolled back so that
the data is consistent. If the system “crashes” while the database is consistent,
you do not need to take any special action to make the database usable.

NO indicates that a transaction is pending or some other task is pending on
the database and the data is not consistent at this point. If the system
“crashes” while the database is not consistent, you will need to restart the
database using the RESTART DATABASE command to make the database
usable. For more information about the RESTART DATABASE command, see
the Command Reference.

Roll Forward Pending Indicator (rollfwd_pending)

Configuration Type Database

Parameter Type Informational

This parameter can indicate one of the following states:
v DATABASE, meaning that a roll-forward recovery procedure is required for

this database
v TABLESPACE, meaning that one or more table space needs to be rolled

forward
v NO, meaning that the database is usable and no roll-forward recovery is

required.

Chapter 12. Configuring DB2 397

The recovery (using ROLLFORWARD DATABASE) must complete before you
can access the database or table space. For more information about
ROLLFORWARD DATABASE, see the Command Reference.

Log Retain Status Indicator (log_retain_status)

Configuration Type Database

Parameter Type Informational

Related Parameters “Log Retain Enable (logretain)” on page 378

If set, this parameter indicates that log files are being retained for use in
roll-forward recovery.

This parameter is set when the logretain parameter setting becomes active.

User Exit Status Indicator (user_exit_status)

Configuration Type Database

Parameter Type Informational

Related Parameters “User Exit Enable (userexit)” on page 379

If set ON, this indicates that the database manager is enabled for roll-forward
recovery and that the user exit program will be used to archive and retrieve
log files when called by the database manager.

Restore Pending (restore_pending)

Configuration Type Database

Parameter Type Informational

This parameter states whether a RESTORE PENDING status exists in the
database.

MultiPage File Allocation Enabled (multipage_alloc)

Configuration Type Database

Parameter Type Informational

Multipage file allocation is used to improve insert performance. It applies to
SMS table spaces only. If enabled, all SMS table spaces are affected: there is no
selection possible for individual SMS table spaces.

The default for the parameter is NO: multipage file allocation is not enabled.

398 Administration Guide: Performance

Following database creation, the parameter may be set to YES which indicates
that multipage file allocation is enabled. This is done using the db2empfa tool.
Once set to YES, the parameter cannot be changed back to NO.

Compiler Settings

The following parameters provide information to influence the compiler:
v “Continue upon Arithmetic Exceptions (dft_sqlmathwarn)”

v “Default Degree (dft_degree)” on page 400

v “Default Query Optimization Class (dft_queryopt)” on page 401

v “Number of Frequent Values Retained (num_freqvalues)” on page 402

v “Number of Quantiles for Columns (num_quantiles)” on page 403

Continue upon Arithmetic Exceptions (dft_sqlmathwarn)

Configuration Type Database

Parameter Type Configurable

Default [Range] No [No, Yes]

This parameter sets the default value that determines the handling of
arithmetic errors and retrieval conversion errors as errors or warnings during
SQL statement compilation. For static SQL statements, the value of this
parameter is associated with the package at bind time. For dynamic SQL DML
statements, the value of this parameter is used when the statement is
prepared.

Attention: If you change the dft_sqlmathwarn value for a database, the
behavior of check constraints, triggers, and views that include arithmetic
expressions may change. This may in turn have an impact on the data
integrity of the database. You should only change the setting of
dft_sqlmathwarn for a database after carefully evaluating how the new
arithmetic exception handling behavior may impact check constraints, triggers,
and views. Once changed, subsequent changes require the same careful
evaluation.

As an example, consider the following check constraint, which includes a
division arithmetic operation:
A/B > 0

When dft_sqlmathwarn is “No” and an INSERT with B=0 is attempted, the
division by zero is processed as an arithmetic error. The insert operation fails
because DB2 cannot check the constraint. If dft_sqlmathwarn is changed to
“Yes”, the division by zero is processed as an arithmetic warning with a

Chapter 12. Configuring DB2 399

NULL result. The NULL result causes the “>” predicate to evaluate to
UNKNOWN and the insert operation succeeds. If dft_sqlmathwarn is changed
back to “No”, an attempt to insert the same row will fail, because the division
by zero error prevents DB2 from evaluating the constraint. The row inserted
with B=0 when dft_sqlmathwarn was “Yes” remains in the table and can be
selected. Updates to the row that cause the constraint to be evaluated will fail,
while updates to the row that do not require constraint re-evaluation will
succeed.

Before changing dft_sqlmathwarn from “No” to “Yes”, you should consider
rewriting the constraint to explicitly handle nulls from arithmetic expressions.
For example:
(A/B > 0) AND (CASE

WHEN A IS NULL THEN 1
WHEN B IS NULL THEN 1
WHEN A/B IS NULL THEN 0
ELSE 1
END

= 1)

can be used if both A and B are nullable. And, if A or B is not-nullable, the
corresponding IS NULL WHEN-clause can be removed.

Before changing dft_sqlmathwarn from “Yes” to “No”, you should first check
for data that may become inconsistent, for example by using predicates such
as the following:

WHERE A IS NOT NULL AND B IS NOT NULL AND A/B IS NULL

When inconsistent rows are isolated, you should take appropriate action to
correct the inconsistency before changing dft_sqlmathwarn. You can also
manually re-check constraints with arithmetic expressions after the change. To
do this, first place the affected tables in a check pending state (with the OFF
clause of the SET CONSTRAINTS statement), then request that the tables be
checked (with the IMMEDIATE CHECKED clause of the SET CONSTRAINTS
statement). Inconsistent data will be indicated by an arithmetic error, which
prevents the constraint from being evaluated.

Recommendation: Use the default setting of no, unless you specifically
require queries to be processed that include arithmetic exceptions. Then
specify the value of yes. This situation can occur if you are processing SQL
statements that, on other database managers, provide results regardless of the
arithmetic exceptions that occur.

Default Degree (dft_degree)

Configuration Type Database

Parameter Type Configurable

400 Administration Guide: Performance

Default [Range] 1 [-1, 1 – 32 767]

Related Parameters “Maximum Query Degree of Parallelism
(max_querydegree)” on page 423

This parameter specifies the default value for the CURRENT DEGREE special
register and the DEGREE bind option.

The default value is 1.

A value of 1 means no intra-partition parallelism. A value of -1 means the
optimizer determines the degree of intra-partition parallelism based on the
number of processors and the type of query.

The degree of intra-partition parallelism for a SQL statement is specified at
statement compilation time using the CURRENT DEGREE special register or
the DEGREE bind option. The maximum runtime degree of intra-partition
parallelism for an active application is specified using the SET RUNTIME
DEGREE command. The Maximum Query Degree of Parallelism
(max_querydegree) configuration parameter specifies the maximum query
degree of intra-partition parallelism for all SQL queries.

The actual runtime degree used is the lowest of:

v max_querydegree configuration parameter
v application runtime degree
v SQL statement compilation degree

Default Query Optimization Class (dft_queryopt)

Configuration Type Database

Parameter Type Configurable

Default [Range] 5 [0 – 9]

Unit of Measurement Query Optimization Class (see below)

The query optimization class is used to direct the optimizer to use different
degrees of optimization when compiling SQL queries. This parameter
provides additional flexibility by setting the default query optimization class
used when neither the SET CURRENT QUERY OPTIMIZATION statement nor
the QUERYOPT bind command are used.

The query optimization classes currently defined are:
0 - minimal query optimization.
1 - roughly comparable to DB2 Version 1.
2 - slight optimization.

Chapter 12. Configuring DB2 401

3 - moderate query optimization.
5 - significant query optimization with heuristics to limit the effort
expended on selecting an access plan. This is the default.
7 - significant query optimization.
9 - maximal query optimization

Recommendation: For more information and guidance for selecting a suitable
query optimization class, see “Adjusting the Optimization Class” on page 36.

For more information on how a program can retrieve and modify database
configuration parameters, see the Administrative API Reference.

Number of Frequent Values Retained (num_freqvalues)

Configuration Type Database

Parameter Type Configurable

Default [Range] 10 [0 – 32 767]

Unit of Measure Counter

Related Parameters

v “Number of Quantiles for Columns
(num_quantiles)” on page 403

v “Statistics Heap Size (stat_heap_sz)” on
page 324

This parameter allows you to specify the number of “most frequent values”
that will be collected when the WITH DISTRIBUTION option is specified on
the RUNSTATS command. Increasing the value of this parameter increases the
amount of statistics heap (stat_heap_sz) used when collecting statistics.

The “most frequent value” statistics help the optimizer understand the
distribution of data values within a column. A higher value results in more
information being available to the SQL optimizer but requires additional
catalog space. When 0 is specified, no frequent-value statistics are retained,
even if you request that distribution statistics be collected.

Updating this parameter can help the optimizer obtain better selectivity
estimates for some predicates (=, <, >, IS NULL, IS NOT NULL) over data
that is non-uniformly distributed. More accurate selectivity calculations may
result in the choice of more efficient access plans.

After changing the value of this parameter, you need to:

402 Administration Guide: Performance

v Run the RUNSTATS command after all users have disconnected from the
database and you have reconnected to the database

v Rebind any packages containing static SQL.

For more information, see “Collecting and Using Distribution Statistics” on
page 88.

Recommendation: In order to update this parameter you should determine
the degree of non-uniformity in the most important columns (in the most
important tables) that typically have selection predicates. This can be done
using an SQL SELECT statement that provides an ordered ranking of the
number of occurrences of each value in a column. You should not consider
uniformly distributed, unique, long, or LOB columns. A reasonable practical
value for this parameter lies in the range of 10 to 100.

Note that the process of collecting frequent value statistics requires significant
CPU and memory (stat_heap_sz) resources.

Number of Quantiles for Columns (num_quantiles)

Configuration Type Database

Parameter Type Configurable

Default [Range] 20 [0 – 32 767]

Unit of Measure Counter

Related Parameters

v “Number of Frequent Values Retained
(num_freqvalues)” on page 402

v “Statistics Heap Size (stat_heap_sz)” on
page 324

This parameter controls the number of quantiles that will be collected when
the WITH DISTRIBUTION option is specified on the RUNSTATS command.
Increasing the value of this parameter increases the amount of statistics heap
(stat_heap_sz) used when collecting statistics.

The “quantile” statistics help the optimizer understand the distribution of
data values within a column. A higher value results in more information
being available to the SQL optimizer but requires additional catalog space.
When 0 or 1 is specified, no quantile statistics are retained, even if you
request that distribution statistics be collected.

Updating this parameter can help obtain better selectivity estimates for range
predicates over data that is non-uniformly distributed. Among other optimizer

Chapter 12. Configuring DB2 403

decisions, this information has a strong influence on whether an index scan or
a table scan will be chosen. (It is more efficient to use a table scan to access a
range of values that occur frequently and it is more efficient to use an index
scan for a range of values that occur infrequently.)

After changing the value of this parameter, you need to:

v Run the RUNSTATS command after all users have disconnected from the
database and you have reconnected to the database

v Rebind any packages containing static SQL.

For more information, see “Collecting and Using Distribution Statistics” on
page 88.

Recommendation: This default value for this parameter guarantees a
maximum estimation error of approximately 2.5% for any single-sided range
predicate (>, >=, <, or <=), and a maximum error of 5% for any BETWEEN
predicate. A rough rule of thumb for determining the number of quantiles is:

v Determine the maximum error that is tolerable in estimating the number of
rows of any range query, as a percentage, P

v The number of quantiles should be approximately 100/P if most of your
predicates are BETWEEN predicates, and 50/P if most of your predicates
are other types of range predicates (<, <=, >, or >=).

For example, 25 quantiles should result in a maximum estimate error of 4%
for BETWEEN predicates and of 2% for ″>″ predicates. A reasonable practical
value for this parameter lies in the range of 10 to 50.

Communications

The following groups of parameters provide information about using DB2 in a
client/server environment:
v “Communication Protocol Setup”

v “Distributed Services” on page 409

v “DB2 Discovery” on page 414

Communication Protocol Setup

You can use the following parameters to configure your database clients and
database servers:
v “NetBIOS Workstation Name (nname)” on page 405

v “TCP/IP Service Name (svcename)” on page 405

404 Administration Guide: Performance

v “APPC Transaction Program Name (tpname)” on page 406

v “IPX/SPX File Server Name (fileserver)” on page 407

v “IPX/SPX DB2 Server Object Name (objectname)” on page 408

v “IPX/SPX Socket Number (ipx_socket)” on page 408

NetBIOS Workstation Name (nname)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default Null

This parameter allows you to assign a name for each node, or workstation, in
the NetBIOS LAN environment. This nname is the basis for the actual NetBIOS
names that will be registered for a NetBIOS protocol workstation. You must
ensure that each node in the NetBIOS LAN environment has a unique nname.

Since the NetBIOS protocol establishes its communication connections using
these NetBIOS names, the nname parameter must be set for both client and
server nodes.

Client applications must know the nname of the server that contains the
database to be accessed. The server’s nname must be cataloged into the client
node directories as the “server NNAME” parameter using the CATALOG
NETBIOS NODE command, for example.

If nname at the server node changes to a new name, all clients accessing
databases on that server must catalog this new name for the server.

TCP/IP Service Name (svcename)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients

Chapter 12. Configuring DB2 405

v Partitioned Database Server with local and
remote clients

v Satellite Database Server with local clients

Parameter Type Configurable

Default Null

This parameter contains the name of the TCP/IP port which a database server
will use to await communications from remote client nodes. This name must
be the first of two consecutive ports reserved for use by the database
manager; the second port is used to handle interrupt requests from
down-level clients.

In order to accept connection requests from a database client using TCP/IP,
the database server must be listening on a port designated to that server. The
system administrator for the database server must reserve a port (number n)
and define its associated TCP/IP service name in the services file at the server.
If the database server needs to support requests from down-level clients, a
second port (number n+1, for interrupt requests) needs to be defined in the
services file at the server.

The database server port (number n) and its TCP/IP service name need to be
defined in the services file on the database client. Down-level clients also
require the interrupt port (number n+1) to be defined in the client’s services
file.

The location of the services file depends on your operating environment. For
example:
v In UNIX — /etc/services
v In OS/2 — \tcpip\etc\services
v In OS/2 Warp — \mptn\etc\services.

The svcename parameter should be set to the service name associated with the
main connection port so that when the database server is started, it can
determine on which port to listen for incoming connection requests. If you are
supporting or using a down-level client, the service name for the interrupt
port is not saved in the configuration file. The interrupt port number can be
derived based on the main connection port number (interrupt port number =
main connection port + 1).

See the Installation and Configuration Supplement for more information about
setting up TCP/IP for database servers.

APPC Transaction Program Name (tpname)

Configuration Type Database manager

406 Administration Guide: Performance

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default Null

This parameter defines the name of the remote transaction program that the
database client must use when it issues an allocate request to the database
serverwhen using the APPC communication protocol. This parameter must be
set in the configuration file at the database server.

This parameter must be the same as the transaction program name that is
configured in the SNA transaction program definition. See the Installation and
Configuration Supplement for more information about setting up APPC for your
DB2 product.

Recommendation: The only accepted characters for use in this name are:
v Alphabetics (A through Z; or a through z)
v Numerics (0 through 9)
v Dollar sign ($), number sign (#), at sign (@), and period (.)

IPX/SPX File Server Name (fileserver)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default Null

Related Parameters

v “IPX/SPX DB2 Server Object Name
(objectname)” on page 408

v “IPX/SPX Socket Number (ipx_socket)” on
page 408

Chapter 12. Configuring DB2 407

This parameter specifies the name of the NetWare** fileserver where the
internetwork address of the database manager is registered. The internetwork
address of the database manager is stored in the bindery at the NetWare file
server. If the registered fileserver name changes, all clients that access the
server instance must:

v UNCATALOG the server node
v CATALOG the server node, specifying the new fileserver name.

For more information, see the Installation and Configuration Supplement.

IPX/SPX DB2 Server Object Name (objectname)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default Null

Related Parameters

v “IPX/SPX File Server Name (fileserver)” on
page 407

v “IPX/SPX Socket Number (ipx_socket)”

This parameter provides the name of the database manager instance in an
IPX/SPX network. Each server instance registered to a NetWare fileserver
must have a unique name. If this name changes at the database server, all
clients that access the server must uncatalog the server node and recatalog it
again, specifying the new object name.

IPX/SPX Socket Number (ipx_socket)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients

408 Administration Guide: Performance

Parameter Type Configurable

Default [Range] 879E [879E – 87A2] To ensure that there are
no conflicts, five socket numbers (879E to
87A2) are uniquely registered with Novell for
use by DB2.

Related Parameters

v “IPX/SPX File Server Name (fileserver)” on
page 407

v “IPX/SPX DB2 Server Object Name
(objectname)” on page 408

This parameter specifies a “well-known” socket number and represents the
connection end point in a DB2 server’s internetwork address. The socket
number must be unique for each DB2 server instance on a given machine, and
unique among all Novell** IPX/SPX applications running on this same
machine. This is to guarantee that the DB2 server is able to listen to incoming
IPX/SPX connections using this socket number.

Distributed Services

You can use the following parameters to configure your database clients and
database servers to make use of DCE Directory services:
v “Directory Services Type (dir_type)”

v “Directory Path Name in DCE Namespace (dir_path_name)” on page 410

v “Object Name in DCE Namespace (dir_obj_name)” on page 411

v “Routing Information Object Name (route_obj_name)” on page 412

v “Default Client Communication Protocol (dft_client_comm)” on page 413

v “Default Client Adapter Number (dft_client_adpt)” on page 414

For information about how DB2 uses DCE directories, refer to “Using
Distributed Computing Environment (DCE) Directory Services” in
Administration Guide, Design and Implementation.

Directory Services Type (dir_type)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v UNIX and OS/2 Client

Chapter 12. Configuring DB2 409

v UNIX and OS/2 Database Server with local
clients

v Partitioned Database Server with local and
remote clients

Parameter Type Configurable

Default [Range] NONE [NONE; DCE]

Related Parameters

v “Object Name in DCE Namespace
(dir_obj_name)” on page 411

v “Directory Path Name in DCE Namespace
(dir_path_name)”

v “Routing Information Object Name
(route_obj_name)” on page 412

v “Default Client Communication Protocol
(dft_client_comm)” on page 413

v “Default Client Adapter Number
(dft_client_adpt)” on page 414

This parameter indicates whether or not DCE directory services is used.

If this parameter is set to NONE, only local directory files will be searched for
the target of the CONNECT or ATTACH requests. However, you can still use
the dir_path_name and dir_obj_name parameters to record the name of your
database instance and databases in the DCE namespace.

If this parameter is set to DCE, then when an application running within this
database manager instance cannot find the target of its CONNECT or
ATTACH requests, the DCE directory will be searched.

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

Directory Path Name in DCE Namespace (dir_path_name)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v UNIX and OS/2 Client
v UNIX and OS/2 Database Server with local

clients

410 Administration Guide: Performance

v Partitioned Database Server with local and
remote clients

Parameter Type Configurable

Default /.:/subsys/database/

Related Parameters

v “Object Name in DCE Namespace
(dir_obj_name)”

v “Directory Services Type (dir_type)” on
page 409

v “Routing Information Object Name
(route_obj_name)” on page 412

The unique name of the database manager instance in the global namespace is
made up of this value and the value in the dir_obj_name parameter.

All client applications running within this instance also use it as the default
path name for their CONNECT or ATTACH requests, unless it is overridden
by the value of the DB2DIRPATHNAME environment variable.

Recommendation: Use the name provided by your DCE administrator.

Object Name in DCE Namespace (dir_obj_name)

Configuration Type Database manager, Database

Applies to

v Database Server with local and remote
clients

v UNIX and OS/2 Client
v UNIX and OS/2 Database Server with local

clients
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default Null

Related Parameters

v “Directory Services Type (dir_type)” on
page 409

v “Directory Path Name in DCE Namespace
(dir_path_name)” on page 410

Chapter 12. Configuring DB2 411

The object name representing your database manager instance (or your
database) in the directory. The concatenation of this value and the
dir_path_name value yields a global name that uniquely identifies the database
manager instance or database in the namespace governed by the directory
services specified in the dir_type parameter.

This parameter is only meaningful if the dir_path_name parameter is specified.

The total length of the configuration parameters dir_path_name and
dir_obj_name must be less than 255 characters.

Recommendation: Refer to “Using Distributed Computing Environment
(DCE) Directory Services” in the Administration Guide, Design and
Implementation for more information.

Routing Information Object Name (route_obj_name)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default Null

Related Parameters

v “Directory Path Name in DCE Namespace
(dir_path_name)” on page 410

v “Directory Services Type (dir_type)” on
page 409

This parameter specifies the name of the default routing information object
entry that will be used by all client applications attempting to access a DRDA
server. It applies to OS/2 and UNIX-based environments only.

If the value of this parameter starts with /.:/ or /.../, then the value will be used
as is. Otherwise, it will be appended to the dir_path_name parameter (or
DB2DIRPATHNAME environment variable) value to form the full name of
the routing information object.

You can use the environment variable DB2ROUTE to override this default.

412 Administration Guide: Performance

This parameter is only meaningful if the dir_type parameter is set to DCE.

Recommendation: Refer to “Using Distributed Computing Environment
(DCE) Directory Services” in the Administration Guide, Design and
Implementation for more information.

Default Client Communication Protocol (dft_client_comm)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default [Range] Null [Null; TCPIP; APPC; IPXSPX (OS/2
only); NETBIOS (OS/2 only)]

Related Parameters “Directory Services Type (dir_type)” on
page 409

This parameter indicates the communication protocols that the client
applications on this instance can use for remote connections. Its content is a
character string, made up of one or more tokens. If you are specifying more
than one token, separate them with a comma. The order of the tokens is
significant in terms of preference.

This parameter can only be used with DCE, and applies to OS/2 and
UNIX-based environments only.

You can temporarily override the value of this parameter by setting the
DB2CLIENTCOMM environment variable.

If the value of this parameter is NULL and the environment variable has not
been set, the first protocol specified in the server’s global directory object is
used.

This parameter is ignored if dir_type is set to NONE.

Recommendation: The protocol that is used most often should be specified
first.

Chapter 12. Configuring DB2 413

Default Client Adapter Number (dft_client_adpt)

Configuration Type Database manager

Applies To

v Database Server with local and remote
clients

v Client
v Database Server with local clients

Parameter Type Configurable

Default [Range] 0 [0–15]

Related Parameters

v “Default Client Communication Protocol
(dft_client_comm)” on page 413.

v “Directory Services Type (dir_type)” on
page 409. (When dir_type is set to DCE.)

This parameter defines the default client adapter number for the NETBIOS
protocol whose server nname is extracted from DCE Cell Directory Services
(CDS). This parameter is applicable to the OS/2 environment only.

This parameter can only be used with DCE.

You can temporarily override the value of this parameter by setting the
DB2CLIENTADPT environment variable. If this environment variable contains
a non-numeric or out-of-range number, adapter number 0 (zero) is used.

DB2 Discovery

You can use the following parameters to establish DB2 Discovery:
v “Discover Database (discover_db)”

v “Discovery Mode (discover)” on page 415

v “Search Discovery Communications Protocols (discover_comm)” on
page 416

v “Discover Server Instance (discover_inst)” on page 416

Discover Database (discover_db)

Configuration Type Database

Parameter Type Configurable

Default [Range] Enable [Disable, Enable]

414 Administration Guide: Performance

This parameter is used to prevent information about a database from being
returned to a client when a discovery request is received at the server.

The default for this parameter is that discovery is enabled for this database.

By changing this parameter value to Disable, it is possible to hide databases
with sensitive data from the discovery process. This can be done in addition
to other database security controls on the database.

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

Discovery Mode (discover)

Configuration Type Database manager

Applies To

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default [Range] search [disable, known, search]

Related Parameters “Search Discovery Communications Protocols
(discover_comm)” on page 416

This parameter defines the default discovery action when DB2 starts.

The default discovery action is “search”. When this value is specified, DB2
Discovery uses the protocols specified by the discover_comm parameter to
search the network for databases.

If the value “known” is specified, the Client Configuration Assistant allows
you to specify the connection information for a DB2 server on the network,
and returns the databases that it finds on that server.

By selecting “disable” for this parameter, DB2 Discovery is not started on
administration servers, and requests to administration servers and
non-administration servers are not honored.

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

Chapter 12. Configuring DB2 415

For more information on DB2 Discovery, see the Quick Beginnings manual
appropriate to your platform.

Search Discovery Communications Protocols (discover_comm)

Configuration Type Database manager

Applies To

v Client
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default [Range] None [Any combination of NETBIOS and
TCPIP]

Related Parameters “Discovery Mode (discover)” on page 415

This parameter defines the communications protocols that clients use to issue
search discovery requests, and servers use to listen for search discovery
requests. More than one protocol may be specified, separated by commas; or,
the parameter may be left blank.

The default for this parameter is ″None″ meaning that there are no
communications protocols.

Discover Server Instance (discover_inst)

Configuration Type Database manager

Applies To

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default [Range] enable [enable, disable]

This parameter specifies whether this instance can be detected by DB2
Discovery. The default, “enable”, specifies that the instance can be detected,
while “disable” prevents the instance from being discovered.

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

416 Administration Guide: Performance

For more information on DB2 Discovery, see the Quick Beginnings manual
appropriate to your platform.

Parallel

The following groups of parameters provide information about parallel
operations and partitioned database environments:
v “Communications”

v “Parallel Processing” on page 423.

Communications

The following parameters provide information about communications in the
partitioned databaseenvironment:
v “Connection Elapse Time (conn_elapse)”

v “Number of FCM Message Anchors (fcm_num_anchors)” on page 418

v “Number of FCM Buffers (fcm_num_buffers)” on page 418

v “Number of FCM Connection Entries (fcm_num_connect)” on page 420

v “Number of FCM Request Blocks (fcm_num_rqb)” on page 420

v “Node Connection Retries (max_connretries)” on page 421

v “Maximum Time Difference Among Nodes (max_time_diff)” on page 421

v “Start and Stop Timeout (start_stop_time)” on page 422.

Connection Elapse Time (conn_elapse)

Configuration Type Database manager

Applies To Partitioned Database Server with local and
remote clients

Parameter Type Configurable

Default [Range] 10 [0–100]

Unit of Measure Seconds

Related Parameters “Node Connection Retries (max_connretries)”
on page 421

This parameter specifies the number of seconds within which a TCP/IP
connection is to be established between two database partition servers. If the
attempt completes within the time specified by this parameter,
communications are established. If it fails, another attempt is made to

Chapter 12. Configuring DB2 417

establish communications. If the connection is attempted the number of times
specified by the max_connretries parameter and always times out, an error is
issued.

Number of FCM Message Anchors (fcm_num_anchors)

Configuration Type Database manager

Applies To

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] -1 [-1, 128–fcm_num_rqb]

On non-partitioned database systems,
intra_parallel parameter must be active before
this parameter can be used.

Related Parameters

v “Number of FCM Request Blocks
(fcm_num_rqb)” on page 420

v “Enable Intra-Partition Parallelism
(intra_parallel)” on page 424

This parameter specifies the number of FCM message anchors. Agents use the
message anchors to send messages among themselves. The default (-1)
indicates 75 percent of the value specified for fcm_num_rqb.

Number of FCM Buffers (fcm_num_buffers)

Configuration Type Database manager

Applies To

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

418 Administration Guide: Performance

Default [Range] 512, 1 024, or 4 096 [128–65 300]
v Database Server with local and remote

clients: the default is 1 024
v Database Server with local clients: the

default is 512
v Partitioned Database Server with local and

remote clients: the default is 4 096

On single-partition database systems, the
intra_parallel parameter must be active before
this parameter can be used.

This parameter specifies the number of 4 KB buffers that are used for internal
communications (messages) both among and within the database servers in a
partitioned database environment.

Refer to “Enable FCM Communications” in the Administration Guide, Design
and Implementation for more information on FCM.

If you have multiple logical nodes on a processor, you may find it necessary
to increase the value of this parameter. You may also find it necessary to
increase the value of this parameter if you run out of message buffers because
of the number of users on the system, the number of database partition
servers on the system, or the complexity of the applications.

If you are using multiple logical nodes, on non-AIX systems, one pool of
fcm_num_buffers buffers is shared by all the multiple logical nodes on the same
machine, while on AIX:
v If there is enough room in the general memory that is used by the database

manager, the FCM buffer heap will be allocated from there. In this situation,
each database partition server will have fcm_num_buffers buffers of its own;
the database partition servers will not share a pool of FCM buffers (this is
new to DB2 Version 5).

v If there is not enough room in the general memory that is used by the
database manager, the FCM buffer heap will be allocated from a separate
memory area (AIX shared memory set), that is shared by all the multiple
logical nodes on the same machine. One pool of fcm_num_buffers will be
shared by all the multiple logical nodes on the same machine. This is the
same as non-AIX systems and is also the same as DB2 Parallel Edition
Version 1.2 on AIX.

Recommendation for existing Parallel Edition customers on AIX: If you are
using multiple logical nodes, the value of fcm_num_buffers you used in Parallel
Edition Version 1.2 may now result in significantly more storage being used

Chapter 12. Configuring DB2 419

per machine. For example, a four-node multiple logical node configuration
may end up with four times as many FCM buffers as before.

Re-examine the value you are using; consider how many FCM buffers in total
will be allocated on the machine (or machines) where the multiple logical
nodes reside. You may want to change fcm_num_buffers to account for the
behavior described above.

Number of FCM Connection Entries (fcm_num_connect)

Configuration Type Database manager

Applies To

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] -1 [-1, 128–fcm_num_rqb]

On non-partitioned database systems, the
intra_parallel parameter must be active before
this parameter can be used.

Related Parameters “Number of FCM Request Blocks
(fcm_num_rqb)”

This parameter specifies the number of FCM connection entries. Agents use
connection entries to pass data among themselves. The default (-1) indicates
75 percent of the value specified for fcm_num_rqb.

Number of FCM Request Blocks (fcm_num_rqb)

Configuration Type Database manager

Applies To

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

420 Administration Guide: Performance

Default [Range] 256, 512, or 2 048 [128–120 000]
v Database Server with local and remote

clients: the default is 512
v Database Server with local clients: the

default is 256
v Partitioned Database Server with local and

remote clients: the default is 2 048

On non-partitioned database systems, the
intra_parallel parameter must be active before
this parameter can be used.

This parameter specifies the number of FCM request blocks. Request blocks are
the media through which information is passed between the FCM daemon
and an agent, or between agents.

The requirement for request blocks will vary according to the number of users
on the system, the number of database partition servers in the system, and the
complexity of queries that are run. Initially, start with the default number, and
use the results from the Database System Monitor when fine tuning this
parameter.

Node Connection Retries (max_connretries)

Configuration Type Database manager

Applies To Partitioned Database Server with local and
remote clients

Parameter Type Configurable

Default [Range] 5 [0–100]

Related Parameters “Connection Elapse Time (conn_elapse)” on
page 417

If the attempt to establish communication between two database partition
servers fails (for example, the value specified by the conn_elapse parameter is
reached), max_connretries specifies the number of connection retries that can be
made to a database partition server. If the value specified for this parameter is
exceeded, an error is returned.

Maximum Time Difference Among Nodes (max_time_diff)

Configuration Type Database manager

Applies To Partitioned Database Server with local and
remote clients

Chapter 12. Configuring DB2 421

Parameter Type Configurable

Default [Range] 60 [1–1 440]

Unit of Measure Minutes

Each database partition server has its own system clock. This parameter
specifies the maximum time difference, in minutes, that is permitted among
the database partition servers listed in the node configuration file.

If two or more database partition servers are associated with a transaction and
their clocks are not synchronized to within the time specified by this
parameter, the transaction is rejected and a warning or an error message is
logged in the db2diag.log file. (The transaction is rejected only if data
modification is associated with it.)

DB2 Universal Database Enterprise - Extended Edition uses Coordinated
Universal Time, (UTC) so different time zones are not a consideration when
you set this parameter. The Coordinated Universal Time is the same as
Greenwich Mean Time.

Start and Stop Timeout (start_stop_time)

Configuration Type Database manager

Applies To Partitioned Database Server with local and
remote clients

Parameter Type Configurable

Default [Range] 10 [1–1 440]

Unit of Measure Minutes

This parameter is applicable in a partitioned database environment only. It
specifies the time, in minutes, within which all database partition servers must
respond to a DB2START or a DB2STOP command. It is also used as the
timeout value during an ADDNODE operation.

Database partition servers that do not respond to a DB2START command
within the specified time send a message to the db2start error log in the log
subdirectory of the sqllib subdirectory of the home directory for the instance.
You should issue a DB2STOP on these nodes before restarting them.

Database partition servers that do not respond to a DB2STOP command
within the specified time send a message to the db2stop error log in the log
subdirectory of the sqllib subdirectory of the home directory for the instance.
You can either issue DB2STOP for each database partition server that does not
respond, or for all of them. (Those that are already stopped will return stating
that they are stopped.)

422 Administration Guide: Performance

Parallel Processing

The following parameters provide information about parallel processing:
v “Maximum Query Degree of Parallelism (max_querydegree)”

v “Enable Intra-Partition Parallelism (intra_parallel)” on page 424.

Maximum Query Degree of Parallelism (max_querydegree)

Configuration Type Database manager

Applies To

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] -1 (ANY) [ANY, 1–32 767] (ANY means system
determined)

Related Parameters

v “Default Degree (dft_degree)” on page 400

v “Enable Intra-Partition Parallelism
(intra_parallel)” on page 424

This parameter specifies the maximum degree of intra-partition parallelism
that is used for any SQL statement executing on this instance of the database
manager. An SQL statement will not use more than this number of parallel
operations within a partition when the statement is executed. The intra_parallel
configuration parameter must be set to “YES” to enable the database partition
to use intra-partition parallelism.

The default value for this configuration parameter is -1. This value means that
the system uses the degree of parallelism determined by the optimizer;
otherwise, the user-specified value is used.

Note: The degree of parallelism for an SQL statement can be specified at
statement compilation time using the CURRENT DEGREE special
register or the DEGREE bind option.

The maximum query degree of parallelism for an active application can be
modified using the SET RUNTIME DEGREE command. The actual runtime
degree used is the lower of:

Chapter 12. Configuring DB2 423

v max_querydegree configuration parameter
v Application runtime degree
v SQL statement compilation degree

An exception regarding the determination of the actual query degree of
parallelism occurs when creating an index. In this case, if intra_parallel is
“YES” and the table is large enough to benefit from the use of multiple
processors, then creating an index uses the number of online processors (to a
maximum of 6) plus one. There is no effect from the other parameter, bind
option, or special register mentioned above.

Enable Intra-Partition Parallelism (intra_parallel)

Configuration Type Database manager

Applies To

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] NO (0) [SYSTEM (-1), NO (0), YES (1)]

A value of -1 causes the parameter value to be
set to “YES” or “NO” based on the hardware
on which the database manager is running.

Related Parameters “Maximum Query Degree of Parallelism
(max_querydegree)” on page 423

This parameter specifies whether the database manager can use intra-partition
parallelism.

Some of the operations that can take advantage of parallel performance
improvements when this parameter is ″YES″ include database queries and
index creation.

Note: If you change this parameter value, packages may be rebound to the
database. If this occurs, a performance degradation may occur during
the rebinding.

424 Administration Guide: Performance

Instance Management

A number of parameters can help you manage your database
managerinstances. These are grouped into the following categories:
v “Diagnostic”

v “Database System Monitor Parameters” on page 428

v “System Management” on page 429

v “Instance Administration” on page 437

Diagnostic

The following parameters allow you to control diagnostic information
available from the database manager:
v “Diagnostic Error Capture Level (diaglevel)”

v “Diagnostic Data Directory Path (diagpath)” on page 426

v “Notify Level (notifylevel)” on page 427.

Diagnostic Error Capture Level (diaglevel)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] 3 [0 – 4]

Related Parameters “Diagnostic Data Directory Path (diagpath)”
on page 426

The type of diagnostic errors recorded in the error log file is determined by
this parameter. Valid values are:

0 – No diagnostic data captured
1 – Severe errors only
2 – All errors

Chapter 12. Configuring DB2 425

3 – All errors and warnings
4 – All errors, warnings and informational messages

It is the diagpath configuration parameter that is used to specify the directory
that will contain the error log file, event log (on Windows NT only), alert log
file, and any dump files that may be generated based on the value of the
diaglevel parameter.

Recommendation: You may wish to increase the value of this parameter to
gather additional problem determination data to help resolve a problem.

Diagnostic Data Directory Path (diagpath)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] Null [any valid path name]

Related Parameters “Diagnostic Error Capture Level (diaglevel)”
on page 425

This parameter allows you to specify the fully qualified path for DB2
diagnostic information. This directory could possibly contain dump files, trap
files, an error log and an alert log file, depending on your platform.

If this parameter is null, the diagnostic information will be written to files in
one of the following directories or folders:

v For OS/2, Windows, Windows 95, and Windows NT:
– If the DB2INSTPROF environment variable or keyword is not set,

information will be written to x:\SQLLIB\DB2INSTANCE, where x: is the
drive reference in the DB2PATH environment variable or keyword and
DB2INSTANCE is the name of the instance owner.

Note: The directory does not have to be named SQLLIB.

426 Administration Guide: Performance

– If the DB2INSTPROF environment variable or keyword is set,
information will be written to x:\DB2INSTPROF\DB2INSTANCE, where
DB2INSTPROF is the name of the instance profile directory.

v For UNIX-based environments: INSTHOME/sqllib/db2dump, where INSTHOME
is the home directory of the instance owner.

v For Macintosh environments: DB2 folder.

Recommendation: Use the default or have a centralized location for the
diagpath of multiple instances.

In a multinode environment, the path you specify must reside on a shared file
system.

Notify Level (notifylevel)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients on Windows NT

v Client on Windows NT
v Database Server with local clients on

Windows NT
v Partitioned Database Server with local and

remote clients on Windows NT
v Satellite Database Server with local clients

on Windows 95, Windows 98, and Windows
NT

Parameter Type Configurable

Default [Range] 2 [0 – 4]

This parameter specifies the type of errors that are written. For a server of the
satellite node type, errors are written to the notification file called instance.nfy.
For all other node types, this parameter is only available on the Windows NT
platform, and errors are written to the Windows NT event log. The errors can
be written by DB2, the Capture and Apply programs, and user applications.

Valid values for this parameter are:
0 – No diagnostic data captured
1 – Severe errors only
2 – All errors

Chapter 12. Configuring DB2 427

3 – All errors and warnings
4 – All errors, warnings, and informational messages

For a user application to be able to write to the notification file or Windows
NT event log, it must call the db2AdminMsgWrite API. For more information
about this API, refer to the Administrative API Reference.

Recommendation: You may wish to increase the value of this parameter to
gather additional problem determination data to help resolve a problem.

Database System Monitor Parameters

The following parameter allows you to control various aspects of the database
system monitor:
v “Default Database System Monitor Switches (dft_monswitches)”

Default Database System Monitor Switches (dft_monswitches)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default All switches turned off

This parameter is unique in that it allows you to set a number of switches
which are each internally represented by a bit of the parameter. Depending on
the interface you are using to update the database manager configuration, you
may be able to update this parameter directly. You may also update each of
these switches independently by setting the following parameters:

dft_mon_uow Default value of the snapshot monitor’s unit
of work (UOW) switch

dft_mon_stmt Default value of the snapshot monitor’s
statement switch

dft_mon_table Default value of the snapshot monitor’s table
switch

428 Administration Guide: Performance

dft_mon_bufpool Default value of the snapshot monitor’s buffer
pool switch

dft_mon_lock Default value of the snapshot monitor’s lock
switch

dft_mon_sort Default value of the snapshot monitor’s sort
switch

Changes to any of these database system monitor switches take effect
immediately; that is, you do not have to stop and restart the database
manager.

Note: An existing monitoring application will not automatically use the new
default value for a switch. To use the new value (or values), the
application must terminate and re-attach to the instance.

For more information about the snapshot monitor and how it uses monitor
switches, see the System Monitor Guide and Reference.

Recommendation: Any switch that is turned ON instructs the database
manager to collect monitor data related to that switch. Collecting additional
monitor data increases database manager overhead which can impact system
performance.

All monitoring applications inherit these default switch settings when the
application issues its first monitoring request (for example, setting a switch,
activating the event monitor, taking a snapshot). You should turn on a switch
in the configuration file only if you want to collect data starting from the
moment the database manager is started. (Otherwise, each monitoring
application can set its own switches and the data it collects becomes relative
to the time its switches are set.)

System Management

The following parameters relate to system management:
v “Communications Bandwidth (comm_bandwidth)” on page 430

v “CPU Speed (cpuspeed)” on page 430

v “Maximum Number of Concurrently Active Databases (numdb)” on
page 431

v “Transaction Processor Monitor Name (tp_mon_name)” on page 433

v “Machine Node Type (nodetype)” on page 434

v “Default Charge-Back Account (dft_account_str)” on page 435

v “Java Development Kit 1.1 Installation Path (jdk11_path)” on page 436

Chapter 12. Configuring DB2 429

v “Federated Database System Support (federated)” on page 436.

Communications Bandwidth (comm_bandwidth)

Configuration Type Database manager

Applies to Partitioned Database Server with local and
remote clients

Parameter Type Configurable

Default [Range] -1 [.1 – 100 000]

A value of -1 causes the parameter value to be
reset to the default. The default value is
calculated based on whether a high speed
switch is being used.

Unit of Measure Megabytes per second

The value calculated for the communications bandwidth, in megabytes per
second, is used by the SQL optimizer to estimate the cost of performing
certain operations between the database partition servers of a partitioned
database system. The optimizer does not model the cost of communications
between a client and a server, so this parameter should reflect only the
nominal bandwidth between the database partition servers, if any.

You can explicitly set this value to model a production environment on your
test system or to assess the impact of upgrading hardware.

Recommendation: You should only adjust this parameter if you want to
model a different environment.

The communications bandwidth is used by the optimizer in determining
access paths. You should consider rebinding applications (using the REBIND
PACKAGE command) after changing this parameter.

CPU Speed (cpuspeed)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

430 Administration Guide: Performance

Default [Range] -1 [1e-10 – 1] A value of -1 will cause the
parameter value to be reset based on the
running of the measurement program.

The CPU speed, in milliseconds per instruction, is used by the SQL optimizer
to estimate the cost of performing certain operations. The value of this
parameter is set automatically when you install the database manager based
on one of the following:
v Data from the db2spec.dat file located in the cfg sub-directory. For

example, in AIX-based environments this file is located in the
$DB2INSTANCE/sqllib/cfg directory. This file contains SPECint92**
benchmark results. Information from this file will be used if SPECint92
benchmark data can be located for both of the following:
– The machine on which the database manager instance is running
– The IBM RISC System/6000 model 530H. (SPECint92 data is used to

calibrate machines relative to the 530H which is why the data for the
530H is required.)

Note: You may update the db2spec.dat file if you have SYSADM authority.
You should carefully follow the instructions contained in that file.

v Output from a program designed to measure CPU speed. This program is
executed, if benchmark results are not available for any of the following
reasons:
– The platform does not have support for the db2spec.dat file
– The db2spec.dat file is not found
– The data for the IBM RISC System/6000 model 530H is not found in the

file
– The data for your machine is not found in the file.

You can explicitly set this value to model a production environment on your
test system or to assess the impact of upgrading hardware. By setting it to -1,
cpuspeed will be re-computed.

Recommendation: You should only adjust this parameter if you want to
model a different environment.

The CPU speed is used by the optimizer in determining access paths. You
should consider rebinding applications (using the REBIND PACKAGE
command) after changing this parameter.

Maximum Number of Concurrently Active Databases (numdb)

Configuration Type Database manager

Applies to

Chapter 12. Configuring DB2 431

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range]

UNIX 8 [1 – 256]

OS/2 and Windows NT Database Server with
local and remote clients

8 [1 – 256]

OS/2 and Windows NT Database Server with
local clients and Satellite Database Server
with local clients

3 [1 – 256]

Unit of Measure Counter

This parameter specifies the number of local databases that can be
concurrently active (that is, have applications connected to them). In a
partitioned database environment, it limits the number of active database
partitions on a database partition server, whether that server is the
coordinator node for the application or not.

Since each database takes up storage and an active database uses a new
shared memory segment, you can reduce system resource usage by limiting
the number of separate databases on your machine. However, arbitrarily
reducing the number of databases is not the answer. That is, putting all data,
no matter how unrelated, in one database will reduce disk space, but may not
be a good idea. It is generally a good practice to only keep functionally
related information in the same database.

Recommendation: It is generally best to set this value to the actual number of
databases that are already defined to the database manager and to add a
reasonable increment to account for future growth in the number of databases
over the short term (for example, 6 months to 1 year). The actual increment
should not be excessively large, but it should allow you to add new databases
without having to frequently update this parameter.

Changing the numdb parameter may impact the total amount of memory
allocated. As a result, frequent updates to this parameter are not
recommended. When updating this parameter, you should consider the other

432 Administration Guide: Performance

configuration parameters that can allocate memory for a database or an
application connected to that database, including:
v “Buffer Pool Size (buffpage)” on page 305

v “Maximum Storage for Lock List (locklist)” on page 314

v “Application Heap Size (applheapsz)” on page 323

v “Application Control Heap Size (app_ctl_heap_sz)” on page 318

v “Sort Heap Size (sortheap)” on page 320

v “Statement Heap Size (stmtheap)” on page 322

v “Application Support Layer Heap Size (aslheapsz)” on page 332

v “Database Heap (dbheap)” on page 308

v “Database System Monitor Heap Size (mon_heap_sz)” on page 336

v “Statistics Heap Size (stat_heap_sz)” on page 324

Transaction Processor Monitor Name (tp_mon_name)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default

UNIX MTS

OS/2 and Windows NT
CICS

Valid Values CICS; ENCINA; MTS; JTS; CB; SF; TUXEDO;
TOPEND; SYSTEM_NU; blank or some other
value (for UNIX, OS/2, and Windows NT;
none for Solaris or SINIX)

This parameter identifies the name of the transaction processing (TP) monitor
product being used. If applications are run in a CICS environment, this
parameter should be set to “CICS”; if Encina Monitor is being used, this

Chapter 12. Configuring DB2 433

parameter should be set to “ENCINA”; if Microsoft Transaction Server is
being used, this parameter should be set to “MTS”; if Java Transaction Server
is being used, this parameter should be set to“JTS”; if Component Broker is
being used, this parameter should be set to “CB”; if San Francisco is being
used, this parameter should be set to “SF”; if BEA Tuxedo is being used, this
parameter should be set to “TUXEDO”; if AT&T TopEnd is being used, this
parameter should be set to “TOPEND”; if System Nu is being used, this
parameter should be set to “SYSTEM_NU”.

If a different product is being used in a UNIX platform, this parameter should
be blank.

In OS/2 and NT environments, this parameter contains the path and name of
the DLL in an external transaction manager product containing functions
ax_reg and ax_unreg, if an XA Distributed Transaction Processing
environment is being used. Specify “dll-name:C” for CICS, or “dll-name:E” for
ENCINA. The maximum length of the string that can be specified for this
parameter is 19 characters.

Machine Node Type (nodetype)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Informational

This parameter provides information about the DB2 products which you have
installed on your machine and, as a result, information about the type of
database managerconfiguration. The following are the possible values
returned by this parameter and the products associated with that node type:
v Database Server with local and remote clients – a DB2 server product,

supporting local and remote database clients, and capable of accessing other
remote database servers.

v Client – a database client capable of accessing remote database servers.
v Database Server with local clients – a DB2 relational database management

system, supporting local database clients and capable of accessing other,
remote database servers.

434 Administration Guide: Performance

v Partitioned Database Server with local and remote clients – a DB2 server
product, supporting local and remote database clients, and capable of
accessing other remote database servers, and capable of partition
parallelism.

v Satellite Database Server with local clients a DB2 relational database
management system, supporting local database clients and capable of
accessing other, remote database servers.

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

Default Charge-Back Account (dft_account_str)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] Null [any valid string]

With each application connect request, an accounting identifier consisting of a
DB2 Connect-generated prefix and the user supplied suffix is sent from the
application requester to a DRDA application server. This accounting
information provides a mechanism for system administrators to associate
resource usage with each user access.

The suffix is supplied by the application program calling the sqlesact() API
or the user setting the environment variable DB2ACCOUNT. If a suffix is not
supplied by either the API or environment variable, DB2 Connect uses the
value of this parameter as the default suffix value. This parameter is
particularly useful for down-level database clients (anything prior to version
2) that do not have the capability to forward an accounting string to DB2
Connect.

Recommendation: Set this accounting string using the following:
v Alphabetics (A through Z)
v Numerics (0 through 9)
v Underscore (_).

Chapter 12. Configuring DB2 435

Java Development Kit 1.1 Installation Path (jdk11_path)

Configuration Type Database manager

Applies To

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] Null [Valid path]

Related Parameters

v “Maximum Java Interpreter Heap Size
(java_heap_sz)” on page 340

This parameter specifies the directory under which the Java Development Kit
1.1 is installed. The CLASSPATH and other environment variables used by the
Java interpreter are computed from the value of this parameter.

Because there is no default for this parameter, you should specify a value for
this parameter when you install the Java Development Kit.

Federated Database System Support (federated)

Configuration Type Database manager

Applies To

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default [Range] NO [YES; NO]

This parameter enables or disables support for applications submitting
distributed requests for data managed by data sources (such as the DB2
Family and Oracle).

436 Administration Guide: Performance

Instance Administration

The following parameters relate to security and administration of your
database manager instance:
v “System Administration Authority Group Name (sysadm_group)”

v “System Control Authority Group Name (sysctrl_group)” on page 439

v “System Maintenance Authority Group Name (sysmaint_group)” on
page 439

v “Authentication Type (authentication)” on page 440

v “Cataloging Allowed without Authority (catalog_noauth)” on page 442

v “Default Database Path (dftdbpath)” on page 443

v “LOGON Required for DB2START/DB2STOP (ss_logon)” on page 444

v “Trust All Clients (trust_allclnts)” on page 444

v “Trusted Clients Authentication (trust_clntauth)” on page 445

System Administration Authority Group Name (sysadm_group)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default Null

Related Parameters

v “System Control Authority Group Name
(sysctrl_group)” on page 439

v “System Maintenance Authority Group
Name (sysmaint_group)” on page 439

Chapter 12. Configuring DB2 437

System administration (SYSADM) authority is the highest level of authority
within the database manager and controls all database objects. This parameter
defines the group name with SYSADM authority for the database manager
instance.

SYSADM authority is determined by the security facilities used in a specific
operating environment. The following considerations apply when system
security (that is, authorization) is CLIENT, SERVER, or DCS. Considerations
for DCE security are described below.

v In the Windows 95 operating system the SYSADM group must be NULL.
This parameter must be “NULL” for Windows 95 clients when system
security is used because the Windows 95 operating system does not store
group information, thereby providing no way of determining if a user is a
member of a designated SYSADM group. When a group name is specified,
no user is considered to be a member of it and no user is considered to
have administration authority.

v For the Windows NT operating system, this parameter can be set to any
local group that has a name of 16 characters or fewer, and is defined in the
Windows NT security database. If “NULL” is specified for this parameter,
all members of the Administrators group have SYSADM authority.

v For UNIX-based systems, if “NULL” is specified as the value of this
parameter, the SYSADM group defaults to the primary group of the
instance owner.
If the value is not “NULL”, the SYSADM group can be any valid UNIX
group name.

v In OS/2, if the value specified for this parameter is “NULL”, users defined
as administrators in user profile management have SYSADM authority.
If a group name is specified for this parameter, only users who belong to
the group have SYSADM authority. The group specified can be any of the
User Profile Management (user profile management) groups. For more
information on User Profile Management groups, see your DB2 for OS/2
Quick Beginnings book.

If DCE security is used and sysadm_group is “NULL”, the default DCE group
name DB2ADMIN is used. A valid DCE principal whose authid mapping is
DB2ADMIN must already exist. You can specify a different group name (this
also applies for Windows 95 clients).

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG
USING SYSADM_GROUP NULL. You must specify the keyword “NULL” in
uppercase. You can also use the Configure Instance notebook in the DB2
Control Center.

438 Administration Guide: Performance

System Control Authority Group Name (sysctrl_group)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default Null

Related Parameters

v “System Administration Authority Group
Name (sysadm_group)” on page 437

v “System Maintenance Authority Group
Name (sysmaint_group)”

This parameter defines the group name with system control (SYSCTRL)
authority. SYSCTRL has privileges allowing operations affecting system
resources, but not allowing direct access to data.

Attention: This parameter must be NULL for Windows 95 clients when
system security is used (that is, authorization is CLIENT, SERVER, or DCS).
This is because the Windows 95 operating system does not store group
information, thereby providing no way of determining if a user is a member
of a designated SYSCTRL group. When a group name is specified, no user is
considered to be a member of it and no user is considered to have system
control authority. This is not true when DCE authentication is used. In this
situation, group names can be specified.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG
USING SYSCTRL_GROUP NULL. You must specify the keyword “NULL” in
uppercase. You can also use the Configure Instance notebook in the DB2
Control Center.

System Maintenance Authority Group Name (sysmaint_group)

Configuration Type Database manager

Applies to

Chapter 12. Configuring DB2 439

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default Null

Related Parameters

v “System Administration Authority Group
Name (sysadm_group)” on page 437

v “System Control Authority Group Name
(sysctrl_group)” on page 439

This parameter defines the group name with system maintenance
(SYSMAINT) authority. SYSMAINT has privileges to perform maintenance
operations on all databases associated with an instance without having direct
access to data.

Attention: This parameter must be NULL for Windows 95 clients when
system security is used (that is, authorization is CLIENT, SERVER, or DCS).
This is because Windows 95 does not store group information, thereby
providing no way of determining if a user is a member of a designated
SYSMAINT group. When a group name is specified, no user is considered to
be a member of it and no user is considered to have system control authority.
This is not true when DCE authentication is used. In this situation, group
names can be specified.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG
USING SYSMAINT_GROUP NULL. You must specify the keyword “NULL”
in uppercase. You can also use the Configure Instance notebook in the DB2
Control Center.

Authentication Type (authentication)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients

440 Administration Guide: Performance

v Partitioned Database Server with local and
remote clients

v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range] SERVER [CLIENT; SERVER;
SERVER_ENCRYPT, DCS; DCS_ENCRYPT;
DCE; DCE_SERVER_ENCRYPT]

This parameter determines how and where authentication of a user takes
place. If authentication is SERVER, then the user ID and password are sent
from the client to the server so authentication can take place on the server.
The value SERVER_ENCRYPT provides the same behavior as SERVER, except
that any passwords sent over the network are encrypted. A value of CLIENT
indicates that all authentication takes place at the client, so no authentication
needs to be performed at the server. For a client-only node, CLIENT, SERVER,
and DCS are effectively the same. The value DCS_ENCRYPT provides the
same behavior as DCS, except that any passwords sent over the network are
encrypted. A value of DCE means that authentication is performed using DCE
Security Services. If you are using APPC and a communications product that
does not expose the client’s password to the DB2 server, you can specify DCS
to obtain:
v SERVER-type authentication for non-DRDA clients
v CLIENT-type authentication for DRDA clients

Two authentication values support password encryption: SERVER_ENCRYPT
and DCS_ENCRYPT. These values provide the same function as SERVER and
DCS in terms of authentication location, except that any passwords that flow
are encrypted at the source and require decryption at the target, as specified
by the authentication type cataloged at the source. Encrypted and
non-encrypted values with matching authentication locations can then be used
to choose different encryption combinations between the client and gateway
or the gateway and server, without affecting where authentication occurs.
Some examples of how this can be used in a gateway scenario are as follows:

Authentication
Gateway-Server at
Client

Authentication at
Gateway

Authentication
Location

Client-Gateway
Encryption?

Encryption?

SERVER_ENCRYPT SERVER Gateway Yes No

DCS_ENCRYPT DCS Server Yes No

DCS DCS_ENCRYPT Server No Yes

DCS_ENCRYPT DCS_ENCRYPT Server Yes Yes

Chapter 12. Configuring DB2 441

For the numeric equivalents and API constants for these values, refer to the
Administrative API Reference.

The DCE_SERVER_ENCRYPT value is for use on a server only. This value
indicates that the server can accept either DCE authentication or
SERVER_ENCRYPT authentication.

For more information on when and why to use DCE or DCS, and
authentication issues related to federated databases, refer to the “Controlling
Database Access” chapter in Administration Guide, Design and Implementation.

Recommendation: Typically, the default (SERVER) is adequate. If you have
incoming requests that are handled by either DB2 Connect or DCE, refer to
the “Controlling Database Access” chapter in Administration Guide, Design and
Implementation.

Cataloging Allowed without Authority (catalog_noauth)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Client
v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range]

Database Server with local and remote
clients; Database Server with local and
remote clients

NO [NO (0) – YES (1)]

Client; Database Server with local clients;
Satellite Database Server with local clients

YES [NO (0) – YES (1)]

This parameter specifies whether users are able to catalog and uncatalog
databases and nodes, or DCS and ODBC directories, without SYSADM
authority. The default value (0) for this parameter indicates that SYSADM
authority is required. When this parameter is set to 1 (yes), SYSADM
authority is not required.

442 Administration Guide: Performance

Default Database Path (dftdbpath)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients
v Satellite Database Server with local clients

Parameter Type Configurable

Default [Range]

UNIX Home directory of instance
owner [any existing path]

OS/2 and Windows NT
Drive on which DB2 is
installed [any existing path]

This parameter contains the default file path used to create databases under
the database manager. If no path is specified when a database is created, the
database is created under the path specified by the dftdbpath parameter.

In a partitioned database environment, you should ensure that the path on
which the database is being created is not an NFS-mounted path (on
UNIX-based platforms), or a network drive (in the Windows NT
environment). The specified path must physically exist on each database
partition server. To avoid confusion, it is best to specify a path that is locally
mounted on each database partition server. The maximum length of the path
is 205 characters. The system appends the node name to the end of the path.

Given that databases can grow to a large size and that many users could be
creating databases (depending on your environment and intentions), it is often
convenient to be able to have all databases created and stored in a specified
location. It is also good to be able to isolate databases from other applications
and data both for integrity reasons and for ease of backup and recovery.

For UNIX-based environments, the length of the dftdbpath name cannot exceed
215 characters and must be a valid, absolute, path name. For OS/2 and
Windows NT, the dftdbpath can be a drive letter, optionally followed by a
colon.

Chapter 12. Configuring DB2 443

Recommendation: If possible, put high volume databases on a different disk
than other frequently accessed data, such as the operating system files and the
database logs.

LOGON Required for DB2START/DB2STOP (ss_logon)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients

Parameter Type Configurable

Default [Range] YES [NO (0), YES (1)]

This parameter is applicable to the OS/2 environment only. By accepting the
default for this parameter, a LOGON user ID and password is required before
issuing a DB2START or DB2STOP.

Trust All Clients (trust_allclnts)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default [Range] YES [NO, YES, DRDAONLY]

Related Parameters

v “Authentication Type (authentication)” on
page 440

v “Trusted Clients Authentication
(trust_clntauth)” on page 445

This parameter is only active when the authentication parameter is set to
CLIENT.

This parameter and trust_clntauth are used to determine where users are
validated to the database environment.

444 Administration Guide: Performance

By accepting the default of “YES” for this parameter, all clients are treated as
trusted clients. This means that the server assumes that a level of security is
available at the client and the possibility that users can be validated at the
client.

This parameter can only be changed to “NO” if the authentication parameter is
set to CLIENT. If this parameter is set to “NO”, the untrusted clients must
provide a userid and password combination when they connect to the server.
Untrusted clients are operating system platforms that do not have a security
subsystem for authenticating users.

Setting this parameter to “DRDAONLY” protects against all clients except
DRDA clients from DB2 for MVS and OS/390, DB2 for VM and VSE, and DB2
for OS/400. Only these clients can be trusted to perform client-side
authentication. All other clients must provide a user ID and password to be
authenticated by the server.

When trust_allclnts is set to “DRDAONLY”, the trust_clntauth parameter is
used to determine where the clients are authenticated. If trust_clntauth is set to
“CLIENT”, authentication occurs at the client. If trust_clntauth is set to
“SERVER”, authentication occurs at the client if no password is provided, and
at the server if a password is provided.

Refer to “Selecting an Authentication Method for Your Server” in the
Administration Guide, Design and Implementation for more information on
trusted clients.

Trusted Clients Authentication (trust_clntauth)

Configuration Type Database manager

Applies to

v Database Server with local and remote
clients

v Database Server with local clients
v Partitioned Database Server with local and

remote clients

Parameter Type Configurable

Default [Range] CLIENT [CLIENT, SERVER]

Related Parameters

v “Authentication Type (authentication)” on
page 440

v “Trust All Clients (trust_allclnts)” on
page 444

Chapter 12. Configuring DB2 445

This parameter specifies whether a trusted client is authenticated at the server
or the client when the client provides a userid and password combination for
a connection. This parameter (and trust_allclnts) is only active if the
authentication parameter is set to CLIENT. If a user ID and password are not
provided, the client is assumed to have validated the user, and no further
validation is performed at the server.

If this parameter is set to “CLIENT” (the default), the trusted client can
connect without providing a userid and password combination, and the
assumption is that the operating system has already authenticated the user. If
it is set to “SERVER”, the user ID and password will be validated at the
server.

The numeric value for CLIENT is 0. The numeric value for SERVER is 1.

Refer to “Selecting an Authentication Method for Your Server” in the
Administration Guide, Design and Implementation for more information on
trusted clients.

446 Administration Guide: Performance

Part 4. Appendixes

© Copyright IBM Corp. 1993, 1999 447

448 Administration Guide: Performance

Appendix A. DB2 Registry and Environment Variables

The following is a list of DB2 registry variables and environment variables
that you may need to know about to get up and running. Each has a brief
description; some may not apply to your environment.

You can view a list of all supported registry variables by using:
db2set -lr

You can change the value for a variable for the current session by using:
db2set registry_variable_name=new_value

To update environment variables, the set command must be used and then
the system rebooted.

The values for the changed registry variables must be set before the
DB2START command is issued. Refer to Administration Guide, Design and
Implementation for more information on changing and using registry variables.

Parameter Operating
System

Values Description

General

DB2ACCOUNT All Default=null The accounting string that is sent
to the remote host. Refer to the
DB2 Connect User’s Guide for
details.

DB2BIDI All Default=NO

Values: YES or
NO

This variable enables bidirectional
support and the db2codepage
variable is used to declare the
code page to be used. Refer to the
Administration Guide, Design and
Implementation in the National
Language Support appendix for
additional information on
bidirectional support.

© Copyright IBM Corp. 1993, 1999 449

Parameter Operating
System

Values Description

DB2CODEPAGE All Default: derived
from the
language ID, as
specified by the
operating
system.

Specifies the code page of the data
presented to DB2 for database
client application. The user should
not set db2codepage unless
explicitly stated in DB2
documents, or asked to do so by
DB2 service. Setting db2codepage to
a value not supported by the
operating system can produce
unexpected results. Normally, you
do not need to set db2codepage
because DB2 automatically derives
the code page information from
the operating system.

DB2COUNTRY All Default: derived
from the
language ID, as
specified by the
operating
system.

Specifies the country code of the
client application, which influences
date and time formats.

DB2DBDFT All Default=null Specifies the database alias name
of the database to be used for
implicit connects. If an application
has no database connection but
SQL statements are issued, an
implicit connect will be made
provided the DB2DBDFT
environment variable has been
defined with a default database.

DB2DBMSADDR Windows
32-bit
operating
systems

Default=
0x20000000 for
Windows NT,
0x90000000 for
Windows 95

Value:
0x20000000 to
0xB0000000 in
increments of
0x10000

Specifies the default database
manager shared memory address
in hexadecimal format. If db2start
fails due to a shared memory
address collision, this registry
variable can be modified to force
the database manager instance to
allocate its shared memory at a
different address.

DB2DISCOVERYTIME OS/2 and
Windows
32-bit
operating
systems

Default=40
seconds,

Minimum=20
seconds

Specifies the amount of time that
SEARCH discovery will search for
DB2 systems.

450 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2DMNBCKCTLR Windows
NT

Default=null If DB2 is installed on a backup
domain controller, setting this
parmeter to YES allows DB2 to use
the security database on the
backup domain controller. This
reduces LAN traffic.
Note: A backup domain controller
shadows the security database on
the primary domain controller.

DB2INCLUDE All Default=current
directory

Specifies a path to be used during
the processing of the SQL
INCLUDE text-file statement
during DB2 PREP processing. It
provides a list of directories where
the INCLUDE file might be found.
Refer to the Application
Development Guide for descriptions
of how db2include is used in the
different precompiled languages.

DB2INSTDEF OS/2 and
Windows
32-bit
operating
systems

Default=DB2 Sets the value to be used if
DB2INSTANCE is not defined.

DB2INSTOWNER Windows
NT

Default=null The registry variable created in the
DB2 profile registry when the
instance is first created. This
variable is set to the name of the
instance-owning machine.

DB2_LIC_STAT_SIZE All Default=null

Range: 0 to 32767

The registry variable is used to
determine the maximum size (in
MBs) of the file containing the
license statistics for the system. A
value of zero turns the license
statistic gathering off. If the
variable is not recognized or not
defined, the variable defaults to
unlimited. The statistics are
displayed using the license center.

Appendix A. DB2 Registry and Environment Variables 451

Parameter Operating
System

Values Description

DB2NBDISCOVERRCVBUFS All Default=16
buffers,

Minimum=16
buffers

This variable is used for NetBIOS
search discovery. The variable
specifies the number of concurrent
discovery responses that can be
received by a client. If the client
receives more concurrent
responses than are specified by
this variable, then the excess
responses are discarded by the
NetBIOS layer. The default is
sixteen (16) NetBIOS receive
buffers. If a number less than the
default value is chosen, then the
default is used.

DB2OPTIONS All except
Windows
3.1 and
Macintosh

Default=null Sets command line processor
options.

DB2SLOGON Windows
3.x

Default=null,

Values: YES or
NO

Enables a secure logon in DB2 for
Windows 3.x. If db2slogon=YES DB2
does not write user IDs and
passwords to a file, but instead
uses a segment of memory to
maintain them. When db2slogon is
enabled, the user must logon each
time Windows 3.x is started.

DB2TIMEOUT Windows
3.x and
Macintosh

Default=(not set) Used to control the timeout period
for Windows 3.x and Macintosh
clients during long SQL queries.
After the timeout period has
expired a dialog box pops up
asking if the query should be
interrupted or allowed to continue.
The minimum value for this
variable is 30 seconds. If
db2timeout is set to a value
between 1 and 30, the default
minimum value will be used. If
db2timeout is set to a value of 0, or
a negative value, the timeout
feature is disabled. This feature is
disabled by default.

452 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2TRACENAME Windows
3.x and
Macintosh

Default=
DB2WIN.TRC
(on Windows
3.x),
DB2MAC.TRC
(on Macintosh)

On Windows 3.x and Macintosh,
specifies the name of the file
where trace information is stored.
The default for each system is
saved in your current instance
directory (for example,
\sqllib\db2). We strongly
recommend that you specify the
full path name when naming the
trace file.

DB2TRACEON Windows
3.x and
Macintosh

Default=NO

Values: YES or
NO

On Windows 3.x and Macintosh,
turns trace on to provide
information to IBM in case of a
problem. (It is not recommended
that you turn trace on unless you
encounter a problem you cannot
resolve.) Refer to the
Troubleshooting Guide for
information on using the trace
facility with clients.

DB2TRCFLUSH Windows
3.x and
Macintosh

Default=NO

Values: YES or
NO

On Windows 3.x and Macintosh,
db2trcflush can be used in
conjunction with db2traceon=YES.
Setting db2trcflush=YES will cause
each trace record to be written
immediately into the trace file.
This will slow down your DB2
system considerably, so the default
setting is db2trcflush=NO. This
setting is useful in cases where an
application hangs the system and
requires the system to be rebooted.
Setting this keyword guarantees
that the trace file and trace entries
are not lost by the reboot.

DB2TRCSYSERR Windows
3.x and
Macintosh

Default=1

Values: 1-32767

Specifies the number of system
errors to trace before the client
turns off tracing. The default value
traces one system error, after
which, trace is turned off.

Appendix A. DB2 Registry and Environment Variables 453

Parameter Operating
System

Values Description

DB2YIELD Windows
3.x

Default=NO

Values: YES or
NO

Specifies the behavior of the
Windows 3.x client while
communicating with a remote
server. When set to NO, the client
will not yield the CPU to other
Windows 3.x applications, and the
Windows environment is halted
while the client application is
communicating with the remote
server. You must wait for the
communications operation to
complete before you can resume
any other tasks. When set to YES,
your system functions as normal.
It is recommended that you try to
run your application with
db2yield=YES. If your system
crashes, you will need to set
db2yield=NO. For application
development, ensure your
application is written to accept
and handle Windows messages
while waiting for a
communications operation to
complete.

System Environment

DB2CONNECT_IN_APP_PROCESS All Default=YES

Values: YES or
NO

When setting this variable to NO,
local DB2 Connect clients on a
DB2 Connect Enterprise Edition
machine are forced to run within
an agent. Some advantages of
running within an agent are that
local clients are able to be
monitored and that they can use
SYSPLEX support.

454 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2ENVLIST UNIX Default: null Lists specific variable names for
either stored procedures or
user-defined functions. By default,
the db2start command filters out
all user environment variables
except those prefixed with DB2 or
db2. If specific registry variables
must be passed to either stored
procedures or user-defined
functions, you can list the variable
names in the db2envlist registry
variable. Separate each variable
name by one or more spaces. DB2
constructs its own PATH and
LIBPATH, so if PATH or LIBPATH
is specified in db2envlist, the actual
value of the variable name is
appended to the end of the
DB2-constructed value.

DB2INSTANCE All Default=db2instdef
on OS/2 and
Windows 32-bit
operating
systems.

The environment variable used to
specify the instance that is active
by default. On UNIX, users must
specify a value for DB2INSTANCE.

DB2INSTPROF OS/2,
Windows
3.x, and
Windows
32-bit
operating
systems

Default: null The environment variable used to
specify the location of the instance
directory on OS/2, Windows 3.x,
and Windows 32-bit operating
systems, if different than
DB2PATH.

Appendix A. DB2 Registry and Environment Variables 455

Parameter Operating
System

Values Description

DB2LIBPATH UNIX Default: null Specifies the value or LIBPATH in
the db2libpath registry variable. The
value of LIBPATH cannot be
inherited between parent and child
processes if the user ID has
changed. Since the db2start
executable is owned by root, DB2
cannot inherit the LIBPATH
settings of end users. If you list
the variable name, LIBPATH, in
the db2envlist registry variable, you
must also specify the value of
LIBPATH in the db2libpath registry
value. The db2start executable
then reads the value of db2libpath
and append this value to the end
of the DB2-constructed LIBPATH.

DB2NODE All Used to specify the target logical
node of a DB2 Extended
Enterprise Edition database
partition server that you want to
connect to. If this variable is not
set, the target logical node defaults
to the logical node which is
defined with port 0 on the
machine.

DB2PATH OS/2,
Windows
3.x, and
Windows
32-bit
operating
systems

Default: (varies
by operating
system)

The environment variable used to
specify the directory where the
product is installed on OS/2,
Windows 3.x, and Windows 32-bit
operating systems.

Communications

456 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2CHECKCLIENTINTERVAL AIX, server
only

Default=0

Values: A
numeric value
greater than zero.

Used to verify the status of APPC
client connections. Permits early
detection of client termination,
rather than waiting until after the
completion of the query. When set
to zero, no check will be made.
When set to a numerical value
greater than zero, the value
represents DB2 internal work
units. For guidance, the following
check frequency values are given:
Low frequency use 300; medium
frequency use 100; high frequency
use 50. Checking more frequently
for client status while executing a
database request lengthens the
time taken to complete the queries.
If the DB2 workload is heavy (that
is, it involves many internal
requests), then setting
DB2CHECKCLIENTINTERVAL to
a low value has a greater impact
on performance than in a situation
where the workload is light and
most of the time DB2 is waiting.

DB2COMM All, server
only

Default=null

Values: any
combination of
APPC, IPXSPX,
NETBIOS,
NPIPE, TCPIP

Specifies the communication
managers that are started when
the database manager is started. If
this is not set, no DB2
communications managers are
started at the server.

Appendix A. DB2 Registry and Environment Variables 457

Parameter Operating
System

Values Description

DB2_FORCE_NLS_CACHE AIX,
HP_UX,
Solaris

Default=FALSE

Values: TRUE or
FALSE

Used to eliminate the chance of
lock contention in multi-threaded
applications. When this registry
variable is “TRUE”, the code page
and country code information is
saved the first time a thread
accesses it. From that point, the
cached information is used for any
other thread that requests this
information. This eliminates lock
contention and results in a
performance benefit in certain
situations. This setting should not
be used if the application changes
locale settings between
connections. It is likely not needed
in such a situation anyway, since
multi-threaded applications
typically do not change their
locale settings because it is not
“thread-safe” to do so.

DB2NBADAPTERS OS/2 and
Windows
NT, server
only

Default=0

Range: 0-15,

Multiple values
should be
separated by
commas

Used to specify which local
adapters to use for DB2 NetBIOS
LAN communications. Each local
adapter is specified using its
logical adapter number.

DB2NBCHECKUPTIME OS/2 and
Windows
NT, server
only

Default=1 minute

Values: 1-720

Specifies the time interval between
each invocation of the NetBIOS
protocol checkup procedure.
Checkup time is specified in
minutes.

Lower values will ensure that the
NetBIOS protocol checkup runs
more often, freeing up memory
and other system resources left
when unexpected agent/session
termination occurs.

458 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2NBINTRLISTENS OS/2 and
Windows
NT, server
only

Default=1

Values: 1-10

Multiple values
should be
separated by
commas

Specifies the number of NetBIOS
listen send commands (NCBs) that
will be asynchronously issued in
readiness for remote client
interrupts. This flexibility is
provided for ″interrupt active″
environments to ensure that
interrupt calls from remote clients
will be able to establish
connections when servers are busy
servicing other remote interrupts.

Setting db2nbintrlistens to a lower
value will conserve NetBIOS
sessions and NCBs at the server.
However, in an environment
where client interrupts are
common, you may need to set
db2nbintrlistens to a higher value in
order to be responsive to
interrupting clients.
Note: Values specified are position
sensitive; they relate to the
corresponding value positions for
db2nbadapters.

DB2NBRECVBUFFSIZE OS/2 and
Windows
NT, server
only

Default=4096
bytes

Range:
4096-65536

Specifies the size of the DB2
NetBIOS protocol receive buffers.
These buffers are assigned to the
NetBIOS receive NCBs. Lower
values conserve server memory,
while higher values may be
required when client data transfers
are larger.

Appendix A. DB2 Registry and Environment Variables 459

Parameter Operating
System

Values Description

DB2NBBRECVNCBS OS/2 and
Windows
NT, server
only

Default=10

Range: 1-99

Specifies the number of NetBIOS
″receive_any″ commands (NCBs)
that the server will issue and
maintain during operation. This
value may be adjusted depending
on the number of remote clients to
which your server is connected.
Lower values will conserve server
resources.
Note: Each adapter in use can
have its own unique receive NCB
value specified by db2nbbrecvncbs.
The values specified are position
sensitive; they relate to the
corresponding value positions for
db2nbadapters.

DB2NBRESOURCES OS/2 and
Windows
NT server
only

Default=null Specifies the number of NetBIOS
resources to allocate for DB2 use
in a multi-context environment.
This variable is restricted to
multi-context client operation.

DB2NBSENDNCBS OS/2 and
Windows
NT, server
only

Default=6

Range: 1-720

Specifies the number of send
NetBIOS commands (NCBs) that
the server will reserve for use.
This value may be adjusted
depending on the number of
remote clients your server is
connected to. Setting db2nbsendncbs
to a lower value will conserve
server resources. However, you
may need to set it to a higher
value to prevent the server from
waiting to send to a remote client
when all other send commands are
in use.

DB2NBSESSIONS OS/2 and
Windows
NT, server
only

Default=null

Range: 5-254

Specifies the number of sessions
that DB2 should request to be
reserved for DB2 use. The value of
db2nbsessions can be set to request
a specific session for each adapter
specified using db2nbadapters.
Note: Values specified are position
sensitive; they relate to the
corresponding value positions for
db2nbadapters.

460 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2NBXTRANCBS OS/2 and
Windows
NT, server
only

Default=5 per
adapter

Range: 5-254

Specifies the number of ″extra″
NetBIOS commands (NCBs) the
server will need to reserve when
the db2start command is issued.
The value of db2nbxtrancbs can be
set to request a specific session for
each adapter specified using
db2nbadapters.

DB2NETREQ Windows
3.x

Default=3

Range: 0-25

Specifies the number of NetBIOS
requests that can be run
concurrently on Windows 3.x
clients. The higher you set this
value, the more memory below the
1MB level will be used. When the
concurrent number of requests to
use NetBIOS services reaches the
number you have set, subsequent
incoming requests for NetBIOS
services are held in a queue and
become active as the current
requests complete. If you enter 0
(zero) for db2netreq, the Windows
database client issues NetBIOS
calls in synchronous mode using
the NetBIOS wait option. In this
mode, the database client allows
only the current NetBIOS request
to be active and does not process
another one until the current
request has completed. This can
affect other application programs.
The 0 value is provided for
backwards compatibility only. It is
strongly recommended that 0 not
be used.

Appendix A. DB2 Registry and Environment Variables 461

Parameter Operating
System

Values Description

DB2RETRY OS/2 and
Windows
NT

Default=0

Range: 0-20 000

The number of times DB2 attempts
to restart the APPC listener. If the
SNA subsystem at the
server/gateway is down, this
profile variable, in conjunction
with db2retrytime, can be used to
automatically restart the APPC
listener without disrupting client
communications using other
protocols. In such a scenario, it is
no longer necessary to stop and
restart DB2 to reinstate the APPC
client communications.

DB2RETRYTIME OS/2 and
Windows
NT

Default=1 minute

Range: 0-7 200
minutes

In increments of one minute, the
number of minutes that DB2
allows between performing
successive retries to start the
APPC listener. If the SNA
subsystem at the server/gateway
is down, this profile variable, in
conjunction with db2retry, can be
used to automatically restart the
APPC listener without disrupting
client communications using other
protocols. In such a scenario, it is
no longer necessary to stop and
restart DB2 to reinstate the APPC
client communications.

DB2SERVICETPINSTANCE OS/2 and
Windows
NT

Default=null Used to support incoming APPC
connections from DB2 workstation
V.1 clients or from the DB2 MVS
database. When the db2start
command is invoked, the instance
specified will start the APPC
listeners for the following TP
names:

DB2INTERRUPT

x’07’68

x’07’6SN

DB2SOSNDBUF Windows
95 and
Windows
NT

Default=32767 Specifies the value of TCP/IP send
buffers on Windows 95 and
Windows NT operating systems.

462 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2SYSPLEX_SERVER OS/2,
Windows
NT, and
UNIX

Default=null Specifies whether SYSPLEX
exploitation when connected to
DB2 for OS/390 is enabled. If this
registry variable is not set (which
is the default), or is set to a
non-zero value, exploitation is
enabled. If this registry variable is
set to zero (0), exploitation is
disabled. When set to zero,
SYSPLEX exploitation is disabled
for the gateway regardless of how
the DCS database catalog entry
has been specified. For more
information see the Command
Reference and the CATALOG DCS
DATABASE command.

DB2_VI_ENABLE Windows
NT

Default=OFF

Values: ON or
OFF

Specifies whether to use the
Virtual Interface Architecture
(VIA) communication protocol or
not. If this registry variable is
“ON”, then FCM will use VI for
inter-node communication. If this
registry variable is “OFF”, then
FCM will use TCP/IP for
inter-node communication.
Note: The value of this registry
variable must be the same across
all the database partitions in the
instance.

DB2_VI_VIPL Windows
NT

Default=
vipl.dll

Specifies the name of the Virtual
Interface Provider Library (VIPL)
that will be used by DB2. In order
to load the library successfully, the
library name used in this registry
variable must be in the PATH user
environment variable. The
currenly supported
implementations all use the same
library name.

Appendix A. DB2 Registry and Environment Variables 463

Parameter Operating
System

Values Description

DB2_VI_DEVICE Windows
NT

Default=null

Values: nic0

Specifies the symbolic name of the
device or Virtual Interface
Provider Instance associated with
the Network Interface Card (NIC).
Independent hardware vendors
(IHVs) each produce their own
NIC. Only one (1) NIC is allowed
per Windows NT machine;
Multiple logical nodes on the same
physical machine will share the
same NIC. The currenly supported
implementations all use the same
symbolic name.

DCE Directories

DB2DIRPATHNAME OS/2,
UNIX, and
Windows
32-bit
operating
systems

Default=null Specifies a temporary override of
the DIR_PATH_NAME parameter
value in the database manager
configuration file. If a directory
server is used and the target of a
CONNECT statement or ATTACH
command is not explicitly
cataloged, then the target is
concatenated with
DB2DIRPATHNAME (if specified)
to form the fully qualified DCE
name.
Note: The db2dirpathname variable
has no effect on the instance’s
global name, which is always
identified by the database
manager configuration parameters
DIR_PATH_NAME and
DIR_OBJ_NAME.

DB2CLIENTADPT OS/2 and
Windows
32-bit
operating
systems

Default=null

Range: 0-15

Specifies the client adapter number
for NETBIOS protocol on OS/2
and Windows 32-bit operating
systems. The db2clientadpt value
overrides the DFT_CLIENT_ADPT
parameter value in the database
manager configuration file.

464 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2CLIENTCOMM OS/2,
UNIX, and
Windows
32-bit
operating
systems

Default=null Specifies a temporary override of
the DFT_CLIENT_COMM
parameter value in the database
manager configuration file. If both
DFT_CLIENT_COMM and
db2clientcomm are not specified,
then the first protocol found in the
object is used. If either one or both
of them are specified, then only
the first matching protocol will be
used. In either case, no retry is
attempted if the first connect fails.

DB2ROUTE OS/2,
UNIX, and
Windows
32-bit
operating
systems

Default=null Specifies the name of the Routing
Information Object the client uses
when it connects to a database
with a different database protocol.
The db2route value overrides the
ROUTE_OBJ_NAME parameter
value in the database manager
configuration file.

Command Line Processor

DB2BQTIME All Default=1 second

Maximum value:
1 second

Specifies the amount of time the
command line processor front end
will sleep before checking if the
back end process is active and
establishing a connection to it.

DB2BQTRY All Default=60
retries

Minimum value:
0 retries

Specifies the number of times the
command line processor front end
process tries to determine whether
the back end process is already
active. It works in conjunction
with db2bqtime.

DB2IQTIME All Default=5
seconds

Minimum value:
1 second

Specifies the amount of time the
command line processor back end
process waits on the input queue
for the front end process to pass
commands.

DB2OPTIONS All Default=null Sets command line processor
options.

DB2RQTIME All Default=5
seconds

Minimum value:
1 second

Specifies the amount of time the
command line processor back end
process waits for a request from
the front end process.

Appendix A. DB2 Registry and Environment Variables 465

Parameter Operating
System

Values Description

MPP Configuration

DB2ATLD_PORTS DB2 UDB
EEE on
AIX,
Solaris, and
Windows
NT

Default=
6000:6063

Value:
num1:num2
where both are
between 1 and
65535, and
num1<=num2

Specifies the range of port
numbers used for the AutoLoader
utility’s internal TCPIP
communication. If not set,
AutoLoader uses the internal
default port range 6000:6063.
When you have other applications
using the AutoLoader default port
range, this variable can be used to
select an alternate port range.

DB2ATLD_PWFILE DB2 UDB
EEE on
AIX,
Solaris, and
Windows
NT

Default=null

Value: a file path
expression

Specifies a path to a file that
contains a password used during
AutoLoader authentication. If not
set, AutoLoader either extracts the
password from its configuration
file or prompts you interactively.
Using this variable will address
password security concerns and
allows the separation of
AutoLoader configuration
information from authentication
information.

DB2CHGPWD_EEE DB2 UDB
EEE on
AIX and
Windows
NT

Default=null

Values: YES or
NO

Specifies whether you are allowing
other users to change passwords
on AIX or Windows NT EEE
systems. You must ensure that the
passwords for all partitions or
nodes are maintained centrally
using either a Windows NT
domain controller on Windows
NT, or NIS on AIX. If not
maintained centrally, passwords
may not be consistent across all
partitions or nodes. This could
result in a password only being
changed at the database partition
to which the user connects to
make the change.

466 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2_FORCE_FCM_BP AIX Default=NO

Values: YES or
NO

This registry variable is applicable
to DB2 UDB EEE for AIX when
using multiple logical partitions.
When DB2START is issued, DB2
allocates the FCM buffers from the
database global memory or, if
there is not enough room there,
from a separate shared memory
segment which is used by all FCM
daemons (for that instance) on the
same physical machine. Which it
chooses is largely dependent on
the number of FCM buffers to be
created (which, in turn, is
determined by the
FCM_NUM_BUFFERS database
manager configuration parameter).
If this registry variable is set to
YES, the FCM buffers are always
created in a separate memory
segment. When the FCM buffers
are created in a separate memory
segment, the communication
between FCM daemons of
different logical partitions on the
same physical node occurs
through shared memory.
Otherwise, FCM daemons on the
same node communicate through
UNIX Sockets. The advantage of
communicating through shared
memory in this way is that it is
faster. The disadvantage is that
there is one fewer shared memory
segments available for other uses,
most notably database buffer
pools. This reduces the maximum
size of database buffer pools.

DB2NODE All Default=null

Values: 1-999

Specifies which node of the MPP
server instance you want to
connect or attach to.

DB2PORTRANGE Windows
NT

Values:
nnnn:nnnn

This value is set to the TCP/IP
port range used by FCM so that
any additional partitions created
on another machine will also have
the same port range.

Appendix A. DB2 Registry and Environment Variables 467

Parameter Operating
System

Values Description

SQL Compilier

DB2_CORRELATED_PREDICATES All Default=OFF

Values: ON or
OFF

When there are unique indexes on
correlated columns in a join, and
this registry variable is ON, the
optimizer attempts to detect and
compensate for correlation of join
predicates. When this registry
variable is ON, the optimizer uses
the KEYCARD information of
unique index statistics to detect
cases of correlation, and
dynamically adjusts the combined
selectivities of the correlated
predicates, thus obtaining a more
accurate estimate of the join size
and cost.

DB2_HASH_JOIN All Default=NO

Values: YES or
NO

Specifies hash join as a possible
join method when compiling an
access plan.

DB2_LIKE_VARCHAR All Default=NO

Values: YES, NO,
or a floating
point constant

Specifies how the optimizer works
with a predicate of the form

COLUMN LIKE '%XXXXXX%'

where the xxxxxx is any string of
characters.

For all predicates, the optimizer
has to estimate how many rows
match the predicate. For LIKE
predicates with leading and
trailing % characters, the optimizer
assumes that the COLUMN being
matched has a structure of a series
of elements concatenated together
to form the entire column. The
optimizer then estimates the
length of each element based on
the length of the string enclosed in
the % characters.

468 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2_NEW_CORR_SQ_FF All Default=OFF

Values: ON or
OFF

Affects the selectivity value
computed by the SQL optimizer
for certain subquery predicates
when it is set to “ON”. If can be
used to improve the accuracy of
the selectivity value of equality
subquery predicates that use the
MIN or MAX aggregate function
in the SELECT list of the subquery.
For example:

SELECT * FROM T WHERE
T.COL = (SELECT MIN(T.COL)
FROM T WHERE ...)

Appendix A. DB2 Registry and Environment Variables 469

Parameter Operating
System

Values Description

DB2_PRED_FACTORIZE All Default=NO

Value: YES or
NO

Specifies whether the optimizer
will search for opportunities to
extract additional predicates from
disjuncts. In some circumstances,
the additional predicates can alter
the estimated cardinality of the
intermediate and final result sets.
With the following query:

SELECT n1.empno,
n1.lastname

FROM employee n1,
employee n2

WHERE
((n1.lastname='SMITH'
AND n2.lastname='JONES')
OR (n1.lastname='JONES'
AND n2.lastname='SMITH'))

the optimizer can generate the
following additional predicates:

SELECT n1.empno,
n1.lastname

FROM employee n1,
employee n2

WHERE n1.lastname IN
('SMITH', 'JONES')
AND n2.lastname IN
('SMITH', 'JONES')
AND
((n1.lastname='SMITH'
AND n2.lastname='JONES')
OR (n1.lastname='JONES'
AND n2.lastname='SMITH'))

Performance

DB2_AVOID_PREFETCH All Default=OFF,

Values: ON or
OFF

Specifies whether or not prefetch
should be used during crash
recovery. If db2_avoid_prefetch=ON,
prefetch is not used.

470 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2_BINSORT AIX Default=NO

Values: YES or
NO

Enables a new sort algorithm that
reduces the CPU time and elapsed
time of sorts. This new algorithm
extends the extremely efficient
integer sorting technique of DB2
UDB to all sort datatypes such as
BIGINT, CHAR, VARCHAR,
FLOAT, and DECIMAL, as well as
combinations of these datatypes.
To enable this new algorithm, use
the following command:

db2set DB2_BINSORT = yes

Appendix A. DB2 Registry and Environment Variables 471

Parameter Operating
System

Values Description

DB2BPVARS Windows
NT

Default=path Specifies the path to a file
containing parameters used when
tuning buffer pools. The currently
supported parameters are:
NT_SCATTER_DMSFILE,
NT_SCATTER_DMSDEVICE, and
NT_SCATTER_SMS.

For each of these parameters, the
default is zero (or OFF); and the
possible values include: zero (or
OFF) and 1 (or ON). Each
parameter is used to turn scatter
read on for the respective type of
containers. Each can only be
enabled (turned ON) if
DB2NTNOCACHE is set to ON in
the registry. A warning message is
written to the db2diag.log if
DB2NTNOCACHE is set to OFF
(or not set), and scatter read
remains disabled. The parameters
are recommended for systems with
a large amount of sequential
prefetching against the respective
type of containers and you have
already decided to use
DB2NTNOCACHE set to OFF.

An example of how to set the path
to the file is shown:

db2set DB2BPVARS =
f:\BPVARSFILE

The content of the file is any of
these parameters in the form:

parameter=value

DB2CHKPTR All Default=OFF,

Values: ON or
OFF

Specifies whether or not pointer
checking for input is required.

472 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2_DARI_LOOKUP_ALL All Default=OFF,

Values: ON or
OFF

Specifies whether or not the UDB
server will perform a catalog
lookup for ALL DARIs and stored
procedures before looking in the
function subdirectory of the sqllib
subdirectory; and in the unfenced
subdirectory of the function
subdirectory of the sqllib
subdirectory.
Note: For stored procedures of
PARAMETER TYPE DB2DARI that
are located in the directories
mentioned above, setting this
value to “ON” will degrade
performance since the catalog
lookup will be performed possibly
on another node in an EEE
configuration) before the function
directories are searched.

Appendix A. DB2 Registry and Environment Variables 473

Parameter Operating
System

Values Description

DB2MEMDISCLAIM AIX Default=null

Values: YES or
NO

Depending on the workload being
executed and the pool agents
configuration, you may run into a
situation where the committed
memory for each DB2 agent will
stay above 32 MB even when the
agent is idle. This behavior is
expected and usually results in
good performance as the memory
is kep for fast re-use. However, on
a memory constrained system, this
may not be a desirable side effect.
To avoid this condition, issue the
following:

db2set DB2MEMDISCLAIM = yes

Disclaiming memory tells the AIX
operating system to stop paging
the area so that it no longer
occupies any real storage. Setting
DB2MEMDISCLAIM to “YES”
tells DB2 UDB to disclaim some or
all memory once freed, depending
on DB2MEMMAXFREE. This
ensures that the memory is made
readily available for other
processes as soon as it is freed. See
also DB2MEMMAXFREE.

DB2MEMMAXFREE AIX Default=null

Values: 4000000
to 256000000

Specifies the amount of free
memory that is retained by each
DB2 agent. You may set this
variable to a value between 4 and
256 MB. We recommend that if
you use this feature, you specify a
value of 8 MB:

db2set DB2MEMMAXFREE
= 8000000

See also DB2MEMDISCLAIM.

474 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2_MMAP_READ AIX Default=ON ,

Values: ON or
OFF

Used in conjunction with
db2_mmap_write to allow DB2 to
use mmap as an alternate method
of I/O. In most environments,
mmap should be used to avoid
operating system locks when
multiple processes are writing to
different sections of the same file.
However, perhaps you migrated
from Parallel Edition V1.2 where
the default was OFF allowing AIX
chaching of DB2 data read from
JFS filesystems into memory
(outside the buffer pool). If you
want the comparable performance
with DB2 UDB, you can either
increase the size of the buffer pool,
or change db2_mmap_read and
db2_mmap_write to OFF.

DB2_MMAP_WRITE AIX Default=ON

Values: ON or
OFF

Used in conjunction with
db2_mmap_read to allow DB2 to
use mmap as an alternate method
of I/O. In most environments,
mmap should be used to avoid
operating system locks when
multiple processes are writing to
different sections of the same file.
However, perhaps you migrated
from Parallel Edition V1.2 where
the default was OFF allowing AIX
caching of DB2 data read from JFS
filesystems into memory (outside
the buffer pool). If you want the
comparable performance with DB2
UDB, you can either increase the
size of the buffer pool, or change
db2_mmap_read and
db2_mmap_write to OFF.

Appendix A. DB2 Registry and Environment Variables 475

Parameter Operating
System

Values Description

DB2_NO_PKG_LOCK All Default=OFF

Values: ON or
OFF

Allows the Global SQL Cache to
operate without the use of
package locks to protect cached
package entries. (Package locks are
internal system locks.) To improve
performance (because acquiring
and freeing locks takes time), you
can now choose to work in a “no
package lock” mode. In this mode,
certain database operations are not
allowed. These operations may
include: operations that invalidate
packages, operations that
inoperate packages, and
operations that directly change a
package.

476 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2NTMEMSIZE Windows
NT

Default=(varies
by memory
segment)

Windows NT requires that all
shared memory segments be
reserved at DLL initialization time
in order to guarantee matching
addresses across processes.
DB2NTMEMSIZE has been
introduced to permit the user to
override the DB2 defaults on
Windows NT if necessary. In most
situations, the default values
should be sufficient. The memory
segments, default sizes, and
override options are: 1) Database
Kernel: default size is 16777216 (16
MB); override option is
DBMS:<number of bytes>. 2)
Parallel FCM Buffers: default size
is 22020096 (21 MB); override
option is FCM:<number of bytes>.
3) Database Admin GUI: default
size is 33554432 (32 MB); override
option is DBAT:<number of
bytes>. 4) Fenced Stored
Procedures: default size is
16777216 (16 MB); override option
is APLD:<number of bytes>. More
than one segment may be
overridden by separating the
override options with a semi-colon
(;). For example, to limit the
database kernel to approximately
256K, and the FCM buffers to
approximately 64 MB, use:

db2set DB2NTMEMSIZE=
DBMS:256000;FCM:64000000

Appendix A. DB2 Registry and Environment Variables 477

Parameter Operating
System

Values Description

DB2NTNOCACHE Windows
NT

Default=OFF

Value: ON or
OFF

Specifies whether or not DB2 will
open database files with a
NOCACHE option. If
db2ntnocache=ON, file system
caching is eliminated. If
db2ntnocache=OFF, the operating
system caches DB2 files. This
applies to all data except for files
that contain LONG FIELDS or
LOBS. Eliminating system caching
allows more memory to be
available to the database so that
the buffer pool or sortheap can be
increased.

DB2NTPRICLASS Windows
NT

Default=null

Value: R, H, (any
other value)

Sets the priority class for the DB2
instance (program
DB2SYSCS.EXE). There are three
priority classes:

NORMAL_PRIORITY_CLASS
(the default priority class)

REALTIME_PRIORITY_CLASS
(set by using “R”)

HIGH_PRIORITY_CLASS (set
by using “H”)

This variable is used in
conjunction with individual thread
priorities (set using
DB2PRIORITIES) to determine the
absolute priority of DB2 threads
relative to other threads in the
system.
Note: Care should be taken when
using this variable. Misuse could
adversely affect overall system
performance.

For more information, please refer
to the SetPriorityClass() API in the
Win32 documentation.

478 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2NTWORKSET Windows
NT

Default=1,1 Used to modify the minimum and
maximum working set size
available to DB2. By default, when
Windows NT is not in a paging
situation, a process’s working set
can grow as large as needed.
However, when paging occurs, the
maximum working set that a
process can have is approximately
1 MB. DB2NTWORKSET allows
you to override this default
behavior.

Specify DB2NTWORKSET for DB2
using the syntax
db2ntworkset=min,max, where min
and max are expressed in
megabytes.

DB2_OVERRIDE_BPF All Default=not set

Values: a positive
numeric number
of pages

Specifies the size of the buffer
pool, in pages, to be created at
database activation, or first
connection, time. It is useful when
failures occur during database
activation or first connection
resulting from memory
constraints. Should even a
minimal buffer pool of 16 pages
not be brought up by the database
manager, then the user can try
again after specifying a smaller
number of pages using this
environment variable. The
memory constraint could arise
either because of a real memory
shortage (which is rare); or,
because of the attempt by the
database manager to allocate large,
inaccurately configured buffer
pools. This value, if set, will
override the current buffer pool
size.

DB2PRIORITIES All Values setting is
platform
dependent.

Controls the priorities of DB2
processes and threads.

Appendix A. DB2 Registry and Environment Variables 479

Parameter Operating
System

Values Description

DB2_RR_TO_RS All Default=NO

Values: YES or
NO

When set to YES, the RR isolation
level is, effectively, downgraded to
RS for user tables. RR semantics
are no longer provided in the
database manager instance. If your
applications do not require RR
semantics, this registry variable
can be used to reduce the next-key
lock contention problems that can
sometimes occur under RR.

DB2_SORT_AFTER_TQ All Default=NO

Values: YES or
NO

Specifies how the optimizer works
with directed table queues in a
partitioned database when the
receiving end requires the data to
be sorted, and the number of
receiving nodes is equal to the
number of sending nodes.

When DB2_SORT_AFTER_TQ= NO,
the optimizer tends to sort at the
sending end, and merge the rows
at the receiving end.

When DB2_SORT_AFTER_TQ=
YES, the optimizer tends to
transmit the rows unsorted, not
merge at the receiving end, and
sort the rows at the receiving end
after receiving all the rows.

Data Links Manager

DLFM_BACKUP_DIR_NAME AIX,
Windows
NT

Default: null

Values: ADSM or
any valid path

Specifies the backup device to use.

DLFM_ENABLE_STPROC AIX,
Windows
NT

Default: NO

Values: YES or
NO

Specifies whether a stored
procedure is used to link groups
of files.

480 Administration Guide: Performance

Parameter Operating
System

Values Description

DLFM_GC_MODE AIX,
Windows
NT

Default: PASSIVE

Values: SLEEP,
PASSIVE, or
ACTIVE

Specifies the control of garbage file
collection on the Data Links
server. When set to SLEEP, no
garbage collection occurs. When
set to PASSIVE, garbage collection
runs only if no other transactions
are running. When set to ACTIVE,
garbage collection runs even if
other transactions are running.

DLFM_INSTALL_PATH AIX,
Windows
NT

Default

On AIX:
/usr/lpp/
db2_06_00 /adm

On NT:
DB2PATH /bin

Range: any valid
path

Specifies the path where the data
links executables are installed.

DLFM_LOG_LEVEL AIX,
Windows
NT

Default:
LOG_INFO

Values:
LOG_CRIT,
LOG_DEBUG,
LOG_ERR,
LOG_INFO,
LOG_NOTICE,
LOG_WARNING

Specifies the level of diagnostic
information to be recorded.

DLFM_PORT All except
Windows
3.n

Default: 50100

Values: any valid
port number

Specifies the port number used to
communicate with the Data Links
servers running the DB2 Data
Links Manager. This environment
variable is only used when a table
contains a “DATALINKS” column.

Miscellaneous

DB2ADMINSERVER OS/2,
Windows
95,
Windows
NT, and
UNIX

Default=null Specifies which DB2 instance is set
up as the DB2 Administration
Server.

Appendix A. DB2 Registry and Environment Variables 481

Parameter Operating
System

Values Description

DB2CLIINIPATH All Default=null Used to override the default path
of the DB2 CLI/ODBC
configuration file (db2cli.ini) and
specify a different location on the
client. The value specified must be
a valid path on the client system.

DB2DEFPREP All Default=NO

Values: ALL,
YES, or NO

Simulates the runtime behavior of
the DEFERRED_PREPARE
precompile option for applications
that were precompiled prior to
this option becoming available.
For example, if a DB2 v2.1.1 or
earlier application were run in a
DB2 v2.1.2 or later environment,
db2defprep could be used to
indicate the desired ’deferred
prepare’ behavior.

DB2_DJ_COMM All Default=null

Values include:
libdrda.a,
libsqlnet.a,
libnet8.a,
libdrda.dll,
libsqlnet.dll,
libnet8.dll, and
so on.

Specifies the wrapper libraries that
are loaded when the database
manager is started. Specifying this
variable reduces the run-time cost
of loading frequently used
wrappers. Other values for other
operating systems are supported
(the .dll extension is for the
Windows NT operating system;
the .a extension is for the AIX
operating system). Library names
vary by protocol and operating
system. This variable is not
available unless the database
manager parameter federated is set
to YES.

482 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2DMNBCKCTLR Windows
NT

Default=null

Values: ? or a
domain name

If you know the name of the
domain for which DB2 server is
the backup domain controller, set
db2dmnbckctlr=DOMAIN_NAME. The
DOMAIN_NAME must be in
upper case. To have DB2
determine the domain for which
the local machine is a backup
domain controller, set
db2dmnbckctlr=?. If the
db2dmnbckctlr profile variable is
not set or is set to blank, DB2
performs authentication at the
primary domain controller.
Note: DB2 does not use an
existing backup domain controller
by default because a backup
domain controller can get out of
synchronization with the primary
domain controller, causing a
security exposure. Getting out of
synchronization can occur when
the primary domain controller’s
security database is updated but
the changes are not propagated to
a backup domain controller. This
could occur if there are network
latencies or if the computer
browser service is not operational.

DB2_FALLBACK Windows
NT

Default=OFF

Values: ON or
OFF

This variable allows you to force
all database connections off during
the fallback processing. It is used
in conjunction with the failover
support in the Windows NT
environment with Microsoft
Cluster Server (MSCS). If
DB2_FALLBACK is not set or is set
to OFF, and a database connection
exists during the fall back, the DB2
resource cannot be brought offline.
This will mean the fallback
processing will fail.

Appendix A. DB2 Registry and Environment Variables 483

Parameter Operating
System

Values Description

DB2_FORCE_TRUNCATION All Default=NO

Values: YES or
NO

Used during restart recovery. If set
to “NO”, it will halt restart
recovery if it is determined that a
bad page is stopping the restart
recovery too soon (that is, all
active logs have not been read).
This is usually caused by a bad
page in one of the logs. The user
can set this variable to “YES” to
signal restart recovery that it
should continue processing as if
the end of logs was reached. After
setting the variable to “YES”, logs
not read during restart recovery
are overwritten when the database
becomes active again. The default
is “NO”, which is not to proceed
if a bad page is not found. Use
this variable only under the
direction from IBM Service
personnel.

DB2_GRP_LOOKUP Windows
NT

Default=null

Values: LOCAL,
DOMAIN

This variable is used to tell DB2
where to validate user accounts
and perform group member
lookup. Set the variable to LOCAL
to force DB2 to always enumerate
groups and validate user accounts
on the DB2 server. Set the variable
to DOMAIN to force DB2 to
always enumerate groups and
validate user accounts on the user
account’s Windows NT domain.

DB2LDAP_SEARCH_SCOPE All Default=
DOMAIN

Values: LOCAL,
DOMAIN,
GLOBAL

Specifies the search scope for
information found in partitions or
domains in the Lightweight
Directory Access Protocol (LDAP).
“LOCAL” disables searching in
the LDAP directory. “DOMAIN”
only searches in LDAP for the
current directory partition.
“GLOBAL” searches in LDAP in
all directory partitions until the
object is found.

484 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2LOADREC All Default=null Used to override the location of
the load copy during roll forward.
If the user has changed the
physical location of the load copy,
db2loadrec must be set before
issuing the roll forward.

DB2LOCK_TO_RB All Default=null

Values: Statement

Specifies whether lock timeouts
cause the entire transaction to be
rolled-back, or only the current
statement. If db2lock_to_rb is set to
STATEMENT, locked timeouts cause
only the current statement is rolled
back. Any other setting results in
transaction rollback.

DB2NOEXITLIST All Default=OFF

Values: ON or
OFF

If defined, this variable indicates
to DB2 not to install an exit list
handler in applications and not to
perform a COMMIT. Normally,
DB2 installs a process exit list
handler in applications and the
exit list handler performs a
COMMIT operation if the
application ends normally.

For applications that dynamically
load the DB2 library and unload it
before the application terminates,
the invocation of the exit list
handler fails because the handler
routine is no longer loaded in the
application. If your application
operates in this way, you should
set the DB2NOEXITLIST variable
and ensure your application
explicitly invokes all required
COMMITs.

DB2NTREMOTEPREG Windows
95 and
Windows
NT

Default=null

Value: Any valid
Windows 95 or
Windows NT
machine name

Specifies the remote machine name
that contains the Win32 registry
list of DB2 instance profiles and
DB2 instances. The value for
db2remotepreg should only be set
once after DB2 is installed, and
should not be modified. Use this
variable with extreme caution.

Appendix A. DB2 Registry and Environment Variables 485

Parameter Operating
System

Values Description

DB2ROUTINE_DEBUG AIX and
Windows
NT

Default=OFF

Values: ON, OFF

Specifies whether to enable the
debug capability for Java stored
procedures. If you are not
debugging Java stored procedures,
use the default, OFF. There is a
performance impact to enable
debugging. Refer to Application
Development Guide for more
information about debugging Java
stored procdures.

DB2SORCVBUF Windows
95 and
Windows
NT

Default=32767 Specifies the value of TCP/IP
receive buffers on Windows 95
and Windows NT operating
systems.

DB2SORT All, server
only

Default=null Specifies the location of a library
to be loaded at runtime by the
LOAD utility. The library contains
the entry point for functions used
in sorting indexing data. Use
db2sort to exploit vendor-supplied
sorting products for use with the
LOAD utility in generating table
indexes. The path supplied must
be relative to the database server.

486 Administration Guide: Performance

Parameter Operating
System

Values Description

DB2SYSTEM Windows
NT,
Windows
95, OS/2,
and UNIX

Default=null Specifies the name that is used by
your users and database
administrators to identify the DB2
server system. If possible, this
name should be unique within
your network.

This name is displayed in the
system level of the Control
Center’s object tree to aid
administrators in the identification
of server systems that can be
administered from the Control
Center.

When using the ’Search the
Network’ function of the Client
Configuration Assistant, DB2
discovery returns this name and it
is displayed at the system level in
the resulting object tree. This name
aids users in identifying the
system that contains the database
they wish to access. A value for
db2system is set at installation time
as follows:

On Windows NT, or Windows
95, the setup program sets it
equal to the computer name
specified for the Windows
system.

On OS/2, the user is prompted
to enter the DB2SYSTEM name
during the installation process.

On UNIX systems, it is set
equal to the UNIX system’s
TCP/IP hostname.

DB2UPMPR OS/2 Default=ON

Values: ON or
OFF

Specifies whether or not the UPM
logon screen will display on the
screen when the user enters the
wrong user ID or password on
OS/2.

Appendix A. DB2 Registry and Environment Variables 487

488 Administration Guide: Performance

Appendix B. Sample Tables

This appendix shows the information contained in the sample tables, and how
to install and remove them. The sample tables are used in the examples that
appear in this manual and other manuals in this library. In addition, the data
contained in the sample files with BLOB and CLOB data types is shown.

The following sections are included in this appendix:.
“The Sample Database” on page 490

“To Install the Sample Database” on page 490

“To Erase the Sample Database” on page 490

“CL_SCHED Table” on page 491

“DEPARTMENT Table” on page 491

“EMPLOYEE Table” on page 491

“EMP_ACT Table” on page 493

“EMP_PHOTO Table” on page 495

“EMP_RESUME Table” on page 496

“IN_TRAY Table” on page 496

“ORG Table” on page 497

“PROJECT Table” on page 497

“SALES Table” on page 498

“STAFF Table” on page 499

“STAFFG Table” on page 500

“Sample Files with BLOB and CLOB Data Type” on page 501

“Quintana Photo” on page 501

“Quintana Resume” on page 502

“Nicholls Photo” on page 503

“Nicholls Resume” on page 503

“Adamson Photo” on page 505

“Adamson Resume” on page 505

“Walker Photo” on page 506

© Copyright IBM Corp. 1993, 1999 489

“Walker Resume” on page 506.

In the sample tables, a dash (-) indicates a null value.

The Sample Database

The examples in this book use a sample database. To use these examples, you
must install the SAMPLE database. To use it, the database manager must be
installed.

To Install the Sample Database

An executable file installs the sample database.1 To install a database you
must have SYSADM authority.
v When Using UNIX-based platforms

If you are using the operating system command prompt, type:
sqllib/misc/db2sampl <path>

from the home directory of the database manager instance owner, where
path is an optional parameter specifying the path where the sample
database is to be created. Press Enter.2 The schema for DB2SAMPL is the
CURRENT SCHEMA special register value.

v When using OS/2 or Windows platforms

If you are using the operating system command prompt, type:

db2sampl e

where e is an optional parameter specifying the drive where the database is
to be created. Press Enter.3

If you are not logged on to your workstation through User Profile
Management, you will be prompted to do so.

To Erase the Sample Database

If you do not need to access the sample database, you can erase it by using
the DROP DATABASE command:

db2 drop database sample

1. For information related to this command, see the DB2SAMPL command in the Command Reference.

2. If the path parameter is not specified, the sample tables are installed in the default path specified by the
DFTDBPATH parameter in the database manager configuration file.

3. If the drive parameter is not specified, the sample tables are installed on the same drive as DB2.

Sample Tables

490 Administration Guide: Performance

CL_SCHED Table

Name: CLASS_CODE DAY STARTING ENDING

Type: char(7) smallint time time

Desc: Class Code
(room:teacher)

Day # of 4 day
schedule

Class Start Time Class End Time

DEPARTMENT Table

Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

Type: char(3) not null varchar(29) not null char(6) char(3) not null char(16)

Desc: Department
number

Name describing general
activities of department

Employee
number
(EMPNO) of
department
manager

Department
(DEPTNO) to
which this
department
reports

Name of the
remote location

Values: A00 SPIFFY COMPUTER SERVICE
DIV.

000010 A00 -

B01 PLANNING 000020 A00 -

C01 INFORMATION CENTER 000030 A00 -

D01 DEVELOPMENT CENTER - A00 -

D11 MANUFACTURING SYSTEMS 000060 D01 -

D21 ADMINISTRATION SYSTEMS 000070 D01 -

E01 SUPPORT SERVICES 000050 A00 -

E11 OPERATIONS 000090 E01 -

E21 SOFTWARE SUPPORT 000100 E01 -

EMPLOYEE Table

Names: EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

Type: char(6) not
null

varchar(12)
not null

char(1) not
null

varchar(15)
not null

char(3) char(4) date

Desc: Employee
number

First name Middle
initial

Last name Department
(DEPTNO)
in which the
employee
works

Phone
number

Date of hire

JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

char(8) smallint not null char(1) date dec(9,2) dec(9,2) dec(9,2)

Job Number of years of
formal education

Sex (M
male, F
female)

Date of birth Yearly salary Yearly bonus Yearly
commission

See the following page for the values in the EMPLOYEE table.

Sample Tables

Appendix B. Sample Tables 491

E
M

P
N

O
FI

R
S

T
N

M
E

M
ID

IN
IT

L
A

S
T

N
A

M
E

W
O

R
K

D
E

P
T

P
H

O
N

E
N

O
H

IR
E

D
A

T
E

JO
B

E
D

L
E

V
E

L
S

E
X

B
IR

T
H

D
A

T
E

S
A

L
A

R
Y

B
O

N
U

S
C

O
M

M

ch
ar

(6
)

no
t

nu
ll

va
rc

ha
r(

12
)

no
t

nu
ll

ch
ar

(1
)

no
t

nu
ll

va
rc

ha
r(

15
)

no
t

nu
ll

ch
ar

(3
)

ch
ar

(4
)

d
at

e
ch

ar
(8

)
sm

al
lin

t
no

t
nu

ll
ch

ar
(1

)
d

at
e

d
ec

(9
,2

)
d

ec
(9

,2
)

d
ec

(9
,2

)

00
00

10
C

H
R

IS
T

IN
E

I
H

A
A

S
A

00
39

78
19

65
-0

1-
01

PR
E

S
18

F
19

33
-0

8-
24

52
75

0
10

00
42

20

00
00

20
M

IC
H

A
E

L
L

T
H

O
M

PS
O

N
B

01
34

76
19

73
-1

0-
10

M
A

N
A

G
E

R
18

M
19

48
-0

2-
02

41
25

0
80

0
33

00

00
00

30
SA

L
LY

A
K

W
A

N
C

01
47

38
19

75
-0

4-
05

M
A

N
A

G
E

R
20

F
19

41
-0

5-
11

38
25

0
80

0
30

60

00
00

50
JO

H
N

B
G

E
Y

E
R

E
01

67
89

19
49

-0
8-

17
M

A
N

A
G

E
R

16
M

19
25

-0
9-

15
40

17
5

80
0

32
14

00
00

60
IR

V
IN

G
F

ST
E

R
N

D
11

64
23

19
73

-0
9-

14
M

A
N

A
G

E
R

16
M

19
45

-0
7-

07
32

25
0

50
0

25
80

00
00

70
E

V
A

D
PU

L
A

SK
I

D
21

78
31

19
80

-0
9-

30
M

A
N

A
G

E
R

16
F

19
53

-0
5-

26
36

17
0

70
0

28
93

00
00

90
E

IL
E

E
N

W
H

E
N

D
E

R
SO

N
E

11
54

98
19

70
-0

8-
15

M
A

N
A

G
E

R
16

F
19

41
-0

5-
15

29
75

0
60

0
23

80

00
01

00
T

H
E

O
D

O
R

E
Q

SP
E

N
SE

R
E

21
09

72
19

80
-0

6-
19

M
A

N
A

G
E

R
14

M
19

56
-1

2-
18

26
15

0
50

0
20

92

00
01

10
V

IN
C

E
N

Z
O

G
L

U
C

C
H

E
SS

I
A

00
34

90
19

58
-0

5-
16

SA
L

E
SR

E
P

19
M

19
29

-1
1-

05
46

50
0

90
0

37
20

00
01

20
SE

A
N

O
’C

O
N

N
E

L
L

A
00

21
67

19
63

-1
2-

05
C

L
E

R
K

14
M

19
42

-1
0-

18
29

25
0

60
0

23
40

00
01

30
D

O
L

O
R

E
S

M
Q

U
IN

TA
N

A
C

01
45

78
19

71
-0

7-
28

A
N

A
LY

ST
16

F
19

25
-0

9-
15

23
80

0
50

0
19

04

00
01

40
H

E
A

T
H

E
R

A
N

IC
H

O
L

L
S

C
01

17
93

19
76

-1
2-

15
A

N
A

LY
ST

18
F

19
46

-0
1-

19
28

42
0

60
0

22
74

00
01

50
B

R
U

C
E

A
D

A
M

SO
N

D
11

45
10

19
72

-0
2-

12
D

E
SI

G
N

E
R

16
M

19
47

-0
5-

17
25

28
0

50
0

20
22

00
01

60
E

L
IZ

A
B

E
T

H
R

PI
A

N
K

A
D

11
37

82
19

77
-1

0-
11

D
E

SI
G

N
E

R
17

F
19

55
-0

4-
12

22
25

0
40

0
17

80

00
01

70
M

A
SA

TO
SH

I
J

Y
O

SH
IM

U
R

A
D

11
28

90
19

78
-0

9-
15

D
E

SI
G

N
E

R
16

M
19

51
-0

1-
05

24
68

0
50

0
19

74

00
01

80
M

A
R

IL
Y

N
S

SC
O

U
T

T
E

N
D

11
16

82
19

73
-0

7-
07

D
E

SI
G

N
E

R
17

F
19

49
-0

2-
21

21
34

0
50

0
17

07

00
01

90
JA

M
E

S
H

W
A

L
K

E
R

D
11

29
86

19
74

-0
7-

26
D

E
SI

G
N

E
R

16
M

19
52

-0
6-

25
20

45
0

40
0

16
36

00
02

00
D

A
V

ID
B

R
O

W
N

D
11

45
01

19
66

-0
3-

03
D

E
SI

G
N

E
R

16
M

19
41

-0
5-

29
27

74
0

60
0

22
17

00
02

10
W

IL
L

IA
M

T
JO

N
E

S
D

11
09

42
19

79
-0

4-
11

D
E

SI
G

N
E

R
17

M
19

53
-0

2-
23

18
27

0
40

0
14

62

00
02

20
JE

N
N

IF
E

R
K

L
U

T
Z

D
11

06
72

19
68

-0
8-

29
D

E
SI

G
N

E
R

18
F

19
48

-0
3-

19
29

84
0

60
0

23
87

00
02

30
JA

M
E

S
J

JE
FF

E
R

SO
N

D
21

20
94

19
66

-1
1-

21
C

L
E

R
K

14
M

19
35

-0
5-

30
22

18
0

40
0

17
74

00
02

40
SA

LV
A

TO
R

E
M

M
A

R
IN

O
D

21
37

80
19

79
-1

2-
05

C
L

E
R

K
17

M
19

54
-0

3-
31

28
76

0
60

0
23

01

00
02

50
D

A
N

IE
L

S
SM

IT
H

D
21

09
61

19
69

-1
0-

30
C

L
E

R
K

15
M

19
39

-1
1-

12
19

18
0

40
0

15
34

00
02

60
SY

B
IL

P
JO

H
N

SO
N

D
21

89
53

19
75

-0
9-

11
C

L
E

R
K

16
F

19
36

-1
0-

05
17

25
0

30
0

13
80

00
02

70
M

A
R

IA
L

PE
R

E
Z

D
21

90
01

19
80

-0
9-

30
C

L
E

R
K

15
F

19
53

-0
5-

26
27

38
0

50
0

21
90

00
02

80
E

T
H

E
L

R
SC

H
N

E
ID

E
R

E
11

89
97

19
67

-0
3-

24
O

PE
R

A
TO

R
17

F
19

36
-0

3-
28

26
25

0
50

0
21

00

00
02

90
JO

H
N

R
PA

R
K

E
R

E
11

45
02

19
80

-0
5-

30
O

PE
R

A
TO

R
12

M
19

46
-0

7-
09

15
34

0
30

0
12

27

00
03

00
PH

IL
IP

X
SM

IT
H

E
11

20
95

19
72

-0
6-

19
O

PE
R

A
TO

R
14

M
19

36
-1

0-
27

17
75

0
40

0
14

20

00
03

10
M

A
U

D
E

F
SE

T
R

IG
H

T
E

11
33

32
19

64
-0

9-
12

O
PE

R
A

TO
R

12
F

19
31

-0
4-

21
15

90
0

30
0

12
72

00
03

20
R

A
M

L
A

L
V

M
E

H
TA

E
21

99
90

19
65

-0
7-

07
FI

E
L

D
R

E
P

16
M

19
32

-0
8-

11
19

95
0

40
0

15
96

Sample Tables

492 Administration Guide: Performance

E
M

P
N

O
FI

R
S

T
N

M
E

M
ID

IN
IT

L
A

S
T

N
A

M
E

W
O

R
K

D
E

P
T

P
H

O
N

E
N

O
H

IR
E

D
A

T
E

JO
B

E
D

L
E

V
E

L
S

E
X

B
IR

T
H

D
A

T
E

S
A

L
A

R
Y

B
O

N
U

S
C

O
M

M

00
03

30
W

IN
G

L
E

E
E

21
21

03
19

76
-0

2-
23

FI
E

L
D

R
E

P
14

M
19

41
-0

7-
18

25
37

0
50

0
20

30

00
03

40
JA

SO
N

R
G

O
U

N
O

T
E

21
56

98
19

47
-0

5-
05

FI
E

L
D

R
E

P
16

M
19

26
-0

5-
17

23
84

0
50

0
19

07

E
M

P
_A

C
T

Ta
bl

e

N
am

e:
E

M
P

N
O

P
R

O
JN

O
A

C
T

N
O

E
M

P
T

IM
E

E
M

S
T

D
A

T
E

E
M

E
N

D
A

T
E

Ty
pe

:
ch

ar
(6

)
no

t
nu

ll
ch

ar
(6

)
no

t
nu

ll
sm

al
lin

t
no

t
nu

ll
d

ec
(5

,2
)

d
at

e
d

at
e

D
es

c:
E

m
pl

oy
ee

nu
m

be
r

Pr
oj

ec
t

nu
m

be
r

A
ct

iv
it

y
nu

m
be

r
Pr

op
or

ti
on

of
em

pl
oy

ee
’s

ti
m

e
sp

en
t

on
pr

oj
ec

t

D
at

e
ac

ti
vi

ty
st

ar
ts

D
at

e
ac

ti
vi

ty
en

d
s

V
al

ue
s:

00
00

10
A

D
31

00
10

.5
0

19
82

-0
1-

01
19

82
-0

7-
01

00
00

70
A

D
31

10
10

1.
00

19
82

-0
1-

01
19

83
-0

2-
01

00
02

30
A

D
31

11
60

1.
00

19
82

-0
1-

01
19

82
-0

3-
15

00
02

30
A

D
31

11
60

.5
0

19
82

-0
3-

15
19

82
-0

4-
15

00
02

30
A

D
31

11
70

.5
0

19
82

-0
3-

15
19

82
-1

0-
15

00
02

30
A

D
31

11
80

.5
0

19
82

-0
4-

15
19

82
-1

0-
15

00
02

30
A

D
31

11
18

0
1.

00
19

82
-1

0-
15

19
83

-0
1-

01

00
02

40
A

D
31

11
70

1.
00

19
82

-0
2-

15
19

82
-0

9-
15

00
02

40
A

D
31

11
80

1.
00

19
82

-0
9-

15
19

83
-0

1-
01

00
02

50
A

D
31

12
60

1.
00

19
82

-0
1-

01
19

82
-0

2-
01

00
02

50
A

D
31

12
60

.5
0

19
82

-0
2-

01
19

82
-0

3-
15

00
02

50
A

D
31

12
60

.5
0

19
82

-1
2-

01
19

83
-0

1-
01

00
02

50
A

D
31

12
60

1.
00

19
83

-0
1-

01
19

83
-0

2-
01

00
02

50
A

D
31

12
70

.5
0

19
82

-0
2-

01
19

82
-0

3-
15

00
02

50
A

D
31

12
70

1.
00

19
82

-0
3-

15
19

82
-0

8-
15

00
02

50
A

D
31

12
70

.2
5

19
82

-0
8-

15
19

82
-1

0-
15

00
02

50
A

D
31

12
80

.2
5

19
82

-0
8-

15
19

82
-1

0-
15

00
02

50
A

D
31

12
80

.5
0

19
82

-1
0-

15
19

82
-1

2-
01

Sample Tables

Appendix B. Sample Tables 493

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000250 AD3112 180 .50 1982-08-15 1983-01-01

000260 AD3113 70 .50 1982-06-15 1982-07-01

000260 AD3113 70 1.00 1982-07-01 1983-02-01

000260 AD3113 80 1.00 1982-01-01 1982-03-01

000260 AD3113 80 .50 1982-03-01 1982-04-15

000260 AD3113 180 .50 1982-03-01 1982-04-15

000260 AD3113 180 1.00 1982-04-15 1982-06-01

000260 AD3113 180 .50 1982-06-01 1982-07-01

000270 AD3113 60 .50 1982-03-01 1982-04-01

000270 AD3113 60 1.00 1982-04-01 1982-09-01

000270 AD3113 60 .25 1982-09-01 1982-10-15

000270 AD3113 70 .75 1982-09-01 1982-10-15

000270 AD3113 70 1.00 1982-10-15 1983-02-01

000270 AD3113 80 1.00 1982-01-01 1982-03-01

000270 AD3113 80 .50 1982-03-01 1982-04-01

000030 IF1000 10 .50 1982-06-01 1983-01-01

000130 IF1000 90 1.00 1982-01-01 1982-10-01

000130 IF1000 100 .50 1982-10-01 1983-01-01

000140 IF1000 90 .50 1982-10-01 1983-01-01

000030 IF2000 10 .50 1982-01-01 1983-01-01

000140 IF2000 100 1.00 1982-01-01 1982-03-01

000140 IF2000 100 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-10-01 1983-01-01

000010 MA2100 10 .50 1982-01-01 1982-11-01

000110 MA2100 20 1.00 1982-01-01 1982-03-01

000010 MA2110 10 1.00 1982-01-01 1983-02-01

000200 MA2111 50 1.00 1982-01-01 1982-06-15

000200 MA2111 60 1.00 1982-06-15 1983-02-01

000220 MA2111 40 1.00 1982-01-01 1983-02-01

000150 MA2112 60 1.00 1982-01-01 1982-07-15

000150 MA2112 180 1.00 1982-07-15 1983-02-01

000170 MA2112 60 1.00 1982-01-01 1983-06-01

000170 MA2112 70 1.00 1982-06-01 1983-02-01

000190 MA2112 70 1.00 1982-02-01 1982-10-01

000190 MA2112 80 1.00 1982-10-01 1983-10-01

000160 MA2113 60 1.00 1982-07-15 1983-02-01

Sample Tables

494 Administration Guide: Performance

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000170 MA2113 80 1.00 1982-01-01 1983-02-01

000180 MA2113 70 1.00 1982-04-01 1982-06-15

000210 MA2113 80 .50 1982-10-01 1983-02-01

000210 MA2113 180 .50 1982-10-01 1983-02-01

000050 OP1000 10 .25 1982-01-01 1983-02-01

000090 OP1010 10 1.00 1982-01-01 1983-02-01

000280 OP1010 130 1.00 1982-01-01 1983-02-01

000290 OP1010 130 1.00 1982-01-01 1983-02-01

000300 OP1010 130 1.00 1982-01-01 1983-02-01

000310 OP1010 130 1.00 1982-01-01 1983-02-01

000050 OP2010 10 .75 1982-01-01 1983-02-01

000100 OP2010 10 1.00 1982-01-01 1983-02-01

000320 OP2011 140 .75 1982-01-01 1983-02-01

000320 OP2011 150 .25 1982-01-01 1983-02-01

000330 OP2012 140 .25 1982-01-01 1983-02-01

000330 OP2012 160 .75 1982-01-01 1983-02-01

000340 OP2013 140 .50 1982-01-01 1983-02-01

000340 OP2013 170 .50 1982-01-01 1983-02-01

000020 PL2100 30 1.00 1982-01-01 1982-09-15

EMP_PHOTO Table

Name: EMPNO PHOTO_FORMAT PICTURE

Type: char(6) not null varchar(10) not null blob(100k)

Desc: Employee number Photo format Photo of employee

Values: 000130 bitmap db200130.bmp

000130 gif db200130.gif

000130 xwd db200130.xwd

000140 bitmap db200140.bmp

000140 gif db200140.gif

000140 xwd db200140.xwd

000150 bitmap db200150.bmp

000150 gif db200150.gif

000150 xwd db200150.xwd

000190 bitmap db200190.bmp

000190 gif db200190.gif

000190 xwd db200190.xwd

Sample Tables

Appendix B. Sample Tables 495

v “Quintana Photo” on page 501 shows the picture of the employee, Delores
Quintana.

v “Nicholls Photo” on page 503 shows the picture of the employee, Heather
Nicholls.

v “Adamson Photo” on page 505 shows the picture of the employee, Bruce
Adamson.

v “Walker Photo” on page 506 shows the picture of the employee, James
Walker.

EMP_RESUME Table

Name: EMPNO RESUME_FORMAT RESUME

Type: char(6) not null varchar(10) not null clob(5k)

Desc: Employee number Resume Format Resume of employee

Values: 000130 ascii db200130.asc

000130 script db200130.scr

000140 ascii db200140.asc

000140 script db200140.scr

000150 ascii db200150.asc

000150 script db200150.scr

000190 ascii db200190.asc

000190 script db200190.scr

v “Quintana Resume” on page 502 shows the resume of the employee,
Delores Quintana.

v “Nicholls Resume” on page 503 shows the resume of the employee, Heather
Nicholls.

v “Adamson Resume” on page 505 shows the resume of the employee, Bruce
Adamson.

v “Walker Resume” on page 506 shows the resume of the employee, James
Walker.

IN_TRAY Table

Name: RECEIVED SOURCE SUBJECT NOTE_TEXT

Type: timestamp char(8) char(64) varchar(3000)

Desc: Date and Time
received

User id of person
sending note

Brief description The note

Sample Tables

496 Administration Guide: Performance

ORG Table

Name: DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

Type: smallint not null varchar(14) smallint varchar(10) varchar(13)

Desc: Department
number

Department name Manager number Division of
corporation

City

Values: 10 Head Office 160 Corporate New York

15 New England 50 Eastern Boston

20 Mid Atlantic 10 Eastern Washington

38 South Atlantic 30 Eastern Atlanta

42 Great Lakes 100 Midwest Chicago

51 Plains 140 Midwest Dallas

66 Pacific 270 Western San Francisco

84 Mountain 290 Western Denver

PROJECT Table

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Type: char(6) not
null

varchar(24)
not null

char(3) not
null

char(6) not
null

dec(5,2) date date char(6)

Desc: Project
number

Project name Department
responsible

Employee
responsible

Estimated
mean staffing

Estimated
start date

Estimated
end date

Major
project, for a
subproject

Values: AD3100 ADMIN
SERVICES

D01 000010 6.5 1982-01-01 1983-02-01 -

AD3110 GENERAL
ADMIN
SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

AD3111 PAYROLL
PROGRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

AD3112 PERSONNEL
PROGRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

AD3113 ACCOUNT
PROGRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

IF1000 QUERY
SERVICES

C01 000030 2 1982-01-01 1983-02-01 -

IF2000 USER
EDUCATION

C01 000030 1 1982-01-01 1983-02-01 -

MA2100 WELD LINE
AUTOMATION

D01 000010 12 1982-01-01 1983-02-01 -

MA2110 W L
PROGRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

MA2111 W L
PROGRAM
DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

MA2112 W L ROBOT
DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

Sample Tables

Appendix B. Sample Tables 497

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

MA2113 W L PROD
CONT
PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

OP1000 OPERATION
SUPPORT

E01 000050 6 1982-01-01 1983-02-01 -

OP1010 OPERATION E11 000090 5 1982-01-01 1983-02-01 OP1000

OP2000 GEN
SYSTEMS
SERVICES

E01 000050 5 1982-01-01 1983-02-01 -

OP2010 SYSTEMS
SUPPORT

E21 000100 4 1982-01-01 1983-02-01 OP2000

OP2011 SCP
SYSTEMS
SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

OP2012 APPLICATIONS
SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

OP2013 DB/DC
SUPPORT

E21 000340 1 1982-01-01 1983-02-01 OP2010

PL2100 WELD LINE
PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

SALES Table

Name: SALES_DATE SALES_PERSON REGION SALES

Type: date varchar(15) varchar(15) int

Desc: Date of sales Employee’s last name Region of sales Number of sales

Values: 12/31/1995 LUCCHESSI Ontario-South 1

12/31/1995 LEE Ontario-South 3

12/31/1995 LEE Quebec 1

12/31/1995 LEE Manitoba 2

12/31/1995 GOUNOT Quebec 1

03/29/1996 LUCCHESSI Ontario-South 3

03/29/1996 LUCCHESSI Quebec 1

03/29/1996 LEE Ontario-South 2

03/29/1996 LEE Ontario-North 2

03/29/1996 LEE Quebec 3

03/29/1996 LEE Manitoba 5

03/29/1996 GOUNOT Ontario-South 3

03/29/1996 GOUNOT Quebec 1

03/29/1996 GOUNOT Manitoba 7

03/30/1996 LUCCHESSI Ontario-South 1

03/30/1996 LUCCHESSI Quebec 2

03/30/1996 LUCCHESSI Manitoba 1

03/30/1996 LEE Ontario-South 7

03/30/1996 LEE Ontario-North 3

03/30/1996 LEE Quebec 7

Sample Tables

498 Administration Guide: Performance

Name: SALES_DATE SALES_PERSON REGION SALES

03/30/1996 LEE Manitoba 4

03/30/1996 GOUNOT Ontario-South 2

03/30/1996 GOUNOT Quebec 18

03/30/1996 GOUNOT Manitoba 1

03/31/1996 LUCCHESSI Manitoba 1

03/31/1996 LEE Ontario-South 14

03/31/1996 LEE Ontario-North 3

03/31/1996 LEE Quebec 7

03/31/1996 LEE Manitoba 3

03/31/1996 GOUNOT Ontario-South 2

03/31/1996 GOUNOT Quebec 1

04/01/1996 LUCCHESSI Ontario-South 3

04/01/1996 LUCCHESSI Manitoba 1

04/01/1996 LEE Ontario-South 8

04/01/1996 LEE Ontario-North -

04/01/1996 LEE Quebec 8

04/01/1996 LEE Manitoba 9

04/01/1996 GOUNOT Ontario-South 3

04/01/1996 GOUNOT Ontario-North 1

04/01/1996 GOUNOT Quebec 3

04/01/1996 GOUNOT Manitoba 7

STAFF Table

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

varchar(9) smallint char(5) smallint dec(7,2) dec(7,2)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O’Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

Sample Tables

Appendix B. Sample Tables 499

Name: ID NAME DEPT JOB YEARS SALARY COMM

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

STAFFG Table

Note: STAFFG is only created for double-byte code pages.

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

vargraphic(9) smallint graphic(5) smallint dec(9,0) dec(9,0)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O’Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

Sample Tables

500 Administration Guide: Performance

Name: ID NAME DEPT JOB YEARS SALARY COMM

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

Sample Files with BLOB and CLOB Data Type

This section shows the data found in the EMP_PHOTO files (pictures of
employees) and EMP_RESUME files (resumes of employees).

Quintana Photo

Sample Tables

Appendix B. Sample Tables 501

Quintana Resume

The following text is found in the db200130.asc and db200130.scr files.

Resume: Delores M. Quintana

Personal Information

Address: 1150 Eglinton Ave Mellonville, Idaho 83725

Phone: (208) 555-9933

Birthdate: September 15, 1925

Sex: Female

Marital Status: Married

Height: 5’2″

Weight: 120 lbs.

Department Information

Employee Number: 000130

Dept Number: C01

Manager: Sally Kwan

Position: Analyst

Phone: (208) 555-4578

Hire Date: 1971-07-28

Education

Figure 28. Delores M. Quintana

Sample Tables

502 Administration Guide: Performance

1965 Math and English, B.A. Adelphi University

1960 Dental Technician Florida Institute of
Technology

Work History

10/91 - present Advisory Systems Analyst Producing
documentation tools for engineering
department.

12/85 - 9/91 Technical Writer Writer, text programmer, and
planner.

1/79 - 11/85 COBOL Payroll Programmer Writing payroll
programs for a diesel fuel company.

Interests

v Cooking
v Reading
v Sewing
v Remodeling

Nicholls Photo

Nicholls Resume

The following text is found in the db200140.asc and db200140.scr files.

Resume: Heather A. Nicholls

Figure 29. Heather A. Nicholls

Sample Tables

Appendix B. Sample Tables 503

Personal Information

Address: 844 Don Mills Ave Mellonville, Idaho 83734

Phone: (208) 555-2310

Birthdate: January 19, 1946

Sex: Female

Marital Status: Single

Height: 5’8″

Weight: 130 lbs.

Department Information

Employee Number: 000140

Dept Number: C01

Manager: Sally Kwan

Position: Analyst

Phone: (208) 555-1793

Hire Date: 1976-12-15

Education

1972 Computer Engineering, Ph.D. University of
Washington

1969 Music and Physics, M.A. Vassar College

Work History

2/83 - present Architect, OCR Development Designing the
architecture of OCR products.

12/76 - 1/83 Text Programmer Optical character recognition
(OCR) programming in PL/I.

9/72 - 11/76 Punch Card Quality Analyst Checking punch
cards met quality specifications.

Interests

v Model railroading
v Interior decorating
v Embroidery
v Knitting

Sample Tables

504 Administration Guide: Performance

Adamson Photo

Adamson Resume

The following text is found in the db200150.asc and db200150.scr files.

Resume: Bruce Adamson

Personal Information

Address: 3600 Steeles Ave Mellonville, Idaho 83757

Phone: (208) 555-4489

Birthdate: May 17, 1947

Sex: Male

Marital Status: Married

Height: 6’0″

Weight: 175 lbs.

Department Information

Employee Number: 000150

Dept Number: D11

Manager: Irving Stern

Position: Designer

Phone: (208) 555-4510

Figure 30. Bruce Adamson

Sample Tables

Appendix B. Sample Tables 505

Hire Date: 1972-02-12

Education

1971 Environmental Engineering, M.Sc. Johns
Hopkins University

1968 American History, B.A. Northwestern
University

Work History

8/79 - present Neural Network Design Developing neural
networks for machine intelligence products.

2/72 - 7/79 Robot Vision Development Developing
rule-based systems to emulate sight.

9/71 - 1/72 Numerical Integration Specialist Helping bank
systems communicate with each other.

Interests

v Racing motorcycles
v Building loudspeakers
v Assembling personal computers
v Sketching

Walker Photo

Walker Resume

The following text is found in the db200190.asc and db200190.scr files.

Resume: James H. Walker

Figure 31. James H. Walker

Sample Tables

506 Administration Guide: Performance

Personal Information

Address: 3500 Steeles Ave Mellonville, Idaho 83757

Phone: (208) 555-7325

Birthdate: June 25, 1952

Sex: Male

Marital Status: Single

Height: 5’11″

Weight: 166 lbs.

Department Information

Employee Number: 000190

Dept Number: D11

Manager: Irving Stern

Position: Designer

Phone: (208) 555-2986

Hire Date: 1974-07-26

Education

1974 Computer Studies, B.Sc. University of
Massachusetts

1972 Linguistic Anthropology, B.A. University of
Toronto

Work History

6/87 - present Microcode Design Optimizing algorithms for
mathematical functions.

4/77 - 5/87 Printer Technical Support Installing and
supporting laser printers.

9/74 - 3/77 Maintenance Programming Patching assembly
language compiler for mainframes.

Interests

v Wine tasting
v Skiing

Sample Tables

Appendix B. Sample Tables 507

v Swimming
v Dancing

Sample Tables

508 Administration Guide: Performance

Appendix C. Catalog Views

The database manager creates and maintains two sets of system catalog views.
This appendix contains a description of each system catalog view, including
column names and data types. All the system catalog views are created when
a database is created with the CREATE DATABASE command. The catalog
views cannot be explicitly created or dropped. The system catalog views are
updated during normal operation in response to SQL data definition
statements, environment routines, and certain utilities. Data in the system
catalog views is available through normal SQL query facilities. The system
catalog views cannot be modified using normal SQL data manipulation
commands with the exception of some specific updatable catalog views.

The catalog views are supported in addition to the catalog base tables from
Version 1. The views are within the SYSCAT schema and SELECT privilege on
all views is granted to PUBLIC by default. Application programs should be
written to these views rather than the base catalog tables. A second set of
views formed from a subset of those within the SYSCAT schema, contain
statistical information used by the optimizer. The views within the SYSSTAT
schema contain some updatable columns.

Warning: The intention is to enable applications to update certain columns
using the SYSSTAT views, but have the SYSCAT views read only.
Currently, the SYSCAT views are not read only. Applications
developers are warned to ensure that applications are written to
only update catalog information using the SYSSTAT views. The
SYSCAT views will become read only views after the next version
migration.

The catalog views are designed to use more consistent conventions than the
underlying catalog base tables. As such, the order of columns may change
from release to release. To protect from this affecting programming logic,
always specify explicitly the columns in a select list rather then letting them
default by using SELECT *. Columns have consistent names based on the type
of objects that they describe:

Described Object Column Names

Table TABSCHEMA, TABNAME

Index INDSCHEMA, INDNAME

View VIEWSCHEMA, VIEWNAME

© Copyright IBM Corp. 1993, 1999 509

Constraint CONSTSCHEMA, CONSTNAME

Trigger TRIGSCHEMA, TRIGNAME

Package PKGSCHEMA, PKGNAME

Type TYPESCHEMA, TYPENAME, TYPEID

Function FUNCSCHEMA, FUNCNAME, FUNCID

Column COLNAME

Schema SCHEMANAME

Table Space TBSPACE

Nodegroup NGNAME

Buffer pool BPNAME

Event Monitor EVMONNAME

Creation Timestamp CREATE_TIME
v “Updatable Catalog Views”

v ““Roadmap” to Catalog Views”

v ““Roadmap” to Updatable Catalog Views” on page 513

Updatable Catalog Views

The updatable views contain statistical information used by the optimizer.
Some columns in these views may be changed to investigate the performance
of hypothetical databases. An object (table, column, function, or index) will
appear in the updatable catalog view for a given user only if that user created
the object, holds CONTROL privilege on the object, or holds explicit DBADM
privilege. These views are found in the SYSSTAT schema. They are defined on
top of the system catalog base tables.

Before changing any statistics for the first time, it is advised to issue the
RUNSTATS command so that all statistics will reflect the current state.

See SQL Reference for more information, including rules for updating catalog
statistics.

“Roadmap” to Catalog Views

Description Catalog View Page

attributes of structured data types SYSCAT.ATTRIBUTES 515

Catalog Views

510 Administration Guide: Performance

Description Catalog View Page

authorities on database SYSCAT.DBAUTH 533

buffer pool configuration on
nodegroup

SYSCAT.BUFFERPOOLS 518

buffer pool size on node SYSCAT.BUFFERPOOLNODES 517

cast functions SYSCAT.CASTFUNCTIONS 519

check constraints SYSCAT.CHECKS 520

column privileges SYSCAT.COLAUTH 521

columns SYSCAT.COLUMNS 525

columns referenced by check
constraints

SYSCAT.COLCHECKS 522

columns used in keys SYSCAT.KEYCOLUSE 556

detailed column options SYSCAT.COLOPTIONS 524

detailed column statistics SYSCAT.COLDIST 523

constraint dependencies SYSCAT.CONSTDEP 530

datatypes SYSCAT.DATATYPES 531

event monitor definitions SYSCAT.EVENTMONITORS 534

events currently monitored SYSCAT.EVENTS 536

hierarchies(types, tables,views) SYSCAT.FULLHIERARCHIES 537

function dependencies SYSCAT.FUNCDEP 538

function mapping SYSCAT.FUNCMAPPINGS 541

function mapping options SYSCAT.FUNCMAPOPTIONS 539

function mapping parameter options SYSCAT.FUNCMAPPARMOPTIONS 540

function parameters SYSCAT.FUNCPARMS 542

hierarchies (types, tables, views) SYSCAT.HIERARCHIES 548

Index columns SYSCAT.INDEXCOLUSE 550

index dependencies SYSCAT.INDEXDEP 551

index privileges SYSCAT.INDEXAUTH 549

indexes SYSCAT.INDEXES 552

index options SYSCAT.INDEXOPTIONS 555

nodegroup definitions SYSCAT.NODEGROUPS 559

nodegroup nodes SYSCAT.NODEGROUPDEF 558

object mapping SYSCAT.NAMEMAPPINGS 557

package dependencies SYSCAT.PACKAGEDEP 561

package privileges SYSCAT.PACKAGEAUTH 560

Catalog Views

Appendix C. Catalog Views 511

Description Catalog View Page

packages SYSCAT.PACKAGES 562

partitioning maps SYSCAT.PARTITIONMAPS 566

pass-through privileges SYSCAT.PASSTHRUAUTH 567

procedure options SYSCAT.PROCOPTIONS 570

procedure parameter options SYSCAT.PROCPARMOPTIONS 571

procedure parameters SYSCAT.PROCPARMS 572

provides DB2 Universal Database for
OS/390 compatibility

SYSIBM.SYSDUMMY1 514

referential constraints SYSCAT.REFERENCES 574

remote table options SYSCAT.TABOPTIONS 590

reverse data type mapping SYSCAT.REVTYPEMAPPINGS 575

schema privileges SYSCAT.SCHEMAAUTH 577

schemas SYSCAT.SCHEMATA 578

server options SYSCAT.SERVEROPTIONS 579

server options values SYSCAT.USEROPTIONS 596

statements in packages SYSCAT.STATEMENTS 581

stored procedures SYSCAT.PROCEDURES 568

system servers SYSCAT.SERVERS 580

table constraints SYSCAT.TABCONST 584

table privileges SYSCAT.TABAUTH 582

tables SYSCAT.TABLES 585

table spaces SYSCAT.TABLESPACES 589

table spaces use privileges SYSCAT.TBSPACEAUTH 591

trigger dependencies SYSCAT.TRIGDEP 592

triggers SYSCAT.TRIGGERS 593

type mapping SYSCAT.TYPEMAPPINGS 594

user-defined functions SYSCAT.FUNCTIONS 544

view dependencies SYSCAT.VIEWDEP 597

views SYSCAT.TABLES 585

SYSCAT.VIEWS 598

wrapper options SYSCAT.WRAPOPTIONS 599

wrappers SYSCAT.WRAPPERS 600

Catalog Views

512 Administration Guide: Performance

“Roadmap” to Updatable Catalog Views

Description Catalog View Page

columns SYSSTAT.COLUMNS 602

indexes SYSSTAT.INDEXES 606

detailed column statistics SYSSTAT.COLDIST 601

tables SYSSTAT.TABLES 609

user-defined functions SYSSTAT.FUNCTIONS 604

Catalog Views

Appendix C. Catalog Views 513

SYSIBM.SYSDUMMY1

Contains one row. This view is available for applications that require
compatibility with DB2 Universal Database for OS/390.

Table 21. SYSCAT.DUMMY1 Catalog View

Column Name Data Type Nullable Description

IBMREQD CHAR(1) Y

SYSIBM.SYSDUMMY1

514 Administration Guide: Performance

SYSCAT.ATTRIBUTES

Contains one row for each attribute (including inherited attributes where
applicable) that is defined for a user-defined structured data type.

Table 22. SYSCAT.ATTRIBUTES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR(128) Qualified name of the strucutred data type
that includes the attribute.TYPENAME VARCHAR(18)

ATTR_NAME VARCHAR(18) Attribute name.

ATTR_TYPESCHEMA VARCHAR(128) Contains the qualified name of the type of
the attribute.ATTR_TYPENAME VARCHAR(18)

TARGET_TYPESCHEMA VARCHAR(128) Qualified name of the target type, if the type
of the attribute is REFERENCE. Null value if
the type of the attribute is not REFERENCE.TARGET_TYPENAME VARCHAR(18)

SOURCE_TYPESCHEMA VARCHAR(128) Qualified name of the data type in the data
type hierarchy where the attribute was
introduced. For non-inherited attributes,
these columns are the same as
TYPESCHEMA and TYPENAME.

SOURCE_TYPENAME VARCHAR(18)

ORDINAL SMALLINT Position of the attribute in the definition of
the structured data type starting with zero.

LENGTH INTEGER Maximum length of data. 0 for distinct types.
The LENGTH column indicates precision for
DECIMAL fields.

SCALE SMALLINT Scale for DECIMAL fields; 0 if not
DECIMAL.

CODEPAGE SMALLINT Code page of the attribute. For
character-string attributes not defined with
FOR BIT DATA, the value is the database
code page. For graphic-string attributes, the
value is the DBCS code page implied by the
(composite) database code page. Otherwise,
the value is 0.

LOGGED CHAR(1) Applies only to attributes whose type is LOB
or distinct based on LOB (blank otherwise).

Y = Attribute is logged.

N = Attribute is not logged.

COMPACT CHAR(1) Applies only to attributes whose type is LOB
or distinct based on LOB (blank otherwise).

Y = Attribute is compacted in storage.

N = Attribute is not compacted.

SYSCAT.ATTRIBUTES

Appendix C. Catalog Views 515

Table 22. SYSCAT.ATTRIBUTES Catalog View (continued)

Column Name Data Type Nullable Description

DL_FEATURES CHAR(10) Applies to DATALINK type attributes only.
Blank for REFERENCE type attributes. Null
otherwise. Encodes various DATALINK
features such as linktype, control mode,
recovery, and unlink properties.

SYSCAT.ATTRIBUTES

516 Administration Guide: Performance

SYSCAT.BUFFERPOOLNODES

Contains a row for each node in the buffer pool for which the size of the
buffer pool on the node is different from the default size in
SYSCAT.BUFFERPOOLS column NPAGES.

Table 23. SYSCAT.BUFFERPOOLNODES Catalog View

Column Name Data Type Nullable Description

BUFFERPOOLID INTEGER Internal buffer pool identifier

NODENUM SMALLINT Node Number

NPAGES INTEGER Number of pages in this buffer pool on this
node

SYSCAT.BUFFERPOOLNODES

Appendix C. Catalog Views 517

SYSCAT.BUFFERPOOLS

Contains a row for every buffer pool in every nodegroup.

Table 24. SYSCAT.BUFFERPOOLS Catalog View

Column Name Data Type Nullable Description

BPNAME VARCHAR(18) Name of buffer pool

BUFFERPOOLID INTEGER Internal buffer pool identifier

NGNAME VARCHAR(18) Yes Nodegroup name (NULL if the buffer pool
exists on all nodes in the database)

NPAGES INTEGER Number of pages in the buffer pool

PAGESIZE INTEGER Pagesize for this buffer pool

ESTORE CHAR(1)
N = This buffer pool does not use extended
storage.

Y = This buffer pool uses extended storage.

SYSCAT.BUFFERPOOLS

518 Administration Guide: Performance

SYSCAT.CASTFUNCTIONS

Contains a row for each cast function. It does not include built-in cast
functions.

Table 25. SYSCAT.CASTFUNCTIONS Catalog View

Column Name Data Type Nullable Description

FROM_TYPESCHEMA VARCHAR(128) Qualified name of the data type of the
parameter.FROM_TYPENAME VARCHAR(18)

TO_TYPESCHEMA VARCHAR(128) Qualified name of the data type of the result
after casting.TO_TYPENAME VARCHAR(18)

FUNCSCHEMA VARCHAR(128) Qualified name of the function.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance.

ASSIGN_FUNCTION CHAR(1)
Y = Implicit assignment function

N = Not an assignment function

SYSCAT.CASTFUNCTIONS

Appendix C. Catalog Views 519

SYSCAT.CHECKS

Contains one row for each CHECK constraint.

Table 26. SYSCAT.CHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the check constraint (unique within a
table.)

DEFINER VARCHAR(128) Authorization ID under which the check
constraint was defined.

TABSCHEMA VARCHAR(128) Qualified name of the table to which this
constraint applies.TABNAME VARCHAR(128)

CREATE_TIME TIMESTAMP The time at which the constraint was defined.
Used in resolving functions that are used in this
constraint. No functions will be chosen that
were created after the definition of the
constraint.

QUALIFIER VARCHAR(128) Value of the default schema at time of object
definition. Used to complete any unqualified
references.

TYPE CHAR(1) Type of check constraint:

A = System generated check constraint for
generated Always column

C = Check constraint

FUNC_PATH VARCHAR(254) The current SQL path that was used when the
constraint was created.

TEXT CLOB(64K) The text of the CHECK clause.

SYSCAT.CHECKS

520 Administration Guide: Performance

SYSCAT.COLAUTH

Contains one or more rows for each user or group who is granted a column
level privilege, indicating the type of privilege and whether or not it is
grantable.

Table 27. SYSCAT.COLAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privileges or SYSIBM.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1)
U = Grantee is an individual user.

G = Grantee is a group.

TABSCHEMA VARCHAR(128) Qualified name of the table or view.

TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column to which this privilege
applies.

COLNO SMALLINT Number of this column in the table or view.

PRIVTYPE CHAR(1) Indicates the type of privilege held on the table
or view:

U = Update privilege

R = Reference privilege

GRANTABLE CHAR(1) Indicates if the privilege is grantable.

G = Grantable

N = Not grantable

SYSCAT.COLAUTH

Appendix C. Catalog Views 521

SYSCAT.COLCHECKS

Each row represents some column that is referenced by a CHECK constraint.

Table 28. SYSCAT.COLCHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the check constraint. (Unique within a
table. May be system generated.)

TABSCHEMA VARCHAR(128) Qualified name of table containing referenced
column.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of column.

USAGE CHAR(1)
R = Column is referenced in the check
constraint.

S = Column is a source column in the system
generated column check constraint that
supports a summary table.

T = Column is a target column in the system
generated column check constraint that
supports a summary table.

SYSCAT.COLCHECKS

522 Administration Guide: Performance

SYSCAT.COLDIST

Contains detailed column statistics for use by the optimizer. Each row
describes the Nth-most-frequent value of some column.

Table 29. SYSCAT.COLDIST Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of the table to which this entry
applies.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column to which this entry applies.

TYPE CHAR(1)
F = Frequency (most frequent value)

Q = Quantile value

SEQNO SMALLINT v If TYPE = F, then N in this column identifies
the Nth most frequent value.

v If TYPE = Q, then N in this column identifies
the Nth quantile value.

COLVALUE VARCHAR(254) Yes The data value, as a character literal or a null
value.

VALCOUNT BIGINT v If TYPE = F, then VALCOUNT is the number
of occurrences of COLVALUE in the column.

v If TYPE = Q, then VALCOUNT is the number
of rows whose value is less than or equal to
COLVALUE.

DISTCOUNT BIGINT Yes If TYPE = Q, this column records the number of
distinct values that are less than or equal to
COLVALUE (null if unavailable).

SYSCAT.COLDIST

Appendix C. Catalog Views 523

SYSCAT.COLOPTIONS

Each row contains column specific option values.

Table 30. SYSCAT.COLOPTIONS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualifier of a nickname.

TABNAME VARCHAR(128) Nickname for the column.

COLNAME VARCHAR(128) Local column name.

OPTION VARCHAR(128) Name of column option.

SETTING VARCHAR(255) Values

SYSCAT.COLOPTIONS

524 Administration Guide: Performance

SYSCAT.COLUMNS

Contains one row for each column (including inherited columns where
applicable) that is defined for a table or view. All of the catalog views have
entries in the SYSCAT.COLUMNS table.

Table 31. SYSCAT.COLUMNS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of the table or view that
contains the column.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Column name.

COLNO SMALLINT Numerical place of column in table or view,
beginning at zero.

TYPESCHEMA VARCHAR(128) Contains the qualified name of the type, if
the data type of the column is distinct.
Otherwise TYPESCHEMA contains the value
SYSIBM and TYPENAME contains the data
type of the column (in long form, for
example, CHARACTER). If FLOAT or
FLOAT(n) with n greater than 24 is specified,
TYPENAME is renamed to DOUBLE. If
FLOAT(n) with n less than 25 is specified,
TYPENAME is renamed to REAL. Also,
NUMERIC is renamed to DECIMAL.

TYPENAME VARCHAR(18)

LENGTH INTEGER Maximum length of data. 0 for distinct types.
The LENGTH column indicates precision for
DECIMAL fields.

SCALE SMALLINT Scale for DECIMAL fields; 0 if not
DECIMAL.

DEFAULT VARCHAR(254) Yes Default value for the column of a table
expressed as a constant, special register, or
cast-function appropriate for the data type of
the column. May also be the keyword NULL.

Values may be converted from what was
specified as a default value. For example,
date and time constants are presented in ISO
format and cast-function names are qualified
with schema name and the identifiers are
delimited (see Note 3).

Null value if a DEFAULT clause was not
specified or the column is a view column.

SYSCAT.COLUMNS

Appendix C. Catalog Views 525

Table 31. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

NULLS CHAR(1)
Y = Column is nullable.

N = Column is not nullable.

The value can be N for a view column that is
derived from an expression or function.
Nevertheless, such a column allows nulls
when the statement using the view is
processed with warnings for arithmetic
errors.

See Note 1.

CODEPAGE SMALLINT Code page of the column. For
character-string columns not defined with the
FOR BIT DATA attribute, the value is the
database code page. For graphic-string
columns, the value is the DBCS code page
implied by the (composite) database code
page. Otherwise, the value is 0.

LOGGED CHAR(1) Applies only to columns whose type is LOB
or distinct based on LOB (blank otherwise).

Y=Column is logged.

N=Column is not logged.

COMPACT CHAR(1) Applies only to columns whose type is LOB
or distinct based on LOB (blank otherwise).

Y = Column is compacted in storage.

N = Column is not compacted.

COLCARD BIGINT Number of distinct values in the column; −1
if statistics are not gathered; −2 for inherited
columns and columns of H-tables.

HIGH2KEY VARCHAR(254) Yes Second highest value of the column. This
field is empty if statistics are not gathered
and for inherited columns and columns of
H-tables. See Note 2.

LOW2KEY VARCHAR(254) Yes Second lowest value of the column. This field
is empty if statistics are not gathered and for
inherited columns and columns of H-tables.
See Note 2.

AVGCOLLEN INTEGER Average column length. −1 if a long field or
LOB, or statistics have not been collected; −2
for inherited columns and columns of
H-tables.

SYSCAT.COLUMNS

526 Administration Guide: Performance

Table 31. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

KEYSEQ SMALLINT Yes The column’s numerical position within the
table’s primary key. This field is null for
subtables and hierarchy tables.

PARTKEYSEQ SMALLINT Yes The column’s numerical position within the
table’s partitioning key. This field is null or 0
if the column is not part of the partitioning
key. This field is also null for subtables and
hierarchy tables.

NQUANTILES SMALLINT Number of quantile values recorded in
SYSCAT.COLDIST for this column; −1 if no
statistics; −2 for inherited columns and
columns of H-tables.

NMOSTFREQ SMALLINT Number of most-frequent values recorded in
SYSCAT.COLDIST for this column; −1 if no
statistics; −2 for inherited columns and
columns of H-tables.

NUMNULLS BIGINT Contains the number of nulls in a column. −1
if statistics are not gathered.

TARGET_TYPESCHEMA VARCHAR(128) Yes Qualified name of the target type, if the type
of the column is REFERENCE. Null value if
the type of the column is not REFERENCE.TARGET_TYPENAME VARCHAR(18) Yes

SCOPE_TABSCHEMA VARCHAR(128) Yes Qualified name of the scope (target table), if
the type of the column is REFERENCE. Null
value if the type of the column is not
REFERENCE or the scope is not defined.

SCOPE_TABNAME VARCHAR(128) Yes

SOURCE_TABSCHEMA VARCHAR(128) Qualified name of the table or view in the
respective hierarchy where the column was
introduced. For non-inherited columns, the
values are the same as TBCREATOR and
TBNAME. Null for columns of non-typed
tables and views

SOURCE_TABNAME VARCHAR(128)

SYSCAT.COLUMNS

Appendix C. Catalog Views 527

Table 31. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

DL_FEATURES CHAR(10) Yes Applies to DATALINK type columns only.
Null otherwise. Each character position is
defined as follows:

1. Link type (U for URL)

2. Link control (F for file, N for no)

3. Integrity (A for all, N for none)

4. Read permission (F for file system, D for
database)

5. Write permission (F for file system, B for
blocked)

6. Recovery (Y for yes, N for no)

7. On unlink (R for restore, D for delete, N
for not applicable)

Characters 8 through 10 are reserved for
future use.

SPECIAL_PROPS CHAR(8) Yes Applies to REFERENCE type columns only.
Null otherwise. Each character position is
defined as follows:

Object identifier (OID) column (Y for yes,
N for no)

User generated or system generated (U
for user, S for system)

HIDDEN CHAR(1) Type of hidden column

S = System managed hidden column

Blank if column is not hidden

INLINE_LENGTH INTEGER Any long VARCHAR or lob data smaller
than or equal to INLINE_LENGTH is stored
as VARCHAR data in the base table. Initial
value is 0.

GENERATED CHAR(1) Type of generated column

A = Column value is always generated

Blank if column is not generated

TEXT CLOB(64K) Contains text of the definition of the
generated column.

REMARKS VARCHAR(254) Yes User-supplied comment.

SYSCAT.COLUMNS

528 Administration Guide: Performance

Table 31. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

Note:

1. Starting with Version 2, value D (indicating not null with a default) is no longer used. Instead, use of
WITH DEFAULT is indicated by a non-null value in the DEFAULT column.

2. Starting with Version 2, representation of numeric data has been changed to character literals. The
size has been enlarged from 16 to 33 bytes.

3. For Version 2.1.0, cast-function names were not delimited and may still appear this way in the
DEFAULT column. Also, some view columns included default values which will still appear in the
DEFAULT column.

SYSCAT.COLUMNS

Appendix C. Catalog Views 529

SYSCAT.CONSTDEP

Contains a row for every dependency of a constraint on some other object.

Table 32. SYSCAT.CONSTDEP Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint.

TABSCHEMA VARCHAR(128) Qualified name of the table to which the
constraint applies.TABNAME VARCHAR(128)

BTYPE CHAR(1) Type of object that the constraint depends on.
Possible values:

F = Function instance

I = Index instance

R = Structured type

BSCHEMA VARCHAR(128) Qualified name of object that the constraint
depends on.BNAME VARCHAR(18)

SYSCAT.CONSTDEP

530 Administration Guide: Performance

SYSCAT.DATATYPES

Contains a row for every data type, including built-in and user-defined types.

Table 33. SYSCAT.DATATYPES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR(128) Qualified name of the data type (for built-in
types, TYPESCHEMA is SYSIBM).TYPENAME VARCHAR(18)

DEFINER VARCHAR(128) Authorization ID under which type was created.

SOURCESCHEMA VARCHAR(128) Yes Qualified name of the source type for distinct
types. Qualified name of the builtin type used
as the reference type that is used as the
representation for references to structured types.
Null for other types.

SOURCENAME VARCHAR(18) Yes

METATYPE CHAR(1)
S = System predefined type

T = Distinct type

R = Structured type

TYPEID SMALLINT The system generated internal identifier of the
data type.

SOURCETYPEID SMALLINT Yes Internal type ID of source type (null for built-in
types). For user-defined structured types, this is
the internal type ID of the reference
representation type.

LENGTH INTEGER Maximum length of the type. 0 for system
predefined parameterized types (for example,
DECIMAL and VARCHAR). For user-defined
structured types, this indicates the length of the
reference representation type.

SCALE SMALLINT Scale for distinct types or reference
representation types based on the system
predefined DECIMAL type. 0 for all other types
(including DECIMAL itself). For user-defined
structured types, this indicates the length of the
reference representation type.

CODEPAGE SMALLINT Code page for character and graphic distinct
types or reference representation types; 0
otherwise.

CREATE_TIME TIMESTAMP Creation time of the data type.

ATTRCOUNT SMALLINT Number of attributes in data type.

INSTANTIABLE CHAR(1) Y = Type can be instantiated.

N = Type can not be instantiated.

SYSCAT.DATATYPES

Appendix C. Catalog Views 531

Table 33. SYSCAT.DATATYPES Catalog View (continued)

Column Name Data Type Nullable Description

WITH_FUNC_ACCESS CHAR(1) Y = All the methods for this type can be
invoked using function notation.

N = Methods for this type can not be
invoked using function notation.

FINAL CHAR(1) Y = User-defined type can not have
subtypes.

N = User-defined type can have subtypes.

INLINE_LENGTH INTEGER Length of structured type that can be kept with
base table row. Always 0.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.DATATYPES

532 Administration Guide: Performance

SYSCAT.DBAUTH

Records the database authorities held by users.

Table 34. SYSCAT.DBAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) SYSIBM or authorization ID of the user who
granted the privileges.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1)
U = Grantee is an individual user.

G = Grantee is a group.

DBADMAUTH CHAR(1) Whether grantee holds DBADM authority over
the database:

Y = Authority is held.

N = Authority is not held.

CREATETABAUTH CHAR(1) Whether grantee can create tables in the
database (CREATETAB):

Y = Privilege is held.

N = Privilege is not held.

BINDADDAUTH CHAR(1) Whether grantee can create new packages in the
database (BINDADD):

Y = Privilege is held.

N = Privilege is not held.

CONNECTAUTH CHAR(1) Whether grantee can connect to the database
(CONNECT):

Y = Privilege is held.

N = Privilege is not held.

NOFENCEAUTH CHAR(1) Whether grantee holds privilege to create
non-fenced functions.

Y = Privilege is held.

N = Privilege is not held.

IMPLSCHEMAAUTH CHAR(1) Whether grantee can implicitly create schemas
in the database (IMPLICIT_SCHEMA):

Y = Privilege is held.

N = Privilege is not held.

LOADAUTH CHAR(1) Whether grantee has the privilege to use the
LOAD utility:

Y = Privilege is held.

N = Privilege is not held.

SYSCAT.DBAUTH

Appendix C. Catalog Views 533

SYSCAT.EVENTMONITORS

Contains a row for every event monitor that has been defined.

Column Name Data Type Nullable Description

EVMONNAME VARCHAR(18) Name of event monitor.

DEFINER VARCHAR(128) Authorization ID of definer of event monitor.

TARGET_TYPE CHAR(1) The type of the target to which event data is
written. Values:

F = File

P = Pipe

TARGET VARCHAR(246) Name of the target to which event data is
written. Absolute pathname of file, or absolute
name of pipe.

MAXFILES INTEGER Yes Maximum number of event files that this event
monitor permits in an event path. Null if there
is no maximum, or if the target-type is not FILE.

MAXFILESIZE INTEGER Yes Maximum size (in 4K pages) that each event file
can reach before the event monitor creates a
new file. Null if there is no maximum, or if the
target-type is not FILE.

BUFFERSIZE INTEGER Yes Size of buffers (in 4K pages) used by event
monitors with file targets; otherwise null.

IO_MODE CHAR(1) Yes Mode of file I/O.

B = Blocked

N = Not blocked

Null if target-type is not FILE.

WRITE_MODE CHAR(1) Yes Indicates how this monitor handles existing
event data when the monitor is activated.
Values:

A = Append

R = Replace

Null if target-type is not FILE.

AUTOSTART CHAR(1) The event monitor will be activated
automatically when the database starts.

Y = Yes

N = No

NODENUM SMALLINT The number of the partition (or node) on which
the event monitor runs and logs events.

SYSCAT.EVENTMONITORS

534 Administration Guide: Performance

Column Name Data Type Nullable Description

MONSCOPE CHAR(1) Monitoring scope:

L = Local

G = Global

REMARKS VARCHAR(254) Yes Reserved for future use.

SYSCAT.EVENTMONITORS

Appendix C. Catalog Views 535

SYSCAT.EVENTS

Contains a row for every event that is being monitored. An event monitor, in
general, monitors multiple events.

Table 35. SYSCAT.EVENTS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR(18) Name of event monitor that is monitoring this
event.

TYPE VARCHAR(18) Type of event being monitored. Possible values:

DATABASE

CONNECTIONS

TABLES

STATEMENTS

TRANSACTIONS

DEADLOCKS

TABLESPACES

FILTER CLOB(32K) Yes The full text of the WHERE-clause that applies
to this event.

SYSCAT.EVENTS

536 Administration Guide: Performance

SYSCAT.FULLHIERARCHIES

Each row represents the relationship between a subtable and a supertable, a
subtype and a supertype, or a subview and a superview. All hierarchical
relationships, including immediate ones, are included in this view

Table 36. SYSCAT.FULLHIERARCHIES Catalog View

Column Name Data Type Nullable Description

METATYPE CHAR(1) Encodes the type of relationship:

R = Between structured types

U = Between typed tables

W = Between typed views

SUB_SCHEMA VARCHAR(128) Qualified name of subtype, subtable or subview.

SUB_NAME VARCHAR(128)

SUPER_SCHEMA VARCHAR(128) Qualified name of supertype, supertable or
superview.SUPER_NAME VARCHAR(128)

ROOT_SCHEMA VARCHAR(128) Qualified name of the table, view or type that is
at the root of the hierarchy.ROOT_NAME VARCHAR(128)

SYSCAT.FULLHIERARCHIES

Appendix C. Catalog Views 537

SYSCAT.FUNCDEP

Each row represents a dependency of a function on some other object.

Table 37. SYSCAT.FUNCDEP Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR(128) Qualified name of the function which has
dependencies on another object.FUNCNAME VARCHAR(18)

BTYPE CHAR(1) Type of object that the function is dependent on.

A = Alias

F = Function instance

O = Privilege dependency on all subtables or
subviews in a table or view hierarchy

R = Structured type

S = Summary table

T = Table

U = Typed table

V = View

W = Typed view

X = Index extension

BSCHEMA VARCHAR(128) Qualified name of the object that the function
has a dependency on.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE = O, S, T, U, V or W then it encodes
the privileges on the table or view that are
required by the dependent function. Otherwise
null.

SYSCAT.FUNCDEP

538 Administration Guide: Performance

SYSCAT.FUNCMAPOPTIONS

Each row contains function mapping option values.

Table 38. SYSCAT.FUNCMAPOPTIONS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR(18) Function mapping name.

OPTION VARCHAR(128) Name of the function mapping option.

SETTING VARCHAR(255) Value.

SYSCAT.FUNCMAPOPTIONS

Appendix C. Catalog Views 539

SYSCAT.FUNCMAPPARMOPTIONS

Each row contains function mapping parameter option values.

Table 39. SYSCAT.FUNCMAPPARMOPTIONS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR(18) Name of function mapping.

ORDINAL SMALLINT Position of parameter

LOCATION CHAR(1)
L = Local

R = Remote

OPTION VARCHAR(128) Name of the function mapping parameter
option.

SETTING VARCHAR(255) Value.

SYSCAT.FUNCMAPPARMOPTIONS

540 Administration Guide: Performance

SYSCAT.FUNCMAPPINGS

Each row contains function mappings.

Table 40. SYSCAT.FUNCMAPPINGS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR(18) Name of function mapping (may be system
generated).

FUNCSCHEMA VARCHAR(128) Yes Funcion schema. Null if system built-in
function.

FUNCNAME VARCHAR(1024) Yes Name of the local function (built-in or
user-defined)

FUNCID INTEGER Yes Internally assigned identifier.

SPECIFICNAME VARCHAR(18) Yes Name of the local function instance.

DEFINER VARCHAR(128) Authorization ID under which this mapping
was created.

WRAPNAME VARCHAR(128) Yes Wrapper name to which the mapping is applied.

SERVERNAME VARCHAR(128) Yes Name of the data source.

SERVERTYPE VARCHAR(30) Yes Type of data source to which mapping is
applied.

SERVERVERSION VARCHAR(18) Yes Version of the server type to which mapping is
applied.

CREATE_TIME TIMESTAMP Yes Time at which the mapping is created.

REMARKS VARCHAR(254) Yes User supplied comment, or null.

SYSCAT.FUNCMAPPINGS

Appendix C. Catalog Views 541

SYSCAT.FUNCPARMS

Contains a row for every parameter or result of a function defined in
SYSCAT.FUNCTIONS.

Table 41. SYSCAT.FUNCPARMS Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR(128) Qualified function name.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance (may be
system-generated).

ROWTYPE CHAR(1)
P = Parameter

R = Result before casting

C = Result after casting

ORDINAL SMALLINT If ROWTYPE = P, the parameter’s numerical
position within the function signature.
Otherwise 0.

PARMNAME VARCHAR(128) Name of parameter or result column, or null
if no name exists.

TYPESCHEMA VARCHAR(128) Qualified name of data type of parameter or
result.TYPENAME VARCHAR(18)

LENGTH INTEGER Length of parameter or result. 0 if parameter
or result is a distinct type. See Note 1.

SCALE SMALLINT Scale of parameter or result. 0 if parameter or
result is a distinct type. See Note 1.

CODEPAGE SMALLINT Code page of parameter. 0 denotes either not
applicable or a column for character data
declared with the FOR BIT DATA attribute.

CAST_FUNCID INTEGER Yes Internal function ID.

AS_LOCATOR CHAR(1) Y = Parameter or result is passed in the
form of a locator.

N = Not passed in the form of a locator.

TARGET_TYPESCHEMA VARCHAR(128) Qualified name of the target type, if the type
of the parameter or result is REFERENCE.
Null value if the type of the parameter or
result is not REFERENCE.

TARGET_TYPENAME VARCHAR(18)

SYSCAT.FUNCPARMS

542 Administration Guide: Performance

Table 41. SYSCAT.FUNCPARMS Catalog View (continued)

Column Name Data Type Nullable Description

SCOPE_TABSCHEMA VARCHAR(128) Qualified name of the scope (target table), if
the type of the parameter or result is
REFERENCE. Null value if the type of the
parameter or result is not REFERENCE or the
scope is not defined.

SCOPE_TABNAME VARCHAR(128)

TRANSFORM_GRPNAME VARCHAR(18) Name of transform group for a user-defined
type function parameter.

Note:

1. LENGTH and SCALE are set to 0 for sourced functions (functions defined with a reference to
another function) because they inherit the length and scale of parameters from their source.

SYSCAT.FUNCPARMS

Appendix C. Catalog Views 543

SYSCAT.FUNCTIONS

Contains a row for each user-defined function (scalar, table or source). Does
not include built-in functions.

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR(128) Qualified function name.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance (may be
system-generated).

DEFINER VARCHAR(128) Authorization ID of function definer.

FUNCID INTEGER Internally-assigned function ID.

RETURN_TYPE SMALLINT Internal type code of return type of function.

ORIGIN CHAR(1)
B = Built-in

E = User-defined, external

U = User-defined, based on a source

S = System-generated

TYPE CHAR(1) C = Column function

S = Scalar function

T = Table function

METHOD CHAR(1) N = Not a method

EFFECT CHAR(2) Blanks if not a method

PARM_COUNT SMALLINT Number of function parameters.

PARM_SIGNATURE VARCHAR(180)
FOR BIT DATA

Concatenation of up to 90 parameter types, in
internal format. Zero length if function takes
no parameters.

CREATE_TIME TIMESTAMP Timestamp of function creation. Set to 0 for
Version 1 functions.

QUALIFIER VARCHAR(128) Value of default schema at object definition
time.

WITH_FUNC_ACCESS CHAR(1) Reserved for future use.

TYPE_PRESERVING CHAR(1) Reserved for future use.

VARIANT CHAR(1) Y = Variant (results may differ)

N = Invariant (results are consistent)

Blank if ORIGIN is not E

SYSCAT.FUNCTIONS

544 Administration Guide: Performance

Column Name Data Type Nullable Description

SIDE_EFFECTS CHAR(1) E = Function has external side-effects
(number of invocations is important)

N = No side-effects

Blank if ORIGIN is not E

FENCED CHAR(1) Y = Fenced

N = Not fenced

Blank if ORIGIN is not E

NULLCALL CHAR(1) Y = CALLED ON NULL INPUT

N = RETURNS NULL ON NULL INPUT
(function result is implicitly null if
operand(s) are null).

Blank if ORIGIN is not E.

CAST_FUNCTION CHAR(1) Y = This is a cast function

N = This is not a cast function

ASSIGN_FUNCTION CHAR(1) Y = Implicit assignment function

N = Not an assignment function

SCRATCHPAD CHAR(1) Y = This function has a scratch pad.

N = This function does not have a scratch
pad.

Blank if ORIGIN is not E

FINAL_CALL CHAR(1) Y = Final call is made to this function at
run time end-of-statement.

N = No final call is made.

Blank if ORIGIN is not E

PARALLELIZABLE CHAR(1) Y = Function can be executed in parallel.

N = Function cannot be executed in
parallel.

Blank if ORIGIN is not E

CONTAINS_SQL CHAR(1) Indicates whether an external function
contains SQL.

N = Function does not contain SQL
statements.

Blank if ORIGIN is not E

SYSCAT.FUNCTIONS

Appendix C. Catalog Views 545

Column Name Data Type Nullable Description

DBINFO CHAR(1) Indicates whether a DBINFO parameter is
passed to an external function.

Y = DBINFO is passed.

N = DBINFO is not passed.

Blank if ORIGIN is not E

RESULT_COLS SMALLINT For a table function (TYPE=T) contains the
number of columns in the result table;
otherwise contains 1.

LANGUAGE CHAR(8) Implementation language of function body.
Possible values are C, JAVA, OLE or OLEDB.
Blank if ORIGIN is not E.

IMPLEMENTATION VARCHAR(254) Yes If ORIGIN = E, identifies the
path/module/function that implements this
function. If ORIGIN = U and the source
function is built-in, this column contains the
name and signature of the source function.
Null otherwise.

CLASS VARCHAR(128) Yes If LANGUAGE = JAVA, identifies the class
that implements this function. Null otherwise.

JAR_ID VARCHAR(128) Yes If LANGUAGE = JAVA, identifies the jar file
that implements this function. Null otherwise.

PARM_STYLE CHAR(8) Indicates the parameter style declared in the
CREATE FUNCTION statement. Values:

DB2SQL

DB2GENRL

JAVA

Blank if ORIGIN is not E

SOURCE_SCHEMA VARCHAR(128) Yes If ORIGIN = U and the source function is a
user-defined function, contains the qualified
name of the source function. If ORIGIN = U
and the source function is built-in,
SOURCE_SCHEMA is 'SYSIBM' and
SOURCE_SPECIFIC is 'N/A for built-in'. Null
if ORIGIN is not U.

SOURCE_SPECIFIC VARCHAR(18) Yes

IOS_PER_INVOC DOUBLE Estimated number of I/Os per invocation; -1 if
not known (0 default).

INSTS_PER_INVOC DOUBLE Estimated number of instructions per
invocation; -1 if not known (450 default).

IOS_PER_ARGBYTE DOUBLE Estimated number of I/O’s per input
argument byte; -1 if not known (0 default).

SYSCAT.FUNCTIONS

546 Administration Guide: Performance

Column Name Data Type Nullable Description

INSTS_PER_ARGBYTE DOUBLE Estimated number of instructions per input
argument byte; -1 if not known (0 default).

PERCENT_ARGBYTES SMALLINT Estimated average percent of input argument
bytes that the function will actually read; -1 if
not known (100 default).

INITIAL_IOS DOUBLE Estimated number of I/O’s performed the
first/last time the function is invoked; -1 if not
known (0 default).

INITIAL_INSTS DOUBLE Estimated number of instructions executed the
first/last time the function is invoked; -1 if not
known (0 default).

CARDINALITY BIGINT The predicted cardinality of a table function.
−1 if not known or if function is not a table
function.

IMPLEMENTED CHAR(1) Reserved for future use.

SELECTIVITY DOUBLE Reserved for future use.

OVERRIDEN_FUNCID INTEGER Yes Reserved for future use.

SUBJECT_TYPESCHEMA VARCHAR(128) Yes Subject type schema for the user defined
method.

SUBJECT_TYPENAME VARCHAR(18) Yes Subject type name for the user defined
method.

FUNC_PATH VARCHAR(254) Yes Function path at the time the function was
defined.

BODY CLOB(1M) Yes Reserved for future use.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.FUNCTIONS

Appendix C. Catalog Views 547

SYSCAT.HIERARCHIES

Each row represents the relationship between a subtable and its immediate
supertable, a subtype and its immediate supertype, or a subview and its
immediate superview. Only immediate hierarchical relationships are included
in this view.

Table 42. SYSCAT.HIERARCHIES Catalog View

Column Name Data Type Nullable Description

METATYPE CHAR(1) Encodes the type of relationship:

R = Between structured types

U = Between typed tables

W = Between typed views

SUB_SCHEMA VARCHAR(128) Qualified name of subtype, subtable, or
subview.SUB_NAME VARCHAR(128)

SUPER_SCHEMA VARCHAR(128) Qualified name of supertype, supertable, or
superview.SUPER_NAME VARCHAR(128)

ROOT_SCHEMA VARCHAR(128) Qualified name of the table, view or type that is
at the root of the hierarchy.ROOT_NAME VARCHAR(128)

SYSCAT.HIERARCHIES

548 Administration Guide: Performance

SYSCAT.INDEXAUTH

Contains a row for every privilege held on an index.

Table 43. SYSCAT.INDEXAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privileges.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1)
U = Grantee is an individual user.

G = Grantee is a group.

INDSCHEMA VARCHAR(128) Name of the index.

INDNAME VARCHAR(18)

CONTROLAUTH CHAR(1) Whether grantee holds CONTROL privilege
over the index:

Y = Privilege is held.

N = Privilege is not held.

SYSCAT.INDEXAUTH

Appendix C. Catalog Views 549

SYSCAT.INDEXCOLUSE

Lists all columns that participate in an index.

Table 44. SYSCAT.INDEXCOLUSE Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Qualified name of the index.

INDNAME VARCHAR(18)

COLNAME VARCHAR(128) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the index
(initial position = 1).

COLORDER CHAR(1) Order of the values in this column in the index.
Values:

v A = Ascending

v D = Descending

v I = INCLUDE column(ordering ignored)

SYSCAT.INDEXCOLUSE

550 Administration Guide: Performance

SYSCAT.INDEXDEP

Each row represents a dependency of a function on some other object.

Table 45. SYSCAT.INDEXDEP Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Qualified name of the index which has
dependencies on another object.INDNAME VARCHAR(18)

BTYPE CHAR(1) Type of object that the index is dependent on.

A = Alias

F = Function instance

O = Privilege dependency on all subtables or
subviews in a table or view hierarchy

R = Structured type

S = Summary table

T = Table

U = Typed table

V = View

W = Typed view

X = Index extension

BSCHEMA VARCHAR(128) Qualified name of the object that the index has a
dependency on.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE = O, S, T, U, V or W then it encodes the
privileges on the table or view that are required
by the dependent index. Otherwise null.

SYSCAT.INDEXDEP

Appendix C. Catalog Views 551

SYSCAT.INDEXES

Contains one row for each index (including inherited indexes where
applicable) that is defined for a table.

Table 46. SYSCAT.INDEXES Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Name of the index.

INDNAME VARCHAR(18)

DEFINER VARCHAR(128) User who created the index.

TABSCHEMA VARCHAR(128) Qualified name of the table or nickname on
which the index is defined.TABNAME VARCHAR(128)

COLNAMES VARCHAR(640) List of column names, each preceded by + or −
to indicate ascending or descending order
respectively. Warning: This column will be
removed in the future. Use
“SYSCAT.INDEXCOLUSE” on page 550 for this
information.

UNIQUERULE CHAR(1) Unique rule:

D = Duplicates allowed

P = Primary index

U = Unique entries only allowed

MADE_UNIQUE CHAR(1) Y = Index was originally non-unique but
was converted to a unique index to support
a unique or primary key constraint. If the
constraint is dropped, the index will revert
to non-unique.

N = Index remains as it was created.

COLCOUNT SMALLINT Number of columns in the key plus the number
of include columns if any.

UNIQUE_COLCOUNT SMALLINT The number of columns required for a unique
key. Always <=COLCOUNT. < COLCOUNT
only if there a include columns. −1 if index has
no unique key (permits duplicates)

INDEXTYPE CHAR(4) Type of index.

CLUS = Clustering

REG = Regular

ENTRYTYPE CHAR(1) H = An index on a hierarchy table (H-table)

L = Logical index on a typed table

blank if an index on an untyped table

SYSCAT.INDEXES

552 Administration Guide: Performance

Table 46. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

PCTFREE SMALLINT Percentage of each index leaf page to be
reserved during initial building of the index.
This space is available for future inserts after the
index is built.

IID SMALLINT Internal index ID.

NLEAF INTEGER Number of leaf pages; −1 if statistics are not
gathered.

NLEVELS SMALLINT Number of index levels; −1 if statistics are not
gathered.

FIRSTKEYCARD BIGINT Number of distinct first key values; −1 if
statistics are not gathered.

FIRST2KEYCARD BIGINT Number of distinct keys using the first two
columns of the index (−1 if no statistics or
inapplicable)

FIRST3KEYCARD BIGINT Number of distinct keys using the first three
columns of the index (−1 if no statistics or
inapplicable)

FIRST4KEYCARD BIGINT Number of distinct keys using the first four
columns of the index (−1 if no statistics or
inapplicable)

FULLKEYCARD BIGINT Number of distinct full key values; −1 if
statistics are not gathered.

CLUSTERRATIO SMALLINT Degree of data clustering with the index; −1 if
statistics are not gathered or if detailed index
statistics are gathered (in which case,
CLUSTERFACTOR will be used instead).

CLUSTERFACTOR DOUBLE Finer measurement of degree of clustering, or -1
if detailed index statistics have not been
gathered or if the index is defined on a
nickname.

SEQUENTIAL_PAGES INTEGER Number of leaf pages located on disk in index
key order with few or no large gaps between
them. (−1 if no statistics are available.)

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percent (integer between 0
and 100, −1 if no statistics are available.)

USER_DEFINED SMALLINT 1 if this index was defined by a user and has
not been dropped; otherwise 0.

SYSCAT.INDEXES

Appendix C. Catalog Views 553

Table 46. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

SYSTEM_REQUIRED SMALLINT 1 if this index is required for primary key or
unique key constraint, OR if this is the index
on the object identifier (OID) column of a
typed table.

2 if this index is required for primary key or
unique key constraint, AND this is the index
on the object identifier (OID) column of a
typed table.

0 otherwise.

CREATE_TIME TIMESTAMP Time when the index was created.

STATS_TIME TIMESTAMP Yes Last time when any change was made to
recorded statistics for this index. Null if no
statistics available.

PAGE_FETCH_PAIRS VARCHAR(254) A list of pairs of integers, represented in
character form. Each pair represents the number
of pages in a hypothetical buffer, and the
number of page fetches required to scan the
table with this index using that hypothetical
buffer. (Zero-length string if no data available.)

MINPCTUSED SMALLINT If not zero, then on-line index reorganization is
enabled and the value is the threshold of
minimum used space before merging pages.

REVERSE_SCANS CHAR(1) Y = Index supports reverse scans

N = Index does not support reverse scans

INTERNAL_FORMAT CHAR(1) Encodes the internal representation of the index.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.INDEXES

554 Administration Guide: Performance

SYSCAT.INDEXOPTIONS

Each row contains index specific option values.

Table 47. SYSCAT.INDEXOPTIONS Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR(128) Schema name of the index.

INDNAME VARCHAR(18) Local name of the index.

OPTION VARCHAR(128) Name of the index option.

SETTING VARCHAR(255) Value.

SYSCAT.INDEXOPTIONS

Appendix C. Catalog Views 555

SYSCAT.KEYCOLUSE

Lists all columns that participate in a key (including inherited primary or
unique keys where applicable) defined by a unique, primary key, or foreign
key constraint.

Table 48. SYSCAT.KEYCOLUSE Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint (unique within a table).

TABSCHEMA VARCHAR(128) Qualified name of the table containing the
column.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the key
(initial position=1).

SYSCAT.KEYCOLUSE

556 Administration Guide: Performance

SYSCAT.NAMEMAPPINGS

Each row represents the mapping between logical objects and the
corresponding implementation objects that implement the logical objects.

Table 49. SYSCAT.NAMEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE CHAR(1)
C = Column

I = Index

U = Typed table

LOGICAL_SCHEMA VARCHAR(128) Qualified name of the logical object.

LOGICAL_NAME VARCHAR(128)

LOGICAL_COLNAME VARCHAR(128) Yes If TYPE = C, then the name of the logical
column. Otherwise null.

IMPL_SCHEMA VARCHAR(128) Qualified name of the implementation object
that implements the logical object.IMPL_NAME VARCHAR(128)

IMPL_COLNAME VARCHAR(128) Yes If TYPE = C, then the name of the
implementation column. Otherwise null.

SYSCAT.NAMEMAPPINGS

Appendix C. Catalog Views 557

SYSCAT.NODEGROUPDEF

Contains a row for each partition that is contained in a nodegroup.

Table 50. SYSCAT.NODEGROUPDEF Catalog View

Column Name Data Type Nullable Description

NGNAME VARCHAR(18) The name of the nodegroup that contains the
partition (or node).

NODENUM SMALLINT The partition (or node) number of a partition
contained in the nodegroup. A valid partition
number is between 0 and 999 inclusive.

IN_USE CHAR(1) Status of the partition (or node).

A = The newly added partition is not in the
partitioning map but the containers for the
table spaces in the nodegroup are created.
The partition is added to the partitioning
map when a Redistribute Nodegroup
operation is successfully completed.

D = The partition will be dropped when a
Redistribute Nodegroup operation is
completed.

T = The newly added partition is not in the
partitioning map and it was added using the
WITHOUT TABLESPACES clause.
Containers must be specifically added to the
table spaces for the nodegroup.

Y = The partition is in the partitioning map.

SYSCAT.NODEGROUPDEF

558 Administration Guide: Performance

SYSCAT.NODEGROUPS

Contains a row for each nodegroup.

Table 51. SYSCAT.NODEGROUPS Catalog View

Column Name Data Type Nullable Description

NGNAME VARCHAR(18) Name of the nodegroup.

DEFINER VARCHAR(128) Authorization ID of the nodegroup definer.

PMAP_ID SMALLINT Identifier of the partitioning map in
SYSCAT.PARTITIONMAPS.

REBALANCE_PMAP_ID SMALLINT Identifier of the partitioning map currently
being used for redistribution. Value is -1 if
redistribution is currently not in progress.

CREATE_TIME TIMESTAMP Creation time of nodegroup.

REMARKS VARCHAR(254) Yes User-provided comment.

SYSCAT.NODEGROUPS

Appendix C. Catalog Views 559

SYSCAT.PACKAGEAUTH

Contains a row for every privilege held on a package.

Table 52. SYSCAT.PACKAGEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privileges.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1)
U = Grantee is an individual user.

G = Grantee is a group.

PKGSCHEMA VARCHAR(128) Name of the package on which the privileges
are held.PKGNAME CHAR(8)

CONTROLAUTH CHAR(1) Indicates whether grantee holds CONTROL
privilege on the package:

Y = Privilege is held.

N = Privilege is not held.

BINDAUTH CHAR(1) Indicates whether grantee holds BIND privilege
on the package:

Y = Privilege is held.

N = Privilege is not held.

EXECUTEAUTH CHAR(1) Indicates whether grantee holds EXECUTE
privilege on the package:

Y = Privilege is held.

N = Privilege is not held.

SYSCAT.PACKAGEAUTH

560 Administration Guide: Performance

SYSCAT.PACKAGEDEP

Contains a row for each dependency that packages have on indexes, tables,
views, functions, aliases, types, and hierarchies.

Table 53. SYSCAT.PACKAGEDEP Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR(128) Name of the package.

PKGNAME CHAR(8)

BINDER VARCHAR(128) Yes Binder of the package.

BTYPE CHAR(1) Type of object BNAME:

A = Alias

D = Server definition

F = Function instance

I = Index

M = Function mapping

N = Nickname

O = Privilege dependency on all subtables or
subviews in a table or view hierarchy

P = Page size

R = Structured type

S = Summary table

T = Table

U = Typed table

V = View

W = Typed view

BSCHEMA VARCHAR(128) Qualified name of an object on which the
package is dependent.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE is O, S, T, U, V or W then it encodes
the privileges that are required by this package
(Select, Insert, Delete, Update).

Note:

1. When a depended-on function-instance is dropped, the package is placed into an “inoperative” state
from which it must be explicitly rebound. When any other depended-on object is dropped, the
package is placed into an “invalid” state from which the system will attempt to rebind it
automatically when a package is first referenced.

SYSCAT.PACKAGEDEP

Appendix C. Catalog Views 561

SYSCAT.PACKAGES

Contains a row for each package that has been created by binding an
application program.

Table 54. SYSCAT.PACKAGES Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR(128) Name of the package.

PKGNAME CHAR(8)

BOUNDBY VARCHAR(128) Authorization ID (OWNER) of the binder of the
package.

DEFINER VARCHAR(128) Userid under which package was bound.

DEFAULT_SCHEMA VARCHAR(128) Default schema (QUALIFIER) name used for
unqualified names in static SQL statements.

VALID CHAR(1)
Y = Valid

N = Not valid

X = Package is inoperative because some
function instance that it depends on has been
dropped. Explicit rebind is needed. See Note
1 on “SYSCAT.PACKAGEDEP” on page 561

UNIQUE_ID CHAR(8) Internal date and time information indicating
when the package was first created.

TOTAL_SECT SMALLINT Total number of sections in the package.

FORMAT CHAR(1) Date and time format associated with the
package:

0 = Format associated with country code of
the database

1 = USA date and time

2 = EUR date, EUR time

3 = ISO date, ISO time

4 = JIS date, JIS time

5 = LOCAL date, LOCAL time

ISOLATION CHAR(2) Yes Isolation level:

RR = Repeatable read

RS = Read stability

CS = Cursor stability

UR = Uncommitted read

SYSCAT.PACKAGES

562 Administration Guide: Performance

Table 54. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

BLOCKING CHAR(1) Yes Cursor blocking option:

N = No blocking

U = Block unambiguous cursors

B = Block all cursors

INSERT_BUF CHAR(1) Insert option used during bind:

Y = Inserts are buffered

N = Inserts are not buffered

LANG_LEVEL CHAR(1) Yes LANGLEVEL value used during BIND:

0 = SAA1

1 = SQL92E or MIA

FUNC_PATH VARCHAR(254) The SQL path used by the last BIND command
for this package. This is used as the default path
for REBIND. SYSIBM for pre-Version 2
packages.

QUERYOPT INTEGER Optimization class under which this package
was bound. Used for rebind. The classes are: 0,
1, 3, 5 and 9.

EXPLAIN_LEVEL CHAR(1) Indicates whether Explain was requested using
the EXPLAIN or EXPLSNAP bind option.

P = Plan Selection level

Blank if ’No’ Explain requested

EXPLAIN_MODE CHAR(1) Value of EXPLAIN bind option:

Y = Yes (static)

N = No

A = All (static and dynamic)

EXPLAIN_SNAPSHOT CHAR(1) Value of EXPLSNAP bind option:

Y = Yes (static)

N = No

A = All (static and dynamic)

SQLWARN CHAR(1) Are positive SQLCODEs resulting from dynamic
SQL statements returned to the application?

Y = Yes

N = No, they are suppressed.

SYSCAT.PACKAGES

Appendix C. Catalog Views 563

Table 54. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

SQLMATHWARN CHAR(1) Value of database configuration parameter
DFT_SQLMATHWARN at time of bind. Are
arithmetic errors and retrieval conversion errors
in static SQL statements handled as nulls with a
warning?

Y = Yes

N = No, they are suppressed.

EXPLICIT_BIND_TIME TIMESTAMP The time at which this package was last
explicitly bound or rebound. When the package
is implicitly rebound, no function instance will
be selected that was created later than this time.

LAST_BIND_TIME TIMESTAMP Time at which the package last explicitly or
implicitly bound or rebound.

CODEPAGE SMALLINT Application codepage at bind time (-1 if not
known).

DEGREE CHAR(5) Indicates the limit on intra-partition parallelism
(as a bind option) when package was bound.

1 = No intra-partition parallelism.

2 - 32 767 = Degree of intra-partition
parallelism.

ANY = Degree was determined by the
database manager.

MULTINODE_PLANS CHAR(1) Y = Package was bound in a multiple
partition environment.

N =Package was bound in a single partition
environment.

INTRA_PARALLEL CHAR(1) Indicates the use of intra-partition parallelism
by static SQL statements within the package.

Y = one or more static SQL statement in
package uses intra-partition parallelism.

N = no static SQL statement in package uses
intra-partition parallelism.

F = one or more static SQL statement in
package can use intra-partition parallelism;
this parallelism has been disabled for use on
a system that is not configured for
intra-partition parallelism.

VALIDATE CHAR(1) B = All checking must be performed during
BIND

R = Reserved

SYSCAT.PACKAGES

564 Administration Guide: Performance

Table 54. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

DYNAMICRULES CHAR(1) B = Dynamic SQL statements are handled
like static SQL statements at run time;
binder’s authid is used.

R = Dynamic SQL statements are handled
like dynamic SQL statements at run time;
executer’s authid is used.

Initial value is R.

SQLERROR CHAR(1) Indicates SQLERROR option on the most recent
subcommand that bound or rebound the
package.

C = Reserved

N = No package

REFRESHAGE DECIMAL (20,6) Timestamp duration indicating the maximum
length of time between when a REFRESH
TABLE statement is run for a summary table
and when the summary table is used in place of
a base table.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.PACKAGES

Appendix C. Catalog Views 565

SYSCAT.PARTITIONMAPS

Contains a row for each partitioning map that is used to distribute the rows
of tables among the partitions in a nodegroup, based on hashing the tables
partitioning key.

Table 55. SYSCAT.PARTITIONMAPS Catalog View

Column Name Data Type Nullable Description

PMAP_ID SMALLINT Identifier of the partitioning map.

PARTITIONMAP LONG VARCHAR
FOR BIT DATA

The actual partitioning map, a vector of 4 096
two-byte integers for a multiple node
nodegroup. For a single node nodegroup, there
is one entry denoting the partition (or node)
number of the single node.

SYSCAT.PARTITIONMAPS

566 Administration Guide: Performance

SYSCAT.PASSTHRUAUTH

This catalog view contains information about authorizations to query data
sources in pass-through sessions. A constraint on the base table requires that
the values in SERVER correspond to the values in the SERVER column of
SYSCAT.SERVERS. None of the fields in SYSCAT.PASSTHRUAUTH are
nullable.

Table 56. Columns in SYSCAT.PASSTHRUAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privilege.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privilege.

GRANTEETYPE CHAR(1) A letter that specifies the type of grantee:

U = Grantee is an individual user.

G = Grantee is a group.

SERVERNAME VARCHAR(128) Name of the data source that the user or group
is being granted authorization to.

SYSCAT.PASSTHRUAUTH

Appendix C. Catalog Views 567

SYSCAT.PROCEDURES

Contains a row for each stored procedure that is created.

Table 57. SYSCAT.PROCEDURES Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA VARCHAR(128) Qualified procedure name.

PROCNAME VARCHAR(128)

SPECIFICNAME VARCHAR(18) The name of the procedure instance (may be
system generated).

PROCEDURE_ID INTEGER Internal ID of stored procedure.

DEFINER VARCHAR(128) Authorization of the procedure definer.

PARM_COUNT SMALLINT Number of procedure parameters.

PARM_SIGNATURE VARCHAR(180)
FOR BIT DATA

Concatenation of up to 90 parameter types, in
internal format. Zero length if procedure takes
no parameters.

ORIGIN CHAR(1) Always ’E’ = User defined, external

CREATE_TIME TIMESTAMP Timestamp of procedure registration.

DETERMINISTIC CHAR(1)
Y = Results are deterministic.

N = Results are not deterministic.

FENCED CHAR(1) Y = Fenced

N = Not Fenced

NULLCALL CHAR(1) Always Y = NULLCALL

LANGUAGE CHAR(8) Implementation language of procedure body.
Possible values are:

C

COBOL

JAVA

IMPLEMENTATION VARCHAR(254) Yes Identifies the path/module/function
(LANGUAGE = C or COBOL) or method
(LANGUAGE = JAVA) that implements the
procedure.

CLASS VARCHAR(128) Yes If LANGUAGE = JAVA then it identifies the
class that implements this procedure. Null
otherwise.

JAR_ID VARCHAR(128) Yes If LANGUAGE = JAVA then identifies the jar
file that implements this procedure. Null
otherwise.

SYSCAT.PROCEDURES

568 Administration Guide: Performance

Table 57. SYSCAT.PROCEDURES Catalog View (continued)

Column Name Data Type Nullable Description

PARM_STYLE CHAR(8) DB2DARI = Language is C

DB2GENRL = Language is Java

DB2SQL = Language is C or COBOL

JAVA = Language is Java

GENERAL = Language is C or COBOL

GNLRNULL = Language is C or COBOL

CONTAINS_SQL CHAR(1) Indicates whether a procedure contains SQL.

C = Contains simple SQL statements only
with no subqueries

M = Contains SQL statements that modify
data

N = Does not contain SQL statements

R = Contains read-only SQL statements

DBINFO CHAR(1) Indicates whether a DBINFO parameter is
passed to the procedure

N = DBINFO is not passed

Y = DBINFO is passed

PROGRAM_TYPE CHAR(1) Indicates how procedure is invoked.

M = Main

S = Subroutine

RESULT_SETS SMALLINT Estimated upper limit of returned result sets.

VALID CHAR(1) Reserved for future use.

TEXT_BODY_OFFSET INTEGER Reserved for future use.

TEXT CLOB (1M) Yes Reserved for future use.

REMARKS VARCHAR(254) Yes User supplied comment, or null.

SYSCAT.PROCEDURES

Appendix C. Catalog Views 569

SYSCAT.PROCOPTIONS

Each row contains procedure specific option values.

Table 58. SYSCAT.PROCOPTIONS Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA VARCHAR(128) Qualifier for the stored procedure name or
nickname.

PROCNAME VARCHAR(128) Name or nickname of the stored procedure.

OPTION VARCHAR(128) Name of the stored procedure option.

SETTING VARCHAR(255) Value of the stored procedure option.

SYSCAT.PROCOPTIONS

570 Administration Guide: Performance

SYSCAT.PROCPARMOPTIONS

Each row contains procedure parameter specific option values.

Table 59. SYSCAT.PROCPARMOPTIONS Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA VARCHAR(128) Qualified procedure name or nickname.

PROCNAME VARCHAR(128)

ORDINAL SMALLINT The parameter’s numerical position within the
procedure signature.

OPTION VARCHAR(128) Name of the stored procedure option.

SETTING VARCHAR(255) Value.

SYSCAT.PROCPARMOPTIONS

Appendix C. Catalog Views 571

SYSCAT.PROCPARMS

Contains a row for each parameter of a stored procedure.

Table 60. SYSCAT.PROCPARMS Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA VARCHAR(128) Qualified procedure name.

PROCNAME VARCHAR(128)

SPECIFICNAME VARCHAR(18) The name of the procedure instance (may be
system generated).

SERVERNAME VARCHAR(128) Yes Name of the data source on which the stored
procedure resides.

ORDINAL SMALLINT The parameter’s numerical position within the
procedure signature.

PARMNAME VARCHAR(18) Parameter name.

TYPESCHEMA VARCHAR(128) Qualified name of data type of the parameter.

TYPENAME VARCHAR(18)

TYPEID SMALLINT Yes Internal type ID.

SOURCETYPEID SMALLINT Yes Internal type ID of source type. Null for
built-in types.

NULLS CHAR(1) federated database nullable rule:

Y = Nullable

N = Not nullable

LENGTH INTEGER Length of the parameter.

SCALE SMALLINT Scale of the parameter.

PARM_MODE VARCHAR(5) IN = Input

OUT = Output

INOUT = Input/output

CODEPAGE SMALLINT Code page of parameter. 0 denotes either not
applicable or a parameter for character data
declared with the FOR BIT DATA attribute.

DBCS_CODEPAGE SMALLINT Yes DBCS codepage. Null for numeric fields.

AS_LOCATOR CHAR(1) Always ’N’

TARGET_TYPESCHEMA VARCHAR(128) Yes If type of parameter is reference then contains
qualified name of target rowtype. Null
otherwise.TARGET_TYPENAME VARCHAR(18)

SYSCAT.PROCPARMS

572 Administration Guide: Performance

Table 60. SYSCAT.PROCPARMS Catalog View (continued)

Column Name Data Type Nullable Description

SCOPE_TABSCHEMA VARCHAR(128) Yes If type of parameter is reference then contains
qualified name of scope (target table). Null
otherwise.SCOPE_TABNAME VARCHAR(128)

SYSCAT.PROCPARMS

Appendix C. Catalog Views 573

SYSCAT.REFERENCES

Contains a row for each defined referential constraint.

Table 61. SYSCAT.REFERENCES Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of constraint.

TABSCHEMA VARCHAR(128) Qualified name of the constraint.

TABNAME VARCHAR(128)

DEFINER VARCHAR(128) User who created the constraint.

REFKEYNAME VARCHAR(18) Name of parent key.

REFTABSCHEMA VARCHAR(128) Name of the parent table.

REFTABNAME VARCHAR(128)

COLCOUNT SMALLINT Number of columns in the foreign key.

DELETERULE CHAR(1) Delete rule:

A = NO ACTION

C = CASCADE

N = SET NULL

R = RESTRICT

UPDATERULE CHAR(1) Update rule:

A = NO ACTION

R = RESTRICT

CREATE_TIME TIMESTAMP The timestamp when the referential constraint
was defined.

FK_COLNAMES VARCHAR (640) List of foreign key column names. Warning:
This column will be removed in the future. Use
“SYSCAT.KEYCOLUSE” on page 556 for this
information.

PK_COLNAMES VARCHAR (640) List of parent key column names. Warning: This
column will be removed in the future. Use
“SYSCAT.KEYCOLUSE” on page 556 for this
information.

Note:

1. The SYSCAT.REFERENCES view is based on the SYSIBM.SYSRELS table from Version 1.

SYSCAT.REFERENCES

574 Administration Guide: Performance

SYSCAT.REVTYPEMAPPINGS

Each row contains reverse data type mappings (mappings from data types
defined locally to data source data types). No data in this version. Defined for
possible future use with data type mappings.

Table 62. SYSCAT.REVTYPEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE_MAPPING VARCHAR(18) Name of the reverse type mapping (may be
system-generated).

TYPESCHEMA VARCHAR(128) Yes Schema name of the type. Null for system
built-in types.

TYPENAME VARCHAR(18) Name of the local type in a reverse type
mapping.

TYPEID SMALLINT Type identifier.

SOURCETYPEID SMALLINT Source type identifier.

DEFINER VARCHAR(128) Authorization ID under which this type
mapping was created.

LOWER_LEN INTEGER Yes Lower bound of the length/precision of the
local type.

UPPER_LEN INTEGER Yes Upper bound of the length/precision of the
local type. If null then the system determines
the best length/precision attribute.

LOWER_SCALE SMALLINT Yes Lower bound of the scale for local decimal
data types.

UPPER_SCALE SMALLINT Yes Upper bound of the scale for local decimal
data types. If null, then the system
determines the best scale attribute.

S_OPR_P CHAR(2) Yes Relationship between local scale and local
precision. Basic comparison operators can be
used. A null indicates that no specific
relationship is required.

BIT_DATA CHAR(1) Yes
Y = Type is for bit data.

N = Type is not for bit data.

NULL = This is not a character data type
or that the system determines the bit data
attribute.

WRAPNAME VARCHAR(128) Yes Mapping applies to this data access protocol.

SERVERNAME VARCHAR(128) Yes Name of the data source.

SERVERTYPE VARCHAR(30) Yes Mapping applies to this type of data source.

SYSCAT.REVTYPEMAPPINGS

Appendix C. Catalog Views 575

Table 62. SYSCAT.REVTYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

SERVERVERSION VARCHAR(18) Yes Mapping applies to this version of
SERVERTYPE.

REMOTE_TYPESCHEMA VARCHAR(128) Yes Schema name of the remote type.

REMOTE_TYPENAME VARCHAR(128) Name of the data type as defined on the data
source(s).

REMOTE_META_TYPE CHAR(1) Yes S = Remote type is a system built-in type.

T = Remote type is a distinct type.

REMOTE_LENGTH INTEGER Yes Maximum number of digits for remote
decimal type, and maximum number of
characters for remote character type.
Otherwise null.

REMOTE_SCALE SMALLINT Yes Maximum number of digits allowed to the
right of the decimal point (for remote
decimal types). Otherwise null.

REMOTE_BIT_DATA CHAR(1) Yes Y = Type is for bit data.

N = Type is not for bit data.

NULL = This is not a character data type
or that the system determines the bit data
attribute.

USER_DEFINED CHAR(1) Defined by user.

CREATE_TIME TIMESTAMP Time when this mapping was created.

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.REVTYPEMAPPINGS

576 Administration Guide: Performance

SYSCAT.SCHEMAAUTH

Contains one or more rows for each user or group who is granted a privilege
on a particular schema in the database. All schema privileges for a single
schema granted by a specific grantor to a specific grantee appear in a single
row.

Table 63. SYSCAT.SCHEMAAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privileges or SYSIBM.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1)
U = Grantee is an individual user.

G = Grantee is a group.

SCHEMANAME VARCHAR(128) Name of the schema.

ALTERINAUTH CHAR(1) Indicates whether grantee holds ALTERIN
privilege on the schema:

Y = Privilege is held.

G = Privilege is held and grantable.

N = Privilege is not held.

CREATEINAUTH CHAR(1) Indicates whether grantee holds CREATEIN
privilege on the schema:

Y = Privilege is held.

G = Privilege is held and grantable.

N = Privilege is not held.

DROPINAUTH CHAR(1) Indicates whether grantee holds DROPIN
privilege on the schema:

Y = Privilege is held.

G = Privilege is held and grantable.

N = Privilege is not held.

SYSCAT.SCHEMAAUTH

Appendix C. Catalog Views 577

SYSCAT.SCHEMATA

Contains a row for each schema.

Table 64. SYSCAT.SCHEMATA Catalog View

Column Name Data Type Nullable Description

SCHEMANAME VARCHAR(128) Name of the schema.

OWNER VARCHAR(128) Authorization id of the schema. The value for
implicitly created schemas is SYSIBM.

DEFINER VARCHAR(128) User who created the schema.

CREATE_TIME TIMESTAMP Timstamp indicating when the object was
created.

REMARKS VARCHAR(254) Yes User-provided comment.

SYSCAT.SCHEMATA

578 Administration Guide: Performance

SYSCAT.SERVEROPTIONS

Each row contains configuration options at the server level.

Table 65. Columns in SYSCAT.SERVEROPTIONS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR(128) Yes Wrapper name.

SERVERNAME VARCHAR(128) Yes Name of the server.

SERVERTYPE VARCHAR(30) Yes Server type.

SERVERVERSION VARCHAR(18) Yes Server version.

CREATE_TIME TIMESTAMP Time when entry is created.

OPTION VARCHAR(128) Name of the server option.

SETTING VARCHAR(2048) Value of the server option.

SERVEROPTIONKEY VARCHAR(18) Uniquely identifies a row.

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.SERVEROPTIONS

Appendix C. Catalog Views 579

SYSCAT.SERVERS

Each row represents a data source. Catalog entries are not necessary for tables
that are stored in the same instance that contains this catalog table.

Table 66. Columns in SYSCAT.SERVERS Catalog View

Name Data Type Nullable Description

WRAPNAME VARCHAR(128) Wrapper name.

SERVERNAME VARCHAR(128) Name of data source as it is known to the
system.

SERVERTYPE VARCHAR(30) Yes Type of data source (always uppercase).

SERVERVERSION VARCHAR(18) Yes Version of data source.

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.SERVERS

580 Administration Guide: Performance

SYSCAT.STATEMENTS

Contains one or more rows for each SQL statement in each package in the
database.

Table 67. SYSCAT.STATEMENTS Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR(128) Name of the package.

PKGNAME CHAR(8)

STMTNO INTEGER Line number of the SQL statement in the source
module of the application program.

SECTNO SMALLINT Number of the package section containing the
SQL statement.

SEQNO SMALLINT Always 1.

TEXT CLOB (64K) Text of the SQL statement.

SYSCAT.STATEMENTS

Appendix C. Catalog Views 581

SYSCAT.TABAUTH

Contains one or more rows for each user or group who is granted a privilege
on a particular table or view in the database. All the table privileges for a
single table or view granted by a specific grantor to a specific grantee appear
in a single row.

Table 68. SYSCAT.TABAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted the
privileges or SYSIBM.

GRANTEE VARCHAR(128) Authorization ID of the user or group who
holds the privileges.

GRANTEETYPE CHAR(1)
U = Grantee is an individual user.

G = Grantee is a group.

TABSCHEMA VARCHAR(128) Qualified name of the table or view.

TABNAME VARCHAR(128)

CONTROLAUTH CHAR(1) Indicates whether grantee holds CONTROL
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

ALTERAUTH CHAR(1) Indicates whether grantee holds ALTER
privilege on the table:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

DELETEAUTH CHAR(1) Indicates whether grantee holds DELETE
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

INDEXAUTH CHAR(1) Indicates whether grantee holds INDEX
privilege on the table:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

SYSCAT.TABAUTH

582 Administration Guide: Performance

Table 68. SYSCAT.TABAUTH Catalog View (continued)

Column Name Data Type Nullable Description

INSERTAUTH CHAR(1) Indicates whether grantee holds INSERT
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

SELECTAUTH CHAR(1) Indicates whether grantee holds SELECT
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

REFAUTH CHAR(1) Indicates whether grantee holds REFERENCE
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

UPDATEAUTH CHAR(1) Indicates whether grantee holds UPDATE
privilege on the table or view:

Y = Privilege is held.

N = Privilege is not held.

G = Privilege is held and grantable.

SYSCAT.TABAUTH

Appendix C. Catalog Views 583

SYSCAT.TABCONST

Each row represents a table constraint of type CHECK, UNIQUE, PRIMARY
KEY, or FOREIGN KEY.

Table 69. SYSCAT.TABCONST Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint (unique within a table).

TABSCHEMA VARCHAR(128) Qualified name of the table to which this
constraint applies.TABNAME VARCHAR(128)

DEFINER VARCHAR(128) Authorization ID under which the constraint
was defined.

TYPE CHAR(1) Indicates the constraint type:

F = FOREIGN KEY

K = CHECK

P = PRIMARY KEY

U = UNIQUE

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.TABCONST

584 Administration Guide: Performance

SYSCAT.TABLES

Contains one row for each table, view, nickname or alias that is created. All of
the catalog tables and views have entries in the SYSCAT.TABLES catalog view.

Table 70. SYSCAT.TABLES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of the table, view, nickname or
alias.TABNAME VARCHAR(128)

DEFINER VARCHAR(128) User who created the table, view, nickname or
alias.

TYPE CHAR(1) The type of object:

A = Alias

H = Hierarchy table

N = Nickname

S = Summary table

T = Table

U = Typed table

V = View

W = Typed view

STATUS CHAR(1) The type of object:

N = Normal table, view, alias or nickname

C = Check pending on table or nickname

X = Inoperative view or nickname

BASE_TABSCHEMA VARCHAR(128) Yes If TYPE = A, these columns identify the table,
view, alias or nickname that is referenced by
this alias; otherwise they are null.BASE_TABNAME VARCHAR(128) Yes

ROWTYPESCHEMA VARCHAR(128) Yes Contains the qualified name of the rowtype of
this table, where applicable. Null otherwise.ROWTYPENAME VARCHAR(18)

CREATE_TIME TIMESTAMP The timestamp indicating when the object was
created.

STATS_TIME TIMESTAMP Yes Last time when any change was made to
recorded statistics for this table. Null if no
statistics available.

COLCOUNT SMALLINT Number of columns in table.

TABLEID SMALLINT Internal table identifier.

TBSPACEID SMALLINT Internal identifier of primary table space for this
table.

SYSCAT.TABLES

Appendix C. Catalog Views 585

Table 70. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

CARD BIGINT Total number of rows in the table. For tables in
a table hierarchy, its the number of rows at the
given level of the hierarchy −1 if statistics are
not gathered or the row describes a view or
alias; −2 for hierarchy tables (H-tables)

NPAGES INTEGER Total number of pages on which the rows of the
table exist; −1 if statistics are not gathered or the
row describes a view or alias; −2 for subtables
or H-tables.

FPAGES INTEGER Total number of pages; −1 if statistics are not
gathered or the row describes a view or alias;
−2 for subtables or H-tables.

OVERFLOW INTEGER Total number of overflow records in the table;
−1 if statistics are not gathered or the row
describes a view or alias; −2 for subtables or
H-tables.

TBSPACE VARCHAR(18) Yes Name of primary table space for the table. If no
other table space is specified, all parts of the
table are stored in this table space. Null for
aliases and views.

INDEX_TBSPACE VARCHAR(18) Yes Name of table space that holds all indexes
created on this table. Null for aliases and views,
or if the INDEX IN clause was omitted or
specified with the same value as the IN clause
of the CREATE TABLE statement.

LONG_TBSPACE VARCHAR(18) Yes Name of table space that holds all long data
(LONG or LOB column types) for this table.
Null for aliases and views, or if the LONG IN
clause was omitted or specified with the same
value as the IN clause of the CREATE TABLE
statement.

PARENTS SMALLINT Yes Number of parent tables of this table (the
number of referential constraints in which this
table is a dependent).

CHILDREN SMALLINT Yes Number of dependent tables of this table (the
number of referential constraints in which this
table is a parent).

SELFREFS SMALLINT Yes Number of self-referencing referential
constraints for this table (the number of
referential constraints in which this table is both
a parent and a dependent).

SYSCAT.TABLES

586 Administration Guide: Performance

Table 70. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

KEYCOLUMNS SMALLINT Yes Number of columns in the primary key of the
table.

KEYINDEXID SMALLINT Yes Index ID of the primary index. This field is null
or 0 if there is no primary key.

KEYUNIQUE SMALLINT Number of unique constraints (other than
primary key) defined on this table.

CHECKCOUNT SMALLINT Number of check constraints defined on this
table.

DATACAPTURE CHAR(1) Y = Table participates in data replication

N = Does not participate

CONST_CHECKED CHAR(32) Byte 1 represents foreign key constraints. Byte 2
represents check constraints. Byte 5 represents
summary table. Other bytes are reserved.
Encodes constraint information on checking.
Values:

Y = Checked by system

U = Checked by user

N = Not checked (pending)

W = Was in a ’U’ state when the table was
placed in check pending (pending)

PMAP_ID SMALLINT Yes Identifier of the partitioning map used by this
table. Null for aliases and views.

PARTITION_MODE CHAR(1) Mode used for tables in a partitioned database.

H = Hash on the partitioning key

R = Table replicated across database
partitions

Blank for aliases, views and tables in single
partition nodegroups with no partitioning
key defined. Also blank for nicknames.

LOG_ATTRIBUTE CHAR(1) 0 = Default logging

1 = Table created not logged initially

PCTFREE SMALLINT Percentage of each page to be reserved for
future inserts. Can be changed by ALTER
TABLE.

SYSCAT.TABLES

Appendix C. Catalog Views 587

Table 70. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

APPEND_MODE CHAR(1) Controls how rows are inserted on pages:

N = New rows are inserted into existing
spaces if available

Y = New rows are appended at end of data

Initial value is N.

REFRESH CHAR(1) Refresh mode

D = Deferred

I = Immeidate

O = Once

Blank if not a summary table

REFRESH_TIME TIMESTAMP Yes For REFRESH = D or O, timestamp of the
REFRESH TABLE statement that last refreshed
the data. Otherwise null.

LOCKSIZE CHAR(1) Indicates preferred lock granularity for tables
when accessed by DML statements. Only
applies to tables. Possible values are:

R = Row

T = Table

Blank if not applicable

Initial value is R.

VOLATILE CHAR(1) C = Cardinality of the table is volatile

Blank if not applicable

REMARKS VARCHAR(254) Yes User-provided comment.

SYSCAT.TABLES

588 Administration Guide: Performance

SYSCAT.TABLESPACES

Contains a row for each table space.

Table 71. SYSCAT.TABLESPACES Catalog View

Column Name Data Type Nullable Description

TBSPACE VARCHAR(18) Name of table space.

DEFINER VARCHAR(128) Authorization ID of table space definer.

CREATE_TIME TIMESTAMP Creation time of table space.

TBSPACEID INTEGER Internal table space identifier.

TBSPACETYPE CHAR(1) The type of the table space:

S = System managed space

D = Database managed space

DATATYPE CHAR(1) Type of data that can be stored:

A = All types of permanent data

L = Long data only

T = Temporary tables only

EXTENTSIZE INTEGER Size of extent, in pages of size PAGESIZE. This
many pages are written to one container in the
table space before switching to the next
container.

PREFETCHSIZE INTEGER Number of pages of size PAGESIZE to be read
when prefetch is performed.

OVERHEAD DOUBLE Controller overhead and disk seek and latency
time in milliseconds.

TRANSFERRATE DOUBLE Time to read one page of size PAGESIZE into
the buffer.

PAGESIZE INTEGER Size (in bytes) of pages in the table space.

NGNAME VARCHAR(18) Name of the nodegroup for the table space.

BUFFERPOOLID INTEGER ID of buffer pool used by this tablespace (1
indicates default buffer pool).

DROP_RECOVERY CHAR(1) N = table is not recoverable after a DROP
TABLE statement

Y = table is recoverable after a DROP TABLE
statement

REMARKS VARCHAR(254) Yes User-provided comment.

SYSCAT.TABLESPACES

Appendix C. Catalog Views 589

SYSCAT.TABOPTIONS

Each row contains option associated with a remote table.

Table 72. SYSCAT.TABOPTIONS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR(128) Qualified name of table, view, alias or
nickname.TABNAME VARCHAR(128)

OPTION VARCHAR(128) Name of the table, view, alias or nickname
option.

SETTING VARCHAR(255) Value.

SYSCAT.TABOPTIONS

590 Administration Guide: Performance

SYSCAT.TBSPACEAUTH

Containes one row for each user or group whi is granted USE privilege on a
particular table space.

Table 73. SYSCAT.TBSPACEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR(128) Authorization ID of the user who granted USE
privilege or SYSIBM.

GRANTEE VARCHAR(128) Authorization ID of the user or group who hold
the privileges.

GRANTEETYPE CHAR(1)
U = Grantee is an individual user.

G = Grantee is a group.

TBSPACE VARCHAR(18) Name of table space.

USEAUTH CHAR(1) Indicates whether grantee holds USE privilege
on the table space:

G = Privilege is held and grantable.

N = Privilege is not held.

Y = Privilege is held.

SYSCAT.TBSPACEAUTH

Appendix C. Catalog Views 591

SYSCAT.TRIGDEP

Contains a row for every dependency of a trigger on some other object.

Table 74. SYSCAT.TRIGDEP Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA VARCHAR(128) Qualified name of the trigger.

TRIGNAME VARCHAR(18)

BTYPE CHAR(1) Type of object BNAME:

A = Alias

F = Function instance

N = Nickname

O = Privilege dependency on all subtables or
subviews in a table or view hierarchy

R = Structured type

S = Summary table

T = Table

U = Typed table

V = View

W = Typed view

X = Index extension

BSCHEMA VARCHAR(128) Qualified name of object depended on by a
trigger.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE= O, S, T, U, V or W encodes the
privileges on the table or view that are required
by this trigger; otherwise null.

SYSCAT.TRIGDEP

592 Administration Guide: Performance

SYSCAT.TRIGGERS

Contains one row for each trigger. For table hierarchies, each trigger is
recorded only at the level of the hierarchy where it was created.

Table 75. SYSCAT.TRIGGERS Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA VARCHAR(128) Qualified name of the trigger.

TRIGNAME VARCHAR(18)

DEFINER VARCHAR(128) Authorization ID under which the trigger was
defined.

TABSCHEMA VARCHAR(128) Qualified name of the table to which this
trigger applies.TABNAME VARCHAR(128)

TRIGTIME CHAR(1) Time when triggered actions are applied to the
base table, relative to the event that fired the
trigger:

A = Trigger applied after event

B = Trigger applied before event

TRIGEVENT CHAR(1) Event that fires the trigger.

I = Insert

D = Delete

U = Update

GRANULARITY CHAR(1) Trigger is executed once per:

S = Statement

R = Row

VALID CHAR(1) Y = Trigger is valid

X = Trigger is inoperative; must be
re-created.

CREATE_TIME TIMESTAMP Time at which the trigger was defined. Used in
resolving functions and types.

QUALIFIER VARCHAR(128) Contains value of the default schema at the
time of object definition.

FUNC_PATH VARCHAR(254) Function path at the time the trigger was
defined. Used in resolving functions and types.

TEXT CLOB(64K) The full text of the CREATE TRIGGER
statement, exactly as typed.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

SYSCAT.TRIGGERS

Appendix C. Catalog Views 593

SYSCAT.TYPEMAPPINGS

Each row contains a user-defined mapping of a remote built-in data type to a
local built-in data type.

Table 76. SYSCAT.TYPEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE_MAPPING VARCHAR(18) Name of the type mapping (may be
system-generated).

TYPESCHEMA VARCHAR(128) Yes Schema name of the type. Null for system
built-in types.

TYPENAME VARCHAR(18) Name of the local type in a data type
mapping.

TYPEID SMALLINT Type identifier.

SOURCETYPEID SMALLINT Source type identifier.

DEFINER VARCHAR(128) Authorization ID under which this type
mapping was created.

LENGTH INTEGER Yes Maximum length or precision of the data
type. If null, the system determines the best
length/precision.

SCALE SMALLINT Yes Scale for DECIMAL fields. If null, the system
determines the best scale attribute.

BIT_DATA CHAR(1) Yes
Y = Type is for bit data.

N = Type is not for bit data.

NULL = This is not a character data type
or that the system determines the bit data
attribute.

WRAPNAME VARCHAR(128) Yes Mapping applies to this data access protocol.

SERVERNAME VARCHAR(128) Yes Name of the data source.

SERVERTYPE VARCHAR(30) Yes Mapping applies to this type of data source.

SERVERVERSION VARCHAR(18) Yes Mapping applies to this version of
SERVERTYPE.

REMOTE_TYPESCHEMA VARCHAR(128) Yes Schema name of the remote type.

REMOTE_TYPENAME VARCHAR(128) Name of the data type as defined on the data
source(s).

REMOTE_META_TYPE CHAR(1) Yes S = Remote type is a system built-in type.

T = Remote type is a distinct type.

SYSCAT.TYPEMAPPINGS

594 Administration Guide: Performance

Table 76. SYSCAT.TYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

REMOTE_LOWER_LEN INTEGER Yes Lower bound of the length/precision of the
remote decimal type. For character data
types, this field indicates the number of
character.

REMOTE_UPPER_LEN INTEGER Yes Upper bound of the length/precision of the
remote decimal type. For character data
types, this field indicates the number of
character.

REMOTE_LOWER_SCALE SMALLINT Yes Lower bound of the scale of the remote type.

REMOTE_UPPER_SCALE SMALLINT Yes Upper bound of the scale of the remote type.

REMOTE_S_OPR_P CHAR(2) Yes Relationship between remote scale and
remote precision. Basic comparison operators
can be used. A null indicated that no specific
relationship is required.

REMOTE_BIT_DATA CHAR(1) Yes Y = Type is for bit data.

N = Type is not for bit data.

NULL = This is not a character data type
or that the system determines the bit data
attribute.

USER_DEFINED CHAR(1) Definition supplied by user.

CREATE_TIME TIMESTAMP Time when this mapping was created.

REMARKS VARCHAR(254) Yes User supplied comments, or null.

SYSCAT.TYPEMAPPINGS

Appendix C. Catalog Views 595

SYSCAT.USEROPTIONS

Each row contains server specific option values.

Table 77. SYSCAT.USEROPTIONS Catalog View

Column Name Data Type Nullable Description

AUTHID VARCHAR(128) Local authorization ID (always uppercase)

SERVERNAME VARCHAR(128) Name of the server for which the user is
defined.

OPTION VARCHAR(128) Name of the user options.

SETTING VARCHAR(255) Value.

SYSCAT.USEROPTIONS

596 Administration Guide: Performance

SYSCAT.VIEWDEP

Contains a row for every dependency of a view or a summary table on some
other object. Also encodes how privileges on this view depend on privileges
on underlying tables and views.

Table 78. SYSCAT.VIEWDEP Catalog View

Column Name Data Type Nullable Description

VIEWSCHEMA VARCHAR(128) Name of the view or the name of a summary
table having dependencies on a base table.VIEWNAME VARCHAR(128)

DTYPE CHAR(1)
S = Summary table

V = View (untyped)

W = Typed view

DEFINER VARCHAR(128) Yes Authorization ID of the creator of the view.

BTYPE CHAR(1) Type of object BNAME:

A = Alias

F = Function instance

N = Nickname

O = Privilege dependency on all subtables or
subviews in a table or view hierarchy

I = Index if recording dependency on a base
table

R = Structured type

S = Summary table

T = Table

U = Typed table

V = View

W = Typed view

BSCHEMA VARCHAR(128) Qualified name of object depended on by the
view.BNAME VARCHAR(128)

TABAUTH SMALLINT Yes If BTYPE= O, S, T, U, V, W then encodes the
privileges on the underlying table or view that
this view depends on. Otherwise null.

SYSCAT.VIEWDEP

Appendix C. Catalog Views 597

SYSCAT.VIEWS

Contains one or more rows for each view that is created.

Table 79. SYSCAT.VIEWS Catalog View

Column Name Data Type Nullable Description

VIEWSCHEMA VARCHAR(128) Name of the view or the name of a table used
to define a summary table.VIEWNAME VARCHAR(128)

DEFINER VARCHAR(128) Authorization ID of the creator of the view.

SEQNO SMALLINT Always 1.

VIEWCHECK CHAR(1) States the type of view checking:

N = No check option

L = Local check option

C = Cascaded check option

READONLY CHAR(1) Y = View is read-only because of its
definition.

N = View is not read-only.

VALID CHAR(1) Y = View or summary table definition is
valid.

X = View or summary table definition is
inoperative; must be re-created.

QUALIFIER VARCHAR(128) Contains value of the default schema at the time
of object definition.

FUNC_PATH VARCHAR(254) The SQL path of the view creator at the time the
view was defined. When the view is used in
data manipulation statements, this path must be
used to resolve function calls in the view.
SYSIBM for views created before Version 2.

TEXT CLOB(64k) Text of the CREATE VIEW statement.

SYSCAT.VIEWS

598 Administration Guide: Performance

SYSCAT.WRAPOPTIONS

Each row contains wrapper specific options.

Table 80. SYSCAT.WRAPOPTIONS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR(128) Wrapper name.

OPTION VARCHAR(128) Name of wrapper option.

SETTING VARCHAR(255) Value.

SYSCAT.WRAPOPTIONS

Appendix C. Catalog Views 599

SYSCAT.WRAPPERS

Each row contains information on the registered wrapper.

Table 81. SYSCAT.WRAPPERS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR(128) Wrapper name.

WRAPTYPE CHAR(1)
N = Non-relational

R = Relational

WRAPVERSION INTEGER Version of the wrapper.

LIBRARY VARCHAR(255) Name of the file that contains the code used to
communicate with the data sources associated
with this wrapper.

REMARKS VARCHAR(254) Yes User supplied comment, or null.

SYSCAT.WRAPPERS

600 Administration Guide: Performance

SYSSTAT.COLDIST

Each row describes the Nth-most-frequent value or Nth quantile value of
some column. Statistics are not recorded for inherited columns of typed tables.

Table 82. SYSSTAT.COLDIST Catalog View

Column
Name

Data Type Nullable Description Updatable

TABSCHEMA VARCHAR(128) Qualified name of the table to which this
entry applies.

TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Name of the column to which this entry
applies.

TYPE CHAR(1) Type of statistic collected:

F = Frequency (most frequent value)

Q = Quantile value

SEQNO SMALLINT If TYPE = F, then N in this column
identifies the Nth most frequent value. If
TYPE = Q, then N in this column
identifies the Nth quantile value.

COLVALUE VARCHAR(254)Yes The data value, as a character literal or a
null value.

This column can be updated with a valid
representation of the value appropriate to
the column that the statistic is associated
with. If null is the required frequency
value, the column should be set to NULL.

Yes

VALCOUNT BIGINT If TYPE = F, then VALCOUNT is the
number of occurrences of COLVALUE in
the column. If TYPE = Q, then
VALCOUNT is the number of rows whose
value is less than or equal to COLVALUE.

This column can be only updated with
the following values:

v >= 0 (zero)

Yes

DISTCOUNT BIGINT If TYPE = q, this column records the
number of distinct values that are less
than or equal to COLVALUE (null iv
unavailable.) the number of rows whose
value is less than or equal to COLVALUE.

Yes

SYSSTAT.COLDIST

Appendix C. Catalog Views 601

SYSSTAT.COLUMNS

Contains one row for each column for which statistics can be updated.
Statistics are not recorded for inherited columns of typed tables.

Table 83. SYSSTAT.COLUMNS Catalog View

Column Name Data Type Nullable Description Updatable

TABSCHEMA VARCHAR(128) Qualified name of the table that
contains the column.TABNAME VARCHAR(128)

COLNAME VARCHAR(128) Column name.

COLCARD BIGINT Number of distinct values in the
column; −1 if statistics are not
gathered; −2 for inherited columns
and columns of H-tables.

For any column, COLCARD cannot
have a value higher than the
cardinality of the table containing
that column.

This column can only be updated
with the following values:

v −1 or >= 0 (zero)

Yes

HIGH2KEY VARCHAR(33)Yes Second highest value of the column.
This field is empty if statistics are
not gathered and for inherited
columns and columns of H-tables.

This column can be updated with a
valid representation of the value
appropriate to the column that the
statistic is associated with.

LOWKEY2 should not be greater
than HIGH2KEY.

Yes

LOW2KEY VARCHAR(33)Yes Second lowest value of the column.
Empty if statistics not gathered and
for inherited columns and columns
of H-tables.

This column can be updated with a
valid representation of the value
appropriate to the column that the
statistic is associated with.

Yes

SYSSTAT.COLUMNS

602 Administration Guide: Performance

Table 83. SYSSTAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description Updatable

AVGCOLLEN INTEGER Average column length. −1 if a long
field or LOB, or statistics have not
been collected; −2 for inherited
columns and columns of H-tables.

This column can only be updated
with the following values:

v −1 or >= 0 (zero)

Yes

SYSSTAT.COLUMNS

Appendix C. Catalog Views 603

SYSSTAT.FUNCTIONS

Contains a row for each user-defined function (scalar or aggregate). Does not
include built-in functions. Statistics are not recorded for inherited columns of
typed tables.

Table 84. SYSSTAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description Updatable

FUNCSCHEMA VARCHAR(128) Qualified function name.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) Function specific (instance) name.

IOS_PER_INVOC DOUBLE Estimated number of I/Os per
invocation; −1 if not known (0 default).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

INSTS_PER_INVOC DOUBLE Estimated number of instructions per
invocation; −1 if not known (450
default).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

IOS_PER_ARGBYTE DOUBLE Estimated number of I/O’s per input
argument byte; −1 if not known (0
default).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

INSTS_PER_ARGBYTE DOUBLE Estimated number of instructions per
input argument byte; −1 if not known
(0 default).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

SYSSTAT.FUNCTIONS

604 Administration Guide: Performance

Table 84. SYSSTAT.FUNCTIONS Catalog View (continued)

Column Name Data Type Nullable Description Updatable

PERCENT_ARGBYTES SMALLINT Estimated average percent of input
argument bytes that the function will
actually read; −1 if not known (100
default).

This column can only be updated with
the following values:

v −1 or between 100 and 0 (zero)

Yes

INITIAL_IOS DOUBLE Estimated number of I/O’s performed
the first/last time the function is
invoked; −1 if not known (0 default).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

INITIAL_INSTS DOUBLE Estimated number of instructions
executed the first/last time the function
is invoked; −1 if not known (0 default).

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

CARDINALITY BIGINT The predicted cardinality of a table
function. −1 if not known, or if function
is not a table function.

Yes

SELECTIVITY DOUBLE Used for user defined predicates.
Default = −1.

SYSSTAT.FUNCTIONS

Appendix C. Catalog Views 605

SYSSTAT.INDEXES

Contains one row for each index that is defined for a table.

Table 85. SYSSTAT.INDEXES Catalog View

Column Name Data Type Nullable Description Updatable

INDSCHEMA VARCHAR(128) Qualified name of the index.

INDNAME VARCHAR(18)

TABSCHEMA VARCHAR(128) Qualifier of the table name.

TABNAME VARCHAR(128) Name of the table or nickname on
which the index is defined.

COLNAMES CLOB(1M) List of column names with + or −
prefixes.

NLEAF INTEGER Number of leaf pages; −1 if statistics
are not gathered.

This column can only be updated with
the following values:

v −1 or > 0 (zero)

Yes

NLEVELS SMALLINT Number of index levels; −1 if statistics
are not gathered.

This column can only be updated with
the following values:

v −1 or > 0 (zero)

Yes

FIRSTKEYCARD BIGINT Number of distinct first key values; −1
if statistics are not gathered.

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

FIRST2KEYCARD BIGINT Number of distinct keys using the first
two columns of the index (−1 if no
statistics or inapplicable)

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

SYSSTAT.INDEXES

606 Administration Guide: Performance

Table 85. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description Updatable

FIRST3KEYCARD BIGINT Number of distinct keys using the first
three columns of the index (−1 if no
statistics or inapplicable)

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

FIRST4KEYCARD BIGINT Number of distinct keys using the first
four columns of the index (−1 if no
statistics or inapplicable)

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

FULLKEYCARD BIGINT Number of distinct full key values; −1 if
statistics are not gathered.

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

CLUSTERRATIO SMALLINT This is used by the optimizer. It
indicates the degree of data clustering
with the index; −1 if statistics are not
gathered or if detailed index statistics
have been gathered.

This column can only be updated with
the following values:

v −1 or between 0 and 100

Yes

CLUSTERFACTOR DOUBLE This is used by the optimizer. It is a
finer measurement of degree of
clustering, or −1 if detailed index
statistics have not been gathered.

This column can only be updated with
the following values:

v −1 or between 0 and 1

Yes

SYSSTAT.INDEXES

Appendix C. Catalog Views 607

Table 85. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description Updatable

SEQUENTIAL_PAGES INTEGER Number of leaf pages located on disk in
index key order with few or no large
gaps between them. (−1 if no statistics
are available.)

This column can only be updated with
the following values:

v −1 or >= 0 (zero)

Yes

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to
number of pages in the range of pages
occupied by the index, expressed as a
percent (integer between 0 and 100, −1
if no statistics are available.)

This column can only be updated with
the following values:

v −1 or between 0 and 100

Yes

PAGE_FETCH_PAIRS VARCHAR(254) A list of pairs of integers, represented
in character form. Each pair represents
the number of pages in a hypothetical
buffer, and the number of page fetches
required to scan the index using that
hypothetical buffer. (Zero-length string
if no data available.)

This column can be updated with the
following input values:

v The pair delimiter and pair separator
characters are the only non-numeric
characters accepted

v Blanks are the only characters
recognized as a pair delimiter and
pair separator

v Each number entry must have an
accompanying partner number entry
with the two being separated by the
pair separator character

v Each pair must be separated from
any other pairs by the pair delimiter
character

v Each expected number entry must
between 0-9 (only positive values)

Yes

SYSSTAT.INDEXES

608 Administration Guide: Performance

SYSSTAT.TABLES

Contains one row for each base table. Views or aliases are, therefore, not
included. For typed tables, only the root table of a table hierarchy is included
in this view. Statistics are not recorded for inherited columns of typed tables.
The CARD value applies to the root table only while the other statistics apply
to the entire table hierarchy.

Table 86. SYSSTAT.TABLES Catalog View

Column
Name

Data Type Nullable Description Updatable

TABSCHEMA VARCHAR(128) Qualified name of the table.

TABNAME VARCHAR(128)

CARD BIGINT Total number of rows in the table; −1 if
statistics are not gathered.

An update to CARD for a table should
not attempt to assign it a value less than
the COLCARD value of any of the
columns in that table. This column can
only be updated with the following
values: 4.

v −1 or >= 0 (zero)

Yes

NPAGES INTEGER Total number of pages on which the rows
of the table exist; −1 if statistics are not
gathered; −2 for subtables and H-tables.

This column can only be updated with
the following values: 4

v −1 or >= 0 (zero)

Yes

FPAGES INTEGER Total number of pages in the file; −1 if
statistics are not gathered; −2 for
subtables and H-tables.

This column can only be updated with
the following values: 4

v −1 or >= 0 (zero)

Yes

4. A value of −2 can not be changed and a column value can not be directly set to −2.

SYSSTAT.TABLES

Appendix C. Catalog Views 609

Table 86. SYSSTAT.TABLES Catalog View (continued)

Column
Name

Data Type Nullable Description Updatable

OVERFLOW INTEGER Total number of overflow records in the
table; −1 if statistics are not gathered; −2
for subtables and H-tables.

This column can only be updated with
the following values: 4

v −1 or >= 0 (zero)

Yes

SYSSTAT.TABLES

610 Administration Guide: Performance

Appendix D. Explain Tables and Definitions

The Explain tables capture access plans when the Explain facility is activated.
The following Explain tables and definitions are described in this section:
v “EXPLAIN_ARGUMENT Table” on page 612

v “EXPLAIN_INSTANCE Table” on page 616

v “EXPLAIN_OBJECT Table” on page 618

v “EXPLAIN_OPERATOR Table” on page 621

v “EXPLAIN_PREDICATE Table” on page 623

v “EXPLAIN_STATEMENT Table” on page 625

v “EXPLAIN_STREAM Table” on page 627

v “ADVISE_INDEX Table” on page 629

v “ADVISE_WORKLOAD Table” on page 632

The Explain tables must be created before Explain can be invoked. To create
them, use the sample command line processor input script provided in the
EXPLAIN.DDL file located in the 'misc' subdirectory of the 'sqllib' directory.
Connect to the database where the Explain tables are required. Then issue the
command: db2 -tf EXPLAIN.DDL and the tables will be created. See “Table
Definitions for Explain Tables” on page 633 for more information.

The population of the Explain tables by the Explain facility will neither
activate any triggers nor activate any referential or check constraints. For
example, if an insert trigger were defined on the EXPLAIN_INSTANCE table
and an eligible statement were explained, the trigger would not be activated.

See “Chapter 6. SQL Explain Facility” on page 177 for more details on the
Explain facility.

Legend for the Explain Tables:

Heading Explanation
Column name Name of the column
Data Type Data type of the column
Nullable? Yes: Nulls are permitted

No: Nulls are not permitted
Key? PK: Column is part of a primary key

FK: Column is part of a foreign key
Description Description of the column

© Copyright IBM Corp. 1993, 1999 611

EXPLAIN_ARGUMENT Table

The EXPLAIN_ARGUMENT table represents the unique characteristics for
each individual operator, if there are any.

Table 87. EXPLAIN_ARGUMENT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

ARGUMENT_TYPE CHAR(8) No No The type of argument for this operator.

ARGUMENT_VALUE VARCHAR(1024) Yes No The value of the argument for this operator.
NULL if the value is in
LONG_ARGUMENT_VALUE.

LONG_ARGUMENT_VALUECLOB(1M) Yes No The value of the argument for this operator, when
the text will not fit in ARGUMENT_VALUE.
NULL if the value is in ARGUMENT_VALUE.

Table 88. ARGUMENT_TYPE and ARGUMENT_VALUE Column Values

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

AGGMODE COMPLETE
PARTIAL
INTERMEDIATE
FINAL

Partial aggregation indicators.

BITFLTR TRUE
FALSE

Hash Join will use a bit filter to enhance
performance.

CSETEMP TRUE
FALSE

Temporary Table over Common
Subexpression Flag.

DIRECT TRUE Direct fetch indicator.

DUPLWARN TRUE
FALSE

Duplicates Warning flag.

EARLYOUT TRUE
FALSE

Early out indicator.

Explain Tables

612 Administration Guide: Performance

Table 88. ARGUMENT_TYPE and ARGUMENT_VALUE Column Values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

ENVVAR Each row of this type will contain:

v Environment variable name

v Environment variable value

Environment variable affecting the optimizer

FETCHMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
FETCH operator.

GROUPBYC TRUE
FALSE

Whether Group By columns were provided.

GROUPBYN Integer Number of comparison columns.

GROUPBYR Each row of this type will contain:

v Ordinal value of column in group by
clause (followed by a colon and a space)

v Name of Column

Group By requirement.

INNERCOL Each row of this type will contain:

v Ordinal value of column in order (followed
by a colon and a space)

v Name of Column

v Order Value

(A) Ascending

(D) Descending

Inner order columns.

ISCANMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
ISCAN operator.

JN_INPUT INNER
OUTER

Indicates if operator is the operator feeding
the inner or outer of a join.

LISTENER TRUE
FALSE

Listener Table Queue indicator.

MAXPAGES ALL
NONE
INTEGER

Maximum pages expected for Prefetch.

MAXRIDS NONE
INTEGER

Maximum Row Identifiers to be included in
each list prefetch request.

NUMROWS INTEGER Number of rows expected to be sorted.

ONEFETCH TRUE
FALSE

One Fetch indicator.

Explain Tables

Appendix D. Explain Tables and Definitions 613

Table 88. ARGUMENT_TYPE and ARGUMENT_VALUE Column Values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

OUTERCOL Each row of this type will contain:

v Ordinal value of column in order (followed
by a colon and a space)

v Name of Column

v Order Value

(A) Ascending

(D) Descending

Outer order columns.

OUTERJN LEFT
RIGHT

Outer join indicator.

PARTCOLS Name of Column Partitioning columns for operator.

PREFETCH LIST
NONE
SEQUENTIAL

Type of Prefetch Eligible.

RMTQTEXT Query text Remote Query Text

ROWLOCK EXCLUSIVE
NONE
REUSE
SHARE
SHORT (INSTANT) SHARE
UPDATE

Row Lock Intent.

ROWWIDTH INTEGER Width of row to be sorted. ***

SCANDIR FORWARD
REVERSE

Scan Direction.

SCANGRAN INTEGER Intra-partition parallelism, granularity of the
intra-partition parallel scan, expressed in
SCANUNITs.

SCANTYPE LOCAL PARALLEL intra-partition parallelism, Index or Table
scan.

SCANUNIT ROW
PAGE

Intra-partition parallelism, scan granularity
unit.

SERVER Remote server Remote server

SHARED TRUE Intra-partition parallelism, shared TEMP
indicator.

SLOWMAT TRUE
FALSE

Slow Materialization flag.

SNGLPROD TRUE
FALSE

Intra-partition parallelism sort or temp
produced by a single agent.

Explain Tables

614 Administration Guide: Performance

Table 88. ARGUMENT_TYPE and ARGUMENT_VALUE Column Values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

SORTKEY Each row of this type will contain:

v Ordinal value of column in key (followed
by a colon and a space)

v Name of Column

v Order Value

(A) Ascending

(D) Descending

Sort key columns.

SORTTYPE PARTITIONED
SHARED
ROUND ROBIN
REPLICATED

Intra-partition parallelism, sort type.

TABLOCK EXCLUSIVE
INTENT EXCLUSIVE
INTENT NONE
INTENT SHARE
REUSE
SHARE
SHARE INTENT EXCLUSIVE
SUPER EXCLUSIVE
UPDATE

Table Lock Intent.

TQDEGREE INTEGER intra-partition parallelism, number of
subagents accessing Table Queue.

TQMERGE TRUE
FALSE

Merging (sorted) Table Queue indicator.

TQREAD READ AHEAD
STEPPING
SUBQUERY STEPPING

Table Queue reading property.

TQSEND BROADCAST
DIRECTED
SCATTER
SUBQUERY DIRECTED

Table Queue send property.

TQTYPE LOCAL Intra-partition parallelism, Table Queue.

TRUNCSRT TRUE Truncated sort (limits number of rows
produced).

UNIQUE TRUE
FALSE

Uniqueness indicator.

UNIQKEY Each row of this type will contain:

v Ordinal value of column in key (followed
by a colon and a space)

v Name of Column

Unique key columns.

VOLATILE TRUE Volatile table

Explain Tables

Appendix D. Explain Tables and Definitions 615

EXPLAIN_INSTANCE Table

The EXPLAIN_INSTANCE table is the main control table for all Explain
information. Each row of data in the Explain tables is explicitly linked to one
unique row in this table. The EXPLAIN_INSTANCE table gives basic
information about the source of the SQL statements being explained as well as
information about the environment in which the explanation took place.

For the definition of this table, see “EXPLAIN_INSTANCE Table Definition”
on page 635.

Table 89. EXPLAIN_INSTANCE Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No PK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK Schema, or qualifier, of source of Explain request.

EXPLAIN_OPTION CHAR(1) No No Indicates what Explain Information was requested
for this request.

Possible values are:

P PLAN SELECTION

SNAPSHOT_TAKEN CHAR(1) No No Indicates whether an Explain Snapshot was taken
for this request.

Possible values are:

Y Yes, an Explain Snapshot(s) was taken
and stored in the
EXPLAIN_STATEMENT table. Regular
Explain information was also captured.

N No Explain Snapshot was taken.
Regular Explain information was
captured.

O Only an Explain Snapshot was taken.
Regular Explain information was not
captured.

Explain Tables

616 Administration Guide: Performance

Table 89. EXPLAIN_INSTANCE Table (continued)

Column Name Data Type Nullable? Key? Description

DB2_VERSION CHAR(7) No No Product release number for DB2 Universal
Database which processed this explain request.
Format is vv.rr.m, where:

vv Version Number

rr Release Number

m Maintenance Release Number

SQL_TYPE CHAR(1) No No Indicates whether the Explain Instance was for
static or dynamic SQL.

Possible values are:

S Static SQL

D Dynamic SQL

QUERYOPT INTEGER No No Indicates the query optimization class used by the
SQL Compiler at the time of the Explain
invocation. The value indicates what level of
query optimization was performed by the SQL
Compiler for the SQL statements being explained.

BLOCK CHAR(1) No No Indicates what type of cursor blocking was used
when compiling the SQL statements. For more
information, see the BLOCK column in
SYSCAT.PACKAGES.

Possible values are:

N No Blocking

U Block Unambiguous Cursors

B Block All Cursors

ISOLATION CHAR(2) No No Indicates what type of isolation was used when
compiling the SQL statements. For more
information, see the ISOLATION column in
SYSCAT.PACKAGES.

Possible values are:

RR Repeatable Read

RS Read Stability

CS Cursor Stability

UR Uncommitted Read

BUFFPAGE INTEGER No No Contains the value of the BUFFPAGE database
configuration setting at the time of the Explain
invocation.

Explain Tables

Appendix D. Explain Tables and Definitions 617

Table 89. EXPLAIN_INSTANCE Table (continued)

Column Name Data Type Nullable? Key? Description

AVG_APPLS INTEGER No No Contains the value of the AVG_APPLS
configuration parameter at the time of the Explain
invocation.

SORTHEAP INTEGER No No Contains the value of the SORTHEAP database
configuration setting at the time of the Explain
invocation.

LOCKLIST INTEGER No No Contains the value of the LOCKLIST database
configuration setting at the time of the Explain
invocation.

MAXLOCKS SMALLINT No No Contains the value of the MAXLOCKS database
configuration setting at the time of the Explain
invocation.

LOCKS_AVAIL INTEGER No No Contains the number of locks assumed to be
available by the optimizer for each user. (Derived
from LOCKLIST and MAXLOCKS.)

CPU_SPEED DOUBLE No No Contains the value of the CPUSPEED database
manager configuration setting at the time of the
Explain invocation.

REMARKS VARCHAR(254) Yes No User-provided comment.

DBHEAP INTEGER No No Contains the value of the DBHEAP database
configuration setting at the time of Explain
invocation.

COMM_SPEED DOUBLE No No Contains the value of the COMM_BANDWIDTH
database configuration setting at the time of
Explain invocation.

PARALLELISM CHAR(2) No No Possible values are:

v N = No parallelism

v P = Intra-partition parallelism

v IP = Inter-partition parallelism

v BP = Intra-partition parallelism and
inter-partition parallelism

DATAJOINER CHAR(1) No No Possible values are:

v N = Non-federated systems plan

v Y = Federated systems plan

EXPLAIN_OBJECT Table

The EXPLAIN_OBJECT table identifies those data objects required by the
access plan generated to satisfy the SQL statement.

Explain Tables

618 Administration Guide: Performance

Table 90. EXPLAIN_OBJECT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OBJECT_SCHEMA VARCHAR(128) No No Schema to which this object belongs.

OBJECT_NAME VARCHAR(128) No No Name of the object.

OBJECT_TYPE CHAR(2) No No Descriptive label for the type of object.

CREATE_TIME TIMESTAMP Yes No Time of Object’s creation; null if a table function.

STATISTICS_TIME TIMESTAMP Yes No Last time of update to statistics for this object;
null if statistics do not exist for this object.

COLUMN_COUNT SMALLINT No No Number of columns in this object.

ROW_COUNT INTEGER No No Estimated number of rows in this object.

WIDTH INTEGER No No The average width of the object in bytes. Set to -1
for an index.

PAGES INTEGER No No Estimated number of pages that the object
occupies in the buffer pool. Set to -1 for a table
function.

DISTINCT CHAR(1) No No Indicates if the rows in the object are distinct (i.e.
no duplicates)

Possible values are:

Y Yes

N No

TABLESPACE_NAME VARCHAR(128) Yes No Name of the table space in which this object is
stored; set to null if no table space is involved.

OVERHEAD DOUBLE No No Total estimated overhead, in milliseconds, for a
single random I/O to the specified table space.
Includes controller overhead, disk seek, and
latency times. Set to -1 if no table space is
involved.

TRANSFER_RATE DOUBLE No No Estimated time to read a data page, in
milliseconds, from the specified table space. Set to
-1 if no table space is involved.

Explain Tables

Appendix D. Explain Tables and Definitions 619

Table 90. EXPLAIN_OBJECT Table (continued)

Column Name Data Type Nullable? Key? Description

PREFETCHSIZE INTEGER No No Number of data pages to be read when prefetch is
performed. Set to -1 for a table function.

EXTENTSIZE INTEGER No No Size of extent, in data pages. This many pages are
written to one container in the table space before
switching to the next container. Set to -1 for a
table function.

CLUSTER DOUBLE No No Degree of data clustering with the index. If >= 1,
this is the CLUSTERRATIO. If >= 0 and < 1, this
is the CLUSTERFACTOR. Set to -1 for a table,
table function, or if this statistic is not available.

NLEAF INTEGER No No Number of leaf pages this index object’s values
occupy. Set to -1 for a table, table function, or if
this statistic is not available.

NLEVELS INTEGER No No Number of index levels in this index object’s tree.
Set to -1 for a table, table function, or if this
statistic is not available.

FULLKEYCARD BIGINT No No Number of distinct full key values contained in
this index object. Set to -1 for a table, table
function, or if this statistic is not available.

OVERFLOW INTEGER No No Total number of overflow records in the table. Set
to -1 for an index, table function, or if this statistic
is not available.

FIRSTKEYCARD BIGINT No No Number of distinct first key values. Set to −1 for a
table, table function or if this statistic is not
available.

FIRST2KEYCARD BIGINT No No Number of distinct first key values using the first
{2,3,4} columns of the index. Set to −1 for a table,
table function or if this statistic is not available.

FIRST3KEYCARD BIGINT No No

FIRST4KEYCARD BIGINT No No

SEQUENTIAL_PAGES INTEGER No No Number of leaf pages located on disk in index key
order with few or no large gaps between them.
Set to −1 for a table, table function or if this
statistic is not available.

DENSITY INTEGER No No Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percentage (integer between
0 and 100). Set to −1 for a table, table function or
if this statistic is not available.

Table 91. Possible OBJECT_TYPE Values

Value Description

IX Index

TA Table

TF Table Function

Explain Tables

620 Administration Guide: Performance

EXPLAIN_OPERATOR Table

The EXPLAIN_OPERATOR table contains all the operators needed to satisfy
the SQL statement by the SQL compiler.

Table 92. EXPLAIN_OPERATOR Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

OPERATOR_TYPE CHAR(6) No No Descriptive label for the type of operator.

TOTAL_COST DOUBLE No No Estimated cumulative total cost (in timerons) of
executing the chosen access plan up to and
including this operator.

IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page
I/Os) of executing the chosen access plan up to
and including this operator.

CPU_COST DOUBLE No No Estimated cumulative CPU cost (in instructions) of
executing the chosen access plan up to and
including this operator.

FIRST_ROW_COST DOUBLE No No Estimated cumulative cost (in timerons) of
fetching the first row for the access plan up to and
including this operator. This value includes any
initial overhead required.

RE_TOTAL_COST DOUBLE No No Estimated cumulative cost (in timerons) of
fetching the next row for the chosen access plan
up to and including this operator.

RE_IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page
I/Os) of fetching the next row for the chosen
access plan up to and including this operator.

RE_CPU_COST DOUBLE No No Estimated cumulative CPU cost (in timerons) of
fetching the next row for the chosen access plan
up to and including this operator.

Explain Tables

Appendix D. Explain Tables and Definitions 621

Table 92. EXPLAIN_OPERATOR Table (continued)

Column Name Data Type Nullable? Key? Description

COMM_COST DOUBLE No No Estimated cumulative communication cost (in
TCP/IP frames) of executing the chosen access
plan up to and including this operator.

FIRST_COMM_COST DOUBLE No No Estimated cumulative communications cost (in
TCP/IP frames) of fetching the first row for the
chosen access plan up to and including this
operator. This value includes any initial overhead
required.

BUFFERS DOUBLE No No Estimated buffer requirements for this operator
and its inputs.

REMOTE_TOTAL_COST DOUBLE No No Estimated cumulative total cost (in timerons) of
performing operation(s) on remote database(s).

REMOTE_COMM_COST DOUBLE No No Estimated cumulative communication cost of
executing the chosen remote access plan up to and
including this operator.

Table 93. OPERATOR_TYPE Values

Value Description

DELETE Delete

FETCH Fetch

FILTER Filter rows

GENROW Generate Row

GRPBY Group By

HSJOIN Hash Join

INSERT Insert

IXAND Dynamic Bitmap Index ANDing

IXSCAN Index Scan

MSJOIN Merge Scan Join

NLJOIN Nested loop Join

RETURN Result

RIDSCN Row Identifier (RID) Scan

RQUERY Remote Query

SORT Sort

TBSCAN Table Scan

TEMP Temporary Table Construction

TQ Table Queue

UNION Union

UNIQUE Duplicate Elimination

UPDATE Update

Explain Tables

622 Administration Guide: Performance

EXPLAIN_PREDICATE Table

The EXPLAIN_PREDICATE table identifies which predicates are applied by a
specific operator.

Table 94. EXPLAIN_PREDICATE Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

PREDICATE_ID INTEGER No No Unique ID for this predicate for the specified
operator.

HOW_APPLIED CHAR(5) No No How predicate is being used by the specified
operator.

WHEN_EVALUATED CHAR(3) No No Indicates when the subquery used in this
predicate is evaluated.

Possible values are:

blank This predicate does not contain a
subquery.

EAA The subquery used in this predicate is
evaluated at application (EAA). That is,
it is re-evaluated for every row
processed by the specified operator, as
the predicate is being applied.

EAO The subquery used in this predicate is
evaluated at open (EAO). That is, it is
re-evaluated only once for the specified
operator, and its results are re-used in
the application of the predicate for each
row.

MUL There is more than one type of
subquery in this predicate.

Explain Tables

Appendix D. Explain Tables and Definitions 623

Table 94. EXPLAIN_PREDICATE Table (continued)

Column Name Data Type Nullable? Key? Description

RELOP_TYPE CHAR(2) No No The type of relational operator used in this
predicate.

SUBQUERY CHAR(1) No No Whether or not a data stream from a subquery is
required for this predicate. There may be multiple
subquery streams required.

Possible values are:

N No subquery stream is required

Y One or more subquery streams is
required

FILTER_FACTOR DOUBLE No No The estimated fraction of rows that will be
qualified by this predicate.

PREDICATE_TEXT CLOB(1M) Yes No The text of the predicate as recreated from the
internal representation of the SQL statement.

Null if not available.

Table 95. Possible HOW_APPLIED Values

Value Description

JOIN Used to join tables

RESID Evaluated as a residual predicate

SARG Evaluated as a sargable predicate for index or data page

START Used as a start condition

STOP Used as a stop condition

Table 96. Possible RELOP_TYPE Values

Value Description

blanks Not Applicable

EQ Equals

GE Greater Than or Equal

GT Greater Than

IN In list

LE Less Than or Equal

LK Like

LT Less Than

NE Not Equal

NL Is Null

NN Is Not Null

Explain Tables

624 Administration Guide: Performance

EXPLAIN_STATEMENT Table

The EXPLAIN_STATEMENT table contains the text of the SQL statement as it
exists for the different levels of Explain information. The original SQL
statement as entered by the user is stored in this table along with the version
used (by the optimizer) to choose an access plan to satisfy the SQL statement.
The latter version may bear little resemblance to the original as it may have
been rewritten and/or enhanced with additional predicates as determined by
the SQL Compiler.

For the definition of this table, see “EXPLAIN_STATEMENT Table Definition”
on page 639.

Table 97. EXPLAIN_STATEMENT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK,
FK

Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No PK,
FK

Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK,
FK

Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK,
FK

Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No PK Level of Explain information for which this row
is relevant.

Valid values are:

O Original Text (as entered by user)

P PLAN SELECTION

STMTNO INTEGER No PK Statement number within package to which this
explain information is related. Set to 1 for
dynamic Explain SQL statements. For static SQL
statements, this value is the same as the value
used for the SYSCAT.STATEMENTS catalog view.

SECTNO INTEGER No PK Section number within package that contains this
SQL statement. For dynamic Explain SQL
statements, this is the section number used to
hold the section for this statement at runtime. For
static SQL statements, this value is the same as
the value used for the SYSCAT.STATEMENTS
catalog view.

Explain Tables

Appendix D. Explain Tables and Definitions 625

Table 97. EXPLAIN_STATEMENT Table (continued)

Column Name Data Type Nullable? Key? Description

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.
For dynamic SQL statements (excluding the
EXPLAIN SQL statement) issued through CLP or
CLI, the default value is a sequentially
incremented value. Otherwise, the default value
is the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.
For dynamic SQL statements issued through CLP
(excluding the EXPLAIN SQL statement), the
default value is 'CLP'. For dynamic SQL
statements issued through CLI (excluding the
EXPLAIN SQL statement), the default value is
'CLI'. Otherwise, the default value used is blanks.

STATEMENT_TYPE CHAR(2) No No Descriptive label for type of query being
explained.

Possible values are:

S Select

D Delete

DC Delete where current of cursor

I Insert

U Update

UC Update where current of cursor

UPDATABLE CHAR(1) No No Indicates if this statement is considered
updatable. This is particularly relevant to SELECT
statements which may be determined to be
potentially updatable.

Possible values are:

’ ’ Not applicable (blank)

N No

Y Yes

Explain Tables

626 Administration Guide: Performance

Table 97. EXPLAIN_STATEMENT Table (continued)

Column Name Data Type Nullable? Key? Description

DELETABLE CHAR(1) No No Indicates if this statement is considered deletable.
This is particularly relevant to SELECT statements
which may be determined to be potentially
deletable.

Possible values are:

’ ’ Not applicable (blank)

N No

Y Yes

TOTAL_COST DOUBLE No No Estimated total cost (in timerons) of executing the
chosen access plan for this statement; set to 0
(zero) if EXPLAIN_LEVEL is O (original text)
since no access plan has been chosen at this time.

STATEMENT_TEXT CLOB(1M) No No Text or portion of the text of the SQL statement
being explained. The text shown for the Plan
Selection level of Explain has been reconstructed
from the internal representation and is SQL-like
in nature; that is, the reconstructed statement is
not guaranteed to follow correct SQL syntax.

SNAPSHOT BLOB(10M) Yes No Snapshot of internal representation for this SQL
statement at the Explain_Level shown.

This column is intended for use with DB2 Visual
Explain. Column is set to null if
EXPLAIN_LEVEL is 0 (original statement) since
no access plan has been chosen at the time that
this specific version of the statement is captured.

QUERY_DEGREE INTEGER No No Indicates the degree of intra-partition parallelism
at the time of Explain invocation. For the original
statement, this contains the directed degree of
intra-partition parallelism. For the PLAN
SELECTION, this contains the degree of
intra-partition parallelism generated for the plan
to use.

EXPLAIN_STREAM Table

The EXPLAIN_STREAM table represents the input and output data streams
between individual operators and data objects. The data objects themselves
are represented in the EXPLAIN_OBJECT table. The operators involved in a
data stream are to be found in the EXPLAIN_OPERATOR table.

Explain Tables

Appendix D. Explain Tables and Definitions 627

Table 98. EXPLAIN_STREAM Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

STREAM_ID INTEGER No No Unique ID for this data stream within the
specified operator.

SOURCE_TYPE CHAR(1) No No Indicates the source of this data stream:

O Operator

D Data Object

SOURCE_ID SMALLINT No No Unique ID for the operator within this query that
is the source of this data stream. Set to -1 if
SOURCE_TYPE is ’D’.

TARGET_TYPE CHAR(1) No No Indicates the target of this data stream:

O Operator

D Data Object

TARGET_ID SMALLINT No No Unique ID for the operator within this query that
is the target of this data stream. Set to -1 if
TARGET_TYPE is ’D’.

OBJECT_SCHEMA VARCHAR(128) Yes No Schema to which the affected data object belongs.
Set to null if both SOURCE_TYPE and
TARGET_TYPE are ’O’.

OBJECT_NAME VARCHAR(128) Yes No Name of the object that is the subject of data
stream. Set to null if both SOURCE_TYPE and
TARGET_TYPE are ’O’.

STREAM_COUNT DOUBLE No No Estimated cardinality of data stream.

COLUMN_COUNT SMALLINT No No Number of columns in data stream.

PREDICATE_ID INTEGER No No If this stream is part of a subquery for a predicate,
the predicate ID will be reflected here, otherwise
the column is set to -1.

Explain Tables

628 Administration Guide: Performance

Table 98. EXPLAIN_STREAM Table (continued)

Column Name Data Type Nullable? Key? Description

COLUMN_NAMES CLOB(1M) Yes No This column contains the names and ordering
information of the columns involved in this
stream.

These names will be in the format of:

NAME1(A)+NAME2(D)+NAME3+NAME4

Where (A) indicates a column in ascending order,
(D) indicates a column in descending order, and
no ordering information indicates that either the
column is not ordered or ordering is not relevant.

PMID SMALLINT No No Partitioning map ID.

SINGLE_NODE CHAR(5) Yes No Indicates if this data stream is on a single or
multiple partitions:

MULT On multiple partitions

COOR On coordinator node

HASH Directed using hashing

RID Directed using the row ID

FUNC Directed using a function (PARTITION()
or NODENUMBER())

CORR Directed using a correlation value

PARTITION_COLUMNS CLOB(64K) Yes No List of columns this data stream is partitioned on.

ADVISE_INDEX Table

The ADVISE_INDEX table represents the recommended indexes.

Table 99. ADVISE_INDEX Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No No Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No No Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No No Name of the package running when the dynamic
statement was explained or name of the source
file when static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No No Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No No Level of Explain information for which this row is
relevant.

STMTNO INTEGER No No Statement number within package to which this
explain information is related.

Explain Tables

Appendix D. Explain Tables and Definitions 629

Table 99. ADVISE_INDEX Table (continued)

Column Name Data Type Nullable? Key? Description

SECTNO INTEGER No No Section number within package to which this
explain information is related.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.
For dynamic SQL statements (excluding the
EXPLAIN SQL statement) issued through CLP or
CLI, the default value is a sequentially
incremented value. Otherwise, the default value is
the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.
For dynamic SQL statements issued through CLP
(excluding the EXPLAIN SQL statement), the
default value is 'CLP'. For dynamic SQL
statements issued through CLI (excluding the
EXPLAIN SQL statement), the default value is
'CLI'. Otherwise, the default value used is blanks.

NAME VARCHAR(128) No No Name of the index.

CREATOR VARCHAR(128) No No Qualifier of the index name.

TBNAME VARCHAR(128) No No Name of the table or nickname on which the
index is defined.

TBCREATOR VARCHAR(128) No No Qualifier of the table name.

COLNAMES CLOB(64K) No No List of column names.

UNIQUERULE CHAR(1) No No Unique rule:

D = Duplicates allowed

P = Primary index

U = Unique entries only allowed

COLCOUNT SMALLINT No No Number of columns in the key plus the number of
include columns if any.

IID SMALLINT No No Internal index ID.

NLEAF INTEGER No No Number of leaf pages; −1 if statistics are not
gathered.

NLEVELS SMALLINT No No Number of index levels; −1 if statistics are not
gathered.

FULLKEYCARD BIGINT No No Number of distinct full key values; −1 if statistics
are not gathered.

FIRSTKEYCARD BIGINT No No Number of distinct first key values; −1 if statistics
are not gathered.

CLUSTERRATIO SMALLINT No No Degree of data clustering with the index; −1 if
statistics are not gathered or if detailed index
statistics are gathered (in which case,
CLUSTERFACTOR will be used instead).

CLUSTERFACTOR DOUBLE No No Finer measurement of degree of clustering, or −1
if detailed index statistics have not been gathered
or if the index is defined on a nickname.

Explain Tables

630 Administration Guide: Performance

Table 99. ADVISE_INDEX Table (continued)

Column Name Data Type Nullable? Key? Description

USERDEFINED SMALLINT No No Defined by the user.

SYSTEM_REQUIRED SMALLINT No No 1 if this index is required for primary key or
unique key constraint, OR if this is the index
on the object identifier (OID) column of a
typed table.

2 if this index is required for primary key or
unique key constraint, AND this is the index
on the object identifier (OID) column of a
typed table.

0 otherwise.

CREATE_TIME TIMESTAMP No No Time when the index was created.

STATS_TIME TIMESTAMP Yes No Last time when any change was made to recorded
statistics for this index. Null if no statistics
available.

PAGE_FETCH_PAIRS VARCHAR(254) No No A list of pairs of integers, represented in character
form. Each pair represents the number of pages in
a hypothetical buffer, and the number of page
fetches required to scan the table with this index
using that hypothetical buffer. (Zero-length string
if no data available.)

REMARKS VARCHAR(254) Yes No User-supplied comment, or null.

DEFINER VARCHAR(128) No No User who created the index.

CONVERTED CHAR(1) No No Reserved for future use.

SEQUENTIAL_PAGES INTEGER No No Number of leaf pages located on disk in index key
order with few or no large gaps between them.
(−1 if no statistics are available.)

DENSITY INTEGER No No Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percent (integer between 0
and 100, −1 if no statistics are available.)

FIRST2KEYCARD BIGINT No No Number of distinct keys using the first two
columns of the index (−1 if no statistics or
inapplicable)

FIRST3KEYCARD BIGINT No No Number of distinct keys using the first three
columns of the index (−1 if no statistics or
inapplicable)

FIRST4KEYCARD BIGINT No No Number of distinct keys using the first four
columns of the index (−1 if no statistics or
inapplicable)

PCTFREE SMALLINT No No Percentage of each index leaf page to be reserved
during initial building of the index. This space is
available for future inserts after the index is built.

Explain Tables

Appendix D. Explain Tables and Definitions 631

Table 99. ADVISE_INDEX Table (continued)

Column Name Data Type Nullable? Key? Description

UNIQUE_COLCOUNT SMALLINT No No The number of columns required for a unique key.
Always <=COLCOUNT. < COLCOUNT only if
there a include columns. −1 if index has no
unique key (permits duplicates)

MINPCTUSED SMALLINT No No If not zero, then on-line index reorganization is
enabled and the value is the threshold of
minimum used space before merging pages.

REVERSE_SCANS CHAR(1) No No Y = Index supports reverse scans

N = Index does not support reverse scans

USE_INDEX CHAR(1) Yes No Y = index recommended or evaluated

N = index not to be recommended

CREATION_TEXT CLOB(1M) No No The SQL statement used to create the index.

PACKED_DESC BLOB(20M) Yes No Internal description of the table.

ADVISE_WORKLOAD Table

The ADVISE_WORKLOAD table represents the statement that makes up the
workload. For more details on workload refer to Administration Guide,
Performance.

Table 100. ADVISE_WORKLOAD Table

Column Name Data Type Nullable? Key? Description

WORKLOAD_NAME CHAR(128) No No Name of the collection of SQL statements
(workload) that this statments belongs to.

STATEMENT_NO INTEGER No No Statement number within the workload to which
this explain information is related.

STATEMENT_TEXT CLOB(1M) No No Content of the SQL statement.

STATEMENT_TAG VARCHAR(256) No No Identifier tag for each explained SQL statement.

FREQUENCY INTEGER No No The number of times this statement appears
within the workload.

IMPORTANCE DOUBLE No No Importance of the statement.

COST_BEFORE DOUBLE Yes No The cost (in timerons) of the query if the
recommended indexes are not created.

COST_AFTER DOUBLE Yes No The cost (in timerons) of the query if the
recommended indexes are created.

Explain Tables

632 Administration Guide: Performance

Table Definitions for Explain Tables

The Explain tables must be created before Explain can be invoked. The
following definitions specify how to create the necessary Explain tables:
v “EXPLAIN_ARGUMENT Table Definition” on page 634

v “EXPLAIN_INSTANCE Table Definition” on page 635

v “EXPLAIN_OBJECT Table Definition” on page 636

v “EXPLAIN_OPERATOR Table Definition” on page 637

v “EXPLAIN_PREDICATE Table Definition” on page 638

v “EXPLAIN_STATEMENT Table Definition” on page 639

v “EXPLAIN_STREAM Table Definition” on page 640

v “ADVISE_INDEX Table Definition” on page 641

v “ADVISE_WORKLOAD Table Definition” on page 643

Alternately, create them by using the sample command line processor input
script provided in the EXPLAIN.DDL file located in the 'misc' subdirectory of
the 'sqllib' directory. Connect to the database where the Explain tables are
required. Then issue the command: db2 -tf EXPLAIN.DDL and the tables will
be created.

Explain Tables

Appendix D. Explain Tables and Definitions 633

EXPLAIN_ARGUMENT Table Definition
CREATE TABLE EXPLAIN_ARGUMENT (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
OPERATOR_ID INTEGER NOT NULL,
ARGUMENT_TYPE CHAR(8) NOT NULL,
ARGUMENT_VALUE VARCHAR(1024) NOT NULL,
LONG_ARGUMENT_VALUE CLOB(1M) NOT LOGGED,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

634 Administration Guide: Performance

EXPLAIN_INSTANCE Table Definition
CREATE TABLE EXPLAIN_INSTANCE (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_OPTION CHAR(1) NOT NULL,
SNAPSHOT_TAKEN CHAR(1) NOT NULL,
DB2_VERSION CHAR(7) NOT NULL,
SQL_TYPE CHAR(1) NOT NULL,
QUERYOPT INTEGER NOT NULL,
BLOCK CHAR(1) NOT NULL,
ISOLATION CHAR(2) NOT NULL,
BUFFPAGE INTEGER NOT NULL,
AVG_APPLS INTEGER NOT NULL,
SORTHEAP INTEGER NOT NULL,
LOCKLIST INTEGER NOT NULL,
MAXLOCKS SMALLINT NOT NULL,
LOCKS_AVAIL INTEGER NOT NULL,
CPU_SPEED DOUBLE NOT NULL,
REMARKS VARCHAR(254),
DBHEAP INTEGER NOT NULL,
COMM_SPEED DOUBLE NOT NULL,
PARALLELISM CHAR(2) NOT NULL,
DATAJOINER CHAR(1) NOT NULL,

PRIMARY KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA))

Explain Tables

Appendix D. Explain Tables and Definitions 635

EXPLAIN_OBJECT Table Definition
CREATE TABLE EXPLAIN_OBJECT (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
OBJECT_SCHEMA VARCHAR(128) NOT NULL,
OBJECT_NAME VARCHAR(128) NOT NULL,
OBJECT_TYPE CHAR(2) NOT NULL,
CREATE_TIME TIMESTAMP,
STATISTICS_TIME TIMESTAMP,
COLUMN_COUNT SMALLINT NOT NULL,
ROW_COUNT INTEGER NOT NULL,
WIDTH INTEGER NOT NULL,
PAGES INTEGER NOT NULL,
DISTINCT CHAR(1) NOT NULL,
TABLESPACE_NAME VARCHAR(128),
OVERHEAD DOUBLE NOT NULL,
TRANSFER_RATE DOUBLE NOT NULL,
PREFETCHSIZE INTEGER NOT NULL,
EXTENTSIZE INTEGER NOT NULL,
CLUSTER DOUBLE NOT NULL,
NLEAF INTEGER NOT NULL,
NLEVELS INTEGER NOT NULL,
FULLKEYCARD BIGINT NOT NULL,
OVERFLOW INTEGER NOT NULL,
FIRSTKEYCARD BIGINT NOT NULL,
FIRST2KEYCARD BIGINT NOT NULL,
FIRST3KEYCARD BIGINT NOT NULL,
FIRST4KEYCARD BIGINT NOT NULL,
SEQUENTIAL_PAGES INTEGER NOT NULL,
DENSITY INTEGER NOT NULL,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

636 Administration Guide: Performance

EXPLAIN_OPERATOR Table Definition

CREATE TABLE EXPLAIN_OPERATOR (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,
EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
OPERATOR_ID INTEGER NOT NULL,
OPERATOR_TYPE CHAR(6) NOT NULL,
TOTAL_COST DOUBLE NOT NULL,
IO_COST DOUBLE NOT NULL,
CPU_COST DOUBLE NOT NULL,
FIRST_ROW_COST DOUBLE NOT NULL,
RE_TOTAL_COST DOUBLE NOT NULL,
RE_IO_COST DOUBLE NOT NULL,
RE_CPU_COST DOUBLE NOT NULL,
COMM_COST DOUBLE NOT NULL,
FIRST_COMM_COST DOUBLE NOT NULL,
REMOTE_TOTAL_COST DOUBLE NOT NULL,
REMOTE_COMM_COST DOUBLE NOT NULL,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

Appendix D. Explain Tables and Definitions 637

EXPLAIN_PREDICATE Table Definition
CREATE TABLE EXPLAIN_PREDICATE (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
OPERATOR_ID INTEGER NOT NULL,
PREDICATE_ID INTEGER NOT NULL,
HOW_APPLIED CHAR(5) NOT NULL,
WHEN_EVALUATED CHAR(3) NOT NULL,
RELOP_TYPE CHAR(2) NOT NULL,
SUBQUERY CHAR(1) NOT NULL,
FILTER_FACTOR DOUBLE NOT NULL,
PREDICATE_TEXT CLOB(1M) NOT LOGGED,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

638 Administration Guide: Performance

EXPLAIN_STATEMENT Table Definition
CREATE TABLE EXPLAIN_STATEMENT (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
QUERYNO INTEGER NOT NULL,
QUERYTAG CHAR(20) NOT NULL,
STATEMENT_TYPE CHAR(2) NOT NULL,
UPDATABLE CHAR(1) NOT NULL,
DELETABLE CHAR(1) NOT NULL
TOTAL_COST DOUBLE NOT NULL,
STATEMENT_TEXT CLOB(1M) NOT NULL

NOT LOGGED,
SNAPSHOT BLOB(10M) NOT LOGGED,
QUERY_DEGREE INTEGER NOT NULL,

PRIMARY KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO),

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA)

REFERENCES EXPLAIN_INSTANCE
ON DELETE CASCADE)

Explain Tables

Appendix D. Explain Tables and Definitions 639

EXPLAIN_STREAM Table Definition
CREATE TABLE EXPLAIN_STREAM (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
STREAM_ID INTEGER NOT NULL,
SOURCE_TYPE CHAR(1) NOT NULL,
SOURCE_ID SMALLINT NOT NULL,
TARGET_TYPE CHAR(1) NOT NULL,
TARGET_ID SMALLINT NOT NULL,
OBJECT_SCHEMA VARCHAR(128),
OBJECT_NAME VARCHAR(128),
STREAM_COUNT DOUBLE NOT NULL,
COLUMN_COUNT SMALLINT NOT NULL,
PREDICATE_ID INTEGER NOT NULL,
COLUMN_NAMES CLOB(1M) NOT LOGGED,
PMID SMALLINT NOT NULL,
SINGLE_NODE CHAR(5),
PARTITION_COLUMNS CLOB(64K) NOT LOGGED,

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT
ON DELETE CASCADE)

Explain Tables

640 Administration Guide: Performance

ADVISE_INDEX Table Definition
CREATE TABLE ADVISE_INDEX (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL

WITH DEFAULT '',
EXPLAIN_TIME TIMESTAMP NOT NULL

WITH DEFAULT CURRENT TIMESTAMP,
SOURCE_NAME VARCHAR(128) NOT NULL

WITH DEFAULT '',
SOURCE_SCHEMA VARCHAR(128) NOT NULL

WITH DEFAULT '',
EXPLAIN_LEVEL CHAR(1) NOT NULL

WITH DEFAULT '',
STMTNO INTEGER NOT NULL

WITH DEFAULT 0,
SECTNO INTEGER NOT NULL

WITH DEFAULT 0,
QUERYNO INTEGER NOT NULL

WITH DEFAULT 0,
QUERYTAG CHAR(20) NOT NULL

WITH DEFAULT '',
NAME VARCHAR(128) NOT NULL,
CREATOR VARCHAR(128) NOT NULL

WITH DEFAULT '',
TBNAME VARCHAR(128) NOT NULL,
TBCREATOR VARCHAR(128) NOT NULL

WITH DEFAULT '',
COLNAMES CLOB(64K) NOT NULL,
UNIQUERULE CHAR(1) NOT NULL

WITH DEFAULT '',
COLCOUNT SMALLINT NOT NULL

WITH DEFAULT 0,
IID SMALLINT NOT NULL

WITH DEFAULT 0,
NLEAF INTEGER NOT NULL

WITH DEFAULT 0,
NLEVELS SMALLINT NOT NULL

WITH DEFAULT 0,
FIRSTKEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
FULLKEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
CLUSTERRATIO SMALLINT NOT NULL

WITH DEFAULT 0,
CLUSTERFACTOR DOUBLE NOT NULL

WITH DEFAULT 0,
USERDEFINED SMALLINT NOT NULL

WITH DEFAULT 0,
SYSTEM_REQUIRED SMALLINT NOT NULL

WITH DEFAULT 0,
CREATE_TIME TIMESTAMP NOT NULL

WITH DEFAULT CURRENT TIMESTAMP,
STATS_TIME TIMESTAMP

WITH DEFAULT CURRENT TIMESTAMP,
PAGE_FETCH_PAIRS VARCHAR(254) NOT NULL

WITH DEFAULT '',
REMARKS VARCHAR(254)

Explain Tables

Appendix D. Explain Tables and Definitions 641

WITH DEFAULT '',
DEFINER VARCHAR(128) NOT NULL

WITH DEFAULT '',
CONVERTED CHAR(1) NOT NULL

WITH DEFAULT '',
SEQUENTIAL_PAGES INTEGER NOT NULL

WITH DEFAULT 0,
DENSITY INTEGER NOT NULL

WITH DEFAULT 0,
FIRST2KEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
FIRST3KEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
FIRST4KEYCARD BIGINT NOT NULL

WITH DEFAULT 0,
PCTFREE SMALLINT NOT NULL

WITH DEFAULT -1,
UNIQUE_COLCOUNT SMALLINT NOT NULL

WITH DEFAULT -1,
MINPCTUSED SMALLINT NOT NULL

WITH DEFAULT 0,
REVERSE_SCANS CHAR(1) NOT NULL

WITH DEFAULT 'N',
USE_INDEX CHAR(1),
CREATION_TEXT CLOB(1M) NOT NULL

NOT LOGGED WITH DEFAULT '',
PACKED_DESC BLOB(1M) NOT LOGGED)

Explain Tables

642 Administration Guide: Performance

ADVISE_WORKLOAD Table Definition
CREATE TABLE ADVISE_WORKLOAD (WORKLOAD_NAME CHAR(128) NOT NULL

WITH DEFAULT 'WK0',
STATEMENT_NO INTEGER NOT NULL

WITH DEFAULT 1,
STATEMENT_TEXT CLOB(1M) NOT NULL NOT LOGGED,
STATEMENT_TAG VARCHAR(256) NOT NULL

WITH DEFAULT '',
FREQUENCY INTEGER NOT NULL

WITH DEFAULT 1,
IMPORTANCE DOUBLE NOT NULL

WITH DEFAULT 1,
COST_BEFORE DOUBLE,
COST_AFTER DOUBLE)

Explain Tables

Appendix D. Explain Tables and Definitions 643

Explain Tables

644 Administration Guide: Performance

Appendix E. SQL Explain Tools

The db2expln tool describes the access plan selected for static SQL statements
in the packages stored in the system catalog tables. It can be used to obtain a
quick explanation of the chosen access plan for packages for which explain
data was not captured at bind time.

The dynexpln tool describes the access plan selected for dynamic statements.
It creates a static package for the statements and then uses the db2expln tool
to describe them.

You can use these Explain tools to understand the access plan chosen for a
particular SQL statement. Or, you could use the integrated Explain Facility
(“Chapter 6. SQL Explain Facility” on page 177) in conjunction with Visual
Explain to understand the access plan chosen for a particular SQL statement.
Both dynamic and static SQL statements can be explained using the Explain
Facility. One difference from the Explain tools is that with Visual Explain the
Explain information is presented in a graphical format. Otherwise the level of
detail provided in the two methods is equivalent.

To fully use the output of db2expln, and dynexpln you must understand:

v The different SQL statements supported and the terminology related to
those statements (such as predicates in a SELECT statement).

v The purpose of a package (access plan). (See “Data Access Concepts and
Optimization” on page 126 for this information.)

v The purpose and contents of the system catalog tables. (See “Appendix C.
Catalog Views” on page 509 for this information.)

v Other concepts described in “Part 2. Tuning Application Performance” on
page 11.

The following topics provide information about db2expln and dynexpln:

v Running db2expln and dynexpln
v db2expln Syntax and Parameters
v Usage Notes for db2expln
v dynexpln Syntax and Parameters
v Usage Notes for dynexpln
v Description of db2expln and dynexpln Output
v Examples of db2expln and dynexpln Output.

© Copyright IBM Corp. 1993, 1999 645

Running db2expln and dynexpln

The explain tools (db2expln and dynexpln) are located in the misc subdirectory
of your instance sqllib directory. If db2expln and dynexpln are not in your
current directory, they must be in a directory that appears in your PATH
environment variable.

The db2expln program connects and binds itself to a database using the
db2expln.bnd file the first time the database is accessed. The db2expln.bnd file
is in the bnd subdirectory of your sqllib directory.

To run db2expln, you must have SELECT privilege to the system catalog
views as well as EXECUTE authority for the db2expln package. To run
dynexpln, you must have BINDADD authority for the database as well as any
privileges needed for the SQL statements being explained. (Note that if you
have SYSADM or DBADM authority, you will automatically have all these
authorization levels.)

db2expln Syntax and Parameters

Where:

-c creator
The user ID of the package creator.

If you do not specify this option, you will be prompted for it.

You may specify the creator name using the pattern matching
characters, percent sign (%) and underscore (_) that may be used in a
LIKE predicate.

-d database name
The name of the database that contains the packages to be explained.

If you do not specify this option, you will be prompted for it.

ÊÊ db2expln
-c creator -d database name -e escape character

Ê

Ê
-g -h

-?
-i -l -o output file -p package name

Ê

Ê
-s section number -t -u user ID password

ÊÍ

646 Administration Guide: Performance

-e escape character
Used to specify the character that is to be interpreted as an escape
character, rather than a pattern-matching character.

For example, the db2expln command to explain the package
TESTID.CALC% is db2expln -c TESTID -p CALC%. However, this
command would also explain any other plans that start with CALC. To
explain just the TESTID.CALC% package, you must use an escape
character. By changing the command to read: db2expln -c TESTID -e
! -p CALC!% you specify that the ! character will be used as an escape
character and !% is interpreted as the % character.

-g Show optimizer plan graphs. Each section is examined, and the
original optimizer plan graph (as presented by Visual Explain) is
constructed. Note that the generated graph may not match the
original plan.

-h or -?
Obtain help information about the input parameters. Specifying this
option overrides all other options.

-i Display operator IDs in the explained plan. The operator IDs allow
the output from db2expln to be matched to the output from the
Explain facility.

-l The package name can be either lower or mixed-case if this option is
specified. If this -l option is not specified, the package name is
converted to uppercase

-o output file
The name of the file to which db2expln will write the results.

If you specify -o without a file name, you will be prompted for a file
name. The default file name is db2expln.out.

-p package name
The name of the package to be explained.

If you do not specify this option you will be prompted to provide it.

You may specify the package name using the pattern matching
characters, percent sign (%) and underscore (_) that can be used in a
LIKE predicate.

-s section number
The section number to explain within the package. The number zero
(0) may be specified if you wish to have all sections in the package
explained. If the package creator (-c) or package name (-p) arguments
imply that multiple packages will be explained, and thus multiple
sections, the section value, if provided, is overridden with a zero (0).

If you do not specify this option you will be prompted to provide it.

Appendix E. Explain Tool 647

Section numbers can be found by querying the system catalog
SYSCAT.STATEMENTS (See “Appendix C. Catalog Views” on page 509
for a description of the system catalog tables.)

-t The output is directed to the terminal.

If you do not specify -o or -t, you will be prompted for a file name,
with the default displaying the output at the terminal.

-u user ID password
When connecting to a database, use the provided user ID and
password.

Both the user id and password must be valid according to naming
conventions and be recognized by the database.

Some of the option flags above may have special meaning to your operating
system and, as a result, may not be interpreted correctly in the db2expln
command line. However, it may be possible to enter these characters by
preceding them with an escape character. For more information, see your
operating system user’s manual.

Help and initial status messages, produced by db2expln, are written to
standard output. All prompts and other status messages produced by the
explain tool are written to standard error. Explain text is written to standard
output or to a file depending on the output option chosen.

With the -p and -c options, multiple plans can be explained with one
invocation of explain by specifying string constants for packages and creators
with LIKE patterns. That is, the underscore (_) may be used to represent a
single character, and the percent sign (%) may be used to represent the
occurrence of zero or more characters.

For example, to explain all sections for all packages in a database named
SAMPLE, with the results being written to the file my.exp, enter

db2expln -d SAMPLE -p % -c % -s 0 -o my.exp

Usage Notes for db2expln

The following are common messages displayed by db2expln:
v No packages found for database <database>, package pattern:

<creator>.<package>.

This message will appear in the output if no packages were found in the
database that matched the specified pattern.

v Bind messages can be found in db2expln.msg

648 Administration Guide: Performance

This message will appear in the output if the bind of db2expln.bnd was not
successful. Further information on the problems encountered will be found
in the file db2expln.msg in the current directory.

v Section number overridden to 0 for potential multiple packages.

This message will appear in the output if multiple packages may be
encountered by db2expln. This action will be taken if one of the pattern
matching characters is used in the package or creator input arguments.

v No static sections qualify from package.

This message will appear in the output if the specified package only
contains dynamic SQL statements which means that there are no static
sections.

v Database <database>, package <creator>.<package> is not valid. Rebind
and then rerun db2expln.

This message will appear in the output if the package specified is currently
not valid. As directed, reissue the BIND or REBIND command for the plan
to re-create a valid package in the database, and then rerun db2expln.

v Section not processed: Produced by unsupported release.

This message will also appear in the output if the section currently being
processed was produced by a release of DB2 other than the one for which
this db2expln executable was provided. In this case, use the copy of
db2expln from the release of DB2 that produced the section.

SQL Statements Excluded: The following statements will not be explained:
v BEGIN/END DECLARE SECTION
v BEGIN/END COMPOUND
v INCLUDE
v WHENEVER
v COMMIT and ROLLBACK
v CONNECT
v OPEN cursor
v FETCH
v CLOSE cursor
v PREPARE
v EXECUTE
v EXECUTE IMMEDIATE
v DESCRIBE
v Dynamic DECLARE CURSOR

Each sub-statement within a compound SQL statement may have its own
section, which can be explained by db2expln.

Appendix E. Explain Tool 649

dynexpln Syntax and Parameters

Where:

-d database name
The name of the database that contains the packages to be explained.

If you do not specify this option, you will be prompted for it.

-e statement terminator
The character used to indicate that the end of an SQL statement has
been reached.

The default is that there is no statement terminator. If you use this
option, dynexpln will use the specified termination character to
separate the statements. If you do not use this option, each line of the
file will be assumed to be a separate SQL statement.

-f input file
The name of the file which contains the SQL statements to be
explained.

Unless you use the statement terminator (-e) option, only one SQL
statement should appear on each line of the file. SQL comments may
be entered into the file. An SQL comment starts with -- and goes to
the end of the line.

-g Show optimizer plan graphs. Each section is examined, and the
original optimizer plan graph (as presented by Visual Explain) is
constructed. Note that the generated graph may not match the
original plan.

-h or -?
Obtain help information about the input parameters. Specifying this
option overrides all other options.

-i Display operator IDs in the explained plan. The operator IDs allow
the output from db2expln to be matched to the output from the
Explain facility.

ÊÊ dynexpln
-d database name -e statement terminator

Ê

Ê
-f input file -g -h

-?
-i -o output file

Ê

Ê
-s SQL statement -t -u user ID password

ÊÍ

650 Administration Guide: Performance

-o output file
The name of the file to which db2expln will write the results.

-s SQL statement
The SQL statement to be explained.

If you do not specify this option and you do not specify the input file
(-f) optional parameter, you will be prompted to provide the SQL
statement to be explained.

If you specify both this option and the input file (-f) optional
parameter, dynexpln will first describe the statements provided by the
SQL statement (-s) option and then describe the statements in the
input file (-f).

-t The output is directed to the terminal.

If both the output (-o) and -t options are specified, then the output is
directed to the terminal.

If you do not specify the output file (-o) or -t options, you will be
prompted for a file name, with the default displaying the output at
the terminal.

-u user ID password
When connecting to a database, use the provided user ID and
password.

Both the user id and password must be valid according to naming
conventions and be recognized by the database.

Some of the option flags above may have special meaning to your operating
system and, as a result, may not be interpreted correctly in the dynexpln
command line. However, it may be possible to enter these characters by
preceding them with an escape character. For more information, see your
operating system user’s manual.

If you use the statement terminator (-e) option, you may enter multiple
statements using the SQL statement (-s) option. If you do this, you should
separate the statements with the termination character.

Help and initial status messages, produced by dynexpln, are written to
standard output. All prompts and other status messages produced by the
explain tool are written to standard error. Explain text is written to standard
output or to a file depending on the output option chosen.

For example, to connect to a database named SAMPLE and explain all the
statements in the file TRYIT, with the results being written to the file my.exp,
enter

dynexpln -d SAMPLE -f TRYIT -o my.exp

Appendix E. Explain Tool 651

Usage Notes for dynexpln

To explain dynamic statements, dynexpln creates a static application for the
statements and then invokes db2expln. To create the static statements,
dynexpln generates a trivial C program with the statements and then calls the
DB2 precompiler to create the package. (The generated C program is not
complete and cannot be compiled; it only contains enough information that
the precompiler can build the package.)

The following are common messages displayed by dynexpln:
v All error messages from db2expln.

Since dynexpln invokes db2expln, it is possible to see most of db2expln’s
error messages.

v Error connecting to the database.

This message will appear in the output if an error occurred connecting to
the database. A CLI error message will also be displayed indicating why the
connection could not be completed. Correct the cause of the error and run
dynexpln again.

v The file "<filename>" must be removed before dynexpln will run.

This message will appear if the given file exists at the time dynexpln is run.
Remove the file or change the value of the DYNEXPLN_PACKAGE environment
variable to change the name of the file which will be created and run
dynexpln again.

v The package "<creator>.<package>" must be dropped before dynexpln
will run.

This message will appear if the given package exists at the time dynexpln is
run. Drop the package and run or change the value of the
DYNEXPLN_PACKAGE environment variable to change the name of the
package which will be created and run dynexpln again.

v Error writing file "<filename>".

This message will appear if the given file cannot be written to. Ensure that
dynexpln can write files in the current directory and run it again.

v Error reading input file "<filename>".

This message will appear if the file given with the -f option cannot be read
from. Ensure that the file exists and that dynexpln can read it. Then run
dynexpln again.

Environment Variables: There are two different environment variables that
can be used in conjunction with dynexpln:
v DYNEXPLN_OPTIONS are the SQL precompiler options you use when

building the package for your statements. Use the same syntax variable as
you would when issuing a PREP command through CLP.

652 Administration Guide: Performance

For example: DYNEXPLN_OPTIONS="OPTLEVEL 5 BLOCKING ALL"

v DYNEXPLN_PACKAGE is the name of the package which is created in the
database. The statements to be described are placed in this package. If this
variable is not defined, the package is given a default value of DYNEXPLN.
(Only the first eight characters of the name in this environment variable are
used.)
The name is also used to create the names for the intermediate files that
dynexpln uses.

Description of db2expln and dynexpln Output

In the output, the explain information for each package is broken into two
parts:
v Package information such as date of bind and relevant bind options
v Section information such as the section number followed by the SQL

statement being explained. Beneath the section information will be the
explain output of the access plan chosen for the SQL statement shown.

The steps of an access plan, or section, will be presented in the order that the
database manager executes them. Each major step will be shown as a
left-justified heading with information about that step indented beneath it.
The explain output for the access plan has indentation bars provided in the
left margin of the output. These bars also provide the ″scope″ for the
operation; operations at a lower (that is, further to the right) level of
indentation within the same operation are processed before returning to the
previous level of indentation.

It is important to remember that the access plan chosen was based on an
augmented version of the original SQL statement (the one shown in the
output). For example, the original statement may cause any number of
triggers and constraints to be activated. As well, the SQL statement may be
rewritten to an equivalent but more efficient format by the Query Rewrite
component of the SQL Compiler. All of these factors are included in the
information presented to the Optimizer when it determines the most efficient
plan to satisfy the statement. Thus, the access plan shown in the explain
output may differ substantially from the access plan that one might expect for
the original SQL statement. The integrated Explain facility (see “Chapter 6.
SQL Explain Facility” on page 177) shows the actual SQL statement used for
optimization in the form of an SQL-like statement which is created by
reverse-translating the internal representation of the query.

When comparing output from db2expln or dynexpln to the output of the
Explain facility, the operator ID option (-i) can be very useful. Each time
db2expln or dynexpln starts processing a new operator from the Explain

Appendix E. Explain Tool 653

facility, the operator ID number will be printed to the left of the explained
plan. The operator IDs can be used to match up the steps in the different
representations of the access plan. Note that there is not always a one-to-one
correspondence between the operators in the Explain facility output and the
operations shown by db2expln and dynexpln.

The following topics describe the explain text that may be produced by
db2expln and dynexpln:

v Table Access
v Temporary Tables
v Joins
v Data Streams
v Insert, Update, and Delete
v Row Identifier (RID) Preparation
v Aggregation
v Parallel Processing.
v Miscellaneous Statements.

Table Access

This statement tells the name and type of table being accessed. It has two
formats that are used:
1. Regular tables:

Access Table Name = schema.name ID = ts,n

where:
v schema.name is the fully-qualified name of the table being accessed
v ID is the corresponding TABLESPACEID and TABLEID from the

SYSCAT.TABLES catalog for the table

Note: Access Table Name could also have been Access Hierarchy Table
Name or Access Summary Table Name.

2. Temporary tables:
Access Temp ID = tn

where:
v ID is the corresponding identifier assigned by db2expln

Following the table access statement, additional statements will be provided
to further describe the access. These statements will be indented under the
table access statement. The possible statements are:
v Number of Columns

654 Administration Guide: Performance

v Parallel Scan
v Scan Direction
v Row Access Method
v Lock Intents
v Predicates
v Miscellaneous Table Statements.

Number of Columns

The following statement indicates the number of columns being used from
each row of the table:

#Columns = n

Parallel Scan

The following statement indicates that the database manager will use several
subagents to read from the table in parallel:

Parallel Scan

If this text is not shown, the table will only be read from by one agent (or
subagent).

Scan Direction

The following statement indicates that the database manager will read rows in
a reverse order:

Scan Direction = Reverse

If this text is not shown, the scan direction is forward, which is the default.

Row Access Method

One of the following statements will be displayed, indicating how the
qualifying rows in the table are being accessed:
v The Relation Scan statement indicates that the table is being sequentially

scanned to find the qualifying rows.
– The following statement indicates that no prefetching of data will be

done:
Relation Scan
| Prefetch: None

– The following statement indicates that the optimizer has predetermined
the number of pages that will be prefetched:

Relation Scan
| Prefetch: n Pages

Appendix E. Explain Tool 655

– The following statement indicates that data should be prefetched:
Relation Scan
| Prefetch: Eligible

– The following statement indicates that the qualifying rows are being
identified and accessed through an index:

Index Scan: Name = schema.name ID = xx
| Index Columns:

where:
- schema.name is the fully-qualified name of the index being scanned
- ID is the corresponding IID column in the SYSCAT.INDEXES catalog

view.

This will be followed by one row for each column in the index. Each
column in the index will be listed in one of the following forms:

n: column_name (Ascending)
n: column_name (Descending)
n: column_name (Include Column)

The following statements are provided to clarify the type of index scan:
- The range delimiting predicates for the index are shown by:

#Key Columns = n
| Start Key: xxxxx
| Stop Key: xxxxx

Where xxxxx is one of:
v Start of Index

v End of Index

v Inclusive Value: or Exclusive Value:

An inclusive key value will be included in the index scan. An
exclusive key value will not be included in the scan. The value for
the key will be given by one of the following rows for each part of
the key:

n: 'string'
n: nnn
n: yyyy-mm-dd
n: hh:mm:ss
n: yyyy-mm-dd hh:mm:ss.uuuuuu
n: NULL
n: ?

If a literal string is shown, on the first 20 characters are displayed. If
the string is longer than 20 characters, this will be shown by ... at

656 Administration Guide: Performance

the end of the string. Some keys cannot be determined until the
section is executed. This is shown by a ? as the value.

- Index-Only Access

If all the needed columns can be obtained from the index key, this
statement will appear and no table data will be accessed.

- The following statement indicates that no prefetching of index pages
will be done:

Index Prefetch: None

- The following statement indicates that index pages should be
prefetched:

Index Prefetch: Eligible

- The following statement indicates that no prefetching of data pages
will be done:

Data Prefetch: None

- The following statement indicates that data pages should be
prefetched:

Data Prefetch: Eligible

- If there are predicates that can be passed to the Index Manager to help
qualify index entries, the following statement is used to show the
number of predicates:

Sargable Index Predicate(s)
| #Predicates = n

– The Fetch Direct statement indicates that the qualifying rows are being
accessed by using row IDs (RIDs) that were prepared earlier in the access
plan.

Lock Intents

For each table access, the type of lock that will be acquired at the table and
row levels is shown with the following statement:

Lock Intents
| Table: xxxx
| Row : xxxx

Possible values for a table lock are:
v Exclusive
v Intent Exclusive
v Intent None
v Intent Share
v Share
v Share Intent Exclusive
v Super Exclusive

Appendix E. Explain Tool 657

v Update

Possible values for a row lock are:
v Exclusive
v Next Key Exclusive (does not appear in db2expln output)
v None
v Share
v Next Key Share
v Update
v Next Key Weak Exclusive
v Weak Exclusive

The explanation of these lock types is found in “Attributes of Locks” on
page 20.

Predicates

There are two statements that provide information about the predicates used
in an access plan:
1. The following statement indicates the number of predicates that will be

evaluated once the data has been returned:
Residual Predicate(s)
| #Predicates = n

2. The following statement indicates the number of predicates that will be
evaluated while the data is being accessed. The count of predicates does
not include push-down operations such as aggregation or sort.

Sargable Predicate(s)
| #Predicates = n

The number of predicates shown in the above statements may not reflect the
number of predicates provided in the SQL statement because predicates can
be:
v Applied more than once within the same query
v Transformed and extended with the addition of implicit predicates during

the query optimization process
v Transformed and condensed into fewer predicates during the query

optimization process.

Miscellaneous Table Statements
v The following statement indicates that only one row will be accessed:

Single Record

658 Administration Guide: Performance

v The following statement appears when the isolation level used for this table
access uses a different isolation level than the package:

Isolation Level: xxxx

A different isolation level may be used for a number of reasons, including:
– A package was bound with Repeatable Read and affects referential

integrity constraints; the access of the parent table to check referential
integrity constraints is downgraded to an isolation level of Cursor
Stability to avoid holding unnecessary locks on this table.

– A package bound with Uncommitted Read issues a DELETE or UPDATE
statement; the table access for the actual delete is upgraded to Cursor
Stability.

v The following statement indicates that some or all of the rows read from
the temporary table will be cached outside the buffer pool if sufficient
sortheap memory is available:

Keep Rows In Private Memory

v If the table has the volatile cardinality attribute set, it will be indicated by:
Volatile Cardinality

Temporary Tables

A temporary table is used by an access plan to store data during its execution
in a transient or temporary work table. This table only exists while the access
plan is being executed. Generally, temporary tables are used when subqueries
need to be evaluated early in the access plan, or when intermediate results
will not fit in the available memory.

If a temporary table needs to be created, then one of two possible statements
may appear. These statements indicate that a temporary table is to be created
and rows inserted into it. The ID is an identifier assigned by db2expln for
convenience when referring to the temporary table. This ID is prefixed with
the letter ’t’ to indicate that the table is a temporary table.
1. The following statement indicates an ordinary temporary table will be

created:
Insert Into Temp Table ID = tn

2. The following statement indicates an ordinary temporary table will be
created by multiple subagents in parallel:

Insert Into Shared Temp Table ID = tn

3. The following statement indicates a sorted temporary table will be created:
Insert Into Sorted Temp Table ID = tn

4. The following statement indicates a sorted temporary table will be created
by multiple subagents in parallel:

Insert Into Sorted Shared Temp Table ID = tn

Appendix E. Explain Tool 659

Each of the above statements will be followed by:
#Columns = n

which indicates how many columns are in each row being inserted into the
temporary table.

Sorted Temporary Tables

Sorted temporary tables can result from such operations as:
v ORDER BY
v DISTINCT
v GROUP BY
v Merge Join
v '= ANY' subquery
v '<> ALL' subquery
v INTERSECT or EXCEPT
v UNION (without the ALL keyword)

A number of additional statements may follow the original creation statement
for a sorted temporary table:
v The following statement indicates the number of key columns used in the

sort:
#Sort Key Columns = n

For each column in the sort key, one of the following lines will be
displayed:

Key n: column_name (Ascending)
Key n: column_name (Descending)
Key n: (Ascending)
Key n: (Descending)

v The following statements provide estimates of the number of rows and the
row size so that the optimal sort heap can be allocated at run time.

Sortheap Allocation Parameters:
| #Rows = n
| Row Width = n

v If only the first rows of the sorted result are needed, the following is
displayed:

Sort Limited To Estimated Row Count

v For sorts in a symmetric multiprocessor (SMP) environment, the type of
sort to be performed is indicated by one of the following statements:

660 Administration Guide: Performance

Use Partitioned Sort
Use Shared Sort
Use Replicated Sort
Use Round-Robin Sort

For a description of the different sorting techniques, see “Parallel Sort
Strategies” on page 160.

v The following statements indicate whether or not the result from the sort
will be left in the sort heap:

Piped

and
Not Piped

If a piped sort is indicated, the database manager will keep the sorted
output in memory, rather than placing the sorted result in another
temporary table. (For a description of piped versus non-piped sorts, see
“Influence of Sorting on the Optimizer” on page 157.)

v The following statement indicates that duplicate values will be removed
during the sort:

Duplicate Elimination

v If aggregation is being performed in the sort, it will be indicated by one of
the following statements:

Partial Aggregation
Intermediate Aggregation
Buffered Partial Aggregation
Buffered Intermediate Aggregation

Temporary Table Completion

After a table access that contains a push-down operation to create a
temporary table (that is, a create temporary table that occurs within the scope
of a table access), there will be a ″completion″ statement, which handles
end-of-file by getting the temporary table ready to provide rows to
subsequent temporary table access. One of the following lines will be
displayed:

Temp Table Completion ID = tn
Shared Temp Table Completion ID = tn
Sorted Temp Table Completion ID = tn
Sorted Shared Temp Table Completion ID = tn

Appendix E. Explain Tool 661

Table Functions

Table functions are user defined functions (UDFs) that return data to the
statement in the form of a table. Refer to the SQL Reference for more
information about table functions. Table functions are indicated by the
statement:

Access User Defined Table Function
| Name = schema.funcname
| Language = xxxx
| Fenced Deterministic NULL Call Disallow Parallel

The language (C, OLE, or Java) that the table function is written in is given
along with the attributes of the table function.

Joins

There are three types of joins (see “Join Concepts” on page 141 for a
description of these joins):

v Hash join
v Merge join
v Nested loop join.

When the time comes in the execution of a section for a join to be performed,
one of the following statements is displayed:

Hash Join

or
Merge Join

or
Nested Loop Join

It is possible for a left outer join to be performed. A left outer join is indicated
by one of the following statements:

Left Outer Hash Join

or
Left Outer Merge Join

or
Left Outer Nested Loop Join

For merge and nested loop joins, the outer table of the join will be the table
referenced in the previous access statement shown in the output. The inner
table of the join will be the table referenced in the access statement that is

662 Administration Guide: Performance

contained within the scope of the join statement. For hash joins, the access
statements are reversed with the outer table contained within the scope of the
join and the inner table appearing before the join.

For a hash or merge join, the following additional statements may appear:
v In some circumstances, a join simply needs to determine if any row in the

inner table matches the current row in the outer. This is indicated with the
statement:
Early Out: Single Match Per Outer Row

v It is possible to apply predicates after the join has completed. The number
of predicates being applied will be indicated as follows:
Residual Predicate(s)
| #Predicates = n

For a hash join, the following additional statements may appear:
v The hash table is built from the inner table. If the hash table build was

pushed down into a predicate on the inner table access, it is indicated by
the following statement in the access of the inner table:

Process Hash Table For Join

v While accessing the outer table, a probe table can be built to improve the
perfromance of the join. The probe table build is indicated by the following
statement in the access of the outer table:

Process Probe Table For Hash Join

v The estimated number of bytes needed to build the hash table is
represented by:

Estimated Build Size: n

v The estimated number of bytes needed for the probe table is represented
by:

Estimated Probe Size: n

For a nested loop join, the following additional statement may appear
immediately after the join statement:

Piped Inner

This statement indicates that the inner table of the join is the result of another
series of operations. This is also referred to as a composite inner.

If a join involves more than two tables, the explain steps should be read from
top to bottom. For example, suppose the explain output has the following
flow:

Access W
Join
| Access X

Appendix E. Explain Tool 663

Join
| Access Y
Join
| Access Z

The steps of execution would be:
1. Take a row that qualifies from W.
2. Join row from W with (next) row from X and call the result P1 (for partial

join result number 1).
3. Join P1 with (next) row from Y to create P2.
4. Join P2 with (next) row from Z to obtain one complete result row.
5. If there are more rows in Z, go to step 4.
6. If there are more rows in Y, go to step 3.
7. If there are more rows in X, go to step 2.
8. If there are more rows in W, go to step 1.

Data Streams

Within an access plan, there is often a need to control the creation and flow of
data from one series of operations to another. The data stream concept allows
a group of operations within an access plan to be controlled as a unit. The
start of a data stream is indicated by the following statement:

Data Stream n

where n is a unique identifier assigned by db2expln for ease of reference. The
end of a data stream is indicated by:

End of Data Stream n

All operations between these statements are considered part of the same data
stream.

A data stream has a number of characteristics and one or more statements can
follow the initial data stream statement to describe these characteristics:
v The following statements indicate when and how the data stream is created:

Evaluate at Open
Evaluate at Application
Forced Evaluate at Application

The data stream is either fully created once when it is first opened
(Evaluate at Open) or each time it is accessed (Evaluate at Application). If
the data stream is evaluated at application, it can be forced to be fully
evaluated with each access or it can be allowed to be evaluated as required
by the particular access.

664 Administration Guide: Performance

v Similar to a sorted temporary table, the following statements indicate
whether or not the results of the data stream will be kept in memory:

Piped

and
Not Piped

As was the case with temporary tables, a piped data stream may be written
to disk, if insufficient memory exists at execution time. The access plan will
provide for both possibilities.

v The following statement indicates that only a single record is required from
this data stream:

Single Record

When a data stream is accessed, the following statement will appear in the
output:

Access Data Stream n

Insert, Update, and Delete

The explain text for these SQL statements is self-explanatory. Possible
statement text for these SQL operations can be:
v Insert: Table Name = schema.name ID = ts,n

v Update: Table Name = schema.name ID = ts,n

v Delete: Table Name = schema.name ID = ts,n

Note: The Table Name in each case could also have been Hierarchy Table
Name or Summary Table Name.

Row Identifier (RID) Preparation

For some access plans, it is more efficient if the qualifying row identifiers
(RIDs) are sorted and duplicates removed (in the case of index ORing) or that
a technique is used to identify RIDs appearing in all indexes being accessed
(in the case of index ANDing) before the actual table access is performed.
There are three main uses of RID preparation as indicated by the explain
statements:
v The following statement indicates that “Index ORing” is used to prepare

the list of qualifying RIDs:
Index ORing RID Preparation

Index ORing refers to the technique of making more than one index access
and combining the results to include the distinct RIDs that appear in any of
the indexes accessed. The optimizer will consider index ORing when

Appendix E. Explain Tool 665

predicates are connected by OR keywords or there is an IN predicate. The
index accesses can be on the same index or different indexes.

v Another use of RID preparation is to prepare the input data to be used
during list prefetch, as indicated by the following:

List Prefetch RID Preparation

v Index ANDing refers to the technique of making more than one index access
and combining the results to include RIDs that appear in all of the indexes
accessed. Index ANDing processing is started with the statement:

Index ANDing

If the optimizer has estimated the size of the result set, the estimate is
shown with the following statement:

Optimizer Estimate of Set Size: n

Index ANDing filter operations process RIDs and use bit filter techniques to
determine the RIDs which appear in every index accessed. The following
statements indicate that RIDs are being processed for index ANDing:

Index ANDing Bitmap Build
Index ANDing Bitmap Probe
Index ANDing Bitmap Build and Probe

If the optimizer has estimated the size of the result set for a bitmap, the
estimate is shown with the following statement:

Optimizer Estimate of Set Size: n

For any type of RID preparation, if list prefect can be performed it will be
indicated with the statement:

Prefetch: Enabled

Aggregation

Aggregation is performed on those rows meeting the specified criteria, if any,
provided by the SQL statement predicates. If some sort of aggregate function
is to be done, one of the following statements appears:

Aggregation
Predicate Aggregation
Partial Aggregation
Partial Predicate Aggregation
Intermediate Aggregation
Intermediate Predicate Aggregation
Final Aggregation
Final Predicate Aggregation

Predicate aggregation states that the aggregation operation has been
pushed-down to be processed as a predicate when the data is actually
accessed.

666 Administration Guide: Performance

Beneath either of the above aggregation statements will be a indication of the
type of aggregate function being performed:
v Group By

v Column Function(s)

v Single Record.

The specific column function can be derived from the original SQL statement.
A single record is fetched from an index to satisfy a MIN or MAX operation.

If predicate aggregation is used, then subsequent to the table access statement
in which the aggregation appeared, there will be an aggregation ″completion″,
which carries out any needed processing on completion of each group or on
end-of-file. One of the following lines is displayed:

Aggregation Completion
Partial Aggregation Completion
Intermediate Aggregation Completion
Final Aggregation Completion

Parallel Processing

Executing an SQL statement in parallel (using either intra-partition or
inter-partition parallelism) requires some special operations. The operations
for parallel plans are described below.
v When running an intra-partition parallel plan, portions of the plan will be

executed simultaneously using several subagents. The creation of the
subagents is indicated by the statement:
Process Using n Subagents

v When running an inter-partition parallel plan, the section is broken into
several subsections. Each subsection is sent to one or more nodes to be run.
An important subsection is the coordinator subsection. The coordinator
subsection is the first subsection in every plan. It gets control first and is
responsible for distributing the other subsections and returning results to
the calling application.
The distribution of subsections is indicated by the statement:
Distribute Subsection #n

The nodes that receive a subsection can be determined in one of eight ways:
– The following indicates that the subsection will be sent to a node within

the nodegroup based on the value of the columns.
Directed by Hash
| #Columns = n
| Partition Map ID = n, Nodegroup = ngname, #Nodes = n

– The following indicates that the subsection will be sent to a
predetermined node. (This is frequently seen when the statement uses
the NODENUMBER() function.)

Appendix E. Explain Tool 667

Directed by Node Number

– The following indicates that the subsection will be sent to the node
corresponding to a predetermined partition number in the given
nodegroup. (This is frequently seen when the statement uses the
PARTITION() function.)

Directed by Partition Number
| Partition Map ID = n, Nodegroup = ngname, #Nodes = n

– The following indicates that the subsection will be sent to the node that
provided the current row for the application’s cursor.

Directed by Position

– The following indicates that only one node, determined when the
statement was compiled, will receive the subsection.

Directed to Single Node
| Node Number = n

– The following indicates that the subsection will be executed on the
coordinator node.

Directed to Coordinator Node

– The following indicates that the subsection will be sent to all the nodes
listed.

Broadcast to Node List
| Nodes = n1, n2, n3, ...

– The following indicates that only one node, determined as the statement
is executing, will receive the subsection.

Directed to Any Node

v Table queues are used to move data between subsections in a partitioned
database environment or between subagents in a symmetric multiprocessor
(SMP) environment. Table queues are described as follows:
– The following statements indicate that data is being inserted into a table

queue:
Insert Into Synchronous Table Queue ID = qn
Insert Into Asynchronous Table Queue ID = qn
Insert Into Synchronous Local Table Queue ID = qn
Insert Into Asynchronous Local Table Queue ID = qn

– For database partition table queues, the destination for rows inserted into
the table queue is described by one of the following:

Broadcast to Coordinator Node

All rows are sent to the coordinator node.
Broadcast to All Nodes of Subsection n

All rows are sent to every database partition that the given subsection is
running on.

Hash to Specific Node

668 Administration Guide: Performance

Each row is sent to a database partition based on the values in the row.
Send to Specific Node

Each row is sent to a database partition determined while the statement
is executing.

Send to Random Node

Each row is sent to a random database partition.
– In some situations, a database partition table queue will have to

temporarily overflow some rows to a temporary table. This possibility is
identified by the statement:

Rows Can Overflow to Temporary Table

– After a table access that contains a push-down operation to insert rows
into a table queue, there will be a ″completion″ statement which handles
rows that could not be immediately sent. One of the following lines is
displayed:

Insert Into Synchronous Table Queue Completion ID = qn
Insert Into Asynchronous Table Queue Completion ID = qn
Insert Into Synchronous Local Table Queue Completion ID = qn
Insert Into Asynchronous Local Table Queue Completion ID = qn

– The following statements indicate that data is being retrieved from a
table queue:

Access Table Queue ID = qn
Access Local Table Queue ID = qn

These messages are always followed by an indication of the number of
columns being retrieved.

#Columns = n

– If the table queue sorts the rows at the receiving end, the table queue
access will also have one of the following messages:

Output Sorted
Output Sorted and Unique

These messages are followed by an indication of the number of keys
used for the sort operation.

#Key Columns = n

For each column in the sort key, one of the following is displayed:
Key n: (Ascending)
Key n: (Descending)

– If predicates will be applied to rows by the receiving end of the table
queue, the following message is shown:

Residual Predicate(s)
| #Predicates = n

Appendix E. Explain Tool 669

v Some subsections in a partitioned database environment explicitly loop
back to the start of the subsection with the statement:

Jump Back to Start of Subsection

Miscellaneous Statements
v Sections for data definition language statements will be indicated in the

output with the following:
DDL Statement

No additional explain output is provided for DDL statements.
v Sections for SET statements for the updatable special registers such as

CURRENT EXPLAIN SNAPSHOT will be indicated in the output with the
following:

SET Statement

No additional explain output is provided for SET statements.
v If the SQL statement contains the DISTINCT clause, the following text may

appear in the output:
Distinct Filter #Columns = n

where n is the number of columns involved in obtaining distinct rows. To
retrieve distinct row values, the rows must be ordered so that duplicates
can be skipped. This statement will not appear if the database manager
does not have to explicitly eliminate duplicates, as in the following cases:
– A unique index exists and all the columns in the index key are part of

the DISTINCT operation
– Duplicates that can be eliminated during sorting.

v The following statement will appear if the next operation is dependent on a
specific record identifier:

Positioned Operation

This statement would appear for any SQL statement that uses the WHERE
CURRENT OF syntax.

v The following statement will appear if there are predicates that must be
applied to the result but that could not be applied as part of another
operation:

Residual Predicate Application
| #Predicates = n

v The following statement will appear if there is a UNION operator in the
SQL statement:

UNION

670 Administration Guide: Performance

v The following statement will appear if there is an operation in the access
plan, whose sole purpose is to produce row values for use by subsequent
operations:

Table Constructor
| n-Row(s)

Table constructors can be used for transforming values in a set into a series
of rows that are then passed to subsequent operations. When a table
constructor is prompted for the next row, the following statement will
appear:

Access Table Constructor

v The following statement will appear if there is an operation which is only
processed under certain conditions:

Conditional Evaluation
| Condition #n:
| | #Predicates = n
| Action #n:

Conditional evaluation is used to implement such activities as the SQL
CASE statement or internal mechanisms such as referential integrity
constraints or triggers. If no action is shown, then only data manipulation
operations are processed when the condition is true.

v One of the following statements will appear if an ALL, ANY, or EXISTS
subquery is being processed in the access plan:
– ANY/ALL Subquery

– EXISTS Subquery

– EXISTS SINGLE Subquery

v Prior to certain UPDATE and DELETE operations, it is necessary to
establish the position of a specific row within the table. This is indicated by
the following statement:

Establish Row Position

v The following statement will appear if there are rows being returned to the
application:

Return Data to Application
| #Columns = n

If the operation was pushed-down into a table access, it will require a
completion phase. This phase appears as:

Return Data Completion

Appendix E. Explain Tool 671

Examples of db2expln and dynexpln Output

Four examples are shown here to help understand the layout and format of
the output from db2expln and dynexpln. These examples were run against the
SAMPLE database as provided with DB2. A brief discussion is provided for
each example. Significant differences from one example to the next have been
shown in bold.

Example One: No Parallelism Plan

This example is simply requesting a list of all employee names, their jobs,
department name and location, and the project name(s) on which they are
working. The essence of this access plan is that merge joins are used to join
the relevant data from each of the specified tables. Since no indexes are
available, the access plan does a relation scan of each table, and each table
must be sorted before it can be joined.
******************** PACKAGE ***************************************

Package Name = QUERY.DYNEXPLN
Prep Date = 1999/03/12
Prep Time = 11:36:00:054

Bind Timestamp = 1999-03-12-11.36.00.546992

Isolation Level = Cursor Stability
Blocking = Block Unambiguous Cursors
Query Optimization Class = 5

Partition Parallel = No
Intra-Partition Parallel = No

Function Path = "SYSIBM", "SYSFUN", "QUERY"

-------------------- SECTION ---------------------------------------
Section = 1

SQL Statement:

SELECT x.lastname, x.job, y.deptname, y.location, z.projname
FROM employee AS x, department AS y, project AS z
WHERE x.workdept = y.deptno AND x.workdept = z.deptno AND y.deptno

= z.deptno

Estimated Cost = 126
Estimated Cardinality = 153

Access Table Name = QUERY.DEPARTMENT ID = 2,4
| #Columns = 3
| Relation Scan
| | Prefetch: Eligible

672 Administration Guide: Performance

| Lock Intents
| | Table: Intent Share
| | Row : Next Key Share
| Insert Into Sorted Temp Table ID = t1
| | #Columns = 3
| | #Sort Key Columns = 1
| | | Key 1: DEPTNO (Ascending)
| | Sortheap Allocation Parameters:
| | | #Rows = 40
| | | Row Width = 48
| | Piped
Sorted Temp Table Completion ID = t1
Access Temp Table ID = t1
| #Columns = 3
| Relation Scan
| | Prefetch: Eligible
Merge Join
| Access Table Name = QUERY.PROJECT ID = 2,7
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Temp Table ID = t2
| | | #Columns = 2
| | | #Sort Key Columns = 1
| | | | Key 1: DEPTNO (Ascending)
| | | Sortheap Allocation Parameters:
| | | | #Rows = 38
| | | | Row Width = 28
| | | Piped
| Sorted Temp Table Completion ID = t2
| Access Temp Table ID = t2
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
Merge Join
| Access Table Name = QUERY.EMPLOYEE ID = 2,5
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Temp Table ID = t3
| | | #Columns = 3
| | | #Sort Key Columns = 1
| | | | Key 1: WORKDEPT (Ascending)
| | | Sortheap Allocation Parameters:
| | | | #Rows = 63
| | | | Row Width = 32
| | | Piped
| Sorted Temp Table Completion ID = t3
| Access Temp Table ID = t3

Appendix E. Explain Tool 673

| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
Return Data to Application
| #Columns = 5

End of section

Optimizer Plan:

RETURN
(1)
|

MSJOIN
(2)

/ \
MSJOIN TBSCAN
(3) (12)

/ \ |
TBSCAN TBSCAN SORT
(4) (8) (13)

| | |
SORT SORT TBSCAN
(5) (9) (14)

| | |
TBSCAN TBSCAN Table:
(6) (10) QUERY
| | EMPLOYEE

Table: Table:
QUERY QUERY
DEPARTMENT PROJECT

The first part of the plan accesses the DEPARTMENT and PROJECT tables
and uses a merge join to join them. The result of this join is joined to the
EMPLOYEE table. The resulting rows are returned to the application.

Example Two: Single-Partition Database Plan with Intra-Partition
Parallelism

This example shows the same SQL statement as “Example One: No
Parallelism Plan” on page 672, but this query has been compiled for a 4-way
SMP machine.
******************** PACKAGE ***************************************

Package Name = QUERY.DYNEXPLN
Prep Date = 1999/03/12
Prep Time = 11:41:30:024

Bind Timestamp = 1999-03-12-11.41.30.249850

Isolation Level = Cursor Stability
Blocking = Block Unambiguous Cursors

674 Administration Guide: Performance

Query Optimization Class = 5

Partition Parallel = No
Intra-Partition Parallel = Yes (Bind Degree = 4)

Function Path = "SYSIBM", "SYSFUN", "QUERY"

-------------------- SECTION ---------------------------------------
Section = 1

SQL Statement:

SELECT x.lastname, x.job, y.deptname, y.location, z.projname
FROM employee AS x, department AS y, project AS z
WHERE x.workdept = y.deptno AND x.workdept = z.deptno AND y.deptno

= z.deptno

Intra-Partition Parallelism Degree = 4

Estimated Cost = 142
Estimated Cardinality = 153

Process Using 4 Subagents
| Access Table Name = QUERY.DEPARTMENT ID = 2,4
| | #Columns = 3
| | Parallel Scan
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Shared Temp Table ID = t1
| | | #Columns = 3
| | | #Sort Key Columns = 1
| | | | Key 1: DEPTNO (Ascending)
| | | Use Round-Robin Sort
| | | Sortheap Allocation Parameters:
| | | | #Rows = 40
| | | | Row Width = 48
| | | Piped
| Sorted Shared Temp Table Completion ID = t1
| Access Temp Table ID = t1
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
| Merge Join
| | Access Table Name = QUERY.PROJECT ID = 2,7
| | | #Columns = 2
| | | Parallel Scan
| | | Relation Scan
| | | | Prefetch: Eligible
| | | Lock Intents
| | | | Table: Intent Share
| | | | Row : Next Key Share

Appendix E. Explain Tool 675

| | | Insert Into Sorted Shared Temp Table ID = t2
| | | | #Columns = 2
| | | | #Sort Key Columns = 1
| | | | | Key 1: DEPTNO (Ascending)
| | | | Use Replicated Sort
| | | | Sortheap Allocation Parameters:
| | | | | #Rows = 38
| | | | | Row Width = 28
| | | | Piped
| | Sorted Shared Temp Table Completion ID = t2
| | Access Temp Table ID = t2
| | | #Columns = 2
| | | Relation Scan
| | | | Prefetch: Eligible
| Insert Into Sorted Shared Temp Table ID = t3
| | #Columns = 5
| | #Sort Key Columns = 1
| | | Key 1: (Ascending)
| | Use Partitioned Sort
| | Sortheap Allocation Parameters:
| | | #Rows = 61
| | | Row Width = 72
| | Piped
| Access Temp Table ID = t3
| | #Columns = 5
| | Relation Scan
| | | Prefetch: Eligible
| Merge Join
| | Access Table Name = QUERY.EMPLOYEE ID = 2,5
| | | #Columns = 3
| | | Parallel Scan
| | | Relation Scan
| | | | Prefetch: Eligible
| | | Lock Intents
| | | | Table: Intent Share
| | | | Row : Next Key Share
| | | Insert Into Sorted Shared Temp Table ID = t4
| | | | #Columns = 3
| | | | #Sort Key Columns = 1
| | | | | Key 1: WORKDEPT (Ascending)
| | | | Use Partitioned Sort
| | | | Sortheap Allocation Parameters:
| | | | | #Rows = 63
| | | | | Row Width = 32
| | | | Piped
| | Sorted Shared Temp Table Completion ID = t4
| | Access Temp Table ID = t4
| | | #Columns = 3
| | | Relation Scan
| | | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q1
Access Local Table Queue ID = q1 #Columns = 5
Return Data to Application
| #Columns = 5

676 Administration Guide: Performance

End of section

Optimizer Plan:

RETURN
(1)
|

LTQ
(2)
|

MSJOIN
(3)

/ \
TBSCAN TBSCAN
(4) (15)
| |

SORT SORT
(5) (16)

| |
MSJOIN TBSCAN
(6) (17)

/ \ |
TBSCAN TBSCAN Table:
(7) (11) QUERY
| | EMPLOYEE

SORT SORT
(8) (12)
| |

TBSCAN TBSCAN
(9) (13)
| |

Table: Table:
QUERY QUERY
DEPARTMENT PROJECT

This plan is almost identical to the plan in the first example. The main
differences are the creation of four subagents when the plan first starts and
the table queue at the end of the plan to gather the results of each of
subagent’s work before returning them to the application.

It is also interesting to note that an extra sort is needed before joining with
EMPLOYEE. This is necessary because the subagents processing the merge
join between DEPARTMENT and PROJECT may produce the joined rows out
of sequence.

Appendix E. Explain Tool 677

Example Three: Multipartition Database Plan with Inter-Partition
Parallelism

This example shows the same SQL statement as “Example One: No
Parallelism Plan” on page 672, but this query has been compiled on a
partitioned database made up of three database partitions.
******************** PACKAGE ***************************************

Package Name = QUERY.DYNEXPLN
Prep Date = 1999/03/12
Prep Time = 12:00:23:069

Bind Timestamp = 1999-03-12-12.00.23.693295

Isolation Level = Cursor Stability
Blocking = Block Unambiguous Cursors
Query Optimization Class = 5

Partition Parallel = Yes
Intra-Partition Parallel = No

Function Path = "SYSIBM", "SYSFUN", "QUERY"

-------------------- SECTION ---------------------------------------
Section = 1

SQL Statement:

SELECT x.lastname, x.job, y.deptname, y.location, z.projname
FROM employee AS x, department AS y, project AS z
WHERE x.workdept = y.deptno AND x.workdept = z.deptno AND y.deptno

= z.deptno

Buffered Insert = No

Estimated Cost = 118
Estimated Cardinality = 263

Coordinator Subsection:
Distribute Subsection #2
| Broadcast to Node List
| | Nodes = 13, 17, 125
Distribute Subsection #3
| Broadcast to Node List
| | Nodes = 13, 17, 125
Distribute Subsection #1
| Broadcast to Node List
| | Nodes = 13, 17, 125
Access Table Queue ID = q1 #Columns = 5
Return Data to Application
| #Columns = 5

678 Administration Guide: Performance

Subsection #1:
Access Table Queue ID = q2 #Columns = 3
| Output Sorted
| | #Key Columns = 1
| | | Key 1: (Ascending)
Merge Join
| Access Table Name = QUERY.DEPARTMENT ID = 2,4
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Temp Table ID = t1
| | | #Columns = 3
| | | #Sort Key Columns = 1
| | | | Key 1: DEPTNO (Ascending)
| | | Sortheap Allocation Parameters:
| | | | #Rows = 40
| | | | Row Width = 48
| | | Piped
| Sorted Temp Table Completion ID = t1
| Access Temp Table ID = t1
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
Merge Join
| Access Table Queue ID = q3 #Columns = 2
| | Output Sorted
| | | #Key Columns = 1
| | | | Key 1: (Ascending)
Insert Into Asynchronous Table Queue ID = q1
| Broadcast to Coordinator Node
| Rows Can Overflow to Temporary Table

Subsection #2:
Access Table Name = QUERY.EMPLOYEE ID = 2,5
| #Columns = 3
| Relation Scan
| | Prefetch: Eligible
| Lock Intents
| | Table: Intent Share
| | Row : Next Key Share
| Insert Into Sorted Temp Table ID = t2
| | #Columns = 3
| | #Sort Key Columns = 1
| | | Key 1: WORKDEPT (Ascending)
| | Sortheap Allocation Parameters:
| | | #Rows = 27
| | | Row Width = 32
| | Piped
Sorted Temp Table Completion ID = t2
Access Temp Table ID = t2
| #Columns = 3
| Relation Scan

Appendix E. Explain Tool 679

| | Prefetch: Eligible
| Insert Into Asynchronous Table Queue ID = q2
| | Hash to Specific Node
| | Rows Can Overflow to Temporary Tables
Insert Into Asynchronous Table Queue Completion ID = q2

Subsection #3:
Access Table Name = QUERY.PROJECT ID = 2,7
| #Columns = 2
| Relation Scan
| | Prefetch: Eligible
| Lock Intents
| | Table: Intent Share
| | Row : Next Key Share
| Insert Into Sorted Temp Table ID = t3
| | #Columns = 2
| | #Sort Key Columns = 1
| | | Key 1: DEPTNO (Ascending)
| | Sortheap Allocation Parameters:
| | | #Rows = 38
| | | Row Width = 28
| | Piped
Sorted Temp Table Completion ID = t3
Access Temp Table ID = t3
| #Columns = 2
| Relation Scan
| | Prefetch: Eligible
| Insert Into Asynchronous Table Queue ID = q3
| | Hash to Specific Node
| | Rows Can Overflow to Temporary Tables
Insert Into Asynchronous Table Queue Completion ID = q3

End of section

Optimizer Plan:

RETURN
(1)
|

BTQ
(2)
|

MSJOIN
(3)

/ \
MSJOIN MDTQ
(4) (14)
/ \ |

MDTQ TBSCAN TBSCAN
(5) (10) (15)
| | |

TBSCAN SORT SORT
(6) (11) (16)
| | |

680 Administration Guide: Performance

SORT TBSCAN TBSCAN
(7) (12) (17)
| | |

TBSCAN Table: Table:
(8) QUERY QUERY
| DEPARTMENT PROJECT

Table:
QUERY
EMPLOYEE

This plan has all the same pieces as the plan in the first example, but the
section has been broken into four subsections. The subsections have the
following tasks:

v Coordinator Subsection. This subsection coordinates the other subsections.
In this plan, it causes the other subsections to be distributed and then uses
a table queue to gather the results to be returned to the application.

v Subsection #1. This subsection scans table queue q2 and uses a merge join
to join it with the DEPARTMENT table. A second merge join then adds in
the data from table queue q3. The joined rows are then sent to the
coordinator subsection using table queue q1.

v Subsection #2. This subsection scans the EMPLOYEE table, sorts it, and
hashes to a specific node with the results. These results are read by
Subsection #1.

v Subsection #3. This subsection scans the PROJECT table, sorts it, and
hashes to a specific node with the results. These results are read by
Subsection #1.

Example Four: Multipartition Database Plan with Inter-Partition and
Intra-Partition Parallelism

This example shows the same SQL statement as “Example One: No
Parallelism Plan” on page 672, but this query has been compiled on a
partitioned database made up of three database partitions, each of which is on
a four-way SMP machine.
******************** PACKAGE ***************************************

Package Name = QUERY.DYNEXPLN
Prep Date = 1999/03/12
Prep Time = 12:04:53:077

Bind Timestamp = 1999-03-12-12.04.53.780702

Isolation Level = Cursor Stability
Blocking = Block Unambiguous Cursors
Query Optimization Class = 5

Partition Parallel = Yes
Intra-Partition Parallel = Yes (Bind Degree = 4)

Appendix E. Explain Tool 681

Function Path = "SYSIBM", "SYSFUN", "QUERY"

-------------------- SECTION ---------------------------------------
Section = 1

SQL Statement:

SELECT x.lastname, x.job, y.deptname, y.location, z.projname
FROM employee AS x, department AS y, project AS z
WHERE x.workdept = y.deptno AND x.workdept = z.deptno AND y.deptno

= z.deptno

Buffered Insert = No

Estimated Cost = 140
Estimated Cardinality = 263

Coordinator Subsection:
Distribute Subsection #2
| Broadcast to Node List
| | Nodes = 13, 17, 125
Distribute Subsection #3
| Broadcast to Node List
| | Nodes = 13, 17, 125
Distribute Subsection #1
| Broadcast to Node List
| | Nodes = 13, 17, 125
Access Table Queue ID = q1 #Columns = 5
Return Data to Application
| #Columns = 5

Subsection #1:
Process Using 4 Subagents
| Access Table Queue ID = q3 #Columns = 3
| Insert Into Sorted Shared Temp Table ID = t1
| | #Columns = 3
| | #Sort Key Columns = 1
| | | Key 1: (Ascending)
| | Use Partitioned Sort
| | Sortheap Allocation Parameters:
| | | #Rows = 27
| | | Row Width = 32
| | Piped
| Access Temp Table ID = t1
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
| Merge Join
| | Access Table Name = QUERY.DEPARTMENT ID = 2,4
| | | #Columns = 3
| | | Parallel Scan
| | | Relation Scan
| | | | Prefetch: Eligible
| | | Lock Intents

682 Administration Guide: Performance

| | | | Table: Intent Share
| | | | Row : Next Key Share
| | | Insert Into Sorted Shared Temp Table ID = t2
| | | | #Columns = 3
| | | | #Sort Key Columns = 1
| | | | | Key 1: DEPTNO (Ascending)
| | | | Use Partitioned Sort
| | | | Sortheap Allocation Parameters:
| | | | | #Rows = 40
| | | | | Row Width = 48
| | | | Piped
| | Sorted Shared Temp Table Completion ID = t2
| | Access Temp Table ID = t2
| | | #Columns = 3
| | | Relation Scan
| | | | Prefetch: Eligible
| Insert Into Sorted Shared Temp Table ID = t3
| | #Columns = 6
| | #Sort Key Columns = 1
| | | Key 1: (Ascending)
| | Use Partitioned Sort
| | Sortheap Allocation Parameters:
| | | #Rows = 44
| | | Row Width = 76
| | Piped
| Access Temp Table ID = t3
| | #Columns = 6
| | Relation Scan
| | | Prefetch: Eligible
| Merge Join
| | Access Table Queue ID = q5 #Columns = 2
| | Insert Into Sorted Shared Temp Table ID = t4
| | | #Columns = 2
| | | #Sort Key Columns = 1
| | | | Key 1: (Ascending)
| | | Use Partitioned Sort
| | | Sortheap Allocation Parameters:
| | | | #Rows = 38
| | | | Row Width = 28
| | | Piped
| | Access Temp Table ID = t4
| | | #Columns = 2
| | | Relation Scan
| | | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q2
Access Local Table Queue ID = q2 #Columns = 5
Insert Into Asynchronous Table Queue ID = q1
| Broadcast to Coordinator Node
| Rows Can Overflow to Temporary Table

Subsection #2:
Process Using 4 Subagents
| Access Table Name = QUERY.EMPLOYEE ID = 2,5
| | #Columns = 3
| | Parallel Scan

Appendix E. Explain Tool 683

| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Shared Temp Table ID = t5
| | | #Columns = 3
| | | #Sort Key Columns = 1
| | | | Key 1: WORKDEPT (Ascending)
| | | Use Round-Robin Sort
| | | Sortheap Allocation Parameters:
| | | | #Rows = 27
| | | | Row Width = 32
| | | Piped
| Sorted Shared Temp Table Completion ID = t5
| Access Temp Table ID = t5
| | #Columns = 3
| | Relation Scan
| | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q4
Access Local Table Queue ID = q4 #Columns = 3
| Output Sorted
| | #Key Columns = 1
| | | Key 1: (Ascending)
Insert Into Asynchronous Table Queue ID = q3
| Hash to Specific Node
| Rows Can Overflow to Temporary Tables

Subsection #3:
Process Using 4 Subagents
| Access Table Name = QUERY.PROJECT ID = 2,7
| | #Columns = 2
| | Parallel Scan
| | Relation Scan
| | | Prefetch: Eligible
| | Lock Intents
| | | Table: Intent Share
| | | Row : Next Key Share
| | Insert Into Sorted Shared Temp Table ID = t6
| | | #Columns = 2
| | | #Sort Key Columns = 1
| | | | Key 1: DEPTNO (Ascending)
| | | Use Round-Robin Sort
| | | Sortheap Allocation Parameters:
| | | | #Rows = 38
| | | | Row Width = 28
| | | Piped
| Sorted Shared Temp Table Completion ID = t6
| Access Temp Table ID = t6
| | #Columns = 2
| | Relation Scan
| | | Prefetch: Eligible
| Insert Into Asynchronous Local Table Queue ID = q6
Access Local Table Queue ID = q6 #Columns = 2
| Output Sorted

684 Administration Guide: Performance

| | #Key Columns = 1
| | | Key 1: (Ascending)
Insert Into Asynchronous Table Queue ID = q5
| Hash to Specific Node
| Rows Can Overflow to Temporary Tables

End of section

Optimizer Plan:

RETURN
(1)
|

BTQ
(2)
|

LTQ
(3)
|

MSJOIN
(4)

/ \
TBSCAN TBSCAN
(5) (20)
| |

SORT SORT
(6) (21)
| |

MSJOIN DTQ
(7) (22)

/ \ |
TBSCAN TBSCAN LMTQ
(8) (16) (23)

| | |
SORT SORT TBSCAN

(9) (17) (24)
| | |

DTQ TBSCAN SORT
(10) (18) (25)
| | |

LMTQ Table: TBSCAN
(11) QUERY (26)
| DEPARTMENT |

TBSCAN Table:
(12) QUERY
| PROJECT

SORT
(13)
|

TBSCAN
(14)

Appendix E. Explain Tool 685

|
Table:
QUERY
EMPLOYEE

This plan is similar to that in “Example Three: Multipartition Database Plan
with Inter-Partition Parallelism” on page 678, except that multiple subagents
execute each subsection. Also, at the end of each subsection, a local table
queue gathers the results from all of the subagents before the qualifying rows
are inserted into the second table queue to be hashed to a specific node.

686 Administration Guide: Performance

Appendix F. db2exfmt - Explain Table Format Tool

You use the db2exfmt tool to format the contents of the explain tables. This
tool is located in the misc subdirectory of the instance sqllib directory.

To use the tool, you requre read access to the explain tables being formatted.

-d dbname
Name of the database containing packages.

-e schema
Explain table schema.

-f Formatting flags. In this release, the only supported value is O
(operator summary).

-g Graph plan. If only -g is specified, a graph, followed by formatted
information for all of the tables, is generated. Otherwise, any
combination of the following valid values can be specified:

O Generate a graph only. Do not format the table contents.

T Include total cost under each operator in the graph.

I Include I/O cost under each operator in the graph.

C Include the expected output cardinality (number of tuples) of
each operator in the graph.

-l Respect case when processing package names.

-n name
Name of the source of the explain request (SOURCE_NAME).

ÊÊ db2exfmt
-d dbname -e schema -f O

·-g
O
T
I
C

Ê

Ê
-l -n name -s schema -o outfile

-t

Ê

Ê
-u userID password -w timestamp -# sectnbr -h

ÊÍ

© Copyright IBM Corp. 1993, 1999 687

-s schema
Schema or qualifier of the source of the explain request
(SOURCE_SCHEMA).

-o outfile
Output file name.

-t Direct the output to the terminal.

-u user ID password
When connecting to a database, use the provided user ID and
password.

Both the user ID and password must be valid according to naming
conventions and be recognized by the database.

-w timestamp
Explain time stamp. Specify -1 to obtain the latest explain request.

-# sectnbr
Section number in the source. To request all sections, specify zero.

-h Display help information. When this option is specified, all other
options are ignored, and only the help information is displayed.

You will be prompted for any parameter values that are not supplied, or that
are incompletely specified, except in the case of the -h and the -l options.

If an explain table schema is not provided, the value of the environment
variable USER is used as the default. If this variable is not found, the user is
prompted for an explain table schema.

Source name, source schema, and explain time stamp can be supplied in LIKE
predicate form, which allows the percent sign (%) and the underscore (_) to be
used as pattern matching characters to select multiple sources with one
invocation. For the latest explained statement, the explain time can be
specified as -1.

If -o is specified without a file name, and -t is not specified, the user is
prompted for a file name (the default name is db2exfmt.out). If neither -o nor
-t is specified, the user is prompted for a file name (the default option is
terminal output). If -o and -t are both specified, the output is directed to the
terminal.

688 Administration Guide: Performance

Appendix G. Notices

Any reference to an IBM licensed program in this publication is not intended
to state or imply that only IBM’s licensed program may be used. Any
functionally equivalent product, program or service that does not infringe any
of IBM’s intellectual property rights may be used instead of the IBM product,
program, or service. Evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, is the user’s
responsibility.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the

IBM Director of Licensing
IBM Corporation, North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

© Copyright IBM Corp. 1993, 1999 689

Trademarks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States and/or other countries:

ACF/VTAM
ADSTAR
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Universal Database
Distributed Relational Database Architecture
DRDA
Extended Services
FFST
First Failure Support Technology
IBM
IMS
LAN Distance

MVS/ESA
MVS/XA
OS/400
OS/390
OS/2
PowerPC
QMF
RACF
RISC System/6000
SP
SQL/DS
SQL/400
S/370
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WIN-OS/2

Trademarks of Other Companies

The following terms are trademarks or registered trademarks of the
companies listed:

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or
both.

HP-UX is a trademark of Hewlett-Packard.

Java, HotJava, Solaris, Solstice, and Sun are trademarks of Sun Microsystems,
Inc.

690 Administration Guide: Performance

Microsoft, Windows, Windows NT, Visual Basic, and the Windows logo are
trademarks or registered trademarks of Microsoft Corporation in the United
States, other countries, or both.

PC Direct is a trademark of Ziff Communications Company in the United
States, other countries, or both and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk (**), may be trademarks or service marks of others.

Appendix G. Notices 691

692 Administration Guide: Performance

Index

A
access control

concurrency, overview 13
using locks 20

access path
lock attributes, factors

affecting 30
access path selection 43
access plan

cost estimate 187
created by compiler 114
db2expln 179
graphical representation 182
objects 183
operators 184
using explain facility 180
Visual Explain 195

ACTIVATE DATABASE
command 234

activating a database 55
adding node to system

restrictions on database
operations 259

when redistributing
nodegroup 270

adsm_mgmtclass configuration
parameter 384

adsm_nodename configuration
parameter 385

adsm_owner configuration
parameter 385

adsm_password configuration
parameter 384

ADSTAR Distributed Storage
Manager (ADSM)

configuration parameters 380
ADVISE_INDEX table 629
ADVISE_INDEX table

definition 641
ADVISE_WORKLOAD table 632
ADVISE_WORKLOAD table

definition 643
advisor

index 196
agent 235
agent pool 235
agent pool size (num_poolagents)

database manager parameter 362

agent process
application heap size

(applheapsz) parameter 323
application support layer heap

size (aslheapsz) parameter 332
maximum number of agents

(maxagents) parameter 360
maximum number of concurrent

agents (maxcagents)
parameter 358

priority of agents (agentpri)
parameter 357

agent_stack_sz configuration
parameter 328

impact on memory 211
agentpri configuration

parameter 357
agents

application control heap size,
maximum 318

connection entries, number 420
governor changes priority

of 246
initial number of agents in pool

(num_initagents) database
manager parameter 363

max_coordagents database
manager parameter 361

maximum number of
coordinating 361

pool size, controlling 362
allow reverse scans 127, 130
ALTER TABLESPACE statement

example of 65
app_ctl_heap_sz configuration

parameter
impact on memory 211

app_ctl_heap_sz database
parameter 318

applheapsz configuration
parameter 323

impact on memory 211
application control heap

application control heap size
(app_ctl_heap_sz) database
parameter 318

application control heap size
(app_ctl_heap_sz)
databaseparameter 318

application design
acquiring locks 20
deadlock, avoiding 28
lock compatibility, ensuring 23
lock escalation 25
locking considerations 35
locks, converting of 25
locks, factors affecting 29
overriding locks 33

application program 13
control heap, setting 318
governor forces 246
maximum number of

coordinating agents at
node 361

aslheapsz configuration
parameter 332

impact on memory 212
audit_buf_sz configuration

parameter 340
authentication configuration

parameter 440
authority

configuration parameters 437
required for REORG utility 231

autorestart database configuration
parameter 380

avg_appls configuration
parameter 354

affect on query optimization 60

B
backbufsz configuration

parameter 312
BACKUP DATABASE utility

default backup buffer size
(backbufsz) parameter 312

backup_pending configuration
parameter 397

benchmark program
creating 278
sample report 286
SQL statements 277
step summary 286

benchmarking
db2batch tool 279
overview of 275
preparations for 276
testing methods 276
testing process 284

© Copyright IBM Corp. 1993, 1999 693

binding
changing configuration

parameters 299
default for DEGREE option 56
isolation level, specifying 18

block fetch 48
broadcast inner-table joins 154
broadcast outer table joins 151
buffer pool

binding database
applications 307

choosing number of 218
consideration for outer versus

inner table determination 145
database managed storage

(DMS) 233
memory required 217
multiple 217
overview of 213
performance considerations 307
sizing using buffpage

configuration parameter 305
storage considerations 307

buffpage configuration
parameter 305

affect on query optimization 60
impact on memory 210
managing multiple buffer

pools 217

C
caching of database 55
capacity management configuration

parameters 304
Cartesian products 147

star schema 147
catalog_noauth configuration

parameter 442
catalog node 13

connection for data
redistribution 271

catalog views 509
BUFFERPOOLNODES 517
BUFFERPOOLS 518
CASTFUNCTIONS 519
CHECKS 520
COLAUTH 521
COLCHECKS 522
COLDIST 87, 523
COLOPTIONS 524
COLUMNS 85, 525
CONSTDEP 530
DATATYPES 531
DBAUTH 533
EVENTMONITORS 534

catalog views 536 (continued)
EVENTS 517
FUNCDEP 538
FUNCMAPOPTIONS 539
FUNCMAPPARMOPTIONS 540
FUNCMAPPINGS 541
FUNCPARMS 542
functions 107
FUNCTIONS 544
INDEXAUTH 549
INDEXCOLUSE 550
INDEXDEP 551
INDEXES 85, 552
INDEXOPTIONS 555
KEYCOLUSE 556
NAMEMAPPINGS 557
NODEGROUPDEF 558
NODEGROUPS 559
overview 509
PACKAGEAUTH 560
PACKAGEDEP 561
PACKAGES 562
PARTITIONMAPS 566
PASSTHRUAUTH 567
PROCEDURES 568
PROCOPTIONS 570
PROCPARMOPTIONS 571
PROCPARMS 572
read-only 510
REFERENCES 574
REVTYPEMAPPINGS 575
SCHEMAAUTH 577
SCHEMATA 578
SERVEROPTIONS 579
SERVERS 580
STATEMENTS 581
SYSDUMMY1 514
SYSSTAT.COLDIST 87, 601
SYSSTAT.COLUMNS 85, 602
SYSSTAT.FUNCTIONS 107, 604
SYSSTAT.INDEXES 85, 606
SYSSTAT.TABLES 84, 609
TABAUTH 582
TABCONST 584
TABLES 84, 585
TABLESPACES 589
TABOPTIONS 590
TBSPACEAUTH 591
TRIGDEP 592
TRIGGERS 593
TYPEMAPPINGS 594
updatable 510
update-capable 100
USEROPTIONS 596
VIEWDEP 597

catalog views 598 (continued)
VIEWS 517
WRAPOPTIONS 599
WRAPPERS 600

catalog views (structured types)
ATTRIBUTES 515
FULLHIERARCHIES 537
HIERARCHIES 548

catalogcache_sz configuration
parameter 309

character conversion
performance considerations 52

chngpgs_thresh configuration
parameter 345

managing the buffer pool 215
CL_SCHED sample table 491
client support

client I/O block size (rqrioblk)
parameter 333

TCP/IP service name (svcename)
parameter 405

transaction program name
(tpname) parameter 406

clustered index
cluster ratio statistic 134

code page
guidelines for selecting 52

code page support
character conversion 52

codepage configuration
parameter 392

codeset configuration
parameter 392

collate_info configuration
parameter 393

collating sequence performance
ramifications, federated
systems 164

collating_sequence server option 75
collocated join 150
collocation

data redistribution preservation
of 269

replicated summary tables 149
column options

numeric string 167
varchar_no_trailing_blanks 167

comm_bandwidth configuration
parameter 430

comm_rate server option 75, 76
commands

db2evmon 241
commit

number of commits to group
(mincommit) 375

694 Administration Guide: Performance

communication
connection retries, number 421
FCM daemon to agent, request

blocks 420
node, connection elapse

time 417
node, message buffers 418

communications bandwidth
configuration parameter 62

compensation 163
compiler

overview of 111
overview of federated database

phases 113
overview of pushdown

analysis 113
overview of query rewrite 115
overview of remote SQL

generation 114
composite tables

composite inner 148
composite outer 148

compound SQL
overview of 52
performance considerations 52

concurrency
controlling using locks 20
overview of 13

concurrency and granularity
effect of locks on 22

concurrency control
maximum number of active

applications (maxappls)
parameter 353

maximum number of
concurrently active databases
(numdb) parameter 431

configuration 290
changing database manager

parameters 291
changing database

parameters 297
database manager

parameters 291
database parameters 297
parameter details, overview

of 303
parameter summary,

database 299
parameter summary, database

manager 293
parameters, overview of 289
tuning parameters 290

configuration, adding servers when
system is running 262

configuration, adding servers when
system is stopped 263

configuration, changing the size of
a 259

configuration, dropping server with
DB2STOP CMD/API 266

configuration file
governor example 253

configuration file, governor 247
configuration parameter

ADSTAR Distributed Storage
Manager 380

affecting optimizer 59
agent communication

memory 331
agent private memory 319
application communication

memory 331
application shared memory 318
applications and agents 352
capacity management 304
communication protocol

setup 404
communications 404
compiler settings 399
Database Application Remote

Interface (DARI) 364
database attributes 391
database management 390
database manager instance

memory 336
database shared memory 305
database status 396
database system monitor 428
DB2 Data Links Manager 394
DB2 Discovery 414
diagnostic information 425
distributed services 409
distributed unit of work 386
I/O and storage 345
instance administration 437
instance management 425
locks 341
log activity 375
log files 368
logging 368
parallel operations 417
partitioned database 417
recovery 368, 380
stored procedure 364
system management 429

conn_elapse configuration
parameter 417

connect time reduction 236

connection
elapse time 417
number of retries 421

connection elapse time (conn_elapse)
database manager configuration
parameter 417

connection entry 420
constraint

Explain tables 611
containers

suggestions for parallel I/O 225
Control Center

Event Analyzer 239
Performance Monitor 239
Snapshot Monitor 239

conversion
of locks, rules for 25

Coordinated Universal Time 422
coordinator agent 235

maximum number at node 361
coordinator database partition,

considerations for dropping 266
copyprotect configuration

parameter 393
country configuration

parameter 392
cpu_ratio server option 76
CPU speed configuration parameter

affect on query optimization 61
cpuspeed configuration

parameter 430
CURRENT DEGREE special

register 56
cursor

close using WITH RELEASE
clause 35

read only, uncommitted read 17
updatable, uncommitted read 17

cursor stability
overview of 17

D
DARI 54
data

caching when database is
started 55

connection entries for agents to
pass, number 420

data integrity
concurrency, overview 13
protecting using locks 20

Data Links access token expiry
interval configuration
parameter 394

Index 695

Data Links number of copies
configuration parameter 395

Data Links time after drop
configuration parameter 395

Data Links token algorithm
configuration parameter 395

Data Links token in upper case
configuration parameter 396

data sources

CPU speed and
performance 170

I/O speed and performance 170

database 13

activate 234
agents 235
auto restart enable (autorestart)

parameter 380
backup pending indicator

(backup_pending)
parameter 397

code page for database
(codepage) parameter 392

codeset for database (codeset)
parameter 392

collating information
(collate_info) parameter 393

configuration parameter
summary 299

configuration parameters 297
country code for database

(country) parameter 392
data caching when database is

started 55
database is consistent

(database_consistent)
parameter 397

deactivate 234
maximum file open per

application (maxfilop)
parameter 355

maximum number of
concurrently active databases
(numdb) parameter 431

number of containers (numsegs)
parameter 350

parameter file SQLDBCON 297
release level (release)

parameter 391
storage for an application 207
territory for database (territory)

parameter 392
user exit enable (userexit)

parameter 379

database 398 (continued)
user exit status indicator

(user_exit_status)
parameter 234

database access
affect of optimization class 36
overview of 126, 127

Database Application Remote
Interface (DARI) 54

initial number of fenced DARI
processes in pool
(num_initdaris) parameter 367

initialize DARI process with JVM
(initdari_jvm) parameter 366

keep DARI process indicator
(keepdari) parameter 364

maximum number of DARI
processes (maxdari)
parameter 365

database configuration
app_ctl_heap_sz parameter 318

database_consistent configuration
parameter 397

database_level configuration
parameter 391

database management, configuration
parameters 390

database manager 13
configuration parameter

summary 293
configuration parameters 291
default database path (dftdbpath)

parameter 443
governor affect on

performance 257
machine node type (nodetype)

parameter 434
parameter file db2systm 291
start timeout 422
stop timeout 422
using memory 206

database manager configuration
conn_elapse parameter 417
fcm_num_anchors

parameter 418
fcm_num_buffers parameter 418
fcm_num_connect

parameter 420
fcm_num_rqb parameter 420
java_heap_sz parameter 340
max_connretries parameter 421
max_coordagents parameter 361
max_time_diff parameter 421
num_initagents parameter 363
num_poolagents parameter 362

database manager configuration
(continued)

start_stop_time parameter 417
database monitor

using 239
database partition, adding to a

system with no databases 262
database partition, adding when

system is running 262
database partition, considerations for

dropping a server 266
database partition, dropping with

DB2STOP CMD/API 266
database partitions, adding to a

system 261
database partitions, adding when

system is stopped 263
database startup cost 234
database system monitor

configuration parameters 428
fcm_num_rqb database manager

parameter, tuning 421
datalinks configuration

parameter 396
DB2_AVOID_PREFETCH 470
DB2_BINSORT 471
DB2 Connect

connect time reduction 236
DB2_CORRELATED_PREDICATES 468
DB2 Data Links Manager 394
DB2_DJ_COMM 482
DB2_FALLBACK 483
DB2_FORCE_FCM_BP 467
DB2_FORCE_NLS_CACHE 458
DB2_FORCE_TRUNCATION 484
DB2_GRP_LOOKUP 484
DB2_HASH_JOIN 468
DB2_LIC_STAT_SIZE 451
DB2_LIKE_VARCHAR 468
DB2_MMAP_READ 475
DB2_MMAP_WRITE 475
DB2_NEW_CORR_SQ_FF 469
DB2_NO_PKG_LOCK 476
db2_override_bpf 218
DB2_OVERRIDE_BPF 479
DB2_PRED_FACTORIZE 470
DB2_RR_TO_RS 480
DB2_SORT_AFTER_TQ 480
DB2_VI_DEVICE 464
DB2_VI_ENABLE 463
DB2_VI_VIPL 463
DB2ACCOUNT 449
DB2ADMINSERVER 481
DB2ATLD_PORTS 466
DB2ATLD_PWFILE 466

696 Administration Guide: Performance

db2batch benchmarking tool 279
DB2BIDI 449
DB2BPVARS 472
DB2BQTIME 465
DB2BQTRY 465
DB2CHECKCLIENTINTERVAL 457
DB2CHGPWD_EEE 466
DB2CHKPTR 472, 473
DB2CLIENTADPT 464
DB2CLIENTCOMM 465
DB2CLIINIPATH 482
DB2CODEPAGE 450
DB2COMM 457
DB2CONNECT_IN_APP_PROCESS 454
DB2COUNTRY 450
DB2DBDFT 450
DB2DBMSADDR 450
DB2DEFPREP 482
DB2DIRPATHNAME 464
DB2DISCOVERYTIME 450
DB2DMNBCKCTLR 451, 483
db2empfa 226
DB2ENVLIST 455
db2exfmt tool 191, 687
db2expln 645
db2gov command 244
db2govlg command 256
DB2INCLUDE 451
DB2INSTANCE 455
DB2INSTDEF 451
DB2INSTOWNER 451
DB2INSTPROF 455
DB2IQTIME 465
DB2LDAP_SEARCH_SCOPE 484
DB2LIBPATH 456
DB2LOADREC 485
DB2LOCK_TO_RB 485
db2look tool

overview of 108
DB2MEMDISCLAIM 474
DB2MEMMAXFREE 474
DB2NBADAPTERS 458
DB2NBBRECVNCBS 460
DB2NBCHECKUPTIME 458
DB2NBDISCOVERRCVBUFS 452
DB2NBINTRLISTENS 459
DB2NBRECVBUFFSIZE 459
DB2NBRESOURCES 460
DB2NBSENDNCBS 460
DB2NBSESSIONS 460
DB2NBXTRANCBS 461
DB2NETREQ 461
DB2NODE 456, 467

DB2NODE environment variable
exported when adding

server 263
db2nodes.cfg, having the database

manager update 265
db2nodes.cfg, updating

manually 265
db2nodes.cfg file

adding database partitions when
redistributing data 270

dropping database partitions
when redistributing data 270

DB2NOEXITLIST 485
DB2NTMEMSIZE 477
DB2NTNOCACHE 472, 478
DB2NTPRICLASS 478
DB2NTREMOTEPREG 485
DB2NTWORKSET 479
DB2OPTIONS 452, 465
DB2PATH 456
DB2PORTRANGE 467
DB2PRIORITIES 479
DB2RETRY 462
DB2RETRYTIME 462
DB2ROUTE 465
DB2ROUTINE_DEBUG 486
DB2RQTIME 465
DB2SERVICETPINSTANCE 462
DB2SLOGON 452
DB2SORCVBUF 486
DB2SORT 486
DB2SOSNDBUF 462
DB2SYSPLEX_SERVER 463
DB2SYSTEM 487
DB2TIMEOUT 452
DB2TRACEFLUSH 453
DB2TRACENAME 453
DB2TRACEON 453
DB2TRCSYSERR 453
DB2UPMPR 487
DB2YIELD 454
dbexpln tool

data from compiler 115
dbheap configuration

parameter 308
impact on memory 210

dbname server option 76
DEACTIVATE DATABASE

command 234
deadlocks

checking for 341
configuration parameter 341
detecting 28
overview of 28

DECLARE CURSOR WITH HOLD
statement 47

decorrelation of a query 122
DEGREE bind option 56
DEPARTMENT sample table 491
dft_account_str configuration

parameter 435
dft_client_adpt configuration

parameter 414
dft_client_comm configuration

parameter 413
dft_degree configuration

parameter 56, 60, 400
dft_extent_sz configuration

parameter 351
dft_loadrec_ses configuration

parameter 382
dft_mon_bufpool configuration

parameter 429
dft_mon_lock configuration

parameter 429
dft_mon_sort configuration

parameter 429
dft_mon_stmt configuration

parameter 428
dft_mon_table configuration

parameter 428
dft_mon_uow configuration

parameter 428
dft_monswitches configuration

parameter 428
dft_prefetch_sz configuration

parameter 349
dft_queryopt configuration

parameter 60, 401
dft_sqlmathwarn configuration

parameter 399
dftdbpath configuration

parameter 443
diaglevel configuration

parameter 425
diagpath configuration

parameter 426
dir_cache configuration

parameter 338
dir_obj_name configuration

parameter 411
dir_path_name configuration

parameter 410
dir_type configuration

parameter 409
directed inner-table and outer-table

joins 153
directed inner-table join 155
directed outer-table joins 152

Index 697

directory under which Java
Development Kit 1.1 is installed
(jkd11_path) database manager
parameter 436

discover_comm configuration
parameter 416

discover configuration
parameter 415

discover_db configuration
parameter 414

discover_inst configuration
parameter 416

discover server instance
configuration parameter 416

discovery mode configuration
parameter 415

Distributed Computing Environment
(DCE)

configuration parameters 409
dl_expint configuration

parameter 394
dl_num_copies configuration

parameter 395
dl_time_drop configuration

parameter 395
dl_token configuration

parameter 395
dl_upper configuration

parameter 396
dlchktime configuration

parameter 341
DLFM_BACKUP_DIR_NAME 480
DLFM_ENABLE_STPROC 480
DLFM_GC_MODE 481
DLFM_INSTALL_PATH 481
DLFM_LOG_LEVEL 481
DLFM_PORT 481
DMS table space

caching of 233
performance considerations 233

dos_rqrioblk configuration
parameter 335

drda_heap_sz configuration
parameter 325

impact on memory 211
dropping node from system

when redistributing
nodegroup 270

dynamic SQL
distribution statistics 91
evaluating optimization class 43
explain facility 191, 192
setting optimization class 40

dynexpln 645

E
EMP_ACT sample table 493
EMP_PHOTO sample table 495
EMP_RESUME sample table 496
EMPLOYEE sample table 491
enable Data Links support

configuration parameter 396
enable intra-partition parallelism

configuration parameter 424
environment variables 449

DB2NODE, exported when
adding server 263

erasing the sample database 490
error handling

configuration parameters 425
estore_seg_sz configuration

parameter 351
impact on memory 210

event snapshots 240
exclusive mode

reasons for using 34
EXPLAIN 191

FOR SNAPSHOT 192
explain

Visual 178, 195
EXPLAIN

WITH SNAPSHOT 192
EXPLAIN_ARGUMENT table 612
EXPLAIN_ARGUMENT table

definition 634
explain facility 115

analysis 181
capturing information 180, 191
choosing a tool 178
concepts 182
data from compiler 114
data organization 185
decision-making 193
explain instance 185
graphical representation 182
instance information 185
keywords 187
objects 183
obtaining data 191
operators 184
overview of 177
snapshot information 188
statement information 186
table information 189
using 180

explain instance 185
EXPLAIN_INSTANCE table 616
EXPLAIN_INSTANCE table

definition 635
EXPLAIN_OBJECT table 618

EXPLAIN_OBJECT table
definition 636

EXPLAIN_OPERATOR table 621
EXPLAIN_OPERATOR table

definition 637
EXPLAIN_PREDICATE table 623
EXPLAIN_PREDICATE table

definition 638
explain snapshot 192
EXPLAIN_STATEMENT table 625
EXPLAIN_STATEMENT table

definition 639
EXPLAIN_STREAM table 627
EXPLAIN_STREAM table

definition 640
explain table format tool 687
explain tables

accessing 178
explain tool 645

aggregation 666
command options 646, 650
data streams 664
description of output 653
examples of db2expln and

dynexpln output 672
insert, update, and delete 665
joins 662
miscellaneous statements 670
overview of 645
parallel processing 667
row identifier (RID)

preparation 665
running 646
syntax 646, 650
table access 654
temporary tables 659

extended storage cache 241
Extended UNIX Code (EUC)

code page support 53
extent size

choosing 220

F
fast communication manager (FCM)

FCM Connection Entries
(fcm_num_connect)
parameter 420

fcm_num_buffers database
manager parameter 418

message anchors, number,
specifying 418

message buffers, number,
specifying 418

698 Administration Guide: Performance

fast communication manager (FCM)
(continued)

number of FCM message anchors
fcm_num_anchors database
manager parameter 420

Number of FCM Request Blocks
(fcm_num_rqb) parameter 420

FCM buffers (fcm_num_buffers)
database manager configuration
parameter 418

FCM connection entries
(fcm_num_connect) database
manager parameter 420

fcm_num_anchors configuration
parameter 418

fcm_num_buffers configuration
parameter 418

fcm_num_connect configuration
parameter 420

fcm_num_rqb database manager
configuration parameter 420

FCM tuning 213
federated configuration

parameter 436
federated database

compiler phases 162
pushdown analysis 162
remote SQL generation 170

federated database system support
configuration parameter 436

FETCH FIRST clause 47
fileserver configuration

parameter 407
finding errors

data redistribution log file 273
first active log file (loghead)

parameter 374
fold_id server option 76
fold_pw server option 76
FOR FETCH ONLY clause 44, 50
FOR READ ONLY clause 44, 50
FOR UPDATE clause 44, 50
frequent value statistics

equality predicates 94
number to collect 92
overview of 89
rules for updating 104

G
generation, remote SQL

overview 170
global optimization

analyzing 173
explain tool cost

information 173

global optimization (continued)
nickname characteristics,

affecting 173
server characteristics,

affecting 170
governor

configuration file 247
configuration file example 253
daemon 246
database manager

performance 257
db2gov 244
db2govlg 256
error handling 246
log file 255
obtains statistics 246
purpose 243
querying log file 256
rules 247
starting 244
stopping 244

H
hash join

overview of 144

I
I/O

configuration parameters 345
enabling parallel I/O 224
prefetch parallel 222

idle agent 235
IN (Intent None) mode 21
IN_TRAY sample table 496
inactive DRDA agent 236
index

administering 70
clustering 71
consideration for outer versus

inner table determination 145
definition of index ANDing 134
definition of index ORing 134
disadvantages of indexing 67
guidelines for indexing 68
index advisor 67
index-only access 132, 657
index re-creation time (indexrec)

parameter 381
indexing versus no indexing 66
lock mode 31
look-up, affect on locks 30
management, overview of 66
multiple 133
nickname performance

considerations 171

index (continued)
prefetch 70
reorganizing 229, 232
scan 128
structure 128

index advisor 67, 196
index clustering

cluster factor statistic 82
cluster ratio statistic 82

index creation 70
index page prefetch 220
index reorganization 69
index scan

clustered index 134
ordering data 132
overview of 127
predicate 129
predicate terminology 138
previous leaf pointers 129
search process 128
to delimit a range 129
use of 129
WHERE clause, use of 129

indexrec configuration
parameter 381

indexsort configuration
parameter 348

initdari_jvm configuration
parameter 366

initial number of agents in pool
(num_initagents) database manager
parameter 363

inner-table and outer-table joins,
method 153

inner-table join, method 154, 155
installing the sample database 490
instance parallelism support 56
instances

time difference among nodes,
maximum 421

intra_parallel configuration
parameter 56, 424

intra-partition parallelism 224
io_ratio server option 76
ipx_socket configuration

parameter 408
IS (Intent Share) mode 21
isolation level

choosing 18
cursor stability 17
description of 14
read stability 16
repeatable read 15
specifying, overview 18
uncommitted read 17

Index 699

IX (Intent Exclusive) mode 21

J
java_heap_sz database manager

configuration parameter 340
jdk11_path database manager

configuration parameter 436
join

Cartesian products 147
composite tables 148
definition of 141
eliminating redundancy 117
enumeration algorithm 147
hash join 144
merge join 143
nested loop join 141
optimizer search strategies 146
outer versus inner table

determination 145
overview of 141
shared aggregation 118
subquery transformation by

optimizer 117
tables 141

join strategies 149
broadcast inner-table 154
broadcast outer table 151
collocated 150
directed inner-table 155
directed inner-table and

outer-table 153
directed outer-table 152
in a partitioned database 149

K
keepdari configuration

parameter 364

L
large objects

DMS storage 234
LOCK TABLE statement

in minimizing escalations 27
use to override locks 33

locking
maximum percent of lock list

before escalation (maxlocks)
parameter 342

maximum storage for lock lists
(locklist) parameter 314

time interval for checking
deadlock (dlchktime)
parameter 341

locklist configuration
parameter 314

affect on query optimization 61

locklist configuration
parameter 210 (continued)

impact on memory 61

locks

acquiring 20
attributes, types of

processing 29
attributes of 20
avoiding global deadlocks 27
compatibility of, ensuring 23
configuration parameter 341
conversion of 25
creating, using cursor

stability 17
creating, using repeatable

read 15
deadlock, using FOR UPDATE

OF 29
duration attribute 20
escalation and actions to take 26
escalation of 25
exclusive (X) mode 21
exclusive mode, reasons for

using 34
factors affecting 29
improving concurrency 26
intent exclusive (IX) mode 21
intent none (IN) mode 21
intent share (IS) mode 21
locktimeout configuration

parameter 27
mode attribute 20
modes for index scan 31
modes for table scan 31
object attribute 20
overview of 20
read stability 16
reducing waits for 27
share (S) mode 21
share mode, reasons for

using 34
share with intent exclusive (SIX)

mode 21
state (mode), types of 21
superxclusive (Z) mode 21
update (U) mode 21

locktimeout configuration
parameter 344

log files

governor log file 255
written for data

redistribution 273

log_retain_status configuration
parameter 398

logbufsz configuration
parameter 310

logfilsiz configuration
parameter 368

loghead configuration
parameter 374

logpath configuration
parameter 374

logprimary configuration
parameter 370

logretain configuration
parameter 378

logs
change database log path

(newlogpath) parameter 373
configuration parameters

affecting log activity 375
configuration parameters

affecting log files 368
first active log file (loghead)

parameter 374
location of log files (logpath)

parameter 374
log buffer size (logbufsz)

parameter 310
log retain enable (logretain)

parameter 378
log retain status indicator

(log_retain_status)
parameter 398

number of primary log files
(logprimary) parameter 370

number of secondary log files
(logsecond) parameter 372

recovery range and soft
checkpoint interval (softmax)
parameter 376

size of log files (logfilsiz)
parameter 368

logsecond configuration
parameter 372

long field data
DMS storage 234

M
max_connretries database manager

configuration parameter 421
max_coordagents database manager

configuration parameter 361
max_querydegree configuration

parameter 56, 423
max_time_diff database manager

configuration parameter 421
maxagents 235

700 Administration Guide: Performance

maxagents configuration
parameter 360

effect on memory 207
maxappls configuration

parameter 353
effect on memory 207

maxcagents configuration
parameter 358

maxdari configuration
parameter 365

maxfilop configuration
parameter 355

maximum Java interpreter heap size
(java_heap_sz) database manager
parameter 340

maximum number of coordinating
agents (max_coordagents) database
manager parameter 361

maximum query degree of
parallelism configuration
parameter 62, 423

maximum time difference among
nodes (max_time_diff) database
manager parameter 421

maxlocks configuration
parameter 342

affect on query optimization 61
maxtotfilop configuration

parameter 356
memory

agent communication
memory 331

agent private memory 319
application communication

memory 331
application heap size

(applheapsz) parameter 323
application shared memory 318
application support layer heap

size (aslheapsz) parameter 332
configuration parameters 207
considerations for system

administrator (SYSADM) 205
database heap (dbheap)

parameter 308
database manager instance 336
database shared memory 305
extending 241
for processing a database 207
package cache size (pckcachesz)

parameter 316
setting parameter values 212
sort heap size (sortheap)

parameter 320

memory (continued)
sort heap threshold (sheapthres)

parameter 331
statement heap size (stmtheap)

parameter 322
use by the database

manager 206
use of 205
when committed 212

memory usage
application control heap 318

merge join
outer versus inner table

determination 146
overview of 143

message anchor 418
min_priv_mem configuration

parameter 329
mincommit configuration

parameter 375
MINPCTUSED 69, 232
mon_heap_sz configuration

parameter 336
monitor switches 240
monitoring 240
multipage_alloc configuration

parameter 398
effect on memory 226

multiple buffer pages,
allocating 226

multisite update 13
configuration parameters 386

N
nested loop join

outer versus inner table
determination 145

overview of 141
newlogpath configuration

parameter 373
nickname query performance

tips 50
nicknames

creating indexes on 171
gathering statistics 80
global optimization,

characteristics affecting 171
pushdown analysis 162
pushdown analysis,

characteristics affecting 166
view statistics 80

nname configuration parameter 405
node 13

connection elapse time 417

node 361 (continued)
coordinating agent,

maximum 417
data redistribution, process 271
determining where RUNSTATS

execution occurs 82
maximum number of connection

retries 421
maximum time difference

among 421
message buffers, number,

specifying 418
other operations during

redistribution 273
redistributing data across

database partitions 269
node configuration file, having the

database manager update 265
node connection retries

(max_connretries) 421
node server option 77
nodegroup

other operations during
redistribution 273

redistributing data 269
nodetype configuration

parameter 434
notifylevel configuration

parameter 427
NS (Next Key Share) mode 21
NT_SCATTER_DMSDEVICE 472
NT_SCATTER_DMSFILE 472
NT_SCATTER_SMS 472
num_db_backups configuration

parameter 383
num_estore_segs configuration

parameter 352
impact on memory 210

num_freqvalues configuration
parameter 402

num_initagents database manager
configuration parameter 363

num_initdaris configuration
parameter 367

num_iocleaners configuration
parameter 346

managing the buffer pool 215
num_ioservers configuration

parameter 348
impact on data prefetch 224

num_poolagents 235
num_poolagents configuration

parameter
impact on parallel systems 238

Index 701

num_poolagents database manager
configuration parameter 362

num_quantiles configuration
parameter 403

number of database backups
configuration parameter 383

number of FCM message anchors
(fcm_num_anchors) database
manager parameter 418

number of FCM request blocks
(fcm_num_rqb) database manager
parameter 420

numdb configuration
parameter 431

effect on memory 207
numeric string column option 167
numsegs configuration

parameter 350
NW (Next Key Weak Exclusive)

mode 22
NX (Next Key Exclusive) mode 22

O
objectname configuration

parameter 408
online index reorganization 232
optimization, global

analyzing 173
explain tool cost

information 173
nickname characteristics,

affecting 171
server characteristics,

affecting 170
optimization class

guidelines 40
levels of 36
setting 40

OPTIMIZE FOR clause 45, 50
optimizer 126, 127

adjusting amount of
optimization 36

affect of statistics 79
creating access plan 114
distribution statistics impact 93
selecting optimal join 146
sorting 157
use of replicated summary

tables 149
ORG sample table 497
outbound connection pool 236
outer-table join, method 152
outer versus inner table

determination
merge join 146
nested loop join 145

outer versus inner table
determination (continued)

overview of 146

P
package

isolation levels, specifying 14
page cleaners 215
page cleaners configuration

parameter
managing the buffer pool 215

parallel operations
configuration parameters 417

partitioned database
configuration parameters 417

partitioned database environment
decorrelation of a query 122

partitioning data
data distribution, specifying 270
data redistribution, error

recovery 273
data redistribution across

database partitions 271
data redistribution in tables 272
partitioning map, target,

specifying during data
redistribution 271

partitioning map
redistributing data 270
target, specifying during data

redistribution 271
password server option 77
pckcachesz configuration

parameter 316
impact on memory 210

performance
application considerations 13
book summary 7
catalog statistics 172
configuration parameters 290
data distribution, determining

using SQL 270
data source updates 169
database caching 55
database managed storage

(DMS) 233
db2batch benchmarking

tool 279
disk storage 7
elements of 3
environmental consideration 59
federated database systems 162
global optimization 170
governor affect on database

manager 257

performance (continued)
guidelines 13
limits to tuning 6
locks, effect of 22
nickname index

considerations 171
num_ioservers configuration

parameter 224
operational considerations 205
optimization class, adjusting 36
process 5
programming considerations 13
pushdown analysis (federated

systems) 162
query rewrite by compiler 115
quick determination 6
redistributing data 269
remote SQL generation 170
remote SQL generation for data

sources 169
row blocking, guidelines 49
RUNSTATS utility 83
server characteristics 170
statistics 79
table collocation, data

redistribution 269
tuning using explain 193
using explain facility 181

performance monitor
using 239

piped versus non-piped sorts
overview of 157

plan hints example 171
plan_hints server option 77
point-in-time monitoring 240
pool size for agents, controlling 362
precompiling

isolation level, specifying 18
predicate 138

adding by optimizer 123
definition of 129
distribution statistics 94
inclusive inequality 131
strict inequality 131
translation by optimizer 123
when applied 121

predicate category
index SARGable predicate 139
overview of 138
range delimiting predicate 139
residual predicate 140
SARGable predicate 139
usage 140

predicate terminology
overview of 138

702 Administration Guide: Performance

prefetch 205, 221
buffer pool 219
clustering page reads 135
data page 219
I/O servers 222
index page 219
intra-partition parallelism 222
list prefetch 222
PREFETCHSIZE clause 220
sequential 220
sequential detection 221
tuning using database system

monitor 220
previous leaf pointers 129
priv_mem_thresh configuration

parameter 330
privileges

required for REORG utility 231
process, DB2 235
processors, adding to a

machine 260
PROJECT sample table 497
pushdown analysis

analyzing 168
explain tool operators 168
nickname characteristics,

affecting 166
overview 162
query characteristics,

affecting 167
server characteristics,

affecting 163
pushdown server option 77

Q
quantile value statistics

number to collect 93
range statistics 95
rules for updating 104

query_heap_sz configuration
parameter 324

impact on memory 211
query optimizer 114
query rewrite

overview of 115
quickly retrieve first few rows 43

R
range delimiting predicate

index SARGable predicate 139
overview of 139

read locks 35
read only cursors

uncommitted read 17
read stability, overview 16

reading
read stability, overview of 16
repeatable read, overview of 15
uncommitted read, overview

of 17
rec_his_retentn configuration

parameter 383
recovery

configuration parameters 380
recovery history retention period

(rec_his_retentn) configuration
parameter 383

redistributing data
connection to catalog database

partition 271
data distribution, determining

using SQL 270
database partition, process

overview 271
database partitions, adding 270
database partitions,

dropping 270
distribution, specifying 270
distribution file 270
error recovery 273
log file 273
operation successful 272
operation unsuccessful 272
other operations during

redistribution 273
partitioning map, target,

specifying 271
purpose 269
replicated summary table

restriction 270
table, process overview 272
table collocation 269

registry variables 449
DB2_AVOID_PREFETCH 470
DB2_BINSORT 471
DB2_CORRELATED_PREDICATES 468
DB2_DJ_COMM 482
DB2_FALLBACK 483
DB2_FORCE_FCM_BP 467
DB2_FORCE_NLS_CACHE 458
DB2_FORCE_TRUNCATION 484
DB2_GRP_LOOKUP 484
DB2_HASH_JOIN 468
DB2_LIC_STAT_SIZE 451
DB2_LIKE_VARCHAR 468
DB2_MMAP_READ 475
DB2_MMAP_WRITE 475
DB2_NEW_CORR_SQ_FF 469
DB2_NO_PKG_LOCK 476
DB2_OVERRIDE_BPF 479

registry variables 470 (continued)
DB2_PRED_FACTORIZE 470
DB2_RR_TO_RS 480
DB2_SORT_AFTER_TQ 480
DB2_VI_DEVICE 464
DB2_VI_ENABLE 463
DB2_VI_VIPL 463
DB2ACCOUNT 449
DB2ADMINSERVER 481
DB2ATLD_PORTS 466
DB2ATLD_PWFILE 466
DB2BIDI 449
DB2BPVARS 472
DB2BQTIME 465
DB2BQTRY 465
DB2CHECKCLIENTINTERVAL 457
DB2CHGPWD_EEE 466
DB2CHKPTR 472, 473
DB2CLIENTADPT 464
DB2CLIENTCOMM 465
DB2CLIINIPATH 482
DB2CODEPAGE 450
DB2COMM 457
DB2CONNECT_IN_APP_PROCESS 454
DB2COUNTRY 450
DB2DBDFT 450
DB2DBMSADDR 450
DB2DEFPREP 482
DB2DIRPATHNAME 464
DB2DISCOVERYTIME 450
DB2DMNBCKCTLR 451, 483
DB2ENVLIST 455
DB2INCLUDE 451
DB2INSTANCE 455
DB2INSTDEF 451
DB2INSTOWNER 451
DB2INSTPROF 455
DB2IQTIME 465
DB2LDAP_SEARCH_SCOPE 484
DB2LIBPATH 456
DB2LOADREC 485
DB2LOCK_TO_RB 485
DB2MEMDISCLAIM 474
DB2MEMMAXFREE 474
DB2NBADAPTERS 458
DB2NBBRECVNCBS 460
DB2NBCHECKUPTIME 458
DB2NBDISCOVERRCVBUFS 452
DB2NBINTRLISTENS 459
DB2NBRECVBUFFSIZE 459
DB2NBRESOURCES 460
DB2NBSENDNCBS 460
DB2NBSESSIONS 460
DB2NBXTRANCBS 461
DB2NETREQ 461

Index 703

registry variables 470 (continued)
DB2NODE 470, 467
DB2NOEXITLIST 485
DB2NTMEMSIZE 477
DB2NTNOCACHE 478
DB2NTPRICLASS 478
DB2NTREMOTEPREG 485
DB2NTWORKSET 479
DB2OPTIONS 452, 465
DB2PATH 456
DB2PORTRANCE 467
DB2PRIORITIES 479
DB2RETRY 462
DB2RETRYTIME 462
DB2ROUTE 465
DB2ROUTINE_DEBUG 486
DB2RQTIME 465
DB2SERVICETPINSTANCE 462
DB2SLOGON 452
DB2SORCVBUF 486
DB2SORT 486
DB2SOSNDBUF 462
DB2SYSPLEX_SERVER 463
DB2SYSTEM 487
DB2TIMEOUT 452
DB2TRACEFLUSH 453
DB2TRACENAME 453
DB2TRACEON 453
DB2TRCSYSERR 453
DB2UPMPR 487
DB2YIELD 454
DLFM_BACKUP_DIR_NAME 480
DLFM_ENABLE_STPROC 480
DLFM_GC_MODE 481
DLFM_INSTALL_PATH 481
DLFM_LOG_LEVEL 481
DLFM_PORT 481

relation scan
definition of 127
when used 136

release configuration parameter 391
remote data services

node name (nname)
parameter 405

remote procedure calls 54
remote SQL generation

overview 170
REORG utility

authority and privileges
required 231

overview of 229
reorganize index

online 232
REORGCHK command 230

replicated summary table
redistributed nodegroup

restriction 270
request blocks, FCM daemon to

agent communication,
number 420

residual predicate
overview of 140

restbufsz configuration
parameter 313

RESTORE DATABASE utility
default restore buffer size

(restbufsz) parameter 313
restore_pending configuration

parameter 398
resync_interval configuration

parameter 387
retrieve first few rows quickly 43
reverse scans 127, 130
REXX

isolation level, specifying 19
ROLLFORWARD DATABASE utility

roll forward pending
(rollfwd_pending)
parameter 397

rollfwd_pending configuration
parameter 397

route_obj_name configuration
parameter 412

row 48
blocking 48
lock compatibility, ensuring 23
locking 15, 16, 17
read stability 16
types of locks on 21

row blocking
overview of 48
types of 49

row identifier (RID) 665
rqrioblk configuration

parameter 333
impact on memory 212

RUNSTATS CMD/API
node where execution occurs 82

RUNSTATS utility
for reorganization 82
use of 81
use of in a partitioned database

environment 81
with distribution clause 88

S
S (Share) mode 21
SALES sample table 498

sample database
erasing 490
installing 490

sample tables 489, 509
SARGable predicate

overview of 139
scaling a configuration 259
search discovery communications

protocols configuration
parameter 416

select-statement
eliminating DISTINCT

clause 121
for two or more tables 51
guidelines 50
guidelines for using 50
query rewrite by compiler 115
use of 49

seqdetect configuration
parameter 349

understanding sequential
detection 221

sequential detection 205
overview of 221

server
characteristics affecting

pushdown opportunities 163
CPU speed and

performance 170
I/O speed and performance 170
options 170

server options
collating_sequence 75
comm_rate 75
connectstring 76
cpu_ratio 76
dbname 76
fold_id 76
fold_pw 76
io_ratio 76
node 77
password 77
plan_hints 77
pushdown 77
varchar_no_trailing_blanks 78

SET CURRENT EXPLAIN MODE
statement

use of 191
SET CURRENT EXPLAIN

SNAPSHOT statement
use of 193

SET CURRENT QUERY
OPTIMIZATION statement

use of 40

704 Administration Guide: Performance

share mode
reasons for using 34

sheapthres configuration
parameter 320

avoiding post-threshold
sorts 228

SIX (Share with Intent Exclusive)
mode 21

SMS table space
caching of 233

snapshot, point-in-time
monitoring 240

softmax configuration
parameter 376

managing the buffer pool 215
sortheap configuration

parameter 320
affect on query optimization 61
avoiding post-threshold

sorts 228
impact on memory 211

sorting
configuration parameters 226
managing performance 228
non-overflowed 227
non-piped 227
overflowed 227
parameters affecting 227
performance problems 228
piped 227
piped versus non-piped

sorts 157
sort heap size (sortheap)

parameter 320
sort heap threshold (sheapthres)

parameter 320
steps 227

spm_log_file_sz configuration
parameter 389

spm_log_path configuration
parameter 388

spm_max_resync configuration
parameter 390

spm_name configuration
parameter 388

SQL 49
SQL advise facility 196
SQL functions

NODENUMBER, data
distribution, determining 270

PARTITION, data distribution,
determining 270

SQL statements
benchmarking 277
select-statement 49

SQL statements (continued)
select-statement guidelines 277
statement heap size (stmtheap)

parameter 322
tuning queries 49
valid during data

redistribution 273
ss_logon configuration

parameter 444
STAFF sample table 499
STAFFG sample table 500
star schema 147
start

timeout for command,
setting 422

start and stop timeout
(start_stop_time) database manager
parameter 422

start_stop_time database manager
configuration parameter 422

stat_heap_sz configuration
parameter 324

impact on memory 211
static SQL

distribution statistics 91
evaluating optimization class 43
explain facility 191, 192
setting optimization class 40

statistics
copying from production 108
distribution 88
distribution, how computed 89
frequent value 88
gathering for nicknames 80
index clustering 135
modeling data 108
overview of 79
quantiles 88
rules for updating 102, 103, 104
RUNSTATS utility 81
RUNSTATS utility in a

partitioned database
environment 81

updating 100, 601, 611
user-defined functions

(UDF) 106
when to collect 84

stmtheap configuration
parameter 322

affect on query optimization 61
impact on memory 211

stop
timeout for command,

setting 422
storage 205

storage 22 (continued)
effect of locks on 22

stored procedures
configuration parameters 364
performance impact 54

subagent 235
summary table scan

when used 137
summary tables

example 119
svcename configuration

parameter 405
sysadm_group configuration

parameter 437
sysctrl_group configuration

parameter 439
sysmaint_group configuration

parameter 439
system catalog 509

RUNSTATS utility 84
statistics 79

system management
configuration parameters 429
memory considerations 205

T
table 489

catalog views on system
tables 509

data redistribution, process 272
determining where RUNSTATS

execution occurs 82
joining 141
lock compatibility, ensuring 23
lock mode 31
locking 33
redistribution, error

recovery 273
REORG utility 229
reorganizing 229
REORGCHK command 230
sample 489
scan, affect on locks 30
two or more, select-statement 51
types of locks on 20, 21

table queues 156
table scan 127
table space

affect on query optimization 62
index 71
overhead, setting 63
TRANSFERRATE, setting 63
types of locks on 21

territory configuration
parameter 392

Index 705

thread, DB2 235
time difference among nodes,

maximum 421
timeout, starting and stopping

database manager 422
tm_database configuration

parameter 386
tokens 238
tp_mon_name configuration

parameter 433
tpname configuration

parameter 406
trigger

Explain tables 611
trust_allclnts configuration

parameter 444
trust_clntauth configuration

parameter 445
tuning queries

SQL statements 49

U
U (Update) mode 21
udf_mem_sz configuration

parameter 326
impact on memory 211

updatable cursor
uncommitted read 17

updating statistics 601, 611
user-defined functions (UDF)

updating statistics 106
user_exit_status configuration

parameter 398
userexit configuration

parameter 379
util_heap_sz configuration

parameter 311
impact on memory 210

utilities
reorganization 229
reorganization check 230

V
varchar_no_trailing_blanks column

option 167
varchar_no_trailing_blanks server

option 78
view

merging by optimizer 116
predicate pushdown by

optimizer 121
Visual Explain 178, 195

W
W (Weak Exclusive) mode 22

X
X (Exclusive) mode 22

Z
Z (Superxclusive) mode 22

706 Administration Guide: Performance

Contacting IBM

This section lists ways you can get more information from IBM.

If you have a technical problem, please take the time to review and carry out
the actions suggested by the Troubleshooting Guide before contacting DB2
Customer Support. Depending on the nature of your problem or concern, this
guide will suggest information you can gather to help us to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

Telephone

If you live in the U.S.A., call one of the following numbers:
v 1-800-237-5511 to learn about available service options.
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, see
Appendix A of the IBM Software Support Handbook. You can access this
document by accessing the following page:
http://www.ibm.com/support/

then performing a search using the keyword “handbook”.

Note that in some countries, IBM-authorized dealers should contact their
dealer support structure instead of the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2 information about
news, product descriptions, education schedules, and more. The DB2 Product
and Service Technical Library provides access to frequently asked questions,
fixes, books, and up-to-date DB2 technical information. (Note that this
information may be in English only.)

Anonymous FTP Sites
ftp.software.ibm.com

© Copyright IBM Corp. 1993, 1999 707

Log on as anonymous. In the directory /ps/products/db2, you can find
demos, fixes, information, and tools concerning DB2 and many related
products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-l

These newsgroups are available for users to discuss their experiences with
DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification Program for DB2 Universal
Database, go to http://www.software.ibm.com/data/db2/db2tech/db2cert.html

708 Administration Guide: Performance

IBMR

Part Number: CT6DBNA

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2840-00

CT
6D
BN
A

