
IBM DB2 Universal Database

Administration Guide:
Design and Implementation
Version 6

SC09-2839-00

IBM

IBM DB2 Universal Database

Administration Guide:
Design and Implementation
Version 6

SC09-2839-00

IBM

Before using this information and the product it supports, be sure to read the general information under “Appendix P.
Notices” on page 861.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 1999. All rights reserved.
US Government Users Restricted Rights – Use duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book xiii
Who Should Use This book xiv
How This Book is Structured. xiv

Part 1. Database Concepts 1

Chapter 1. Introduction to Concepts
Within DB2 Universal Database 3
Overview of DB2 Concepts 3
Overview of DB2 Parallelism Concepts . . 5

Nodegroups and Data Partitioning . . . 6
Types of Parallelism. 7

I/O Parallelism 8
Query Parallelism 8
Utility Parallelism 11

Hardware Environments 12
Single Partition on a Single Processor 12
Single Partition with Multiple Processors 14
Multiple Partition Configurations . . . 15
Summary of Parallelism Best Suited To
Each Hardware Environment. 19

Enabling Parallelism for Queries 20
Enabling Intra-Partition Query
Parallelism 20
Enabling Inter-Partition Query
Parallelism 21

Enabling Utility Parallelism 21
Load 21
AutoLoader 21
Create Index 21
Backup Database / Table Space 22
Restore Database / Table Space 22

Federated Database System Concepts . . . 23
Enabling a Federated System. 26

Part 2. Database Design and
Implementation 27

Chapter 2. Designing Your Logical
Database 29
Decide What Data to Record in the
Database 29
Define Tables for Each Type of Relationship 31

One-to-Many and Many-to-One
Relationships 31
Many-to-Many Relationships 32
One-to-One Relationships 33

Provide Column Definitions for All Tables 34
Identify One or More Columns as a Primary
Key 36

Identifying Candidate Key Columns 38
Be Sure Equal Values Represent the Same
Entity 38
Consider Normalizing Your Tables 39

First Normal Form 40
Second Normal Form 40
Third Normal Form 42
Fourth Normal Form 43

Planning for Constraint Enforcement . . . 44
Unique Constraints 45
Referential Integrity 45
Table Check Constraints 50
Triggers 51

Other Database Design Considerations . . 51

Chapter 3. Designing Your Physical
Database 55
Database Physical Directories 55

Database Physical Files. 56
Estimating Space Requirements for Tables 58

System Catalog Tables 59
User Table Data 59
Long Field Data 61
Large Object (LOB) Data 62
Index Space 63

Additional Space Requirements 65
Log File Space 66
Temporary Work Space. 67

Designing Nodegroups. 67
Nodegroup Design Considerations . . . 68

Designing and Choosing Table Spaces. . . 75
System Managed Space Table Space . . 78
Database Managed Space Table Space 82
Adding Containers to DMS Table Spaces 84
Table Space Design Considerations . . . 85

Federated Database Design Considerations 97

Chapter 4. Implementing Your Design 99

© Copyright IBM Corp. 1993, 1999 iii

Introductory Concepts for Database
Implementation 100

Starting and Stopping DB2 100
Starting DB2 UDB on Windows NT . . 101
Using Multiple Instances of the Database
Manager 102
Organizing and Grouping Objects by
Schema 103
Enabling Intra-Partition Parallelism . . 104
Enabling Data Partitioning 104

Before Creating a Database 105
Design Logical and Physical Database
Characteristics. 106
Create an Instance 106
License Management 114
Establish Environment Variables and the
Profile Registry 114
DB2 Administration Server (DAS) . . . 124
Create a Node Configuration File . . . 140
Creation of the Database Configuration
File 142
Replicating Configuration Information
Using Response Files 143
Enable FCM Communications 144

Creating a Database 145
Definition of Initial Nodegroups . . . 146
Definition of Initial Table Spaces . . . 147
Definition of System Catalog Tables . . 148
Definition of Database Directories . . . 148
DCE Directory Services 150
Lightweight Directory Access Protocol
(LDAP) Directory Services 150
Creating Nodegroups 151
Definition of Database Recovery Log 151
Binding Utilities to the Database . . . 152
Cataloging a Database 152
Creating a Table Space 153
Creating a Schema 157
Creating and Populating a Table . . . 158
Creating a Trigger 174
Creating a User-Defined Function (UDF) 176
Creating a User-Defined Type (UDT) 179
Creating a View 182
Creating a Summary Table 187
Creating an Alias. 189
Creating a Wrapper 190
Creating a Server. 191
Creating a Nickname 198
Creating an Index or an Index
Specification 200

Before Altering a Database 206
Changing Logical and Physical Design
Characteristics. 206
Changing the License Information . . . 206
Changing Instances 207
Changing Environment Variables and the
Profile Registry Variables 212
Changing the Node Configuration File 212
Changing the Database Configuration 212

Altering a Database 213
Dropping a Database 214
Altering a Nodegroup 214
Altering a Table Space 214
Dropping a Schema 216
Modifying a Table in Both Structure and
Content 216
Altering a User-Defined Structured Type 223
Deleting and Updating Rows of a Typed
Table 223
Renaming an Existing Table 223
Dropping a Table. 224
Dropping a Trigger 225
Dropping a User-Defined Function
(UDF), Function Template, or Function
Mapping 226
Dropping a User-Defined Type (UDT) or
Type Mapping 227
Altering or Dropping a View 227
Dropping a Summary Table 228
Dropping a Wrapper 229
Altering or Dropping a Server 230
Altering or Dropping a Nickname . . . 230
Dropping an Index or an Index
Specification 232
Statement Dependencies When Changing
Objects 233

Chapter 5. Administering DB2 Using GUI
Tools 235
Administration Tools 236
Common Tool Features. 238

Show SQL and Show Command . . . 239
Show Related 239
Generate DDL. 240
Filter 241
Filtering the Display 241
Filtering Retrieved Data 242
Defining a Filter to Retrieve a Specific
Set of Data 242
Help 242

iv Administration Guide Design and Implementation

The Control Center 243
Main Elements of the Control Center 244
Using a Customized Control Center in
DB2 for OS/390 244
Systems That Can Be Administered . . 245
Objects that can be Administered . . . 245
Displaying Systems in the Control Center 247
Managing DB2 for OS/390 Objects . . . 247
Adding DB2 for OS/390 Subsystems 247
Managing Gateway Connections . . . 248
Functions You Can Perform from the
Control Center 248
Creating New Objects 249
Working with Existing Objects 250
Locating objects (DB2 for OS/390 only) 250

The Satellite Administration Center . . . 251
The Command Center 252
The Script Center 252

Using an Existing Script with the Script
Center 253
Scheduling a Saved Command Script to
Run 253

The Journal 254
Working with Jobs 254

The License Center 255
The Alert Center 255
Client Configuration Assistant 255

Searching for Databases 256
Performance Monitor 257

Event Monitor. 258
Using the Monitor Tools 258
Monitoring Performance at a Point in
Time 261
Predefined Monitors 262
Action Required When an Object
Appears in the Alert Center 264
Analyzing an Event for a Period of Time 264
Event Analyzer 265

Analyzing SQL Statements 267
Improving Performance of a Query . . 268
Analyzing a Simple Dynamic SQL
Statement 268

Managing Remote Databases 269
Managing Users 271

Granting and Revoking Authorities and
Privileges 271

Moving Data 272
Managing Storage 274

Estimating Table and Index Size. . . . 274

Checking Space Available in a Table
Space 275
Adding More Space to a Table Space 276

Troubleshooting 276
Replicating Data 277
Using Lightweight Directory Access
Protocol 278
Using a Java Control Center 279

Running the Control Center as a Java
Applet 279

Using Your Java-based Tools for
Administration 280

Chapter 6. Controlling Database Access 281
An Overview of DB2 Security 282

Authentication 282
Authorization 283
Federated Database Authentication and
Authorization Overview 284

Selecting User IDs and Groups for Your
Installation 285
Selecting an Authentication Method for
Your Server 287
Authentication Considerations for Remote
Clients 292
Partitioned Database Considerations . . . 293
Using DCE Security Services to
Authenticate Users 293

How to Setup a DB2 User for DCE. . . 294
How to Setup a DB2 Server to Use DCE 295
How to Setup a DB2 Client Instance to
Use DCE 297
DB2 Restrictions Using DCE Security 298

Federated Database Authentication
Processing 299

Authentication Settings. 299
Passing IDs and Passwords to Data
Sources 300
Federated Database Authentication
Example 303

Privileges, Authorities, and Authorization 305
System Administration Authority
(SYSADM) 307
System Control Authority (SYSCTRL) 308
System Maintenance Authority
(SYSMAINT) 309
Database Administration Authority
(DBADM) 310
Database Privileges 310
Schema Privileges 312

Contents v

Table and View Privileges 314
Nickname Privileges 316
Server Privileges 317
Package Privileges 317
Index Privileges 318

Controlling Access to Database Objects . . 318
Granting Privileges 319
Revoking Privileges 320
Managing Implicit Authorizations by
Creating and Dropping Objects 321
Establishing Ownership of a Plan or a
Package 322
Allowing Indirect Privileges through a
Package 322
Allowing Indirect Privileges through a
Package Containing Nicknames 323
Controlling Access to Data with Views 324
Monitoring Access to Data Using the
Audit Facility 327

Tasks and Required Authorizations. . . . 327
Using the System Catalog 328

Retrieving Authorization Names with
Granted Privileges 329
Retrieving All Names with DBADM
Authority 330
Retrieving Names Authorized to Access
a Table 330
Retrieving All Privileges Granted to
Users. 330
Securing the System Catalog Views . . 331

Chapter 7. Auditing DB2 Activities . . . 333
Audit Facility Behavior. 335
Audit Facility Usage Scenarios 337
Audit Facility Messages 341
Audit Facility Record Layouts 342
Audit Facility Tips and Techniques 356
Controlling DB2 Audit Facility Activities 358

Chapter 8. Utilities for Moving Data . . . 363

Chapter 9. Recovering a Database . . . 365
Overview of Recovery 366
Factors Affecting Recovery 371

Recoverable and Non-Recoverable
Databases 373
Database Logs. 373
Reducing Logging on Work Tables . . . 375
Point of Recovery 376

Frequency of Backups and Time
Required 376
Recovery Time Required 378
Storage Considerations 378
Keeping Related Data Together 379
Restrictions on Using Different Operating
Systems 380
Damaged Table Space Recovery 380
Recovery Performance Considerations 382

Disaster Recovery Considerations 384
Reducing the Impact of Media Failure. . . 384

Protecting Against Disk Failure 385
Reducing the Impact of Transaction Failure 387
System Clock Synchronization in a
Partitioned Database System 387
Crash Recovery 389

Getting to a Consistent Database . . . 389
Transaction Failure Recovery in a
Partitioned Database Environment . . . 390
Identifying the Failed Database Partition
Server 393

Recovery Method: Version Recovery . . . 394
Backing Up a Database. 394
Restoring a Database 400

Recovery Method: Roll-Forward Recovery 406
Backup Considerations 407
Restore Considerations 410
Rolling Forward Changes in a Database 413

Recovery History File Information 435
Garbage Collection 436
DB2 Data Links Manager Considerations 440

Crash Recovery Considerations 440
Backup Utility Considerations 442
Restore and Rollforward Utility
Considerations 442
Restoring Databases from an offline
Backup without Rolling Forward . . . 444
Restoring Databases and Table Spaces
and Rolling Forward to the End of the
Logs 445
Restoring Databases and Table Spaces
and Rolling Forward to a Point in Time 445
DB2 Data Links Manager and Recovery
Interactions 446
Removing a Table from the
Datalink_Reconcile_Not_Possible State 449
Reconciling Data Links 450

ADSTAR Distributed Storage Manager . . 452

vi Administration Guide Design and Implementation

Setting up an ADSTAR Distributed
Storage Manager Client for UNIX-Based
Platforms 452
Setting up an ADSTAR Distributed
Storage Manager Client for Other
Platforms 453
Considerations for Using ADSTAR
Distributed Storage Manager 454

Part 3. Distributed Transaction
Processing 463

Chapter 10. Distributed Databases . . . 465
Using a Single Database in a Transaction 466
Using Multiple Databases in a Single
Transaction. 467

Updating a Single Database 467
Updating Multiple Databases 469

Other Configuration Considerations in Any
Environment 474

Host or AS/400 Applications Which
Access a DB2 Universal Database Server
in a Multisite Update 477

Understanding the Two-Phase Commit
Process 478
Recovering from Problems During
Two-Phase Commit 481

Manual Recovery of Indoubt
Transactions 482
Resynchronizing Indoubt Transactions if
AUTORESTART=OFF 484

Recovery of Indoubt Transactions on the
Host 485

Recovery when DB2 Connect Has the
DB2 Syncpoint Manager Configured 485
Recovery when DB2 Connect Does Not
Use the DB2 Syncpoint Manager . . . 486

Chapter 11. Using DB2 with an
XA-Compliant Transaction Manager . . . 489
Setting Up a Database as a Resource
Manager 490

Updating Host or AS/400 Database
Servers 490
Database Connection Considerations 491
Making a Heuristic Decision 491
Security Considerations 494
Configuration Considerations 495
XA Function Supported 496

XA Interface Problem Determination 499
Configuring XA Transaction Managers to
Use DB2 UDB 500

Configuring IBM TXSeries CICS. . . . 501
Configuring IBM TXSeries Encina . . . 501
Configuring BEA Tuxedo 504
Configuring Microsoft Transaction Server 505

Part 4. Ensuring the High
Availability of Your System . . . 513

Chapter 12. High Availability Cluster
Multi-Processing (HACMP) on AIX . . . 515
Hot Standby 516

Examples 516
Mutual Takeover 519

Examples 520
Additional HACMP Resources 522

Chapter 13. High Availability Cluster
Multi-Processing, Enhanced Scalability
(HACMP ES) for AIX 523
Cluster Configuration 524

Configuration of a DB2 Database
Partition. 529
Example of a Mutual Takeover
Configuration 530
Example of a Hot Standby Takeover
Configuration 530
Configuration of a NFS Server Node 531
Example of a NFS Server Takeover
Configuration 532
Considerations When Configuring the SP
Switch 532
DB2 HACMP Configuration Examples 534
DB2 HACMP Startup Recommendations 543

HACMP ES Event Monitoring and
User-Defined Events 544

HACMP ES Script Files 547
DB2 Recovery Scripts Operations with
HACMP ES 550
Other Script Utilities 552

Monitoring HACMP Clusters 552
DB2 SP HACMP ES Installation 554

DB2 SP HACMP ES New Installation 554
DB2 SP HACMP ES Migration 556
DB2 SP HACMP ES Worksheets. . . . 557

Contents vii

Chapter 14. High Availability in the
Windows NT Environment 565
Failover Configurations 566

Hot Standby Configuration 566
Mutual Takeover Configuration 567

Using the DB2MSCS Utility 568
Specifying the DB2MSCS.CFG File . . . 569
Setting up Failover for a Single-Partition
Database System 573
Setting up a Mutual Takeover
Configuration for Two Single-Partition
Database Systems 574
Setting up Multiple MSCS Clusters for a
Partitioned Database System 574

Maintaining the MSCS System 576
Fallback Considerations 577
Registering Database Drive Mapping for
Mutual Takeover Configurations in a
Partitioned Database Environment 577

Reconciling Database Drive Mapping 579
Example - Setting up Two Single-Partition
Instances for Mutual Takeover 580

Preliminary Tasks 580
Run the DB2MSCS Utility 581

Example - Setting up a Four-Node
Partitioned Database System for Mutual
Takeover 582

Preliminary Tasks 583
Run the DB2MSCS Utility 584
Register the Database Drive Mapping for
ClusterA 585
Register the Database Drive Mapping for
ClusterB. 586

Administering DB2 in an MSCS
Environment 586

Starting and Stopping DB2 Resources 586
Running Scripts 587
Database Considerations 591
User and Group Support 591
Communications Considerations . . . 592
System Time Considerations 593
Administration Server and Control
Center Considerations in a Partitioned
Database Environment 593
Limitations and Restrictions 595

Chapter 15. High Availability in the
Solaris Operating Environment,
Single-Partition Database 597
Cluster Components 597

Failover Configurations 600
Hot Standby Configuration 600
Mutual Takeover Configuration 600

Setting up Failover Support for a Database
System 601

Choosing a Failover Configuration . . . 601
Creating a DB2 Instance 602
Registering the DB2 Resource with Sun
Cluster 604
Enable Failover for an Instance 605
Starting and Stopping DB2 605
Running Scripts During a Failover . . . 605
Unregistering DB2 for Failover 606

Client Application Considerations 606

Chapter 16. High Availability in the
Solaris Operating Environment,
Partitioned Database 607
Cluster Components 607
Failover Configurations 609

Hot Standby Configuration 610
Mutual Takeover Configuration 611

Setting Up Failover Support for a Database
System 613

Choosing a Failover Configuration . . . 614
Preliminary Requirements 615
Scripts and Programs 615
Creating a DB2 Instance 616
Registering the DB2 Resource with Sun
Cluster 2.1 616
Enabling Failover for an Instance . . . 617
Binding Database Partition Servers to a
Logical Host 618
How Failover Processing Works 618
Setting Up a Hot Standby Configuration 619
Setting Up a Mutual Takeover
Configuration 619
Starting and Stopping DB2 619
Running Scripts During a Failover . . . 620

Considerations for Table Spaces 620
Client Application Considerations 621

Part 5. Appendixes 623

Appendix A. How the DB2 Library Is
Structured 625
Completing Tasks with SmartGuides . . . 625
Accessing Online Help 626
DB2 Information – Hardcopy and Online 628
Viewing Online Information 635

viii Administration Guide Design and Implementation

Accessing Information with the
Information Center 636

Setting Up a Document Server 637
Searching Online Information 638
Printing the PostScript Books. 638
Ordering the Printed Books 639

Appendix B. Planning Database Migration 641
Migration Considerations 642

Migration Restrictions 642
Security and Authorization 642
Storage Requirements 643
Release-to-Release Incompatibilities . . 643
Migrating a Database 643

Appendix C. Incompatibilities Between
Releases 647
DB2 Universal Database Planned
Incompatibilities 648

Read-only Views in a Future Version of
DB2 Universal Database 648
PK_COLNAMES and FK_COLNAMES in
a Future Version of DB2 Universal
Database 648
COLNAMES No Longer Available in a
Future Version of DB2 Universal
Database 649

DB2 Universal Database Version 6
Incompatibilities 649

System Catalog Views 650
Application Programming. 657
SQL 663
Database Security and Tuning 665
Utilities and Tools 666
Connectivity and Coexistence 667
Configuration Parameters 667

DB2 Universal Database Version 5
Incompatibilities 668

System Catalog Views 668
Application Programming. 670
SQL 679
Database Security and Tuning 685
Utilities and Tools 685
Connectivity and Coexistence 686
Configuration Parameters 686

Appendix D. Naming Rules 691
Database Names 691
Database and Database Alias Names . . . 691
User IDs and Passwords 692

Schema Names 693
Group and User Names 693
Object Names 694
Federated Database Object Names 695

How Case-Sensitive Values Are
Preserved in a Federated System . . . 696

Appendix E. Using Distributed Computing
Environment (DCE) Directory Services 699
Creating Directory Objects 699

Database Objects 700
Database Locator Objects 701
Routing Information Objects 703

Attributes of Each Object Class 704
Details About Each Attribute 705

Directory Services Security 709
Configuration Parameters and Registry
Variables 711
CATALOG and ATTACH Commands, and
the CONNECT Statement 713

CATALOG GLOBAL DATABASE
Command 713
CONNECT Statement 713
ATTACH Command 713

How a Client Connects to a Database . . . 714
Connecting to Databases in the Same
Cell 716
Connecting to a Database in a Different
Cell 717

How Directories are Searched 718
ATTACH Command 718
CONNECT Statement 719

Temporarily Overriding DCE Directory
Information 720
Directory Services Tasks 721

DCE Administrator Tasks 721
Database Administrator Tasks 722
Database User Tasks 723

Directory Services Restrictions 724

Appendix F. X/Open Distributed
Transaction Processing Model 727
Application Program (AP). 727
Transaction Manager (TM) 729
Resource Managers (RM) 730

Appendix G. User Exit for Database
Recovery 733
Overview for OS/2 733

Contents ix

Overview for UNIX-Based Operating
Systems 734
Invoking a User Exit Program 734
Sample User Exit Programs 735

Sample User Exit Programs for OS/2 735
Sample User Exit Programs for
UNIX-Based Operating Systems 736

Calling Format 737
Calling Format for OS/2 737
Calling Format for UNIX-Based or
Windows NT Operating Systems . . . 738

Archive and Retrieve Considerations . . . 739
Backup and Restore Considerations (DB2
for OS/2 only) 741

Error Handling 742

Appendix H. National Language Support
(NLS) 745
Deriving Code Page Values 745
Deriving Locales in Application Programs 746

How DB2 Derives Locales. 746
Country Code and Code Page Support . . 747
Unicode/UCS-2 and UTF-8 Support in DB2
UDB 761

Introduction 761
UCS-2/UTF-8 Implementation in DB2
UDB 763

Character Sets 770
DBCS Character Sets 770
Extended UNIX Code (EUC) Character
Sets 771
Character Set for Identifiers 772
Coding of SQL Statements 773
Bidirectional CCSID Support 773
Collating Sequences 777
Datetime Values 784

Appendix I. Issuing Commands to
Multiple Database Partition Servers . . . 791
Commands. 791

Command Descriptions 792
Specifying the Command to Run . . . 793
Running Commands in Parallel on
UNIX-Based Platforms 794
Monitoring rah Processes on UNIX-Based
Platforms 794
Additional Rah (Run All Hosts)
Information (Solaris and AIX only) . . . 795

Prefix Sequences 796
Specifying the List of Machines 799

Eliminating Duplicate Entries from the
List of Machines 800

Controlling the rah Command 800
$RAHDOTFILES on UNIX-Based
Platforms 802
Setting the Default Environment Profile
on Windows NT 803

Determining Problems with rah on
UNIX-Based Platforms 803

Appendix J. How DB2 for Windows NT
Works with Windows NT Security . . . 807
A Sample Scenario with Server
Authentication: 808
A Sample Scenario with Client
Authentication and a Windows NT Client
Machine: 808
A Sample Scenario with Client
Authentication and a Windows 95 Client
Machine: 809
Using a Backup Domain Controller with
DB2 810

Appendix K. Using the Windows NT
Performance Monitor 811
Registering DB2 with the Windows NT
Performance Monitor 811
Enable Remote Access to DB2 Performance
Information 812
Displaying DB2 and DB2 Connect
Performance Values 813
Accessing Remote DB2 Performance
Information 814
Resetting DB2 Performance Values 814

Appendix L. Configuring Multiple Logical
Nodes 817

Appendix M. Using Virtual Interface (VI)
Architecture 819
Overview of DB2 UDB Extended Enterprise
Edition 820
Running DB2 UDB for Windows NT with
GigaNet Interconnect 821

Setup Procedure for GigaNet
Interconnect 821

Running DB2 UDB for Windows NT with
ServerNet Interconnect 823

Setup Procedure for ServerNet
Interconnect 823

x Administration Guide Design and Implementation

Install DB2 Universal Database Version 5.2
or Later (EEE) 826

Implement DB2 to Run Using VI . . . 828

Appendix N. Lightweight Directory
Access Protocol (LDAP) Directory
Services 829
Registration of DB2 Servers After
Installation 829
Update the Protocol Information for the
DB2 Server 831
Catalog a Node Alias for ATTACH 831
Deregistering the DB2 Server. 831
Registration of Databases 832
Attaching to a Remote Server 832
Deregistering the Database 833
Refreshing LDAP Entries in Local Database
and Node Directories 833
Searching 834
Configure Host Database 834
Setting DB2 Registry Variables at the User
Level 835
Enable LDAP Support After Installation is
Complete 835
Disable LDAP Support 835
Security Considerations 836
Managing Multiple User Accounts 836
Extending the Directory Schema with DB2
Object Classes and Attributes 837

Extending the Directory Schema for IBM
eNetwork Directory Version 2.1 837
Object Classes and Attributes Used by
DB2 838

Appendix O. Extending the Control
Center 845

Performance Considerations 845
Packaging Considerations 845
Interface Descriptions 845

CCExtension 846
CCObject 847
CCMenuAction 850
CCToolBarAction. 850

Usage Scenario 851
MyExtension.java 852
MySample.java 852
MyDatabaseActions.java 853
MyInstance.java 854
MyDB2.java 854
MyDatabases.java 855
MySYSPLAN.java 856
MyTable.java 856
MyDBUser.java 857
MyToolbarAction.java 858
MyAlterAction.java 858
MyAction.java. 858
MyDropAction.java 859
MyCascadeAction.java 859
MyCreateAction.java 859

Appendix P. Notices 861
Trademarks 862
Trademarks of Other Companies 862

Index 865

Contacting IBM 883

Contents xi

xii Administration Guide Design and Implementation

About This Book

The Administration Guide in its two volumes provides information necessary
to use and administer the year 2000 ready, DB2* relational database
management system (RDBMS) products, including:
v Information required for designing, implementing and managing databases

(found in Administration Guide, Design and Implementation)
v Information regarding the configuring and tuning of your database

environment to improve performance (found in Administration Guide,
Performance).

Many of the tasks described in this book can be performed using different
interfaces:
v The Command Processor, which allows you to access and manipulate

databases from a graphical interface. From this interface, you can also
execute SQL statements and DB2 utility functions. Most examples in this
book illustrate the use of this interface. For more information about using
the command processor, see the Command Reference manual.

v The application programming interface, which allows you to execute DB2
utility functions within an application program. For more information about
using the application programming interface, see the Administrative API
Reference manual.

v The Control Center, which allows you to graphically perform
administrative tasks such as configuring the system, managing directories,
backing up and recovering the system, scheduling jobs, and managing
media. The Control Center also contains Replication Administration to
graphically setup the replication of data between systems. execute DB2
utility functions through a graphical user interface. To invoke the Control
Center, use the db2cc command, or (for OS/2) select the Control Center
icon from the DB2 folder. For introductory help, select Getting started from
the Help pull-down of the Control Center window. The Visual Explain and
Performance Monitor tools are invoked from the Control Center.
Error conditions when using the Control Center are recorded in the Control
Center Administration Engine Log (db2cc.log). This log records information
about the errors generated while using the Control Center. The log is
always active while the Control Center is active. The log file is kept in the
home directory of the executable that invokes the Control Center. That is, in
the bin subdirectory of the sqllib subdirectory. The file can be viewed and
updated using an ASCII file editor.
The log file records the error message type, a time stamp, a process
identifier (PID), a thread identifier (TID), and an SQL error message. The

© Copyright IBM Corp. 1993, 1999 xiii

process ID and the thread ID are used to identify the operating system that
generated the log. Combined with the Control Center trace information,
DB2 Service and Support personnel are able to determine which Control
Center task caused the error. The information is only of use to the DB2
Service and Support personnel.
The log file can be edited by an ASCII file editor to remove log records that
are no longer needed.

There are other tools available that you can use to perform administration
tasks. They include:
v The Script Center to store small applications called scripts. These scripts

may contain DB2 commands as well as operating system commands.
v The Alert Center to monitor the messages that result from other DB2

operations.
v The Tool Settings to change the settings for the Control Center, Alert

Center, and Replication.
v The Journal to schedule jobs to run unattended.

Who Should Use This book

This book is intended primarily for database administrators, system
administrators, security administrators and system operators who need to
design, implement and maintain a database to be accessed by local or remote
clients. It can also be used by programmers and other users who require an
understanding of the administration and operation of the DB2 relational
database management system.

How This Book is Structured

The Administration Guide, Design and Implementation contains information about
the following major topics:

Database Concepts

v Chapter 1. Introduction to Concepts Within DB2 Universal Database,
presents an overview of DB2 Universal Database including: Using the
Control Center, the types of parallelism provided by DB2, and federated
systems use.

Database Design and Implementation

v Chapter 2. Designing Your Logical Database, discusses the concepts and
guidelines for designing a logical database.

xiv Administration Guide Design and Implementation

v Chapter 3. Designing Your Physical Database, discusses the guidelines for
designing a physical database, including considerations related to physical
data storage.

v Chapter 4. Implementing Your Design, discusses the concepts and
guidelines for creating a database and the objects within a database.

v Chapter 5. Administering DB2 Using GUI Tools, introduces the Graphical
User Interface (GUI) tools used to administer the database.

v Chapter 6. Controlling Database Access, describes how you can control
access to your database’s resources.

v Chapter 7. Auditing DB2 Activities, describes how you can detect and
monitor unwanted or unanticipated access to data.

v Chapter 8. Utilities for Moving Data, discusses the LOAD, AutoLoader,
IMPORT and EXPORT utilities. db2move and replication are also discussed.

v Chapter 9. Recovering a Database, discusses factors to consider when
choosing database and table space recovery methods, including backing up
and restoring a database or table space, and using the roll-forward recovery
method.

Distributed Transaction Processing

v Chapter 10. Distributed Databases, discusses how you can access multiple
databases in a single transaction.

v Chapter 11. Using DB2 with an XA-Compliant Transaction Manager,
discusses how you can use your databases in a distributed transaction
processing environment such as CICS.

High Availability Systems

v Chapter 12. High Availability Cluster Multi-Processing (HACMP) on AIX,
discusses the support of IBM High Availability Cluster Multi-Processing
(HACMP) for AIX by DB2.

v Chapter 13. High Availability Cluster Multi-Processing, Enhanced Scalability
(HACMP ES) for AIX, discusses the support of IBM High Availability
Cluster Multi-Processing, Enhanced Scalability (HACMP ES) for AIX by
DB2.

v Chapter 14. High Availability in the Windows NT Environment, discusses
the support of Microsoft Cluster Server for Windows NT by DB2.

v Chapter 15. High Availability in the Solaris Operating Environment,
Single-Partition Database, discusses the support of Sun Cluster 2.1 for the
Sun Solaris Operating System by DB2.

v Chapter 16. High Availability in the Solaris Operating Environment,
Partitioned Database, discusses the support of Sun Cluster 2.1 for the Sun
Solaris Operating System by DB2 Enterprise - Extended Edition.

Appendixes

About This Book xv

v Appendix A. How the DB2 Library Is Structured, provides information
about the structure of the DB2 library, including SmartGuides, online help,
messages, and books.

v Appendix B. Planning Database Migration, provides information about
migrating databases to Version 5.

v Appendix C. Incompatibilities Between Releases, presents the
incompatibilities introduced with Version 5.

v Appendix D. Naming Rules, provides the rules to follow when naming
databases and objects.

v Appendix E. Using Distributed Computing Environment (DCE) Directory
Services, provides information about how you can use DCE Directory
Services.

v Appendix F. X/Open Distributed Transaction Processing Model, provides an
overview of the X/Open Distributed Transaction Processing model and the
DB2 database support provided.

v Appendix G. User Exit for Database Recovery, discusses how user exit
programs can be used with database log files and describes some sample
user exit programs.

v Appendix H. National Language Support (NLS), introduces DB2 National
Language Support (NLS) including information about countries, languages,
and code pages.

v Appendix I. Issuing Commands to Multiple Database Partition Servers,
discusses the use of the db2_all and rah shell scripts to send commands to
all partitions in a partitioned database environment.

v Appendix J. How DB2 for Windows NT Works with Windows NT Security,
describes how DB2 works with Windows NT security.

v Appendix L. Configuring Multiple Logical Nodes, describes how to
configure multiple logical nodes in a partitioned database environment.

v Appendix M. Using Virtual Interface (VI) Architecture, describes how to
enable Virtual Interface Architecture for use with DB2 Enterprise - Extended
Edition in the Windows NT environment.

v Appendix N. Lightweight Directory Access Protocol (LDAP) Directory
Services, provides information about how you can use Lightweight
Directory Access Protocol (LDAP) Directory Services.

v Appendix O. Extending the Control Center, provides information about
how you can extend the Control Center by adding new tool bar buttons
including new actions, adding new object definitions, and adding new
action definitions.

The other volume of the Administration Guide (Administration Guide,
Performance) is concerned with performance issues. That is, those topics and
issues concerned with establishing, testing, and improving all aspects of your
application’s, and the DB2 Universal Database product, performance.

xvi Administration Guide Design and Implementation

The specific chapters and appendixes in that volume are briefly described
here:

Introduction to Performance

v Elements of Performance, introduces concepts and considerations for
managing and improving DB2 UDB performance.

Tuning Application Performance

v Application Considerations, describes some techniques for improving
database performance when designing your applications.

v Environmental Considerations, describes some techniques for improving
database performance when setting up your database environment.

v System Catalog Statistics, describes how statistics about your data can be
collected and used to ensure optimal performance.

v Understanding the SQL Compiler, describes what happens to an SQL
statement when it is compiled using the SQL compiler.

v SQL Explain Facility, describes the Explain facility, which allows you to
examine the choices the SQL compiler has made to access your data.

Tuning and Configuring Your System

v Operational Performance, provides an overview of how the database
manager uses memory and other considerations that affect run-time
performance.

v Using the Governor, provides an introduction to the use of a governor to
control some aspects of database management.

v Scaling Your Configuration, introduces some considerations and tasks
associated with increasing the size of your database systems.

v Redistributing Data Across Database Partitions, discusses the tasks required
in a partitioned database environment to redistribute data across partitions.

v Benchmark Testing, provides an overview of benchmark testing and how to
perform benchmark testing.

v Configuring DB2, discusses the database manager and database
configuration files and the values for the configuration parameters.

Appendixes

v DB2 Registry and Environment Variables, presents profile registry values
and environment variables.

v Sample Tables, contains a description of the sample tables provided with
the database manager.

v Catalog Views, contains a description of each system catalog view,
including column names and data types.

About This Book xvii

v Explain Tables and Definitions, provides information about the tables used
by the DB2 Explain facility and how to create those tables.

v SQL Explain Tools, provides information on using the DB2 explain tools:
db2expln and dynexpln.

v db2exfmt — Explain Table Format Tool, provides information on using the
DB2 explain tool to format the explain table data.

xviii Administration Guide Design and Implementation

Part 1. Database Concepts

© Copyright IBM Corp. 1993, 1999 1

2 Administration Guide Design and Implementation

Chapter 1. Introduction to Concepts Within DB2 Universal
Database

This chapter provides an introduction to DB2 Universal Database and to the
types of parallelism provided by DB2. This chapter describes the following:
v Overview of basic DB2 concepts and DB2 parallelism concepts
v Types of parallelism
v Hardware environments
v Summary of parallelism possible for each hardware environment
v Enabling parallelism
v Overview of federated database system concepts
v Enabling federated database systems

DB2 provides the flexibility for you to run a wide range of hardware
configurations. It allows you to choose how to best match your hardware and
application requirements with a specific DB2 product configuration.

The remaining chapters in this book assist you in the design and
implementation of your database. With the different levels of complexity in
database environments that DB2 supports, there are considerations and tasks
specific to one or more of these environments. These considerations and tasks
are presented toward the end of each section or chapter and introduced as
being for a specific environment. In some cases, entire sections or chapters are
appropriate for only a specific environment. After reading this chapter, you
should be able to discern which chapters are appropriate for your business
needs and your environment.

Overview of DB2 Concepts

A database manager (sometimes called an instance) is DB2 code that manages
data. It controls what can be done to the data, and manages system resources
assigned to it. Each instance is a complete environment. It contains all the
database partitions defined for a given parallel database system. An instance
has its own databases (which other instances cannot access), and all its
database partitions share the same system directories. It also has separate
security from other instances on the same machine.

A nodegroup is a set of one or more database partitions. When you want to
create tables for the database, you first create the nodegroup where the table
spaces will be stored, then you create the table space where the tables will be

© Copyright IBM Corp. 1993, 1999 3

stored. See “Nodegroups and Data Partitioning” on page 6 for more
information about nodegroups. See “Overview of DB2 Parallelism Concepts”
on page 5 for the definition of a database partition.

A database is organized into parts called table spaces. A table space’s definition
and attributes are recorded in the database system catalog. Once a table space
is created, you can then create tables within this table space. A container is
assigned to a table space. A container is an allocation of physical storage (such
as a file or device). Table spaces reside in nodegroups.

A table consists of data logically arranged in columns and rows. The data in
the table is logically related, and relationships can be defined between tables.
Data can be viewed and manipulated based on mathematical principles and
operations called relations. Table data is accessed via SQL, a standardized
language for defining and manipulating data in a relational database. All
database and table data is assigned to table spaces.

A query is used in applications or by users to retrieve data from a database.
The query uses Structured Query Language (SQL) to create a statement in the
form of

SELECT <data_name> FROM <table_name>

In this chapter we use the term “query” to identify a retrieval request (a
SELECT statement) from a database.

Figure 1 on page 5 illustrates the relationship among the objects just described.
It also illustrates that tables, indexes, and long data are stored in table spaces.

4 Administration Guide Design and Implementation

Overview of DB2 Parallelism Concepts

DB2 extends the database manager to the parallel, multi-node environment. A
database partition is a part of a database that consists of its own data, indexes,
configuration files, and transaction logs. A database partition is sometimes
called a node or database node. (Node was the term used in the DB2 Parallel
Edition for AIX Version 1 product.)

System

Instance(s)

Database(s)

tables

Table space

index(es)

long data

Nodegroup(s)

Figure 1. Relationship Among Some Database Objects

Chapter 1. Introduction to Concepts Within DB2 Universal Database 5

A single-partition database is a database having only one database partition. All
data in the database is stored in that partition. In this case nodegroups, while
present, provide no additional capability.

A partitioned database is a database with two or more database partitions.
Tables can be located in one or more database partitions. When a table is in a
nodegroup consisting of multiple partitions, some of its rows are stored in one
partition and others are stored in other partitions.

Usually, a single database partition exists on each physical node and the
processors on each system are used by the database manager at each database
partition to manage its part of the database’s total data.

Because data is divided across database partitions, you can use the power of
multiple processors on multiple physical nodes to satisfy requests for
information. Data retrieval and update requests are decomposed automatically
into sub-requests and executed in parallel among the applicable database
partitions. The fact that databases are split across database partitions is
transparent to users of SQL statements.

User interaction is through one database partition. It is known as the
coordinator node for that user. The coordinator runs on the same database
partition as the application, or in the case of a remote application, the
database partition to which that application is connected. Any database
partition can be used as a coordinator node.

Nodegroups and Data Partitioning

You can define named subsets of one or more database partitions in a
database. Each subset you define is known as a nodegroup. Each subset that
contains more than one database partition is known as a multi-partition
nodegroup. Multi-partition nodegroups can only be defined with database
partitions that belong to the same instance.

Figure 2 on page 7 shows an example of a database with five partitions in
which:

v A nodegroup spans all but one of the database partitions (Nodegroup 1).
v A nodegroup contains one database partition (Nodegroup 2).
v A nodegroup contains two database partitions.
v The database partition within Nodegroup 2 is shared (and overlaps) with

Nodegroup 1.
v There is a single database partition within Nodegroup 3 that is shared (and

overlaps) with Nodegroup 1.

6 Administration Guide Design and Implementation

You create a new nodegroup using the CREATE NODEGROUP statement.
Refer to the SQL Reference for more information. Data is divided across all the
partitions in a nodegroup. If you are using a multi-partition nodegroup, you
must look at several nodegroup design considerations. For more information
in both of these areas, see “Designing Nodegroups” on page 67.

Types of Parallelism

Parts of a database-related task (such as a database query) can be executed in
parallel in order to speed up the task, often dramatically so. There are
different ways a task is performed in parallel. The nature of the task, the
database configuration, and the hardware environment determine how DB2
will perform a task in parallel. These considerations are interrelated. You
should consider them together when first deciding on the physical and logical
design of a database. This section describes the types of parallelism.

Nodegroup 3

Nodegroup 2

Nodegroup 1

Database

Database
Partition

Database
Partition

Database
Partition

Database
Partition

Database
Partition

Figure 2. Nodegroups in a Database

Chapter 1. Introduction to Concepts Within DB2 Universal Database 7

DB2 supports the following types of parallelism:
v I/O
v Query
v Utility

I/O Parallelism

For situations in which multiple containers exist for a table space, the
database manager can initiate parallel I/O. Parallel I/O refers to the process of
reading from or writing to two or more I/O devices at the same time to
reduce elapsed time. Performing I/O in parallel can result in significant
improvements to I/O throughput.

I/O parallelism is a component of each hardware environment described in
“Hardware Environments” on page 12. Table 1 on page 20 lists the hardware
environments best suited for I/O parallelism.

Query Parallelism

There are two types of query parallelism: inter-query parallelism and
intra-query parallelism.

Inter-query parallelism refers to the ability of multiple applications to query a
database at the same time. Each query will execute independently of the
others, but DB2 will execute all of them at the same time. DB2 has always
supported this type of parallelism.

Intra-query parallelism refers to the processing of parts of a single query at the
same time using either intra-partition parallelism or inter-partition parallelism or
both.

The term query parallelism is used throughout this book.

Intra-Partition Parallelism

Intra-partition parallelism refers to the ability to break up a query into multiple
parts. (Some of the utilities also perform this type of parallelism. See “Utility
Parallelism” on page 11.)

Intra-partition parallelism subdivides what is usually considered a single
database operation such as index creation, database load, or SQL queries into
multiple parts, many or all of which can be executed in parallel within a single
database partition.

8 Administration Guide Design and Implementation

Figure 3 shows a query that is broken into four pieces that can be executed in
parallel, with the results returned more quickly than if the query was run in a
serial fashion. The pieces are copies of each other. To utilize intra-partition
parallelism, you need to configure the database appropriately. You can choose
the degree of parallelism or let the system do it for you. The degree of
parallelism is the number of pieces of a query that execute in parallel.

Table 1 on page 20 lists the hardware environments best suited for
intra-partition parallelism.

Inter-Partition Parallelism

Inter-partition parallelism refers to the ability to break up a query into multiple
parts across multiple partitions of a partitioned database, on one machine or
multiple machines. The query is performed in parallel. (Some of the utilities
also perform this type of parallelism. See “Utility Parallelism” on page 11.)

Inter-partition parallelism subdivides what is usually considered a single
database operation such as index creation, database load, or SQL queries into
multiple parts, many or all of which can be executed in parallel across multiple
partitions of a partitioned database in one machine or multiple machines.

A query is divided
into parts, each being
executed in parallel.

Database Partition

Data

SELECT... FROM...

Figure 3. Intra-Partition Parallelism

Chapter 1. Introduction to Concepts Within DB2 Universal Database 9

Figure 4 shows a query that is broken into four pieces that can be executed in
parallel, with the results returned more quickly than if the query was run in a
serial fashion in a single partition.

The degree of parallelism is largely determined by the number of partitions
you create and how you define your nodegroups.

Table 1 on page 20 lists the hardware environments best suited for
inter-partition parallelism.

Using Both Intra-Partition and Inter-Partition Parallelism

You can use intra-partition parallelism and inter-partition parallelism at the
same time. This combination provides, in effect, two dimensions of
parallelism. This results in an even more dramatic increase in the speed at
which queries are processed. Figure 5 on page 11 illustrates this.

Database Partition Database Partition Database Partition Database Partition

A query is divided
into parts, each being
executed in parallel.

Data Data Data Data

SELECT... FROM...

Figure 4. Inter-Partition Parallelism

10 Administration Guide Design and Implementation

Utility Parallelism

DB2’s utilities can take advantage of intra-partition parallelism. They can also
take advantage of inter-partition parallelism; where multiple database
partitions exist, the utilities execute in each of the partitions in parallel. The
following paragraphs describe how some utilities take advantage of
parallelism.

The LOAD utility can take advantage of intra-partition parallelism and I/O
parallelism. Loading data is a heavily CPU-intensive task. The LOAD utility
takes advantage of multiple processors for tasks such as parsing and
formatting data. Also, the LOAD utility can use parallel I/O servers to write
the data to the containers in parallel. Refer to the Data Movement Utilities
Guide and Reference or the LOAD command in the Command Reference for
information on how to enable parallelism for the LOAD utility.

In a partitioned database environment, the AutoLoader utility takes advantage
of intra-partition, inter-partition, and I/O parallelism by parallel invocations
of load at each database partition where the table resides. Refer to Data
Movement Utilities Guide and Reference for more information about the
AutoLoader utility.

During index creation, the scanning and subsequent sorting of the data occurs
in parallel. DB2 exploits both I/O parallelism and intra-partition parallelism
when creating an index. This helps to speed up index creation when a

Database PartitionDatabase Partition

A query is divided
into parts, each being
executed in parallel.

DataData

SELECT... FROM...

SELECT... FROM... SELECT... FROM...

Figure 5. Both Inter-Partition and Intra-Partition Parallelism

Chapter 1. Introduction to Concepts Within DB2 Universal Database 11

CREATE INDEX command is issued, during restart (if an index is marked
invalid), and during the reorganization of data.

Backing up and restoring data are heavily I/O bound tasks. DB2 exploits both
I/O parallelism and intra-partition parallelism when performing backups and
restores. Backup exploits I/O parallelism by reading from multiple table space
containers in parallel, and asynchronously writing to multiple backup media
in parallel. Refer to the BACKUP DATABASE command and the RESTORE
DATABASE command in the Command Reference for information on how to
enable parallelism for these two commands.

Hardware Environments

This section provides an overview of the following hardware environments:
v Single partition on a single processor (uniprocessor)
v Single partition with multiple processors (SMP)
v Multiple partition configurations

– Partitions with one processor (MPP)
– Partitions with multiple processors (cluster of SMPs)
– Logical database partitions (also known as Multiple Logical Nodes

(MLN) in DB2 Parallel Edition for AIX Version 1)

In each hardware environment section, considerations for capacity and
scalability are described. Capacity refers to the number of users and
applications able to access the database in large part determined by memory,
agents, locks, I/O, and storage management. Scalability refers to the ability for a
database to grow and continue to exhibit the same operating characteristics and
response times.

Single Partition on a Single Processor

This environment is made up of memory and disk, but contains only a single
CPU. This environment has been given many names such as: standalone
database, client/server database, serial database, uniprocessor system, and
single node/non-parallel environment. Figure 6 on page 13 illustrates this
environment.

12 Administration Guide Design and Implementation

The database in this environment serves the needs of a department or small
office where the data and system resources (including only a single processor
or CPU) are managed by a single database manager.

Table 1 on page 20 lists the types of parallelism best suited to take advantage
of this hardware configuration.

Capacity and Scalability

In this environment you can add more disks. Having one or more I/O servers
for each disk allows for more than one I/O operation to be taking place at the
same time. You can also add more hard disk space to this environment.

A single-processor system is restricted by the amount of disk space the
processor can handle. However, as workload increases a single CPU may
become insufficient in processing user requests any faster, regardless of other
additional components, such as memory or disk, that you may add.

If you have reached maximum capacity or scalability, you can consider
moving to a single partition system with multiple processors. This
configuration is described in the next section.

CPU

Memory

Database Partition

Uniprocessor machine

Disks

Figure 6. Single Partition On a Single Processor

Chapter 1. Introduction to Concepts Within DB2 Universal Database 13

Single Partition with Multiple Processors

This environment is typically made up of several equally powerful processors
within the same machine and is called a symmetric multi-processor (SMP)
system. Resources such as disk space and memory are shared. More disks and
memory are found in this machine compared to the single-partition database,
single processor environment. This environment is easy to manage since
physically everything is together in one machine and the sharing of memory
and disks is expected.

With multiple processors available, different database operations can be
completed significantly more quickly than with databases assigned to only a
single processor. DB2 can also divide the work of a single query among
available processors to improve processing speed. Other database operations
such as the LOAD utility, the backup and restore of table spaces, and index
creation on existing data can take advantage of the multiple processors.
Figure 7 illustrates this environment.

Table 1 on page 20 lists the types of parallelism best suited to take advantage
of this hardware configuration.

CPU CPU CPU CPU

Database Partition

Memory

SMP machine

Disks

Figure 7. Single Partition Database Symmetric Multiprocessor System

14 Administration Guide Design and Implementation

Capacity and Scalability

In this environment you can add more processors. However, since it is
possible for the different processors to attempt to access the same data,
limitations with this environment can appear as your business operations
grow. With shared memory and shared disks, you are effectively sharing all of
the database data. One application on one processor may be accessing the
same data as another application on another processor, possibly causing the
second application to wait for access to the data.

You can increase the I/O capacity of the database partition associated with
your processor, such as the number of disks. You can establish I/O servers to
specifically deal with I/O requests. Having one or more I/O servers for each
disk allows for more than one I/O operation to take place at the same time.

If you have reached maximum capacity or scalablity, you can consider moving
to a system with multiple partitions. These configurations are described in the
next section.

Multiple Partition Configurations

You can divide a database into multiple partitions, each on its own machine.
Multiple machines with multiple database partitions can be grouped together.
This section describes the following partition configurations:
v Partitions on systems each with one processor
v Partitions on systems each with multiple processors
v Logical database partitions

Partitions with One Processor

In this environment there are many database partitions with each partition on
its own machine and having its own processor, memory, and disks. Figure 8
on page 16 illustrates this. A machine consists of a CPU, memory, and disk
with all machines connected by a communications facility. Other names that
have been given to this environment include: a cluster, a cluster of
uniprocessors, a massively parallel processing (MPP) environment, or a
shared-nothing configuration. The latter name accurately reflects the
arrangement of resources in this environment. Unlike an SMP environment,
an MPP environment has no shared memory or disks. The MPP environment
removes the limitations introduced through the sharing of memory and disks.

Chapter 1. Introduction to Concepts Within DB2 Universal Database 15

A partitioned database environment allows a database to remain a logical
whole while being physically divided across more than one partition. To
applications or users, the database can be used as a whole and the fact that
data is partitioned remains transparent to most users. The work to be done
with the data can be divided out to each of the database managers. Each
database manager in each partition works against its own part of the
database.

Table 1 on page 20 lists the types of parallelism best suited to take advantage
of this hardware configuration.

Capacity and Scalability: In this environment you can add more database
partitions (nodes) to your configuration. On some platforms, for example the
RS/6000 SP, the maximum is 512 nodes. However, there may be practical
limits for managing a high number of machines and instances.

If you have reached maximum capacity or scalability, you can consider
moving to a system where each partition has multiple processors. This
configuration is described in the next section.

CPU CPU CPU CPU

Memory Memory Memory Memory

Communications Facility

Uniprocessor machineUniprocessor machine Uniprocessor machine Uniprocessor machine

Database Partition Database Partition Database Partition Database Partition

Disks Disks Disks Disks

Figure 8. Massively Parallel Processing System

16 Administration Guide Design and Implementation

Partitions with Multiple Processors

As an alternative to a configuration in which each partition has a single
processor is a configuration in which a partition has multiple processors. This
is known as an SMP cluster.

This configuration combines the advantages of SMP and MPP parallelism.
This means a query can be performed in a single partition across multiple
processors. It also means that a query can be performed in parallel across
multiple partitions.

Table 1 on page 20 lists the types of parallelism best suited to take advantage
of this hardware configuration.

Capacity and Scalability: In this environment you can add more database
partitions, as in the previous section. You can also add more processors to
existing database partitions.

CPU CPUCPU CPUCPU CPUCPU CPU

Memory Memory

Database Partition

Communications Facility

Database Partition

SMP machine SMP machine

Disks Disks

Figure 9. Cluster of SMPs

Chapter 1. Introduction to Concepts Within DB2 Universal Database 17

Logical Database Partitions

A logical database partition differs from a physical partition in that it is not
given control of an entire machine. Although the machine has shared
resources, the database partitions do not share the resources. Processors are
shared but disk and memory are not.

One reason for using logical database partitions is to provide scalability.
Multiple database managers running in multiple logical partitions may be able
to make fuller use of available resources than a single database manager
could. This will become more true as machines with even more processors are
manufactured. Figure 10 illustrates the fact that you may gain more scalability
on an SMP machine by adding more partitions, particularly for machines with
many processors. By partitioning the database, you can administer and
recover each partition separately.

CPU CPUCPU CPU

Database Partition 1 Database Partition 2

Big SMP machine

Communications Facility

Memory Memory

DisksDisks

Figure 10. Partitioned Database, Symmetric Multiprocessor System

18 Administration Guide Design and Implementation

Figure 11 illustrates the fact that you can multiply the configuration shown in
Figure 10 on page 18 to increase processing power.

Note also that the ability to have two or more partitions coexist on the same
machine (regardless of the number of processors) allows greater flexibility in
designing high availability configurations and failover strategies. See
“Chapter 12. High Availability Cluster Multi-Processing (HACMP) on AIX” on
page 515 for a description of how, upon machine failure, a database partition
can be automatically moved and restarted on another machine already
containing another partition of the same database.

Table 1 on page 20 lists the types of parallelism best suited to take advantage
of this hardware environment.

Summary of Parallelism Best Suited To Each Hardware Environment

The following table summarizes the types of parallelism best suited to the
various hardware environments.

CPU CPUCPU CPUCPU CPUCPU CPU

Database
Partition 1

Database
Partition 3

Database
Partition 2

Database
Partition 4

Big SMP machine Big SMP machine

Communications Facility

Communications Facility Communications Facility

Memory MemoryMemory Memory

DisksDisks Disks Disks

Figure 11. Partitioned Database, Symmetric Multiprocessor Systems Clustered Together

Chapter 1. Introduction to Concepts Within DB2 Universal Database 19

Table 1. Types of Parallelism Possible for Each Hardware
Environment

Hardware Environment I/O
Parallelism

Intra-Query Parallelism

Intra-Partition
Parallelism

Inter-Partition
Parallelism

Single Partition,
Single Processor

Yes No(1) No

Single Partition,
Multiple Processors (SMP)

Yes Yes No

Multiple Partitions,
One Processor (MPP)

Yes No(1) Yes

Multiple Partitions,
Multiple Processors
(cluster of SMPs)

Yes Yes Yes

Logical Database Partitions Yes Yes Yes

Note: (1) There may be an advantage to setting the degree of parallelism
(using one of the configuration parameters) to greater than one even on a
single CPU system, especially if the queries you execute are not fully
utilizing the CPU (for example if they are I/O bound).

Enabling Parallelism for Queries

There are two types of query parallelism: intra-partition parallelism and
inter-partition parallelism. Either type, or both types, can be used depending
on whether the environment is a single-partition or multi-partition
environment.

Enabling Intra-Partition Query Parallelism

In order for intra-partition query parallelism to occur, you must modify
database configuration parameters and database manager configuration
parameters.

INTRA_PARALLEL
Database manager configuration parameter. Refer to Administration
Guide, Performance for more information on this parameter.

DFT_DEGREE
Database configuration parameter. Provides the default for the
DEGREE bind option and the CURRENT DEGREE special register.
Refer to Administration Guide, Performance for more information on this
parameter.

DEGREE
Precompile or bind option for static SQL. Refer to the Command
Reference for more information.

20 Administration Guide Design and Implementation

CURRENT DEGREE
Special register for dynamic SQL. Refer to the SQL Reference for more
information.

For more information on the configuration parameter settings, and how to
enable applications to process in parallel, refer to ″Configuring DB2″ in the
Administration Guide, Performance.

Enabling Inter-Partition Query Parallelism

Inter-partition parallelism occurs automatically based on the number of
database partitions and the distribution of data across these partitions.

Enabling Utility Parallelism

This section provides an overview of how to enable intra-partition parallelism
for the following utilities:
v Load
v Create index
v Backup database / table space
v Restore database / table space

Inter-partition parallelism for utilities occurs automatically based on the
number of database partitions.

Load

The Load utility automatically makes use of parallelism, or you can use the
following parameters on the LOAD command:
v CPU_PARALLELISM
v DISK_PARALLELISM

Refer to the Data Movement Utilities Guide and Reference for information on the
LOAD command.

AutoLoader

You can enable multiple split processes for the AutoLoader by specifying the
MODIFIED BY ANYORDER parameter for the LOAD specification in the
autoloader.cfg file. Refer to Administration Guide, Performance for more
information on this LOAD specification and the configuration file.

Create Index

To enable parallelism when creating an index:

Chapter 1. Introduction to Concepts Within DB2 Universal Database 21

v The INTRA_PARALLEL database manager configuration parameter must be
ON

v The table must be large enough to benefit from parallelism
v Multiple processors must be enabled on an SMP machine.

Refer to the SQL Reference for information on the CREATE INDEX statement.

Backup Database / Table Space

To enable I/O parallelism when backing up a database or table space:
v Use more than one target media.
v Configure table spaces for parallel I/O.
v Use the PARALLELISM parameter on the BACKUP command to specify the

degree of parallelism.
v Use the WITH num-buffers BUFFERS parameter on the BACKUP command

to ensure enough buffers are available to accommodate the degree of
parallelism. The number of buffers should equal the number of target
media you have plus the degree of parallelism selected plus a few extra.
Also, use a backup buffer size that is:
– As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule of

thumb.
– At least as large as the largest (extentsize * number of containers)

product of the table spaces being backed up.

Refer to the Command Reference for information on the BACKUP DATABASE
command.

Restore Database / Table Space

To enable I/O parallelism when restoring a database or table space:
v Use more than one source media.
v Configure table spaces for parallel I/O.
v Use the PARALLELISM parameter on the RESTORE command to specify

the degree of parallelism.
v Use the WITH num-buffers BUFFERS parameter on the RESTORE

command to ensure enough buffers are available to accommodate the
degree of parallelism. The number of buffers should equal the number of
target media you have plus the degree of parallelism selected plus a few
extra.
Also, use a restore buffer size that is:
– As large as feasible. 4 MB or 8 MB (1024 or 2048 pages) is a good rule of

thumb.

22 Administration Guide Design and Implementation

– At least as large as the largest (extentsize * number of containers)
product of the table spaces being restored.

– The same as, or an even multiple of, the backup buffer size.

Refer to the Command Reference for information on the RESTORE DATABASE
command.

Federated Database System Concepts

A federated database system or federated system is a database management system
(DBMS) that supports applications and users submitting SQL statements
referencing two or more DBMSs or databases in a single statement. An
example is a join between tables in two different DB2 databases. This type of
statement is called a distributed request.

A DB2 UDB Version 6 federated system provides support for distributed
requests across databases and DBMSs. You can, for example, perform a
UNION operation between a DB2 table and an Oracle view. Supported
DBMSs include DB2, members of the DB2 Family (such as DB2 for OS/390
and DB2 for AS/400), and Oracle.

A DB2 federated system provides location transparency for database objects. If
information (tables and views) is moved, references to that information (called
nicknames) can be updated without any changes to applications that request
the information. A DB2 federated system also provides compensation for
DBMSs that do not support all of the DB2 SQL dialect or certain optimization
capabilities. Operations that cannot be performed at a DBMS, such as
recursive SQL, are run at DB2.

A DB2 federated system functions in a semi-autonomous manner: DB2 queries
containing references to Oracle objects can be submitted while Oracle
applications are accessing the same server. A DB2 federated system does not
monopolize or restrict access to Oracle or other DBMS objects (beyond
integrity/locking constraints).

A DB2 federated system consists of a DB2 UDB Version 6 instance, a database
that will serve as the federated database, and one or more data sources. The
federated database contains catalog entries identifying data sources and their
characteristics. A data source consists of a DBMS and data. Applications
connect to the federated database just like any other DB2 database. See
Figure 12 on page 24 for a visual representation of a federated database
environment.

Chapter 1. Introduction to Concepts Within DB2 Universal Database 23

DB2 federated database catalog entries contain information about data source
objects: what they are called, information they contain, and conditions under
which they can be used. Because this DB2 catalog stores information about
objects in many DBMSs, it is called a global catalog. Object attributes are stored
in the catalog. The actual DBMSs being referenced, modules used to
communicate with the data source, and DBMS data objects (such as tables)
that will be accessed are outside the database. (One exception: the federated
database can be a data source for the federated system.) You can create
federated objects using the Control Center or SQL DDL statements. Required
federated database objects are:

Figure 12. A Federated Database System

24 Administration Guide Design and Implementation

Wrappers
Identify the modules (dll, library, etc.) used to access a particular class
or category of data source.

Servers
Define data sources. Server data includes the wrapper name, server
name, server type, server version, authorization information, and
server options.

Nicknames
Identifiers stored in the federated database that reference specific data
source objects (tables, aliases, views). Applications reference
nicknames in queries just like they reference tables and views.

Depending on your specific needs, you can create additional objects:

v User mappings, to address authentication issues
v Data type mappings, to customize the relationship between a data source

type and an DB2 type
v Function mappings, to map a local function to a data source function
v Index specifications, to speed performance

After a federated system is set up, the information in data sources can be
accessed as if it was in one big database. Users and applications send queries
to one federated database, which then retrieves data from DB2 Family and
Oracle systems as needed. User and applications specify nicknames in queries;
these nicknames provide references to tables and views located at data
sources. From an end-user perspective, nicknames are similar to aliases.

There are many factors affecting federated system performance. The most
critical step is to ensure that accurate and up-to-date information about data
sources and their objects is stored in the federated database global catalog.
This information is used by the DB2 optimizer and can affect decisions to
push down operations for evaluation at data sources. See the Administration
Guide, Performance for additional information on federated system
performance.

A DB2 federated system operates under some restrictions. Distributed requests
are limited to read-only operations. In addition, you cannot execute utility
operations (LOAD, REORG, REORGCHK, IMPORT, RUNSTATS, and so on)
against nicknames.

You can, however, use a pass-through facility to submit DDL and DML
statements directly to database managers using the SQL dialect associated
with that data source.

Chapter 1. Introduction to Concepts Within DB2 Universal Database 25

Federated systems tolerate parallel environments. Performance gains are
delimited by the extent to which a federated database query can be
semantically broken down into local object (table, view) references and
nickname references. Requests for nickname data are processed sequentially;
local objects can be processed in parallel. For example, given the query SELECT
* FROM A, B, C, D where A and B are local tables and C and D are nicknames
referencing tables at Oracle data sources, one possible plan would join tables
A and B with a parallel join. The results are then joined sequentially with
nicknames C and D.

Enabling a Federated System

DB2 Extended Edition and DB2 Enterprise Extended Edition can support
federated databases. To enable a federated system:
1. Select the distributed join installation option of DB2 EE or EEE during

installation
2. Set the database manager configuration parameter federated to “YES”
3. Create wrappers, servers, and nicknames (see “Creating a Database” on

page 145 for more information)

4. Create additional objects or set options as required (see “Chapter 4.
Implementing Your Design” on page 99 for more information)

26 Administration Guide Design and Implementation

Part 2. Database Design and Implementation

© Copyright IBM Corp. 1993, 1999 27

28 Administration Guide Design and Implementation

Chapter 2. Designing Your Logical Database

This section describes the following steps in database design:
v “Decide What Data to Record in the Database”

v “Define Tables for Each Type of Relationship” on page 31

v “Provide Column Definitions for All Tables” on page 34

v “Identify One or More Columns as a Primary Key” on page 36

v “Be Sure Equal Values Represent the Same Entity” on page 38

v “Consider Normalizing Your Tables” on page 39

v “Planning for Constraint Enforcement” on page 44

v “Other Database Design Considerations” on page 51.

Your goal in designing a database is to produce a representation of your
environment that is easy to understand and will serve as a basis for
expansion. In addition, you want a database design that will help you
maintain consistency and integrity in your data. You can do this by producing
a design that will reduce redundancy and eliminate anomalies that can occur
during the updating of your database.

These steps are part of logical database design. Database design is not a linear
process; you will probably have to redo steps as you work out the design.

The physical implementation of the database design is described in “Chapter 3.
Designing Your Physical Database” on page 55 and “Chapter 4. Implementing
Your Design” on page 99.

Decide What Data to Record in the Database

The first step in developing a database design is to identify the types of data
to be stored in database tables. A database includes information about the
entities in an organization or business and their relationships to each other. In
a relational database, entities are defined as tables.

An entity is a person, object, or concept about which you wish to store
information. Some of the entities described in the sample tables are
employees, departments, and projects. (Refer to the “Sample Tables” in the
Administration Guide, Performance, for a description of the sample database.)

© Copyright IBM Corp. 1993, 1999 29

In the sample employee table, the entity “employee” has attributes, or
properties, such as employee number, name, work department, and salary
amount. Those properties appear as the columns EMPNO, FIRSTNME,
LASTNAME, WORKDEPT, and SALARY.

An occurrence of the entity “employee” consists of the values in all of the
columns for one employee. Each employee has a unique employee number
(EMPNO) that can be used to identify an occurrence of the entity “employee”.

Each row in a table represents an occurrence of an entity or relationship. For
example, in the following table the values in the first row describe an
employee named Haas.

Table 2. Occurrences of Employee Entities and their Attributes

EMPNO FIRSTNME LASTNAME WORKDEPT JOB

000010 Christine Haas A00 President

000020 Michael Thompson B01 Manager

000120 Sean O’Connell A00 Clerk

000130 Dolores Quintana C01 Analyst

000030 Sally Kwan C01 Manager

000140 Heather Nicholls C01 Analyst

000170 Masatoshi Yoshimura D11 Designer

There is a growing need to support non-traditional database applications such
as multimedia. Within your design, you may want to consider attributes to
support multimedia objects such as documents, video or mixed media, image,
and voice.

In a table, each column of a row is related in some way to all the other
columns of that row. Some of the relationships expressed in the sample tables
are:
v Employees are assigned to departments

Dolores Quintana is assigned to Department C01
v Employees perform a job

Dolores works as an Analyst
v Departments report to other departments

Department C01 reports to Department A00
Department B01 reports to Department A00

v Employees work on projects
Dolores and Heather both work on project IF1000

v Employees manage departments

30 Administration Guide Design and Implementation

Sally manages department C01.

Before you design your tables, you must understand entities and their
relationships. “Employee” and “department” are entities; Sally Kwan is part
of an occurrence of “employee,” and C01 is part of an occurrence of
“department”.

The same relationship applies to the same columns in every row of a table.
For example, one row of a table expresses the relationship that Sally Kwan
manages Department C01; another, the relationship that Sean O’Connell is a
clerk in Department A00.

The information contained within a table depends on the relationships to be
expressed, the amount of flexibility needed, and the data retrieval speed
desired.

In addition to identifying data within your design, you should also identify
other types of information such as the business rules which apply to that data.

Define Tables for Each Type of Relationship

In a database, you can express several types of relationships. Consider the
possible relationships between employees and departments. An employee can
work in only one department; this relationship is single-valued for employees.
On the other hand, one department can have many employees; the
relationship is multi-valued for departments. The relationship between
employees (single-valued) and departments (multi-valued) is a one-to-many
relationship. Relationships can be one-to-many, many-to-one, one-to-one, or
many-to-many.

The type of a given relationship can vary, depending on the specific
environment. If employees of a company belong to several departments, the
relationship between employees and departments is many-to-many.

You will want to define separate tables for different types of relationships.

The following topics are discussed within this section:
v “One-to-Many and Many-to-One Relationships”

v “Many-to-Many Relationships” on page 32

v “One-to-One Relationships” on page 33

One-to-Many and Many-to-One Relationships

To define tables for each one-to-many and many-to-one relationship:

Chapter 2. Designing Your Logical Database 31

v Group all the relationships for which the “many” side of the relationship is
the same entity.

v Define a single table for all the relationships in a group.

In the following example, the “many” side of the first and second
relationships is “employees” so we define an employee table, EMPLOYEE.

Table 3. Many-to-One Relationships

Entity Relationship Entity

Employees are assigned to departments

Employees work at jobs

Departments report to (administrative) departments

In the third relationship, “departments” is the “many” side, so we define a
department table, DEPARTMENT.

The following tables illustrate how these examples are represented:

Many-to-Many Relationships

A relationship that is multi-valued in both directions is a many-to-many
relationship. An employee can work on more than one project, and a project

The EMPLOYEE table:

EMPNO WORKDEPT JOB

000010 A00 President

000020 B01 Manager

000120 A00 Clerk

000130 C01 Analyst

000030 C01 Manager

000140 C01 Analyst

000170 D11 Designer

The DEPARTMENT table:

DEPTNO ADMRDEPT

C01 A00

D01 A00

D11 D01

Figure 13. Assigning Many-to-One Facts to Tables

32 Administration Guide Design and Implementation

can have more than one employee. The questions “What does Dolores
Quintana work on?” and “Who works on project IF1000?” both yield multiple
answers. A many-to-many relationship can be expressed in a table with a
column for each entity (“employees” and “projects”), as shown in the
following example.

The following table illustrates how a many-to-many relationship (an employee
can work on many projects and a project can have many employees working
on it) can be represented:

One-to-One Relationships

One-to-one relationships are single-valued in both directions. A manager
manages one department; a department has only one manager. The questions,
“Who is the manager of Department C01?” and “What department does Sally
Kwan manage?” both have single answers. The relationship can be assigned
to either the DEPARTMENT table or the EMPLOYEE table. Because all
departments have managers, but not all employees are managers, it is most
logical to add the manager to the DEPARTMENT table as shown in the
following example.

The following tables illustrates how a one-to-one relationship can be
represented:

The employee activity (EMP_ACT) table:

EMPNO PROJNO

000030 IF1000

000030 IF2000

000130 IF1000

000140 IF2000

000250 AD3112

Figure 14. Assigning Many-to-Many Facts to Tables

Chapter 2. Designing Your Logical Database 33

Provide Column Definitions for All Tables

To define a column in a relational table:
1. Choose a name for the column

Each column in a table must have a name that is unique within the table.
Selecting column names is described in detail in “Appendix D. Naming
Rules” on page 691.

2. State what kind of data is valid for the column
The data type and length specify maximum length and the type of data that
is valid for the column. Data types may be chosen from those provided by
the database manager or you may choose to create your own user-defined
types. For information about the data types provided by DB2 and about
user-defined types, refer to the SQL Reference manual.
Examples of data type categories are: numeric, character string,
double-byte (or graphic) character string, date-time, and binary string.
Large object (LOB) data types support multi-media objects such as
documents, video, image and voice. These large objects are implemented
using the following data types:
v A binary large object (BLOB) string. Examples of BLOBs are photographs

of employees, voice, and video.
v A character large object (CLOB) string, where the sequence of characters

can be either single- or multi-byte characters, or a combination of both.
An example of a CLOB is a resume of an employee.

v A double-byte character for large object (DBCLOB) string, where the
sequence of characters are double-byte characters. An example of a
DBCLOB is a Japanese resume.

For a better understanding of large object support, refer to the SQL
Reference manual.

The DEPARTMENT table:

DEPTNO MGRNO

A00 000010

B01 000020

D11 000060

Figure 15. Assigning One-to-One Facts to a Table

34 Administration Guide Design and Implementation

A user-defined type (UDT), is a type that is derived from an existing type.
You may need to define types that are derived from existing types that
share similar characteristics, but are considered to be separate and
incompatible types.

A structured type is a user-defined type that has a structure that is defined
in the database. It contains a sequence of named attributes, each of which
has a data type. A structured type may be defined as a subtype of another
structured type, called its supertype. A subtype inherits all the attributes of
its supertype and may have additional attributes defined. The set of
structured types that are related to a common supertype is called a type
hierarchy and the supertype that does not have any supertype is called the
root type of the type hierarchy.

A structured type may be used as the type of a table or a view. The names
and data types of the attributes of the structured types, together with the
object identifier, become the names and data types of the columns of this
typed table or typed view. Rows of the typed table or typed view can be
thought of as a representation of instances of the structured type.

A structured type cannot be used as the data type of a column of a table
or a view. There is also no support for retrieving a whole structured type
instance into a host variable in an application program.

A reference type is a companion type to the structured type. Similar to a
distinct type, a reference type is a scalar type that shares a common
representation with one of the built-in data types. This same representation
is shared for all types in the type hierarchy. The reference type
representation is defined when the root type of a type hierarchy is created.
When using a reference type, a structured type is specified as a parameter
of the type. This parameter is called the target type of the reference.

The target of a reference is always a row in a typed table or view. When a
reference type is used, it may have a scope defined. The scope identifies a
table (called the target table) or view (called the target view) that contains
the target row of a reference value. The target table or view must have the
same type as the target type of the reference type. An instance of a scoped
reference type uniquely identifies a row in a typed table or typed view,
called its target row.

A User-defined function (UDF) may be used for a number of reasons,
including invoking routines that allow comparison or conversion between
user-defined types. UDFs extend and add to the support provided by
built-in functions of SQL and can be used wherever a built-in function can
be used. There are two types of UDFs:
v An external function, which is written in a programming language

Chapter 2. Designing Your Logical Database 35

v A sourced function, which will be used to invoke other UDFs

For example, two numeric data types are European Shoe Size and
American Shoe Size. Both types share the same representations of shoe
size, but they are incompatible because the measurement base is different
and cannot be compared. When this occurs, a user-defined function can be
invoked to convert from one shoe size to another.

During your design, you may have to consider functions for your UDTs.
For a better understanding of user-defined types, structured types,
reference types, and user-defined functions, refer to the SQL Reference
manual.

3. State which columns might need default values
Some columns cannot have meaningful values in all rows because:
v A value of the column is not applicable to the row.

For example, a column containing an employee’s middle initial is not
applicable to an employee who has no middle initial.

v A value is applicable, but the value is not known at this time.
As an example, the MGRNO column might not contain a valid manager
number because the previous manager of the department has been
transferred and a new manager has not been appointed yet.

In both situations, you can choose between allowing a null value (a special
value indicating that the column value is unknown or inapplicable) or
allowing a non-null default value to be assigned by the database manager
or by the application.

Null values and default values are described in detail in the SQL Reference
manual.

Identify One or More Columns as a Primary Key

The unique key of a table is a column or an ordered collection of columns for
which each value identifies (functionally determines) a unique row. For
example, an employee number column can be defined as a unique key,
because each value in the column identifies only one employee. No two
employees can have the same employee number.

The primary key of a table is one of the unique keys defined on a table but is
selected to be the key of first importance on the table. There can only be one
primary key on a table.

A primary index is automatically created for the primary key. The primary
index is used by the database manager for efficient access to table rows and

36 Administration Guide Design and Implementation

allows the database manager to enforce the uniqueness of the primary key. At
other times the database manager may use other columns with indexes
defined, and not only the primary key and index, to access data when
processing queries.

Several columns could qualify as a candidate to be the primary key for a
table. Each of the candidate columns could be considered unique. You could
have all of the columns as part of the primary key but this would create an
overly complex primary key. You should consider having just one of the
columns as the primary key and then creating unique constraints or unique
indexes on one or more of the other columns.

In some cases, using a timestamp as part of the key can be helpful, for
example when a table does not have a “natural” unique key or if arrival
sequence is the method used to distinguish unique rows.

Primary keys for some of the sample tables are:

Table Key Column

Employee table EMPNO

Department table DEPTNO

Project table PROJNO

The following example shows part of the project table with the primary key
column indicated.

Table 4. A Primary Key on the PROJECT Table

PROJNO (Primary Key) PROJNAME DEPTNO

MA2100 Weld Line Automation D01

MA2110 Weld Line Programming D11

If every column in a table contains duplicate values, you cannot define a
primary key with only one column. In this case, you can list two or more
columns for the primary key. A key with more than one column is a composite
key. The combination of column values should define a unique entity. If a
composite key cannot be easily assigned, you may consider defining a new
column that has unique values.

The following example shows a primary key containing more than one
column; it is a composite key.

Chapter 2. Designing Your Logical Database 37

Table 5. A Composite Primary Key on the EMP_ACT Table

EMPNO
(Primary Key)

PROJNO
(Primary Key)

ACTNO
(Primary Key)

EMPTIME EMSTDATE
(Primary Key)

000250 AD3112 60 1.0 1982-01-01

000250 AD3112 60 .5 1982-02-01

000250 AD3112 70 .5 1982-02-01

Identifying Candidate Key Columns

To identify candidate keys, select the smallest number of columns that define
a unique entity. There may be more than one candidate key. In Table 19 on
page 46, there appear to be many candidate keys. The EMPNO column, the
PHONENO, and the LASTNAME each uniquely identify the employee.

The criteria for selecting a primary key from a pool of candidate keys should
be persistence, uniqueness, and stability of the key.

v Persistence means that the primary key is always present for the row.
v Uniqueness means that each key value is and always will be different for

each row.
v Stability means that the primary key should not be changed to another

value.

Of the three candidate keys in the example, only the employee number meets
the above criteria. An employee may not have a phone number when joining
a company. Last names can change, and, although they are unique at one
point, are not always guaranteed to be so. Therefore, the employee number
column is the better choice for the primary key. An employee is assigned a
unique number only once, and that number is generally not updated as long
as the employee remains with the company. Since each employee must have a
number, the employee number column is persistent.

Be Sure Equal Values Represent the Same Entity

You can have more than one table describing properties of the same set of
entities. For example, the EMPLOYEE Table shows the number of the
department to which an employee is assigned, and the DEPARTMENT Table
shows which manager is assigned to each department number. To retrieve
both sets of properties simultaneously, you can join the two tables on the
matching columns, as shown in the following example. The value in
WORKDEPT and DEPTNO represent the same entity and represent a join path
between the DEPARTMENT and EMPLOYEE tables.

38 Administration Guide Design and Implementation

When you retrieve information about an entity from more than one table,
make sure equal values represent the same entity. The connecting columns can
have different names (like WORKDEPT and DEPTNO in the previous
example), or they can have the same name (like the columns called DEPTNO
in the department and project tables).

Consider Normalizing Your Tables

The topic of normalizing tables draws much attention in database design.
Normalization helps you avoid redundancies and inconsistencies in your data.
The main idea in normalization is to reduce tables to a set of columns where
all the non-key columns depend on the entire primary key of the table. If this
is not the case, the data can become inconsistent during updating.

This section briefly reviews the rules for first, second, third, and fourth
normal forms of tables, and describes some reasons why they should or
should not be followed. The fifth normal form of a table, which is covered in
many books on database design, is not described here.

Here are brief descriptions of the normal forms presented later:

Form Description

First At each row and column position in the table there exists one value,
never a set of values. (See “First Normal Form” on page 40)

Second Each column that is not in the key provides a fact that depends on the
entire key. (See “Second Normal Form” on page 40)

Third Each non-key column provides a fact that is independent of other
non-key columns and depends only on the key. (See “Third Normal
Form” on page 42)

Fourth No row contains two or more independent multi-valued facts about
an entity. (See “Fourth Normal Form” on page 43)

The DEPARTMENT table:

DEPTNO DEPTNAME MGRNO ADMRDEPT

D21 Administration
Support

000070 D01

The EMPLOYEE table:

EMPNO FIRSTNAME LASTNAME WORKDEPT JOB

000250 Daniel Smith D21 Clerk

Figure 16. A Join Path between Two Tables

Chapter 2. Designing Your Logical Database 39

First Normal Form

A table satisfies the requirement of first normal form if for each
row-and-column position in the table there exists one value, never a set of
values. A table that is in first normal form does not necessarily meet the test
for higher normal forms.

For example, the following table violates first normal form because the
WAREHOUSE column contains several values for each occurrence of PART.

Table 6. Table Violating First Normal Form

PART (Primary Key) WAREHOUSE

P0010 Warehouse A, Warehouse B, Warehouse C

P0020 Warehouse B, Warehouse D

The following example shows the table in first normal form.

Table 7. Table Conforms to First Normal Form

PART (Primary Key) WAREHOUSE (Primary
Key)

QUANTITY

P0010 Warehouse A 400

P0010 Warehouse B 543

P0010 Warehouse C 329

P0020 Warehouse B 200

P0020 Warehouse D 278

Second Normal Form

A table is in second normal form if each column that is not in the key
provides a fact that depends on the entire key.

This means that all data that is not part of the primary key must depend on
all of the columns in the key. This reduces repetition among database tables.

Second normal form is violated when a non-key column is a fact about a
subset of a composite key, as in the following example. An inventory table
records quantities of specific parts stored at particular warehouses; its
columns are shown in the following example.

Table 8. Table Violates Second Normal Form

PART (Primary
Key)

WAREHOUSE
(Primary Key)

QUANTITY WAREHOUSE_ADDRESS

P0010 Warehouse A 400 1608 New Field Road

40 Administration Guide Design and Implementation

Table 8. Table Violates Second Normal Form (continued)

PART (Primary
Key)

WAREHOUSE
(Primary Key)

QUANTITY WAREHOUSE_ADDRESS

P0010 Warehouse B 543 4141 Greenway Drive

P0010 Warehouse C 329 171 Pine Lane

P0020 Warehouse B 200 4141 Greenway Drive

P0020 Warehouse D 278 800 Massey Street

Here, the key consists of the PART and the WAREHOUSE columns together.
Because the column WAREHOUSE_ADDRESS depends only on the value of
WAREHOUSE, the table violates the rule for second normal form.

The problems with this design are:
v The warehouse address is repeated in every record for a part stored in that

warehouse.
v If the address of the warehouse changes, every row referring to a part

stored in that warehouse must be updated.
v Because of the redundancy, the data might become inconsistent, with

different records showing different addresses for the same warehouse.
v If at some time there are no parts stored in the warehouse, there might be

no row in which to record the warehouse address.

To satisfy second normal form, the information shown above, in Table 8 on
page 40, would be split into the following two tables:

Table 9. Part-Stock Table Conforms to Second Normal Form

PART (Primary Key) WAREHOUSE (Primary
Key)

QUANTITY

P0010 Warehouse A 400

P0010 Warehouse B 543

P0010 Warehouse C 329

P0020 Warehouse B 200

P0020 Warehouse D 278

Table 10. Warehouse Table Conforms to Second Normal Form

WAREHOUSE (Primary Key) WAREHOUSE_ADDRESS

Warehouse A 1608 New Field Road

Warehouse B 4141 Greenway Drive

Warehouse C 171 Pine Lane

Warehouse D 800 Massey Street

Chapter 2. Designing Your Logical Database 41

However, there is a performance consideration in having the two tables in
second normal form. Application programs that produce reports on the
location of parts must join both tables to retrieve the relevant information.

To better understand performance considerations, refer to “Tuning Application
Performance” in the Administration Guide, Performance.

Third Normal Form

A table is in third normal form if each non-key column provides a fact that is
independent of other non-key columns and depends only on the key.

Third normal form is violated when a non-key column is a fact about another
non-key column. For example, the first table in the following example
contains the columns EMPNO and WORKDEPT. Suppose a column
DEPTNAME is added. The new column depends on WORKDEPT, whereas
the primary key is the column EMPNO; thus the table now violates third
normal form.

Changing DEPTNAME for a single employee, John Parker, does not change
the department name for other employees in that department. The
inconsistency that results is shown in the updated version of the table in the
following example.

Table 11. Unnormalized Employee-Department Table Before Update

EMPNO
(Primary Key)

FIRSTNAME LASTNAME WORKDEPT DEPTNAME

000290 John Parker E11 Operations

000320 Ramlal Mehta E21 Software
Support

000310 Maude Setright E11 Operations

The following example shows the content of the table following an update to
the DEPTNAME column for John Parker. Note that there are now two
different department names used for department number (WORKDEPT) E11:

Table 12. Unnormalized Employee-Department Table After Update. Information in table
has become inconsistent.

EMPNO
(Primary Key)

FIRSTNAME LASTNAME WORKDEPT DEPTNAME

000290 John Parker E11 Installation
Mgmt

000320 Ramlal Mehta E21 Software
Support

000310 Maude Setright E11 Operations

42 Administration Guide Design and Implementation

The table can be normalized by providing a new table, with columns for
WORKDEPT and DEPTNAME. In that case, an update like changing a
department name is much easier—the update only has to be made to the new
table. An SQL query that shows the department name along with the
employee name is more complex to write because it requires joining the two
tables. This query will probably also take longer to execute than the query of
a single table. In addition, the entire arrangement takes more storage space
because the WORKDEPT column must appear in both tables. The following
tables are defined as a result of normalizing EMPDEPT.

Table 13. Employee Table After Normalizing the Employee-Department Table

EMPNO (Primary
Key)

FIRSTNAME LASTNAME WORKDEPT

000290 John Parker E11

000320 Ramlal Mehta E21

000310 Maude Setright E11

Table 14. Department Table After Normalizing the Employee-Department Table

DEPTNO (Primary Key) DEPTNAME

E11 Operations

E21 Software Support

Fourth Normal Form

A table is in fourth normal form if no row contains two or more independent
multi-valued facts about an entity.

Consider these entities: employees, skills, and languages. An employee can
have several skills and know several languages. There are two relationships,
one between employees and skills, and one between employees and
languages. A table is not in fourth normal form if it represents both
relationships, as in the following example:

Table 15. Table Violating Fourth Normal Form

EMPNO (Primary Key) SKILL (Primary Key) LANGUAGE (Primary
Key)

000130 Data Modelling English

000130 Database Design English

000130 Application Design English

000130 Data Modelling Spanish

000130 Database Design Spanish

000130 Application Design Spanish

Chapter 2. Designing Your Logical Database 43

Instead, the relationships should be represented in two tables, as in the
following examples.

Table 16. Employee-Skill Table in Fourth Normal Form

EMPNO (Primary Key) SKILL (Primary Key)

000130 Data Modelling

000130 Database Design

000130 Application Design

Table 17. Employee-Language Table in Fourth Normal Form

EMPNO (Primary Key) LANGUAGE (Primary Key)

000130 English

000130 Spanish

If, however, the facts are interdependent—that is, the employee applies certain
languages only to certain skills—then the table should not be split.

Any data can be put into fourth normal form. A good rule when designing a
database is to arrange all data in tables in fourth normal form, and then
decide whether the result gives you an acceptable level of performance. If it
does not, you are at liberty to denormalize your design.

Planning for Constraint Enforcement

A constraint is a rule that the database manager enforces. Four types of
constraint handling are covered in this section:

Unique Constraints Ensures the unique values of a key in a table.
Any changes to the columns that compose the
unique key are checked for uniqueness.

Referential Integrity Enforces referential constraints on insert,
update, and delete operations. It is the state of
a database in which all values of all foreign
keys are valid.

Table Check Constraints Verify that changed data does not violate
conditions specified when a table was created
or altered.

Triggers Define a set of actions that are executed when
called by an update, delete, or insert operation
on a specified table.

44 Administration Guide Design and Implementation

Unique Constraints

A unique constraint is the rule that the values of a key are valid only if they
are unique within the table. Each column making up the key in a unique
constraint must be defined as NOT NULL. Unique constraints are defined in
the CREATE TABLE or the ALTER TABLE statements using the PRIMARY
KEY clause or the UNIQUE clause.

A table can have any number of unique constraints; however, you can only
define one unique constraint as the primary key for a table. Also, a table
cannot have more than one unique constraint on the same set of columns.

When a unique constraint is defined, the database manager creates (if needed)
a unique index and designates it as either a primary or unique
system-required index. The enforcement of the constraint is through the
unique index. Once a unique constraint has been established on a column, the
check for uniqueness during multiple row updates is deferred until the end of
the update.

A unique constraint can also be used as the parent key in a referential
constraint.

Referential Integrity

Referential integrity lets you define required relationships between and within
tables. The database manager maintains these relationships which are
expressed as referential constraints and require that all values of a given
attribute or column of a table also exist in some other table or column. For
example, a typical referential constraint might require that every employee in
the EMPLOYEE table must be in a department that exists in the
DEPARTMENT table. No employee can be in a department that does not
exist.

You can build referential constraints into a database to ensure that referential
integrity is maintained and to allow the optimizer to exploit knowledge of
these special relationships to process queries more effectively. When planning
for referential integrity, identify the relationships to be established between
database tables. You can identify a relationship by defining a primary key and
referential constraints.

The following two tables are related, and show some of the relationships to be
discussed:

Chapter 2. Designing Your Logical Database 45

Table 18. DEPARTMENT Table

DEPTNO (Primary Key) DEPTNAME MGRNO

A00 Spiffy Computer Service
Div.

000010

B01 Planning 000020

C01 Information Center 000030

D11 Manufacturing Systems 000060

Table 19. EMPLOYEE Table

EMPNO
(Primary Key)

FIRSTNAME LASTNAME WORKDEPT
(Foreign Key)

PHONENO

000010 Christine Haas A00 3978

000030 Sally Kwan C01 4738

000060 Irving Stern D11 6423

000120 Sean O’Connell A00 2167

000140 Heather Nicholls C01 1793

000170 Masatoshi Yoshimura D11 2890

The following definitions are useful for understanding referential integrity.

A unique key is a set of columns where no two values are duplicated in any
other row. You may define one unique key for each table as the primary key.
The unique key may also be known as a parent key when referenced by a
foreign key.

A primary key is a unique key that is part of the definition of the table. Each
table can only have one primary key. In the preceding tables DEPTNO and
EMPNO are the primary keys of the DEPARTMENT and EMPLOYEE tables.

A foreign key is a column or set of columns in a table that refer to a unique
key or primary key of the same or another table. A foreign key is used to
establish a relationship with a unique key or primary key to enforce
referential integrity among tables. The column WORKDEPT in the
EMPLOYEE table is a foreign key because it refers to the primary key, column
DEPTNO, in the DEPARTMENT table.

A composite key is a key that has more than one column. Unique primary and
foreign keys can be composite keys. For example, if departments were
uniquely identified by the combination of division number and department
number, two columns would be needed to comprise the key to the
DEPARTMENT table.

A parent key is a primary key or unique key of a referential constraint.

46 Administration Guide Design and Implementation

A parent table is a table containing a parent key that is related to at least one
foreign key in the same or another table. A table can be a parent in an
arbitrary number of relationships. For example, the DEPARTMENT table,
which has a primary key of DEPTNO, is a parent of the EMPLOYEE table,
which contains the foreign key WORKDEPT.

A parent row is a row of a parent table whose parent key value matches at
least one foreign key value in a dependent table. A row in a parent table is
not necessarily a parent row. The fourth row (D11) of the DEPARTMENT table
is the parent row of the third and sixth rows in the EMPLOYEE table. The
second row (B01) of the DEPARTMENT table is not the parent of any other
rows.

A dependent table is a table containing one or more foreign keys. A dependent
table can also be a parent table. A table can be a dependent in an arbitrary
number of relationships. For example, the EMPLOYEE table contains the
foreign key WORKDEPT, which is dependent on the DEPARTMENT table that
has a primary key.

A dependent row is a row of a dependent table that has a non-null foreign key
value that matches a parent key value. The foreign key value represents a
reference from the dependent row to the parent row. Since foreign keys may
accept null values, a row in a dependent table is not necessarily a dependent
row.

A table is a descendent of a table if it is a dependent table or if it is a
descendent of a dependent table. A descendent table contains a foreign key
that can be traced back to the parent key of some table.

A referential cycle is a path that connects a table to itself. When a table is
directly connected to itself, it is a self-referencing table. If the EMPLOYEE table
has another column called MGRID that contains the EMPNO of each
employee’s manager, then the EMPLOYEE table would be a self-referencing
table. MGRID would be a foreign key for the EMPLOYEE table.

A referential constraint is an assertion that non-null values of a designated
foreign key are valid only if they also appear as values of a unique key of a
designated table. The purpose of referential constraints is to guarantee that
database relationships are maintained and data entry rules are followed.

A self-referencing table is both a parent and a dependent in the same
relationship. A self-referencing row is a row that is a parent and a dependent
of itself. The constraint that exists in this situation is called a self-referencing
constraint. For example, if the value of the foreign key in a row of a
self-referencing table matches the value of the unique key in that row, then
the row is self-referencing.

Chapter 2. Designing Your Logical Database 47

The following additional topic is discussed within this section:
v “Implications for SQL Operations”

Implications for SQL Operations

Enforcement of referential constraints has special implications for some SQL
operations that depend on whether the table is a parent or a dependent. This
segment describes the effects of referential integrity on the SQL INSERT,
DELETE, UPDATE, and DROP operations.

The database manager does not automatically enforce referential constraints
across systems. As a result, if you wish to enforce referential constraints across
systems, your application programs must contain the necessary logic.

The following referential integrity rules are discussed:
v INSERT Rules
v DELETE Rules
v UPDATE Rules.

INSERT Rules: You can insert a row at any time into a parent table without
any action being taken in the dependent table. However, you cannot insert a
row into a dependent table, unless there is a row in the parent table with a
parent key value equal to the foreign key value of the row that is being
inserted, unless the foreign key value is null. The value of a composite foreign
key is null if any component of the value is null.

This rule is implicit when a foreign key is specified.

When you try to insert a row into a table that has referential constraints, the
INSERT operation is not allowed if any of the non-null foreign key values are
not present in the parent key. If the INSERT operation fails for one row
during an attempt to insert more than one row, all rows in the statement are
backed out.

DELETE Rules: When you delete a row from a parent table, the database
manager checks if there are any dependent rows in the dependent table with
matching foreign key values. If any dependent rows are found, several actions
could be taken. You can determine which action will be taken by specifying a
delete rule when you create the dependent table.

The delete rules for a dependent table (the table containing the foreign key)
when a primary key is deleted are:

RESTRICT Prevents any row in the parent table from
being deleted if any dependent rows are
found. If you need to remove both parent and

48 Administration Guide Design and Implementation

dependent rows, delete dependent rows first.
Deleting the parent row first would violate the
referential constraint and is not allowed.

Refer to the SQL Reference for an example
where this is different from NO ACTION.

NO ACTION Enforces the presence of a parent row for
every child after all the referential constraints
are applied. Refer to the SQL Reference for an
example where this is different from
RESTRICT.

CASCADE Implies that deleting a row in the parent table
automatically deletes any related rows in the
dependent table. This rule is useful when a
row in the dependent table has no significance
without a row in the parent table.

Deleting the parent row first would
automatically delete the dependent rows
referencing a primary key. Therefore, the
dependent rows would not need to be deleted
first. If some of these dependent rows have
dependents of their own, the delete rule for
those relationships will be applied. In other
words, the database manager can handle
cascading deletions.

SET NULL Ensures that deletion of a row in the parent
table sets the values of the foreign key in any
dependent rows to null. Other parts of the
row are unchanged.

If no delete rule is explicitly defined when the table is created, the NO
ACTION rule will be applied.

Any table that can be involved in a delete operation is said to be
delete-connected. The following restrictions apply to delete-connected
relationships.
v A table cannot be delete-connected to itself in a referential cycle of more

than one table.
v When a table is delete-connected to another table through more than one

dependent relationship, these relationships must have the same delete rule,
either CASCADE or NO ACTION.

v When a self-referencing table is a dependent of another table in a
CASCADE relationship, the delete rule of the self-referencing relationship
must also be CASCADE.

Chapter 2. Designing Your Logical Database 49

You can, at any time, delete rows from a dependent table without taking any
action on the parent table. For example, in the department-employee
relationship, an employee could retire and have his row deleted from the
employee table with no effect on the department table. (Ignore, for the
moment, the reverse relationship of employee-department, in which the
department manager ID is a foreign key referring to the parent key of the
employee table. If a manager retires, there is an effect on the department
table.)

UPDATE Rules: The database manager prevents the update of a unique key
of a parent row. When you update a foreign key in a dependent table, and the
foreign key is not null, it must match some value of the parent key of the
parent table of the relationship. If any referential constraint is violated by an
UPDATE operation, an error occurs and no rows are updated.

When a value in a column of the parent key is updated:
v If any row in the dependent table matches the original value of the key, the

update is rejected when the update rule is RESTRICT.
v If any row in the dependent table does not have a corresponding parent

key when the update statement is completed (excluding after triggers), the
update is rejected when the update rule is NO ACTION.

To update the value of a parent key that is in a parent row, you must first
remove the relationship to any child rows in the dependent tables by either:
v Deleting the child rows; or,
v Update the foreign keys in dependent tables to include another valid key

value.

When there is no dependency to the key value in the row, the row is no
longer a parent in a referential relationship and can be updated.

If part of a foreign key is being updated and no part of the foreign key value
is null, the new value of the foreign key must appear as a unique key value in
the parent table. If there is no foreign key dependent on a given unique key,
that is, the row containing the unique key is not a parent row, then part of the
unique key may be updated. However, no more than one row can be selected
for updating in this case, because you are working with a unique key where
duplicate rows are not allowed.

Table Check Constraints

Business rules identified within your design can be enforced through table
check constraints. Table check constraints specify search conditions that are
enforced for each row of a table. These constraints are automatically activated

50 Administration Guide Design and Implementation

when an update or insert statement runs against the table. They are defined
when using either CREATE TABLE or ALTER TABLE statements.

A table check constraint can be used for validation. For example: the values of
a department number must lie within the range 10 to 100; the job title of an
employee can only be ’Sales’, ’Manager’, or ’Clerk’; or an employee who has
been with the company for more than 8 years must earn more than $40,500.

Refer to the Data Movement Utilities Guide and Reference for more information
on the impact of table check constraints on the IMPORT and LOAD
commands.

Triggers

A trigger is a defined set of actions that are executed when a delete, insert, or
update operation is carried out against a specified table. To help support
business rules, triggers can be defined. Triggers are stored in the database,
therefore application development is faster because you do not have to code
the actions in every application program. The trigger is coded once, stored in
the database and automatically called by the database manager, as required,
when an application uses the database. This ensures that the business rules
related to the data are always enforced. If a business rule does change, only a
modification to the trigger is required instead of to each application program.

For example, triggers can be used to automatically update summary or audit
data.

A user-defined function (UDF) can be called within a triggered SQL statement.
This allows the triggered action to perform a non-SQL operation when the
trigger is fired. For example, e-mail can be sent as an alert mechanism. For
more information on triggers, see “Creating a Trigger” on page 174 and refer
to the Application Development Guide manual.

Other Database Design Considerations

When designing a database, it is important to consider which tables each user
should be able to access. Access to tables is granted or revoked through
authorizations. The highest level of authority is the system administration
authority (SYSADM). A user with SYSADM authority can assign other
authorizations, including the database administrator authority (DBADM).

There are other requirements that you may have to consider during your
design, such as audit, history, summary, security, data typing, and parallel
processing capability.

Chapter 2. Designing Your Logical Database 51

For audit purposes, you may have to record every update made to your data
for a specified period. For example, you may want to update an audit table
each time an employee’s salary was changed. Updates to this table could be
made automatically if a trigger was established to enforce this behavior.
Another way to carry out audit activities is through the use of the DB2 audit
facility. See “Chapter 7. Auditing DB2 Activities” on page 333 for more
information.

For performance reasons, you may only want to access a selected amount of
data, while maintaining the base data as history. You should include within
your design, the requirements for maintaining this historical data, such as the
number of months or years of data that is required to be available before it
can be purged.

There may be situations identified within your design that deal with summary
information. For example, you may have a table that has all of your employee
information in it. However, you would like to have the employee information
divided into separate tables by division or department. In this case, a
summary table for each division or department based on the data in the
original table would be helpful. See “Creating a Summary Table” on page 187
for more information on summary tables.

Security implications should also be identified within your design. For
example, you may decide to support user access to certain types of data
through security tables. You can define access levels to various types of data
and who can access this data. Confidential data such as employee and payroll
data, would have stringent security restrictions imposed where only a select
number of individuals could be authorized to view this data, whereas certain
time reporting data could be set up to be viewed globally. For more
information on security and authorizations, see “Chapter 6. Controlling
Database Access” on page 281.

You can create tables that have a structured type associated with them. With
such typed tables, you can establish a hierarchical structure with a defined
relationship between those tables called a type hierarchy. The type hierarchy is
made up of a single root type, supertypes, and subtypes.

A reference type representation is defined when the root type of a type
hierarchy is created. The target of a reference is always a row in a typed table
or view.

See “Chapter 4. Implementing Your Design” on page 99 for more information
on implementing a design that includes typed rows and tables. Refer to Data
Movement Utilities Guide and Reference for more information on moving data
between typed tables that are in a hierarchical structure.

52 Administration Guide Design and Implementation

As your business grows, you may need the additional capacity and
performance capability provided by DB2 Extended Enterprise Edition. In this
environment, your database is partitioned across several machines or systems,
each responsible for the storage and retrieval of a portion of the overall
database. In this environment, each partition (or node) of the database works
in parallel to handle SQL or utility operations.

Issues and considerations relating to parallel operations are presented as
appropriate to the topics presented in the following chapters. These issues and
considerations are typically found toward the end of each topic.

Chapter 2. Designing Your Logical Database 53

54 Administration Guide Design and Implementation

Chapter 3. Designing Your Physical Database

After you have completed Chapter 2. Designing Your Logical Database and
before Chapter 4. Implementing Your Design, there are a number of factors
you should consider about the physical environment in which your database
and tables will be implemented. These factors include understanding the files
that will be created to support and manage your database, understanding
how much space will be required to store your data, and determining how
you should use table spaces that are required to store your data.

The following topics are discussed:
v Database Physical Directories
v Estimating Space Requirements for Tables
v Additional Space Requirements
v Designing Nodegroups
v Designing and Choosing Table Spaces
v Federated Database Design Considerations

Database Physical Directories

When a database is created, the database manager creates a separate
subdirectory to store control files (such as log header files) and to allocate
containers to default table spaces. Objects associated with the database are not
always stored in the database directory; they can be stored in various
locations, including directly on devices.

The database is created in the instance that is defined in the DB2INSTANCE
environment variable or in the instance to which you have explicitly attached
(using the ATTACH command). See the “Using Multiple Instances of the
Database Manager” on page 102 for an introduction to instances.

The naming scheme used on UNIX platforms is
specified_path/$DB2INSTANCE/NODEnnnn/SQL00001

The naming scheme used on Intel platforms is
D:\$DB2INSTANCE\NODEnnnn\SQL00001

where

v specified_path is the optional, user-specified location to install the
instance.

© Copyright IBM Corp. 1993, 1999 55

v NODEnnnn is the node identifier in a partitioned database environment. The
first node is NODE0000.

v “D:” is a “drive letter” identifying the volume where the root directory is
located.

SQL00001 contains objects associated with the first database created, and
subsequent databases are given higher numbers: SQL00002 and so on.

The subdirectories are created in a directory with the same name as the
database manager instance to which you are attached when you are creating
the database. (On Intel platforms, the subdirectories are created under the root
directory on a given volume which is identified by a “drive letter”.) These
instance and database subdirectories are created within the path specified in
the CREATE DATABASE command, and the database manager maintains
them automatically. Depending on your platform, each instance might be
owned by an instance owner, who has system administrator (SYSADM)
authority over the databases belonging to that instance.

To avoid potential problems, do not create directories that use the same
naming scheme, and do not manipulate directories that have already been
created by the database manager.

Database Physical Files

The following files are found within the database:

File Name Description

SQLDBCON This file stores the tuning parameters and flags for the
database. Refer to Administration Guide, Performance for
information about changing database configuration
parameters.

SQLOGCTL.LFH
This file is used to help track and control all of the database
log files.

Syyyyyyy.LOG
Database log files, numbered from 0000000 to 9999999. The
number of these files is controlled by the logprimary and
logsecond configuration parameters. The size of the individual
files is controlled by the logfilsiz configuration parameter.

With circular logging, the files are reused and the same
numbers will remain. With archival logging, the file numbers
will increase in sequence as logs are archived and new logs
are allocated. When 9999999 is reached, the number will wrap.

56 Administration Guide Design and Implementation

By default, these log files are stored in a directory called
SQLOGDIR. SQLOGDIR is found in the SQLnnnnn
subdirectory.

SQLINSLK This file is used to help ensure that a database is only used by
one instance of the database manager.

SQLTMPLK This file is used to help ensure that a database is only used by
one instance of the database manager.

SQLSPCS.1 This file contains the definition and current state of all table
spaces in the database.

SQLSPCS.2 This file is a copy of SQLSPCS.1, and is created for protection
in case SQLSPCS.1 fails. Without one of these files, you will
not be able to access your database.

SQLBP.1 This file contains the definition of all of the buffer pools used
in the database.

SQLBP.2 This file is a copy of SQLBP.1 and is created for protection in
case SQLBP.1 fails. Without one of these files, you will not be
able to access your database.

DB2RHIST.ASC
This file is the database history file. It keeps a history of
administrative operations on the database, such as when
performing backups and restoring a backup.

DB2RHIST.BAK
This file is a backup copy of DB2RHIST.ASC.

Notes:

1. Do not make any direct changes to these files. They can only be accessed
indirectly using the documented APIs and by tools that implement those
APIs, including the command line processor commands and the graphical
Control Center.

2. Do not remove these files.
3. Do not move these files.
4. The only supported means of backing up a database or table space is

through the BACKUP API, including the command line processor and
Control Center implementations of that API.

Chapter 3. Designing Your Physical Database 57

Estimating Space Requirements for Tables

The following information provides a general rule for estimating the size of a
database:
v “System Catalog Tables” on page 59

v “User Table Data” on page 59

v “Long Field Data” on page 61

v “Large Object (LOB) Data” on page 62

v “Index Space” on page 63

After reading these sections, you should read “Designing and Choosing Table
Spaces” on page 75.

Information is not provided for the space required by such things as:

v The local database directory file
v The system database directory file
v The file management overhead required by the operating system, including:

– file block size
– directory control space

Information such as row size and structure is precise. However, multiplication
factors for file overhead because of disk fragmentation, free space, and
variable length columns will vary in your own database since there is such a
wide range of possibilities for the column types and lengths of rows in a
database. After initially estimating your database size, create a test database
and populate it with representative data. You will then find a multiplication
factor that is more accurate for your own particular database design.

The are several other means available to you to assist you in determining the
size of various parts of your database.

From the Control Center, you could select an object and choose to use the
“Estimate Size” utility. The utility can be used to tell you the current size of
an existing object like a table. You can then change certain aspects of the
object, and the utility will calculate the new, estimated values for the object.
The utility will give you a way of determining the approximate DASD
requirements for current and future growth estimation. The utility gives more
than a single estimate of the size of the object, by also providing two size
extremes possible for the object: both the smallest size based on the given
values as well as the largest possible size.

58 Administration Guide Design and Implementation

From the Control Center, you can determine the relationships between objects
by using the “Show Related” dialog.

From the Control Center, you can select any database object on the instance
and request “Generate DDL”. This function uses the db2look utility to generate
data definition statements for the database.

In all of these cases, either the “Show SQL” or “Show Command” buttons are
made available to you. You can also save the resulting SQL or commands as
script files to be used again at another time. And all of the dialogs and
utilities have online help to assist you with your using these facilities.

You should keep these facilities in mind as you work through your planning
of your physical database requirements.

System Catalog Tables

When a database is initially created, system catalog tables are created. The
system tables will grow as database objects and privileges are added to the
database. Initially, they use approximately 2.5 MB of disk space.

The amount of space allocated for the catalog tables depends on the type of
table space and the extent size for the table space containing the catalog
tables. For example, if a DMS table space with an extent size of 32 is used, the
catalog table space will initially be allocated 20 MB of space. For more
information, see “Designing and Choosing Table Spaces” on page 75.

Note: For databases with multiple partitions, the catalog tables only reside on
the partition where the CREATE DATABASE was issued. Disk space for
the catalog tables is only required for that partition.

User Table Data

By default, table data is stored on 4 KB pages. Each 4 KB page contains 76
bytes of overhead for the database manager. This leaves 4020 bytes to hold
user data (or rows), although no row can exceed 4005 bytes in length. A row
will not span multiple pages. You can have a maximum of 500 columns when
using a 4 KB page size.

Note that the table data pages do not contain the data for columns defined
with LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB
data types. The rows in a table data page do, however, contain a descriptor of
these columns. (See “Long Field Data” on page 61 and “Large Object (LOB)
Data” on page 62 for information about estimating the space required for the
table objects that will contain the data stored using these data types.)

Chapter 3. Designing Your Physical Database 59

Typically, rows are inserted into the table in an approximate first-fit order. The
file is searched (using a free space map) for the first available space that is
large enough to hold the new row. When a row is updated, it is updated in
place unless there is insufficient room left on the page to contain it. If this is
the case, a record is created in the original row location which points to the
new location in the table file of the updated row.

If the ALTER TABLE APPEND ON statement is used, then data will always
be appended and information about any free space on the data pages will not
be kept.

See “Long Field Data” on page 61 and “Large Object (LOB) Data” on page 62
for information about how LONG VARCHAR, LONG VARGRAPHIC, BLOB,
CLOB and DBCLOB data is stored and for estimating the space required to
store these types of columns.

For each user table in the database, the number of 4 KB pages can be
estimated by calculating:

ROUND DOWN(4020/(average row size + 10)) = records_per_page

Then use records_per_page with:
(number_of_records/records_per_page) * 1.1 = number_of_pages

Note: This formula is only an estimate and is not guaranteed to be accurate.
Accuracy of the estimate lessens if the length of records varies due to
fragmentation and overflow records.

The average row size is the sum of the average column sizes. For information
on the size of each column, refer to the CREATE TABLE statement in the SQL
Reference.

The factor of “1.1” is for overhead.

You also have the option to create buffer pools or table spaces that have an 8
KB, 16 KB, or 32 KB page size. All tables created within a table space of a
particular size will have a matching page size. A single table or index object
can then be as large as 512 GB in size (based on a 32 KB page size; the
maximum varies dependent on the page size). You can have a maximum of
1012 columns when using an 8 KB, 16 KB, or 32 KB page size. The maximum
number of columns is 500 for a 4 KB page size. Row lengths vary based on
page size:

v When the page size is 4 KB, the row length can be up to 4005 bytes in
length.

v When the page size is 8 KB, the row length can be up to 8101 bytes in
length.

60 Administration Guide Design and Implementation

v When the page size is 16 KB, the row length can be up to 16 293 bytes in
length.

v When the page size is 32 KB, the row length can be up to 32 677 bytes in
length.

Having a larger page size allows for the possible reduction in the number of
levels in any index. If you are working with OLTP applications which do
random row reads and writes, a smaller page size is better because it wastes
less buffer space with undesired rows. If you are working with DSS
applications which access large numbers of consecutive rows at a time, a
larger page size is better because it reduces the number of Input/Output
requests required to read a specific number of rows. An exception in this
latter cases occurs when the row size is smaller than the page size divided by
255. In such a case, there is wasted space on each page. (Recall that there can
only be a maximum of 255 rows per page.) To reduce this wasted space, a
smaller page size may be more appropriate.

There are some restrictions when using a page size larger than 4 KB. When
conducting backup and restore operations, you cannot restore a backup to a
different page size.

No matter the page size, you cannot import IXF data files that represent more
than 755 columns.

Long Field Data

If a table has LONG VARCHAR or LONG VARGRAPHIC data, in addition to
the byte count of 20 for the LONG VARCHAR or LONG VARGRAPHIC
descriptor (in the table row), the data itself must be stored. Long field data is
stored in a separate table object which is structured differently from the other
data types (see “User Table Data” on page 59 and “Large Object (LOB) Data”
on page 62).

Data is stored in 32 KB areas that are broken up into segments whose sizes
are “powers of two” times 512 bytes. (Hence these segments can be 512 bytes,
1024 bytes, 2048 bytes, and so on, up to 32,700 bytes.)

Each of these data types is stored in a fashion that enables free space to be
reclaimed easily. Allocation and free space information is stored in 4 KB
allocation pages, which appear infrequently throughout the object.

The amount of unused space in the object depends on the size of the long
field data and whether this size is relatively constant across all occurrences of
the data. For data entries larger than 255 bytes, this unused space can be up
to 50 percent of the size of the long field data.

Chapter 3. Designing Your Physical Database 61

If character data is less than the page size, and it fits in the record with the
rest of the data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data
types should be used instead of LONG VARCHAR or LONG VARGRAPHIC.

Large Object (LOB) Data

If a table has BLOB, CLOB, or DBCLOB data, in addition to the byte count
(between 72 and 312 bytes) for the BLOB, CLOB, or DBCLOB descriptor (in
the table row), the data itself must be stored. This data is stored in two
separate table objects that are structured differently than other data types (see
“User Table Data” on page 59 and “Long Field Data” on page 61).

To estimate the space required by large object data, you need to consider the
two table objects used to store data defined with these data types:

v LOB Data Objects

Data is stored in 64 MB areas that are broken up into segments whose sizes
are “powers of two” times 1024 bytes. (Hence these segments can be 1024
bytes, 2048 bytes, 4096 bytes, and so on, up to 64 MB.)
To reduce the amount of disk space used by the LOB data, you can use the
COMPACT parameter on the lob-options-clause on the CREATE TABLE and
ALTER TABLE statements. The COMPACT option minimizes the amount of
disk space required by allowing the LOB data to be split into smaller
segments so that it will use the smallest amount of space possible. This
does not involve data compression but is simply using the minimum
amount of space to the nearest 1 KB boundary. Without the COMPACT
option, there is no attempt to reduce the space used to the nearest 1 KB
boundary. Appending to LOB values stored using the COMPACT option
may result in slower performance compared to appending LOB values for
which the COMPACT option is not specified.
The amount of free space contained in LOB data objects will be influenced
by the amount of update and delete activity, as well as the size of the LOB
values being inserted.

v LOB Allocation Objects

Allocation and free space information is stored in 4 KB allocation pages
separated from the actual data. The number of these 4 KB pages is
dependent on the amount of data, including unused space, allocated for the
large object data. The overhead is calculated as follows: one 4 KB pages for
every 64 GB plus one 4 KB page for every 8 MB.

If character data is less than the page size, and it fits in the record with the
rest of the data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data
types should be used instead of BLOB, CLOB or DBCLOB.

62 Administration Guide Design and Implementation

Index Space

For each index, the space needed can be estimated as:
(average index key size + 8) * number of rows * 2

where:
v The “average index key size” is the byte count of each column in the index

key. Refer to the CREATE TABLE statement in the SQL Reference for
information on how to calculate the byte count for columns with different
data types. (Note that to estimate the average column size for VARCHAR
and VARGRAPHIC columns, use an average of the current data size, plus
one byte. Do not use the maximum declared size.)

v The factor of 2 is for overhead, such as non-leaf pages and free space.

Note: For every column that allows nulls, add one extra byte for the null
indicator.

Temporary space is required when creating the index. The maximum amount
of temporary space required during index creation can be estimated as:

(average index key size + 8) * number of rows * 3.2

Where the factor of 3.2 is for index overhead as well as space required for the
sorting needed to create the index.

Note: In the case of non-unique indexes, only four (4) bytes are required to
store duplicate key entries. The estimates shown above assume no
duplicates. The space required to store an index may be over-estimated
by the formula shown above.

The following two calculations can be used to estimate the number of leaf
pages. The results are not guaranteed. The results are only an estimate, and
the accuracy depends largely on how well the averages used reflect the actual
data.

Note: For SMS, the minimum space is 12 KB. For DMS, the minimum is an
extent.

Following are two methods that you can use when calculating index space.
The first method is a rough estimate, while the second method provides a
more accurate estimate:
v The average number of keys per leaf page is roughly:

(.9 * (U - (M*2))) * (D + 1)

K + 6 + (4 * D)

Chapter 3. Designing Your Physical Database 63

where:
– U = the usable space on a page is approximately equal to the page size

minus 100. For a page size of 4096, U is 3996.
– M = U / (8 + minimumKeySize)
– D = average number of duplicates per key value
– K = averageKeySize

Remember that minimumKeySize and averageKeysize must have an extra 1
byte for each nullable key part and an extra byte for the length of each
variable length key part.

If there are include columns, they should be accounted for in
minimumKeySize and averageKeySize.

The .9 can be replaced by any (100 - pctfree)/100, if a percent free other
than the default of ten (10) percent was specified during the index creation.

v If you want a more accurate estimate:
L = number of leaf pages = X / (avg number of keys on leaf page)

Where X is the total number of rows in the table.

You can estimate the original size of an index as:
(L + 2L/(average number of keys on leaf page)) * pagesize

For DMS table spaces, add together the total sizes for all indexes on a table,
and round up to a multiple of the extent size for the table space where the
index resides.

You should provide additional space for index growth due to
INSERT/UPDATE activity, which may result in page splits.

Use the following calculations to obtain a more accurate estimate of the
original index size, as well as an estimate of the number of levels in the
index. (This may be of particular interest if include columns are being used
in the index definition.) The average number of keys per non leaf page is
roughly:

(.9 * (U - (M*2))) * (D + 1)

K + 12 + (8 * D)

Where:

U Is the same as for the leaf page calculation above.

64 Administration Guide Design and Implementation

D Is the average number of duplicates per key value on non leaf
pages (this will be much smaller than on leaf pages and you may
want to simplify by setting to 0).

M Is U / (8 + minimumKeySize for non leaf pages).

K Is the averageKeySize for non leaf pages.

The minimumKeySize and averageKeySize will be the same as on leaf pages,
except when there are include columns. Include columns are not stored on
the non leaf pages, so the size of include columns should be excluded from
the minimumKeySize and averageKeySize for non leaf page calculations.

You should not replace .9 with (100 - pctfree)/100 unless this value is
greater than .9, because a maximum of 10% free space will be left on
non-leaf pages during index creation.

The number of non-leaf pages can be estimated as follows:

P Is the number of pages (0 initially).

L Is the number of leaf pages.

N Is the number of keys for each non-leaf page.

Y Is L/N.

Z Is the number of levels in the tree (1 initially).
if L > 1 then {P++; Z++}
While (Y > 1)
{

P = P + Y
Y = Y / N

Z++
}

So the total number of pages is T = (L + P + 2) * 1.0002. The additional
.02% is for overhead such as space map pages.

The amount of space required to create the index is estimated as T *
pagesize, and the number of levels in index tree is estimated to be Z.

Additional Space Requirements

Additional space is also required as follows:
v “Log File Space” on page 66

v “Temporary Work Space” on page 67

Chapter 3. Designing Your Physical Database 65

Log File Space

The amount of space (in bytes) required for log files can range from:
(logprimary * (logfilsiz + 2) * 4096) + 8192

to:
((logprimary + logsecond) * (logfilsiz + 2) * 4096) + 8192

where:
v logprimary is the number of primary log files as defined in the database

configuration file
v logsecond is the number of secondary log files as defined in the database

configuration file
v logfilsiz is the number of pages in each log file as defined in the database

configuration file
v 2 is the number of header pages required for each log file
v 4096 is the number of bytes in one page
v 8192 is the size (in bytes) of the log control file.

Refer to the Administration Guide, Performance for more information on the
configuration parameters mentioned above.

Note: The total active log space cannot exceed 4 GB in size. That is, the
previous calculation result cannot exceed 4 GB in size.

The upper limit of log space is dependent on the actual number of secondary
log files that the database manager requires at run time. This upper limit may
never be used or may only be used during occasional periods of high-volume
activity.

Note: If the database is enabled for roll-forward recovery, special log space
requirements should be considered:

v With the logretain configuration parameter enabled, the log files will be
archived in the log path directory. The online disk space will eventually fill
up, unless you move the log files to a different location.

v With the userexit configuration parameter enabled, a user exit program
moves the archived log files to a different location. Extra log space is still
required to allow for:
– online archived logs that are waiting to be moved by the user exit

program
– New log files being formatted for future use.

66 Administration Guide Design and Implementation

Temporary Work Space

Some SQL statements require temporary tables for processing (such as a work
file for sorts that cannot be done in memory). These require disk space for
storage during the time they are used. The amount required will be totally
dependent on the queries and the size of tables returned, and therefore cannot
be estimated.

You can use the database system monitor and query table space APIs to help
you observe the amount of work space being used during the normal course
of operations.

Designing Nodegroups

A nodegroup is a named set of one or more nodes that are defined as
belonging to a database. Each database partition that is part of the database
system configuration must already be defined in a partition configuration file
called db2nodes.cfg. A nodegroup can contain from one database partition to
the entire number of database partitions defined for the database system.

You create a new nodegroup using the CREATE NODEGROUP statement. You
modify a nodegroup using the ALTER NODEGROUP statement. You can add
or drop one or more database partitions from a nodegroup. The database
partitions must be defined in the db2nodes.cfg file before modifying the
nodegroup. Table spaces (defined later) reside within nodegroups. Tables
reside within table spaces.

When a nodegroup is created or modified, a partitioning map is associated
with it. A partitioning map, in conjunction with a partitioning key and a
hashing algorithm, is used by the database manager to determine which
database partition in the nodegroup will store a given row of data. More
information on partitioning maps, keys, and other related issues are discussed
later in this chapter.

With a non-partitioned database, no partitioning key or partitioning map is
required. There are no nodegroup design considerations if you are using a
non-partitioned database. A database partition is part of the database that
consists of its own user data, indexes, configuration files, and transaction logs.
Default nodegroups that were created when the database was created, are
used by the database manager. IBMCATGROUP is the default nodegroup for
the table space containing the system catalogs. IBMTEMPGROUP is the
default nodegroup for the table spaces containing the temporary tables.
IBMDEFAULTGROUP is the default nodegroup for the table spaces containing
the user-defined tables the user chooses to put there.

Chapter 3. Designing Your Physical Database 67

If you are using a multiple partition nodegroup, consider the following design
points:
v In a multiple partition nodegroup, you can only create a unique index if it

is a superset of the partitioning key.
v Depending on the number of database partitions in the database, you may

have one or more single-partition nodegroups and one or more multiple
partition nodegroups present.

v Each database partition must be assigned a unique partition number. The
same database partition may be found in one or more nodegroups.

v To ensure fast recovery of the database partition with the system catalog
tables, avoid placing user tables on the same database partition. This is
accomplished by placing user tables in nodegroups that do not include the
database partition in the IBMCATGROUP nodegroup.

You should place small tables in single database partition nodegroups, except
where you want to take advantage of collocation with a larger table.
Collocation is the placement of rows from different tables that contain related
data in the same database partition. Collocated tables allow the database to
utilize more efficient join strategies. Collocated tables can reside in a single
database partition nodegroup. Tables are considered collocated if they reside
in a multiple partition nodegroup, and have the same number of columns in
the partitioning key and the data types of the corresponding columns are
partition compatible. Rows in collocated tables with the same partitioning key
value are placed on the same database partition. Tables can be in separate
table spaces in the same nodegroup and still be considered collocated.

You should avoid extending medium-sized tables across too many database
partitions. For example, a 100 MB table may perform better on a 16-database
partition nodegroup than on a 32-database partition nodegroup.

You can use nodegroups to separate online-transaction-processing (OLTP)
tables from decision-support tables to ensure that the performance of OLTP
transactions is not impacted by decision-support transactions.

Nodegroup Design Considerations

Based on the logical design of your database, and the amount of data that the
database is required to process, you should have a good idea whether your
database needs to be partitioned. If you need to partition your database, you
should consider the following to complete your database design as it relates
to nodegroup use:
v “Data Partitioning” on page 69

v “Partitioning Maps” on page 69

v “Partitioning Keys” on page 71

68 Administration Guide Design and Implementation

v “Table Collocation” on page 73

v “Partition Compatibility” on page 73

v “Replicated Summary Tables” on page 74

Data Partitioning

DB2 supports a partitioned storage model allowing you to store data across
several database partitions in the database. This means that the data is
physically stored across more than one database partition and yet can be
accessed as if the data were located in the same place. Applications and users
accessing data in a partitioned database do not need to be aware of the
location of the data.

The data, while physically split, is used and managed as a logical whole.
Users can choose how to partition their data by declaring partitioning keys.
Users can also determine which and how many database partitions their table
data can be spread across by selecting the table space and the associated
nodegroup in which the data should be stored. In addition, a partitioning
map (which is user-updateable) is used with a hashing algorithm to specify
the mapping of partitioning key values to database partitions which
determines the placement and retrieval of each row of data. As a result, you
can spread the workload across a partitioned database for large tables while
allowing smaller tables to be stored on one or more database partitions. Each
database partition has local indexes on the data it stores resulting in increased
performance for local data access.

You are not restricted in your design to having all tables in their table spaces
divided equally across all database partitions in the database. DB2 supports
partial declustering, which means that you can divide tables and their table
spaces across a subset of database partitions in the system (that is, a
nodegroup). You do not have to divide all tables in their table spaces across
all the database partitions in the system.

An alternative to consider when you would like tables to be positioned on
each database partition, is to use summary tables and then replicate those
tables. A summary table could be created with the information you choose.
Then you could replicate the summary table to each node. See “Replicated
Summary Tables” on page 74 for more information on why you would want
to do this.

Partitioning Maps

In a partitioned database environment, the database manager has to have a
way of knowing which rows of a table are stored on which database partition
in the database. The database manager has to know where to go to look at or

Chapter 3. Designing Your Physical Database 69

retrieve the data it needs. Just as we need a map to find our way around a
city to different locations, the database manager needs a map, called a
partitioning map, to find the right part of the database (that is, which database
partition) to go to get different parts of the data in the database.

A partitioning map is an internally generated array containing either 4 096
entries for multiple partition nodegroups, or a single entry for single partition
nodegroups. For a single partition nodegroup, the partitioning map has only
one entry containing the partition number of the database partition where all
the rows of a database table are stored. For multiple partition nodegroups, the
partition numbers of the nodegroup are specified in a round-robin fashion.
Just as a city map is organized into sections using a grid, the database
manager uses a partitioning key to determine the location (the database
partition) where the data is stored.

For example, assume that you have a database created on four database
partitions (numbered 0–3). The partitioning map for the IBMDEFAULTGROUP
nodegroup of this database would be:
0 1 2 3 0 1 2 ...

If a nodegroup had been created in the database using database partitions 1
and 2, the partitioning map for that nodegroup would be:

1 2 1 2 1 2 1 ...

If the partitioning key for a table to be loaded in the database is an integer
that has possible values between 1 and 500 000, the partitioning key is hashed
to a partition number between 0 and 4 095. That number is used as an index
into the partitioning map to select the database partition for that row.

Figure 17 shows how the row with the partitioning key value (c1, c2, c3) is
mapped to partition 2, which, in turn, references database partition n5.

Row:

...

partitioning key

(..., c1, c2, c3, ...)

partitioning function maps (c1, c2, c3) to partition number 2

0 1 2 3 4 ... 4095

Partitioning Map: n0 n2 n5 n0 n6 ...

Figure 17. Data Distribution Using a Partition Map

70 Administration Guide Design and Implementation

A partition map is a flexible way of controlling where data is stored in a
partitioned database. If you have a need at some future time to change the
data distribution across the database partitions in your database, you can use
the data redistribution utility. The data redistribution utility allows you to
re-balance or introduce skew into the data distribution. For more information
regarding this utility, refer to “Redistributing Data Across Database Partitions”
in Administration Guide, Performance.

You can use the Get Table Partitioning Information (sqlugtpi) API to obtain a
copy of a partitioning map that you can view. For more information on this
API, refer to the Administrative API Reference manual.

Partitioning Keys

A partitioning key is a column (or group of columns) that is used to determine
the partition in which a particular row of data is stored. A partitioning key is
defined on a table using the CREATE TABLE statement. If a partitioning key
is not defined for a table in a table space that is divided across more than one
database partition in a nodegroup, one is created by default from the first
column of the primary key. If no primary key is specified, the default
partitioning key is the first non-long field column defined on that table. (Long
includes all long data types and all Large Object data types). If you are
creating a table in a table space associated with a single database partition
nodegroup and you want to have a partitioning key, you must define the
partitioning key explicitly. One is not created by default.

If no columns satisfy the requirement of the default partitioning key, the table
is created without one. Tables without a partitioning key are only allowed in
single database partition nodegroups. You can add or drop partitioning keys
at a later time following the initial creation of the table using the ALTER
TABLE statement. Altering the partition key can only be done to a table in a
table space that is associated with a single database partition nodegroup.

Choosing a good partitioning key is important. When you make the choice,
you must know:
v How tables are to be accessed
v The nature of the query workload
v The join strategies employed by the database system.

If collocation is not a major consideration, a good partitioning key for a table
is one that spreads the data evenly on all database partitions in the
nodegroup. The partitioning key for each table in a table space that is
associated with a nodegroup determines if the tables are collocated. Tables are
considered collocated when:
v The tables are placed in table spaces that are in the same nodegroup

Chapter 3. Designing Your Physical Database 71

v The partition keys in each table have the same number of columns
v The data types of the corresponding columns are partition-compatible.

This ensures that rows of collocated tables with the same partitioning key
values are located on the same partition. For more information on
partition-compatibility, see “Partition Compatibility” on page 73. For more
information on table collocation, see “Table Collocation” on page 73.

An inappropriate partitioning key can cause the distribution in the data of the
table to be uneven. Columns with unevenly distributed data and columns
with a small number of distinct values should not be chosen as a partitioning
key. The number of distinct values must be great enough to ensure an even
distribution of rows across all database partitions in the nodegroup. The cost
of applying the partitioning hash algorithm is proportional to the size of the
partitioning key. The partitioning key cannot be more than 16 columns, but
fewer columns make for better performance. Unnecessary columns should not
be included in the partitioning key.

The following points should be considered when defining partitioning keys:

v Creation of a table with only long data types (LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, and DBCLOB) is not allowed for
multi-partition tables.

v Once defined, alteration of the partition key definition is not allowed.
v You cannot update the partitioning key column value for a row in the table.
v You can only delete or insert partitioning key column values.
v The partitioning key should include the most frequently joined columns.
v The partitioning key should be made up of columns that often participate

in a GROUP BY clause.
v Any unique key or primary key must contain all the partitioning key

columns.
v In an online-transaction processing (OLTP) environment, all columns in the

partitioning key should participate in the transaction by using equal (=)
predicates with constants or host variables. For example, assume you have
an employee number, emp_no that is often used in transactions such as:

UPDATE emp_table SET ... WHERE
emp_no = host-variable

In a situation like this, the emp_no column is a good choice as a single column
partitioning key for the emp_table table.

Hash partitioning is the method whereby the placement of each row in the
partitioned table is determined. The method works as follows:
1. The hashing algorithm is applied to the value of the partitioning key.

72 Administration Guide Design and Implementation

2. The hashing algorithm generates a partitioning map number between zero
(0) and 4095.

3. The partitioning map is created when a nodegroup is created. Each of the
partition numbers is sequentially repeated in a round-robin fashion to fill
the partition map. For more information on partitioning maps, see
“Partitioning Maps” on page 69.

4. The partition map number is used as an index into the partitioning map.
The number at that location in the partitioning map is the number of the
database partition where the row is stored.

Table Collocation

When logically designing your database, and based on the needs of your
applications, you may find that two or more tables will jointly provide data in
response to frequently asked queries. When physically designing your
database, you want related data from these two tables to be located as close
together as possible. In an environment where the database is physically
divided among two or more database partitions, there must be a way to keep
the related pieces of the divided tables as close together as possible. The
ability to do this is called table collocation.

Tables are collocated when they are stored in the same nodegroup, and when
their partitioning keys are compatible. Placing both tables in the same
nodegroup ensures a common partitioning map. The tables may be in
different table spaces, but the table spaces must be associated with the same
nodegroup. The data types of the corresponding columns in each partitioning
key must be partition-compatible. For information about partition compatibility,
see “Partition Compatibility”.

DB2 has the ability to recognize, when accessing more than one table for a
join or subquery, that the data to be joined is located at the same database
partition. When this happens, DB2 can choose to perform the join or subquery
at the database partition where the data is stored instead of having to move
data between database partitions. This ability to carry out joins or subqueries
at the database partition has significant performance advantages. Refer to
“Collocated Joins” in the Administration Guide, Performance for more
information.

Partition Compatibility

The base data types of corresponding columns of partitioning keys are
compared and can be declared as being partition compatible. Partition
compatible data types have the property that two variables, one of each type,
with the same value, are mapped to the same partition number by the same
partitioning algorithm.

Chapter 3. Designing Your Physical Database 73

Partition compatibility has the following characteristics:
v A base data type is compatible with another of the same base data type.
v Internal formats are used for DATE, TIME, and TIMESTAMP data types.

They are not compatible with each other, and none are compatible with
CHAR.

v Partition compatibility is not affected by columns with NOT NULL or FOR
BIT DATA definitions.

v NULL values of compatible data types are treated identically. Different
results might be produced for NULL values of non-compatible data types.

v Base data types of a User Defined Type are used to analyze partition
compatibility.

v Decimals of the same value in the partitioning key are treated identically,
even if their scale and precision differ.

v Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC) are ignored by the system-provided hashing algorithm.

v BIGINT, SMALLINT, and INTEGER are compatible data types.
v REAL and FLOAT are compatible data types.
v CHAR and VARCHAR of different lengths are compatible data types.
v GRAPHIC and VARGRAPHIC are compatible data types.
v LONG VARCHAR, LONG VARGRAPHIC, CLOB, DBLOB and BLOB data

types are not applicable for partition compatibility since they are not
supported as partitioning keys.

Replicated Summary Tables

A summary table is a table that is defined by a query that is also used to
determine the data in the table. Summary tables can be used to improve the
performance of queries. If the database manager determines that a portion of
a query could be resolved using a summary table, the query may be rewritten
by the database manager to use the summary table. This decision is based on
certain settings such as CURRENT REFRESH AGE and CURRENT QUERY
OPTIMIZATION special registers.

In a partitioned database environment, you can replicate summary tables. You
can use replicated summary tables to improve query performance. A replicated
summary table is a table that is based on a table that you created in a table
space (perhaps a table space created in a single-partition nodegroup), but you
want all the table data replicated across all the database partitions in the
nodegroup. To create the replicated summary table, you use the CREATE
TABLE statement with the REPLICATED keyword. The REPLICATED
keyword is only valid when the AS fullselect and REFRESH IMMEDIATE
keywords are also used.

74 Administration Guide Design and Implementation

See “Creating a Summary Table” on page 187 for information concerning
summary tables.

By using replicated summary tables, you can obtain collocation between tables
that are not typically collocated. Replicated summary tables are particularly
useful for joins in which you have a large fact table and small dimension
tables. To minimize the extra storage required and the impact of having to
update every replica, good candidates for tables to be replicated would have
the following characteristics:

v They are small.
v They are infrequently updated.

Note: You should also consider replicating larger tables that are infrequently
updated: in this situation, the one-time cost of replication is offset by
the performance benefits that can be obtained by collocation.

By specifying a suitable predicate in the subselect used to define the
replicated table, you can replicate both selected columns, selected rows, or
both.

For more information about replicated summary tables, refer to the CREATE
TABLE statement in the SQL Reference. Refer to “Collocated Joins” in the
Administration Guide, Performance for more information.

Designing and Choosing Table Spaces

A table space is a storage model that provides a level of indirection between a
database and the tables stored within that database. Table spaces reside in
nodegroups. Table spaces allow you to assign the location of database and
table data directly onto containers. (A container can be a directory name, a
device name, or a file name.) This can provide improved performance, more
flexible configuration, and better integrity.

See “Creating a Table Space” on page 153 or “Altering a Table Space” on
page 214 for information on how to create or alter a table space.

Since table spaces reside in nodegroups, the table space selected to hold a
table defines how the data for the table is partitioned across the database
partitions in a nodegroup. A single table space can span several containers. It
is possible for multiple containers (from one or more table spaces) to be
created on the same physical disk (or drive, in Intel terms). For improved
performance, each container should use a different disk. The following
diagram shows an example of the relationship between tables and table

Chapter 3. Designing Your Physical Database 75

spaces within a database and the containers and disks associated with the
database.

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table
space which spans Containers 0, 1, 2 and 3. The PROJECT table is in the
SCHED table space in Container 4. This example shows each container
existing on a separate disk.

The database manager attempts to balance the load of the data across the
containers. As a result, all containers will be used to store data. The number
of pages that the database manager writes to a container before using a
different container is called the extent size. The database manager does not
always start storing table data in the first container.

The following diagram shows the HUMANRES table space with an extent
size of two 4 KB pages, and with four containers each with a small number of
allocated extents. The DEPARTMENT and EMPLOYEE tables both have 7
pages and span all four containers.

Database

SCHED
Table Space

HUMANRES
Table Space

DEPARTMENT
Table

Container
0

Container
1

Container
2

Container
3

Container
4

Nodegroup

PROJECT
Table

EMPLOYEE
Table

Figure 18. Table Spaces and Tables Within a Database

76 Administration Guide Design and Implementation

A database must contain at least three table spaces:

v One catalog table space, which contains all the system catalog tables for the
database. This table space is called SYSCATSPACE and it cannot be
dropped. IBMCATGROUP is the default nodegroup for this table space.

v One or more user table spaces, which contain all user-defined tables. By
default, one table space, USERSPACE1, is created. IBMDEFAULTGROUP is
the default nodegroup for this table space.
You should specify a table space name when you create a table, or the
results may not be what you intend. If you do not specify a table space
name, the table is placed according to the following rules: If the table space
IBMDEFAULTGROUP exists with a sufficient page size, then use it.
Otherwise, if user-created table spaces exist, then choose one which is of the
smallest page size that is sufficient for this table and use it. Otherwise, use
USERSPACE1 if it exists with a sufficient page size. If none of these exist
with a sufficient page size, then the table creation fails.
The sufficient page size of a table is determined by either the byte count of
the rows or the number of columns. The maximum number of bytes
allowed in a row of a table is dependent on the page size of the table space
in which the table is created. The possible values for the page size are 4 KB
(the default), 8 KB, 16 KB, and 32 KB. You can use a table space with one
page size for the base table, and a different table space with a different page
size for LONG or LOB data. (Recall that SMS does not support tables that
span table spaces, while DMS does.) If the number of columns or the row
size exceeds the limits for a table space’s page size, an error is returned
(SQLSTATE 42997).

Container 0 Container 1 Container 2 Container 3

HUMANRES Table Space

Extent
Size

4KB
Page

EMPLOYEE DEPARTMENT DEPARTMENT DEPARTMENT

DEPARTMENT EMPLOYEE EMPLOYEEEMPLOYEE{
{

Figure 19. Use of Container and Extents

Chapter 3. Designing Your Physical Database 77

v One or more temporary table spaces, which contain temporary tables. By
default one table space called TEMPSPACE1 is created. A database must
have at least one temporary table space. IBMTEMPGROUP is the default
nodegroup for this table space.

Note: If queries are executing against tables in table spaces that are defined
with a page size of larger than the default 4 KB, some of them may
fail because of the lack of a temporary table space defined with a
larger page size (for example, an ORDER BY on 1012 columns). You
may need to create a temporary table space with a larger page size (8
KB, 16 KB, or 32 KB). In fact, any Data Manipulation Language
(DML) statement could fail unless there exists a temporary table
space with the same page size as the largest page size of user data.

If a database uses more than one temporary table space, temporary objects
are allocated among the temporary table spaces in a round robin fashion.

An application may encounter a temp-tablespace-full condition when one of
the table spaces is full even if there is still room in the other temporary
table spaces.

You should define a single SMS temporary table space with a page size
equal to the page size used in the majority of your regular table spaces.
This should be suitable for typical environments and workloads. For
detailed guidelines for those environment and workloads not as typical see
“Recommendations for Temporary Table Spaces” on page 90.

Note: In a partitioned database environment, the catalog node will have all
three table spaces and the other database partitions will each have only
TEMPSPACE1 and USERSPACE1.

There are two types of table spaces, both of which can be used in a single
database:

v System Managed Space Table Space: The operating system’s file manager
controls the storage space.

v Database Managed Space Table Space: The database manager controls the
storage space.

After understanding the differences between these two types of table spaces,
see “Table Space Design Considerations” on page 85.

System Managed Space Table Space

In a System Managed Space (SMS) table space, the operating system’s file
system manager allocates and manages the space where the table is to be

78 Administration Guide Design and Implementation

stored. The storage model typically consists of many files, representing table
objects, stored in the file system space. The user decides on the location of the
files, DB2 controls their names, and the file system is responsible for
managing them. By controlling the amount of data written to each file, the
database manager evenly spreads the data over the table space containers. An
SMS table space is the default table space.

In addition to the database physical files, each table has at least one SMS
physical file associated with it. See “SMS Physical Files” on page 81 for a list
of these files and a description of their contents.

In an SMS table space, the file is extended one page at a time as the object
grows. When inserting a large number of rows, some delay may result from
waiting for the system to allocate another page.

Note: If you need improved insert performance, you can consider enabling
multipage file allocation. This allows the system to allocate or extend
the file by more than one page at a time. You must run db2empfa to
enable multipage file allocation. The db2empfa utility must be run on
each database partition in a partitioned database. Once multipage file
allocation is enabled, it cannot be disabled. Refer to the Command
Reference for more information on db2empfa.

You should explicitly define SMS table spaces using the MANAGED BY
SYSTEM on the CREATE DATABASE command or on the CREATE
TABLESPACE statement. You must consider two key factors when you design
your SMS table spaces:

1. Containers for the table space
You must specify the number of containers that you wish to use for your
table space. It is very important to identify all the containers you want to
use, since you cannot add or delete containers after an SMS table space is
created. In a partitioned database environment, when a new partition is
added to the nodegroup for an SMS table space, the ALTER TABLESPACE
statement can be used to add containers for the new partition.
Each container used for an SMS table space identifies an absolute or
relative directory name. Each of these directories can be located on a
different file system (or physical disk). As a result, the maximum size of
the table space can be limited by:

number of containers * (maximum file system size supported by the
operating system)

Note: This formula assumes that there is a distinct file system mapped to
each container, and that each file system has the supported
maximum of space available. In practice, this may not be the case
and the practical maximum database size may be much smaller.

Chapter 3. Designing Your Physical Database 79

Note: Care must be taken when defining the containers. There must not
be any files or directories on the containers. If there are existing files
or directories on the containers, error message “SQL0298N Bad
container path.” is reported.

2. Extent size for the table space
Similar to specifying the number of containers, the extent size can only be
specified when the table space is created. Because it cannot be changed
later, it is important to select an appropriate value for the extent size. See
“Choosing an Extent Size” on page 89 for more information.
When creating a table space, if you do not specify the extent size, the
database manager will create the table space using the default extent size,
defined by the dft_extent_sz database configuration parameter (refer to the
Administration Guide, Performance for more information on this parameter).
This configuration parameter is initially set based on information provided
when the database is created. If the DFT_EXTENTSIZE parameter is not
specified on the CREATE DATABASE command, the default extent size
will be set to 32.

To choose the appropriate values for the number of containers and the extent
size for the table space, you must understand:

v The limitation that your operating system imposes on the size of a logical
file system.
For example, some operating systems have a 2 GB limit. Therefore, if you
want a 64 GB table object, you will need at least 32 containers on this type
of system.
Check the limitations on size and the number of containers on the platform
where you are working as part of your determination regarding the number
of containers and the extent size for the table space.
When you create the table space, you can specify containers that reside on
different files systems and as a result increase the amount of data that can
be stored in the database.

v How the database manager manages the data files and containers
associated with a table space.
The first table data file (SQL00001.DAT) is created in the first container
specified for the table space, and this file is allowed to grow to the extent
size. After it reaches this size, the database manager writes the data to
SQL00001.DAT in the next container. This process continues until all of the
containers contain SQL00001.DAT files, at which time, the database
manager returns to the first container to which data was written for that
table. This process (known as striping) continues through the container
directories until either a container becomes full at which time a -289 error is
returned; or, no more space can be allocated from the operating system at

80 Administration Guide Design and Implementation

which time a disk-full error is returned. This mechanism is also used for
index (SQLnnnnn.INX), long field (SQLnnnnn.LF), and LOB (SQLnnnnn.LB
and SQLnnnnn.LBA) files.

Note: The SMS table space is full as soon as any one of its containers is
full. Thus, it is important to allocate the same amount of space for
each container.

To help spread data across the containers more evenly, the database
manager determines the container to start writing a table’s data by taking
the table’s ID (1 in the above example) modulo the number of containers.
Containers are numbered sequentially starting at 0.

See “SMS Physical Files” for more information about the files used in an
SMS table space.

SMS Physical Files

The following files are found within an SMS table space directory container:

File Name Description

SQLTAG.NAM
There is one of these files in each container subdirectory, and
they are used by the database manager when you connect to
the database to verify that the database is complete and
consistent.

SQLxxxxx.DAT
Table file. All rows of a table are stored here, with the
exception of LONG VARCHAR, LONG VARGRAPHIC, CLOB,
BLOB or DBCLOB data.

SQLxxxxx.LF File containing LONG VARCHAR or LONG VARGRAPHIC
data (also called “long field data”). This file is only created if
LONG VARCHAR or LONG VARGRAPHIC columns exist in
the table.

SQLxxxxx.LB Files containing BLOB, CLOB, or DBCLOB data (also called
“LOB data”). These files are only created if BLOB, CLOB, or
DBCLOB columns exist in the table.

SQLxxxxx.LBA
Files containing allocation and free space information about
the SQLxxxxx.LB files.

Chapter 3. Designing Your Physical Database 81

SQLxxxxx.INX
Index file for a table. All indexes for the corresponding table
are stored in this single file. It is only created if indexes have
been defined.

Note: When an index is dropped, the space is not physically
freed from the index (.INX) file until the index file is
deleted. The index file will be deleted if all the indexes
on the table are dropped (and committed) or if the table
is reorganized. If the index file is not deleted, the space
will be marked free once the drop has been committed,
and will be reused for future index creations or index
maintenance.

SQLxxxxx.DTR
Temporary data file for a REORG of a DAT file. While
reorganizing a table, the REORG utility creates a table in one
of the temporary table spaces. These temporary table spaces
can be defined to use containers different from those used for
the user-defined tables.

SQLxxxxx.LFR
Temporary data file for a REORG of a LF file. Notes for the
.DTR file apply here as well.

SQLxxxxx.RLB
Temporary data file for a REORG of a LB file. Notes for the
.DTR file apply here as well.

SQLxxxxx.RBA
Temporary data file for a REORG of a LBA file. Notes for the
.DTR file apply here as well.

Notes:

1. Do not make any direct changes to these files. They can only be accessed
indirectly using the documented APIs and by tools that implement those
APIs, including the command line processor commands and the graphical
Control Center.

2. Do not remove these files.
3. Do not move these files.
4. The only supported means of backing up a database or table space is

through the BACKUP API, including implementations of that API, such as
those provided by the command line processor and Control Center.

Database Managed Space Table Space

In a Database Managed Space (DMS) table space, the database manager
controls the storage space. The storage model consists of a limited number of

82 Administration Guide Design and Implementation

devices, whose space is managed by DB2. The Administrator decides which
devices to use, and DB2 manages the space on the devices. This table space is
essentially an implementation of a special purpose file system designed to
best meet the needs of the database manager. The table space definition
includes a list of the devices or files belonging to the table space in which
data can be stored.

A DMS table space containing user-defined tables and data can be defined as:
v A regular table space to store normal table and index data
v A long table space to store long field or LOB data

When designing your DMS table spaces and containers, you should consider
the following:
v The database manager uses striping to ensure an even distribution of data

across all containers.
v The maximum size of the different types of table spaces:

– Regular table and index data: 64 GB (for 4 KB pages); 128 GB (for 8 KB
pages); 256 GB (for 16 KB pages); 512 GB (for 32 KB pages)

– Long field data: 2 TB
– Temp data: 2 TB

v Unlike SMS table spaces, the containers that make up a DMS table space do
not need to be the same size. Also, if any container is full, DMS table
spaces use any available free space from other containers.

v The space is preallocated.
Because it is preallocated, the space must be available before the table space
can be created. When using device containers, the device must also exist
with enough space for the definition of the container. Each device can have
only one container defined to it, so to avoid wasted space, the size of the
device and the size of the container should be equivalent. If, for example,
the device is allocated with 5000 pages and the device container is defined
to allocate 3000 pages, then 2000 pages on the device will not be usable.

v One page in every container is reserved for overhead and the remaining
pages will be used one extent at a time. Only full extents are used in the
container, so for optimal space management, you can use the following
formula to help you determine the appropriate size to use when allocating
a container:

(extent size * n) + 1

where, extent size is the size of each extent for the table space and n is the
number of extents you want to store in the container.

v The number of extents you require:
– Three extents in the table space are reserved for overhead

Chapter 3. Designing Your Physical Database 83

– At least two extents are required to store any user table data. (These two
extents allow for the regular data for one table, not for any index, long
field or large object data which require their own extents.)

v Device containers must use logical volumes with a “character special
interface”, not physical volumes.

v You can use files instead of devices with DMS table spaces. No operational
difference exists between a file and a device; however, a file can be less
efficient because of the runtime overhead associated with the filesystem.
Files are useful when:
– Devices are not directly supported
– A device is not available
– Maximum performance is not required
– You do not want to set up devices.

v Your workload involves LOBs or LONG VARCHARs and can benefit from
file system caching.

Note: LOBs and LONG VARCHARs are not buffered by DB2’s buffer pool.
v Some operating systems allow you to have physical devices greater than 2

GB in size. You should consider partitioning the physical device into
multiple logical devices so that no container is bigger than the size allowed
by the operating system.

Adding Containers to DMS Table Spaces

You can add a container to an existing table space to increase its storage
capacity with the ALTER TABLESPACE statement. The contents of the table
space are then re-balanced across all containers. Access to the table space is
not restricted during the re-balancing. If you need to add more than one
container, you should add them at the same time either in one ALTER
TABLESPACE statement or within the same transaction to prevent the
database manager from having to re-balance the containers more than once.

You should check how full the containers for a table space are by using the
LIST TABLESPACE CONTAINERS or the LIST TABLESPACES commands.
Adding new containers should be done before the existing containers are
almost or completely full. The new space across all the containers is not
available until the re-balance is complete.

Adding a container which is smaller than existing containers results in a
uneven distribution of data. This can cause parallel I/O operations, such as
prefetching data, to perform less efficiently than they otherwise could on
containers of equal size.

84 Administration Guide Design and Implementation

Table Space Design Considerations

Based on the logical design of your database, you should have a good idea of
the size of each table, and as a result, of your database. Based on your
understanding of this information, you should consider the following to
complete your database design as it relates to table space use:
v Considerations for Table Space Input and Output (I/O)
v Mapping Table Spaces to Buffer Pools
v Mapping Table Spaces to Nodegroups
v Mapping Tables to Table Spaces
v Choosing an Extent Size
v Recommendations for Temporary Table Spaces
v Recommendations for Catalog Table Spaces
v Workload Considerations
v Choosing an SMS or DMS Table Space
v Optimizing Performance When Data is Placed on RAID Devices.

Considerations for Table Space Input and Output (I/O)

The type and design of your table space determines the efficiency of the I/O
performed against that table space. Here are some concepts that you should
understand before considering further the issues surrounding table space
design and use.

Big-block reads
A read where several pages (usually an extent) is retrieved in
a single request. Reading several pages at once is more
efficient than reading each page separately.

Prefetching The reading of pages in advance of those pages being
referenced by a query. The overall objective is to reduce
response time. This can be achieved if the prefetching of pages
can occur asynchronously to the execution of the query. The
best response time is achieved when either the CPU(s) or the
I/O subsystem are operating at maximum capacity.

Page cleaning As pages are read and modified, these pages accumulate in
the database buffer pool. Whenever a page is read in, there
must be a buffer pool page to read it into. If the buffer pool is
full of modified pages, one of these modified pages must be
written out to the disk before the new page can be read in. To
prevent the buffer pool from becoming full, page cleaner tasks
write out modified pages in order to guarantee the availability
of buffer pool pages for use by read requests.

Chapter 3. Designing Your Physical Database 85

Whenever it is advantageous, DB2 performs big-block reads. This typically
occurs when retrieving data that is sequential or partially sequential in nature.
The amount of data read in one read depends on the extent size — the bigger
the extent size, the more pages that are read at one time.

How the extent is stored on disk affects the I/O efficiency. When considering a
DMS table space using device containers, the data tends to be contiguous on
disk and can be read with a minimum of seek time and disk latency.
However, if files are being used, the data may have been broken up by the file
system and stored in more than one location on disk. This occurs most often
when using SMS table spaces where files are extended one page at a time,
making fragmentation more likely. Preallocation of a large file for use by a
DMS table space tends to be contiguous on disk, especially if the file was
allocated in a clean file space.

DB2 performing big-block reads is only one way in which query execution is
assisted. You can control how aggressive prefetching can be by tuning the
PREFETCHSIZE parameter on the CREATE TABLESPACE statement. (The
default value for all table spaces in the database is set by the dft_prefetch_sz
configuration parameter.) The PREFETCHSIZE parameter tells DB2 how many
pages to read whenever a prefetch is triggered. By setting PREFETCHSIZE to
a multiple of the EXTENTSIZE parameter on the CREATE TABLESPACE
statement, you can cause multiple extents to be read in parallel. (The default
value for all table spaces in the database is set by the dft_extent_sz
configuration parameter. The EXTENTSIZE parameter specifies the number of
4 KB pages that will be written to a container before skipping to the next
container.)

For example, suppose you had a table space that used three devices. If you set
the PREFETCHSIZE to be three times the EXTENTSIZE, then DB2 can do a
big-block read from each device in parallel, thereby significantly increasing
the I/O throughput. This assumes that each device is a separate physical
device and that the controller has sufficient bandwidth to handle the data
stream from each device. Note that DB2 may have to dynamically adjust the
prefetch parameters at runtime based on query speed, buffer pool utilization,
and other factors.

You should know that some file systems use their own prefetching (such as
the Journaled File System on AIX). In some cases, the file system prefetching
is set to be more aggressive than the DB2 prefetching. This results in
situations where you observe that prefetching for SMS and DMS table spaces
with file containers is outperforming prefetching for DMS table spaces with
devices. This is misleading since it is likely the result of the additional level of
prefetching that is occurring in the file system. DMS table spaces should be
able to outperform any equivalent configuration.

86 Administration Guide Design and Implementation

For prefetching or even reading to be efficient, a sufficient number of clean
buffer pool pages must exist into which to read the data. For example, there
could be a parallel prefetch request which reads three extents from a table
space and where a modified page must be written out from the buffer pool for
each page being read. With the potential for a buffer page to be written out
for every page being read in, it is clear that the prefetch request is slowed
significantly perhaps to the point where it cannot keep up with the query.
Page cleaners should be configured in sufficient numbers to satisfy the
prefetch request. At least one page cleaner should be defined for each real
disk used by the database. For more information on these topics and
performance, refer to the Administration Guide, Performance.

Mapping Table Spaces to Buffer Pools

Each table space is associated with a specific buffer pool. The default buffer
pool is IBMDEFAULTBP. If another buffer pool is to be associated with a table
space, the buffer pool must exist (it is defined with the CREATE
BUFFERPOOL statement), and the association is defined when the table space
is created (using the CREATE TABLESPACE statement). The association
between the table space and the buffer pool can be changed using the ALTER
TABLESPACE statement.

Having more than one buffer pool allows you to configure the memory used
by the database to improve overall performance and to help with setting
performance goals for specific applications. For example, for table spaces with
one or more large tables which are accessed randomly by users, the size of the
buffer pool can be limited since caching the data pages might not be
beneficial. Another example would have the table space for an important
online transaction application associated with a buffer pool that is larger than
others. In this way, the data pages used by the application could be cached
longer in the buffer pool resulting in lower response times. Care must be
taken in configuring new buffer pools beyond the default. Refer to “Managing
the Database Buffer Pool” in the Administration Guide, Performance for more
information on this topic.

Note: If you have determined that a page size of 8 KB, 16 KB, or 32 KB is
required within your database, then each table space with one of these
page sizes must be mapped to a buffer pool with the same page size.

The storage required for all the buffer pools must be available to the database
manager when starting up the database. If DB2 is unable to obtain the storage
required for all defined buffer pools, the database manager will start up with
default buffer pools (one each of 4 KB, 8 KB, 16 KB, and 32 KB page sizes) of
a minimal size, and issue a warning message.

Chapter 3. Designing Your Physical Database 87

In a partitioned database environment, you can create a buffer pool of the
same size for all partitions in the database. You can also create buffer pools of
particular sizes on different partitions. For more information on the CREATE
BUFFERPOOL statement, refer to the SQL Reference manual.

Mapping Table Spaces to Nodegroups

In a partitioned database environment, each table space is associated with a
specific nodegroup. This allows for the characteristics of the table space to be
applied to each node in the nodegroup. The nodegroup must exist (it is
defined with the CREATE NODEGROUP statement), and the association
between the table space and the nodegroup is defined when the table space is
created using the CREATE TABLESPACE statement.

You cannot change the association between table space and nodegroup using
the ALTER TABLESPACE statement. You can only change the table space
specification for individual partitions within the nodegroup. If not in a
partitioned database environment, each table space is associated with a
default nodegroup. The default nodegroup when defining a table space is
IBMDEFAULTGROUP unless a temporary table space is being defined and
then IBMTEMPGROUP is used. For more information on the CREATE
NODEGROUP statement, refer to the SQL Reference manual. For more
information on nodegroups and physical database design, see the “Designing
Nodegroups” on page 67.

Mapping Tables to Table Spaces

When determining how to map tables to table spaces in your design, you
should consider:
v The partitioning of your tables.

At a minimum, you should ensure that the table space you choose is in the
nodegroup with the partitioning you desire.

v The amount of data in the table.
If you plan to store many small tables in a table space, consider using SMS
for that table space. The DMS advantages with I/O and space management
efficiency are not as important with small tables. The SMS advantages of
allocating space one page at a time, and only when needed, are more
attractive with smaller tables. If one of your tables is larger, or you need
faster access to the data in the tables, then a DMS table space with a small
extent size should be considered.
You may wish to use a separate table space for each very large table and
group all small tables together in a single table space. This separation also
allows you to select an appropriate extent size based on the table space
usage. (See “Choosing an Extent Size” on page 89 for additional
information.)

88 Administration Guide Design and Implementation

v The type of data in the table.
You may, for example, have tables containing historical data that is used
infrequently and as a result the end-user may be willing to accept a longer
response time for queries executed against this data. In this situation, you
could use a different table space for the historical tables and assign this
table space to less expensive physical devices that have slower access rates.
Alternatively, you may be able to identify some essential tables which
require high availability and fast response time. You may want to put these
tables into a table space assigned to a fast physical device that can help
support these important data requirements.
Using DMS table spaces, you can also spread your table across three
different table spaces: one for index data; one for LOB and long field data;
one for regular table data. This allows you to choose the table space
characteristics and the physical devices supporting those table spaces to
best suit the type of data. For example, you could put your index data on
the fastest devices you have available, and as a result, obtain significant
performance improvements. If you split a table across DMS table spaces,
you should consider backing up and restoring all parts of the table together
if ROLLFORWARD recovery is enabled. SMS table spaces do not support
the spreading of your table across table spaces in this fashion.

v The administration requirements of your tables.
Some administration functions can be performed at the table space level
instead of the database or table level. For example, taking a back up of a
table space instead of a database can help you make better use of your time
and resources. It allows you to frequently back up table spaces with large
volumes of changes, while only occasionally backing up tables spaces with
very low volumes of changes.
You may restore a database or a table space. If unrelated tables do not share
table spaces, you have the ability to restore a smaller portion of your
database, and as a result, reduce the time and resource requirements for the
restore utility.
A general rule-of-thumb could be to group related tables in a set of table
spaces. These tables could be related through referential constraints, or
through other business constraints defined on the tables using triggers.
Another aspect to consider for administration of your tables, is how often
you might want to drop and redefine a particular table. If the frequency is
high, you may want to define the table in its own table space, since it is
more efficient to drop a DMS table space than it is to drop a table.

Choosing an Extent Size

The extent size for a table space indicates the number of pages of table data
that will be written to a container before data will be written to the next
container. When selecting an extent size, you should consider:

Chapter 3. Designing Your Physical Database 89

v The size and type of tables in the table space.
Space in DMS table spaces is allocated to a table an extent at a time. As the
table is populated and an extent becomes full, a new extent is allocated.
A table is made up of the following separate table objects:
– A DATA object. This is where the regular column data is stored.
– An INDEX object. All indexes defined on the table are stored here.
– A LONG FIELD object. If your table has one or more LONG columns,

they are all stored here.
– Two LOB objects. If your table has one or more LOB columns, they are

stored in these two table objects:
- One table object for the LOB data
- A second table object for meta-data describing the LOB data

Each table object is stored separately, and therefore each allocates new
extents as needed. Each table object is also paired up with a meta-data
object called an extent map, which describes all the extents in the table space
which belong to the table object. Space for extent maps is also allocated an
extent at a time.

The initial allocation of space for a table, therefore, is two extents for each
table object. If you have many small tables in a table space, you may have a
relatively large amount of space allocated to store a relatively small amount
of data. In such a case, you should specify a small extent size, or use an
SMS table space which allocates pages one at a time.

If, on the other hand, you have a very large table that has a high growth
rate, and you are using an DMS table space with a small extent size, you
could have unnecessary overhead related to the frequent allocation of
additional extents.

v The type of access to the tables.
If access to the tables includes many queries or transactions that process
large quantities of data, prefetching data from the tables may provide
significant performance benefits. (Refer to Administration Guide, Performance
for information about data prefetching and recommendations on its
relationship to the extent size.)

v The minimum number of extents required.
There must be enough space in the containers for five extents of the table
space, otherwise the table space will not be created.

Recommendations for Temporary Table Spaces

It is recommended that you define a single SMS temporary table space with a
page size equal to the page size used in the majority of your regular table

90 Administration Guide Design and Implementation

spaces. This should be suitable for typical environments and workloads.
However, it can be advantageous, in specific workloads, to experiment with
different temporary table space configurations. The following points should be
considered:
v Temporary tables are in most cases accessed in batches and sequentially.

That is, a batch of rows are inserted or a batch of sequential rows are
fetched. As a result, a larger page size typically results in better
performance characteristics as fewer logical and/or physical page I/O
requests are required to read a given amount of data. This is not always the
case when the average temporary table row size is smaller than the page
size divided by 255. A maximum of 255 rows can exist on any page
regardless of the page size. For example, a query that requires a temporary
table with fifteen-byte rows would be better served with a 4 KB temporary
table space page size because 255 such rows can all be contained within a 4
KB page. An 8 KB (or larger) page size would result in at least 4 KB (or
more) bytes of wasted space on each temporary table page; and therefore
would not reduce the number of I/O requests required.

v If more than fifty percent of the regular table spaces in your database use
the same page size, it can be advantageous to define your temporary table
spaces with the same page size. The reason for the advantage is that this
arrangement enables your temporary table space to share the same buffer
pool space with most or all of your regular table spaces. This, in turn,
simplifies buffer pool tuning.

v When reorganizing a table using a temporary table space, the page size of
the temporary table space must match that of the table. For this reason, you
should ensure there are temporary table spaces defined for each different
page size used by existing tables that you may reorganize using a
temporary table space.

Note: You can also perform reorganization without a temporary table space
by reorganizing the table “inplace”; that is, directly in the target table
space. Of course, this “inplace” reorganization requires that there be
extra space in the target table space for the reorganization process.
Refer to Administration Guide, Performance for additional information
on reorganization of tables.

v In general, when temporary table spaces of differing page sizes exist, the
optimizer will most often choose the temporary table space with the largest
buffer pool. In such cases, it is often wise to assign an ample buffer pool to
one of the temporary table spaces, and leave any others with a smaller
buffer pool. Such a buffer pool assignment will help ensure efficient
utilization of main memory. For example, if your catalog table space uses 4
KB pages, and the remaining table spaces use 8 KB pages, the best
temporary table space configuration may be a single 8 KB temporary table
space with an ample buffer pool; and a single 4 KB table space with a small
buffer pool.

Chapter 3. Designing Your Physical Database 91

Note: Catalog table spaces are restricted to use the 4 KB page size. As such,
the database manager always enforces the existence of a 4 KB
temporary table space to enable catalog table reorganizations.

v There is generally no advantage to defining more than one temporary table
space of any single page size.

v SMS is almost always a better choice than DMS for temporary table spaces
because:
– Disk space is allocated on demand in SMS, whereas it must be

pre-allocated in DMS. Preallocation can be a difficulty as shown in the
following example: Temporary table spaces hold transient data that can
have a very large peak storage requirement but a much lower average
storage requirement. With DMS, the peak storage requirement must be
pre-allocated, whereas with SMS, the extra disk space can be used for
other purposes during off-peak hours.

– The database manager does its best to keep temporary table pages in
memory, and to avoid having them out on disk. As a result, the
performance advantages of DMS are less significant.

– SMS containers can take advantage of file system buffering; DMS
containers cannot.

Recommendations for Catalog Table Spaces

For each database, a SMS table space for the catalogs is recommended. SMS
and not DMS, is recommended for the following reasons:
v The database catalog consists of many tables of varying sizes. When using a

DMS table space, a minimum of two extents are allocated for each table
object. Depending on the extent size chosen, a significant amount of
allocated and unused space may result. If using a DMS table space, then a
small extent size (two to four pages) should be chosen; otherwise, a SMS
table space should be used.

v There are large object (LOB) columns in the catalog tables. LOB data is not
kept in the buffer pool with other data but is read from disk each time it is
needed. Reading from disk slows down the performance of DB2 where the
LOB columns of the catalogs are involved. Since a file system usually has
its own place for storing (or caching) data, using a SMS table space, or a
DMS table space built on file containers, make avoidance of I/O possible
when the LOB has previously been referenced.

Given these considerations, a SMS table space is a slightly better choice for
the catalogs.

Another factor to consider is if you will need to enlarge the catalog table
space in the future. While some platforms have support for enlarging the
underlying storage for SMS containers, and while the use of redirected restore

92 Administration Guide Design and Implementation

to enlarge a SMS table space is available, the use of a DMS table space would
allow for easier addition of new containers than the two other choices.

Workload Considerations

The primary type of workload being managed by DB2 in your environment
can have an effect on your choice of the type of table space used, and the
page size for the table space. An online transaction process (OLTP) workload
is characterized by transactions that make random access to data and that
usually return small sets of data. Given that the access is random, and to one
or a few pages, then prefetching is not possible. The important fact when
considering I/O becomes the retrieving of a page of data with the minimum
cost possible.

DMS table spaces using device containers perform best in this situation. DMS
table spaces with file containers or SMS table spaces are also reasonable
choices for OLTP workloads if maximum performance is not required. With
little or no sequential I/O expected, the settings for the EXTENTSIZE and
PREFETCHSIZE parameters on the CREATE TABLESPACE statement are not
important for I/O efficiency.

A query workload is characterized by transactions that make sequential or
partially sequential access to data and that usually return large sets of data.
Efficient parallel prefetch should be possible in the type of table space chosen.
A DMS table space using multiple device containers and where each container
is on a separate disk, offers the greatest potential for efficient prefetching. The
value of the PREFETCHSIZE parameter on the CREATE TABLESPACE
statement should be set to the value of the EXTENTSIZE parameter multiplied
by the number of device containers. This allows DB2 to prefetch from all
containers in parallel.

A reasonable alternative with a query workload is to use files if the file
system has its own prefetching. The files can be either of DMS type using file
containers, or of SMS type. Note that if you use SMS, you need to have the
directory containers map to separate physical disks in order to achieve I/O
parallelism.

A mixed workload is characterized by transactions that are a mixture of the
two types mentioned above. Your choice of SMS or DMS table spaces result
from combining the considerations and advice from each of the two types of
workload. Your goal will be to make single I/O requests as efficient as
possible for OLTP workloads, and to maximize the efficiency of parallel I/O
for the query workload.

The considerations for determining the page size for a table space are as
follows:

Chapter 3. Designing Your Physical Database 93

v For OLTP applications that perform random row reads and writes, a
smaller page size is usually preferable, because it wastes less buffer pool
space with unwanted rows.

v For DSS applications that access large numbers of consecutive rows at a
time, a larger page size is usually better because it reduces the number of
I/O requests that are required to read a specific number of rows. There is,
however, an exception to this. If your row size is smaller than
pagesize/255, there will be wasted space on each page (there is a maximum
of 255 rows per page). In this situation, a smaller page size may be more
appropriate.

v Larger page sizes may allow you to reduce the number of levels in the
index.

v Larger pages support rows of greater length.
v On the default 4 KB page size, tables are restricted to 500 columns while

the larger page sizes (8 KB, 16 KB, and 32 KB) support 1012 columns.
v The maximum possible size of the table space is proportional to the page

size of the table space. The limits are documented in the SQL Reference.

Choosing an SMS or DMS Table Space

There are a number of trade-offs to consider when determining which type of
table space you should use to store your data.

Advantages of a SMS Table Space:

v Space is not allocated by the system until it is required
v Creating a database requires less initial work since you do not have to

predefine the containers.

Advantages of a DMS Table Space:

v The size of a table space can be increased by adding containers, using the
ALTER TABLESPACE statement. Existing data is automatically rebalanced
across the new set of containers to retain optimal I/O efficiency.

v A table can be split across multiple table spaces based on the type of data
being stored:
– Long field and LOB data
– Indexes
– Regular table data

You might want to separate your table data for performance reasons, or to
increase the amount of data stored for a table. For example, you could have
a table with 64 GB of regular table data, 64 GB of index data and 2 TB of
long data.

94 Administration Guide Design and Implementation

Note: If you are using 8 KB pages, the table data and index data can be as
much as 128 GB. If you are using 16 KB pages, the table data and
index data can be as much as 256 GB. If you are using 32 KB pages,
the table data and index data can be as much as 512 GB.

v The location of the data on the disk can be controlled, if the operating
system allows this.

v If all table data is in a single table space, a table space can be dropped and
redefined with less overhead than dropping and redefining a table.

v In general, a well-tuned set of DMS table spaces will outperform SMS table
spaces.

In general, small personal databases are easiest to manage with SMS table
spaces. On the other hand, for large, growing databases you will probably
only want to use SMS table spaces for the temporary table spaces and
separate DMS table spaces, with multiple containers, for each table. In
addition, long fields and indexes would be stored on their own table spaces.

If you choose to use DMS table spaces with device containers, you must be
willing to tune and administer your environment. Refer to “Performance
Considerations for DMS Devices” in the Administration Guide, Performance for
more information.

Optimizing Performance When Data is Placed on RAID Devices

This section describes how to optimize performance when data is placed on
Redundant Array of Independent Disks (RAID) devices. In general, you
should do the following for each table space that uses a RAID device:
v Define a single container for the table space (using the RAID device).
v Make the EXTENTSIZE of the table space equal to, or a multiple of, the

RAID stripe size.
v Ensure that the PREFETCHSIZE of the table space is:

– the RAID stripe size multiplied by the number of RAID parallel devices
(or a whole multiple of this product), and

– a multiple of the EXTENTSIZE.
v Use the DB2_PARALLEL_IO registry variable (described below) to enable

parallel I/O for the table space
v Use the DB2_STRIPED_CONTAINERS registry variable (described below)

to ensure extent boundaries are aligned in the table space.

DB2_PARALLEL_IO

When reading data from, or writing data to table space containers, DB2 may
use parallel I/O if the number of containers in the database is greater than 1.
However, there are situations when it would be beneficial to have parallel I/O

Chapter 3. Designing Your Physical Database 95

enabled for single container table spaces. For example, if the container is
created on a single RAID device that is composed of more than one physical
disk, you may want to issue parallel read and write calls.

To force parallel I/O for a table space that has a single container, you can use
the DB2_PARALLEL_IO registry variable. This variable can be set to ″*″
(asterisk), meaning every table space, or it can be set to a list of table space
IDs separated by commas. For example:

db2set DB2_PARALLEL_IO=* {turn parallel I/O on for all table spaces}
db2set DB2_PARALLEL_IO=1,2,4,8 {turn parallel I/O on for table spaces 1, 2,

4, and 8}

After setting the registry variable, DB2 must be stopped (db2stop), and then
restarted (db2start), for the changes to take effect.

DB2_STRIPED_CONTAINERS

Currently when creating a DMS table space container (device or file), a
one-page tag is stored at the beginning of the container. The remaining pages
are available for data storage by DB2, and are grouped into extent-sized
blocks.

When using RAID devices for table space containers, it is suggested that the
table space be created with an extent size that is equal to, or a multiple of, the
RAID stripe size. However, because of the one-page container tag, the extents
will not line up with the RAID stripes, and it may be necessary during an I/O
request to access more physical disks than would be optimal.

DMS table space containers can now be created in such a way that the tag
exists in its own (full) extent. This avoids the problem described above, but it
requires an extra extent of overhead within the container. To create containers
in this fashion, you must set the DB2 registry variable
DB2_STRIPED_CONTAINERS to ″ON″, and then stop and restart your
instance:

db2set DB2_STRIPED_CONTAINERS=ON
db2stop
db2start

Any DMS container that is created (with CREATE TABLESPACE or ALTER
TABLESPACE) will have new containers with tags taking up a full extent.
Existing containers will remain unchanged.

To stop creating containers with this attribute, reset the variable, and then
stop and restart your instance:

96 Administration Guide Design and Implementation

db2set DB2_STRIPED_CONTAINERS=
db2stop
db2start

The Control Center and the LIST TABLESPACE CONTAINERS command will
not show whether a container has been created as striped or not. They will
continue to use ″file″ or ″device″, depending on how the container was
created. To verify that a container was created as striped, you can use the
/DTSF option of DB2DART to dump table space and container information,
and look at the type field for the container in question. Also, the query
container APIs, sqlbftcq() and sqlbtcq(), can be used to create a simple
application that will display the type.

Definitions for these new types have been added to the sqlutil.h header file:
#define SQLB_CONT_STRIPED_DISK 5 /* DMS: Striped disk */
#define SQLB_CONT_STRIPED_FILE 6 /* DMS: Striped file */

Federated Database Design Considerations

When designing a federated database, consider the following design topics:
v Space requirements
v Network prioritization

Typically, the data accessible from a federated database is not stored at that
database. References to data source tables and views are stored within the
system catalog, but the actual data is located at the data source. As such, you
might need less storage space than a typical database. This general rule might
not apply if your queries, due to collating system differences or lack of
function at a data source, must be executed locally. In this case, tables are
materialized at DB2 for processing.

Because the majority of federated system data is typically located at one or
more data sources located across a network, consider changing the resources
assigned to DB2 and your network system. You might see performance
increases by allocating more resources to the network at the DB2 system than
to the database manager itself.

Chapter 3. Designing Your Physical Database 97

98 Administration Guide Design and Implementation

Chapter 4. Implementing Your Design

After determining the design of your database, you must create the database
and the objects within it. These objects include schemas, nodegroups, table
spaces, tables, views, wrappers, servers, nicknames, type mappings, function
mappings, aliases, user-defined types (UDTs), user-defined functions (UDFs),
triggers, constraints, indexes, and packages. You can create these objects using
SQL statements in the command line processor, from the Control Center (on
the Windows 95, Windows NT, and OS/2 operating systems), or through APIs
in applications.

For information on SQL statements, refer to the SQL Reference manual. For
information on command line processor commands and user APIs, refer to the
Command Reference and Administrative API Reference manuals respectively.

Note: Your platform may support a user interface where you can create
database objects. This interface can be used instead of the SQL
statements, command line processor commands, or user APIs. Check
the Quick Beginnings manual for your platform to determine if you have
this capability.

The following topics are expanded and discussed in greater detail later in this
chapter:
v Conceptual information you should know before you create a database
v How to Create Objects
v How to Alter Objects
v How to Delete Objects.

There may be operating system-specific differences with some of the topics
discussed below in those areas where DB2 Universal Database interacts with
the operating system. You may be able to take advantage of native operating
system capabilities or differences beyond those offered by DB2 UDB. You
should refer to your appropriate Quick Beginnings manuals and specific
operating system documentation for precise differences.

As an example, Windows NT** supports an application type known as a
“service”. DB2 for Windows NT can have a DB2 instance defined as a service.
A service can be started automatically at system boot, by a user through the
Services control panel applet, or by a Win32-based application that uses the
service functions included in the Microsoft** Win32** application
programming interface (API). Services can execute even when no user is
logged on to the system.

© Copyright IBM Corp. 1993, 1999 99

Introductory Concepts for Database Implementation

Before you implement a database, you should understand the following
concepts:
v “Starting and Stopping DB2”

v “Starting DB2 UDB on Windows NT” on page 101

v “Using Multiple Instances of the Database Manager” on page 102

v “Organizing and Grouping Objects by Schema” on page 103

v “Enabling Intra-Partition Parallelism” on page 104

v “Enabling Data Partitioning” on page 104

Starting and Stopping DB2

You may need to start or stop DB2 during normal business operations; for
example, you must start an instance before you can perform the following
tasks:
v Connect to a database on the instance.
v Precompile an application.
v Bind a package to a database.
v Access host databases.

To start a DB2 instance on your system:
1. Log in with a user ID or name that has SYSADM, SYSCTRL, or

SYSMAINT authority on the instance; or, log in as the instance owner.
2. On UNIX operating systems, run the start up script as follows:

. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance you want to use.
3. Use one of these methods to start the instance:
v From the Control Center, click with the right mouse button on the

instance that you want to start and select the Start option from the
pop-up menu.

v From a command line, enter the db2start command.

Note: The db2start command starts the instance according to the rules in
“Setting the Current Instance” on page 113.

To stop a DB2 instance on your system, you must do the following:

100 Administration Guide Design and Implementation

1. Log in or attach to an instance with a user ID or name that has SYSADM,
SYSCTRL, or SYSMAINT authority on the instance; or, log in as the
instance owner.

2. Display all applications and users that are connected to the specific
database that you want to stop. To ensure that no vital or critical
applications are running, list applications. You need SYSADM, SYSCTRL,
or SYSMAINT authority for this.

3. Force all applications and users off the database. You require SYSADM or
SYSCTRL authority to force users.

4. On UNIX operating systems, run the start up script as follows:
. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance you want to use.
5. Use one of these methods to start the instance:
v From the Control Center, click with right mouse button on the instance

that you want to stop and select the Stop option from the pop-up menu.
v Stop the DB2 instance from the command line by typing the command:

db2stop

The db2stop command can only be run at the server. No database connections
are allowed when running this command; however, if there are any instance
attachments, they are forced off before DB2 is stopped.

Note: If command line processor sessions are attached to an instance, you
must run the terminate command to end each session before running
the db2stopcommand. The db2stop command stops the instance
defined by the DB2INSTANCE environment variable.

Starting DB2 UDB on Windows NT

The db2start command will launch DB2 as an NT Service. DB2 on Windows
NT can still be run as a process by specifying the ″/D″ switch when invoking
DB2START. DB2 can also be started as a Service using the Control Panel or
″NET START″ command.

In order to successfully launch DB2 as a service from DB2START, the user
account must have the correct privilege as defined by the Windows NT
operating system to start an NT Service. The user account can be a member of
the Administrators, Server Operators, or Power Users group.

When running in a partitioned database environment, each database partition
server is started as an NT service.

Chapter 4. Implementing Your Design 101

Using Multiple Instances of the Database Manager

Multiple instances of the database manager may be created on a single server.
This means that you can create several instances of the same product on a
physical machine, and have them running concurrently. This provides
flexibility in setting up environments.

You may wish to have multiple instances to:
v Separate your development environment from your production

environment.
v Separately tune each for the specific applications it will service.
v Protect sensitive information from administrators. For example, you may

wish to have your payroll database protected on its own instance so that
owners of other instances will not be able to see payroll data.

DB2 program files are physically stored in one location on a particular
machine. Each instance that is created points back to this location so the
program files are not duplicated for each instance created. Several related
databases can be located within a single instance.

Instances are cataloged as either local or remote in the node directory. Your
default instance is defined by the DB2INSTANCE environment variable. You
can attach to other instances to perform maintenance and utility tasks that can
only be done at an instance level, such as creating a database, forcing off
applications, monitoring a database, or updating the database manager
configuration. When you attempt to attach to an instance that is not in your
default instance, the node directory is used to determine how to communicate
with that instance.

To attach to another instance, which may be remote, use the ATTACH
command as described in the Command Reference manual. For example:

db2 attach to testdb2

will attach you to the instance called testdb2 that was previously cataloged in
the node directory.

After performing maintenance activities for the testdb2 instance, you can then
detach from that instance by executing the following command:

db2 detach

The Command Reference provides information about the type of connection that
is required to execute each command.

102 Administration Guide Design and Implementation

DB2 support for multiple instances varies by operating system. Refer to the
Quick Beginnings guide appropriate to your platform for information on
defining multiple DB2 instances on one machine.

Organizing and Grouping Objects by Schema

Database object names may be made up of a single identifier or they may be
schema qualified objects made up of two identifiers. The schema, or high-order
part, of a schema qualified object provides a means to classify or group
objects in the database. When an object such as a table, view, alias, distinct
type, function, index, package or trigger is created, it is assigned to a schema.
This assignment is done either explicitly or implicitly.

Explicit use of the schema occurs when you use the high-order part of a
two-part object name when referring to that object in a statement. For
example, USER A issues a CREATE TABLE statement in schema C as follows:

CREATE TABLE C.X (COL1 INT)

Implicit use of the schema occurs when you do not use the high-order part of
a two-part object name. When this happens, the CURRENT SCHEMA special
register is used to identify the schema name used to complete the high-order
part of the object name. The initial value of CURRENT SCHEMA is the
authorization ID of the current session user. If you wish to change this during
the current session, you can use the SET SCHEMA statement to set the special
register to another schema name. Refer to the SQL Reference for more
information.

As described in “Definition of System Catalog Tables” on page 148, some
objects are created within certain schemas when the database is created.

In dynamic SQL statements, a schema qualified object name implicitly uses
the CURRENT SCHEMA special register value as the qualifier for unqualified
object name references. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
database object names.

Before creating your own objects, you need to consider whether you want to
create them in your own schema or by using a different schema that logically
groups the objects. If you are creating objects that will be shared, using a
different schema name can be very beneficial. For more information on how to
explicitly create a schema, see “Creating a Schema” on page 157.

Chapter 4. Implementing Your Design 103

Enabling Intra-Partition Parallelism

You must modify configuration parameters to take advantage of parallelism
within a database partition or within a non-partitioned database. For example,
intra-partition parallelism can be used to take advantage of the multiple
processors on a symmetric multi-processor (SMP) machine.

Use the GET DATABASE CONFIGURATION and the GET DATABASE
MANAGER CONFIGURATION commands to find out the values of
individual entries in a specific database, or in the database manager
configuration file. To modify individual entries for a specific database or in
the database manager configuration file, use the UPDATE DATABASE
CONFIGURATION and the UPDATE DATABASE MANAGER
CONFIGURATION commands respectively.

Configuration parameters that affect intra-partition parallelism include the
max_querydegree and intra_parallel database manager parameters, and the
dft_degree database parameter. For more information on configuration
parameters, refer to the Administration Guide, Performance.

Enabling Data Partitioning

When running in a multiple partition environment, you can create a database
from any node that exists in the db2nodes.cfg file using the CREATE
DATABASE command or the sqlecrea() application programming interface
(API). For information, refer to the Command Reference and Administrative API
Reference manuals.

Before creating a partitioned database, you must determine if you will be a
local or remote client to the instance where the database is to be created.
Second, you must attach to the instance. You must also select which database
partition will be the catalog node for the database. The database partition to
which you attach and execute the CREATE DATABASE command becomes
the catalog node for that particular database.

The catalog node is the database partition on which all system catalog tables
are stored. All access to system tables must go through this database partition.
All federated database objects (wrappers, servers, nicknames, etc.) are stored
in the system catalog tables at this node.

If possible, you should create each database in a separate instance. If this is
not possible (that is, you must create more than one database per instance),
you should spread the catalog nodes among the available database partitions.
Doing this reduces contention for catalog information at a single database
partition.

104 Administration Guide Design and Implementation

Note: You should regularly do a backup of the catalog node and avoid
putting data on it (whenever possible), because other data increases the
time required for the backup.

When you create a database, it is automatically created across all the database
partitions defined in the db2nodes.cfg file.

When the first database in the system is created, a system database directory
is formed. It is appended with information about any other databases that you
create. The system database directory is sqldbdir and is located in the sqllib
directory under your home directory. This directory must reside on a shared
file system, (for example, NFS on UNIX platforms) because there is only one
system database directory for all the database partitions that make up the
parallel database.

Also resident in the sqldbdir directory is the system intention file. It is called
sqldbins, and ensures that the database partitions remain synchronized. The
file must also reside on a shared file system since there is only one directory
across all database partitions. The file is shared by all the partitions making
up the database.

Configuration parameters have to be modified to take advantage of data
partitioning. Use the GET DATABASE CONFIGURATION and the GET
DATABASE MANAGER CONFIGURATION commands to find out the values
of individual entries in a specific database, or in the database manager
configuration file. To modify individual entries in a specific database, or in the
database manager configuration file, use the UPDATE DATABASE
CONFIGURATION and the UPDATE DATABASE MANAGER
CONFIGURATION commands respectively.

The database manager configuration parameters affecting a partitioned
database include conn_elapse, fcm_num_anchors, fcm_num_buffers,
fcm_num_connect, fcm_num_rqb, max_connretries, max_coordagents, max_time_diff,
num_poolagents, and stop_start_time.

For more information on configuration parameters, refer to the Administration
Guide, Performance.

Before Creating a Database

Before creating a database, you should consider or carry out the following
tasks:
v Design Logical and Physical Database Characteristics
v Create an Instance

Chapter 4. Implementing Your Design 105

v Establish Environment Variables and the Profile Registry
v DB2 Administration Server (DAS)
v Create a Node Configuration File
v Creation of the Database Configuration File
v Enable FCM Communications.

Design Logical and Physical Database Characteristics

You must make logical and physical database design decisions before you
create a database. To find out more about logical database design, see
“Chapter 2. Designing Your Logical Database” on page 29. To find out more
about physical database design, see “Chapter 3. Designing Your Physical
Database” on page 55.

Create an Instance

An instance is a logical database manager environment where you catalog
databases and set configuration parameters. Depending on your needs, you
can create more than one instance. You can use multiple instances to do the
following:
v Use one instance for a development environment and another instance for a

production environment.
v Tune an instance for a particular environment.
v Restrict access to sensitive information.
v Control the assignment of SYSADM, SYSCTRL, and SYSMAINT authority

for each instance.
v Optimize the database manager configuration for each instance.
v Limit the impact of an instance failure. In the event of an instance failure,

only one instance is affected. Other instances can continue to function
normally.

It should be noted that multiple instances have some minor disadvantages:
v Additional system resources (virtual memory and disk space) are required

for each instance.
v More administration is required because of the additional instances to

manage.

The instance directory stores all information that pertains to a database
instance. You cannot change the location of the instance directory once it is
created. The directory contains:
v The database manager configuration file
v The system database directory

106 Administration Guide Design and Implementation

v The node directory
v The DB2 diagnostic file (db2diag.log)
v The node configuration file (on Windows NT)
v Any other files that contain debugging information, such as the

exception/register dump or the call stack for the DB2 processes.

On UNIX operating systems, the instance directory is located in the
INSTHOME/sqllib directory, where INSTHOME is the home directory of the
instance owner.

In a partitioned database system, the instance directory is shared between all
database partition servers belonging to the instance. Therefore, the instance
directory must be created on a network share drive that all machines in the
instance can access.

As part of your installation procedure, you create a default instance of DB2
called “DB2”. On UNIX, the default can be called anything you want within
the naming rules guidelines. The instance name is used to set up the directory
structure.

To support the immediate use of this instance, the following are set during
installation:
v The environment variable DB2INSTANCE is set to “DB2”.
v The DB2 registry variable DB2INSTDEF is set to “DB2”.

On UNIX, the default can be called anything you want within the naming
rules guidelines.

These settings establish “DB2” as the default instance. You can change the
instance that is used by default, but first you have to create an additional
instance.

Before using DB2, the database environment for each user must be updated so
that it can access an instance and run the DB2 programs. This applies to all
users (including administrative users).

On UNIX operating systems, sample script files are provided to help you set
the database environment. The files are: db2profile for Bourne or Korn shell,
and db2cshrc for C shell. These scripts are located in the sqllib subdirectory
under the home directory of the instance owner. The instance owner or any
user belonging to the instance’s SYSADM group can customize the script for
all users of an instance. Alternatively, the script can be copied and customized
for each user.

The sample script contains statements to:

Chapter 4. Implementing Your Design 107

v Update a user’s PATH by adding the following directories to the existing
search path: the bin, adm, and misc subdirectories under the sqllib
subdirectory of the instance owner’s home directory.

v Set the DB2INSTANCE environment variable to the instance name.

Setting the DB2 Environment Automatically

Note: This discussion only applies to the UNIX operating system
environments.

By default, the scripts affect the user environment for the duration of the
current session only. You can change the .profile file to enable it to run the
db2profile script automatically when the user logs on using the Bourne or
Korn shell. For users of the C shell, you can change the .login file to enable it
to run the db2shrc script file.

Add one of the following statements to the .profile or .login script files:
v For users who share one version of the script, add:

. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance that you wish to use.
v For users who have a customized version of the script in their home

directory, add:
. USERHOME/db2profile (for Bourne or Korn shell)
source USERHOME/db2cshrc (in C shell)

where USERHOME is the home directory of the user.

Setting the DB2 Environment Manually

Note: This discussion only applies to the UNIX operating system
environments.

To choose which instance that you want to use, enter one of the following
statements at a command prompt. The period (.) and the space are required.
v For users who share one version of the script, add:

. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance that you wish to use.
v For users who have a customized version of the script in their home

directory, add:
. USERHOME/db2profile (for Bourne or Korn shell)
source USERHOME/db2cshrc (in C shell)

108 Administration Guide Design and Implementation

where USERHOME is the home directory of the user.

If you want to work with more than one instance at the same time, run the
script for each instance that you want to use in separate windows. For
example, assume that you have two instances called test and prod, and their
home directories are /u/test and /u/prod.

In window 1:
v In Bourne or Korn shell, enter:

. /u/test/sqllib/db2profile

v In C shell, enter:
source /u/test/sqllib/db2cshrc

In window 2:
v In Bourne or Korn shell, enter:

. /u/prod/sqllib/db2profile

v In C shell, enter:
source /u/prod/sqllib/db2cshrc

Use window 1 to work with the test instance and window 2 to work with
the prod instance.

Note: Enter the which db2 command to ensure that your search path has
been set up correctly. This command returns the absolute path of the
DB2 CLP executable. Verify that it is located under the instance’s
sqllib directory.

Creating Multiple Instances

It is possible to have more than one instance on a system. You may only work
within one instance of DB2 at a time.

The instance owner and the group that is the System Administration
(SYSADM) group are associated with every instance. The instance owner and
the SYSADM group are assigned during the process of creating the instance.
One user ID or username can be used for only one instance. That user ID or
username is also referred to as the instance owner.

Each instance owner must have a unique home directory. All of the files
necessary to run the instance are created in the home directory of the instance
owner’s user ID or username. If it becomes necessary to remove the instance
owner’s user ID or username from the system, you could potentially lose files
associated with the instance and lose access to data stored in this instance. For

Chapter 4. Implementing Your Design 109

this reason, it is recommended that you dedicate an instance owner user ID or
username to be used exclusively to run DB2.

The primary group of the instance owner is also important. This primary
group automatically becomes the system administration group for the instance
and gains SYSADM authority over the instance. Other user IDs or usernames
that are members of the primary group of the instance owner also gain this
level of authority. For this reason, you may want to assign the instance
owner’s user ID or username to a primary group that is reserved for the
administration of instances. (Also, ensure that you assign a primary group to
the instance owner user ID or username; otherwise, the system-default
primary group is used.)

If you already have a group that you want to make the system administration
group for the instance, you can simply assign this group as the primary group
when you create the instance owner user ID or username. To give other users
administration authority on the instance, add them to the group that is
assigned as the system administration group.

To separate SYSADM authority between instances, ensure that each instance
owner user ID or username uses a different primary group. However, if you
choose to have a common SYSADM authority over multiple instances, you
can use the same primary group for multiple instances.

If you have Administrative authority on OS/2, or you belong to the
Administrative group on Windows NT, or you have root authority on UNIX
platforms, you can create additional DB2 instances using the db2icrt
command. The machine that you run the command on becomes the
instance-owning machine (node zero/0). Ensure that you create instances on a
machine where an Administration Server resides.

Note: You can choose to update an existing singe-partition instance to the
multi-partition format using the db2iupdt command.

Create Instance Command

Use the db2icrt command to create an instance of DB2. When using this
command, you should provide the login name of the instance owner and
optionally specify the authentication type of the instance. The authentication
type applies to all databases created under that instance. The authentication
type is a statement of where the authenticating of users will take place. For
more information on authentication, see “Chapter 6. Controlling Database
Access” on page 281.

To create an instance, perform the following steps:

110 Administration Guide Design and Implementation

1. Log on using a user ID or name that has Administrative authority or
belongs to an Administrators group.

2. From a command prompt, run the db2icrt command:
db2icrt <instance_name>

When working with DB2 Extended Enterprise Environment, you will also
need to declare that you are creating an instance that is a partitioned
database system. This is done using –s eee on the command line.

When working with UNIX operating systems, the db2icrt command has
the following optional parameters:
v –h or –?

This parameter is used to display a help menu for the command.
v –d

This parameter sets the debug mode for use during problem
determination.

v –a AuthType
This parameter specifies the authentication type for the instance. Valid
authentication types are SERVER, CLIENT, DCS, or DCE. If not
specified, the default is SERVER, if a DB2 server is installed. Otherwise,
it is set to CLIENT.

Notes:

a. The authentication type of the instance applies to all databases
owned by the instance.

b. On UNIX operating systems, the authentication type DCE is not a
valid choice.

v –u FencedID
This parameter is the user under which the fenced user-defined
functions (UDFs) and stored procedures will execute. This is not
required if you install the DB2 client or the DB2 Software’s Developer
Kit. For other DB2 products, this is a required parameter.

Note: FencedID may not be “root” or “bin”.
v –p PortName

This parameter specifies the TCP/IP service name or port number to be
used. This value will then be set in the instance’s database configuration
file.

v –s InstType
Allows different types of instances to be created. Valid instance types
are: ee, eee and client.

Examples:

Chapter 4. Implementing Your Design 111

v To create an instance for a DB2 server, you can use the following
command:

db2icrt -u db2fenc1 db2inst1

v If you installed the DB2 Connect Enterprise Edition only, you can use
the instance name as the Fenced ID also:

db2icrt -u db2inst1 db2inst1

v To create an instance for a DB2 client, you can use the following
command:

db2icrt db2inst1 –s client

Optionally on Windows NT, you may also want to specify a different
instance profile path. If you do not specify the path, the instance directory
is created under the SQLLIB directory, and given the shared name DB2
concatenated to the instance name. Read and write permissions are
automatically granted to everyone in the domain. Permissions can be
changed to restrict access to the directory.

If you do specify a different instance profile path, you must create a
shared drive or directory.

When working with DB2 for Windows NT, you will also need to declare
the logon and account name and password of the DB2 Service. This is
done using /u: followed by the username and password (comma
separated) on the command line.

Optionally on Windows NT, you may also want to specify the TCP/IP
port range for the FCM. This is done using /r: followed by the base port
and end port numbers (comma separated) on the command line.

For example, on DB2 for Windows NT Extended Enterprise Edition, you
could have the following example:

db2icrt inst1 –s eee
/p:\\machineA\db2mpp
/u:yourname,yourpwd /r:9010,9015

3. Optionally, create an Administration Server.

Note: The db2icrt command grants the username used to create the instance
the following Windows NT user rights:
v Act as a part of the operating system
v Create a token object
v Increase quota
v Logon as a service
v Replace a process level token.

112 Administration Guide Design and Implementation

The instance requires these user rights to access the shared drive,
authenticate the user account, and run DB2 as a Windows NT service.

You can change the location of the instance directory from DB2PATH using
the DB2INSTPROF environment variable. You require write-access for the
instance directory. If you want the directories created in a path other than
DB2PATH, you have to set DB2INSTPROF BEFORE entering the db2icrt
command.

Listing Instances

To get a list of all the instances that are available on a system, enter:
db2ilist

To determine which instance applies to the current session,
set db2instance

Or, on UNIX operating systems,
db2 get instance

Setting the Current Instance

When you run commands to start or stop an instance’s database manager,
DB2 applies the command to the current instance. DB2 determines the current
instance as follows:
v If the DB2INSTANCE environment variable is set for the current session, its

value is the current instance. To set the DB2INSTANCE environment
variable, enter:

set db2instance=<new_instance_name>

v If the DB2INSTANCE environment variable is not set for the current
session, DB2 uses the setting for the DB2INSTANCE environment variable
from the system environment variables. On Windows NT, system
environment variables are set in System Environment. On Windows 95,
they are set in the autoexec.bat file. On OS/2, they are set in the
config.sys file.

v If the DB2INSTANCE environment variable is not set at all, DB2 uses the
registry variable, DB2INSTDEF.
To set the DB2INSTDEF registry variable at the global level of the registry,
enter:

db2set db2instdef=<new_instance_name> -g

Auto-Starting Instances

On UNIX operating systems, to enable an instance to auto-start after each
system restart, enter the following command:

Chapter 4. Implementing Your Design 113

db2iauto -on InstName

where InstName is the login name of the instance.

On UNIX operating systems, to prevent an instance from auto-starting after
each system restart, enter the following command:

db2iauto -off InstName

where InstName is the login name of the instance.

Running Multiple Instances Concurrently

You can start multiple DB2 instances as long as they belong to the same level
of code.

To run multiple instances concurrently, use one of the following methods:
v From the Control Center, click with the right mouse button on another

instance that you want to start and select the Start option.
v From the command line, do one of the following:

1. Set the DB2INSTANCE variable to the name of the other instance that
you want to start by entering:

set db2instance=<another_instName>

2. Start the instance by entering the db2start command.

License Management

The management of licenses for your DB2 products is done primarily through
the License Center within the Control Center of the online interface to the
product. From the License Center you can check the license information,
statistics, registered users, and current users for each of the installed products.

Establish Environment Variables and the Profile Registry

Environment and registry variables control your database environment.

Prior to the introduction of the DB2 profile registry, changing your
environment variables on Windows or OS/2 workstations (for example)
required you to change an environment variable and reboot. Now, your
environment is controlled with a few exceptions by registry variables stored in
the DB2 profile registries. Users with system administration (SYSADM)
authority for a given instance can update registry values for that instance. Use
the db2set command to update registry variables without rebooting; this
information is stored immediately in the profile registries. The DB2 registry
applies the updated information to DB2 server instances and DB2 applications
started after the changes are made.

114 Administration Guide Design and Implementation

When updating the registry, changes do not affect the currently running DB2
applications or users. Applications started following the update use the new
values.

Note: The DB2 environment variables DB2INSTANCE, DB2NODE, DB2PATH, and
DB2INSTPROF may not, depending on the operating system, be stored in
the DB2 profile registries. In order to update these environment
variables, the set command must be used and the system rebooted. On
UNIX platforms, the export command may be used instead of the set
command, and a system reboot is not necessary.

Using the profile registry allows for centralized control of the environment
variables. “DB2 Registry and Environment Variables” in the Administration
Guide, Performance lists many of the environment variables and registry
variables. Different levels of support are now provided through the different
environment profiles. Remote administration of the environment variables is
also available when using the DB2 Administration Server.

There are four profile registries. They are:
v The DB2 Instance Level Profile Registry. The majority of the DB2

environment variables are placed within this registry. The environment
variable settings for a particular instance are kept in this registry. Values
defined in this level override their settings in the global level.

v The DB2 Global Level Profile Registry. If an environment variable is not set
for a particular instance, this registry is used. This registry has the
machine-wide environment variable settings. In DB2 UDB EEE, one
global-level profile exists at each machine.

v The DB2 Instance Node Level Profile Registry. In a system where the
database is divided across different database partitions, this registry resides
on every node (that is, machine), and contains environment variable
settings for all instances storing data on the node. Values defined at this
level override comparable settings in the instance and global levels.

v The DB2 Instance Profile Registry. This registry contains a list of all
instance names recognized by this system.

Users can override DB2 Instance Profile Registry environment variable
settings for their session by changing session environment variable settings
using the db2set command.

DB2 configures the operating environment by checking for registry values and
environment variables and resolving them in the following order:
1. Environment variables set with the set command. (Or the export

command on UNIX platforms.)

Chapter 4. Implementing Your Design 115

2. Registry values set with the instance node level profile (using the db2set
-I command with a node number as shown below).

3. Registry values set with the db2set command.
4. Registry values set with the instance profile (using the db2set -I

command as shown below).
5. Registry values set with the global profile (using the db2set -G command

as shown below).

Using the db2set Command

The db2set command supports the local declaration of the registry variables
(and environment variables) to a particular setting.

To display help information for the command, use:
db2set ?

To list the complete set of all supported registry variables, use:
db2set -lr

To list all currently defined registry variables for this session, use:
db2set

To list all defined registry variables in the profile registry, use:
db2set -all

To show the current session value of a registry variable, use:
db2set registry_variable_name

To show the value of a registry variable at all levels, use:
db2set registry_variable_name -all

To delete a variable’s value at a specified level, you can use the same
command syntax to set the variable but specify nothing for the variable value.
For example, to delete the variable’s setting at the node level, enter:

db2set registry_variable_name= -I instance_name
node_number

To delete a variable’s value and to restrict its use, if it is defined at a higher
profile level, enter:

db2set registry_variable_name= -null instance_name

This command will delete the setting for the parameter you specify and
restrict high level profiles from changing this variable’s value (in this case,

116 Administration Guide Design and Implementation

DB2 global-level profile). However, the variable you specify could still be set
by a lower level profile (in this case, the DB2 node-level profile).

To change a registry variable for this session only, use:
db2set registry_variable_name=new_value

To change a registry variable default for all databases in the instance, use:
db2set registry_variable_name=new_value

-I instance_name

To change a registry variable default for all instances in the system, use:
db2set registry_variable_name=new_value -G

To set registry variables at the user level, use:
db2set -ul

To set registry variables at the user level for a specific user, use:
db2set -ul user_name

Notes:

1. The parameters ″-I″, ″-G″, and ″-ul″ cannot be used at the same time in the
same command.

2. Some parameters will always default to the global level profile. They
cannot be set at the instance or node level profiles; for example, db2system
and db2instdef.

3. On UNIX, you must have system administration (SYSADM) authority to
change registry values for an instance. Only users with root authority can
change parameters in global-level registries.

To set the search scope value at the global level in LDAP, use:
db2set -gl db2ldap_search_scope = value

where the value can be “local”, “domain”, or “global”.

To change a registry variable default for a particular node in an instance, use:
db2set registry_variable_name=new_value

-I instance_name node_number

To reset all registry variables for an instance back to the defaults found in the
Global Profile Registry, use:

db2set -r registry_variable_name

To reset all registry variables for a node in an instance back to the defaults
found in the Global Profile Registry, use:

db2set -r registry_variable_name node_number

Chapter 4. Implementing Your Design 117

Setting Environment Variables on OS/2

It is strongly recommended that all DB2-specific registry variables be defined
in the DB2 profile registry. If DB2 variables are set outside of the registry,
remote administration of those variables is not possible, and the workstation
must be rebooted in order for the variable values to take effect.

On OS/2, you should have no environment variables defined in config.sys
apart from DB2PATH and DB2INSTPROF. All variables should be defined in
the profile registries using the db2set command except for those that remain
true environment variables.

DB2INSTANCE also remains a true environment variable, however, it is not
required if you make use of the DB2INSTDEF registry variable. This registry
variable defines the default instance name to use if DB2INSTANCE is not set.

DB2INSTANCE and DB2PATH are set when DB2 is installed; DB2INSTPROF
can be set after installation. The environment variable DB2PATH must be set;
this environment variable is set during installation and you should not
modify it. Setting DB2INSTANCE and DB2INSTPROF environment variables
is optional.

To determine the setting of an environment variable, enter:
set variable

To change the setting of an environment variable, enter the following
command:

set variable=value

To set system environment variables, do the following: Edit the config.sys file,
and reboot the system to have the change take effect.

The different profile registries are located according to the following:
v The DB2 Instance Level Profile Registry file is located under:

%DB2INSTPROF%\instance_name\PROFILE.ENV

Note: The instance_name is specific to the database partition you are
working with.

v The DB2 Global Level Profile Registry is located under:
%DB2INSTPROF%\DEFAULT.ENV

v The DB2 Instance Node Level Profile Registry is located under:
%DB2INSTPROF%\instance_name\NODES\node_number.ENV

Note: The instance_name and the node_number are specific to the database
partition you are working with.

118 Administration Guide Design and Implementation

There is an additional registry file that keeps track of all defined nodes. The
information in this file is roughly equivalent to what is kept in the
db2nodes.cfg file.

%DB2INSTPROF%\instance_name\NODES.CFG

v The DB2 Instance Profile Registry is located under:
%DB2INSTPROF%\PROFILES.REG

Setting Environment Variables on Windows NT and Windows 95

It is strongly recommended that all DB2-specific registry variables be defined
in the DB2 profile registry. If DB2 variables are set outside of the registry,
remote administration of those variables is not possible, and the workstation
must be rebooted in order for the variable values to take effect.

Windows 32-bit operating systems have one system environment variable,
DB2INSTANCE, that can only be set outside the profile registry; however, you
are not required to set DB2INSTANCE. The DB2 profile registry variable
DB2INSTDEF may be set in the global level profile to specify the instance
name to use if DB2INSTANCE is not defined.

DB2 Extended Enterprise Edition servers on Windows NT have two system
environment variables, DB2INSTANCE and DB2NODE, that can only be set
outside the profile registry. You are not required to set DB2INSTANCE. The
DB2 profile registry variable DB2INSTDEF may be set in the global level
profile to specify the instance name to use if DB2INSTANCE is not defined.

The DB2NODE environment variable is used to route requests to a target
logical node within a machine. This environment variable must be set in the
session in which the application or command is issued and not in the DB2
profile registry. If this variable is not set, the target logical node defaults to the
logical node which is defined with port zero (0) on the machine.

To determine the settings of an environment variable, use the echo command.
For example, to check the value of the DB2PATH environment variable, enter:

echo %db2path%

To set system environment variables, do the following:

On Windows 95 and Windows 98: Edit the autoexec.bat file, and reboot the
system to have the change take effect.

On Windows NT 4.x: You can set the DB2 environment variables
DB2INSTANCE, DB2PATH, and DB2INSTPROF as follows:
v Select Start, Settings, Control Panel.
v Double-click on the System icon.

Chapter 4. Implementing Your Design 119

v In the System Control Panel, in the System Environment Variables section,
do the following:
1. If the DB2INSTANCE variable does not exist:

a. Select any system environment variable.
b. Change the name in the Variable field to DB2INSTANCE.
c. Change the Value field to the instance name, for example db2inst.

2. If the DB2INSTANCE variable already exists, append a new value:
a. Select the DB2INSTANCE environment variable.
b. Change the Value field to the instance name, for example db2inst.

3. Select Set.
4. Select OK.
5. Reboot your system for these changes to take effect.

Note: The environment variable DB2INSTANCE can also be set at the session
(process) level. For example, if you want to start a second DB2 instance
called TEST, issue the following commands in a command window:

set db2instance=TEST
db2start

The profile registries are located as follows:
v The DB2 Instance Level Profile Registry in the Windows NT operating

system registry, with the path:
\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\PROFILES\instance_name

Note: The instance_name is specific to the database partition you are
working with.

v The DB2 Global Level Profile Registry in the Windows NT registry, with the
path:

\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\GLOBAL_PROFILE

v The DB2 Instance Node Level Profile Registry in the Windows NT registry,
with the path:

...\SOFTWARE\IBM\DB2\PROFILES\instance_name\NODES\node_number

Note: The instance_name and the node_number are specific to the database
partition you are working with.

DB2 UDB provides the capability of accessing DB2 UDB registry variables at
the instance level on a remote machine. Currently, DB2 UDB registry variables
are stored in three different levels: machine or global level, instance level, and
node level. The registry variables stored at the instance level (including the
node level) can be redirected to another machine by using

120 Administration Guide Design and Implementation

DB2REMOTEPREG. When DB2REMOTEPREG is set, DB2 UDB will access the
DB2 UDB registry variables from the machine pointed to by
DB2REMOTEPREG. For example,

db2set DB2REMOTEPREG=rmtwkstn

where rmtwkstn is the remote workstation name.

Note: Care should be taken in setting this option since all DB2 instance
profiles and instance listings will be located on the specified remote
machine name.

This feature may be used in combination with setting DBINSTPROF to point
to a remote LAN drive on the same machine that contains the registry.

Setting Environment Variables on UNIX Systems

It is strongly recommended that all DB2-specific registry variables be defined
in the DB2 profile registry. If DB2 variables are set outside of the registry,
remote administration of those variables is not possible.

On UNIX operating systems, you must set the system environment variable
DB2INSTANCE.

The scripts db2profile (for Korn shell) and db2cshrc (for Bourne shell or C
shell) are provided as examples to help you set up the database environment.
You can find these files in insthome/sqllib, where insthome is the home
directory of the instance owner.

These scripts include statements to:
v Update a user’s path with the following directories:

– insthome/sqllib/bin

– insthome/sqllib/adm

– insthome/sqllib/misc

v Set DB2INSTANCE to the default local instance_name for execution.

Note: Except for PATH and DB2INSTANCE, all other DB2-supported
variables must be set in the DB2 profile registry. To set variables that
are not supported by DB2, define them in your script files,
db2profileand db2cshrc.

An instance owner or SYSADM user may customize these scripts for all users
of an instance. Alternatively, users can copy and customize a script, then
invoke a script directly or add it to their .profile or .login files.

Chapter 4. Implementing Your Design 121

To change the environment variable for the current session, issue commands
similar to the following:
v For Korn shell:

db2instance=inst1
export db2instance

v For Bourne shell or C shell:
set db2instance inst1

In order for the DB2 profile registry to be administered properly, the following
file ownership rules must be followed on UNIX operating systems. (For
information on DB2 Administration Server (DAS), see “DB2 Administration
Server (DAS)” on page 124.)

v The DB2 Instance Level Profile Registry file is located under:
$INSTHOME/sqllib/profile.env

The access permissions and ownership of this file should be:
-rw-r--r-- Instance_Owner DAS_Instance_Group profile.env

The $INSTHOME is the home path of the instance owner.
v The DB2 Global Level Profile Registry is located under:

– /var/db2/v5/default.env for AIX, Solaris, SINIX, and SCO operating
systems.

– /var/opt/db2/v5/default.env for the HP-UX operating system.

The access permissions and ownership of this file should be:
-rw-r--r-- DAS_Instance_Owner DAS_Instance_Group default.env

v The DB2 Instance Node Level Profile Registry is located under:
$INSTHOME/sqllib/nodes/node_number.env

The access permissions and ownership of the directory and this file should
be:

drwxrwxr-x Instance_Owner DAS_Instance_Group nodes

-rw-r--r-- Instance_Owner DAS_Instance_Group node_number.env

Note: The Instance_Owner and the DAS_Instance_Owner should both be
members of the DAS_Instance_Group.

The $INSTHOME is the home path of the instance owner.
v The DB2 Instance Profile Registry is located under:

– /var/db2/v5/profiles.reg for AIX, Solaris, SINIX, and SCO operating
systems.

– /var/opt/db2/v5/profiles.reg for the HP-UX operating system.

122 Administration Guide Design and Implementation

The access permissions and ownership of this file should be:
-rw-r--r-- root system profiles.reg

Setting Environment Variables on Windows 3.x

The DB2 environment on Windows 3.x is not controlled by profile registries.
Instead, Windows 3.x clients define environment keywords in the db2.ini file
(typically found in the C:\windows directory).

On Windows 3.x, the parameters that control the DB2 environment are called
environment keywords. However, because many Windows 3.x keywords are
also used on operating systems that use the DB2 profile registries,
environment keywords may also be referred to as registry variables.

The db2.ini initialization file is an ASCII file that stores values for the
Windows 3.x client environment keywords. Within this file, there is just one
section header.

The parameters are set by specifying a keyword with its associated keyword
value in the form:

KEYWORD=keywordValue

For example, here is what would appear in a sample db2.ini file following
the section header:

DB2PATH=C:\SQLLIB\WIN
DB2INSTANCE=DB2
DB2INSTPROF=C:\SQLLIB
DB2TRACEON=N

Notes:

1. All the keywords and their associated values must be located below the
section header.

2. The keywords are not case sensitive; however, their values can be if the
values are character-based.

3. Comment lines use a semicolon in the first position of a new line.
4. Blank lines are permitted. If duplicate entries for a keyword exist, the first

entry is used (and no warning is given).

The db2.ini file is located in the Windows product directory.

On Windows 3.x, the Client for DB2 Version 4, Version 5, and Version 6 must
set this information only in the db2.ini file.

Chapter 4. Implementing Your Design 123

DB2 Administration Server (DAS)

DB2 Administration Server (DAS) is a special DB2 administration control
point used only to assist with administration tasks on other DB2 servers. You
must have a running DAS if you want to use the Client Configuration
Assistant (CCA) or the Control Center (CC). DAS assists the CC and CCA
when working on the following administration tasks:
v Enabling remote administration of DB2 Servers.
v Providing the facility for job management, including the ability to schedule

the execution of both DB2 and operating system command scripts. These
command scripts are user-defined. The Control Center is used to define the
schedule of jobs, view the results of completed jobs, and perform other
administrative tasks against jobs located either remotely or locally to the
DAS.

v Providing a means for discovering information about the configuration of
DB2 instances, databases, and other DB2 Administration Servers in
conjunction with the DB2 Discovery utility. This information is used by the
Client Configuration Assistant (CCA) and the Control Center (CC) to
simplify and automate the configuration of client connections to DB2
databases.

You can only have one DAS on a machine. DAS is configured during
installation to start when the operating system is booted.

DAS is used to perform remote tasks on the host system on behalf of a client
request from the Control Center or the Client Configuration Assistant.
Authorized access to DAS requires clients with SYSADM authority. All of the
clients can be part of the SYSADM_GROUP configuration parameter.

Some of the requested tasks may require specific authority to run. The DAS
runs under the identifier of a specific user. The privileges granted to that user
must be restricted to only those tasks or operations desired by the
administrator, but provide sufficient authority to carry out all desired
commands. Generally, the tasks or operations required include:
v Query the operating system (OS) configuration information.
v Query the OS for user and group information.
v Act against other DB2 instances to start or stop them.
v Execute scheduled jobs.
v Collect information for Connectivity and Protocol Configuration.

For more information on setting up DAS communications, refer to the Quick
Beginnings for your platform.

124 Administration Guide Design and Implementation

Creating the DAS

Typically, the setup program creates a DAS on the instance-owning machine
during DB2 installation. If, however, the setup program failed to create it, you
can manually create a DAS.

As an overview of what occurs during the installation process as it relates to
DAS, consider the following:
v On the OS/2 or Windows NT platforms:

Log on to the machine you want to create the DAS on using an account
that has local Administrator authority. If a specific user is to be identified,
create a user with local Administrator authority. Enter db2admin create. If a
specific user account is desired, you must use “/USER:” and
“/PASSWORD:” when issuing db2admin create.)
When creating the DAS, you can optionally provide a user account name
and a user password. If valid, the user account name and password will
identify the owner of the DAS. Do not use the user ID or account name
created for the DAS as a User Account. Set the password for the account
name to “Password Never Expires”. After you create the DAS, you can
establish or modify its ownership by providing a user account name and
user password with the db2admin setid command. Refer to the Command
Reference for more information on this command.
On DB2 UDB for Windows NT Extended Enterprise Edition, if you are
using the CCA or the Control Center to automate connection configuration
to a DB2 server, the database partition server that is on the same machine
as the DAS will be the co-ordinator node. This means that all physical
connections from the client to the database will be directed to the database
partition server on the instance-owning machine before being routed to
other database partition servers.
On DB2 UDB for Windows NT Extended Enterprise Edition, creating
additional Administration Servers on other machines allows the CCA or
Control Center to configure other systems as co-ordinator nodes using DB2
Discovery. To do this, perform the following:
1. Log on to the machine using an account that has local Administrator

authority.
2. Create a Windows NT account that has local Administrator authority

that will be used by the DAS. Ensure that the username of the account
adheres to the DB2 naming conventions. When creating the account for
the DAS, note the following:
– Do not use the account for the DAS as a User Account.
– Set the password for the account to Password Never Expires.

3. Run the following command:
db2admin create /user:username

/password:passwrd

Chapter 4. Implementing Your Design 125

where username and passwrd are the username and password for the
DAS.

v On UNIX platforms:
1. Ensure that you have root authority.
2. At a command prompt, issue the following command from the instance

subdirectory in the path of the DB2 Universal Database instance:
dasicrt ASName

– On AIX:
/usr/lpp/db2_05_00&/instance/

dasicrt ASname

– On HP-UX, SCO Unixware 7 or Solaris:
/opt/IBMdb2/V5,0/instance/

dasicrt ASname

where ASName is the instance name of the Administration Server.

Note: If you are running NIS and NIS+, you need to set up the user and
group names in such a way that:
– The primary group of the DAS must be in the secondary group of

all the instances.
– The secondary group of the DAS must contain the primary group

of all the instances.

Secondary group lists are modified automatically only if NIS and
NIS+ is not running on the system.

Because a user ID can only own one instance, you must have a separate
user ID to own each DB2 Administration Server (DAS) that you create.

Once you create an Administration Server, you should use it to establish
directory structures and access permissions.

Starting and Stopping the DAS

To manually start or stop the DAS, you must first log on to the machine using
an account or user ID that has local Administrator authority.

When working on DB2 for OS/2 or DB2 for Windows NT, you must do the
following:
v To start the DAS, enter db2admin start

v To stop the DAS, enter db2admin stop

Note: For both cases under Windows NT, the person using these commands
must have SYSADM, SYSCTRL, or SYSMAINT authority.

126 Administration Guide Design and Implementation

When working on DB2 for any of the UNIX operating systems, you must do
the following:
v To start the DAS, perform the following steps:

1. Log in as the DAS owner.
2. Run the start up script using one of the following:

. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance.
3. Start the DAS using the db2admin command as follows:

db2admin start

Note: The DAS is automatically started after each system reboot.
v To stop the DAS, perform the following steps:

1. Log in as the DAS owner.
2. Run the start up script using one of the following:

. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance.
3. Stop the DAS using the db2admin command as follows:

db2admin stop

Note: For both cases under UNIX, the person using these commands must
have logged on with the authorization ID of the DAS owner.

Listing the DAS

To obtain the name of the DAS on your machine, use:
dasilist

This command is found in the bin subdirectory under the subdirectory
specific to the installed DB2 version and release.

Configuring the DAS

To see the current values for those administration configuration parameters
relevant to the DAS, enter:

db2 get admin cfg

This will show you the current values that were given as defaults during the
installation of the product or those that were given during previous updates
to the configuration parameters.

Chapter 4. Implementing Your Design 127

To update individual entries in the database manager configuration file
relevant to the DAS, enter:

db2 update admin cfg using ...

Refer to the Command Reference for more information on which database
manager configuration parameters can be modified.

To reset the configuration parameters to the recommended database manager
defaults, enter:

db2 reset admin cfg

Changes to the database manager configuration file become effective only
after they are loaded into memory (that is, when a db2admin stop is followed
by a db2admin start; or, in the case of a Windows NT platform, stopping and
starting the service.)

To set up the communications protocols for the DAS, refer to the Quick
Beginnings for your platform.

Security Considerations for the DAS

You must first logon to the machine using an account or user ID that has local
Administrator authority.

Note: On Windows NT, you should not use the Services utility in the Control
Panel to change the logon account for the DAS since some of the
required access rights will not be set for the logon account. Always use
the db2admin command to set or change the logon account for the DB2
Administration Server (DAS).

After creating the DAS, you can set or change the logon account using the
db2admin command as follows:

db2admin setid username password

where username and password are the username and password of an account
that has local Administrator authority.

It is recommended that the user ID or the username has SYSADM authority
on each of the servers within the environment so that it can start or stop other
instances if required.

Updating the DAS

On UNIX operating systems, if DB2 is updated by installing a Program
Temporary Fix (PTF) or a code patch, all DB2 Administration Servers (DAS) as
well as all exiting instances should be updated. To update a DAS, use the

128 Administration Guide Design and Implementation

dasiupdt command available in the instance subdirectory under the
subdirectory specific to the installed DB2 version and release.

You must first logon to the machine using an account or user ID that has local
Administrator authority.

The command is used as follows:
dasiupdt InstName

The InstName is the login name of the instance owner. There are also optional
parameters for this command that can be placed before the InstName and
separated by spaces:
v –h or –?

Displays a help menu for this command.
v –d

Sets the debug mode, which is used for problem analysis.

Removing the DAS

You must first logon to the machine using an account or user ID that has local
Administrator authority.

To remove the DAS:
v On the OS/2 or Windows NT operating systems:

1. Stop the DAS, using db2admin stop.
2. Backup (if needed) all the files in the db2das00 subdirectory under the

sqllib subdirectory. The instance directory is indicated by the
DB2INSTPROF registry variable.

Note: This example assumes db2das00 is the name of the DAS to be
removed.

3. Drop the DAS, using db2admin drop.

Note: Under Windows NT, the person using this command must have
SYSADM, SYSCTRL, or SYSMAINT authority.

v On UNIX operating systems:
1. Log in as the DAS owner.
2. Run the start up script using one of the following:

. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

where INSTHOME is the home directory of the instance.
3. Stop the DAS using the db2admin command as follows:

Chapter 4. Implementing Your Design 129

db2admin stop

4. Backup (if needed) all the files in the sqllib subdirectory under the
home directory of the DAS. The instance directory is indicated by the
DB2INSTPROF registry variable.

5. Log off.
6. Log in as root and remove the DAS using the dasidrop command as

follows:
dasidrop ASName

where the ASName is the instance name of the Administration Server.
This command is found in the instance subdirectory under the
subdirectory specific to the installed DB2 version and release.

Note: The dasidrop command removes the sqllib directory under the
home directory of the DB2 Administration Server (DAS).

Setting Up DAS with EEE Systems

The following information shows the steps necessary to configure DB2 EEE
servers (Sun, NT, and AIX) for remote administration using the Control
Center (CC).

During installation, the setup program creates a single DAS on the
instance-owning machine. You may want to create additional DAS on other
machines to allow the Control Center (CC) or the Client Configuration
Assistant (CCA) access to other coordinator nodes. The overhead of working
as a coordinator node can then be spread to more than one node in an
instance.

To distribute the coordinator function:
1. Create a new DAS on the selected additional machines in the partitioned

database system.
2. Catalog each DAS as a separate system in the CC or CCA.
3. Catalog the same instance under each new system, and each time specify

the same machine name used to catalog the DAS.

There are two (2) aspects to configuration: That which is required for the DB2
Administration Server (DAS), and that which is recommended for the target,
administered DB2 instance. In the three sections which follow, a section is
devoted to each of the two configuration topics. Each of the configuration
topics is preceded by a section describing the assumed environment.

Example Environment:

130 Administration Guide Design and Implementation

Product/version:
DB2 UDB EEE V5.2

Install path:
install_path

TCP services file:
tcp_services_file

DB2 Instance:

name: db2inst

owner ID:
db2inst

instance path:
instance_path

Nodes:
3 nodes, db2nodes.cfg:
v 0 hostA 0 hostA0switch
v 1 hostA 1 hostA1switch
v 2 hostB 0 hostBswitch

DB name:
db2instDB

DAS:

name: db2as

owner/user ID:
db2as

instance path:
das_path

install/run host:
hostA

internode communications port:
16000 (unused port for hostA and hostB)

Note: Please substitute site-specific values for the above fields. For example,
the following table contains example pathnames for each supported
EEE platform:

Chapter 4. Implementing Your Design 131

Table 20. Example Pathnames for Each Supported EEE Platform

Paths DB2 UDB EEE V5.2
for AIX

DB2 UDB EEE V5.2
for Solaris

DB2 UDB EEE V5.2
for Windows NT

install_path /usr/lpp/db2_05_00 /opt/IBMdb2/V5.0 C:\sqllib

instance_path /home/db2inst/sqllib /home/db2inst/sqllib C:\profiles\db2inst

das_path /home/db2as/sqllib /home/db2as/sqllib C:\profiles\db2as

tcp_services_file /etc/services /etc/services C:\winnt\system32
\drivers\etc\services

When installing DB2 UDB EEE, the setup program creates a DAS on the
instance-owning machine. The database partition server resides on the same
machine as the DAS and is the connection point for the instance. That is, this
database partition server is the coordinator node for requests issued to the
instance from the Control Center (CC) or the Client Configuration Assistant
(CCA).

DAS Configuration: The DAS is an administrative control point which
performs certain tasks on behalf of the Control Center (CC). There can be at
most one (1) DAS per physical machine. In the case of an EEE instance which
consists of several machines, at least one of the machines must be running a
DAS so that the CC can administer the EEE instance. This DAS (db2as)
“represents” the system that is present in the CC navigator tree as the parent
of the target DB2 instance (db2inst).

For example, db2inst consists of three nodes distributed across two physical
machines or hosts. The minimum requirement can be fulfilled by running
db2das on either hostA or hostB.

Notes:

1. The number of partitions present on hostA does not have any bearing on
the number of DASes that can be run on that host. You can run only one
copy of db2as on hostA regardless of the multiple logical nodes (MLN)
configuration for that host.

2. It is not necessary to create the DAS ID, db2as, on all hosts. Rather, it is
necessary for it to exist only on the host upon which it is running. As well,
it is not necessary for the home directory of the DAS ID to be mounted on
all hosts. In particular with this example, the ID db2as must exist on
hostA, is not required on hostB, and db2as’s home directory does not need
to be mounted on hostB.

Control Center Communications with DAS: Service Ports: The Control
Center (CC) communicates with the DAS using a TCP service port, 523. Since
this port is reserved for exclusive use by DB2 UDB, it is not necessary to
insert new entries into the tcp_services_file.

132 Administration Guide Design and Implementation

Internode Administrative Communications: Service Ports: For some
administrative tasks, the DAS must establish communications with all nodes.
In order to do so, a named TCP port must be defined in the tcp_services_file
for each host which participates in the instance.

Note: Windows NT EEE will attempt to add the TCP port entry into the
tcp_services_file for you.

For example, db2inst is defined across two hosts, hostA and hostB. As
specified in “Example Environment” on page 130, port 16000 is unused on
both hosts. Therefore, the following line must be inserted into the
tcp_services_file for both hostA and hostB.

db2ccmsrv 16000/tcp

The db2ccmsrv port name must be present, spelled exactly as shown above,
and the same port number selected must be used on all hosts.

Internode Administrative Communications: UNIX DB2 EEE Servers: Once
the TCP port line is inserted into the tcp_services_file on hostA and hostB, it is
necessary to start an administrative listener process or daemon, db2cclist, on
all hosts that participate in the instance. You can do so manually from the
command line, or configure the system to automatically invoke db2cclst every
time the system boots:

Manual:
From the ID of the instance you wish to administer, db2inst, invoke
the following command from either hostA or hostB:

rah 'install_path/bin/db2cclst'

For example, on AIX this command invocation would appear as:
rah '/usr/lpp/db2_05_00/bin/db2cclst'

Automatic:
From an ID with Superuser privileges (like root) execute the following
command on hostA and hostB:

mkitab "db2cclst::once:su - db2inst -c install_path /bin/db2cclst"

For example, on AIX this command invocation would appear as:
mkitab "db2cclst::once:su - db2inst -c install_path

/usr/lpp/db2_05_00/bin/db2cclst"

Every time either machine boots, db2cclist is invoked without user
intervention.

To verify that the listener daemon is active on each host, the following
command can be invoked from the instance ID, db2inst:

Chapter 4. Implementing Your Design 133

rah 'ps -ef | grep db2cclst'

If you do not find the db2cclst process running on each host, additional
diagnostic information can be obtained by adding the following line to
/etc/syslog.conf on each host:

*.info /tmp/db2/user.info

where the file /tmp/db2/user.info can be replaced with a more appropriate
file.

Note: The file must exist and the SYSLOG daemon must be asked to re-read
its configuration file after the changes are made:

kill -1 <syslogd PID>

where syslogd PID can be obtained by executing
ps -ef | grep syslogd

Then, after manually invoking the listener as described above, you can
view the syslog file /tmp/db2/user.infoon the failing host for error
messages generated by db2cclst.

Internode Administrative Communications: Windows NT DB2 EEE
Servers: The DB2 Remote Command Service (db2rcmd.exe) automatically
handles internode administrative communications. In the event that a failure
does occur, the Windows NT registry will contain diagnostic information.

Security: In order for the DAS to perform some administrative tasks against
an instance, it must possess sufficient authority. In particular, the DAS must be
a System Administrator (SYSADM) for the target, administered instance.

It is necessary to grant the DAS such authority for all DB2 instances that it
will administer. Candidate instances are those which are installed on the same
machine as the DAS. For a DB2 EEE instance, at least one database partition
server must be present on the same machine as the DAS for it to be eligible as
described above.

For example on UNIX, one way in which db2as can be granted the required
authority to administer db2inst is to ensure that the primary groups of db2inst
and db2as are identical. Alternatively, it is sufficient to make the primary
group of db2inst a secondary group of db2as, and the primary group of db2as
a secondary group of db2inst. Finally, another option would be to set the
SYSADM_GROUP database administration configuration parameter for
db2inst to the primary group of db2as.

On Windows NT, db2as must be a member of the Local Administrators group
on hostA and hostB. In addition to the option of creating the db2as ID and

134 Administration Guide Design and Implementation

adding it to the Local Administrators group on both hosts, one could create a
domain ID for db2as and add this domain ID to the Local Administrators
group on each host.

Environment: Installation for the DAS should configure certain registry
variables that are necessary for proper operation. To verify the current values
for these variables, execute the following command from either the DB2
instance ID, db2inst, or the DAS ID, db2das:

db2set -g

At least the following parameters must be defined with the following values:
DB2SYSTEM=hostA
DB2ADMINSERVER=db2as

As well, in order to communicate with the DAS from the Control Center (CC),
ensure that the DB2COMM variable is set to TCPIP. To verify this setting,
execute the following command from the DAS ID, db2as, and check at the
global (-g) and instance (-i) levels (only one need be set):

db2set -all

Along the same lines, verify that the DB2COMM parameter is set to TCPIP for
the DB2 instance to enable communications between the CC and db2inst by
issuing the following command from the db2inst ID:

db2set -all

If you modify this parameter for the DAS, then you must restart the DAS for
the change to take effect. Restart of the DB2 instance is also required if this
parameter is modified for the DB2 instance. For db2inst, you would issue a
db2stop followed by a db2start, whereas db2admin stop and db2admin start
would be issued for the DAS.

Discovery of Administration Servers, Instances, and Databases: Known
Discovery allows you to discover instances and databases on systems that are
known to your client, and add new systems so that their instances and
databases can be discovered. Search Discovery provides all of the facilities of
Known Discovery and adds the option to allow your local network to be
searched for other DB2 servers.

To have a server support Known Discovery, set the discover parameter in the
DAS configuration file to KNOWN. To have it support Search Discovery, set this
parameter to SEARCH. To prevent discovery of a server, and all of its instances
and databases, set this parameter to DISABLE.

Note: The TCP/IP host name returned to a client by Search Discovery is the
same host name that is returned by your DB2 server system when you
enter the hostname command. On the client, the IP address that this

Chapter 4. Implementing Your Design 135

host name maps to is determined by either the TCP/IP domain name
server (DNS) configured on your client machine or, if a DNS is not
configured, a mapping entry in the client’s hosts file. If you have
multiple adapter cards configured on your DB2 server system, you
must ensure that TCP/IP is configured on the server to return the
correct hostname, and that the DNS or local client’s hosts file, maps the
hostname to the IP address desired.

On the client, enabling Discovery is also done using the discover parameter;
however, in this case, the discover parameter is set in the client instance (or
server acting as a client) as follows:

v Known

Allows the CCA to refresh systems in the known list, and to add new
systems to the list by using the Add Systems push button. When the
discover parameter is set to KNOWN, the CCA will not be able to search the
network.

v Search

Enables all of the facilities of Known Discovery, and enables network
searching.

v Disable

Disables Discovery. In this case, the Search the network option is not
available in the “Add Database SmartGuide”.

Note: The discover parameter defaults to SEARCH on all client and server
instances. The discover parameter defaults to SEARCH on all DB2
Administration Servers (DAS) except DAS installed in a UNIX
Extended Enterprise Edition environment, where discover defaults to
KNOWN.

Additional Settings for Search Discovery: Search Discovery requires that the
discover_comm parameter be set on both the server (in the DB2 Administration
Server’s configuration file) and the client (in the database manager
configuration file).

The discover_comm parameter is used to control the communications protocols
that the server will listen to for search requests from clients, and that clients
will use to send out search requests. The discover_comm parameter can be set
to TCP/IP or NetBIOS. Only these protocols are currently supported.

On the DAS, the values specified for discover_comm must be equal to, or a
subset of, the values set for db2comm.

Note: To avoid problems with the Control Center and the Client
Configuration Assistant, ensure that the db2comm parameter is set in the

136 Administration Guide Design and Implementation

DB2 registry using the db2set command. It is not recommended that
you use any other method to set the db2comm parameter.

On the server, the discover_comm parameter is set in the DAS configuration
file. On the client (or a server acting as a client), discover_comm is set in the
database manager configuration file.

Note: When using Search Discovery, at least one protocol specified by the
discover_comm parameter on the client must match those specified by
the discover_comm parameter on the DAS. If there is no match, the
server will not respond to the client’s requests.

To check the settings for the db2comm registry variable use the following:
db2set db2comm

In addition, there are two DB2 profile registry variables that can be used to
tune Search Discovery via NetBIOS on the client: db2discoverytime and
db2nbdiscoveryrcvbufs. the default values should be suitable in most cases.

Hiding Server Instances and Databases from Discovery: You may have
multiple instances, and multiple databases within these instances, on a server.
You may want to hide some of these from the Discovery process.

To allow clients to discovery server instances on a system, set the discover_inst
database manager configuration parameter in each server instance on the
system to ENABLE (this is the default value). Set this parameter to DISABLE to
hide this instance and its databases from Discovery.

To allow a database to be discovered from a client, set the discover_db database
configuration parameter to ENABLE (this is the default value). Set this
parameter to DISABLE to hide the database from Discovery.

Setting Discovery Parameters: The discover and discover_comm parameters are
set in the DAS configuration file on the server system, and in the database
manager configuration file on the client. Set the parameters as follows:
v On the DAS:

Update the DAS configuration file using the command process:
update admin cfg using discover [DISABLE | KNOWN |

SEARCH]
update admin cfg using discover_comm [NETBIOS | TCPIP]

Stop and restart the DAS by entering the following commands:
db2admin stop
db2admin start

Note: Search Discovery will only operate on NetBIOS and TCPIP.

Chapter 4. Implementing Your Design 137

v On the client:
1. Start the Client Configuration Assistant (CCA).
2. Click on the Client Settings push button.
3. Select the Communications tab.
4. Select the parameters that you want to modify from the Parameters

window.
5. Select a value for the parameter that you want to modify from the Value

box.
6. Click on the OK push button to close the Client Settings windows. A

DB2 message window opens.
7. Click on the OK push button and restart your applications so that your

changes can take effect.

Note: If the discover_comm includes NETBIOS, you must ensure that the
Workstation name (nname) parameter is set for both the client and
the DAS. Also, you must ensure that the db2nbadapters registry
variable is set to the Adapter number that you want to use.

Use the Control Center to set the discover_inst and discover_db parameters.
Set the parameters as follows:

1. Start the Control Center.
2. Click on the [+] sign beside the Systems icon to get a list of systems.
3. Click on the [+] sign beside a system icon to get a list of instances on

that system.
4. Click on the Control Center.
5. Select the instance that you want to configure and click on the right

mouse button.
6. Select the Configure option from the pop-up menu. The Configuration

window opens.
7. Select the Environment tab and select the discover_inst parameter from

the Parameters box.
8. Enter the desired value in the Values box and click on OK.
9. Click on the [+] sign beside an instance icon to get a list of databases

in that instance.
10. Select the database that you want to configure and click on the right

mouse button.
11. Select the Configure option from the pop-up menu. The Configuration

Database window opens.
12. Select the Environment tab and select the discover_db parameter from

the Parameters box.
13. Enter the desired value in the Values box and click on OK.

138 Administration Guide Design and Implementation

The db2discoverytime and db2nbdiscoverrcvbufs profile registry variables are
set in the client instance (or a server acting as a client). Set the registry
variables as follows:
– To set the db2discoverytime registry value to 60 seconds, enter the

following command:
db2set db2discoverytime=60

This specifies that Search Discovery should wait 60 seconds for a
response from servers.

– To set the db2nbdiscoverrcvbufs registry value to 20, enter the following
command:

db2set db2nbdiscoverrcvbufs=20

This specifies the number of NetBIOS buffers that will be allocated for
concurrent response messages from discovered servers.

Setting Up the DAS to Use the CCA and the Control Center

You must configure DB2 Discovery to retrieve information about systems on
your network. DB2 Discovery is a feature that is used by the Client
Configuration Assistant (CCA) and Control Center. Configuring for this
feature may require you to update instance lists and the DB2 Administration
Server (DAS) configuration to ensure that DB2 Discovery retrieves the correct
information.

Update Instance Lists: A DB2 Administration Server (DAS) may not be
aware of all the instances in a partitioned database system because initially
when an instance is created, only the DAS on the instance-owning machine is
aware of the instance.

If you created an instance on a machine that does not have a DAS, you can
create a DAS on this machine to make the instance known.

Perform the following steps if you created more than one DAS, and you want
each DAS to be aware of all the instances in your partitioned database system:
1. For each DAS

Run the db2ilist command on the Administration Server machine to
display a list of instances known to this DAS.

Note: If the list of instances is complete, you do not need to carry out the
remaining steps but can proceed to the next section.

2. For each instance that is missing from the instance list in the previous
step

Chapter 4. Implementing Your Design 139

On the instance-owning machine, run the db2nlist command to see if
there is an entry for the machine that has the DAS. If there is not, you
must run the db2ncrt command to add this machine to the instance.

Note: The network shared drive for the instance must be available on the
DAS machine.

Update the DAS Configuration

By default, the setup program sets the DB2SYSTEM registry variable to the
Windows NT computer name. The system names that are retrieved by
Discovery are the systems on which a DB2 Administration Server (DAS)
resides. Discovery uses these systems as co-ordinator nodes when connections
are established.

There are two ways of updating a DAS configuration:
v If you want to be able to select a co-ordinator node from a list of DB2

systems, set DISCOVER=SEARCH (which is the default) in each DB2
Administration Server’s configuration file.
When there are multiple DAS present, the same instance may appear in
more than one system on the CCA or Control Center’s interface; however,
each system will have a different communications access path to instances.
Users can select different DB2 systems as co-ordinator nodes for
communications and thereby redistribute the workload.

v If you do not want users to be able to select the co-ordinator node, set
DISCOVER=KNOWN on all DAS, except set DISCOVER=SEARCH on just one
DAS in the DAS configuration. Discovery uses the database partition server
where the DAS resides as a co-ordinator node when connections are
established.

Create a Node Configuration File

If your database is to operate in a partitioned database environment, you
must create a node configuration file called db2nodes.cfg. This file must be
located in the sqllib subdirectory of the home directory for the instance
before you can start the database manager with parallel capabilities across
multiple partitions. The file contains configuration information for all database
partitions in an instance, and is shared by all database partitions for that
instance.

Windows NT Considerations: If you are using DB2 Enterprise - Extended
Edition on Windows NT, the node
configuration file is created for you when you
create the instance.

140 Administration Guide Design and Implementation

Note: You should not create files or directories under the sqllib subdirectory
other than those created by DB2 to prevent the loss of data if an
instance is deleted. There are two exceptions. If your system supports
stored procedures, put the stored procedure applications in the
function subdirectory under the sqllib subdirectory. (For information
on stored procedures, refer to “Stored Procedures” in Administration
Guide, Performance.) The other exception is when user-defined distinct
functions (UDFs) have been created. UDF executables are allowed in
the same directory.

The file contains one line for each database partition that belongs to an
instance. Each line has the following format:

nodenum hostname [logical-port [netname]]

Tokens are delimited by blanks. The variables are:

nodenum
The node number, which can be from 0 to 999, uniquely defines a
node. Node numbers must be in ascending sequence. You can have
gaps in the sequence.

Once a node number is assigned, it cannot be changed. (Otherwise the
information in the partitioning map, which specifies how data is
partitioned, would be compromised.)

If you drop a node, its node number can be used again for any new
node that you add.

The node number is used to generate a node name in the database
directory. It has the format:

NODEnnnn

The nnnn is the node number, which is left-padded with zeros. This
node number is also used by the CREATE DATABASE and DROP
DATABASE commands.

hostname
The hostname of the IP address for inter-partition communications.
(There is an exception when netname is specified. In this situation,
netname is used for most communications, with hostname only being
used for DB2START, DB2STOP, and db2_all.)

logical-port
This parameter is optional, and specifies the logical port number for
the node. This number is used with the database manager instance
name to identify a TCP/IP service name entry in the etc/services
file.

Chapter 4. Implementing Your Design 141

The combination of the IP address and the logical port is used as a
well-known address, and must be unique among all applications to
support communications connections between nodes.

For each hostname, one logical-port must be either 0 (zero) or blank
(which defaults to 0). The node associated with this logical-port is the
default node on the host to which clients connect. You can override
this with the DB2NODE environment variable in db2profile script, or
with the sqlesetc() API.

If you have multiple nodes on the same host (that is, more than one
nodenum for a host), you should assign the logical-port numbers to the
logical nodes in ascending order, from 0, with no gaps.

netname
This parameter is optional, and is used to support a host that has
more than one active TCP/IP interface, each with its own hostname.

The following example shows a possible node configuration file for an
RS/6000 SP system on which SP2EN1 has multiple TCP/IP interfaces, two
logical nodes, and uses SP2SW1 as the DB2 Universal Database interface. It
also shows the node numbers starting at 1 (rather than at 0), and a gap in the
nodenum sequence:
nodenum hostname logical-port netname
1 SP2EN1 0 SP2SW1
2 SP2EN1 1 SP2SW1
4 SP2EN2 0
5 SP2EN3

You can update the db2nodes.cfg file using an editor of your choice. You must
be careful, however, to protect the integrity of the information in the file, as
data partitioning requires that the node number not be changed. The node
configuration file is locked when you issue DB2START and unlocked after
DB2STOP ends the database manager. The DB2START command can update
the file, if necessary, when the file is locked. For example, you can issue
DB2START with the RESTART option or the ADDNODE option.

Note: If the DB2STOP command is not successful and does not unlock the
node configuration file, issue DB2STOP FORCE to unlock it.

Creation of the Database Configuration File

A database configuration file is also created for each database. The creation of
this file is done for you. This file contains values for various configuration
parameters that affect the use of the database, such as:
v Parameters specified and/or used when creating the database (for example,

database code page, collating sequence, DB2 release level)

142 Administration Guide Design and Implementation

v Parameters indicating the current state of the database (for example, backup
pending flag, database consistency flag, roll-forward pending flag)

v Parameters defining the amount of system resources that the operation of
the database may use (for example, buffer pool size, database logging, sort
memory size).

These parameters are described in detail in “Configuring DB2” found in
Administration Guide, Performance.

Performance Tip: Many of the configuration parameters come with default
values, but may need to be updated to achieve optimal performance for your
database.

For multiple partitions: When you have a database that is partitioned across
more than one partition, the configuration file should be the same on all
database partitions. Consistency is required since the SQL compiler compiles
distributed SQL statements based on information in the local node
configuration file and creates an access plan to satisfy the needs of the SQL
statement. Maintaining different configuration files on database partitions
could lead to different access plans, depending on which database partition
the statement is prepared. Use db2_all to create the same configuration file on
all database partitions.

Replicating Configuration Information Using Response Files

A response-file generator utility called db2rspgn is available to create a
response file that can be used when re-installing your system or when you
wish to replicate to identical system the registry variables, database manager
configuration parameters, and database administration configuration
parameters of your current system.

After having installed a system with one or more DB2 products, and after
tuning parameters for the environment, you can use db2rspgn to generate the
required values into a response file. The response file can then be used to
re-create the identical system.

The command line syntax declares the destination directory for the response
file(s) and any supporting files. In addition, you can optionally specify the
instances you wish copied; and, you can optionally disable the administration
instance and/or the DataLinks server instance.

Refer to the appropriate Quick Beginnings to see the details on the syntax of
this utility and a discussion on how to use the generated response files.

Chapter 4. Implementing Your Design 143

Enable FCM Communications

In a partitioned database environment, most communication between database
partitions is handled by the Fast Communications Manager (FCM). To enable
the FCM at a database partition and allow communication with other
database partitions, you must create a service directory in the partition’s
/etc/services file as shown below. The FCM uses the specified port to
communicate. If you have defined multiple partitions on the same host, you
must define a range of ports as shown below.

Windows NT Considerations
If you are using DB2 Enterprise - Extended Edition in the
Windows NT environment, the TCP/IP port range is
automatically added to the services file by:
v The install program when it creates the instance or adds a

new node
v The DB2ICRT utility when it creates a new instance
v The DB2NCRT utility when it adds the first node on the

machine.

For additional information, refer to the DB2 Enterprise -
Extended Edition for Windows NT Quick Beginnings.

The syntax of a service entry is as follows:
DB2_instance port/tcp #comment

DB2_instance
The value for instance is the name of the database manager instance.
All characters in the name must be lowercase. Assuming an instance
name of db2puser, you would specify DB2_db2puser

port/tcp
The TCP/IP port that you want to reserve for the database partition.

#comment
Any comment that you want to associate with the entry. The comment
must be preceded by a pound sign (#).

If the /etc/services file is shared, you must ensure that the number of ports
allocated in the file is either greater than or equal to the largest number of
multiple database partitions in the instance. When allocating ports, also
ensure that you account for any processor that can be used as a backup.

If the /etc/services file is not shared, the same considerations apply, with
one additional consideration: you must ensure that the entries defined for the
DB2 instance are the same in all /etc/services files (though other entries that
do not apply to your partitioned database do not have to be the same).

144 Administration Guide Design and Implementation

If you have multiple database partitions on the same host in an instance, you
must define more than one port for the FCM to use. To do this, include two
lines in the etc/services file to indicate the range of ports you are allocating.
The first line specifies the first port, while the second line indicates the end of
the block of ports. In the following example, five ports are allocated for the
instance sales. This means no processor in the instance has more than five
database partitions.

DB2_sales 9000/tcp
DB2_sales_END 9004/tcp

Note: You must specify END in uppercase only. Also you must ensure that you
include both underscore (_) characters.

Creating a Database

Creating a database sets up all the system catalog tables that are needed by
the database and allocates the database recovery log. The database
configuration file is created, and the default values are set. The database
manager will also bind the database utilities to the database.

The following database privileges are automatically granted to PUBLIC:
CREATETAB, BINDADD, CONNECT, and IMPLICIT_SCHEMA. SELECT
privilege on the system catalog views is also granted to PUBLIC.

The following command line processor command creates a database called
personl, in the default location, with the associated comment ″Personnel DB
for BSchiefer Co″.

create database personl
with "Personnel DB for BSchiefer Co"

The tasks carried out by the database manager when you create a database
are discussed in the following sections:
v “Definition of Initial Nodegroups” on page 146

v “Definition of Initial Table Spaces” on page 147

v “Definition of System Catalog Tables” on page 148

v “Definition of Database Directories” on page 148

v “DCE Directory Services” on page 150

v “Lightweight Directory Access Protocol (LDAP) Directory Services” on
page 150

v “Definition of Database Recovery Log” on page 151

v “Binding Utilities to the Database” on page 152

Chapter 4. Implementing Your Design 145

v “Cataloging a Database” on page 152

v “Creating Nodegroups” on page 151

v “Creating a Table Space” on page 153

v “Creating a Schema” on page 157

v “Creating and Populating a Table” on page 158

v “Creating a Trigger” on page 174

v “Creating a User-Defined Function (UDF)” on page 176

v “Creating a User-Defined Type (UDT)” on page 179

v “Creating a View” on page 182

v “Creating a Summary Table” on page 187

v “Creating an Alias” on page 189

v “Creating a Wrapper” on page 190

v “Creating a Server” on page 191

v “Creating a Nickname” on page 198

v “Creating an Index or an Index Specification” on page 200.

For additional information related to the physical implementation of your
database, see “Chapter 3. Designing Your Physical Database” on page 55.

If you wish to create a database in a different, possibly remote, database
manager instance, see “Using Multiple Instances of the Database Manager” on
page 102. This topic also provides an introduction to the command you need
to use if you want to perform any instance-level administration against an
instance other than your default instance, including remote instances.

Note: Refer to the Command Reference for information about the default
database location and about specifying a different location with the
CREATE DATABASE command.

Definition of Initial Nodegroups

When a database is initially created, database partitions are created for all
partitions specified in the db2nodes.cfg file. Other partitions can be added or
removed with the ADD NODE and DROP NODE commands.

Three nodegroups are defined:
v IBMCATGROUP for the SYSCATSPACE table space, holding system catalog

tables

146 Administration Guide Design and Implementation

v IBMTEMPGROUP for the TEMPSPACE1 table space, holding temporary
tables created during database processing

v IBMDEFAULTGROUP for the USERSPACE1 table space, by default holding
user tables and indexes.

Definition of Initial Table Spaces

When a database is initially created, three table spaces are defined:
v SYSCATSPACE for the system catalog tables (see “Definition of System

Catalog Tables” on page 148)

v TEMPSPACE1 for temporary tables created during database processing.
v USERSPACE1 for user-defined tables and indexes

If you do not specify any table space parameters with the CREATE
DATABASE command, the database manager will create these table spaces
using system managed storage (SMS) directory containers. These directory
containers will be created in the subdirectory created for the database (see
“Database Physical Directories” on page 55). The extent size for these table
spaces will be set to the default.

If you do not want to use the default definition for these table spaces, you
may specify their characteristics on the CREATE DATABASE command. For
example, the following command could be used to create your database on
OS/2:

CREATE DATABASE PERSONL
CATALOG TABLESPACE
MANAGED BY SYSTEM USING ('d:\pcatalog','e:\pcatalog')
EXTENTSIZE 16 PREFETCHSIZE 32

USER TABLESPACE
MANAGED BY DATABASE USING (FILE'd:\db2data\personl' 5000,

FILE'd:\db2data\personl' 5000)
EXTENTSIZE 32 PREFETCHSIZE 64

TEMPORARY TABLESPACE
MANAGED BY SYSTEM USING ('f:\db2temp\personl')

WITH "Personnel DB for BSchiefer Co"

In this example, the definition for each of the initial table spaces is explicitly
provided. You only need to specify the table space definitions for those table
spaces for which you do not want to use the default definition.

The coding of the MANAGED BY phrase on the CREATE DATABASE
command follows the same format as the MANAGED BY phrase on the
CREATE TABLESPACE command. For additional examples, see “Creating a
Table Space” on page 153.

Before creating your database, see “Designing and Choosing Table Spaces” on
page 75.

Chapter 4. Implementing Your Design 147

Definition of System Catalog Tables

A set of system catalog tables is created and maintained for each database.
These tables contain information about the definitions of the database objects
(for example, tables, views, indexes, and packages), and security information
about the type of access users have to these objects. These tables are stored in
the SYSCATSPACE table space.

These tables are updated during the operation of a database; for example,
when a table is created. You cannot explicitly create or drop these tables, but
you can query and view their content. When the database is created, in
addition to the system catalog table objects, the following database objects are
defined in the system catalog:
v A set of user-defined functions (UDFs) is created in the SYSFUN schema.

For more information about these system-created functions, refer to the SQL
Reference manual.

v A set of read-only views for the system catalog tables is created in the
SYSCAT schema. Refer to “Catalog Views” in the Administration Guide,
Performance for information about these views.

v A set of updatable catalog views is created in the SYSSTAT schema. These
updatable views allow you to update certain statistical information to
investigate the performance of a hypothetical database, or to update
statistics without using the RUNSTATS utility. Refer to “Updatable Catalog
Views” in the Administration Guide, Performance for information about these
views.

After your database has been created, you may wish to limit the access to the
system catalog views, as described in “Securing the System Catalog Views” on
page 331.

Definition of Database Directories

Three directories are used when establishing or setting up a new database.
v Local Database Directory
v System Database Directory
v Node Directory

Local Database Directory

A local database directory file exists in each path (or drive on other platforms) in
which a database has been defined. This directory contains one entry for each
database accessible from that location. Each entry contains:
v The database name provided with the CREATE DATABASE command

148 Administration Guide Design and Implementation

v The database alias name (which is the same as the database name, if an
alias name is not specified)

v A comment describing the database, as provided with the CREATE
DATABASE command

v The name of the root directory for the database
v Other system information.

To see the contents of this file for a particular database, issue the following
command, where location specifies the location of the database:

LIST DATABASE DIRECTORY ON location

System Database Directory

A system database directory file exists for each instance of the database manager,
and contains one entry for each database that has been cataloged for this
instance. Databases are implicitly cataloged when the CREATE DATABASE
command is issued and can also be explicitly cataloged with the CATALOG
DATABASE command. For information about cataloging databases, see
“Cataloging a Database” on page 152.

For each database created, an entry is added to the directory containing the
following information:

v The database name provided with the CREATE DATABASE command
v The database alias name (which is the same as the database name)
v The database comment provided with the CREATE DATABASE command
v The location of the local database directory

v An indicator that the database is indirect, which means that it resides on the
same machine as the system database directory file

v Other system information.

To see the contents of this file, issue the LIST DATABASE DIRECTORY
command without specifying the location of the database directory file.

In a partitioned database environment, you must ensure that all database
partitions always access the same system database directory file, sqldbdir, in
the sqldbdir subdirectory of the home directory for the instance.
Unpredictable errors can occur if either the system database directory or the
system intention file sqldbins in the same sqldbdir subdirectory are symbolic
links to another file that is on a shared file system. These files are described in
“Enabling Data Partitioning” on page 104.

Chapter 4. Implementing Your Design 149

Node Directory

The database manager creates the node directory when the first database
partition is cataloged. To catalog a database partition, use the CATALOG
NODE command. To list the contents of the local node directory, use the LIST
NODE DIRECTORY command. The node directory is created and maintained
on each database client. The directory contains an entry for each remote
workstation having one or more databases that the client can access. The DB2
client uses the communication end point information in the node directory
whenever a database connection or instance attachment is requested.

The entries in the directory also contain information on the type of
communication protocol to be used to communicate from the client to the
remote database partition. Cataloging a local database partition creates an
alias for an instance that resides on the same machine. A local node should be
cataloged when there is more than one instance on the same workstation to be
accessed from the user’s client.

DCE Directory Services

DCE is an Open Systems Foundation** (OSF**) architecture that provides tools
and services to support the creation, use, and maintenance of applications in a
distributed heterogeneous computing environment. It is a layer between the
operating system, the network, and a distributed application that allows client
applications to access remote servers.

With local directories, the physical location of the target database is
individually stored on each client workstation in the database directory and
node directory. The database administrator can therefore spend a large
amount of time updating and changing these directories. The DCE directory
services provide a central directory alternative to the local directories. It
allows information about a database or a database manager instance to be
recorded once in a central location, and any changes or updates to be made at
that one location.

DCE is not a prerequisite for running DB2, but if you are operating in a DCE
environment, see “Appendix E. Using Distributed Computing Environment
(DCE) Directory Services” on page 699 for more information.

Lightweight Directory Access Protocol (LDAP) Directory Services

Lightweight Directory Access Protocol (LDAP) is an industry standard access
method to directory services. Each instance of the database server will publish
its existence and provide the protocol communication information in the
LDAP directory. When a client connects to the database server, the
communication information for the server can be retrieved from the LDAP

150 Administration Guide Design and Implementation

directory. Each client is no longer required to store the server connection
information by cataloging a node entry locally on each machine. Instead,
when a database is created, the database publishes its existence using the
LDAP directory. Client applications search the LDAP directory for the
database location and the information required to connect to the database.

LDAP is not a prerequisite for running DB2, but if you are operating in an
LDAP environment, see “Appendix N. Lightweight Directory Access Protocol
(LDAP) Directory Services” on page 829 for more information.

Creating Nodegroups

You create a nodegroup with the CREATE NODEGROUP statement. This
statement specifies the set of nodes on which the table space containers and
table data are to reside. This statement also:
v Creates a partitioning map for the nodegroup. For details about the

partitioning map, see “Partitioning Maps” on page 69.

v Generates a partitioning map ID.
v Inserts records into the following catalog tables:

– SYSCAT.NODEGROUPS
– SYSCAT.PARTITIONMAPS
– SYSCAT.NODEGROUPDEF

Assume that you want to load some tables on a subset of the database
partitions in your database. You would use the following command to create a
nodegroup of two nodes (1 and 2) in a database consisting of at least 3 (0 to
2) nodes:

CREATE NODEGROUP mixng12 ON NODES (1,2)

For more information about creating nodegroups, refer to the SQL Reference
manual.

The CREATE DATABASE command or sqlecrea() API also create the default
system nodegroups, IBMDEFAULTGROUP, IBMCATGROUP, and
IBMTEMPGROUP. (See “Designing and Choosing Table Spaces” on page 75
for information.)

Definition of Database Recovery Log

A database recovery log keeps a record of all changes made to a database,
including the addition of new tables or updates to existing ones. This log is
made up of a number of log extents, each contained in a separate file called a
log file.

Chapter 4. Implementing Your Design 151

The database recovery log can be used to ensure that a failure (for example, a
system power outage or application error) does not leave the database in an
inconsistent state. In case of a failure, the changes already made but not
committed are rolled back, and all committed transactions, which may not
have been physically written to disk, are redone. These actions ensure the
integrity of the database.

For more information, see “Chapter 9. Recovering a Database” on page 365.

Binding Utilities to the Database

When a database is created, the database manager attempts to bind the
utilities in db2ubind.lst to the database. This file is stored in the bnd
subdirectory of your sqllib directory.

Binding a utility creates a package, which is an object that includes all the
information needed to process specific SQL statements from a single source
file.

Note: If you wish to use these utilities from a client, you must bind them
explicitly. Refer to the Quick Beginnings manual appropriate to your
platform for information.

If for some reason you need to bind or rebind the utilities to a database, issue
the following commands using the command line processor:

connect to sample
bind @db2ubind.lst

Note: You must be in the directory where these files reside to create the
packages in the sample database. The bind files are found in the BND
subdirectory of the SQLLIB directory. In this example, sample is the
name of the database.

Cataloging a Database

When you create a new database, it is automatically cataloged in the system
database directory file. You may also use the CATALOG DATABASE
command to explicitly catalog a database in the system database directory file.
The CATALOG DATABASE command allows you to catalog a database with a
different alias name, or to catalog a database entry that was previously
deleted using the UNCATALOG DATABASE command.

The following command line processor command catalogs the personl
database as humanres:

catalog database personl as humanres
with "Human Resources Database"

152 Administration Guide Design and Implementation

Here, the system database directory entry will have humanres as the database
alias, which is different from the database name (personl).

You can also catalog a database on an instance other than the default. In the
following example, connections to database B are to INSTANCE_C.

catalog database b as b at node instance_c

Note: The CATALOG DATABASE command is also used on client nodes to
catalog databases that reside on database server machines. For more
information, refer to the Quick Beginnings manual appropriate to your
platform.

For information on the Distributed Computing Environment (DCE) cell
directory, see “DCE Directory Services” on page 150 and “Appendix E. Using
Distributed Computing Environment (DCE) Directory Services” on page 699.

Note: To improve performance, you may cache directory files, including the
database directory, in memory. (Refer to “Directory Cache Support” in
the Administration Guide, Performance for information about enabling
directory caching.) When directory caching is enabled, a change made
to a directory (for example, using a CATALOG DATABASE or
UNCATALOG DATABASE command) by another application may not
become effective until your application is restarted. To refresh the
directory cache used by a command line processor session, issue a db2
terminate command.

In addition to the application level cache, a database manager level cache is
also used for internal, database manager look-up. To refresh this “shared”
cache, issue the db2stop and db2start commands.

For more information about directory caching, refer to “Directory Cache
Support” in the Administration Guide, Performance.

Creating a Table Space

Creating a table space within a database assigns containers to the table space
and records its definitions and attributes in the database system catalog. You
can then create tables within this table space.

See “Designing and Choosing Table Spaces” on page 75 for design information
on table spaces.

The syntax of the CREATE TABLESPACE statement is discussed in detail in
the SQL Reference manual. For information on SMS and DMS table spaces, see
“Designing and Choosing Table Spaces” on page 75.

Chapter 4. Implementing Your Design 153

The following SQL statement creates an SMS table space on OS/2 or Windows
NT using three directories on three separate drives:

CREATE TABLESPACE RESOURCE
MANAGED BY SYSTEM
USING ('d:\acc_tbsp', 'e:\acc_tbsp', 'f:\acc_tbsp')

The following SQL statement creates a DMS table space on OS/2 using two
file containers each with 5,000 pages:

CREATE TABLESPACE RESOURCE
MANAGED BY DATABASE
USING (FILE'd:\db2data\acc_tbsp' 5000,

FILE'e:\db2data\acc_tbsp' 5000)

In the above two examples, explicit names have been provided for the
containers. You may also specify relative container names, in which case, the
container will be created in the subdirectory created for the database (see
“Database Physical Directories” on page 55).

In addition, if part of the path name specified does not exist, the database
manager will create it. If a subdirectory is created by the database manager, it
may also be deleted by the database manager when the table space is
dropped.

The assumption in the above examples is that the table spaces are not
associated with a specific nodegroup. The default nodegroup
IBMDEFAULTGROUP is used when the following parameter is not specified
in the statement:

IN nodegroup

The following SQL statement creates a DMS table space on a UNIX-based
system using three logical volumes of 10 000 pages each, and specifies their
I/O characteristics:

CREATE TABLESPACE RESOURCE
MANAGED BY DATABASE
USING (DEVICE '/dev/rdblv6' 10000,

DEVICE '/dev/rdblv7' 10000,
DEVICE '/dev/rdblv8' 10000)

OVERHEAD 24.1
TRANSFERRATE 0.9

The UNIX devices mentioned in this SQL statement must already exist and be
able to be written to by the instance owner and the SYSADM group.

The following example creates a DMS table space on a nodegroup called
ODDNODEGROUP in a UNIX partitioned database. ODDNODEGROUP must
be previously created with a CREATE NODEGROUP statement. In this case,
the ODDNODEGROUP nodegroup is assumed to be made up of database

154 Administration Guide Design and Implementation

partitions numbered 1, 3, and 5. On all database partitions, use the device
/dev/hdisk0 for 10 000 4 KB pages. In addition, declare a device for each
database partition of 40 000 4 KB pages.

CREATE TABLESPACE PLANS
MANAGED BY DATABASE
USING (DEVICE '/dev/HDISK0' 10000, DEVICE '/dev/n1hd01' 40000) ON NODE 1

(DEVICE '/dev/HDISK0' 10000, DEVICE '/dev/n3hd03' 40000) ON NODE 3
(DEVICE '/dev/HDISK0' 10000, DEVICE '/dev/n5hd05' 40000) ON NODE 5

UNIX devices are classified into two categories: character serial devices and
block-structured devices. For all file-system devices, it is normal to have a
corresponding character serial device (or raw device) for each block device (or
cooked device). The block-structured devices are typically designated by names
similar to “hd0” or “fd0”. The character serial devices are typically designated
by names similar to “rhd0”, “rfd0”, or “rmt0”. These character serial devices
have faster access than block devices. The character serial device names
should be used on the CREATE TABLESPACE command and not block device
names.

The overhead and transfer rate help to determine the best access path to use
when the SQL statement is compiled. For information on the OVERHEAD
and TRANSFERRATE parameters, refer to “Tuning Application Performance”
in the Administration Guide, Performance.

DB2 can greatly improve the performance of sequential I/O using the
sequential prefetch facility, which uses parallel I/O. Refer to “Understanding
Sequential Prefetching” in the Administration Guide, Performance for details on
this facility.

You also have the ability to create a table space that uses a page size larger
than the default 4 KB size. The following SQL statement creates an SMS table
space on a UNIX-based system with an 8 KB page size.

CREATE TABLESPACE SMS8K
PAGESIZE 8192
MANAGED BY SYSTEM
USING ('FSMS_8K_1')
BUFFERPOOL BUFFPOOL8K

Notice that the associated buffer pool must also have the same 8 KB page size.

The created table space cannot be used until the buffer pool it references is
activated.

The ALTER TABLESPACE SQL statement can be used to add a container to a
DMS table space and modify the PREFETCHSIZE, OVERHEAD, and

Chapter 4. Implementing Your Design 155

TRANSFERRATE settings for a table space. The transaction issuing the table
space statement should be committed as soon as possible, to prevent system
catalog contention.

Note: The PREFETCHSIZE should be a multiple of the EXTENTSIZE. For
example if the EXTENTSIZE is 10, the PREFETCHSIZE should be 20 or
30. For more information, refer to “Understanding Sequential
Prefetching” in the Administration Guide, Performance.

Creating Table Spaces in Nodegroups

By placing a table space in a multiple database partition nodegroup, all of the
tables within the table space are divided or partitioned across each database
partition in the nodegroup. The table space is created into a nodegroup. Once
in a nodegroup, the table space must remain there; It cannot be changed to
another nodegroup. The CREATE TABLESPACE statement is used to associate
a table space with a nodegroup.

RAW I/O

DB2 Universal Database supports direct disk access (raw I/O). This allows
you to attach a direct disk access (raw) device to any DB2 Universal Database
system. (The only exception is the Linux platform.) The following list
demonstrates the physical and logical methods for identifying this type of
device:
v To open a physical hard drive for direct disk access, use the following

naming convention:

\\.\PhysicalDriveN

where N represents one of the physical drives in the system. For example,
N could be replaced by 0, 1, 2, or any other positive integer.

v To open a logical raw partition (that is, an unformatted partition) use the
following naming convention:

\\.\N:

where N: represents a logical drive letter in the system. For example, N:
could be replaced by E: or any other drive letter on the system.

For example:
v On Windows NT, \\.\d: or \\.\PhysicalDisk5

Note: You must have Windows NT Version 4.0 with Service Pack 3
installed to be able to write logs to a device.

156 Administration Guide Design and Implementation

v On UNIX-based platforms, /dev/rdblog8

Creating a Schema

While organizing your data into tables, it may also be beneficial to group
tables (and other related objects) together. This is done by defining a schema
through the use of the CREATE SCHEMA statement. Information about the
schema is kept in the system catalog tables of the database to which you are
connected. As other objects are created, they can be placed within this schema.

The syntax of the CREATE SCHEMA statement is described in detail in the
SQL Reference manual. The new schema name cannot already exist in the
system catalogs and it cannot begin with ″SYS″.

If a user has SYSADM or DBADM authority, then the user can create a
schema with any valid name. When a database is created,
IMPLICIT_SCHEMA authority is granted to PUBLIC (that is, to all users).

The definer of any objects created as part of the CREATE SCHEMA statement
is the schema owner. This owner can GRANT and REVOKE schema privileges
to other users.

The following is an example of a CREATE SCHEMA statement that creates a
schema for an individual user with the authorization ID ″joe″:

CREATE SCHEMA joeschma AUTHORIZATION joe

This statement must be issued by a user with DBADM authority.

Schemas may also be implicitly created when a user has IMPLICIT_SCHEMA
authority. With this authority, users implicitly create a schema whenever they
create an object with a schema name that does not already exist.

If users do not have IMPLICIT_SCHEMA authority, the only schema they can
create is one that has the same name as their own authorization ID.

Setting a Schema

You may wish to establish a default schema for use by unqualified object
references in dynamic SQL statements issued from within a specific DB2
connection. This is done by setting the special register CURRENT SCHEMA to
the schema you wish to use as the default. Any user can set this special
register: No authorization is required.

The syntax of the SET SCHEMA statement is described in detail in the SQL
Reference manual.

Chapter 4. Implementing Your Design 157

The following is an example of how to set the CURRENT SCHEMA special
register:

SET CURRENT SCHEMA = 'SCHEMA01'

This statement can be used from within an application program or issued
interactively. Once set, the value of the CURRENT SCHEMA special register is
used as the qualifier (schema) for unqualified object references in dynamic
SQL statements, with the exception of the CREATE SCHEMA statement where
an unqualified reference to a database object exists.

The initial value of the CURRENT SCHEMA special register is equal to the
authorization ID of the current session user.

Creating and Populating a Table

After you determine how to organize your data into tables, the next step is to
create those tables, by using the CREATE TABLE statement. The table
descriptions are stored in the system catalog of the database to which you are
connected.

The syntax of the CREATE TABLE statement is described in detail in the SQL
Reference. For information about naming tables, columns, and other database
objects, see “Appendix D. Naming Rules” on page 691.

The CREATE TABLE statement gives the table a name, which is a qualified or
unqualified identifier, and a definition for each of its columns. You can store
each table in a separate table space, so that a table space will contain only one
table. If a table will be dropped and created often, it is more efficient to store
it in a separate table space and then drop the table space instead of the table.
You can also store many tables within a single table space. In a partitioned
database environment, the table space chosen also defines the nodegroup and
the database partitions on which table data is stored.

The table does not contain any data at first. To add rows of data to it, use one
of the following:

v The INSERT statement, described in the SQL Reference

v The LOAD or IMPORT commands, described in the Command Reference.

Details concerning the movement of data into and out of tables is presented in
Data Movement Utilities Guide and Reference.

It is possible to add data into the table without logging the change. This is
done using the NOT LOGGED INITIALLY parameter on the CREATE TABLE
statement. Any changes made to the table by an INSERT, DELETE, UPDATE,

158 Administration Guide Design and Implementation

CREATE INDEX, DROP INDEX, or ALTER TABLE operation in the same unit
of work in which the table is created are not logged. Logging begins in
subsequent units of work.

A table consists of one or more column definitions. A maximum of 500
columns can be defined for a table. Columns represent the attributes of an
entity. The values in any column are all the same type of information. Refer to
the SQL Reference for more information.

Note: The maximum of 500 columns is true when using a 4 KB page size. The
maximum is 1012 columns when using an 8 KB, 16 KB, or 32 KB page
size.

A column definition includes a column name, data type, and any necessary null
attribute, or default value (optionally chosen by the user).

The column name describes the information contained in the column and
should be something that will be easily recognizable. It must be unique within
the table; however, the same name can be used in other tables. See “Object
Names” on page 694 for information about naming rules.

The data type of a column indicates the length of the values in it and the kind
of data that is valid for it. The database manager uses character string,
numeric, date, time and large object data types. Graphic string data types are
only available for database environments using multi-byte character sets. In
addition, columns can be defined with user-defined distinct types, which are
discussed in “Creating a User-Defined Type (UDT)” on page 179.

The default attribute specification indicates what value is to be used if no
value is provided. The default value can be specified, or a system-defined
default value used. Default values may be specified for columns with, and
without, the null attribute specification.

The null attribute specification indicates whether or not a column can contain
null values.

The following is an example of a CREATE TABLE statement that creates the
EMPLOYEE table in the RESOURCE table space. This table is defined in the
sample database:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL WITH DEFAULT,
LASTNAME VARCHAR(15) NOT NULL,

Chapter 4. Implementing Your Design 159

WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10M) NOT NULL)

IN RESOURCE

When creating a table, you can choose to have the columns of the table based
on the attributes of a structured type. Such a table is called a “typed table”.

A typed table can be defined to inherit some of its columns from another
typed table. Such a table is called a “subtable”, and the table from which it
inherits is called its “supertable”. The combination of a typed table and all its
subtables is called a “table hierarchy”. The topmost table in the table
hierarchy (the one with no supertable) is called the “root table” of the
hierarchy.

The following sections build on the previous example to cover other options
you should consider:

v “Large Object (LOB) Column Considerations”

v “Defining a Unique Constraint” on page 162

v “Defining Referential Constraints” on page 163

v “Defining a Table Check Constraint” on page 166

v “Creating a User-Defined Structured Type” on page 180

v “Creating a Typed Table” on page 167

v “Populating a Typed Table” on page 169

v “Creating a Table in Multiple Table Spaces” on page 172

v “Creating a Table in a Partitioned Database” on page 173.

You can also create a table that is defined based on the result of a query. This
type of table is called a summary table. For more information, see “Creating a
Summary Table” on page 187.

Large Object (LOB) Column Considerations

Before creating a table that contains large object columns, you need to make
the following decisions:
1. Do you want to log changes to LOB columns?

If you do not want to log these changes, you must turn logging off by
specifying the NOT LOGGED clause when you create the table. For
example:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,

160 Administration Guide Design and Implementation

MIDINIT CHAR(1) NOT NULL WITH DEFAULT,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10M) NOT NULL NOT LOGGED)

IN RESOURCE

If the LOB column is larger than 1 GB, logging must be turned off. (As a
rule of thumb, you may not want to log LOB columns larger than 10 MB.)
As with other options specified on a column definition, the only way to
change the logging option is to re-create the table.

Even if you choose not to log changes, LOB columns are shadowed to allow
changes to be rolled back, whether the roll back is the result of a system
generated error, or an application request. Shadowing is a recovery
technique where current storage page contents are never overwritten. That
is, old, unmodified pages are kept as “shadow” copies. These copies are
discarded when they are no longer needed to support a transaction
rollback.

Note: When recovering a database using the RESTORE and
ROLLFORWARD commands, LOB data that was “NOT LOGGED”and
was written since the last backup will be replaced by binary zeros.

2. Do you want to minimize the space required for the LOB column?
You can make the LOB column as small as possible using the COMPACT
clause on the CREATE TABLE statement. For example:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL WITH DEFAULT,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10M) NOT NULL NOT LOGGED COMPACT)

IN RESOURCE

There is a performance cost when appending to a table with a compact
LOB column, particularly if the size of LOB values are increased (because
of storage adjustments that must be made).

On platforms such as OS/2 where sparse file allocation is not supported
and where LOBs are placed in SMS table spaces, consider using the
COMPACT clause. Sparse file allocation has to do with how physical disk
space is used by an operating system. An operating system that supports
sparse file allocation does not use as much physical disk space to store
LOBs as compared to an operating system not supporting sparse file
allocation. The COMPACT option allows for even greater physical disk
space “savings” regardless of the support of sparse file allocation. Because

Chapter 4. Implementing Your Design 161

you can get some physical disk space savings when using COMPACT, you
should consider using COMPACT if your operating system does not
support sparse file allocation.

Note: DB2 system catalogs use LOB columns and may take up more space
than in previous versions.

3. Do you want better performance for LOB columns, including those LOB
columns in the DB2 system catalogs?
There are large object (LOB) columns in the catalog tables. LOB data is not
kept in the buffer pool with other data but is read from disk each time it is
needed. Reading from disk slows down the performance of DB2 where the
LOB columns of the catalogs are involved. Since a file system usually has
its own place for storing (or caching) data, using a SMS table space, or a
DMS table space built on file containers, make avoidance of I/O possible
when the LOB has previously been referenced.

Defining Constraints

This section discusses how to define constraints:
v “Defining a Unique Constraint”

v “Defining Referential Constraints” on page 163

v “Defining a Table Check Constraint” on page 166.

For more information on constraints, see “Planning for Constraint
Enforcement” on page 44 and refer to the SQL Reference.

Defining a Unique Constraint: Unique constraints ensure that every value in
the specified key is unique. A table can have any number of unique
constraints, with at most one unique constraint defined as a primary key.

You define a unique constraint with the UNIQUE clause in the CREATE
TABLE or ALTER TABLE statements. The unique key can consist of more than
one column. More than one unique constraint is allowed on a table. However,
a unique constraint may not be defined on a subtable.

Once established, the unique constraint is enforced automatically by the
database manager when an INSERT or UPDATE statement modifies the data
in the table. The unique constraint is enforced through a unique index.

When a unique constraint is defined in an ALTER TABLE statement and an
index exists on the same set of columns of that unique key, that index
becomes the unique index and is used by the constraint.

You can take any one unique constraint and use it as the primary key. The
primary key can be used as the parent key in a referential constraint (along

162 Administration Guide Design and Implementation

with other unique constraints). There can be only one primary key per table.
You define a primary key with the PRIMARY KEY clause in the CREATE
TABLE or ALTER TABLE statement. The primary key can consist of more than
one column.

A primary index forces the value of the primary key to be unique. When a
table is created with a primary key, the database manager creates a primary
index on that key.

Some performance tips for indexes used as unique constraints include:

v The IMPORT utility always extends indexes incrementally, as opposed to
LOAD, which always completely rebuilds them.

v As a result, when preforming an initial load of an empty table with indexes,
LOAD gives better performance than IMPORT. This is true no matter
whether you are using the INSERT or REPLACE modes of LOAD.

v When appending a substantial amount of data to an existing table with
indexes (using IMPORT INSERT, or LOAD INSERT), LOAD gives slightly
better performance than IMPORT.

v When appending a small amount of data to an existing large table with
indexes (using IMPORT INSERT, or LOAD INSERT), IMPORT may perform
better than LOAD since IMPORT will not incur the cost of rebuilding the
entire index.

v If you are using the IMPORT command for an initial large load of data,
create the unique key after the data has been imported or loaded. This
avoids the overhead of maintaining the index while the table is being
loaded. It also results in the index using the least amount of storage.

v If you are using the LOAD utility in REPLACE mode, create the unique key
before loading the data. In this case, creation of the index during the load is
more efficient than using the CREATE INDEX statement after the load.

Defining Referential Constraints: Referential integrity is imposed by adding
referential constraints to table and column definitions. Referential constraints
are established with the FOREIGN KEY Clause, and the REFERENCES Clause
in the CREATE TABLE or ALTER TABLE statements. A referential constraint
cannot be associated with a typed table.

The identification of foreign keys enforces constraints on the values within the
rows of a table or between the rows of two tables. The database manager
checks the constraints specified in a table definition and maintains the
relationships accordingly. The goal is to maintain integrity whenever one
database object references another.

For example, primary and foreign keys each have a department number
column. For the EMPLOYEE table, the column name is WORKDEPT, and for

Chapter 4. Implementing Your Design 163

the DEPARTMENT table, the name is DEPTNO. The relationship between
these two tables is defined by the following constraints:
v There is only one department number for each employee in the EMPLOYEE

table, and that number exists in the DEPARTMENT table.
v Each row in the EMPLOYEE table is related to no more than one row in the

DEPARTMENT table. There is a unique relationship between the tables.
v Each row in the EMPLOYEE table that has a non-null value for

WORKDEPT is related to a row in the DEPTNO column of the
DEPARTMENT table.

v The DEPARTMENT table is the parent table, and the EMPLOYEE table is
the dependent table.

The SQL statement defining the parent table, DEPARTMENT, is:
CREATE TABLE DEPARTMENT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(29) NOT NULL,
MGRNO CHAR(6),
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16),

PRIMARY KEY (DEPTNO))
IN RESOURCE

The SQL statement defining the dependent table, EMPLOYEE, is:
CREATE TABLE EMPLOYEE

(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10m) NOT NULL,

FOREIGN KEY DEPT (WORKDEPT)
REFERENCES DEPARTMENT ON DELETE NO ACTION)

IN RESOURCE

By specifying the DEPTNO column as the primary key of the DEPARTMENT
table and WORKDEPT as the foreign key of the EMPLOYEE table, you are
defining a referential constraint on the WORKDEPT values. This constraint
enforces referential integrity between the values of the two tables. In this case,
any employees that are added to the EMPLOYEE table must have a
department number that can be found in the DEPARTMENT table.

The delete rule for the referential constraint in the employee table is NO
ACTION, which means that a department cannot be deleted from the
DEPARTMENT table if there are any employees in that department.

164 Administration Guide Design and Implementation

Although the previous examples use the CREATE TABLE statement to add a
referential constraint, the ALTER TABLE statement can also be used. See
“Modifying a Table in Both Structure and Content” on page 216.

Another example: The same table definitions are used as those in the previous
example. Also, the DEPARTMENT table is created before the EMPLOYEE
table. Each department has a manager, and that manager is listed in the
EMPLOYEE table. MGRNO of the DEPARTMENT table is actually a foreign
key of the EMPLOYEE table. Because of this referential cycle, this constraint
poses a slight problem. You could add a foreign key later (see “Adding
Primary and Foreign Keys” on page 218). You could also use the CREATE
SCHEMA statement to create both the EMPLOYEE and DEPARTMENT tables
at the same time (see the example in the SQL Reference).

FOREIGN KEY Clause: A foreign key references a primary key or a unique
key in the same or another table. A foreign key assignment indicates that
referential integrity is to be maintained according to the specified referential
constraints. You define a foreign key with the FOREIGN KEY clause in the
CREATE TABLE or ALTER TABLE statement.

The number of columns in the foreign key must be equal to the number of
columns in the corresponding primary or unique constraint (called a parent
key) of the parent table. In addition, corresponding parts of the key column
definitions must have the same data types and lengths. The foreign key can be
assigned a constraint name. If you do not assign a name, one is automatically
assigned. For ease of use, it is recommended that you assign a constraint name
and do not use the system-generated name.

The value of a composite foreign key matches the value of a parent key if the
value of each column of the foreign key is equal to the value of the
corresponding column of the parent key. A foreign key containing null values
cannot match the values of a parent key, since a parent key by definition can
have no null values. However, a null foreign key value is always valid,
regardless of the value of any of its non-null parts.

The following rules apply to foreign key definitions:

v A table can have many foreign keys
v A foreign key is nullable if any part is nullable
v A foreign key value is null if any part is null.

REFERENCES Clause: The REFERENCES clause identifies the parent table in
a relationship, and defines the necessary constraints. You can include it in a
column definition or as a separate clause accompanying the FOREIGN KEY
clause, in either the CREATE TABLE or ALTER TABLE statements.

Chapter 4. Implementing Your Design 165

If you specify the REFERENCES clause as a column constraint, an implicit
column list is composed of the column name or names that are listed.
Remember that multiple columns can have separate REFERENCES clauses,
and that a single column can have more than one.

Included in the REFERENCES clause is the delete rule. In our example, the
ON DELETE NO ACTION rule is used, which states that no department can
be deleted if there are employees assigned to it. Other delete rules include ON
DELETE CASCADE, ON DELETE SET NULL, and ON DELETE RESTRICT.
See “DELETE Rules” on page 48.

Implications for Utility Operations: The LOAD utility will turn off constraint
checking for self-referencing and dependent tables, placing these tables into
check pending state. After the LOAD utility has completed, you will need to
turn on the constraint checking for all tables for which it was turned off. For
example, if the DEPARTMENT and EMPLOYEE tables are the only tables that
have been placed in check pending state, you can execute the following
command:

SET INTEGRITY FOR DEPARTMENT, EMPLOYEE IMMEDIATE CHECKED

The IMPORT utility is affected by referential constraints in the following
ways:

v The REPLACE and REPLACE CREATE functions are not allowed if the
object table has any dependents other than itself.
To use these functions, first drop all foreign keys in which the table is a
parent. When the import is complete, re-create the foreign keys with the
ALTER TABLE statement.

v The success of importing into a table with self-referencing constraints
depends on the order in which the rows are imported.

Defining a Table Check Constraint: A table check constraint specifies a
search condition that is enforced for each row of the table on which the table
check constraint is defined. You create a table check constraint on a table by
associating a check-constraint definition with the table when the table is
created or altered. This constraint is automatically activated when an INSERT
or UPDATE statement modifies the data in the table. A table check constraint
has no effect on a DELETE or SELECT statement. A check constraint can be
associated with a typed table.

A constraint name cannot be the same as any other constraint specified within
the same CREATE TABLE statement. If you do not specify a constraint name,
the system generates an 18-character unique identifier for the constraint.

A table check constraint is used to enforce data integrity rules not covered by
key uniqueness or a referential integrity constraint. In some cases, a table

166 Administration Guide Design and Implementation

check constraint can be used to implement domain checking. The following
constraint issued on the CREATE TABLE statement ensures that the start date
for every activity is not after the end date for the same activity:

CREATE TABLE EMP_ACT
(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
EMPTIME DECIMAL(5,2),
EMSTDATE DATE,
EMENDATE DATE,
CONSTRAINT ACTDATES CHECK(EMSTDATE <= EMENDATE))

IN RESOURCE

Although the previous example uses the CREATE TABLE statement to add a
table check constraint, the ALTER TABLE statement can also be used. See
“Modifying a Table in Both Structure and Content” on page 216.

Creating a Typed Table

You can create a typed table using a variant of the CREATE TABLE statement.
You can also create a hierarchy of typed tables that is based on a hierarchy of
structured types. The following example illustrates creation of a table
hierarchy based on the type hierarchy described in “Creating a User-Defined
Structured Type” on page 180:

CREATE TABLE Department OF Department_t
(REF IS Oid USER GENERATED);

CREATE TABLE Person OF Person_t
(REF IS Oid USER GENERATED);

CREATE TABLE Employee OF Employee_t UNDER Person
INHERIT SELECT PRIVILEGES
(Dept WITH OPTIONS SCOPE Department);

CREATE TABLE Student OF Student_t UNDER Person
INHERIT SELECT PRIVILEGES;

CREATE TABLE Manager OF Manager_t UNDER Employee
INHERIT SELECT PRIVILEGES;

CREATE TABLE Architect OF Architect_t UNDER Employee
INHERIT SELECT PRIVILEGES;

The first typed table created above is Department. This table is defined to be
OF type Department_t, so it will hold instances of that type. This means that it
will have a column corresponding to each attribute of the structured type
Department_t. Because typed tables contain objects that can be referenced by
other objects, every typed table must have an “object identifier” (OID) column
as its first column. In this example, the type of the OID column will be
REF(Department_t), and its column name (Oid) is given in the REF IS...USER
GENERATED clause. The USER GENERATED part of this clause indicates

Chapter 4. Implementing Your Design 167

that the initial value for the OID column of each newly inserted row will be
provided by the user when inserting a row; once inserted, the OID column
cannot be updated.

The next typed table above, Person, is of type Person_t. The type Person_t is
the root of a type hierarchy, so we need to create a corresponding “table
hierarchy” if we want to store instances of type Person_t and its subtypes.
Thus, after creating the table Person, we create two “subtables” of the Person
table, Employee and Student, and also two subtables of the Employee table,
Manager and Architect. Just as a subtype inherits the attributes of its
supertype, a subtable inherits the columns of its supertable — including the
OID column. (Note: A subtable must reside in the same schema as its
supertable.) Rows in the Employee subtable, for example, will therefore have a
total of six columns: Oid, Name, Age, SerialNum, Salary, and Dept.

The INHERIT SELECT PRIVILEGES clause specifies that the subtable being
defined, such as Employee, should (at least initially) be readable by the same
users and groups as the “supertable”, such as Person, UNDER which it is
created. Any user or group holding a SELECT privilege on the supertable will
be granted SELECT privilege on the newly created subtable, with the subtable
definer being the grantor of this privilege.

Note: Privileges may be granted and revoked independently at every level of
a table hierarchy. Thus, the inherited SELECT privileges on a subtable
may be revoked after the subtable has been created if the definer of the
subtable does not wish for them to remain granted. While doing so
does not prevent a user with SELECT privilege on the supertable from
seeing those columns of the subtable’s rows, it does prevent them from
seeing the additional columns that appear only at the level of the
subtable because a user can only operate directly on a subtable if they
hold the necessary privilege on that subtable.

The WITH OPTIONS SCOPE clause in the CREATE statement for the
Employee table declares that the Dept column of this table has a “scope” of
Department. This means that the reference values in this column of the
Employee table are intended to refer to objects in the Department table. The
scope information is needed if the user wants to be able to dereference these
references in SQL statements using the new SQL dereference operator (–>).

This example has shown how a table hierarchy can be defined, based on a
corresponding hierarchy of structured types, in order to create a database in
which objects of particular types and subtypes can be stored and managed.
Every table hierarchy has a “root table”, which has an OID column plus a
column for each attribute of its declared type. In addition, it can have a
number of “subtables”, each of which is created UNDER the root table or

168 Administration Guide Design and Implementation

some other appropriate “supertable” within the table hierarchy. This example
has also shown how scopes are specified for reference attributes.

A SELECT, UPDATE, or DELETE statement that operates on a supertable
automatically operates on all its subtables as well. For example, an UPDATE
statement on the Employee table might affect rows in Employee, Manager, and
Architect tables, but an UPDATE statement on the Manager table can only
affect Manager rows.

See SQL Reference for more information on the CREATE TABLE statement (or
the CREATE VIEW statement) and how to establish subtype/supertype
relationships between typed tables. (For an introduction to CREATE VIEW
you could see “Creating a Typed View” on page 184.)

Populating a Typed Table

After creating the structured types and then creating the corresponding tables
and subtables, you will have a database like the following:

Once the hierarchy is established, you will need to populate the tables with
data. This may be done as shown in the following example:

INSERT INTO Department (Oid, Name, Headcount)
VALUES(Department_t('1'), 'Toy', 15);

INSERT INTO Department (Oid, Name, Headcount)
VALUES(Department_t('2'), 'Shoe', 10);

INSERT INTO Person (Oid, Name, Age)
VALUES(Person_t('a'), 'Andrew', 20);

Person

Person_t

(Oid, Name, Age)

Department

Department_t

(Oid, Name, Headcount)

Employee

Employee_t

(SerialNum, Salary, REF (Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

Figure 20.

Chapter 4. Implementing Your Design 169

INSERT INTO Person (Oid, Name, Age)
VALUES(Person_t('b'), 'Bob', 30);

INSERT INTO Person (Oid, Name, Age)
VALUES(Person_t('c'), 'Cathy', 25);

INSERT INTO Employee (Oid, Name, Age, SerialNum, Salary, Dept)
VALUES(Employee_t('d'), 'Dennis', 26, 105, 30000, Department_t('1'));

INSERT INTO Employee (Oid, Name, Age, SerialNum, Salary, Dept)
VALUES(Employee_t('e'), 'Eva', 31, 83, 45000, Department_t('2'));

INSERT INTO Employee (Oid, Name, Age, SerialNum, Salary, Dept)
VALUES(Employee_t('f'), 'Franky', 28, 214, 39000, Department_t('2'));

INSERT INTO Student (Oid, Name, Age, SerialNum, Marks)
VALUES(Student_t('g'), 'Gordon', 19, 10245, 90);

INSERT INTO Student (Oid, Name, Age, SerialNum, Marks)
VALUES(Student_t('h'), 'Helen', 20, 10357, 70);

INSERT INTO Manager (Oid, Name, Age, SerialNum, Salary, Dept, Bonus)
VALUES(Manager_t('i'), 'Iris', 35, 251, 55000, Department_t('1'), 12000);

INSERT INTO Manager (Oid, Name, Age, SerialNum, Salary, Dept, Bonus)
VALUES(Manager_t('j'), 'Christina', 10, 317, 85000, Department_t('1'), 25000);

INSERT INTO Manager (Oid, Name, Age, SerialNum, Salary, Dept, Bonus)
VALUES(Manager_t('k'), 'Ken', 55, 482, 105000, Department_t('2'), 48000);

INSERT INTO Architect (Oid, Name, Age, SerialNum, Salary, Dept, StockOption)
VALUES(Architect_t('l'), 'Leo', 35, 661, 92000, Department_t('2'), 20000);

INSERT INTO Architect (Oid, Name, Age, SerialNum, Salary, Dept, StockOption)
VALUES(Architect_t('m'), 'Brian', 7, 882, 112000,

(SELECT Oid FROM Department WHERE name = 'Toy'), 30000);

Notice from the example that first value in each inserted row is the OID for
the data being inserted into the tables. Also, when inserting data into a
subtable, note that data must be provided for its inherited columns. Finally,
notice that any reference-valued expression of the appropriate type can be
used to initialize a reference attribute. In most cases above, the Dept reference
of the employees is input as an appropriately type-casted constant; however,
in the case of Brian, the reference is obtained using a subquery.

Following the above INSERT statements, we can now query the typed tables.
For example, here is the result we would obtain if we now ask DB2 to
″SELECT Name, Age FROM Person″, which prints the names and ages of all
persons (in Person or its subtables) in our database:
NAME AGE
-------------------- -----------
Andrew 20
Bob 30
Dennis 26
Eva 31
Franky 28
Gordon 19
Helen 20
Iris 35
Christina 10
Ken 55

170 Administration Guide Design and Implementation

Leo 35
Brian 7

12 record(s) selected.

Similarly, here is the result of the query ″SELECT Name, Salary, Dept–>Name
FROM Employee″, which prints the names, salaries, and department names of
all the employees in the database:

NAME SALARY NAME
-------------------- ----------- --------------------
Dennis 30000 Toy
Eva 45000 Shoe
Franky 39000 Shoe
Iris 55000 Toy
Christina 85000 Toy
Ken 105000 Shoe
Leo 92000 Shoe
Brian 112000 Toy

8 record(s) selected.

Note: In the second SELECT statement above, the dereference operator (–>) is
used. The dereference operator returns the named column value from
the target table of a scoped reference. In the expression “Dept —>
Name”, “Dept” is a reference column whose scope (target table) is
“Department”, and “Name” is the name of a column in that target
table.

Hierarchy Table

A hierarchy table is a table that is associated with the implementation of a
typed table hierarchy. It is created at the same time as the root table of the
hierarchy. When creating a root table, an optional HIERARCHY clause can be
used to specify the name of the hierarchy table that is associated with the root
table. If you do not specify a name, the name of the hierarchy table is the
same as the name of the root table, followed by a system-generated unique
suffix. A hierarchy table cannot be directly referenced in an SQL statement.

The hierarchy table contains one column for each unique column in the
hierarchy. Give the hierarchy show in Figure 20 on page 169, the hierarchy
table would contain these columns: Oid, Name, Age, SerialNum, Salary,
Marks, Bonus, and StockOption. (The actual order of the columns depends on
the order that the tables were created.) In addition, there is an extra column
for the type ID so that the DB2 database manager can tell the type of a given
row.

Suppose the type IDs are as follows: Person uses 10, Employee uses 25,
Manager uses 35, Architect uses 45, and Student uses 100. Then given the

Chapter 4. Implementing Your Design 171

values inserted into the hierarchy as shown following Figure 20 on page 169,
the populated hierarchy table would appear as follows:

Table 21. Hierarchy Table

(type) Oid Name Age SerialNum Salary Marks Bonus StockOption

10 a Andrew 20 — — — — —

10 b Bob 30 — — — — —

10 c Cathy 25 — — — — —

25 d Dennis 26 105 30000 — — —

25 e Eva 31 83 45000 — — —

25 f Franky 28 214 39000 — — —

100 g Gordon 19 10245 — 90 — —

100 h Helen 20 10357 — 70 — —

35 i Iris 35 251 55000 — 12000 —

35 j Christina 10 371 85000 — 25000 —

35 k Ken 55 482 105000 — 48000 —

45 l Leo 35 661 92000 — — 20000

45 m Brian 7 882 112000 — — 30000

Notice that when a column does not apply to a given row, then the value is
NULL (as shown by the “—”).

The SQL optimizer uses the hierarchy table to generate access plans for
processing queries written against the individual tables in the hierarchy.

Creating a Table in Multiple Table Spaces

Data, index, and long column data can be stored in the same table space as
the table or in a different table space only for DMS. The following example
shows how the EMP_PHOTO table could be created to store the different
parts of the table in different table spaces:

CREATE TABLE EMP_PHOTO
(EMPNO CHAR(6) NOT NULL,
PHOTO_FORMAT VARCHAR(10) NOT NULL,
PICTURE BLOB(100K))

IN RESOURCE
INDEX IN RESOURCE_INDEXES
LONG IN RESOURCE_PHOTO

This example will cause the EMP_PHOTO data to be stored as follows:
v Indexes created for the EMP_PHOTO table will be stored in the

RESOURCES_INDEXES table space

172 Administration Guide Design and Implementation

v Data for the PICTURE column will be stored in the RESOURCE_PHOTO
table space

v Data for the EMPNO and PHOTO_FORMAT columns will be stored in the
RESOURCE table space.

See “Table Space Design Considerations” on page 85 for additional
considerations on the use of multiple DMS table spaces for a single table.

Refer to the SQL Reference for more information.

Creating a Table in a Partitioned Database

Before creating a table that will be physically divided or partitioned, you need
to consider the following:
v Table spaces can span more than one database partition. The number of

partitions they scan depends on the number of partitions in a nodegroup.
v Tables can be collocated by being placed in the same table space or by

being placed in another table space that, together with the first table space,
is associated with the same nodegroup. For more information, see “Table
Collocation” on page 73.

One additional option exists when creating a table in a partitioned database
environment: the partitioning key. A partitioning key is a key that is part of the
definition of a table. It determines the partition on which each row of data is
stored.

It is important to select an appropriate partitioning key because it cannot be
changed later. Furthermore, any unique indexes (and therefore unique or
primary keys) must be defined as a superset of the partitioning key. That is, if
a partitioning key is defined, unique keys and primary keys must include all
of the same columns as the partitioning key (they may have more columns).

If you do not specify the partitioning key explicitly, the following defaults are
used. Ensure that the default partitioning key is appropriate.

v If a primary key is specified in the CREATE TABLE statement, the first
column of the primary key is used as the partitioning key.

v If there is no primary key, the first column that is not a long field is used.
v If no columns satisfy the requirements for a default partitioning key, the

table is created without one (this is allowed only in single-partition
nodegroups).

Following is an example:

Chapter 4. Implementing Your Design 173

CREATE TABLE MIXREC (MIX_CNTL INTEGER NOT NULL,
MIX_DESC CHAR(20) NOT NULL,
MIX_CHR CHAR(9) NOT NULL,
MIX_INT INTEGER NOT NULL,
MIX_INTS SMALLINT NOT NULL,
MIX_DEC DECIMAL NOT NULL,
MIX_FLT FLOAT NOT NULL,
MIX_DATE DATE NOT NULL,
MIX_TIME TIME NOT NULL,
MIX_TMSTMP TIMESTAMP NOT NULL)
IN MIXTS12
PARTITIONING KEY (MIX_INT) USING HASHING

In the preceding example, the table space is MIXTS12 and the partitioning key
is MIX_INT. If the partitioning key is not specified explicitly, it is MIX_CNTL. (If
no primary key is specified and no partitioning key is defined, the
partitioning key is the first non-long column in the list.)

A row of a table, and all information about that row, always resides on the
same database partition.

The size limit for one partition of a table is 64 GB, or the available disk space,
whichever is smaller. (This assumes a 4 KB page size for the table space.) The
size of the table can be as large as 64 GB (or the available disk space) times
the number of database partitions. If the page size for the table space was 8
KB, the size of the table can be as large as 128 GB (or the available disk space)
times the number of database partitions. If the page size for the table space
was 16 KB, the size of the table can be as large as 256 GB (or the available
disk space) times the number of database partitions. If the page size for the
table space was 32 KB, the size of the table can be as large as 512 GB (or the
available disk space) times the number of database partitions.

Creating a Trigger

A trigger defines a set of actions that are executed in conjunction with, or
triggered by, an INSERT, UPDATE, or DELETE clause on a specified base
table. Some uses of triggers are to:
v Validate input data
v Generate a value for a newly-inserted row
v Read from other tables for cross-referencing purposes
v Write to other tables for audit-trail purposes

You cannot use triggers with nicknames.

You can use triggers to support general forms of integrity or business rules.
For example, a trigger can check a customer’s credit limit before an order is
accepted or update a summary data table.

174 Administration Guide Design and Implementation

The benefits of using a trigger are:
v Faster application development: Because a trigger is stored in the database,

you do not have to code the actions it does in every application.
v Easier maintenance: Once a trigger is defined, it is automatically invoked

when the table that it is created on is accessed.
v Global enforcement of business rules: If a business policy changes, you only

need to change the trigger and not each application program.

The following SQL statement creates a trigger that increases the number of
employees each time a new person is hired, by adding 1 to the number of
employees (NBEMP) column in the COMPANY_STATS table each time a row
is added to the EMPLOYEE table.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP+1;

A trigger body can include one or more of the following SQL statements:
INSERT, searched UPDATE, searched DELETE, full-selects, SET
transition-variable, and SIGNAL SQLSTATE. The trigger can be activated
before or after the INSERT, UPDATE, or DELETE statement to which it refers.
Refer to the SQL Reference for complete syntax information on the CREATE
TRIGGER statement. Refer to the Application Development Guide for
information about creating and using triggers.

Trigger Dependencies

All dependencies of a trigger on some other object are recorded in the
SYSCAT.TRIGDEP catalog. A trigger can depend on many objects. These
objects and the dependent trigger are presented in detail in the SQL Reference
discussion on the DROP statement.

If one of these objects is dropped, the trigger becomes inoperative but its
definition is retained in the catalog. To revalidate this trigger, you must
retrieve its definition from the catalog and submit a new CREATE TRIGGER
statement.

If a trigger is dropped, its description is deleted from the SYSCAT.TRIGGERS
catalog view and all of its dependencies are deleted from the
SYSCAT.TRIGDEP catalog view. All packages having UPDATE, INSERT, or
DELETE dependencies on the trigger are invalidated.

If the dependent object is a view and it is made inoperative, the trigger is also
marked inoperative. Any packages dependent on triggers that have been
marked inoperative are invalidated. (For more information, see “Statement
Dependencies When Changing Objects” on page 233.)

Chapter 4. Implementing Your Design 175

Creating a User-Defined Function (UDF)

User-defined functions (UDFs) extend and add to the support provided by
built-in functions of SQL, and can be used wherever a built-in function can be
used. You can create UDFs as either:
v An external function, which is written in a programming language.
v A sourced function, whose implementation is inherited from some other

existing function.

There are three types of UDFs:

Scalar Returns a single-valued answer each time it is called. For example, the
built-in function SUBSTR() is a scalar function. Scalar UDFs can be
either external or sourced.

Column
Returns a single-valued answer from a set of like values (a column). It
is also sometimes called an aggregating function in DB2. An example
of a column function is the built-in function AVG(). An external
column UDF cannot be defined to DB2, but a column UDF which is
sourced upon one of the built-in column functions can be defined.
This is useful for distinct types.

For example, if there is a distinct type SHOESIZE defined with base
type INTEGER, a UDF AVG(SHOESIZE) which is sourced on the
built-in function AVG(INTEGER) could be defined, and it would be a
column function.

Table Returns a table to the SQL statement which references it. Table
functions may only be referenced in the FROM clause of a SELECT
statement. Such a function can be used to apply SQL language
processing power to data which is not DB2 data, or to convert such
data into a DB2 table.

For example, table functions can take a file and convert it to a table,
tabularize sample data from the World Wide Web, or access a Lotus
Notes database and return information such as the date, sender, and
text of mail messages. This information can be joined with other tables
in the database.

A table function can only be an external function. It cannot be a
sourced function.

Information about existing UDFs is recorded in the SYSCAT.FUNCTIONS and
SYSCAT.FUNCPARMS catalog views. The system catalog does not contain the
executable code for the UDF. (Therefore, when creating your backup and
recovery plans you should consider how you will manage your UDF
executables.)

176 Administration Guide Design and Implementation

Statistics about the performance of UDFs are important when compiling SQL
statements. For information about how to update UDF statistics in the system
catalog, refer to “Updating Statistics for User-Defined Functions” in
Administration Guide, Performance.

For details on using the CREATE FUNCTION statement to write a UDF to
suit your specific application, refer to the Application Development Guide. Refer
to the SQL Reference for details on UDF syntax.

Creating a Function Mapping

In a federated database, create a function mapping when you need to map a
local function or a local function template (described in “Creating a Function
Template” on page 178) with a function at one or more data sources. Default
function mappings are provided for many data source functions.

Function mappings are useful when:

v New, built-in functions become available at a data source.
v You need to map a user-defined function at a data source to a local

function.
v An application requires different default behavior than that provided by the

default mapping.

Function mappings defined with CREATE FUNCTION MAPPING statements
are stored in the federated database.

Functions (or function templates) must have the same number of input
parameters as the data source function. Additionally, the data types of the
input parameters on the federated side should be compatible with the data
types of the input parameters on the data source side.

Use the CREATE FUNCTION MAPPING statement to create a function
mapping. For example, to create a function mapping between an Oracle
AVGNEW function and a DB2 equivalent at server ORACLE1:

CREATE FUNCTION MAPPING ORAVGNEW FOR SYSIBM.AVG(INT) SERVER ORACLE1
OPTIONS (REMOTE_NAME 'AVGNEW')

You must hold one of the SYSADM or DBADM authorities at the federated
database to use this statement. Function mapping attributes are stored in
SYSCAT.FUNCMAPPINGS.

The federated server will not bind input host variables or retrieve results of
LOB, LONG VARCHAR/VARGRAPHIC, DATALINK, distinct and structured
types. No function mapping can be created when an input parameter or the
returned value includes one of these types.

Chapter 4. Implementing Your Design 177

For additional details on using and creating function mappings, refer to the
Application Development Guide. Refer to the SQL Reference for details on
CREATE FUNCTION MAPPING syntax.

Creating a Function Template

In a federated system, function templates provide “anchors” for function
mappings. They are used to enable the mapping of a data source function
when a corresponding DB2 function does not exist at the federated server. A
function mapping requires the presence of a function template or an existing
similar function at DB2.

The template is just a function shell: name, input parameters, and the return
value. There is no local executable for the function.

Because there is no local executable for the function, it is possible that a call to
the function template will fail even though the function is available at the
data source. For example, consider the query:

SELECT myfunc(C1)
FROM nick1
WHERE C2 < 'A'

If DB2 and the data source containing the object referenced by nick1 do not
have the same collating sequence, the query will fail because the comparison
must be done at DB2 while the function is at the data source. If the collating
sequences were the same, the comparison operation could be done at the data
source that has the underlying function referenced by myfunc.

Functions (or function templates) must have the same number of input
parameters as the data source function. The data types of the input
parameters on the federated side should be compatible with the data types of
the input parameters on the data source side. These requirements apply to
returned values as well.

You create function templates using the CREATE FUNCTION statement with
the AS TEMPLATE keyword. After the template is created, you map the
template to the data source using the CREATE FUNCTION MAPPING
statement.

For example, to create a function template and a function mapping for
function MYS1FUNC on server S1:

CREATE FUNCTION MYFUNC(INT) RETURNS INT AS TEMPLATE

CREATE FUNCTION MAPPING S1_MYFUNC FOR MYFUNC(INT) SERVER S1 OPTIONS
(REMOTE_NAME 'MYS1FUNC')

178 Administration Guide Design and Implementation

For details on using and creating function templates, refer to the Application
Development Guide. Refer to the SQL Reference for details on CREATE
FUNCTION syntax.

Creating a User-Defined Type (UDT)

A user-defined type (UDT) is a named data type that is created in the
database by the user. A UDT can be a distinct type which shares a common
representation with a built-in data type or a structured type which has a
sequence of named attributes that each have a type. A structured type can be
a subtype of another structured type (called a supertype), defining a type
hierarchy.

UDTs support strong typing, which means that even though they share the
same representation as other types, values of a given UDT are considered to
be compatible only with values of the same UDT or UDTs in the same type
hierarchy.

The SYSCAT.DATATYPES catalog view allows you to see the UDTs that have
been defined for your database. This catalog view also shows you the data
types defined by the database manager when the database was created. For a
complete list of all data types, refer to the SQL Reference.

A UDT cannot be used as an argument for most of the system-provided, or
built-in, functions. User-defined functions must be provided to enable these
and other operations.

You can drop a UDT only if:
v It is not used in a column definition for an existing table.
v It is not used as the type of an existing typed table or typed view.
v It is not used in a UDF function that cannot be dropped. A UDF cannot be

dropped if a view, trigger, table check constraint, or another UDF is
dependent on it.

When a UDT is dropped, any functions that are dependent on it are also
dropped.

Creating a User-Defined Distinct Type

A user-defined distinct type is a data type derived from an existing type, such
as an integer, decimal, or character type. You can create a distinct type by
using the CREATE DISTINCT TYPE statement.

The following SQL statement creates the distinct type t_educ as a smallint:
CREATE DISTINCT TYPE T_EDUC AS SMALLINT WITH COMPARISONS

Chapter 4. Implementing Your Design 179

Instances of the same distinct type can be compared to each other, if the
WITH COMPARISONS clause is specified on the CREATE DISTINCT TYPE
statement (as in the example). The WITH COMPARISONS clause cannot be
specified if the source data type is a large object, a DATALINK, LONG
VARCHAR, or LONG VARGRAPHIC type.

Instances of distinct types cannot be used as arguments of functions or
operands of operations that were defined on the source type. Similarly, the
source type cannot be used in arguments or operands that were defined to
use a distinct type.

After you have created a distinct type, you can use it to define columns in a
CREATE TABLE statement:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10M) NOT NULL,
EDLEVEL T_EDUC)

IN RESOURCE

Creating the distinct type also generates support to cast between the distinct
type and the source type. Hence, a value of type T_EDUC can be cast to a
SMALLINT value and SMALLINT value can be cast to a T_EDUC value.

Refer to the SQL Reference for complete syntax information on the CREATE
DISTINCT TYPE statement. Refer to the Application Development Guide for
information about creating and using a distinct type.

You can transform UDTs into base data types, and base data types into UDTs,
using transformations. Creation of a transform function is through a CREATE
TRANSFORM statement.

Support for transforms is also found through the CREATE METHOD
statement and extensions to the CREATE FUNCTION statement. Refer to the
SQL Reference for details on this support.

Creating a User-Defined Structured Type

A structured type is a user-defined type that contains one or more attributes,
each of which has a name and a data type of its own. A structured type can
serve as the type of a table, in which each column of the table derives its
name and data type from one of the attributes of the structured type. A
structured type may be created as a subtype of another structured type, called

180 Administration Guide Design and Implementation

its “supertype”. In this case, the subtype inherits all the attributes of the
supertype, and may optionally add additional attributes of its own.

For example, consider the following user-defined structured types:
CREATE TYPE Department_t AS (Name VARCHAR(20), Headcount INT)

MODE DB2SQL;
CREATE TYPE Person_t AS (Name VARCHAR(20), Age INT)

MODE DB2SQL;
CREATE TYPE Employee_t UNDER Person_t

AS (SerialNum INT, Salary INT, Dept REF(Department_t))
MODE DB2SQL;

CREATE TYPE Student_t UNDER Person_t AS (SerialNum INT, Marks INT)
MODE DB2SQL;

CREATE TYPE Manager_t UNDER Employee_t AS (Bonus INT)
MODE DB2SQL;

CREATE TYPE Architect_t UNDER Employee_t AS (StockOption INT)
MODE DB2SQL;

The AS clause provides the attribute definitions associated with the type.

The MODE DB2SQL clause is used to specify the mode of the type. DB2SQL
is the only value for mode currently supported.

The UNDER clause specifies that the structured type is being defined as a
subtype of the specified supertype.

The first structured type above (Department_t) is a type with two attributes:
Name and Headcount. The second structured type (Person_t) is another type
with two attributes: Name and Age. The type Person_t has two subtypes,
Employee_t and Student_t, that each inherit the attributes of Person_t and
also have several additional attributes that are specific to their particular
types. Note that the Dept attribute of Employee_t is a reference, of type
REF(Department_t), that can refer to an object of type Department_t. Finally,
Manager_t and Architect_t are both subtypes of Employee_t; they inherit all
the attributes of Employee_t and extend them further as appropriate for their
types. Thus, an instance of type Manager_t will have a total of six attributes:
Name, Age, SerialNum, Salary, Dept, and Bonus.

This example showing user-defined structured types contains definitions for
two “type hierarchies”. One is the Department_t type hierarchy, which consists
only of the type Department_t (and therefore isn’t much of a hierarchy). The
other is the Person_t type hierarchy, which consists of the type Person_t, two
subtypes of Person_t, namely Employee_t and Student_t, and two subtypes of
Employee_t, namely Manager_t and Architect_t. The Department_t type and
Person_t type are “root types” since they are not subtypes of any other type
(that is, neither one has an UNDER clause in its type definition).

Chapter 4. Implementing Your Design 181

Refer to SQL Reference for more information on the CREATE TYPE
(Structured) statement.

Creating a Type Mapping

In a federated system, a type mapping lets you map specific data types in
data source tables and views to DB2 distinct data types. A type mapping can
apply to one data source or a range (type, version) of data sources.

Default data type mappings are provided for built-in data source types and
built-in DB2 types. New data type mappings (that you create) will be listed in
the SYSCAT.TYPEMAPPINGS view.

You create type mappings with the CREATE TYPE MAPPING statement. You
must hold one of the SYSADM or DBADM authorities at the federated
database to use this statement.

An example of a type mapping statement is:
CREATE TYPE MAPPING MY_ORACLE_DEC FROM SYSIBM.DECIMAL(10,2)
TO SERVER ORACLE1 TYPE NUMBER([10..38],2)

You cannot create a type mapping for a LOB, LONG
VARCHAR/VARGRAPHIC, DATALINK, structured or distinct type.

For details on using and creating type mappings, refer to the Application
Development Guide. Refer to the SQL Reference for details on CREATE TYPE
MAPPING syntax.

Creating a View

Views are derived from one or more base tables, nicknames, or views, and can
be used interchangeably with base tables when retrieving data. When changes
are made to the data shown in a view, the data is changed in the table itself.

A view can be created to limit access to sensitive data, while allowing more
general access to other data. For example, the EMPLOYEE table may have
salary information in it, which should not be made available to everyone. The
employee’s phone number, however, should be generally accessible. In this
case, a view could be created from the LASTNAME and PHONENO columns
only. Access to the view could be granted to PUBLIC, while access to the
entire EMPLOYEE table could be restricted to those who have the
authorization to see salary information. For information about read-only views,
refer to the SQL Reference manual.

182 Administration Guide Design and Implementation

With a view, you can make a subset of table data available to an application
program and validate data that is to be inserted or updated. A view can have
column names that are different from the names of corresponding columns in
the original tables.

The use of views provides flexibility in the way your programs and end-user
queries can look at the table data.

The following SQL statement creates a view on the EMPLOYEE table that lists
all employees in Department A00 with their employee and telephone
numbers:

CREATE VIEW EMP_VIEW (DA00NAME, DA00NUM, PHONENO)
AS SELECT LASTNAME, EMPNO, PHONENO FROM EMPLOYEE
WHERE WORKDEPT = 'A00'
WITH CHECK OPTION

The first line of this statement names the view and defines its columns. The
name EMP_VIEW must be unique within its schema in SYSCAT.TABLES. The
view name appears as a table name although it contains no data. The view
will have three columns called DA00NAME, DA00NUM, and PHONENO,
which correspond to the columns LASTNAME, EMPNO, and PHONENO
from the EMPLOYEE table. The column names listed apply one-to-one to the
select list of the SELECT statement. If column names are not specified, the
view uses the same names as the columns of the result table of the SELECT
statement.

The second line is a SELECT statement that describes which values are to be
selected from the database. It may include the clauses ALL, DISTINCT,
FROM, WHERE, GROUP BY, and HAVING. The name or names of the data
objects from which to select columns for the view must follow the FROM
clause.

The WITH CHECK OPTION clause indicates that any updated or inserted
row to the view must be checked against the view definition, and rejected if it
does not conform. This enhances data integrity but requires additional
processing. If this clause is omitted, inserts and updates are not checked
against the view definition.

The following SQL statement creates the same view on the EMPLOYEE table
using the SELECT AS clause:

CREATE VIEW EMP_VIEW
SELECT LASTNAME AS DA00NAME,

EMPNO AS DA00NUM,
PHONENO

FROM EMPLOYEE
WHERE WORKDEPT = 'A00'
WITH CHECK OPTION

Chapter 4. Implementing Your Design 183

You can create a view that uses a UDF in its definition. However, to update
this view so that it contains the latest functions, you must drop it and then
re-create it. If a view is dependent on a UDF, that function cannot be dropped.

The following SQL statement creates a view with a function in its definition:
CREATE VIEW EMPLOYEE_PENSION (NAME, PENSION)

AS SELECT NAME, PENSION(HIREDATE,BIRTHDATE,SALARY,BONUS)
FROM EMPLOYEE

The UDF function PENSION calculates the current pension an employee is
eligible to receive, based on a formula involving their HIREDATE,
BIRTHDATE, SALARY, and BONUS.

In addition to using views as described above, a view can also be used to:
v Alter a table without affecting application programs. This can happen by

creating a view based on an underlying table. Applications that use the
underlying table are not affected by the creation of the new view. New
applications can use the created view for different purposes than those
applications that use the underlying table.

v Sum the values in a column, select the maximum values, or average the
values.

v Provide access to information in one or more data sources. You can
reference nicknames within the CREATE VIEW statement and create
multi-location/global views (the view could join information in multiple
data sources located on different systems).
When you create a view that references nicknames using standard CREATE
VIEW syntax, you will see a warning alerting you to the fact that the
authentication ID of view users will be used to access the underlying object
or objects at data sources instead of the view creator authentication ID. Use
the FEDERATED keyword to suppress this warning.

An alternative to creating a view is to use a nested or common table
expression to reduce catalog lookup and improve performance. Refer to the
SQL Reference for more information about common table expressions.

Creating a Typed View

You can create a typed view using the CREATE VIEW statement. For example,
to create a view of the typed Department table that we created earlier, we can
define a structured type that has the desired attributes and then create a typed
view using that type:

CREATE TYPE VDepartment_t AS (Name VARCHAR(20))
MODE DB2SQL;

184 Administration Guide Design and Implementation

CREATE VIEW VDepartment OF VDepartment_t MODE DB2SQL
(REF IS VOid USER GENERATED)
AS SELECT VDepartment_t(Varchar(Oid)), Name FROM Department;

The OF clause in the CREATE VIEW statement tells the system that the
columns of the view are to be based on the attributes of the indicated
structured type (in this case VDepartment_t).

The MODE DB2SQL clause specifies the mode of the typed view. This is the
only valid mode currently supported.

The REF IS... clause is identical to that of the typed CREATE TABLE
statement. It provides a name for the view’s OID column (VOid in this case),
which is the first column of the view. Typed views, like typed tables, require
an OID column to be specified (in the case of a root view) or inherited (in the
case of a subview, as will be shown shortly).

The USER GENERATED clause specifies that the initial value for the OID
column must be provided by the user when inserting a row. Once inserted,
the OID column cannot be updated.

The “body” of the view, which follows the keyword AS, is a SELECT
statement that determines the content of the view. The column-types returned
by this SELECT statement must be compatible with the column-types of the
typed view, including the initial object ID column.

To illustrate the creation of a typed view hierarchy, the following example
defines a view hierarchy that omits some sensitive data and eliminates some
type distinctions from the Person table hierarchy created earlier under
“Creating a Typed Table” on page 167:

CREATE TYPE VPerson_t AS (Name VARCHAR(20))
MODE DB2SQL;

CREATE TYPE VEmployee_t UNDER VPerson_t
AS (Salary INT, Dept REF(VDepartment_t))
MODE DB2SQL;

CREATE VIEW VPerson OF VPerson_t MODE DB2SQL
(REF IS VOid USER GENERATED)
AS SELECT VPerson_t (Varchar(Oid)), Name FROM ONLY(Person);

CREATE VIEW VEmployee OF VEmployee_t MODE DB2SQL
UNDER VPerson INHERIT SELECT PRIVILEGES
(Dept WITH OPTIONS SCOPE VDepartment)
AS SELECT VEmployee_t(Varchar(Oid)), Name, Salary,

VDepartment_t(Varchar(Dept))
FROM Employee;

Chapter 4. Implementing Your Design 185

The two CREATE TYPE statements create the structured types that are needed
to create the object view hierarchy for this example.

The first typed CREATE VIEW statement above creates the root view of the
hierarchy, VPerson, and is very similar to the VDepartment view definition. The
difference is the use of ONLY(Person) to ensure that only the rows in the
Person table hierarchy that are in the Person table (and not in any subtable)
are included in the VPerson view. This ensures that the Oid values in VPerson
are unique compared with the Oid values in VEmployee. The second CREATE
VIEW statement creates a subview VEmployee under the view VPerson. As was
the case for the UNDER clause in the CREATE TABLE...UNDER statement,
the UNDER clause when creating a view establishes the superview/subview
relationship. (Note: The subview must be created in the same schema as its
superview.) As was the case for typed tables, columns are inherited by
subviews. Rows in the VEmployee view will inherit the columns VOid and Name
from VPerson and have the additional columns Salary and Dept associated
with the type VEmployee_t.

The INHERIT SELECT PRIVILEGES clause has the same meaning here as in
the typed CREATE TABLE statement.

Similarly, the WITH OPTIONS clause in a typed view definition plays the
same role as it does in a typed table definition — it allows column options
such as SCOPE to be specified. As well, a new column option, READ ONLY
(not used in our example), is provided for columns of typed views. This
clause is used to force a superview column to be marked as read-only so that
a later subview definition can legitimately specify an expression for the same
column that is implicitly read-only.

If a view has a reference column (like VEmployee’s Dept column), a scope must
be associated with the column if it is to be usable in SQL dereference
operations. If no scope is specified for the reference column of the view and
the underlying table or view column was scoped, then the underlying
column’s scope is passed on to the view’s reference column. It can be
explicitly given a scope by using WITH OPTIONS, as in our example where
the Dept column of the VEmployee view gets the VDepartment view as its scope.
The column would remain unscoped if the underlying table or view column
did not have a scope and none was explicitly assigned in the view definition
(or later by using the ALTER VIEW statement).

There are several important rules associated with restrictions on the queries
for typed views found in the SQL Reference that you should read carefully
before attempting to create and use a typed view.

186 Administration Guide Design and Implementation

Creating a Summary Table

A summary table is a table whose definition is based on the result of a query.
As such, the summary table typically contains pre-computed results based on
the data existing in the table or tables that its definition is based on. If the
SQL compiler determines that a query will run more efficiently against a
summary table than the base table, the query executes against the summary
table, and you obtain the result faster than you otherwise would.

The creation of a summary table with the replication option can be used to
replicate tables across all nodes in a partitioned database environment. These
are known as “replicated summary tables”. See “Replicated Summary Tables”
on page 74 for more information.

Note: Summary tables are not used with static SQL or nicknames.

In general a summary table, or a replicated summary table, is used for
optimization of a query if the isolation level of the summary table, or the
replicated summary table, is higher than or equal to the isolation level of the
query. For example, if a query is running under the cursor stability (CS)
isolation level, only summary tables, and replicated summary tables, that are
defined under CS or higher isolation levels are used for optimization.

To create a summary table, you use the CREATE SUMMARY TABLE
statement with the AS fullselect clause and the IMMEDIATE or REFRESH
DEFERRED options. When you create the summary table, you have the option
of specifying whether the summary table is refreshed automatically when the
base table is changed, or whether it is refreshed by using the REFRESH
TABLE statement. To have the summary table refreshed automatically when
changes are made to the base table or tables, specify the REFRESH
IMMEDIATE keyword. An immediate refresh is useful when:

v You have queries that take a long time to complete when run against a base
table

v The base table or tables are infrequently changed
v The refresh is not expensive.

The summary table, in this situation, can provide pre-computed results. If you
want the refresh of the summary table to be deferred, specify the REFRESH
DEFERRED keyword. Summary tables specified with REFRESH DEFERRED
will not reflect changes to the underlying base tables. You should use
summary tables where this is not a requirement. For example, if you run DSS
queries, you would use the summary table to contain legacy data.

A summary table defined with REFRESH DEFERRED may be used in place of
a query when it:

Chapter 4. Implementing Your Design 187

v Conforms to the restrictions for a fullselect of a refresh immediate summary
table, except:
– The SELECT list is not required to include COUNT(*) or COUNT_BIG(*)
– The SELECT list can include MAX and MIN column functions
– A HAVING clause is allowed.

The SQL special register CURRENT REFRESH AGE SQL is set to ANY or has
a value of 99999999999999. The collection of nines is the maximum value
allowed in this special register which is a timestamp duration value with a
data type of DECIMAL(20,6).

Note: Summary tables defined with REFRESH DEFERRED are not used to
optimize static SQL.

You use the CURRENT REFRESH AGE special register to specify the amount
of time that the summary table with deferred refresh can be used for a
dynamic query before it must be refreshed. To set the value of the CURRENT
REFRESH AGE special register, you can use the SET CURRENT REFRESH
AGE statement. For more information about the CURRENT REFRESH AGE
special register and the SET CURRENT REFRESH AGE statement, refer to the
SQL Reference.

Summary tables defined with REFRESH IMMEDIATE are applicable to both
static and dynamic queries and do not need to use the CURRENT REFRESH
AGE special register.

Note: Setting the CURRENT REFRESH AGE special register to a value other
than zero should be done with caution. By allowing a summary table
that may not represent the values of the underlying base table to be
used to optimize the processing of the query, the result of the query
may not accurately represent the data in the underlying table. This may
be reasonable when you know the underlying data has not changed, or
you are willing to accept the degree of error in the results based on
your knowledge of the data.

With activity affecting the source data, a summary table over time will no
longer contain accurate data. You will need to use the REFRESH TABLE
statement. Refer to the SQL Reference for more information.

If you want to create a new base table that is based on any valid fullselect,
specify the DEFINITION ONLY keyword when you create the table. When the
create table operation completes, the new table is not treated as a summary
table, but rather as a base table. For example, you can create the exception
tables used in LOAD and SET INTEGRITY as follows:

188 Administration Guide Design and Implementation

CREATE TABLE XT AS
(SELECT T.*, CURRENT TIMESTAMP AS TIMESTAMP,CLOB(",32K)
AS MSG FROM T) DEFINITION ONLY

Here are some of the key restrictions regarding summary tables:
1. You cannot alter a summary table.
2. You cannot alter the length of a column for a base table if that table has a

summary table.
3. You cannot import data into a summary table.
4. You cannot create a unique index on a summary table.
5. You cannot create a summary table based on the result of a query that

references one or more nicknames.

Refer to the SQL Reference for a complete statement of summary table
restrictions.

Creating an Alias

An alias is an indirect method of referencing a table, nickname, or view, so
that an SQL statement can be independent of the qualified name of that table
or view. Only the alias definition must be changed if the table or view name
changes. An alias can be created on another alias. An alias can be used in a
view or trigger definition and in any SQL statement, except for table
check-constraint definitions, in which an existing table or view name can be
referenced.

The alias is replaced at statement compilation time by the table or view name.
If the alias or alias chain cannot be resolved to a table or view name, an error
results. For example, if WORKERS is an alias for EMPLOYEE, then at
compilation time:

SELECT * FROM WORKERS

becomes in effect
SELECT * FROM EMPLOYEE

An alias name can be used wherever an existing table name can be used, and
can refer to another alias if no circular or repetitive references are made along
the chain of aliases.

The following SQL statement creates an alias WORKERS for the EMPLOYEE
table:

CREATE ALIAS WORKERS FOR EMPLOYEE

Chapter 4. Implementing Your Design 189

The alias name cannot be the same as an existing table, view, or alias, and can
only refer to a table within the same database. The name of a table or view
used in a CREATE TABLE or CREATE VIEW statement cannot be the same as
an alias name in the same schema.

You do not require special authority to create an alias, unless the alias is in a
schema other than the one owned by your current authorization ID, in which
case DBADM authority is required.

An alias can be defined for a table, view, or alias that does not exist at the
time of definition. However, it must exist when an SQL statement containing
the alias is compiled.

When an alias, or the object to which an alias refers, is dropped, all packages
dependent on the alias are marked invalid and all views and triggers
dependent on the alias are marked inoperative.

Note: DB2 for MVS/ESA employs two distinct concepts of aliases: ALIAS and
SYNONYM. These two concepts differ from DB2 Universal Database as
follows:
v ALIASes in DB2 for MVS/ESA:

– Require their creator to have special authority or privilege
– Cannot reference other aliases.

v SYNONYMs in DB2 for MVS/ESA:
– Can only be used by their creator
– Are always unqualified
– Are dropped when a referenced table is dropped
– Do not share namespace with tables or views.

Creating a Wrapper

In a federated database, the CREATE WRAPPER statement registers a
wrapper. The statement defines the mechanism by which a federated server
can interact with a certain category of data source.

Specific libraries must be used for specific data source types, versions,
communication protocols, and operating systems. For example, AS/400 and
DB2 for OS/390 data sources are accessed using the ″libdrda.dll″ library for
federated databases operating on Windows NT operating systems using APPC
communications.

Wrappers can be created in the Control Center or from the command line
processor. In both cases, creating a wrapper registers it to the federated
database.

190 Administration Guide Design and Implementation

The following SQL statement registers the wrapper ORACLE8 on a Windows
NT operating system:

CREATE WRAPPER ORACLE8 LIBRARY 'libnet8.dll'

You must have SYSADM or DBADM authority at the federated database to
use this statement.

For details on using the CREATE WRAPPER statement, refer to the Application
Development Guide. Refer to the SQL Reference for details on syntax.

Creating a Server

In a federated database, create servers to define data sources to DB2 and
describe their characteristics: name, wrapper, type, version, location, and
options. This information is used to map nicknames to specific data
management systems and to provide information to the DB2 optimizer. Server
information is located in the SYSCAT.SERVERS and
SYSCAT.SERVEROPTIONS catalog views.

Note: In this section, servers represent data sources, not DRDA servers or
DB2 DBMSs.

You can create servers from the Control Center or the command line
processor.

The following sample SQL statement creates the Oracle server ORA8:
CREATE SERVER ORA8 TYPE ORACLE VERSION 8 WRAPPER ORACLE8 OPTIONS
(NODE 'ONODE')

The following sample SQL statement creates the DB2 server DB2TEST:
CREATE SERVER DB2TEST TYPE DB2 VERSION 6.1 WRAPPER DB2UDB OPTIONS
(NODE 'DB2TEST', DBNAME 'TEST1')

The definition of NODE, in SERVER SQL statements, varies depending on the
data source. If the data source is a DB2 DBMS, the value refers to an instance
of DB2 that has one or more databases. In the previous example, note that the
DBNAME option specifies the database name. If the data source is a DB2 for
OS/390 DBMS, the value refers to a specific node for a subsystem. If the data
source is an Oracle DBMS, the value refers to the actual database (the
DBNAME option is not needed).

You must have SYSADM or DBADM authority at the federated database to
use this statement.

For additional details on using the CREATE SERVER statement, refer to the
SQL Reference.

Chapter 4. Implementing Your Design 191

You can create user mappings to manage differences in authentication
processing between DB2 and data source servers. User mappings are
discussed in detail in “User Mappings” on page 301.

When a server is dropped, all objects dependent on that server are dropped
(user mappings, nicknames, function mappings, type mappings, plans, etc.).

Provide server options when creating a server. These options provide
necessary details about the server (such as the node name). Server options can
also set specific performance and security values.

Using Server Options to Help Define Data Sources and Facilitate
Authentication Processing

You can set variables called server options to values that affect how a federated
server accesses data sources. This section:
v Explains the purpose of server options
v Describes what SQL statements you use to specify server options
v Shows the server options and their settings

Purposes of Server Options: In general, you use server options to:
v Supply and update information about data sources. A server reference

includes both basic information about a data source—for example, its
name—and information that can change over time. Some of the changeable
information is conveyed by values assigned to server options. For example,
the value assigned to the cpu_ratio option indicates whether the data
source’s CPU is faster or slower than the DB2 system CPU. If the DB2
system gets one or more processor upgrades, this value should change.

v Facilitate authentication. You can set some server options to ensure that
user IDs and passwords are sent to the data source in the proper case. For
example, you can set the fold_id option so that before the federated server
sends a user ID to a data source, the federated server transforms the name
to the case (upper or lower) that the data source requires. Alternatively, if
you define the user ID to the federated server in the required case, you can
set the fold_id option to prevent the server from trying to change the case
and consuming overhead in the process.

v Optimize queries. Some server options and their values facilitate
optimization. To illustrate: in the CREATE SERVER statement, you can
specify certain performance statistics as option values. For example, you
can set the cpu_ratio option to a value that indicates the relative speeds of
the data source’s and federated server’s CPUs. And you can set the io_ratio
option to a value that indicates the relative rates of the data source’s and
federated server’s I/O devices. When you run CREATE SERVER, these
statistics are added to the catalog view SYSCAT.SERVEROPTIONS, and the
optimizer uses them in developing its access plan for the data source. If a

192 Administration Guide Design and Implementation

statistic changes (as might happen, for instance, if the data source CPU is
upgraded), you can use the ALTER SERVER statement to update
SYSCAT.SERVEROPTIONS with this change. The optimizer then uses your
update in developing its next access plan for the data source.

SQL for Server Options: There are three SQL statements in which you can
assign values to server options: CREATE SERVER, ALTER SERVER, and SET
SERVER OPTION.

Use the CREATE SERVER statement to set an option to a value that persists
indefinitely over time for multiple connections to a data source. With this
statement, you can set an option to a value other than the default or, if an
option has no default value, you can set it to an initial value.

Use the ALTER SERVER statement if, after setting a server option to a value
with the CREATE SERVER statement, you want to set it to a different value
that persists over multiple connections.

Use the SET SERVER OPTION statement to change server option values
temporarily for the duration of a single connection to a database. SET
SERVER OPTION statements must be issued first within the first unit of work
following the connection to the data source.

For example, to temporarily enable the use of plan hints for the Oracle server
ORASEB1, issue the statement:

SET SERVER OPTION plan_hints TO 'Y' FOR SERVER ORASEB1

Server Options and Their Settings: The table below describes the server
options and the values that you can set them to. Unless otherwise stated, all
server option values must be enclosed in single quotes.

Chapter 4. Implementing Your Design 193

Table 22. Server Options and Their Settings

Option Valid Settings Default
Setting

collating_sequence Specifies whether the data source uses the same default
collating sequence as the federated database, based on the
code set and the country information. If a data source has a
collating sequence that differs from DB2’s collating sequence,
most operations depending on DB2’s collating sequence
cannot be remotely evaluated at a data source. An example is
executing MAX column functions against a nickname
character column at a data source with a different collating
sequence. Because results might differ if the MAX function is
evaluated at the remote data source, DB2 will perform the
aggregate operation and the MAX function locally.

If your query contains an equal sign, it is possible to
push-down that portion of the query even if the collating
sequences are different (set to ’N’). For example, the predicate
C1 = ’A’ could be pushed-down to a data source. Of course,
such queries cannot be pushed-down when the collating
sequence at the data source is case-insensitive. When a data
source is case-insensitive, the results from C1= ’A’ and C1 =
’a’ are the same, which is not acceptable in a case-sensitive
environment (DB2).

Administrators can create federated databases with a
particular collating sequence that matches the data source
collating sequence. This approach may speed performance if
all data sources use the same collating sequence or if most or
all column functions are directed against data sources that use
the same collating sequence.

’Y’ Data source’s collating sequence is the same as
federated database’s.

’N’ Data source’s collating sequence is not the same as
federated database’s.

’I’ Data source’s collating sequence is different from
federated database’s and is case-insensitive (for
example, ’TOLLESON’ and ’TolLESon’ are considered
equal).

’N’

comm_rate Specifies the communication rate between a federated server
and its associated data sources. Expressed in megabytes per
second.

’2.0’

194 Administration Guide Design and Implementation

Table 22. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

connectstring Specifies initialization properties needed to connect to an OLE
DB provider. For the complete syntax and semantics of the
connection string, see the ″Data Link API of the OLE DB Core
Components″ in the Microsoft OLE DB 2.0 Programmer’s
Reference and Data Access SDK, Microsoft Press, 1998.

None

cpu_ratio Indicates how much faster or slower a data source’s CPU runs
than the federated server’s CPU.

’1.0’

dbname Name of the data source database that you want the federated
server to access. Required for DB2 family data sources; does
not apply to Oracle** data sources.

None.

fold_id (See notes 1 and 4
at the end of this table.)

Applies to user IDs that the federated server sends to data
sources for authentication. Valid values are:

’U’ The federated server folds the user ID to uppercase
before sending it to the data source. This is a logical
choice for DB2 Family and Oracle** data sources (See
note 2 at end of this table.)

’N’ The federated server does nothing to the user ID
before sending it to the data source. (See note 2 at
end of this table.)

’L’ The federated server folds the user ID to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the user ID to the data source in uppercase. If the user
ID fails, the server tries sending it in lowercase.

None.

fold_pw (See notes 1, 3
and 4 at the end of this
table.)

Applies to passwords that the federated server sends to data
sources for authentication. Valid values are:

’U’ The federated server folds the password to uppercase
before sending it to the data source. This is a logical
choice for DB2 Family and Oracle** data sources.

’N’ The federated server does nothing to the password
before sending it to the data source.

’L’ The federated server folds the password to lowercase
before sending it to the data source.

If none of these settings are used, the federated server tries to
send the password to the data source in uppercase. If the
password fails, the server tries sending it in lowercase.

None.

io_ratio Denotes how much faster or slower a data source’s I/O
system runs than the federated server’s I/O system.

’1.0’

Chapter 4. Implementing Your Design 195

Table 22. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

node Name by which a data source is defined as an instance to its
RDBMS. Required for all data sources.

For a DB2 family data source, this name is the node specified
in the federated database’s DB2 node directory. To view this
directory, issue the db2 list node directory command.

For an Oracle** data source, this name is the server name
specified in the Oracle** tnsnames.ora file. To access this name
on the Windows NT platform, specify the View Configuration
Information option of the Oracle** SQL Net Easy
Configuration tool.

None.

password Specifies whether passwords are sent to a data source.

’Y’ Passwords are always sent to the data source and
validated. This is the default value.

’N’ Passwords are not sent to the data source (regardless
of any user mappings) and not validated.

’ENCRYPTION’
Passwords are are always sent to the data source in
encrypted form and validated. Valid only for DB2
Family data sources that support encrypted
passwords.

’Y’

plan_hints Specifies whether plan hints are to be enabled. Plan hints are
statement fragments that provide extra information for data
source optimizers. This information can, for certain query
types, improve query performance. The plan hints can help
the data source optimizer decide whether to use an index,
which index to use, or which table join sequence to use.

’Y’ Plan hints are to be enabled at the data source if the
data source supports plan hints.

’N’ Plan hints are not to be enabled at the data source.

’N’

pushdown
’Y’ DB2 will consider letting the data source evaluate

operations.

’N’ DB2 will retrieve only columns from the remote data
source and will not let the data source evaluate other
operations, such as joins.

’Y’

196 Administration Guide Design and Implementation

Table 22. Server Options and Their Settings (continued)

Option Valid Settings Default
Setting

varchar_no_trailing_blanks Specifies if this data source uses non-blank padded varchar
comparison semantics. For varying-length character strings
that contain no trailing blanks, some DBMS’ s
non-blank-padded comparison semantics return the same
results as DB2’s comparison semantics. If you are certain that
all VARCHAR table/view columns at a data source contain no
trailing blanks, consider setting this server option to ’Y’ for a
data source. This option is often used with Oracle** data
sources. Ensure that you consider all objects that can
potentially have nicknames (including views).

’Y’ This data source has non-blank-padded comparison
semantics similar to DB2’s.

’N’ This data source does not have the same
non-blank-padded comparison semantics as DB2’s.

’N’

Notes on this table:

1. This field is applied regardless of the value specified for authentication.
2. Because DB2 stores user IDs in uppercase, the values ‘N’ and ‘U’ are

logically equivalent to each other.
3. The setting for fold_pw has no effect when the setting for password is ‘N’.

Because no password is sent, case cannot be a factor.
4. Avoid null settings for either of these options. A null setting may seem

attractive because DB2 will make multiple attempts to resolve user IDs
and passwords; however, performance might suffer (it is possible that DB2
will send a user ID and password four times before successfully passing
data source authentication).

Using Pass-through Sessions with Servers: Pass-through sessions let
applications communicate directly with a server using the server’s native
client access method and native SQL dialect.

Pass-through sessions are useful when:
v Applications must create objects at the data source or perform INSERT,

UPDATE, or DELETE operations
v DB2 does not support a unique data source operation

When referencing objects in a pass-through session, use the true name of the
object (not the nickname).

Chapter 4. Implementing Your Design 197

Use the SET PASSTHRU statement to start a pass-through session and access
a server directly. This statement must be issued dynamically. An example of
this statement is:

SET PASSTHRU BACKEND

which opens a pass-through session to the data source BACKEND.

For more information on SET PASSTHRU and SQL processing in pass-through
sessions, see the SQL Reference.

Creating a Nickname

In a federated database, nicknames are identifiers for data source tables,
aliases, and views. Distributed requests typically reference nicknames, not
data source tables or views.

Nicknames are part of the means by which DB2 provides location
transparency. Nicknames rely on server definitions for data source location
information to find and efficiently access data sources. An ALTER SERVER
statement can, for example, transparently update server performance data and
version information for all users and applications without requiring new
nicknames or changes to application code.

Nicknames can be created in the Control Center or from the command line
processor. You can define more than one nickname for the same data source
table or view.

Nicknames cannot be used in static SQL statements.

Before creating a nickname, run the equivalent of the RUNSTATS command at
the data source and update statistics for data source objects. Statistical
information is gathered from data sources when a nickname is created and
stored in the federated database catalog. This catalog data includes table and
column definitions, and, if available, index definitions and statistics.

The following SQL statement creates the nickname CUSTOMER:
CREATE NICKNAME CUSTOMER for OS390A.SHAWNB.CUSTLIST

You must hold one of the SYSADM or DBADM authorities, or, you must have
either the database privilege IMPLICIT_SCHEMA or the schema privilege
CREATEIN (for the current schema) at the federated database to use this
statement.

For additional details on using the CREATE NICKNAME statement, refer to
the SQL Reference.

198 Administration Guide Design and Implementation

Referencing Nickname and Data Source Objects

References to data source objects typically use the defined nickname. The one
exception is a reference within a pass-through session (see “Using
Pass-through Sessions with Servers” on page 197 for more information). For
example, if you define the nickname DEPT for the data source table
DB2MVS1.PERSON.DEPT, the statement SELECT * FROM DEPT is allowed;
the statement SELECT * FROM DB2MVS1.PERSON.DEPT is not allowed.

Working with Nickname and Data Source Objects

Most utility commands (LOAD, IMPORT, EXPORT, REORGCHK,
REORGANIZE TABLE) do not support nicknames

COMMENT ON is supported; it updates the system catalog at the federated
database.

INSERT, UPDATE, and DELETE operations are not supported against
nicknames.

Identifying Existing Nicknames and Data Sources

After you have created several nicknames, you might want to use the
following information to identify to which data source a given nickname
corresponds or identify all nicknames at a given data source.

Identifying a Nickname and Its Data Source: This example assumes that
you know the nickname (PAYROLL) and who created it (ACCTG), but need
additional information about the data source. Use the following SQL
statement to first obtain information about what PAYROLL is known as at its
data source (SERVER).
select option, setting
from syscat.taboptions
where tabname = 'PAYROLL'

and tabschema = 'ACCTG'
and option in ('SERVER','REMOTE_SCHEMA','REMOTE_TABLE');

The answer set from this statement is DB2_MVS, FINANCE, DEPTJ35_PAYROLL.
You now know that PAYROLL is the nickname for the table called
DEPTJ35_PAYROLL owned by FINANCE at the server named DB2_MVS. You
can use this information in a subsequent SELECT statement:
select option,setting

from syscat.serveroptions
where servername = 'DB2_MVS'

and option in ('NODE','DBNAME');

Chapter 4. Implementing Your Design 199

The answer set from this statement is REGIONW and DB2MVSDB3. You now know
that the table DEPTJ35_PAYROLL is in a database named DB2MVSDB3, on a
node called REGIONW.

With this information, you can use the LIST NODE DIRECTORY command to
obtain information about the REGIONW node, such as the communications
protocol and security type used. If the node had been for a data source other
than the DB2 Family, you would need to check that data source’s
configuration files to find similar information. For example, if the node had
been an Oracle data source, you would get similar information from the
Oracle tnsnames.ora file.

For details on system catalog views, refer to the SQL Reference.

Identifying All Nicknames Known to DB2: The following SQL statement
provides a list of all nicknames known to the federated database, including
the schema name and remote server for each nickname.

select tabname,tabschema, setting as remote_server
from syscat.taboptions
where option = 'SERVER';

Creating an Index or an Index Specification

An index is a list of the locations of rows, sorted by the contents of one or
more specified columns. Indexes are typically used to speed up access to a
table. However, they can also serve a logical data design purpose. For
example, a unique index does not allow entry of duplicate values in the
columns, thereby guaranteeing that no two rows of a table are the same.
Indexes can also be created to specify ascending or descending order of the
values in a column.

An index specification is a metadata construct. It tells the optimizer that an
index exists for a data source object (table or view) referenced by a nickname.
An index specification does not contain lists of row locations–it is just a
description of an index. The optimizer uses the index specification to improve
access to the object referenced by the nickname. When a nickname is first
created, an index specification is generated if an index exists for the
underlying table at the data source in a format DB2 can recognize.

Note: If needed, create index specifications on table nicknames or view
nicknames where the view is over one table.

Manually create an index or an index specification when:
v It would improve performance. For example, if you want to encourage the

optimizer to use a particular table or nickname as the inner table of a
nested loop join, create an index specification on the joining column if no

200 Administration Guide Design and Implementation

index exists. See the Administration Guide, Performance for more information
about when you would want an index or an index specification.

v An index for a base table was added after the nickname for that table was
created.

Index specifications can be created when no index exists on the base table
(DB2 will not check for the remote index when you issue the CREATE INDEX
statement). An index specification does not enforce uniqueness of rows even
when the UNIQUE keyword is specified.

The DB2 Index Advisor is a wizard that assists you in choosing an optimal set
of indexes. You can access this wizard through the Control Center. The
comparable utility is called db2advis.

An index is defined by columns in the base table. It can be defined by the
creator of a table, or by a user who knows that certain columns require direct
access. A primary index key is automatically created on the primary key,
unless a user-defined index already exists.

Any number of indexes can be defined on a particular base table, and they
can have a beneficial effect on the performance of queries. However, the more
indexes there are, the more the database manager must modify during update,
delete, and insert operations. Creating a large number of indexes for a table
that receives many updates can slow down processing of requests. Therefore,
use indexes only where a clear advantage for frequent access exists.

An index key is a column or collection of columns on which an index is
defined, and determines the usefulness of an index. Although the order of the
columns making up an index key does not make a difference to index key
creation, it may make a difference to the optimizer when it is deciding
whether or not to use an index.

If the table being indexed is empty, an index is still created, but no index
entries are made until the table is loaded or rows are inserted. If the table is
not empty, the database manager makes the index entries while processing the
CREATE INDEX statement.

For a clustering index, new rows are inserted physically close to existing rows
with similar key values. This yields a performance benefit during queries
because it results in a more linear access pattern to data pages and more
effective pre-fetching.

If you want a primary key index to be a clustering index, a primary key
should not be specified at CREATE TABLE. Once a primary key is created, the
associated index cannot be modified. Instead, perform a CREATE TABLE
without a primary key clause. Then issue a CREATE INDEX statement,

Chapter 4. Implementing Your Design 201

specifying clustering attributes. Finally, use the ALTER TABLE statement to
add a primary key that corresponds to the index just created. This index will
be used as the primary key index.

Generally, clustering is more effectively maintained if the clustering index is
unique.

Column data which is not part of the unique index key but which is to be
stored/maintained in the index is called an include column. Include columns
can be specified for unique indexes only. When creating an index with include
columns, only the unique key columns are sorted and considered for
uniqueness. Use of include columns improves the performance of data
retrieval when index access is involved.

The database manager uses a B+ tree structure for storing indexes where the
bottom level consists of leaf nodes. The leaf nodes or pages are where the
actual index key values are stored. When creating an index, you can enable
those index leaf pages to be merged or reorganized online. online index
reorganization is used to prevent the situation where, after much delete and
update activity, many leaf pages of an index have only a few index keys left
on them. In such a situation, and without online reorganization, space could
only be reclaimed by an off-line reorganization of the data and index. When
deciding whether to create an index with the ability to reorganize index pages
online, you should consider the following:
v Is the added performance cost of checking for space to merge each time a

key deletion occurs; and the actual cost to complete the merge, if there is
enough space

v Greater than the benefit of better space utilization for the index; and less
need to perform an off-line reorganization to reclaim space.

Note: Pages freed after an online reorganization merge are available for re-use
only for other indexes in the same table. With a full reorganization,
those pages that are freed are available to other objects (when working
with Database Managed Storage) or to disk space (when working with
System Managed Storage). In addition, an online reorganization will
not free up any non-leaf pages of the index, whereas a full
reorganization will make the index as small as possible by making the
index as small as possible, reducing the non-leaf and leaf pages as well
as the number of levels of the index.

See “Using the CREATE INDEX Statement” on page 204 for more information
on how to implement an index that will reorganize online.

Indexes for tables in a partitioned database are built using the same CREATE
INDEX statement. They are partitioned based on the partitioning key of the

202 Administration Guide Design and Implementation

table. An index on a table consists of the local indexes in that table on each
node in the nodegroup. Note that unique indexes defined in a multiple
partition environment must be a superset of the partitioning key.

Performance Tip: Create your indexes before using the LOAD utility if you
are going to carry out the following series of tasks:

v Create Table
v Load Table
v Create Index
v Perform RUNSTATS

You should consider ordering the execution of tasks in the following way:
1. Create the table
2. Create the index
3. Load the table with the statistics yes option requested.

For more information on LOAD performance improvements, see “System
Catalog Tables” on page 59.

Indexes are maintained after they are created. Subsequently, when application
programs use a key value to randomly access and process rows in a table, the
index based on that key value can be used to access rows directly. This is
important, because the physical storage of rows in a base table is not ordered.
When a row is inserted, unless there is a clustering index defined, the row is
placed in the most convenient storage location that can accommodate it. When
searching for rows of a table that meet a particular selection condition and the
table has no indexes, the entire table is scanned. An index optimizes data
retrieval without performing a lengthy sequential search.

The data for your indexes can be stored in the same table space as your table
data, or in a separate table space containing index data. The table space used
to store the index data is determined when the table is created (see “Creating
a Table in Multiple Table Spaces” on page 172).

The following two sections, “Using an Index” and “Using the CREATE
INDEX Statement” on page 204, provide more information on creating an
index.

Using an Index

An index is never directly used by an application program. The decision on
whether to use an index and which of the potentially available indexes to use
is the responsibility of the optimizer.

Chapter 4. Implementing Your Design 203

The best index on a table is one that:
v Uses high-speed disks
v Is highly-clustered
v Is made up of only a few narrow columns

For a detailed discussion of how an index can be beneficial, refer to “Index
Scan Concepts” in the Administration Guide, Performance.

Using the CREATE INDEX Statement

You can create an index that will allow duplicates (a non-unique index) to
enable efficient retrieval by columns other than the primary key, and allow
duplicate values to exist in the indexed column or columns.

The following SQL statement creates a non-unique index called LNAME from
the LASTNAME column on the EMPLOYEE table, sorted in ascending order:

CREATE INDEX LNAME ON EMPLOYEE (LASTNAME ASC)

The following SQL statement creates a unique index on the phone number
column:

CREATE UNIQUE INDEX PH ON EMPLOYEE (PHONENO DESC)

A unique index ensures that no duplicate values exist in the indexed column
or columns. The constraint is enforced at the end of the SQL statement that
updates rows or inserts new rows. This type of index cannot be created if the
set of one or more columns already has duplicate values.

The keyword ASC puts the index entries in ascending order by column, while
DESC puts them in descending order by column. The default is ascending
order.

When working with a structured type, it might be necessary to create
user-defined index types. This requires a means of defining index
maintenance, index search, and index exploitation functions. Refer to the SQL
Reference for information on the requirements for creating an index type.

The following SQL statement creates a clustering index called INDEX1 on
LASTNAME column of the EMPLOYEE table:
CREATE INDEX INDEX1 ON EMPLOYEE (LASTNAME) CLUSTER

To be effective, use clustering indexes with the PCTFREE parameter associated
with the ALTER TABLE statement so that new data can be inserted on the
correct pages which maintains the clustering order. Typically, the greater the
INSERT activity on the table, the larger the PCTFREE value (on the table) that
will be needed in order to maintain clustering. Since this index determines the

204 Administration Guide Design and Implementation

order by which the data is laid out on physical pages, only one clustering
index can be defined for any particular table.

If, on the other hand, the index key values of these new rows are, for
example, always new high key values, then the clustering attribute of the
table will try to place them at the end of the table. Having free space in other
pages will do little to preserve clustering. In this case, placing the table in
append mode may be a better choice than a clustering index and altering the
table to have a large PCTFREE value. You can place the table in append mode
by issuing: ALTER TABLE APPEND ON. See “Changing Table Attributes” on
page 222 for additional overview information on ALTER TABLE. Refer to the
SQL Reference for additional detailed information on ALTER TABLE.

The above discussion also applies to new ″overflow″ rows that result from
UPDATEs which increase the size of a row.

The MINPCTUSED clause of the CREATE INDEX statement specifies the
threshold for the minimum amount of used space on an index leaf page. If
this clause is used, online index reorganization is enabled for this index. Once
enabled, the following considerations are used to determine if an online
reorganization takes place: After a key is deleted from a leaf page of this
index and a percentage of used space on the page is less than the specified
threshold value, the neighboring index leaf pages are checked to determine if
the keys on the two leaf pages can be merged into a single index leaf page.

For example, the following SQL statement creates an index with online index
reorganization enabled:

CREATE INDEX LASTN ON EMPLOYEE (LASTNAME) MINPCTUSED=20

When a key is deleted from this index, if the remaining keys on the index
page take up twenty percent or less space on the index page, then an attempt
is made to delete an index page by merging the keys of this index page with
those of a neighboring index page. If the combined keys can all fit on a single
page, this merge is performed and one of the index pages is deleted.

The PCTFREE clause of the CREATE INDEX statement specifies the
percentage of each index page to leave as free space when the index is built.
Leaving more free space on the index pages will result in fewer page splits.
This will reduce the need to reorganize the table in order to regain sequential
index pages which increases prefetching. And prefetching is one important
component that may improve performance. Again, if there are always high
key values, then you will want to consider lowering the value of the
PCTFREE clause of the CREATE INDEX statement. In this way there will be
limited wasted space reserved on each index page.

Chapter 4. Implementing Your Design 205

In multiple partition databases, unique indexes must be defined as supersets
of the partitioning key.

If you have a replicated summary table, its base table (or tables) must have a
unique index, and the index key columns must be used in the query that
defines the replicated summary table. For more information, see “Replicated
Summary Tables” on page 74.

For intra-partition parallelism, index create performance is improved by
using multiple processors for the scanning and sorting of data that is
performed during index creation. The use of multiple processors is enabled by
setting intra_parallel to YES(1) or ANY(-1). The number of processors used
during index create is determined by the system and is not affected by the
configuration parameters dft_degree or max_querydegree, by the application
runtime degree, or by the SQL statement compilation degree. If the database
configuration parameter index sort is NO, then index create will not use
multiple processors.

Before Altering a Database

Some time after a database design has been implemented, you may be
considering a change to the database design. As a result, you should
reconsider the major design issues that you had with the previous design. You
should consider the following:
v Changing Logical and Physical Design Characteristics
v Changing the License Information
v Changing Instances
v Changing Environment Variables and the Profile Registry Variables
v Changing the Node Configuration File
v Changing the Database Configuration

Changing Logical and Physical Design Characteristics

Before you make changes affecting the entire database, you should review all
the logical and physical design decisions. For example, when altering a table
space, you should review your design decision regarding the use of SMS or
DMS storage types. (See “Designing and Choosing Table Spaces” on page 75.)

Changing the License Information

As part of the management of licenses for your DB2 products, you may find
that you have a need to increase the number of licenses. You can use the

206 Administration Guide Design and Implementation

License Center within the Control Center to check usage of the installed
products and increase the number of licenses based on that usage.

Changing Instances

Existing instances are designed to be as independent as possible from the
effects of subsequent installation and removal of products.

In most cases, existing instances automatically inherit or lose access to the
function of the product being installed or removed. However, if certain
executables or components are installed or removed, existing instances do not
automatically inherit the new system configuration parameters or gain access
to all the additional function. The instance must be updated.

If DB2 is updated by installing a Program Temporary Fix (PTF) or a patch, all
the existing DB2 instances should be updated using the db2iupdt command.
You should also update the Administration Server (DAS) using the dasiupdt
command.

You should ensure you understand the instances and database partition
servers you have in an instance before attempting to change or delete an
instance.

Listing Instances

To get a list of all the instances that are available on a system, enter:
db2ilist

To determine which instance applies to the current session,
set db2instance

Listing Database Partition Servers in an Instance

Use the db2nlist command to obtain a list of database partition servers that
participate in an instance.

db2nlist

When using this command as shown, the default instance is the current
instance (set by the DB2INSTANCE environment variable). To specify a
particular instance, you can specify the instance using:

db2nlist /i:instName

where instName is the particular instance name you want.

You can also optionally request the status of each partition server by using:
db2nlist /s

Chapter 4. Implementing Your Design 207

The status of each database partition server may be one of: starting, running,
stopping, or stopped.

Updating Instances

Running the db2iupdt command updates the specified instance by performing
the following:
v Replaces the files in the sqllib subdirectory under the instance owner’s

home directory.
v If the node type is changed, then a new database manager configuration file

is created. This is done by merging relevant values from the existing
database manager configuration file with the default database manager
configuration file for the new node type. If a new database manager
configuration file is created, the old file is backed up to the backup
subdirectory of the sqllib subdirectory under the instance owner’s home
directory.

The db2iupdt command is found in the instance subdirectory in the version
and release subdirectory (the exact name varies by operating system).

The command is used as shown:
db2iupdt InstName

The InstName is the log in name of the instance owner.

There are other optional parameters associated with this command:
v –h or –?

Displays a help menu for this command.
v –d

This parameter sets the debug mode for use during problem determination.
v –a AuthType

This parameter specifies the authentication type for the instance. Valid
authentication types are SERVER, CLIENT, DCS, or DCE. If not specified,
the default is SERVER, if a DB2 server is installed. Otherwise, it is set to
CLIENT.

Notes:

1. The authentication type of the instance applies to all databases owned
by the instance.

2. On UNIX operating systems, the authentication type DCE is not a valid
choice.

v –u FencedID

208 Administration Guide Design and Implementation

This parameter is the user under which the fenced user-defined functions
(UDFs) and stored procedures will execute. This is not required if you
install the DB2 client or the DB2 Software’s Developer Kit. For other DB2
products, this is a required parameter.

Note: FencedID may not be “root” or “bin”.
v –k

This parameter preserves the current instance type. If you do not specify
this parameter, the current instance is upgraded to the highest instance type
available in the following order:
– Partitioned database server with local and remote clients (DB2 Extended

Enterprise Edition default instance type)
– Database Server with local and remote clients (DB2 Universal Database

Enterprise Edition default instance type)
– Client (DB2 client default instance type)

Examples:
v If you installed DB2 Universal Database Workgroup Edition or DB2

Universal Database Enterprise Edition after the instance was created, enter
the following command to update that instance:

db2iupdt -u db2fenc1 db2inst1

v If you installed the DB2 Connect Enterprise Edition after creating the
instance, you can use the instance name as the Fenced ID also:

db2iupdt -u db2inst1 db2inst1

v To update client instances, you can use the following command:
db2iupdt db2inst1

Adding a Database Partition Server to an Instance

Use the db2ncrt command to add a database partition server (node) to an
instance.

Note: Do not use the db2ncrt command if there are databases already existing
in this instance. Instead, use the db2start addnode command. This
ensures that the database is correctly added to the new database
partition server. DO NOT EDIT the db2nodes.cfg file, since changing
the file may cause inconsistencies in the partitioned database system.

The command has the following required parameters:
db2ncrt /n:node_number

/u:username,password

The first parameter (/n:) is the unique node number to identify the database
partition server. The number can be from 1 to 999 in ascending sequence.

Chapter 4. Implementing Your Design 209

The second parameter (/u:) is the logon account name and password of the
DB2 service.

There are also several optional parameters:
v /l:instance_name

The instance name; the default is the current instance.
v /m:machine_name

The computer name of the Windows NT workstation on which the node
resides; the default name is the computer name of the local machine.

v /p:logical_port
Specifies the logical port number used for the database partition server if
the logical port is not zero (0).

v /h:host_name
The TCP/IP host name that is used by FCM for internal communications if
the host name is not the local host name.

v /o:instance_owning_machine
The computer name of the machine that is the instance-owning machine;
the default is the local machine. This parameter is required when the
db2ncrt command is invoked on any machine that is not the
instance-owning machine.

Dropping a Database Partition Server from an Instance

Use the db2ndrop command to drop a database partition server (node) from
an instance that has no databases. If you drop a database partition server, its
node number can be reused for a new database partition server.

Exercise caution when you are dropping database partition servers from an
instance. If you drop the instance-owning database partition server node zero
(0) from the instance, the instance will become unusable. If you want to drop
the instance, use the db2idrop command.

Note: Do not use the db2ndrop command if there are databases in this
instance. Instead, use the db2stop drop command. This ensures that the
database is correctly removed from the database partition server. DO
NOT EDIT the db2nodes.cfg file, since changing the file may cause
inconsistencies in the partitioned database system.

The command has the following required parameter:
db2ndrop /n:node_number

210 Administration Guide Design and Implementation

The parameter (/n:) is the unique node number to identify the database
partition server. The number can be from zero (0) to 999 in ascending
sequence. Recall that node zero (0) represents the instance-owning machine.

There is an optional parameter (/i:instance_name) which is the instance name;
the default is the current instance (set by the DB2INSTANCE environment
variable).

Removing Instances

To remove an instance, perform the following steps:
1. End all applications that are currently using the instance.
2. Stop the Command Line Processor by running db2 terminate commands

in each DB2 command window.
3. Stop the instance by running the db2stop command.
4. Back up the instance directory indicated by the DB2INSTPROF registry

variable. On UNIX operating systems, you might consider backing up the
files in the INSTHOME/sqllib directory (where INSTHOME is the home
directory of the instance owner). For example, you might want to save the
database manager configuration file, db2systm, the db2nodes.cfg file,
user-defined functions (UDFs), or fenced stored procedure applications.

5. (On UNIX operating systems only) Log off as the instance owner.
6. (On UNIX operating systems only) Log in as a user with root authority.
7. Issue the db2idrop command:

db2idrop InstName

where InstName is the name of the instance being dropped.

This command removes the instance entry from the list of instances and
removes the instance directory.

8. (On UNIX operating systems only) Optionally, as a user with root
authority, remove the instance owner’s user ID and group (if used only for
that instance). Do not remove these if you are planning to re-create the
instance.
This step is optional since the instance owner and the instance owner
group may be used for other purposes.

The db2idrop command removes the instance entry from the list of instances
and removes the sqllib subdirectory under the instance owner’s home
directory.

Chapter 4. Implementing Your Design 211

Changing Environment Variables and the Profile Registry Variables

You must consider which environment variables (if any) need to be changed
on your particular operating system. If any environment variables are
changed and you are not on a UNIX platform, you need to restart the system
for the new environment variables to take effect. Review whether you should
reset the profile registry variables in the Global Profile registry before altering
your database. You can then reset the profile registry variables to those that
are best suited to the new database environment. If only profile registry
variables have been changed, the system does not need to be restarted.

Changing the Node Configuration File

If you are planning changes to any nodegroups (both adding or deleting
nodes, or moving existing nodes), you should refer to “Scaling Your
Configuration” in the Administration Guide, Performance for details on what
should be done.

Changing the Database Configuration

If you are planning changes to the database, you should review the values for
the configuration parameters. Some of the values can be adjusted from
time-to-time as part of the ongoing changes made to the database based on
how it is used.

To change the database configuration, use the Performance Configuration
SmartGuide. This SmartGuide helps you tune performance and balance
memory requirements for a single database per instance by suggesting which
configuration parameters to modify and providing suggested values for them.
To use this SmartGuide:
1. From the Control Center, click with mouse button 2 on the database for

which you want to configure performance.
2. Select Configure Performance from the pop-up menu. The Performance

Configuration SmartGuide opens.
3. Follow the steps in the SmartGuide and answer the questions it asks.
4. Note that if you select to update the parameters, they are not updated

until:
v For database parameters, the first new connection to the database after

all applications were disconnected.
v For database manager parameters, the next time you stop and start the

instance.

In most cases the values recommended by the Performance Configuration
SmartGuide will provide better performance than the default values, because
they are based on information about your workload and you own particular

212 Administration Guide Design and Implementation

server. However, note that the values are designed to improve the
performance of, though not necessarily optimize, your database system. They
should be thought of as a starting point on which you can make further
adjustments to obtain optimized performance.

For details on how to refine your system by benchmarking, and to configure
your system, refer to “Benchmark Testing” and “Configuring DB2” in the
Administration Guide, Performance.

For multiple partitions: When you have a database that is partitioned across
more than one partition, the configuration file should be the same on all
database partitions. Consistency is required since the SQL compiler compiles
distributed SQL statements based on information in the local node
configuration file and creates an access plan to satisfy the needs of the SQL
statement. Maintaining different configuration files on database partitions
could lead to different access plans, depending on which database partition
the statement is prepared. Use db2_all to create the same configuration file on
all database partitions.

Altering a Database

There are nearly as many tasks when altering databases as there are in the
creation of databases. These tasks update or drop aspects of the database
previously created. The tasks include:
v Dropping a Database
v Altering a Nodegroup
v Altering a Table Space
v Dropping a Schema
v Modifying a Table in Both Structure and Content
v Altering a User-Defined Structured Type
v Deleting and Updating Rows of a Typed Table
v Renaming an Existing Table
v Dropping a Table
v Dropping a Trigger
v Dropping a User-Defined Function (UDF), Function Template, or Function

Mapping
v Dropping a User-Defined Type (UDT) or Type Mapping
v Altering or Dropping a View
v Dropping a Summary Table
v Altering or Dropping a Server
v Altering or Dropping a Nickname

Chapter 4. Implementing Your Design 213

v Dropping an Index or an Index Specification
v Statement Dependencies When Changing Objects.

Dropping a Database

Although some of the objects in a database can be altered, the database itself
cannot be altered: it must be dropped and re-created. Dropping a database
can have far-reaching effects, because this action deletes all its objects,
containers, and associated files. The dropped database is uncataloged in the
database directories.

The following command deletes the database SAMPLE:
DROP DATABASE SAMPLE

Note: If you intend to continue experimenting with the SAMPLE database,
you should not drop it. If you have dropped the SAMPLE database,
and find that you need it again, you can re-create it.

Altering a Nodegroup

To add or drop database partitions from a nodegroup, you can use the ALTER
NODEGROUP statement. When adding database partitions, the partitions
must already be defined in the node configuration file. Refer to the SQL
Reference for details on this statement.

To add a new node to the db2nodes.cfg file, use the START DATABASE
MANAGER command or dbstart. The db2nodes.cfg file is not updated with
the new node until a db2stop followed by a db2start. Refer to the Command
Reference for details on this statement.

Once you add or drop nodes, you must redistribute the current data across
the new set of nodes in the nodegroup. To do this, use the REDISTRIBUTE
NODEGROUP command. For information, refer to “Redistributing Data
Across Database Partitions” in the Administration Guide, Performance and to the
Command Reference.

Altering a Table Space

When you create a database, you create at least three table spaces: one catalog
table space (SYSCATSPACE); one user table space (default name is
USERSPACE1); and one temporary table space (whose default name is
TEMPSPACE1). You must keep at least one of each of these table spaces, And
can add additional user and temporary table spaces if you wish.

Note: You cannot drop the catalog table space SYSCATSPACE, and there must
always be at least one temporary table space. You also cannot change
the page size.

214 Administration Guide Design and Implementation

This section discusses how to change table spaces as follows:
v “Adding a Container to a DMS Table Space”

v “Dropping a User Table Space”

v “Dropping a Temporary Table Space” on page 216.

See “Designing and Choosing Table Spaces” on page 75 for design information
on table spaces.

Adding a Container to a DMS Table Space

You can increase the size of a DMS table space (that is, one created with the
MANAGED BY DATABASE clause) by adding one or more containers to the
table space.

The following example illustrates how to add two new device containers
(each with 40 000 pages) to a table space on a UNIX-based system:

ALTER TABLESPACE RESOURCE
ADD (DEVICE '/dev/rhd9' 10000,

DEVICE '/dev/rhd10' 10000)

The contents of the table space are re-balanced across all containers. Access to
the table space is not restricted during the re-balancing. If you need to add
more than one container, you should add them at the same time.

Note that the ALTER TABLESPACE statement allows you to change other
properties of the table space that can affect performance. Refer to “Table Space
Impact on Query Optimization” in the Administration Guide, Performance for
more information.

Dropping a User Table Space

When you drop a user table space, you delete all the data in that table space,
free the containers, remove the catalog entries, and all objects defined in the
table space are either dropped or marked as invalid.

You can drop a user table space that contains all of the table data including
index and LOB data within that single user table space. You can also drop a
user table space that may have tables spanned across several table spaces.
That is, you may have table data in one table space, indexes in another, and
any LOBs in a third table space. You may drop each table space individually
as long as the table space with the table data is dropped first. Or, you may
drop all three table spaces at the same time in a single statement. All of the
table spaces that contain tables that are spanned must be part of this single
statement or the drop request will fail. Refer to the SQL Reference for details
on how to drop table spaces containing spanned table data.

Chapter 4. Implementing Your Design 215

The following SQL statement drops the table space ACCOUNTING:
DROP TABLESPACE ACCOUNTING

You can reuse the containers in an empty table space by dropping the table
space, but you must COMMIT the DROP TABLESPACE command, or have
had AUTOCOMMIT on, before attempting to reuse the containers.

Dropping a Temporary Table Space

You cannot drop the temporary table space, because the database must always
have at least one temporary table space. If you wish to, for example, add a
container to an SMS Temporary Table Space, you must add a new temporary
table space first and then drop the old temporary table space.

The following SQL statement creates a new temporary table space called
TEMPSPACE2:

CREATE TEMPORARY TABLESPACE TEMPSPACE2
MANAGED BY SYSTEM USING ('d')

Once TEMPSPACE2 is created, you can then drop the original temporary table
space TEMPSPACE1 with the command:

DROP TABLESPACE TEMPSPACE1

You can reuse the containers in an empty table space by dropping the table
space, but you must COMMIT the DROP TABLESPACE command, or have
had AUTOCOMMIT on, before attempting to reuse the containers.

Dropping a Schema

Before dropping a schema, all objects that were in that schema must be
dropped themselves or moved to another schema. The schema name must be
in the catalog when attempting the DROP statement; otherwise an error is
returned. In the following example, the schema ″joeschma″ is dropped:

DROP SCHEMA joeschma RESTRICT

Modifying a Table in Both Structure and Content

Tasks that are required for modifying the structure and content of the table
include the following:
v Adding Columns to an Existing Table
v Modifying a Column
v Altering a Constraint
v Adding a Constraint
v Dropping a Constraint
v Declaring a Table Volatile

216 Administration Guide Design and Implementation

v Changing Partitioning Keys
v Changing Table Attributes
v Refreshing the Data in a Summary Table.

Note that you cannot alter triggers for tables; you must drop any trigger that
is no longer appropriate (see “Dropping a Trigger” on page 225), and add its
replacement (see “Creating a Trigger” on page 174).

Adding Columns to an Existing Table

When a new column is added to an existing table, only the table description
in the system catalog is modified, so access time to the table is not affected
immediately. Existing records are not physically altered until they are
modified using an UPDATE statement. When retrieving an existing row from
the table, a null or default value is provided for the new column, depending
on how the new column was defined. Columns that are added after a table is
created cannot be defined as NOT NULL: they must be defined as either NOT
NULL WITH DEFAULT or as nullable.

Columns can be added with an SQL statement. The following statement uses
the ALTER TABLE statement to add three columns to the EMPLOYEE table:

ALTER TABLE EMPLOYEE
ADD MIDINIT CHAR(1) NOT NULL WITH DEFAULT
ADD HIREDATE DATE
ADD WORKDEPT CHAR(3)

A column definition includes a column name, data type, and any necessary
constraints.

Modifying a Column

You can modify the characteristics of a column by increasing the length of an
existing VARCHAR column. The number of characters may increase up to a
value dependent on the page size used. For example, to increase a column up
to 4000 characters, use something similar to the following:

ALTER TABLE ALTER COLUMN
COLNAM1 SET DATA TYPE VARCHAR(4000)

You cannot alter the column of a typed table. However, you can add a scope
to an existing reference type column that does not already have a scope
defined. For example:

ALTER TABLE ALTER COLUMN
COLNAMT1 ADD SCOPE TYPTAB1

For more information about the ALTER TABLE statement, refer to the SQL
Reference manual.

Chapter 4. Implementing Your Design 217

Altering a Constraint

You can only alter constraints by dropping them and then adding new ones to
take their place. For more information, see:
v “Adding a Constraint”

v “Dropping a Constraint” on page 219

For more information on constraints, see “Defining Constraints” on page 162.

Adding a Constraint

You add constraints with the ALTER TABLE statement. For more information
on this statement, including its syntax, refer to the SQL Reference manual.

For more information on constraints, see “Defining Constraints” on page 162.

Adding a Unique Constraint: Unique constraints can be added to an
existing table. The constraint name cannot be the same as any other constraint
specified within the ALTER TABLE statement, and must be unique within the
table (this includes the names of any referential integrity constraints that are
defined). Existing data is checked against the new condition before the
statement succeeds.

The following SQL statement adds a unique constraint to the EMPLOYEE
table that represents a new way to uniquely identify employees in the table:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT NEWID UNIQUE(EMPNO,HIREDATE)

Adding Primary and Foreign Keys: The following examples show the
ALTER TABLE statement to add primary keys and foreign keys to a table:

ALTER TABLE PROJECT
ADD CONSTRAINT PROJECT_KEY

PRIMARY KEY (PROJNO)
ALTER TABLE EMP_ACT
ADD CONSTRAINT ACTIVITY_KEY

PRIMARY KEY (EMPNO, PROJNO, ACTNO)
ADD CONSTRAINT ACT_EMP_REF

FOREIGN KEY (EMPNO)
REFERENCES EMPLOYEE
ON DELETE RESTRICT

ADD CONSTRAINT ACT_PROJ_REF
FOREIGN KEY (PROJNO)
REFERENCES PROJECT
ON DELETE CASCADE

To add constraints to a large table, it is more efficient to put the table into the
check pending state, add the constraints, and then check the table for a
consolidated list of violating rows. Use the SET INTEGRITY statement to

218 Administration Guide Design and Implementation

explicitly set the check pending state: if the table is a parent table, check
pending is implicitly set for all dependent and descendent tables.

When a foreign key is added to a table, packages and cached dynamic SQL
containing the following statements may be marked as invalid:

v Statements that insert or update the table containing the foreign key
v Statements that update or delete the parent table.

See “Statement Dependencies When Changing Objects” on page 233 for
information.

Adding a Table Check Constraint: Check constraints can be added to an
existing table with the ALTER TABLE statement. The constraint name cannot
be the same as any other constraint specified within an ALTER TABLE
statement, and must be unique within the table (this includes the names of
any referential integrity constraints that are defined). Existing data is checked
against the new condition before the statement succeeds.

The following SQL statement adds a constraint to the EMPLOYEE table that
the salary plus commission of each employee must be more than $25,000:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT REVENUE CHECK (SALARY + COMM > 25000)

To add constraints to a large table, it is more efficient to put the table into the
check-pending state, add the constraints, and then check the table for a
consolidated list of violating rows. Use the SET INTEGRITY statement to
explicitly set the check-pending state: if the table is a parent table, check
pending is implicitly set for all dependent and descendent tables.

When a table check constraint is added, packages and cached dynamic SQL
that insert or update the table may be marked as invalid. See “Statement
Dependencies When Changing Objects” on page 233 for more information.

Dropping a Constraint

You drop constraints with the ALTER TABLE statement. For more information
on this statement, including its syntax, refer to the SQL Reference manual.

For more information on constraints, see “Defining Constraints” on page 162.

Dropping a Unique Constraint: You can explicitly drop a unique constraint
using the ALTER TABLE statement. The name of all unique constraints on a
table can be found in the SYSCAT.INDEXES system catalog view.

The following SQL statement drops the unique constraint NEWID from the
EMPLOYEE table:

Chapter 4. Implementing Your Design 219

ALTER TABLE EMPLOYEE
DROP UNIQUE NEWID

Dropping this unique constraint invalidates any packages or cached dynamic
SQL that used the constraint.

Dropping Primary and Foreign Keys: The following examples use the DROP
PRIMARY KEY and DROP FOREIGN KEY clauses in the ALTER TABLE
statement to drop primary keys and foreign keys on a table:

ALTER TABLE EMP_ACT
DROP PRIMARY KEY
DROP FOREIGN KEY ACT_EMP_REF
DROP FOREIGN KEY ACT_PROJ_REF

ALTER TABLE PROJECT
DROP PRIMARY KEY

For information about the ALTER TABLE statement, refer to the SQL Reference
manual.

When a foreign key constraint is dropped, packages or cached dynamic SQL
statements containing the following may be marked as invalid:

v Statements that insert or update the table containing the foreign key
v Statements that update or delete the parent table.

See “Statement Dependencies When Changing Objects” on page 233 for more
information.

Dropping a Table Check Constraint: You can explicitly drop or change a
table check constraint using the ALTER TABLE statement, or implicitly drop it
as the result of a DROP TABLE statement. The name of all check constraints
on a table can be found in the SYSCAT.CHECKS catalog view.

The following SQL statement drops the table check constraint REVENUE from
the EMPLOYEE table:

ALTER TABLE EMPLOYEE
DROP CHECK REVENUE

When you drop a table check constraint, all packages and cached dynamic
SQL statements with INSERT or UPDATE dependencies on the table are
invalidated. (See “Statement Dependencies When Changing Objects” on
page 233 for more information.) To drop a table check constraint with a
system-generated name, look for the name in the SYSCAT.CHECKS catalog
view.

220 Administration Guide Design and Implementation

Declaring a Table Volatile

A volatile table is defined as a table whose contents can vary from empty to
very large at run time. The volatile or extreme changeability of this type of
table makes reliance on the statistics collected by RUNSTATS to be inaccurate.
Statistics are gathered at, and only reflect, a point-in-time. To generate an
access plan that uses a volatile table can result in an incorrect or poor
performing plan. For example, if statistics are gathered when the volatile table
is empty, the optimizer tends to favor accessing the volatile table using a table
scan rather than an index scan.

To prevent this, you should consider declaring the table as “volatile” using
the ALTER TABLE statement. By declaring the table “volatile”, the optimizer
will consider using index scan rather than table scan. The access plans that
use declared volatile tables will not depend on the existing statistics for that
table.

The way to declare a table as “volatile” is to do the following:

ALTER TABLE TABLENAME
VOLATILE CARDINALITY

Changing Partitioning Keys

You can only change a partitioning key on tables in single-partition
nodegroups. This is done by first dropping the existing partitioning key and
then creating another.

The following SQL statement drops the partitioning key MIX_INT from the
MIXREC table:

ALTER TABLE MIXREC
DROP PARTITIONING KEY

For more information, see the ALTER TABLE statement in the SQL Reference
manual.

You cannot change the partitioning key of a table in a multiple database
partition nodegroup. If you try to drop it, an error is returned.

The only methods to change the partitioning key of multiple database
partition nodegroups are either:
v Export all of the data to a single-partition nodegroup and then follow the

above instructions.
v Export all of the data, drop the table, redefine the partitioning key, and then

import all of the data.

Chapter 4. Implementing Your Design 221

Neither of these methods are practical for large databases; it is therefore
essential that you define the appropriate partitioning key before implementing
the design of large databases.

Changing Table Attributes

You may have reason to change table attributes such as the data capture
option, the percentage of free space on each page (PCTFREE), the lock size, or
the append mode.

The amount of free space to be left on each page of a table is specified
through PCTFREE, and is an important consideration for the effective use of
clustering indexes. The amount to specify depends on the nature of the
existing data and expected future data. PCTFREE is respected by LOAD and
REORG but is ignored by insert, update and import activities.

Setting PCTFREE to a larger value will maintain clustering for a longer
period, but will also require more disk space.

You can specify the size (granularity) of locks used when the table is accessed
by using the LOCKSIZE parameter. By default, when the table is created row
level locks are defined. Use of table level locks may improve the performance
of queries by limiting the number of locks that need to be acquired and
released.

By specifying APPEND ON, you can improve the overall performance. It
allows for faster insertions, while eliminating the maintenance of information
about the free space.

A table with a clustering index cannot be altered to have append mode turned
on. Similarly, a clustering index cannot be created on a table with append
mode.

Refreshing the Data in a Summary Table

You can refresh the data in a summary table by using the REFRESH TABLE
statement. The statement can be embedded in an application program, or
issued dynamically. To use this statement, you must have either SYSADM or
DBADM authority, or CONTROL privilege on the table to be refreshed.

The following example shows how to refresh the data in a summary table:
REFRESH TABLE SUMTAB1

For more information about the REFRESH TABLE statement, refer to the SQL
Reference.

222 Administration Guide Design and Implementation

Altering a User-Defined Structured Type

After creating a structured type, you may find that you need to add or drop
attributes associated with that structured type. This is done using the ALTER
TYPE (Structured) statement.

Note: You are not allowed to modify a type if any table exists of that type.

For example, you may find you need to add an attribute to an existing row
type:

ALTER TYPE Employee_t ADD ATTRIBUTE DeptNum INT;

This example adds a new attribute, DeptNum, to the Employee_t structured
type. Note that ALTER TYPE is only permitted on structured types that are
not currently in use as the type of an existing table or subtable.

In a similar way, you might also consider altering a typed table or view.
However, the only change that is permitted to a typed table or view is to
specify the scope of a reference-type column that does not yet have a scope.

Refer to the SQL Reference for more information on the ALTER
TYPE(Structured), ALTER TABLE, and ALTER VIEW statements.

Deleting and Updating Rows of a Typed Table

Rows can be deleted from typed tables using either searched or positioned
DELETE statements. In addition, since a typed table may have subtables, the
ONLY option may be used in the FROM clause if it is desirable to avoid
having subtable rows affected by the delete operation. This is applicable to
both typed tables and typed views.

Refer to the SQL Reference for more information on the DELETE statement.

Rows can be updated in typed tables using either searched or positioned
UPDATE statements. In addition, since a typed table may have subtables, the
ONLY option may be used in the FROM clause if it is desirable to avoid
having subtable rows affected by the update operation. This is applicable to
both typed tables and typed views.

Refer to the SQL Reference for more information on the UPDATE statement.

Renaming an Existing Table

You can give an existing table a new name within a schema and maintain the
authorizations and indexes that were created on the original table.

Chapter 4. Implementing Your Design 223

The existing table to be renamed can be an alias identifying a table. The
existing table to be renamed must not be the name of a catalog table, a
summary table, a typed table, or an object other than a table or an alias.

The existing table cannot be referenced in any of the following:
v Views
v Triggers
v Referential constraints
v Summary table
v The scope of an existing reference column.

Also, there must be no check constraints within the table. Any packages or
cached dynamic SQL statements dependent on the original table are
invalidated. Finally, any aliases referring to the original table are not modified.

You should consider checking the appropriate system catalog tables to ensure
that the table being renamed is not affected by any of these restrictions.

The SQL statement below renames the EMPLOYEE table within the
COMPANY schema to EMPL:

RENAME TABLE COMPANY.EMPLOYEE TO EMPL

Packages must be re-bound if they refer to a table that has just been renamed.
The packages can be implicitly re-bound if:
v Another table is renamed using the original name of the table, or
v An alias or view is created using the original name of the table.

One of these two choices must be completed before any implicit or explicit
re-binding is attempted. If neither choice is made, any re-bind will fail.

For more information about the RENAME TABLE statement, refer to the SQL
Reference manual.

Dropping a Table

A table can be dropped with a DROP TABLE SQL statement. The following
statement drops the table called DEPARTMENT:

DROP TABLE DEPARTMENT

When a table is dropped, the row in the SYSCAT.TABLES catalog that
contains information about that table is dropped, and any other objects that
depend on the table are affected. For example:
v All column names are dropped.
v Indexes created on any columns of the table are dropped.

224 Administration Guide Design and Implementation

v All views based on the table are marked inoperative. (See “Recovering
Inoperative Views” on page 228 for more information.)

v All privileges on the dropped table and dependent views are implicitly
revoked.

v All referential constraints in which the table is a parent or dependent are
dropped.

v All packages and cached dynamic SQL statements dependent on the
dropped table are marked invalid, and remain so until the dependent
objects are re-created. This includes packages dependent on any supertable
above the subtable in the hierarchy that is being dropped. (See “Statement
Dependencies When Changing Objects” on page 233 for more information.)

v Any reference columns for which the dropped table is defined as the scope
of the reference become “unscoped”.

v An alias definition on the table is not affected, because an alias can be
undefined

v All triggers dependent on the dropped table are marked inoperative.
v All files that are linked through any DATALINK columns are unlinked. The

unlink operation is performed asynchronously which means the files may
not be immediately available for other operations.

An individual table cannot be dropped if it has a subtable. However, all the
tables in a table hierarchy can be dropped by a single DROP TABLE
HIERARCHY statement, as in the following example:

DROP TABLE HIERARCHY person

The DROP TABLE HIERARCHY statement must name the root table of the
hierarchy to be dropped.

There are differences when dropping a table hierarchy compared to dropping
a specific table:
v DROP TABLE HIERARCHY does not activate deletion-triggers that would

be activated by individual DROP table statements. For example, dropping
an individual subtable would activate deletion-triggers on its supertables.

v DROP TABLE HIERARCHY does not make log entries for the individual
rows of the dropped tables. Instead, the dropping of the hierarchy is logged
as a single event.

Refer to the SQL Reference for more information on the DROP statement.

Dropping a Trigger

A trigger object can be dropped using the DROP statement, but this procedure
will cause dependent packages to be marked invalid, as follows:

Chapter 4. Implementing Your Design 225

v If an update trigger without an explicit column list is dropped, then
packages with an update usage on the target table are invalidated.

v If an update trigger with a column list is dropped, then packages with
update usage on the target table are only invalidated if the package also
had an update usage on at least one column in the column-name list of the
CREATE TRIGGER statement.

v If an insert trigger is dropped, packages that have an insert usage on the
target table are invalidated.

v If a delete trigger is dropped, packages that have a delete usage on the
target table are invalidated.

A package remains invalid until the application program is explicitly bound
or rebound, or it is run and the database manager automatically rebinds it.

Dropping a User-Defined Function (UDF), Function Template, or Function
Mapping

A user-defined function (UDF), function template, or function mapping can be
dropped using the DROP statement.

You can disable a function mapping with the mapping option DISABLE. Refer
to the SQL Reference for more information on how to do this.

A UDF cannot be dropped if a view, trigger, table check constraint, or another
UDF is dependent on it. Functions implicitly generated by the CREATE
DISTINCT TYPE statement cannot be dropped. It is not possible to drop a
function that is in either the SYSIBM schema or the SYSFUN schema.

Other objects can be dependent on a function or function template. All such
dependencies, including function mappings, must be removed before the
function can be dropped, with the exception of packages which are marked
inoperative. Such a package is not implicitly rebound. It must either be
rebound using the BIND or REBIND commands or it must be prepared by use
of the PREP command. Refer to the Command Reference manual for more
information on these commands. Dropping a UDF invalidates any packages or
cached dynamic SQL statements that used it.

Dropping a function mapping marks a package as invalid. Automatic rebind
will take place and the optimizer will attempt to use the local function. In the
case where the local function is a template, the implicit rebind will fail.

(For more information, see “Statement Dependencies When Changing Objects”
on page 233.)

226 Administration Guide Design and Implementation

Dropping a User-Defined Type (UDT) or Type Mapping

You can drop a user-defined type (UDT) or type mapping using the DROP
statement. You cannot drop a UDT if it is used:
v In a column definition for an existing table or view (distinct types)
v As the type of an existing typed table or typed view (structured type)
v As the supertype of another structured type.

You cannot drop a default type mapping; you can only override it by creating
another type mapping.

The database manager will attempt to drop all functions that are dependent
on this distinct type. If the UDF cannot be dropped, the UDT cannot be
dropped. A UDF cannot be dropped if a view, trigger, table check constraint,
or another UDF is dependent on it. Dropping a UDT invalidates any packages
or cached dynamic SQL statements that used it.

If you have created a transform for a UDT, and you are planning to drop the
UDT, you should consider if it is necessary to drop the transform. This is
done through the DROP TRANSFORM statement. Refer to the SQL Reference
for details on this statement. Note that only transforms defined by you or
other application developers can be dropped; built-in transforms and their
associated group definitions cannot be dropped.

For more information about the user-defined types, refer to the SQL Reference
and Application Development Guide manuals.

Altering or Dropping a View

The ALTER VIEW statement modifies an existing view by altering a reference
type column to add a scope. Any other changes you make to a view require
that you drop and then re-create the view.

When altering the view, the scope must be added to an existing reference type
column that does not already have a scope defined. Further, the column must
not be inherited from a superview.

The data type of the column-name in the ALTER VIEW statement must be
REF (type of the typed table name or typed view name).

Refer to the SQL Reference for additional information on the ALTER VIEW
statement.

The following example shows how to drop the EMP_VIEW:
DROP VIEW EMP_VIEW

Chapter 4. Implementing Your Design 227

Any views that are dependent on the view being dropped will be made
inoperative. (See “Recovering Inoperative Views” for more information.)

Other database objects such as tables and indexes will not be affected
although packages and cached dynamic statements are marked invalid. See
“Statement Dependencies When Changing Objects” on page 233 for more
information.

As in the case of a table hierarchy, it is possible to drop an entire view
hierarchy in one statement by naming the root view of the hierarchy, as in the
following example:

DROP VIEW HIERARCHY VPerson

For more information on dropping and creating views, refer to the SQL
Reference manual.

Recovering Inoperative Views

Views can become inoperative as a result of a revoked SELECT privilege on an
underlying table.

The following steps can help you recover an inoperative view:
v Determine the SQL statement that was initially used to create the view. You

can obtain this information from the TEXT column of the SYSCAT.VIEW
catalog view.

v Re-create the view by using the CREATE VIEW statement with the same
view name and same definition.

v Use the GRANT statement to re-grant all privileges that were previously
granted on the view. (Note that all privileges granted on the inoperative
view are revoked.)

If you do not want to recover an inoperative view, you can explicitly drop it
with the DROP VIEW statement, or you can create a new view with the same
name but a different definition.

An inoperative view only has entries in the SYSCAT.TABLES and
SYSCAT.VIEWS catalog views; all entries in the SYSCAT.VIEWDEP,
SYSCAT.TABAUTH, SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog
views are removed.

Dropping a Summary Table

You cannot alter a summary table, but you can drop it. The following SQL
statement drops the summary table XT:

228 Administration Guide Design and Implementation

DROP TABLE XT

All indexes, primary keys, foreign keys, and check constraints referencing the
table are dropped. All views and triggers that reference the table are made
inoperative. All packages depending on any object dropped or marked
inoperative will be invalidated. See “Statement Dependencies When Changing
Objects” on page 233 for more information on package dependencies.

Recovering Inoperative Summary Tables

Summary tables can become inoperative as a result of a revoked SELECT
privilege on an underlying table.

The following steps can help you recover an inoperative summary table:
v Determine the SQL statement that was initially used to create the summary

table. You can obtain this information from the TEXT column of the
SYSCAT.VIEW catalog view.

v Re-create the summary table by using the CREATE SUMMARY TABLE
statement with the same summary table name and same definition.

v Use the GRANT statement to re-grant all privileges that were previously
granted on the summary table. (Note that all privileges granted on the
inoperative summary table are revoked.)

If you do not want to recover an inoperative summary table, you can
explicitly drop it with the DROP TABLE statement, or you can create a new
summary table with the same name but a different definition.

An inoperative summary table only has entries in the SYSCAT.TABLES and
SYSCAT.VIEWS catalog views; all entries in the SYSCAT.VIEWDEP,
SYSCAT.TABAUTH, SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog
views are removed.

Dropping a Wrapper

The DROP statement can remove a wrapper from the database. The following
example shows how to drop the DRDA wrapper:

DROP WRAPPER DRDA

Any servers, type mappings, function mappings, user mappings, and
nicknames that are dependent on the wrapper being dropped will be
dropped. Exercise extreme caution when dropping wrappers.

You must hold one of the SYSADM or DBADM authorities to DROP
wrappers.

Refer to the SQL Reference for more information on dropping wrappers.

Chapter 4. Implementing Your Design 229

Altering or Dropping a Server

The ALTER SERVER statement modifies an existing server definition in the
federated database catalog. Use this statement to:
v Modify the definition of a specific data source.
v Modify the definition of multiple data sources of a specific type or version.
v Make changes in the configuration of a specific data source. For example, if

the DBMS identified by a specific server is migrated to a new workstation
with a faster processor, you should update the cpu_ratio server option.

You cannot use this statement to modify the dbname or node server options.

The following example shows how to alter the ORA1 server:
ALTER SERVER ORA1 OPTIONS (SET CPU_RATIO '5.0')

Servers can be dropped from the federated database. The following example
shows how to drop the ORALOC01 Server:

DROP SERVER ORALOC01

Any type mappings, function mappings, user mappings, and nicknames that
are dependent on the server being dropped will be dropped. Exercise caution
when dropping servers.

You must hold one of the SYSADM or DBADM authorities to ALTER or
DROP servers.

For more information on dropping and altering servers, refer to the SQL
Reference.

Altering or Dropping a Nickname

The ALTER NICKNAME statement is used to update locally stored
information about a data source table or view. You could use this statement,
for example, to change the local name for a column or to map a column data
type to a different data type. You can also use this statement to add column
options. For more information on ALTER NICKNAME syntax, see the SQL
Reference.

When a nickname is dropped, views created on that nickname are marked as
inoperative. You cannot alter nickname column names or data types when the
nickname is referenced in a view.

You must hold one of the SYSADM or DBADM authorities, or, you must have
either the CONTROL or ALL database privilege on the nickname, the

230 Administration Guide Design and Implementation

ALTERIN (for the current schema) schema privilege, or be the nickname
definer at the federated database to use this statement.

Altering a Nickname Column and Dropping a Nickname

The following example shows how to alter the nickname TESTNN, changing
the local name of a column from COL1 to NEWCOL:

ALTER NICKNAME TESTNN ALTER COLUMN COL1 LOCAL NAME NEWCOL

The following example shows how to drop the nickname TESTNN:
DROP NICKNAME TESTNN

Altering Nickname Column Options

You specify column information in the form of values that you assign to
parameters called column options. You can specify any of these values in either
upper- or lowercase. The table below describes the values and provides
additional information.

Table 23. Column Options and Their Settings

Option Valid Settings Default
Setting

numeric_string
‘Y’ Yes, this column contains only strings of numeric data.

IMPORTANT: If this column contains only numeric
strings followed by trailing blanks, it is inadvisable to
specify ‘Y’.

‘N’ No, this column is not limited to strings of numeric
data.

By setting numeric_string to ‘Y’ for a column, you are
informing the optimizer that this column contains no blanks
that could interfere with sorting of the column’s data. This
option is helpful when the collating sequence of a data source is
different from DB2. Columns marked with this option will not
be excluded from local (data source) evaluation because of a
different collating sequence.

‘N’

Chapter 4. Implementing Your Design 231

Table 23. Column Options and Their Settings (continued)

Option Valid Settings Default
Setting

varchar_no_trailing_blanks Indicates whether trailing blanks are absent from a specific
VARCHAR column:

‘Y’ Yes, trailing blanks are absent from this VARCHAR
column.

‘N’ No, trailing blanks are not absent from this VARCHAR
column.

If data source VARCHAR columns contain no padded blanks,
then the optimizer’s strategy for accessing them depends in part
on whether they contain trailing blanks. By default, the
optimizer “assumes” that they actually do contain trailing
blanks. On this assumption, it develops an access strategy that
involves modifying queries so that the values returned from
these columns are the ones that the user expects. If, however, a
VARCHAR column has no trailing blanks, and you let the
optimizer know this, it can develop a more efficient access
strategy. To tell the optimizer that a specific column has no
trailing blanks, specify that column in the ALTER NICKNAME
statement (for syntax, see the SQL Reference).

‘N‘

Dropping an Index or an Index Specification

You cannot change any clause of an index definition or specification; you
must drop the index and create it again. (Dropping an index or an index
specification does not cause any other objects to be dropped but may cause
some packages to be invalidated.)

The following SQL statement drops the index called PH:
DROP INDEX PH

A primary key or unique key index (unless it is an index specification) cannot
be explicitly dropped. You must use one of the following methods to drop it:
v If the primary index or unique constraint was created automatically for the

primary key or unique key, dropping the primary key or unique key will
cause the index to be dropped. Dropping is done through the ALTER
TABLE statement.

v If the primary index or the unique constraint was user-defined, the primary
key or unique key must be dropped first, through the ALTER TABLE
statement. After the primary key or unique key is dropped, the index is no
longer considered the primary index or unique index, and it can be
explicitly dropped.

232 Administration Guide Design and Implementation

Any packages and cached dynamic SQL statements that depend on the
dropped indexes are marked invalid. See “Statement Dependencies When
Changing Objects” for more information. The application program is not
affected by changes resulting from adding or dropping indexes.

Statement Dependencies When Changing Objects

Statement dependencies include package and cached dynamic SQL statements.
A package is a database object that contains the information needed by the
database manager to access data in the most efficient way for a particular
application program. Binding is the process that creates the package the
database manager needs in order to access the database when the application
is executed. The Application Development Guide discusses how to create
packages in detail.

Packages and cached dynamic SQL statements can be dependent on many
types of objects. Refer to the SQL Reference for a complete list of those objects.

These objects could be explicitly referenced, for example, a table or
user-defined function that is involved in an SQL SELECT statement. The
objects could also be implicitly referenced, for example, a dependent table that
needs to be checked to ensure that referential constraints are not violated
when a row in a parent table is deleted. Packages are also dependent on the
privileges which have been granted to the package creator.

If a package or cached dynamic SQL statement depends on an object and that
object is dropped, the package or cached dynamic SQL statement is placed in
an ″invalid″ state. If a package depends on a user-defined function and that
function is dropped, the package is placed in an ″inoperative″ state.

A cached dynamic SQL statement that is in an invalid state is automatically
re-optimized on its next use. If an object required by the statement has been
dropped, execution of the dynamic SQL statement may fail with an error
message.

A package that is in an invalid state is implicitly rebound on its next use.
Such a package can also be explicitly rebound. If a package was marked
invalid because a trigger was dropped, the rebound package will no longer
invoke the trigger.

A package that is in an inoperative state must be explicitly rebound before it
can be used. Refer to the Application Development Guide for more information
about binding and rebinding packages.

Chapter 4. Implementing Your Design 233

Federated database objects have similar dependencies. For example, dropping
a server will make any packages or cached dynamic SQL referencing
nicknames associated with that server invalid.

In some cases, it will not be possible to rebind the package. For example, if a
table has been dropped and not re-created, the package cannot be rebound. In
this case, you will need to either re-create the object or change the application
so it does not use the dropped object.

In many other cases, for example if one of the constraints was dropped, it will
be possible to rebind the package.

The following system catalog views help you to determine the state of a
package and the package’s dependencies:
v SYSCAT.PACKAGEAUTH
v SYSCAT.PACKAGEDEP
v SYSCAT.PACKAGES

For more information about object dependencies, refer to the DROP statement
in the SQL Reference manual.

234 Administration Guide Design and Implementation

Chapter 5. Administering DB2 Using GUI Tools

DB2 Universal Database provides Graphical User Interface (GUI) tools to help
you administer local and remote databases easily from one central location
called the “Control Center”.

This chapter presents an overview of the DB2 Universal Database
administration tools that are available to you and explains how you can use
them to get your job done easily and efficiently. It also gives you a summary
of the Java Control Center and how you can customize the Control Center to
include your own Java-enabled tools.

This chapter provides information on:
v “Administration Tools” on page 236

v “Common Tool Features” on page 238

v “The Control Center” on page 243

v “The Satellite Administration Center” on page 251

v “The Command Center” on page 252

v “The Script Center” on page 252

v “The Journal” on page 254

v “The License Center” on page 255

v “The Alert Center” on page 255

v “Client Configuration Assistant” on page 255

v “Performance Monitor” on page 257

v “Managing Remote Databases” on page 269

v “Managing Users” on page 271

v “Moving Data” on page 272

v “Managing Storage” on page 274

v “Troubleshooting” on page 276

v “Replicating Data” on page 277

v “Using Lightweight Directory Access Protocol” on page 278

v “Using a Java Control Center” on page 279

v “Using Your Java-based Tools for Administration” on page 280

© Copyright IBM Corp. 1993, 1999 235

Administration Tools

The tools for administering DB2 are part of the Administration Client, a
selectable component with each of the DB2 Universal Database products. The
Administration Client is also available on a set of CD-ROMs that include the
Administration Clients for all the operating systems on which DB2 is
available. They allow you to install and use the Administration Client on any
workstation: It does not matter whether your database servers are local or
remote, or what operating system the database servers are running on. The
tools enable you to perform the same functions from a Graphical User
Interface as you could from the Command Line Processor. These functions
include the entering of DB2 commands, SQL statements, or system
commands. With the tools, however, you do not have to remember complex
statements or commands and you get additional assistance.

The following tools are available from the Control Center toolbar:
v The Control Center. The Control Center is the main DB2 graphical tool for

administering your database. From the Control Center, you get a clear
overview of all the systems and database objects that are cataloged locally.

v The Satellite Administration Center. The Satellite Administration Center
allows you to administer DB2 Satellite servers.

v The Command Center. The Command Center enables you to issue DB2
database commands, SQL statements, and operating system commands;
recall previous commands; and scroll through access plans for SQL queries.

v The Script Center. The Script Center enables you to create, run and
schedule operating-system-level commands and DB2 command scripts.

v The Alert Center. The Alert Center notifies you when thresholds that you
have set have been exceeded or when a node in a multinode environment
is no longer responding.

v The Journal. The Journal allows you to view the status of jobs and to view
the recovery history log and messages log.

v The Information Center. The Information Center gives you quick access to
the information in the DB2 product manuals and sample programs and
provides access to other sources of DB2 information on the Web.

v The License Center. The License Center displays the status of your license
as well as allowing you to configure your system for proper license
monitoring.

For some functions that you can perform with the GUI tools, you are given
the option of using a SmartGuide. SmartGuides are invoked from the pop-up
menus in the Control Center. They provide a greater level of help by
prompting you step-by-step on how to fill in the information necessary for the
task you are doing and even making calculations and recommendations based

236 Administration Guide Design and Implementation

on information you supply. SmartGuides are very useful if you are a new
database administrator or someone who only administers a database
occasionally.

In DB2 Universal Database, the following SmartGuides exist:
v Backup Database. This asks you basic questions about the data in the

database, the availability of the database, and recoverability requirements. It
then suggests a backup plan, creates the job script, and schedules it. To
invoke the Backup Database SmartGuide, select the icon representing the
database you want to backup, click mouse button 2, and select Backup –>
Database using SmartGuide.

v Create Database. This SmartGuide allows you to create a database, assign
storage, and select basic performance options. To invoke the Create
Database SmartGuide, select the Databases icon in the Object Tree pane,
click mouse button 2, and select Create –> Database using SmartGuide.

v Create Table. This SmartGuide helps you to design columns using
predefined column templates, create a primary key for the table, and assign
the table to one or more table spaces. To invoke the SmartGuide, select the
Tables icon, click mouse button 2, and select Create –> Table using
SmartGuide.

v Create Table space. This SmartGuide lets you create a new table space and
set basic storage performance options. To invoke it, select the Table Space
icon, click mouse button 2, and select Create –> Table space using
SmartGuide.

v Index SmartGuide. Use the Index SmartGuide to determine which indexes
to create or drop for a given set of SQL statements. The recommendations
are based on the workload that you specify. To invoke the Index
SmartGuide, select the Indexes folder, click mouse button 2, and select
Create –> Index using SmartGuide.

v Performance Configuration. This SmartGuide helps you tune databases by
requesting information about the database, its data, and the purpose of the
system. It then recommends new configuration parameters for the database
and instance and automatically applies them if you wish. To invoke this
SmartGuide, select the icon for a database, click mouse button 2, and select
Configure using SmartGuide.

v Restore Database. This SmartGuide walks you through the process of
recovering a database. To invoke the SmartGuide, select the icon for a
database, click mouse button 2, and select Restore –> Database using
SmartGuide.

v Configure Multisite Update SmartGuide. This SmartGuide lets you
configure databases to enable applications to update multiple sites
simultaneously when it is important that the data at all the sites must be
consistent. To invoke this SmartGuide, select an instance, click mouse
button 2, and select Multisite Update –> Configure using SmartGuide.

Chapter 5. Administering DB2 Using GUI Tools 237

Note: SmartGuides do not exist for the DB2 for OS/390 subsystem.

Besides the graphical tools that you can invoke from the Control Center
toolbar, there are some additional GUI tools that are not invoked directly from
the Control Center toolbar.
v Performance Monitor. Performance Monitor is a tool to monitor DB2 objects

such as instances, databases, tables, table spaces, and connections. You use
this tool to detect performance problems and tune databases for optimum
performance. The Performance Monitor is invoked as a selection on the
pop-up menus in the Control Center.

v Event Monitor. Event monitor is a tool that lets you analyze resource usage
by recording the state of the database at the time specific events occur. An
Event Monitor is created by typing db2emcrt from a DB2 command line.

v Event Analyzer. Event Analyzer is a tool that allows you to analyze the
data collected by the Event Monitor. An Event Analyzer is invoked by
typing db2evmon from a DB2 command line.

v Visual explain function. The visual explain function lets you view the access
plan for SQL statements as a graph so that you can tune your SQL queries
for better performance. Prior to Version 6, you used the Visual Explain tool
to view the access plans. In Version 6, Visual Explain is no longer a separate
tool; however, the function is available on pop-up menus from various
database objects in the Control Center, and also from the Command Center.

In addition to these tools, another useful tool for database administration that
is not part of the Control Center is the:
v Client Configuration Assistant. The Client Configuration Assistant is a

SmartGuide with the primary function of setting up communications from
remote clients to servers.

All these tools are described in greater detail later on. The following section
gives an overview of features found in the tools.

Common Tool Features

The following features are available in several tools:
v Show SQL and Show Command
v Show Related
v Help

238 Administration Guide Design and Implementation

Show SQL and Show Command

If a tool generates SQL statements, then the Show SQL pushbutton will be
available on the tool interface. Similarly, a tool that generates DB2 commands
will have a Show Command pushbutton available. Clicking one of these
pushbuttons allows you to:
v See the SQL statements or DB2 commands that the tool generates based on

the choices you made in the graphical interface. This information helps you
to understand how the interface is working.

v Save the statements or commands as a script for future reuse. This
capability saves you from having to retype the SQL statements or DB2
commands if you want to run the same statements or commands again.
Once the SQL statements or DB2 commands have been saved in a script,
you can schedule the script, or edit the script to make changes, or create
similar scripts without having to retype the statements or commands.

To show the SQL statements or DB2 commands:
1. From the Control Center, go to a window or notebook for working with an

object.
2. Click on the Show SQL or Show Command push button. The appropriate

window opens.

Saving SQL statements and DB2 commands is particularly helpful if the SQL
statements or DB2 commands are complex.

When you use the Show Command or Show SQL feature, you can either
create new scripts which you can later edit, or you can close the dialog box to
return to the original dialog to make changes. If you click the Create Script
pushbutton, the New Command Script window appears. There you can edit
the SQL statements or the DB2 commands before saving the script.

Show Related

Show Related shows the immediate relationship between tables, indexes,
views, aliases, triggers, table spaces, User Defined Functions, and User
Defined Types. For example, if you select a table and you choose to show
related views, you only see any views that are based directly on the table. You
would not see any views that are based on the related views because those
views were not created directly from the table.

Showing related objects helps you to:
v Understand the structure of the database.
v Determine what indexes already exist for a table.
v Determine what objects are stored in a table space.

Chapter 5. Administering DB2 Using GUI Tools 239

v Know what other objects are related to an object and are therefore affected
by any actions you may take. For example, if you want to drop a table with
dependent views, Show related shows you which views will become
inoperative.

To use the Show Related feature:
v From the Control Center, select an object from the Contents pane and click

mouse button 2.
v Select Show Related

v Click on the tab to open the page for the related objects you want. Different
related objects are listed depending on the tab you select. Only objects that
are directly related to the object that you have selected are shown.
You can click mouse button 2 on a related object on the selected Page and
select Show Related from the pop-up menu. The selected Page changes to
show the objects related to your latest selection. You can also click on the
down arrow next to the selected object to display a list of objects you
previously selected to show relationships.

v Click Close to close the Show Related notebook and return to the Control
Center.

Generate DDL

The Generate DDL function allows you to re-create and save in a script file
the DDL and SQL statements and statistics of:
v Database objects
v Authorization statements
v Table spaces, nodegroups and buffer pools
v Database statistics

This allows you to:
v Save the DDL to create identically defined tables, databases, and indexes in

another database, for example, for a database warehouse application
v Use the DDL to copy a database from the test environment to a production

environment or from one system to another
v Edit the DDL to create similar objects

Clicking the Generate DDL pushbutton, brings up the Show Command
window with statements generated by a utility know as the db2look. From
the Show Command window, you can click the Save Script pushbutton to
save the statements. The statements are put into a script. If you click the
Generate button, the Run Script window opens.

You can select whether you want to generate DDL statements for selected
schemas or all schemas within the database. You can then edit the script if
you want to make changes before you use the script in a production

240 Administration Guide Design and Implementation

environment. To create identical databases using the generated DDL
statements, you would simply use the script which you generated and run it
in the new environment.

To generate DDL statements:
1. Highlight the object for which you want to generate DDL statements, and

click mouse button 2.
2. Select Generate DDL. The Run script window appears.
3. Type a user ID and password, and click OK. A job is created with the

contents of the db2look command. A DB2 message window appears with
the job ID of the new job.

4. Click on OK to close the message window.
5. Use the Job History page of the Journal notebook to view the results of the

job and to view the contents of a saved script associated with the job.
6. Select the job and click mouse button 2. Select Show Results from the

pop-up menu. The Job Results window opens. The output of the db2look
command is shown in the Job Output pane.

7. Select Create Script to create a script of the results. The New Command
Script window appears.

8. Save the new script if you want to use it again.

Filter

In the Control Center, you can filter information that is displayed in the
Contents pane, or you can filter information that is retrieved from a table as
an actual result set. You can limit the number of objects that are displayed or
the number of objects that are returned by creating filters for one or more
objects. Once you have set the filter, you need to clear or delete the filter if
you want to display all the objects in the tree once again.

Filtering the Display

To reduce the number of objects that appear in the Contents pane for more
manageable administration:
1. Select the Filter icon from the Contents pane toolbar, located at the bottom

of Control Center, or select Filter from the View menu bar.
2. Select the criteria to be used to reduce the number of objects.
3. Select the Enable filter checkbox to activate the filter.

When you later select an object to view its contents, the filter you have
associated with the object limits the view according to the criteria you set
earlier.

Chapter 5. Administering DB2 Using GUI Tools 241

Filtering Retrieved Data

To reduce the number of rows returned in a query and improve the response
time, you can define the output, or the result set that shows in the Contents
pane when selecting an object.
1. Select a folder object from the tree and click mouse button 2.
2. From the pop-up menu, select Filter. The Filter window opens.
3. Use the Filter function to define a set of criteria for retrieving rows

belonging to that object.

Defining a Filter to Retrieve a Specific Set of Data

To define a filter to retrieve a specific set of data:
1. From the Control Center, expand either the Databases or Subsystems

folders depending on your platform.
2. Select an object for which you want to define the filter. Click mouse button

2 on that object.
3. Select Filter from the popup menu. This opens the Filter notebook.
4. On the Locate page, specify the name or other descriptive filter criteria of

the selected object. The result of the filter is the results set associated with
the selected object shown in the Contents pane of the Control Center.

5. On the Locate page, select a radio button to specify whether to meet all
the conditions selected in the fields on the Locate page or to meet at least
one condition.

6. On the Advanced page of the Filter notebook, you can use additional
criteria by editing the text that is shown to further limit the number of
returned rows.

7. Click OK to use the filter criteria you defined.

To automatically invoke this filter notebook based on numbers of rows, select
Tools from the menu bar, and select Tools Settings from the popup menu. The
Select filtering when numbers of row exceeds checkbox allows you to
predefine a threshold of returned rows from any selection. When the
threshold is reached, the Filter notebook appears so that you can limit the
current retrieval based on the defined criteria. This is especially useful when a
table has grown unexpectedly and was previously unfiltered. Depending on
your platform, and your data, you could be attempting to return millions of
rows, when you need only a subset of rows.

Help

Extensive help information is provided with the administration tools. A help
button exists on all dialog boxes as well as on the menu toolbar. You can get
general help as well as help on how to fill out the fields and perform tasks.

242 Administration Guide Design and Implementation

From the help menus, you can also access the index of terms or the reference
information and the information provided in the product manuals.

The Control Center

Use the Control Center as your main point of administration to manage
systems, DB2 instances, databases, database objects, such as tables, views, and
user groups. You can also use the Control Center to access DB2 for OS/390
subsystems. All DB2 databases must be catalogued before they appear in the
Control Center. The Figure 21 shows the primary features of the Control
Center. Because of operating system differences, the Control Center on your
system may appear different from the diagram.

Icons for other tools

Control
Center
Toolbar

Object
Tree
Pane

Menu bar

Contents
Pane

Contents Pane Toolbar

Figure 21. Control Center Features

Chapter 5. Administering DB2 Using GUI Tools 243

Main Elements of the Control Center

The main elements of the Control Center are:
v Menu Bar. The menu bar is at the top of the screen. Selecting a menu from

the menu bar allows you to perform many functions, such as shutting
down the DB2 tools, accessing the graphical tools, and getting access to
online help and product information. You should familiarize yourself with
these functions by clicking on each item on the menu bar.

v Control Center Toolbar. Icons for the Control Center and the other tools are
located on the Control Center toolbar. Hover help identifies each icon when
the cursor is placed over the icon.
You can change the settings for these tools by selecting the Tools Settings
icon from the Control Center toolbar.

v Object Tree. The Object Tree is located on the left pane of the screen. It
displays icons for all the database servers and objects that you can manage
from the Control Center. You must first catalog a remote database server
before it appears in the Object Tree pane. Local databases are automatically
catalogued. Some objects in the Object Tree pane contain other objects. A
plus sign (+) to the left of the object indicates that the object is collapsed.
You can expand it by clicking the plus sign. A minus sign (−) appears to the
left of an object when it has been expanded. To collapse the object, click the
minus sign.

v Contents Pane. The Contents pane is located on the right pane of the
screen. This pane shows all the objects that are contained in the selected
object in the Object Tree pane, for example, if you select the tables folder in
the Object Tree pane, all your tables show up in the Contents pane. If you
select the databases folder, the Contents pane changes to show all
databases. You can filter the columns that appear in the Contents pane by
clicking the Filter icon in the Contents pane toolbar and specifying the
required information or you can filter objects by selecting Tools on the
toolbar and then Tools Settings. You must ensure that the Enable Filter
check box is selected in the Contents Pane filter dialog.

v Contents Pane Toolbar. This toolbar appears at the bottom of the Contents
pane. It allows you to tailor the information in the Contents pane. This
toolbar is a common control which appears at the bottom or to the side of
most detailed views throughout the product.

Using a Customized Control Center in DB2 for OS/390

Use the Customized Control Center on the DB2 for OS/390 platform as your
own defined point of administration to manage subsystems, databases, or
database objects, such as tables, views, and database users. You can use this
Customized Control Center to access any DB2 for OS/390 objects that you
define.

244 Administration Guide Design and Implementation

The main elements of the Customized Control Center are the same as those
listed for the default Control Center. The Customized Control Center allows
you to specify objects that you want to include in a personalized Control
Center. This user-defined tree can be saved and invoked to administer DB2
objects. It does not replace the Control Center tree which is the default for all
users but is useful if you want to access a set of objects in the same way each
time the Control Center is invoked. You can create as many customized trees
as you need, and each one can contain a different set of objects, which can be
ordered in any way that you choose.

Using a customized tree reduces the effort of navigating through a fixed
hierarchy of DB2 objects, and provides a method of grouping related objects.
For example, you can define a tree that contains only tables with payroll
information.

Systems That Can Be Administered

The Object Tree in the Control Center shows all the systems that are cataloged
on the instance to which you are currently attached. If you attach to another
instance, the Control Center shows the systems that are cataloged on that new
instance. From the Control Center, you can administer database objects for the
Universal Database family of products for OS/2, Windows, and UNIX
platforms.

You can also administer DB2 for OS/390 subsystems from the Control Center
if an Administration Server (DAS) is running on the DB2 for OS/390 system
and if a DB2 Connect product is available to the client on which the Control
Center is running. This requires either DB2 Connect Personal Edition to be
installed on the client or DB2 Connect Enterprise Edition to be installed on a
LAN and be accessible to the client. In addition to having a DB2 Connect
product installed, a connection must be defined on the DB2 for OS/390
subsystem so that it can used by the Control Center.

From the Control Center, you can also replicate data between the DB2
Universal Database family of products, DB2 for AS/400, DB2 for VSE and VM
systems, and DB2 for OS/390.

Objects that can be Administered

If you want to administer objects from the Control Center, you must add them
to the object tree. If you remove a database, or uncatalog it outside of the
Control Center, and you want to use the Control Center to perform tasks on
it, you must add it to the object tree.

The DB2 Universal Database objects that you can administer from the Control
Center are:
v Systems

Chapter 5. Administering DB2 Using GUI Tools 245

v Instances
v Tables
v Views
v Indexes
v Triggers
v User-defined types
v User-defined functions
v Packages
v Aliases
v Replication Objects
v Users and Groups

The DB2 for OS/390 Version 5 objects that you can administer from the
Control Center are:
v Buffer Pools
v Views
v Catalog Tables
v Storage Groups
v Aliases
v Synonyms
v DB2 Users
v Locations
v Application Objects (Collections, Packages, Plans, Procedures)
v Databases
v Tables
v Table Spaces
v Indexes
v Replication Source
v Replication Subscriptions

For Version 6 of DB2 UDB for OS/390, the following objects were added:
v Schemas
v Triggers
v User Defined Functions
v Distinct Types

To see what actions can be performed on each of these objects, select the
object in the Object pane and click mouse button 2. A pop-up window
appears listing the functions.

246 Administration Guide Design and Implementation

Displaying Systems in the Control Center

To display all of the systems that are cataloged on your system and which
have DB2 installed:
1. Expand the Object Tree by clicking the plus sign (+) beside Systems. Icons

representing the local machine and any remote machines are displayed.
Your local system is represented by the Local icon. It only appears if the
local machine is a DB2 server. If you click mouse button 2 on the Local
icon, one of the options in the pop-up menu is called Attach to
administration server. The Administration Server lets you take advantage
of functions such as performance monitoring and scheduling. It is used as
a service by the DB2 administration tools to satisfy operating system
requests and it is automatically created and started for you. The default
name for the Administration Server is DB2DAS00.

2. Expand the Local icon. The instance of DB2 on the local machine is
displayed in a tree structure.
On OS/2, Windows and supported DB2 UNIX-based systems, you can
think of each copy of the database manager code as a separate instance,
that is stored in a directory on your machine. On DB2 for OS/390, an
instance is referred to as a subsystem. A default local instance is created
when you install DB2. You can have several instances on a single system.
You can use these instances to separate the development environment
from the production environment, or to restrict sensitive information to a
particular group of people. You can also tune an instance for a particular
environment.

3. Expand the Instances icon. For each database that exists, an icon and the
name are displayed.

Managing DB2 for OS/390 Objects

Using the Control Center, you can perform many of the functions of the
existing DB2 for OS/390 Version 5 and DB2 UDB for OS/390 Version 6
products, such as creating, altering, and dropping objects, as well as run
utilities that reorganize or load your data. However, before you can
administer a DB2 for OS/390 subsystem from the Control Center, you must
first add it to the object tree by configuring a connection to it.

Adding DB2 for OS/390 Subsystems

If you have the Client Configuration Assistant installed, you can use it to
configure a connection to a DB2 for OS/390 subsystem easily. If you do not
have the Client Configuration Assistant installed, you will have to configure
the connection to the DB2 for OS/390 subsystem manually.

You use the Client Configuration Assistant to search the network for all the
DB2 for OS/390 subsystems which are available on the LAN to your client. If

Chapter 5. Administering DB2 Using GUI Tools 247

you would like to add one of the DB2 for OS/390 subsystems, you can use
the Add Database SmartGuide to add the subsystem, or you can import a
connection by using an access profile, or you can add the connection
manually.

If you choose to search the network, you need to have a DB2 Connect product
on your network with a connection defined for the subsystem. If you choose
to use an access profile, you need to import a profile for the subsystem you
want to add. If you need to manually configure the connection, you need to
know the subsystem name, the communication protocol, and the
communication protocol parameters such as the host name and the port
number for TCP/IP, or the Symbolic Destination Name for SNA. Once you
add the DB2 for OS/390 subsystem, you also get the objects for the gateway
connections.

When you add a DB2 for OS/390 subsystem, it appears in its own section of
the Control Center object tree separate from the DB2 Universal database
objects. To see the DB2 for OS/390 V5 and DB2 UDB for V6 objects that reside
in a particular subsystem, expand the object tree from the DB2 for OS/390
system icon that represents your DB2 for OS/390 system.

To see the list of actions that you can perform on a particular object, select the
object as it appears in the object tree and click mouse button 2. A pop-up
menu appears and shows the available actions you can perform on that object.
For example, you can create, alter, or drop a view, as well as see its contents,
modify the privileges on it, and show a list of other objects that are related to
it. See the online help for the DB2 for OS/390 objects for more information on
what functions you can perform.

Managing Gateway Connections

When a DB2 Connect server is installed, a Gateway Connections folder is
displayed in the Control Center object tree under the instance object of the
local system. The Gateway Connections folder contains a hierarchy of objects
used to manage connections to host and AS/400 databases that are cataloged
locally. The actions associated with these connection management objects can
be used to list, force, and monitor host and AS/400 database connections.

The object tree under the Gateway Connections folder is used for managing
connections to host and AS/400 databases but not for database administration
tasks. However, if you need to add, change or remove a host or AS/400
database on the local system, you would use the Client Configuration
Assistant and not the Gateway Connections tree.

Functions You Can Perform from the Control Center

From the Control Center, you can:

248 Administration Guide Design and Implementation

v Manage database objects. You can create, alter, and drop databases, table
spaces, tables, views, indexes, triggers, schemas. You can also manage users.

v Manage data. You can load, import, export, reorganize data, and gather
statistics.

v Schedule jobs. Jobs may be pending, running or completed executions of
scripts. You can schedule jobs to start at particular times.

v Perform preventive maintenance by backing up and restoring databases.
v Monitor performance and perform troubleshooting.
v Replicate data.
v Configure and tune instances and databases.
v Manage database connections, such as gateways and subsystems. Manage

applications.
v Analyze queries using Explain SQL to look at access plans.
v Launch other tools. For example, you can launch the Satellite

Administration Center or the Command Center.

To see all the actions that you can perform on an object, simply select the
object from the Object Tree pane or the Contents pane and click mouse button
2. A pop-up menu appears showing all the functions that you can perform on
that type of object; for example, if you select the tables folder, you can create a
new table with or without the help of a SmartGuide; monitor the performance
of tables; filter which tables appear in the Contents pane and so on. The
functions you can perform are different, depending on the object you select.

Click mouse button 2 on the objects in the Contents pane to perform
additional functions on a specific object. For example, if you select one of
your tables in the Contents pane and click mouse button 2, a pop-up window
displays functions you can use on that table.

Creating New Objects

To create new objects:
1. Expand the databases folder. Object types are displayed as folder icons.
2. Click mouse button 2 on the folder icon for an object, for example, click on

the Tables icon. The pop-up menu is displayed. For some objects, you get
two options to perform a function. One option is to use the SmartGuide.
SmartGuides do not exist for all functions that you can perform.

3. Select Create. Since there is a SmartGuide to create a table, you get two
options, one of which is to create the table using the SmartGuide. If you
choose the SmartGuide option, you are prompted for information and
given suggestions on what choices you should make. The SmartGuide is
especially useful for new users or people who create databases
infrequently.

Chapter 5. Administering DB2 Using GUI Tools 249

Working with Existing Objects

When you click an object such as the table folder in the Object Tree pane, all
tables already existing appear in the Contents pane. You can then select a
table you want to work with and click mouse button 2 to invoke any
functions that you wish to perform on that specific table.

For more information about using the Control Center, go to its online help,
available from its Help menu or by pressing F1 anywhere in the Control
Center.

Locating objects (DB2 for OS/390 only)

You can search for a database or subsystem object easily by using the Locate
notebook. This allows you to:
v Find an object without having to navigate through the tree structure of the

Control Center. The object could be in a database or subsystem, table space,
or across databases and tables and supporting objects.

v Locate objects (table spaces, tables, and indexes) across multiple databases
within a subsystem.

Use the Locate page of the Locate notebook to specify the search criteria. Use
the Advanced page of the Locate notebook to further customize the search.
Edit the text provided on the Advanced page and add or modify the search
criteria.

To locate an object defined within a database or a DB2 for OS/390 subsystem:
1. From the Control Center, click mouse button 2 on an object. Select Locate

from the popup menu. The Locate notebook opens.
2. From the Object type field, select the type of database object to search. The

list of target objects available varies, depending on the object from which
you begin your search.

3. On the Locate page, fill in the search criteria. You must type in at least one
search criterion and you can use wild cards to help in the search.
Characters are folded to uppercase unless you use valid delimiters to
enclose lower case characters or the extended character set.

4. On the Locate page, select a radio button to specify whether to meet all
the conditions selected in the fields on the Locate page or meet at least one
of the conditions.

5. Click OK to use the search criteria. The results of your search are
displayed in the Locate Result window. The format of the output table
depends on the type of object for which you searched.

6. To repeat the search with the same or different criteria, click APPLY.

250 Administration Guide Design and Implementation

7. You can select a row that appears in the Locate Result window and right
click on that row to see a popup menu with additional actions that you
can perform.

The Satellite Administration Center

The Satellite Administration Center is a set of tools that is available from the
DB2 Control Center. They allow you to set up and administer collections of
DB2 servers from a central point. Each DB2 server that belongs to a group is
known as a satellite. Administering satellites from a central point means that
DB2 can be hidden from anyone using a DB2 satellite, thereby avoiding the
need for them to learn about database administration.

Use groups to organize DB2 servers that have shared characteristics, such as
the applications that run on them or the database configuration that supports
the application. The DB2 servers are similar in terms of their database
configuration, usage, and purpose.

By grouping the DB2 servers together, you can administer groups of DB2
servers rather than having to administer each DB2 server individually. If you
acquire additional DB2 servers to serve the same function as the DB2 servers
of an existing group, you can add them to that group by using the Satellite
Administration Center.

From the Satellite Administration Center, you can create groups, satellites,
application versions, batches, and authentication. You can also define success
code sets and perform other functions associated with the administration of
the satellite environment. Information about the satellite environment is stored
in a central database known as the satellite control database. This database
records, among other things, which satellites are in the environment, the
group each satellite belongs to, and which version of the end-user application
a satellite is running. This database is on a DB2 server that is known as the
DB2 control server.

Before the functionality of the Satellite Administration Center can be enabled,
you must first catalog a satellite control database (SATCTLDB) on the Control
Center. When it is enabled, you can use the Satellite Control Center to set up
and maintain satellites, groups, and the batches that the satellites execute
when they synchronize for their application version.

To set up and maintain its database configuration, each satellite connects to
the satellite control database to download the batches that correspond to its
version of the end-user application. The satellite executes these batches locally,
then reports the results back to the satellite control database. This process of
downloading batches, executing them, then reporting the results of the batch

Chapter 5. Administering DB2 Using GUI Tools 251

execution is known as synchronization. A satellite synchronizes to maintain its
consistency with the other satellites that belong to its group and are running
the same version of the end-user application.

The Command Center

You can start the Command Center from the Control Center by clicking the
Command Center icon on the toolbar.

The Command Center lets you:
v See the resulting output of one or many SQL statements and DB2

commands in a result window. You can scroll through the results and
generate a report.

v Create, and save command scripts to the Script Center. You can edit the
command script to create new scripts. From the Script Center, the command
script can then be scheduled to run as a job at any time that you specify.

v Run SQL statements, DB2 commands and operating system commands.
When you run operating DB2 commands from the Command Center, you
do not have to precede the command by DB2. You can run operating
system commands in any supported operating system script language, such
as REXX, by preceding them with an exclamation mark (!). Using the
Command Center to run the commands and statements allows you to issue
many commands at once, without the need to type and run each command
individually.

v Get quick access to the DB2 administration tools, such as the Control
Center, from the main toolbar.

v See the access plan and statistics associated with an SQL statement before
execution.

The Script Center

You can start the Script Center by selecting the icon from the Control Center
Toolbar. The Script Center is a tool that allows you to create scripts by writing
a set of commands and statements, which you can schedule to run whenever
you require. You can import scripts that you created earlier or scripts that you
saved in the Command Center. You can select scripts from the set of scripts
saved and you can edit existing scripts to create new scripts, copy scripts, or
remove scripts.

You can edit a script inside the Script Center or outside the Script Center
using your own editor. If you run a script from within the Script Center, you
get the added advantage of having the results logged in the Journal.

252 Administration Guide Design and Implementation

To run operating system commands from a script in the Script Center:
1. Select Script –> New. The New Command Script window opens.
2. For Script Type, select the OS command radio button.
3. Enter the script name, description, and working directory.
4. Enter the commands.
5. Click on OK.

From the Script Center, you can view information, such as the description and
script type about all command scripts that are known to the system, and you
can perform the following tasks:
v Create a command script that contains DB2 and operating system

commands
v Run a saved command script immediately
v Schedule a script to run at a later date or at a regular interval; for example,

you might want to create a script that collects statistics for several tables.
You could then schedule the job to run overnight. You can schedule jobs by
running them unattended at scheduled intervals by specifying the hours,
days, weeks, months, multiple times a week, or multiple times a month you
want to run the job. A job is created whenever you schedule a script or run
a script immediately.

v Access the Journal from the toolbar to see the jobs that use a particular
script and to see the status of all scheduled jobs

v Edit a saved command script

Using an Existing Script with the Script Center

To use the Script Center with pre-existing scripts which you did not create
from the Script Center:
1. From the Control Center toolbar, click on the Script Center icon. The

Script Center opens.
2. Select Script –> Import. The File Browser window opens.
3. Select an existing script file and click on OK. The New Command Script

window opens. The script is displayed in the lower part of the window
which is a script editor. Complete the Instance, Script name, Script
description and Working directory fields, and select a Script type.

4. Click on OK. The script will be created in the Script Center.

Scheduling a Saved Command Script to Run

To schedule a script:
1. Click the Script Center icon on the Control Center toolbar. The Script

Center opens.

Chapter 5. Administering DB2 Using GUI Tools 253

2. Click with mouse button 2 on the script you want to schedule to run and
select Schedule from the pop-up menu. The Scheduler window opens.

3. Select the frequency for the job, and a completion action, such as a
completion message or another command script to be launched.

4. Click OK. This starts a pending job that you can track in the Journal.

The Journal

You can start the Journal by selecting the icon from the Control Center
toolbar. The Journal allows you to monitor jobs and review results. From the
Journal, you can also display the recovery history and DB2 messages. The
Journal allows you to monitor pending jobs, running jobs, and job histories;
review results; display recovery history and alert messages; and show the log
of DB2 messages.

Working with Jobs

Use the Journal to work with jobs. To open the Journal:
1. Click the Journal icon from the Script Center toolbar. The Journal opens.
2. To see the jobs which are scheduled to be run at a later time, click the

Pending jobs push button. You see your job in the list of pending jobs.
You also see all the information about the jobs. You can perform actions on
a pending job, such as reschedule it, show the scripts associated with it, or
run it immediately. When a saved script is modified, all jobs that are
dependent on it inherit the new modified behavior.

From the Journal, you can also see the jobs that are currently running and the
job histories.

The other pages in the Journal window are:
v The Recovery page. This page displays the recovery history (the details

from backup, restore operations, and load operations) and lets you restore
the recovery log.

v Alerts page. This page shows all alerts.
v The Messages page. This shows all messages issued through the DB2

administration tools.

The online help for the Journal provides detailed steps for working with jobs
and logs.

254 Administration Guide Design and Implementation

The License Center

You use the License Center to display license status and usage information for
DB2 products installed on your system. You can also use the License Center to
configure your system for proper license monitoring. The License Center
allows you to:
v Add a new license.
v Upgrade from a trial license of the product to an authorized license.
v View the details of your license.

If you view the details of the license information, you see the:
v Product name
v Version information
v Expiry date
v Registered users
v Concurrent users
v Number of entitled users
v Concurrent number of users
v Enforcement policy

The Alert Center

The Alert Center is the tool that monitors your system to warn you about
potential problems. You can set the Alert Center to automatically open to
display any monitored objects that have exceeded their threshold and are
therefore in a state of alarm or warning. You set up the thresholds using the
Performance Monitor, which is invoked from the Control Center. The color of
the icon indicates the severity of the warning. A red icon indicates an alarm. A
yellow icon indicates a warning. The data returned for the performance
variable is displayed. See the online help for instructions on how to analyze
the data.

Client Configuration Assistant

The Client Configuration Assistant (CCA) is a SmartGuide whose primary
function is to set up communications easily from a remote client to a database
server saving you from having to configure parameters manually; however,
the Client Configuration Assistant is also an excellent tool to add databases
and new systems by allowing you to discover and get access to all available
systems on your network. When you use the Client Configuration Assistant,
you do not need to know the location of the server nor do you need to
manually configure the server, because the Client Configuration Assistant can

Chapter 5. Administering DB2 Using GUI Tools 255

search the network for systems, instances, and databases and then use this
information to configure communications.

The Client Configuration Assistant:
v Requests information about protocols, ports, and associated network

information that is required for configuration.
v Configures database connections.
v Allows you to update or delete existing database connections and display

existing configurations.
v Provides lists of all databases you are connected to.
v Searches the network for DB2 databases.
v Imports and exports database connections. This allows you to use

connections that exist on other machines in your network and use them to
connect to the same systems easily without having to know all the
configuration information.

Searching for Databases

With the Client Configuration Assistant, you can:
v View local or remote systems. This gives you a picture of the network to

which you are connected.
v See any Universal Database server that has an Administration Server

running. If you find a DB2 Connect server, you can discover and catalog
any DB2 for OS/390 subsystems that can be accessed through that server.
This capability allows you to discover and configure databases directly
rather than by using the Control Center.

v Import and export database connections using profiles. If you want to copy
database connections that are on another machine or if you want to make a
template client to distribute to other systems, you can take a snapshot of
your configuration using the CCA and export the snapshot. You might use
this, for example, if your machine has a connection that you want
replicated on several machines. When you open the CCA, there are two
buttons: Import and Export. To copy the database connections configured,
you export the connections. This produces a .profile file which you can
then send to others who would import using the Import button or Add
Database from the main window of the CCA. You can also import server
profiles from the Control Center. From the Control Center, click Export and
you would then use that profile as a source to import. To copy the database
connections configured, you export the connections.

You can still add databases manually if you know that they exist and you do
not have a gateway server running on them.

256 Administration Guide Design and Implementation

Performance Monitor

The Performance Monitor provides information about the state of DB2
Universal Database and the data that it controls. It is a graphical utility that
can be customized for your database environment. You can define thresholds
or zones that trigger warnings or alarms when the values being collected by
the Performance Monitor are not within acceptable ranges.

You can monitor DB2 objects such as instances, databases, tables, table spaces,
and connections by selecting the object in the Object Tree pane or in the
Contents pane and clicking mouse button 2. From there, you can choose to
start monitoring activity.

When an object is being monitored, the color of the icon appears green,
yellow, or red to indicate the status of the monitor. The colors represent the
severity of the problems as defined by the thresholds which you have set.
Green signifies that the monitor is running and everything is fine. Yellow is a
warning and signifies that the monitor is reaching the thresholds that you
have set. Red indicates an alarm and that the monitor has reached the
threshold. You can use the predefined monitors that are included with DB2 or
you can create your own monitors.

To see what information the Performance Monitor is collecting, click mouse
button 2 on the object and select Show Monitor Activity in the pop-up
window.

Use the information from the Performance Monitor to:
v Detect performance problems
v Tune databases for optimum performance
v Analyze performance trends
v Analyze the performance of database applications
v Prevent problems from occurring

The Performance monitor lets you analyze trends by creating a visual
presentation of database information such as disk activity, buffer pool usage,
amount of prefetch, lock usage, and record blocking at specific intervals.

You use the tool when you need to monitor an existing problem or when you
want to observe the performance of your system. It lets you take a snapshot
of database activity and performance data at a point in time. These snapshots
are used for comparison over time. Each point on the graph represents a data
value. The steps for taking snapshots are provided in “Monitoring
Performance at a Point in Time” on page 261. This information can help you
to identify and analyze potential problems, or identify exception conditions

Chapter 5. Administering DB2 Using GUI Tools 257

which are based on thresholds that you set. Use the performance tool if you
need to know the performance of the database manager and its database
applications at a single point in time and look at trends over time. Use it also
to get a visual overview of what elements are in a state of alarm. This helps
you to identify which parameters may need tuning. You can then look closely
at the parameters that have been set for that element and change it to
improve performance.

Event Monitor

In contrast to taking a point in time snapshot, an event monitor collects
information on database activities over a period of time. This collected
information provides a good summary of the activity for a particular database
event, for example, a database connection or an SQL statement. Event
monitoring records the state of the database at the time specific events occur.
It allows you to obtain a trace of the activity on the database. Event monitor
records are stored and then analyzed after the data has been captured. Use the
event monitor when you need to know how long a transaction took or, for
example, how much CPU an SQL statement used. You then use the Event
Analyzer to read the data recorded from the event monitor.

For each database connection, there is one connection event record produced.
For each statement run in that connect, a statement record is produced. Each
connection event record maps to one row in the Connections View window of
the Event Analyzer. This window shows information for each application that
connected during the monitored period, including:
v Application name
v Execution ID
v Connect time
v Total CPU time
v Lock wait time
v Total sort time
v Deadlocks
v Disconnect time
v Application ID

Each statement event record maps to one row in the Statements View window
in the Event Analyzer.

Using the Monitor Tools

The Performance Monitor and the Event Analyzer provide the following
benefits:

258 Administration Guide Design and Implementation

v Comprehensive, flexible data collection. Over 200 performance variables are
supported including buffer pool and I/O, lock and deadlock, sorting,
communication, agent, and logging information. Data is shown for database
managers, databases, table spaces, tables, buffer pools, connections,
transactions, and SQL statements.

v Easy-to-use, intuitive viewing. Data can be viewed in real time using
easy-to-read graphs or textual views conveniently organized into logical
groups. Both details and summary views are provided, with the ability to
access more detailed information.

v Robust alert capabilities. For any performance measurement, you can define
exception conditions by specifying a threshold value. The threshold values
are used to visually identify when a performance measurement reaches or
exceeds the threshold value by plotting a measurement in a particular zone
on the performance graph. When the threshold value is reached, you can
specify that you want any or all of the following actions to occur.
– You are notified through the Alert Center.
– You receive an audible alarm.
– A program is run.
– A message is displayed.
– No notification is given.

Figure 22 on page 260 illustrates how the monitors work together.

Chapter 5. Administering DB2 Using GUI Tools 259

Considerations for Monitoring and Tuning a Database

Before you start monitoring and tuning your database, you should do the
following
v Define your objectives. For example, you may want to understand how

applications use resources at the instance level at a specific point in time so
that you can, for example, check if database concurrency is reduced when a
special application is started. Or you may want to understand which
instance-level events occur when an application is running, for example, if
there is poor overall performance when a particular application is running.

v Determine what information you will analyze. For example, to see if
bottlenecks are hardware related, you may want to take snapshots to
monitor database connection activity or table space, buffer pool, and I/O
activity. To see if the bottlenecks are environment-related, you would use
the Event Analyzer to monitor if:
– Too many database tasks are scheduled during peak time

CONNECTION 1 CONNECTION 2

STMT Event
Record Returned

STMT Event
Record Returned

STMT Event
Record Returned

STMT Event
Record Returned

You connect to a database

and enter statements.

Each record returned is

equivalent to 1 row in the

Connections View window

of the Event Analyzer.

Each record returned is

equivalent to 1 row in the

Statements View window

of the Event Analyzer.

Snapshot

Returned

Time Stamp Time Stamp Time Stamp Time Stamp

Data Value

Snapshot

Returned

Snapshot

Returned

Snapshot

Returned

STMT 1A STMT 1B STMT 2A STMT 2B

S
n

a
p

s
h

o
t

M
o

n
it
o

r
E

v
e

n
t

M
o

n
it
o

r

•

•

•

•

Connection Event

Record Returned

Connection Event

Record Returned

Figure 22. Comparison: Getting Snapshots and monitoring Events. (Event monitor, Event Analyzer)

260 Administration Guide Design and Implementation

– There is a high number of user connections
– Database partitioning (hardware load balancing) is not well optimized
– The server is being used for more than just a database server

Some of the visible effects are, for example:
– Queries/responses are slow
– Scheduled tasks are not completing on time
– Applications are timing out

v Decide whether you will use the predefined monitors that are available
with DB2 or whether you will create your own monitors.

The next section describes how to take snapshots and how to use the Alert
Center to keep track of any performance-related problems.

Monitoring Performance at a Point in Time

If you want to do complex data collection and analyze the data to pinpoint
potential problems, use the Performance Monitor to take snapshots of your
system and watch performance data change over time.

The tools lets you:
v Graph performance information
v Define performance variables
v Set the capture frequency of performance snapshots
v View the results of performance calculations
v Define threshold values and threshold actions
v Generate and store alerts
v View summary information (for example, all databases)

The following types of information are captured:
v Information about long-lived activities (such as database activity when an

application is taking too long to complete).
v Counters that keep track of information about the current level of activity

(such as the number of open cursors for a database).
v Cumulative information about database activity (such as the maximum

number of connections made while a database instance is active, or the total
number of SQL statements executed against a particular database).

Taking snapshots at predefined intervals provides a picture of the current
state of the activity in the database manager and its applications. This
information can be used to:
v Detect performance problems

Chapter 5. Administering DB2 Using GUI Tools 261

v Analyze performance trends
v Tune database manager and database configuration parameters
v Analyze the performance of database applications

Performance information is available for the following database objects:
v Instances
v Databases
v Tables
v Table spaces
v Database connections

For each, a variety of performance variables can be monitored. The
Performance Variable Reference Help, available from the Help menu of any
Snapshot Monitor window, provides a description of all the performance
variables. These variables are organized into categories. By default, all
performance variables are monitored, but the categories can be turned on and
off through the administration tools. The following categories have been set
on by default:
v Instance: Agents, Connections, Sort
v Database: Lock and Deadlock, Buffer Pool and I/O, Connections, Lock and

Deadlock, Sort, SQL Statement Activity
v Table: Table
v Table space: Buffer Pool and I/O
v Database Connections: Buffer Pool and I/O, Lock and Deadlock, Sort, SQL

Cursors, SQL Statement Activity

From the Control Center, you can only capture snapshots from one instance of
a database manager at a time. This means that the API that is used to get
snapshot information is issued only once for all monitored database objects in
a database manager. This decreases the overhead on a database manager.

For detailed information on how to generate snapshots, see the online help.

Predefined Monitors

The DB2 Performance Monitor contains a set of predefined monitors, which
you can use as they are or which you can copy and modify to meet your
requirements. They provide a comprehensive set of performance calculations.
You cannot change the name, equation, or text description of an IBM-supplied
performance monitor; however, you can change the threshold values and the
alert actions. Use the predefined monitors to learn about performance
monitoring and to create your own monitors by copying a predefined monitor
and adding or removing performance variables from your copy.

262 Administration Guide Design and Implementation

The Predefined Monitors that are supplied with DB2 are:
v Monitoring Capacity. Use this monitor to get information on system

capacity. This monitor can be checked on a regular basis to see the overall
usage of your system over time.

v Sort. Use this monitor to ensure that your sort heap and sort heap threshold
parameters are set correctly. This monitor should be run when you first
start your system, in peak periods of activity, or as applications change.

v Locking. Use this monitor to determine how much locking is occurring in
your system, and whether your lock list parameters are set appropriately.

v Cache. Use this monitor to optimize cache usage. By monitoring these
values during peak periods, you can determine if you need to increase the
size of the cache.

v Bufferpool. Use this monitor on small tables to determine whether they
require their own buffer pools.

v Deadlocks. Use this monitor to determine whether your applications are
getting into deadlocks.

v Fast Communication Manager. Use this monitor to see the percentage of
memory used to transfer information between nodes.

v Prefetchers. Use this monitor to determine whether you have enough
prefetchers defined for the system.

v Disk Performance. Use this monitor to watch input and output. This
monitor contains performance variables that focus on disk performance at
the database and table space levels.

v Global Memory. Use this monitor to watch application memory use.
v Long Running Memory. Use this monitor to help determine why a query is

taking a long time to complete.
v Gateway Connections. Use this monitor to watch gateway connections.

For examples of how to use a predefined monitor, see the online help
provided for performance monitoring.

To see a list of available monitors, from the Control Center, click mouse
button 2 on the Systems folder, and select List Monitors from the pop-up
menu. The List Monitors window opens. It lists the monitors that are stored
on the JDBC server to which you are currently connected. For each monitor,
you see the name of the monitor, a description, the status, whether it is the
default monitor, and who created the monitor. The status of the monitors
indicates the status of the monitors on the local system, and not on the JDBC
server. The Default for level indicates the default monitor at the instance,
database, table, table space or connections level. For the predefined monitors,
the Created by column contains NULLID. The right side of the window
contains pushbuttons which allow you to perform various tasks on the
monitors.

Chapter 5. Administering DB2 Using GUI Tools 263

You can choose which monitor is started as the default monitor for an object.

Once you have started a performance monitor, you can click on the Alert
Center button on the toolbar to see the status of any objects that you are
monitoring and which are in a state of alert because they have reached any of
their threshold values. They appear only for the period of time during which
the threshold is exceeded.

If you want to keep a close watch on the objects being monitored, you can
keep the Alert Center open or you can keep the Show Monitor window open
on the summary page and look for any red or yellow entries. You can also
modify the Control Center settings so the Alert Center opens automatically if
a new warning or alarm is added to it. From the Alerts Center, you can also
temporarily suspend the alerts while monitoring continues.

Action Required When an Object Appears in the Alert Center

You can set the Alert Center to open automatically to display any monitored
objects that are in a state of alarm or warning (that is, their thresholds have
been exceeded). You can change this default from the Tools Settings window.

If you see an object in the Alert Center, click mouse button 2 on the object and
select Performance Monitor –> Show Monitor to view the performance
details for that database object.

See the online help available from the Help menu of any Performance
Monitor window for instructions on how to analyze the data.

Analyzing an Event for a Period of Time

The Event Analyzer is another DB2 performance tool. Use this tool when you
want diagnostic information for an event that has taken place. You use the
Event Analyzer in conjunction with an event monitor. For example, you can
use an event monitor to trace database activity, such as connections,
transactions, statements, and deadlocks, while a database is active. An event
monitor can also record cumulative performance data that is logged when an
application disconnects from the database. After the event monitor has created
the event monitor file, you look at your performance information using the
Event Analyzer.

The event monitor tools let you perform the following:
v Create event monitors to monitor the types of database events that are of

interest to you.
v Activate an event monitor to start collecting event data. The data is stored

in a file.
v Stop an event monitor from collecting event data.

264 Administration Guide Design and Implementation

v View the trace-type summary information that is produced by the event
monitor.

v Remove an event monitor when you no longer have a need for it. You are
also given the option to clean up its trace files.

v Display a list of event monitors associated with the database.
v View the definition of an event monitor.

The Event Analyzer lets you view the data generated by an event monitor for
the following event types:
v Database connection activity (the period of time between a connection and

its disconnection)
v Transactions (units of work)
v SQL statement executions
v Detection of deadlock activity

Event Analyzer

You can create an event monitor for the following event types and then use
the Event Analyzer to view the collected information: however, use the
db2evmon executable (described in the Command Reference and the System
Monitor Guide and Reference) to view data generated for the:
v Deadlocks
v Database activity
v Table space activity
v Table activity
v Statement activity

To analyze event data using an event monitor and the Event Analyzer, follow
the steps below. They represent only one example of how to create an event
monitor for connection and statement events. To create an event monitor:

1. From a command line in the Command Center, type db2emcrt. The Event
Monitor window opens.

2. Click on Event Monitor and choose Create from the menu. The Create
Event Monitor window opens.

3. In the field, specify a name for the event monitor you are creating. This
new event monitor cannot have the same name as any existing monitor.
Blank spaces are not allowed in the name.

4. In the Enterprise - Extended Edition product only, select a node where
the event monitor files will reside from the On Node drop down list.

5. In the Enterprise - Extended Edition product only, select a scope for the
event monitor. By default, the scope is Global.

Chapter 5. Administering DB2 Using GUI Tools 265

6. Select one or more of the check boxes to indicate the type of events that
you want to monitor. Note that the Deadlocks event type is the default
selection.

7. Indicate when you want this monitor to start. Note that Start now is the
default selection.

8. Define one or more conditions for connections, statements, or transactions
that will control monitoring at these levels.

9. Identify a path (directory name) where the monitor will write the event
data files.

10. Click on Options to open a window for Specifying Event Monitor File
options. These options determine how monitor output is handled and can
affect the performance of your event monitor.

11. Click on OK to create the monitor, or Cancel to exit without creating a
monitor.

12. Turn off the event monitoring, by clicking mouse button 2 on an event
monitor and select Stop Event Monitoring from the pop-up menu.
This forces the event monitor to write the trace file. If the monitor is not
turned off, information is only written to disk when the buffer is full or
all connections end. From the Event Monitors window, you can view the
resultant event data by clicking mouse button 2 on the event monitor you
created, and selecting View Event Monitor Files from the pop-up menu.
The Monitored Periods View window opens.

To access the event data from the Event Analyzer:
1. From a command line in the Command Center, type db2eva to start the

Event Analyzer. The Event Analyzer window opens.
2. In the Path field, identify the path (directory name) where the data files

are stored. If the files have not been moved, this will be the path that was
specified when the event monitor was created. If the files were moved,
then specify that directory. You can click on ... to list existing directories.

Note: If data files are stored remotely, you must FTP the files to your local
machine in order to view them. Depending on file size, this transfer
could take some time. Files can be transferred to any local path. It is
not necessary to choose the same path that was used when they
were created.

3. Click Ok to access the data files contained in the directory, or Cancel to
exit. The Monitored Periods View window opens.

4. Click mouse button 2 on a monitored period, and select Open as –>
Connections from the pop-up menu. The Connections View window
opens. This shows the list of connections that were made during the event
monitoring session. (There may be more than one connection listed. The
connection you are interested in may not be the first one in the list.)

266 Administration Guide Design and Implementation

5. Click mouse button 2 on a connection, and select Open as –> Statements
from the pop-up menu. The SQL Statements View window opens. It
displays all statements for the selected connection. Columns of information
are provided for each statement, including:
v Operation
v Package name
v Creator
v Start time
v Elapsed time
v Total CPU time
v Text

The online help for the event monitor and the Event Analyzer provide
detailed instructions for creating event monitors and viewing the resultant
event data.

Analyzing SQL Statements

You can view the access plan for explained SQL statements as a graph and
use this information to tune your SQL queries for better performance.

An access plan graph shows details of:
v Tables (and their associated columns) and indexes
v Operators (such as table scans, sorts, and joins)
v Table spaces and functions

Prior to Version 6, you would use a tool called Visual Explain to view the
access plans. In Version 6, you can no longer invoke Visual Explain as a
separate tool from the command line, however, you can still invoke the visual
explain function from various database objects in the Control Center and from
the Command Center. In this section, the term visual explain function is used
for this capability.

You use the visual explain function to:
v View the statistics that were used at the time of optimization. You can then

compare these statistics to the current catalog statistics to help you
determine whether rebinding the package might improve performance.

v Determine whether or not an index was used to access a table. If an index
was not used, the visual explain function can help you determine which
columns might benefit from being indexed.

v View the effects of performing various tuning techniques by comparing the
before and after versions of the access plan graph for a query.

Chapter 5. Administering DB2 Using GUI Tools 267

v Obtain information about each operation in the access plan, including the
total estimated cost and number of rows retrieved (cardinality).

Improving Performance of a Query

You use the visual explain function to analyze and tune SQL statements. It
presents a graphical view of the access plan for explained SQL statements.
Tables and indexes, and each operation on them, are represented as nodes,
and the flow of data is represented by the links between the nodes. You can
use the information available from this graph to find ways to tune your SQL
queries for better performance.

The visual explain function captures information about how SQL statements
are compiled. This information allows you to understand the plan and
potential execution performance of SQL statements.

This information can help you:
v Design application programs.
v Design databases.
v Understand how two tables are joined: the join method, the order in which

the tables are joined, the occurrence of sorts and type of sorts.
v Determine ways of improving the performance of SQL statements (for

example, by creating a new index).
v View the statistics that were used at the time of optimization. You can then

compare these statistics to the current catalog statistics to help you
determine whether re-binding the package might improve performance. It
also helps you determine whether collecting statistics might improve
performance.

v Determine whether or not an index was used to access a table. If an index
was not used, the visual explain function can help you determine which
columns could be included in an index to help improve query performance.

v View the effects of performing various tuning techniques for the purpose of
better performance by comparing the before and after versions of the access
plan graph for a query.

v Obtain information about each operation in the access plan, including the
total estimated cost and number of rows retrieved.

Analyzing a Simple Dynamic SQL Statement

This section provides a simple example of how to get started analyzing a
dynamic SQL query.
1. From the Control Center, click mouse button 2 on the SAMPLE database,

and select Explain SQL from the pop-up menu. The Explain SQL
Statement window opens.

268 Administration Guide Design and Implementation

2. In the SQL text field, enter the following SQL statement:
select * from staff order by name

3. Click OK. The Access Plan Graph window opens. The graph represents
the path that the optimizer chose as the most efficient in order to provide
the results for your query.

4. Optional: Double-click any of the nodes (for example, the RETURN
operator node). The Operator Details window opens, showing the details
for that operator.

The explained SQL statement is saved automatically. To view it later:
1. From the Control Center, click mouse button 2 on the SAMPLE database,

and select Show explained statements history from the pop-up menu. The
Explained Statements History window opens.

2. Locate the entry you want. You can look at the SQL text column to see the
SQL statement you had previously explained.

3. Click mouse button 2 on the entry, and select Show access plan from the
pop-up menu. The Access Plan Graph window opens.

The online help for Visual Explain (accessible from the Help menu) provides
details on how to interpret the Access Plan Graph window in order to
improve the performance of SQL statements. The online help also contains
detailed examples to help you learn how to use Visual Explain.

Managing Remote Databases

The following section shows you how to:
v Add a remote system
v Add the instance you want to work with for that system
v Add the database you want to work with under that instance

DB2 first checks in the node directory (which contains an entry for all servers
to which a database client can connect and the communications protocol used
in the connection) to see if the remote system is already known. If the remote
system is not known, with a system, instance, or database on a remote system,
you need to set yourself up as a client to the remote system.

After you install DB2, you can use the Client Configuration Assistant to
search the network for systems, instances, and databases and configure
communications for them. You then add the remote system by cataloging it.
This creates an entry for the system in the node directory so that its instances
and databases can be made known. Next, you must add the instances and
databases for the system by cataloging them to create an entry for them in the
node directory and database directory, respectively. This creates an entry for

Chapter 5. Administering DB2 Using GUI Tools 269

them in the node directory and database directory, respectively). When the
configuration is complete, the remote systems are displayed in the Control
Center so that you can work with them.

To add a remote system:
1. From the Control Center, click mouse button 2 on the Systems object and

select Add. The Add System window opens.
2. Enter the system name in the System name field.

If the Discover configuration parameter for the instance is set to search
and the discover comm configuration parameter is not blank, you can
select Refresh to get a list of the remote systems. You can then select one
of the systems from the list below the System name field.

3. Type the remote instance name in the Remote instance name field.
4. Select the type of operating system for the remote system from the

Operating system list.
5. Select the protocol you want used for communications with the remote

locations. For a local system, Local is automatically selected and is the
only valid protocol. For the remote systems the possible protocols are:
v APPC
v IPX/SPX
v NetBIOS
v TCP/IP
v Named pipe (on Windows NT and Windows 9x operating systems only)

Only the protocols that the computer is currently set up for appear in the
listbox.

6. Enter the appropriate protocol parameters.
7. Enter a comment to be associated with the system.
8. Click Apply to add the system to the node directory.

Next, add the instance you want to work with on that system:
1. From the Control Center, click mouse button 2 on the Instances object

belonging to the system you just added.
2. Select Add. The Add Instance window opens.
3. Enter the required values in the fields.
4. Click the Refresh push button to have a list of existing instances

displayed.
5. Select the instance you want to work with.
6. Click the Apply push button, then the Close push button.

Finally, add the database you want to work with under that instance:

270 Administration Guide Design and Implementation

1. From the Control Center, click mouse button 2 on the Databases object.
2. Click Add. The Add Database window opens.
3. Enter the database name, type of communication protocol, and, optionally,

an alias. An alias in this case is an alternative name used to identify a
database.

4. Click the Refresh push button to display a list of existing databases for
that instance.

5. Select a database.
6. Click the Apply push button, then the Close push button.

Managing Users

As a database administrator, you might need to control the type of access
people have to data, or restrict their view of the data. The following
information tells you how to use the administration tools to manage database
authorities and privileges for database objects.

Database authorities involve actions on a database as a whole. When a
database is created, some authorities are automatically granted to anyone who
accesses the database. For example, CONNECT, CREATETAB, BINDADD and
IMPLICIT_SCHEMA authorities are granted to all users. Database privileges
involve actions on specific objects within the database. When a database is
created, some privileges are automatically granted to anyone who accesses the
database. For example, SELECT privilege is granted on catalog views and
EXECUTE and BIND privilege on each successfully bound utility is granted to
all users.

Together, privileges and authorities act to control access to an instance and its
database objects. Users can access only those objects for which they have the
appropriate authorization, that is, the required privilege or authority.

Granting and Revoking Authorities and Privileges

You can use the DB2 administration tools to grant and revoke privileges for
users and groups for databases, table spaces, tables, views, and schemas.
1. From the Control Center, click mouse button 2 on the database, table,

view, schema or index for which you want to grant or revoke privileges.
Select Authorities or Privileges from the pop-up menu. The Authorities
window or Privileges window opens.

2. Select the User page to work with user authorities or privileges or the
Group page to work with group authorities or privileges.

3. Select one or more users or groups. To add a user or group to the list, click
the Add User or Add Group push button.

Chapter 5. Administering DB2 Using GUI Tools 271

4. Along the bottom of the window, select Yes, No, or Grant for each
individual authority or privilege. Grant is displayed only for objects for
which it is a valid option.

5. When you have finished, click the Apply push button.

If you want to review or change the objects that a particular user is
authorized to, you can select a user, and click mouse button 2, then add or
change authorization to an object or remove authorization.

Moving Data

DB2 provides the import and load utilities to help you move data into a table
from existing sources. The information provided in this section is a brief
overview of moving data. For more detailed information on moving data, you
should refer to the Data Movement Utilities Guide and Reference manual.

The import utility takes data from an input file and inserts it into a table or
view. In this case, the input file contains data that was extracted from an
existing source of data, such as a Lotus 1–2–3 file or an ASCII file. You can
also use the import utility to re-create a table or view that was saved by using
the export utility. The following information tells you how to import data.

Once you have an input file available in a supported format, use the Import
notebook to insert data from the file into an existing table. If this table already
contains data, you can either replace or append to the existing data with the
data in the file.

You can also use the Import notebook to create a new table that is populated
by an input file, or delete existing rows in the selected table and repopulate it
using data from the input file.

To import a file into an existing table:
1. Open the File page of the Import notebook.
2. Optional. Specify the Import notebook.
3. Optional. Retrieve Large objects.
4. Optional. Specify column import options.
5. Click OK

To open the File page of the Import notebook:
1. From the Control Center, expand the object tree until you find the Tables

folder.
2. Click the Tables folder. Any existing tables are displayed in the contents

pane.

272 Administration Guide Design and Implementation

3. Click mouse button 2 on a table in the contents pane and select Import
from the pop-up menu. The Import notebook opens with the File page
displayed.

To specify the file options:
1. In the Import file field of the File page, enter the name of the file that

contains the data you want to import.
2. Specify the type of file to import by selecting one of the following
v Non-delimited ASCII format (ASC)

Non-delimited ASCII data is data that is aligned in columns.
v Delimited ASCII format (DEL)

Delimited ASCII data is a commonly used way of storing data that
separates column values with a user-defined delimiting character, such
as a comma.

v Worksheet format (WSF)
v Integrated exchange format (IXF)

PC/IXF is a structured description of a database table or view. Data that
was exported in PC/IXF format can be imported or loaded into another
DB2 Universal Database product database.

See the online help for the specific products and releases that are
supported.

3. Optional: Specify file type modifiers by clicking the corresponding
Options push button. The Options window for that format opens.

4. Select an Import mode. The available import modes vary depending on
the file type you selected.

5. Optional: In the Commit records field, enter the number of records to
import before the changes are committed.

6. Optional: In the Restart field, enter the number of records in the file to
skip before beginning the import action.

7. Optional: In the Compound field, type a number to specify how many
SQL statements will be executed (in an executable block).

8. Optional: Select the Insert an implied decimal point on decimal data
(IMPLIEDDECIMALPOINT) check box.

9. In the Message file field, type the name of the file that will contain
warning and error messages that occur during import.

To retrieve large objects from separate files, use the Large Objects page of the
Import notebook to retrieve large objects (LOBs) from the path or paths that
store the LOB files:
1. Click the Retrieve large objects (LOBs) in separate files (LOBSINFILE)

check box to enable the options on the Large Objects page.

Chapter 5. Administering DB2 Using GUI Tools 273

2. Specify the location of separate LOB files in the LOB paths list box by
clicking the Add push button. These paths are searched (in the order in
which they appear in the LOB paths list box) for the LOB files specified in
the LOB column of the input file.

3. Click OK to accept the defaults on the other notebook pages and begin the
import process.

Specify column import options. Use the Columns page of the Import
notebook to specify column import options:
1. Click one of the radio buttons in the Include columns by box to specify

the column method that will be used to import data file columns into the
table. The available methods vary depending on the file type and mode
you selected on the File page.

2. Optional: Specify or change the import file column attributes by clicking
the Change push button.
This option is not available if you selected the Default (method D) radio
button.

Managing Storage

As a database administrator, you need to estimate the size of tables and
indexes, and to check the amount of space available in a table space adding
more space to an existing table space when it gets full.

This section describes how to:
v Estimate the size of tables and indexes
v Check the amount of space available in a table space
v Add more space to an existing table space when it starts to get full

Estimating Table and Index Size

You can estimate the amount of storage space required for new or existing
tables or indexes by invoking the Estimate Size dialog. Invoke this dialog by
selecting individual tables and indexes and clicking mouse button 2 on them,
or select Estimate Size from the Create Table and Create Index windows. The
size is estimated on the definition of the particular table and its dependent
indexes. The estimate is the projected amount of storage space that would be
used when the table has a given number of rows. The minimum and
maximum space is also estimated based on the smallest and largest size of
variable length fields. When invoked on a table or an index, the Estimate Size
dialog is prefilled with the specifications of the table, and contains numbers
relating to the table and all of its dependent indexes. When you click the

274 Administration Guide Design and Implementation

Refresh pushbutton, the estimated size, minimum size, and maximum size are
updated based on the number you enter in the New total number of rows
and New average row length fields.

Estimating the size of a table or index is helpful if you want to:
v Create a new table and you want to know how large to make the table

space.
v Create a new table based on the size estimate of an existing table.
v Know how much space is used by different table and index objects in a

table space because the system is running out of storage space.
v Estimate the projected size of a table prior to loading data.

Note: When you use Estimate Size on an Enterprise-Extended Edition
product, the size estimates are based on the logical size of the data in
the table and not on the database partition.

If you have not updated the statistics for the table for some time, you can
click the Run statistics pushbutton to update the statistics for the selected
table. If you select an index and then press the Run statistics button, the
statistics are run on the related table.

To estimate the size for a table:
v Open the Estimate Size window.
v Select a different value for New total number of rows or accept the default.
v Click Refresh to view the size estimates for the new value.
v Select a different value for New average row length or accept the default.
v Click Refresh to view the size estimates for the new value.

Checking Space Available in a Table Space

To check the amount of space available in a DMS table space:
1. From the Control Center, double-click on the Table Spaces. A list of all the

table spaces appears in the contents pane.
2. Scroll to the columns entitled Allocated size, Size used and Percentage

used to see details related to the amount of space available in a table
space. Space is measured in pages where one page is 4 KB.

You can customize the order of the columns and which columns are displayed
by using the Customize Columns icon at the bottom of the Contents pane.

To check the amount of space available in an SMS table space, use the
facilities provided by your operating system to monitor space usage and to
ensure that available room in the directory for the table space is not
exhausted.

Chapter 5. Administering DB2 Using GUI Tools 275

Adding More Space to a Table Space

Capacity for a DMS table space is the total size of containers allocated to the
table space. When a DMS table space reaches capacity (depending on the
usage of the table space, 90% is a possible threshold), you should add more
space to it. The database manager will automatically rebalance the tables in
the DMS table space across all available containers. During rebalancing, data
in the table space remains accessible.

For a DMS table space that has reached its capacity, you can add another
container:
1. From the Control Center, click mouse button 2 on the table space in the

Contents pane for which you want to add a container, and select Alter
from the pop-up menu. The Alter Table Space window opens.

2. Click Add. The Add Container window opens.
3. Select the File or Raw device radio button, and complete the fields. See

the online help for assistance.
4. Click OK.

In general, you cannot extend the size of an SMS table space very easily
because SMS capacity depends on the space available in the file system and
the maximum size of the file supported by the operating system. However,
depending on your operating system, you may be able to increase the size of
a file system using the operating system facilities. For an SMS table space on a
UNIX-based system, you can increase the size of the table spaces by using the
appropriate UNIX-based system commands. See the documentation for the
UNIX-based system you are running. If the file system containing the SMS
table space also contains non-DB2 files, you may be able to move these files to
another file system, thus making more room available in the file system for
DB2’s use. You can also perform a redirected restore which involves restoring
a table space into a larger number of containers than it was backed up from.
You can perform a redirected restore from the Restore Database notebook:
From the database you want to restore, select Restore -> Database from the
pop-up menu.

Troubleshooting

DB2 provides a troubleshooting manual that is intended for technical support
representatives for DB2 servers and clients. It helps you:
v Identify problems or errors in a concise manner
v Solve problems based on their symptoms
v Use available diagnostic tools
v Develop a troubleshooting strategy for your day-to-day DB2 operations.

276 Administration Guide Design and Implementation

The Troubleshooting Guide presents these basic troubleshooting topics:
v Good troubleshooting practices
v Troubleshooting on the server
v Troubleshooting on the client
v Troubleshooting host communications
v Troubleshooting applications
v Troubleshooting and problem determination.

The Troubleshooting Guide presents these advanced troubleshooting topics:
v The DB2 process model
v Using logged information
v Taking traces
v Diagnostic tools for UNIX-based, OS/2, and Microsoft and Windows

operating systems.

Up-to-date bulletins and technical documentation are available from the
World Wide Web at http://www.software.ibm.com/data/db2/library/.

See the section at the end of this book for the details on how to contact IBM.

Replicating Data

Replication is the process of taking changes stored in the database log at the
source server and applying them to the target server. You can use replication
to define, synchronize, automate, and manage copy operations for data across
your enterprise. You can automatically deliver the data from a host system to
target sites. For example, you can copy data and applications to branch offices,
retail outlets, and even sales representatives’ laptops.

The two operational components in replication are Capture and Apply. The
Capture component captures changes made to data in source tables which
have been defined for replication by reading the database log. The Apply
component reads the changed data previously captured and stored in a
change data table and applies it to the target tables.

Using the Control Center, you can do the setup required for replication using
the Define as replication source and Define subscription actions. The
replication components Capture and Apply run outside the DB2
administration tools.

Replication administrators can perform the following actions from the Control
Center:

Chapter 5. Administering DB2 Using GUI Tools 277

v Define replication sources
v Define replication subscriptions
v Create control tables and target tables
v Specify SQL to enhance data during the apply process

The high-level steps for replicating data are as follows. Refer to the Replication
Guide and Reference for details.
1. Design a replication scenario (map the source and target tables).
2. Define a replication source (this relates to the capture action).

To define a replication source:
1. Specify source columns to capture.
2. Choose replication options.
3. Define a replication subscription (this relates to the Apply action).
4. Alter the source table with the Data Capture Changes option.
5. Start Capture to read and store data changes.
6. Start Apply to replicate changes to target tables.

To define a replication subscription:
1. Name the subscription set.
2. Specify the database and target table.
3. Specify the target columns.
4. Specify the row selection.
5. Specify SQL for run-time processing.
6. Set the subscription timing.

Using Lightweight Directory Access Protocol

The DB2 Version 6 Control center can be used as a central control point, if it is
running on a system where an LDAP client is installed. All the database
instances registered on the LDAP server will be cataloged automatically on
the client. They will show up in Control Center as regular nodes on the
navigator tree. These databases can be managed the same way as the other
databases that you have cataloged on your machine (except the ADD
DATABASE option is not yet available in this release). Of course, the local
DB2 system needs to be set-up with the same network protocols (for example,
TCP/IP, NETBIOS, or IPX/SPX) in order to talk to the databases on other
database servers.

To administer an LDAP database, select the database and click mouse button
2. A pop-up window lists the functions which you can perform. For more

278 Administration Guide Design and Implementation

information on LDAP, see “Appendix N. Lightweight Directory Access
Protocol (LDAP) Directory Services” on page 829.

Using a Java Control Center

You can run the Control Center as a Java application or as a Java applet
through a web server. In both cases, you need a supported Java Virtual
Machine (JVM) installed on your machine to run the Control Center. To run
the Control Center as a Java application, you must also have the correct Java
Runtime Environment (JRE) installed. A Java Virtual Machine can be a Java
Runtime Environment (JRE) for running applications or a Java-enabled
browser for running applets.

Java applications are run just like other applications on your machine,
provided you have the correct JRE installed. Java applets are programs that
run within Java-enabled browsers. The Control Center applet code can reside
on a remote machine and is served to the client’s browser through a web
server. If you run the Control Center as a java applet, you must use a
supported Java-enabled browser running on a Windows 32-bit or OS/2
operating system. Currently, there are no supported browsers for UNIX
operating systems.

The Control Center JDBC Applet Server must be started with a user account
that has administrator authority on the machine where the Applet Server
resides. You can set your Control Center JDBC Applet Server to start
automatically at startup time.

Running the Control Center as a Java Applet

To run the Control Center as a Java applet, you must have a Web server set
up on the machine that contains the Control Center applet code and the
Control Center JDBC Applet Server. The Web server must allow access to the
sqllib directory. If you choose to use a virtual directory, substitute this
directory for the home directory. For example, if you name your virtual
directory temp, then you should use sqllib/temp. DB2 does not support the
installation of the Control Center on a FAT drive for OS/2 because an OS/2
FAT drive does not support long filenames required by Java. For more
information on installing and configuring the Control Center as a Java
application or Java applet, see the Control Center Readme.

Chapter 5. Administering DB2 Using GUI Tools 279

Using Your Java-based Tools for Administration

In Version 6, DB2 includes a set of Java interfaces that allow you to extend the
capabilities of the Control Center. The Java interfaces allow you to:
v Add additional items to the menu list when working with objects.
v Add buttons to the Control Center toolbar.

To use this capability, you must have the right level of Java software installed.
For more information on using this function, see the What’s New manual.

280 Administration Guide Design and Implementation

Chapter 6. Controlling Database Access

One of the most important responsibilities of the database administrator and
the system administrator is database security. Securing your database involves
several activities:
v Preventing accidental loss of data or data integrity through equipment or

system malfunction.
v Preventing unauthorized access to valuable data. You must ensure that

sensitive information is not accessed by those without a “need to know”.
v Preventing unauthorized persons from committing mischief through

malicious deletion or tampering with data.
v Monitoring access of data by users which is discussed in “Chapter 7.

Auditing DB2 Activities” on page 333.

The following topics are discussed:

v “An Overview of DB2 Security” on page 282

v “Selecting User IDs and Groups for Your Installation” on page 285

v “Selecting an Authentication Method for Your Server” on page 287

v “Authentication Considerations for Remote Clients” on page 292

v “Partitioned Database Considerations” on page 293

v “Using DCE Security Services to Authenticate Users” on page 293

v “Privileges, Authorities, and Authorization” on page 305

v “Controlling Access to Database Objects” on page 318

v “Tasks and Required Authorizations” on page 327

v “Using the System Catalog” on page 328.

Planning for Security: Start by defining your objectives for a database access
control plan, and specifying who shall have access to what and under what
circumstances. Your plan should also describe how to meet these objectives by
using database functions, functions of other programs, and administrative
procedures.

© Copyright IBM Corp. 1993, 1999 281

An Overview of DB2 Security

To protect data and resources associated with a database server, DB2 uses a
combination of external security services and internal access control
information. To access a database server you must pass some security checks
before you are given access to database data or resources. The first step in
database security is called authentication, where the user must prove he is who
he says he is. The second step is called authorization, where the database
manager decides if the validated user is allowed to perform the requested
action or access the requested data.

Authentication

Authentication of a user is completed using a security facility outside of DB2.
The security facility can be part of the operating system, a separate product,
or, in certain cases, not exist at all. On UNIX platforms, the security facility is
in the operating system itself. DCE Security Services is a separate product that
provides the security facility for a distributed environment. There are no
security facilities on the Windows 95 or Windows 3.1 operating systems.

The security facility requires two items to authenticate a user: first, the user is
identified to the security facility by a user ID; second, the user proves he is
this identity by providing a piece of information known only to the user and
the security facility; for example, a password.

Once authenticated,
v The user must then be identified to DB2 using an SQL authorization name

or authid. This name can be the same as the user ID, or a mapped value.
For example, on a UNIX platform, a DB2 authid is derived by transforming
to upper case letters a UNIX user ID that follows DB2 naming conventions.
In another example, within the DCE Security Services product, the DB2
authid is contained in the DCE registry and is extracted from there once
authentication has successfully completed.

v A list of groups in which the user is a member is obtained. Group
membership may be used when authorizing the user. Groups are security
facility entities that must also map to DB2 authorization names. This
mapping is done in a method similar to that used for user IDs.
DB2 will obtain a list of groups up to a maximum of 64 groups. If a user is
a member of more than 64 groups, only the first 64 that map to valid DB2
authorization names will be added to the DB2 group list. No error is
created when this happens, and any groups after the first 64 are ignored by
DB2.

DB2 uses the security facility to authenticate users in one of two ways:

282 Administration Guide Design and Implementation

v DB2 uses your successful security system login as evidence of your identity
and allows the following using that identity:
– Use of local commands to access local data
– Use of remote connections where the server trusts the client

authentication.
v DB2 accepts a user ID and password combination and uses successful

validation of this pair by the security facility as evidence of your identity
and allows:
– Use of remote connections where the server requires proof of

authentication
– Use of operations where the user wants to execute a command under an

identity other than the identity used for login

DB2 Administrators may now allow others to change passwords on AIX and
Windows NT EEE systems through the profile registry variable
DB2CHGPWD_EEE=<boolean>.

The default for this variable is NOT SET (disabled). Other values for
DB2CHGPWD_EEE are the standard boolean values used by other DB2 profile
variables.

The DB2 Administrator is responsible for ensuring that the passwords for all
nodes are maintained centrally using either a Windows NT Domain Controller
on Windows NT, or NIS on AIX.

Note: If the passwords are not maintained centrally, enabling the
DB2CHGPWD_EEE variable will allow for the possibility that passwords
may not be consistent across all nodes. That is, if a user uses the
″change password″ feature, then the user’s password will only be
changed at the node to which they connect.

DB2 UDB on AIX has added the functionality to log failed password attempts
with the operating system and detect when a client has exceeded the number
of allowable login tries as specified by the LOGINRETRIES parameter.

“Selecting an Authentication Method for Your Server” on page 287 provides
additional information about the system entry validation checking that is
particularly relevant if you have remote clients accessing the database.

Authorization

Authorization is the process whereby DB2 obtains information about an
authenticated DB2 user that indicates the database operations a user may

Chapter 6. Controlling Database Access 283

perform and what data objects may be accessed. With each user request there
may be more than one authorization check depending on the objects and
operations involved.

Authorization is performed using DB2 facilities. DB2 tables and configuration
files are used to record the permissions associated with each authorization
name. The authorization name of an authenticated user, and those of groups
in which the user is a member, are compared against the recorded
permissions. Based on the comparison, DB2 decides whether to allow the user
the requested access.

There are two types of permissions recorded by DB2: privileges and authority
levels. A privilege defines a single permission for an authorization name,
enabling a user to create or access database resources. Privileges are stored in
the database catalogs for a given database. Authority levels provide a method
of grouping privileges and control over higher level database manager
maintenance and utility operations. Database-specific authorities are stored in
the database catalogs for each database; system authorities are recorded by
group membership and are stored in the database manager configuration file
for a given instance.

Groups provide a convenient means of performing authorization for a
collection of users without having to grant or revoke privileges for each user
individually. Unless otherwise specified, group authorization names can be
used anywhere authorization names are used for authorization purposes. In
general, group membership is considered for dynamic SQL and non-database
object authorizations (such as instance level commands and utilities) and is
not considered for static SQL (the exception to this general case being when
privileges are granted to PUBLIC: these are considered when static SQL is
processed). Specific cases where group membership does not apply are noted
throughout DB2 documentation, where applicable.

“Privileges, Authorities, and Authorization” on page 305 presents further
details on these topics.

Federated Database Authentication and Authorization Overview

Because a DB2 federated database system can access information in multiple
DBMSs, additional steps might be required to secure your data.

When planning your authentication approach, consider the fact that users
might need to pass authentication checks at data sources as well as at DB2. In
a federated system, authentication can take place at DB2 client workstations,
DB2 servers, data sources (DB2, DB2 for OS/390, other DRDA servers,
Oracle), or a combination of DB2 (client or DB2 server) and data sources.
Even in DCE environments, specific steps might be required if data sources

284 Administration Guide Design and Implementation

require a user ID and password. See “Federated Database Authentication
Processing” on page 299 for more information.

Similarly, your users must pass authorization checking at data sources and at
DB2. Each data source (DB2, Oracle, DB2 for OS/390, and so on) maintains
the security of the objects under its control. When a user performs an
operation against a nickname, that user must pass authorization checking for
the table or view referenced by the nickname.

Selecting User IDs and Groups for Your Installation

Security issues are important to the DB2 Administrator from the moment the
product is installed. The respective platform-specific Quick Beginnings, books
present all of the information required to plan for, install, and configure DB2.

The steps to completing the installation of DB2 require a user name, a group
name, and a password. During the installation, the administrator has default
values for each of these requirements. Once the defaults have been used
during the installation of DB2, the administrator is strongly recommended to
create new user names, group names, and passwords before creating the
instances where the databases will reside. Using new user names, group
name, and passwords will minimize the risk of a user other than the
administrator learning of the defaults and using them in an improper fashion
within instances and databases.

Another security recommendation following the installation of DB2 is the
changing of the default privileges granted to users. During the installation
process, System Administration (SYSADM) privileges are granted by default
to the following users on each operating system:

OS/2 A valid DB2 user ID which belongs to the
UPM Administrator or Local Administrator
group.

Windows 95 Any Windows 95 user.

Windows NT A valid DB2 username which belongs to the
Administrators group.

UNIX A valid DB2 username which belongs to the
primary group of the instance owner’s user
ID.

SYSADM privileges are the most powerful set of privileges available within
DB2. (Privileges are discussed later in this chapter.) As a result, you may not

Chapter 6. Controlling Database Access 285

want all of these users to have SYSADM privileges by default. DB2 provides
the administrator with the ability to grant and revoke privileges to groups
and individual user IDs.

The platform-specific information to create and assign groups and user IDs is
found in the various Quick Beginnings books. By updating the database
manager configuration parameter SYSADM_GROUP, the administrator can
control which group is defined as the System Administrative group with
System Administrator privileges. You must follow the guidelines below to
complete the security requirements for both DB2 installation and the
subsequent instance and database creation.

Any group defined as the System Administrative group (by updating
SYSADM_GROUP) must exist. The name of this group should allow for easy
identification as the group created for instance owners. User IDs and groups
that belong to this group have system administrator authority for their
respective instances.

You should consider creating an instance owner user ID that is easily
recognized as being associated with a particular instance. This user ID should
have as one of its groups, the name of the SYSADM group created above.
Another recommendation is to only use this instance owner user ID as a
member of the instance owner group and not to use it in any other group.
This should control the proliferation of user IDs and groups that could modify
the instance environment.

The created user ID should always be associated with a password to allow for
authentication before entry into the data and databases within the instance.
The recommendation when creating a password is to follow your
organization’s password naming guidelines.

On UNIX-based platforms, a group for fenced User Defined Functions (UDFs)
and stored procedures must be created, and any user IDs that use fenced
UDFs or stored procedures must be a member of this group. As with the
SYSADM group, the name of the fenced UDFs or stored procedures group
should allow for easy identification. User IDs that belong to the fenced UDFs
or stored procedures have whatever authority and privileges that are
associated with the group as their default.

For security reasons, we recommend you do not use the instance name as the
Fenced ID. However, if you are not planning to use fenced UDFs or stored
procedures, you can set the Fenced ID to the instance name instead of creating
another user ID.

The recommendation is to create a user ID that will be recognized as being
associated with this group. The user for fenced UDFs and stored procedures is

286 Administration Guide Design and Implementation

specified as a parameter of the instance creation script (db2icrt ... -u
<FencedID>). This is not required if you install the DB2 Clients or the DB2
Software Developer’s Kit.

There are rules for the naming of all objects and users. Some of these rules are
specific to the platform you are working on. For example, there is a rule
regarding the use of upper and lower case letters in a name.
v On UNIX platforms, names must be in lower case.
v On OS/2, names must be in upper case.
v On Windows platforms, names can be in upper, lower, and mixed-case.

See “Appendix D. Naming Rules” on page 691 for other naming rules.

The db2icrt command creates the main SQL library (sqllib) directory under the
home directory of the instance owner.

Selecting an Authentication Method for Your Server

Access to an instance or a database first requires that the user be authenticated.
The authentication type for each instance determines how and where a user
will be verified. The authentication type is stored in the database manager
configuration file at the server. It is initially set when the instance is created.
Refer to “Configuring DB2” in Administration Guide, Performance for more
information on this database manager configuration parameter. There is one
authentication type per instance, which covers access to that database server
and all the databases under its control.

If you intend to access data sources from a federated database, you must
consider data source authentication processing and definitions for federated
authentication types. See “Federated Database Authentication Processing” on
page 299 for more information.

The following authentication types are provided:

SERVER
Specifies that authentication occurs on the server using local operating
system security. If a user ID and password are specified during the
connection or attachment attempt, they are compared to the valid user
ID and password combinations at the server to determine if the user
is permitted to access the instance. This is the default security
mechanism.

Chapter 6. Controlling Database Access 287

Note: The server code detects whether a connection is local or remote.
For local connections, when authentication is SERVER, a user
ID and password are not required for authentication to be
successful.

If the remote instance has SERVER authentication, the user ID and
password must be provided by the user or retrieved by DB2 and
provided to the server for validation even though the user has already
logged on to the local machine or to the domain.

SERVER_ENCRYPT
Specifies that the server accepts encrypted SERVER authentication
schemes. If the client authentication is not specified, the client is
authenticated using the method selected at the server.

If the client authentication is DCS or SERVER, the client is
authenticated by passing the user ID and password to the server. If
the client authentication is DCS_ENCRYPT or SERVER_ENCRYPT, the
client is authenticated by passing a user ID and encrypted password.

If SERVER_ENCRYPT is specified at the client and SERVER is
specified at the server, an error is returned because of the mismatch in
the authentication levels.

CLIENT
Specifies that authentication occurs on the database partition where
the application is invoked using operating system security. The user
ID and password specified during a connection or attachment attempt
are compared with the valid user ID and password combinations on
the client node to determine if the user ID is permitted access to the
instance. No further authentication will take place on the database
server.

If the user performs a local or client login, the user is known only to
that local client workstation.

If the remote instance has CLIENT authentication, two other
parameters determine the final authentication type: trust_allclnts and
trust_clntauth.

CLIENT level security for TRUSTED clients only:

Trusted clients are clients that have a reliable, local security system.
Specifically, all clients are trusted clients except for Macintosh,
Windows 3.1, and Windows 95 operating systems.

When the authentication type of CLIENT has been selected, an
additional option may be selected to protect against clients whose
operating environment has no inherent security.

288 Administration Guide Design and Implementation

To protect against unsecured clients, the administrator can select
Trusted Client Authentication by setting the trust_allclnts parameter to
NO. This implies that all trusted platforms can authenticate the user
on behalf of the server. Untrusted clients are authenticated on the
Server and must provide a user ID and password. You use the
trust_allclnts configuration parameter to indicate whether you are
trusting clients. The default for this parameter is YES.

Note: It is possible to trust all clients (trust_allclnts is YES) yet have
some of those clients as those who do not have a native safe
security system for authentication.

You may also want to complete authentication at the server even for
trusted clients. To indicate where to validate trusted clients, you use
the trust_clntauth configuration parameter. The default for this
parameter is CLIENT. Refer to “Configuring DB2” in Administration
Guide, Performance for more information on this parameter.

Note: For trusted clients only, if no user ID or password is explicitly
provided when attempting to CONNECT or ATTACH, then
validation of the user takes place at the client. The
trust_clntauth parameter is only used to determine where to
validate the information provided on the USER/USING clauses.

To protect against all clients except DRDA clients from DB2 for MVS
and OS/390, DB2 for VM and VSE, and DB2 for OS/400, set the
trust_allclnts parameter to DRDAONLY. Only these clients can be
trusted to perform client-side authentication. All other clients must
provide a user ID and password to be authenticated by the server.

The trust_clntauth parameter is used to determine where the above
clients are authenticated: if trust_clntauth is ″client″, authentication
takes place at the client. If trust_clntauth is ″server″, authentication
takes place at the client when no password is provided and at the
server when a password is provided.

Chapter 6. Controlling Database Access 289

Table 24. Authentication Modes using TRUST_ALLCLNTS and TRUST_CLNTAUTH Parameter
Combinations.

TRUST_
ALLCLNTS

TRUST_
CLNTAUTH

Untrusted
non–
DRDA
Client
Authen-
tication
no
password

Untrusted
non–
DRDA
Client
Authen-
tication
with
password

Trusted
non–
DRDA
Client
Authen-
tication
no
password

Trusted
non–
DRDA
Client
Authen-
tication
with
password

DRDA
Client
Authen-
tication
no
password

DRDA
Client
Authen-
tication
with
password

YES CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT

YES SERVER CLIENT SERVER CLIENT SERVER CLIENT SERVER

NO CLIENT SERVER SERVER CLIENT CLIENT CLIENT CLIENT

NO SERVER SERVER SERVER CLIENT SERVER CLIENT SERVER

DRDAONLY CLIENT SERVER SERVER SERVER SERVER CLIENT CLIENT

DRDAONLY SERVER SERVER SERVER SERVER SERVER CLIENT SERVER

DCS Primarily used to catalog a database accessed using DB2 Connect.
(Refer to the DB2 Connect User’s Guide section on Security for more
details on this topic.) When it is used to specify the authentication
type for an instance in the database manager configuration file, it
means the same as for authentication SERVER, unless the server is
being accessed via the Distributed Relational Database Architecture
(DRDA) Application Server (AS) architecture using the Advanced
Program-To-Program Communications (APPC) protocol. In this case,
using DCS indicates that authentication will occur at the server, but
only in the APPC layer. Further authentication will not occur in the
DB2 code. This value is only supported when the APPC SECURITY
parameter for the connection is specified as SAME or PROGRAM.

DCS_ENCRYPT
Specifies that DB2 Connect accepts encrypted SERVER authentication
schemes. If the client authentication is not specified, the client is
authenticated using the method selected at the server.

If the client authentication is DCS or SERVER, the client is
authenticated by passing the user ID and password to DB2 Connect. If
the client authentication is DCS_ENCRYPT or SERVER_ENCRYPT, the
client is authenticated by passing a user ID and encrypted password.

If DCS_ENCRYPT is specified at the client and DCS is specified at the
server, an error is returned because of the mismatch in the
authentication levels.

DCE Specifies that the user is authenticated using DCE Security Services.
For more information on DCE Security, see “Using DCE Security
Services to Authenticate Users” on page 293.

290 Administration Guide Design and Implementation

DCE_SERVER_ENCRYPT
Specifies that the server accepts DCE authentication or encrypted
SERVER authentication schemes. If the client authentication is DCE or
not specified, the client is authenticated using DCE Security Services.
For more information on DCE Security, see “Using DCE Security
Services to Authenticate Users” on page 293.

If the client authentication is SERVER or DCS, the client is
authenticated by passing the user ID and password to the server. If
the client authentication is SERVER_ENCRYPT or DCS_ENCRYPT, the
client is authenticated by passing a user ID and encrypted password.
The authentication type of the client cannot be specified as
DCE_SERVER_ENCRYPT. If the authentication type of an instance is
specified as DCE_SERVER_ENCRYPT, all local applications will use
DCE as the authentication scheme. This also applies for any utility
commands that do not require a database connection or an instance
attachment.

In addition to allowing a mix of DCE and SERVER_ENCRYPT
authentication types, the DCE_SERVER_ENCRYPT authentication type
also alleviates one of the limitations when using groups within DCE.
When the authentication type is set to DCE_SERVER_ENCRYPT, the
assumption is that the group list being requested other than at
authentication time, come from the base operating system and not
from DCE. You, as the administrator, can then set up a user on the
server to match the short DCE name in order to provide group list
support outside that which is supported at authentication time.

Notes:

1. The type of authentication you choose is important only if you have
remote database clients accessing the database or when you are using
federated database functionality. Most users accessing the database
through local clients are always authenticated on the same machine as the
database. An exception can exist when DCE Security Services are used. For
information about supporting and using remote clients, refer to your Quick
Beginnings manual.

2. Do not inadvertently lock yourself out of your instance when you are
changing the authentication information, since access to the configuration
file itself is protected by information in the configuration file. The
following database manager configuration file parameters control access to
the instance:
v AUTHENTICATION *
v SYSADM_GROUP *
v TRUST_ALLCLNTS
v TRUST_CLNTAUTH

Chapter 6. Controlling Database Access 291

v SYSCTRL_GROUP
v SYSMAINT_GROUP

* Indicates the two most important parameters, and those most likely to
cause a problem.

There are some things that can be done to ensure this does not happen: If
you do accidentally lock yourself out of the DB2 system, you have a
fail-safe option available on all platforms that will allow you to override
the usual DB2 security checks to update the database manager
configuration file using a highly privileged local operating system security
user. This user always has the privilege to update the database manager
configuration file and thereby correct the problem. However, this security
bypass is restricted to a local update of the database manager
configuration file. You cannot use a fail-safe user remotely or for any other
DB2 command. This special user is identified as follows:
v UNIX platforms: the instance owner
v NT platform: someone belonging to the local “administrators” group
v OS/2 platform: a UPM administrator
v Other platforms: there is no local security on the other platforms, so all

users pass local security checks anyway
3. See “Appendix J. How DB2 for Windows NT Works with Windows NT

Security” on page 807 for additional information on Windows NT Security.

Authentication Considerations for Remote Clients

When cataloging a database for remote access, the authentication type may be
specified in the database directory entry.

For databases accessed using DB2 Connect: If a value is not specified, SERVER
authentication is assumed.

For databases accessed remotely but not using DB2 Connect: The
authentication type is not required. However, if it is not specified the client
must first contact the server to obtain the value before beginning the
authentication flow. If specified, authentication can begin immediately
provided the value specified matches that at the server. If a mismatch is
detected: DB2 attempts to recover, which may result in more flows to
reconcile the difference, or in an error if DB2 cannot recover. In the case of a
mismatch, the value at the server is assumed to be correct.

292 Administration Guide Design and Implementation

Partitioned Database Considerations

In a partitioned database, each partition of the database must have the same
set of users and groups defined. If the definitions are not the same, the user
may be authorized to do different things on different partitions. Consistency
across all partitions is recommended.

Using DCE Security Services to Authenticate Users

When considering security for your distributed database environment,
Distributed Computing Environment (DCE) Security Services are a good
option because DCE provides:
v Centralized administration of users and passwords.
v No transmission of clear text passwords and user IDs.
v A single sign-on for users.

DB2 supports DCE default login contexts, connection login contexts, and
delegated contexts. A default login context is established when a user does a
dce_login on a client. Subsequent DB2 commands have access to this context
and may perform user authentication without further user intervention (that
is, no requirement for a user ID or password). A connection login context is
established for a DB2 session using the user ID and password provided on
CONNECT or ATTACH using the USER/USING clause. Finally, a delegated
login context occurs when a DB2 client is used as part of a DCE server
application. The DCE server application (that is also a DB2 client), receives
requests from a DCE client application, from which point the original identity
of the user originates. Provided the DCE client and DCE server are correctly
configured to allow the DCE server to be a delegate for the DCE client, DB2
will obtain the delegated token and forward this to the DB2 server. This
allows the DB2 server to use the original identity of the DCE client, rather
than using the identity of the DCE server, to process requests. Information on
how to establish a delegated login context can be obtained from the DCE
documentation for your platform.

Note: There are several vendor products that support DCE. To ensure that
DB2 UDB for Windows NT can work with IBM’s DCE product in the
area of security services, two new DLLs have been provided:
db2dces.ibm and db2dcec.ibm. (These DLL files are only appropriate for
Windows NT.) If you purchase and use IBM’s DCE product for security
services, these two files must be copied to db2dces.dll and
db2dcec.dll respectively. If you are considering another vendor’s DCE
product, you should contact the vendor service organization and the
DB2 UDB service organization to discuss whether the vendor’s DCE
implementation for security services will work with DB2 UDB.

Chapter 6. Controlling Database Access 293

How to Setup a DB2 User for DCE

Users must be registered in the Distributed Computing Environment (DCE)
Registry and have correct attributes before being used with DB2. See the
appropriate platform-specific DCE documentation for information on how to
create a DCE principal.

Each DB2 user wishing to use a DCE-authenticated server must have a DCE
principal and account defined in the DCE Registry with the client flag
enabled. This principal must also have an entry in its Extended Registry
Attributes (ERA) section showing what authorization name will be used for
this principal when it connects to a particular DCE authenticated server.

You may also wish to have user principals be members of groups in order to
use group privileges in the database. Similar information in the group ERA
maps the group name to a DB2 authorization name. The authorization name
is a secondary authorization name but the same restrictions apply. Please refer
to your DCE documentation for additional information on how to create
groups and add members.

The information in the ERA maps a user’s DCE principal or group name to a
DB2 authorization name for a particular server DCE principal name. To use
an ERA, an ERA schema indicating the format of this attribute must be
defined. This needs to be done once per DCE cell and is accomplished by
completing the following steps:
1. Login to DCE as a valid DCE administrator
2. Invoke dcecp and enter the following at the prompt:

> xattrschema create /.:/sec/xattrschema/db2map \
> -aclmgr {{principal r m r m } {group r m r m }} \
> -annotation {Schema entry for DB2 database access} \
> -encoding stringarray \
> -multivalued no \
> -uuid 1cbe84ca-9df3-11cf-84cd-02608c2cd17b

This creates the Extended Registry Attribute db2map.

To view this mapping, issue the following command at the dcecp prompt:
> xattrschema show /.:/sec/xattrschema/db2map

You will see the following:
{axlmgr
{{principal {{query r} {update m} {test r} {delete m}}}
{group {{query r} {update m} {test r} {delete m}}}}}

{annotation {Schema entry for DB2 database access}}
{applydefs no}
{intercell rejects}
{multivalued no}

294 Administration Guide Design and Implementation

{reserved no}
{scope {}}
{trigbind {}}
{trigtype none}
{unique no}
{uuid 1cbe84ca-9df3-11cf-84cd-02608c2cd17b}

Note: Restrictions on the contents of the authorization name recorded in the
ERA are not enforced by DCE. If a DCE principal or group is given an
invalid authorization name, an error results when an attempt is made
by DB2 to authenticate that user. (Recall that authentication may occur
at CONNECT, ATTACH, DB2START, or any other operation where
authentication is required.) It is also highly recommended that you
ensure the assignment of authorization names to DCE principals is
one-to-one and unique. DCE does not check these conditions.

If a DB2 client is to access a DB2 UDB server, once they are registered as DCE
principals, the ERA information must be added to provide the mapping from
the principal name to the authorization name. This must be done once for
each user or group; and, is accomplished by completing the following steps:
v Login to DCE as a valid DCE administrator
v Invoke dcecp and at the prompt enter the following:

> principal modify principal_name \
> -add {db2map map_1 map_2...map_n}

where map_n uses the following format:
DCE_server_principal,DB2_authid

where DCE_server_principal is a valid DCE principal name for a DB2 UDB
server (or is the wildcard * which indicates this mapping is valid for any
DB2 server not already specified in another map_n entry) and DB2_authid is
a valid DB2 authorization name.

If a DCE group is to be used for a DCE principal, it must also have a
mapping to a DB2 authid which has the proper authority such as SYSADM
or SYSCTRL authority.

Please note that the authorization identifier (authid) specified in the DCE
schema used to map a DCE principal name to a DB2 authid must be
specified in uppercase. Use of a lowercase or mixed case authid will result
in an error.

How to Setup a DB2 Server to Use DCE

Servers must be registered principals in the Distributed Computing
Environment (DCE) Registry and have correct attributes before being used

Chapter 6. Controlling Database Access 295

with DB2. See the appropriate platform-specific DCE documentation for
information on how to create a DCE server principal.

The DCE Security client runtime code must be installed and accessible by the
server instance.

Each DB2 server that wishes to use DCE as an authentication mechanism
must register with DCE at the time of issuing DB2START. To avoid having to
do this manually, DCE provides a method whereby a server maintains its own
user ID and password (key) information in a special file called a keytab file. At
DB2START, DB2 reads the database manager configuration file and obtains the
authentication type for the instance. If it finds the authentication type is DCE,
DCE calls are made by the DB2 server to obtain the information from the
keytab file. It is this information that is used to register the server with DCE.
This registration allows the server to accept DCE tokens from DCE clients and
to use them to authenticate these users.

The instance administrator must create the keytab file for the instance using
DCE commands. Detailed information on how to create a keytab file is
included in the DCE documentation for your platform. In that document, refer
to the details associated with the keytab file and the commands dcecp keytab or
rgy_edit. The DB2 keytab file must be named keytab.db2 and must reside in the
security subdirectory of the sqllib directory for the instance. (For Intel-based
operating systems, the file must reside in the security subdirectory of the
INSTANCENAME subdirectory of the sqllib directory. INSTANCENAME is the
instance name of the database you are working with.) It should contain only
one entry for the server principal for the specified instance; anything else
results in an error at DB2START time. On UNIX operating system platforms,
this file must be protected with file permissions to only allow read/write for
the instance owner.

Following is an example of the creation of the keytab file:
v Login to DCE as a valid DCE user
v Invoke rgy_edit, and enter the following at the prompt:

> ktadd -p principal_name -pw principal_password \
> -f keytab.db2

To start DB2 using DCE authentication once the DCE configuration is
complete, you must tell DB2 it is to use DCE authentication by updating the
database manager configuration file with authentication type “DCE”. This is
done by issuing the following CLP command:

db2 update database manager configuration using authentication DCE
sysadm_group DCE_group_name

296 Administration Guide Design and Implementation

Then perform a dce_login to a valid DB2 DCE user who has SYSADM
authority and issue DB2START.

Note: Before starting DB2 using DCE authentication, ensure you have defined
a DCE user principal to be used as your SYSADM for the instance so
that you have a valid DCE user ID from which to start, stop, and
administer the instance. Please see “How to Setup a DB2 User for
DCE” on page 294 for instructions on how to do this.

In addition to these instructions, ensure the principal created is a
member of the SYSADM_GROUP for the instance. By default, this
group name is DB2ADMIN for DCE authentication when no group is
explicitly specified (that is, when the SYSADM_GROUP is null), but it
can be updated before changing the authentication type for the instance
to a group name (authorization name) of your choice. The DCE group
that you select must have an ERA defined that maps it to the specified
SYSADM_GROUP authorization name.

One of the functions of the DB2 Administration Server is to start DB2
instances. When AUTHENTICATION = DCE, the DCE principal used
in the DB2 keytab file for the instance must have a valid DCE principal
to DB2 authid mapping. This mapping is required for the DB2
Administration Server to start the DB2 instance. The valid mapping
allows this ID to act as a client as well as a server.

How to Setup a DB2 Client Instance to Use DCE

A client-only instance may be established to use DCE authentication for local
operations by updating the database manager configuration file and setting
the authentication type to DCE. There is no requirement to have a keytab file
for a client-only instance since there is no server that needs to register to DCE.
In general, it is not recommended (or required) that a client-only DB2 instance
use DCE authentication, but it is supported.

A client that wishes to access a remote database using DCE security requires
access to the applicable DCE Security product. Optionally, the client may
choose to catalog the authentication type for the target database in the
database directory. If the client chooses to specify DCE authentication, the
fully-qualified DCE server principal name must also be specified. If DCE
authentication is not specified in the directory, the authentication and
principal information is obtained from the server at CONNECT time.

Chapter 6. Controlling Database Access 297

DB2 Restrictions Using DCE Security

Using DCE authentication places some restrictions on certain SQL functions
provided by DB2 and related to group support. The following restrictions
exist when using DCE authentication:
1. When using the GRANT or REVOKE statements, the keywords USER and

GROUP must be specified to qualify the authorization name specified,
otherwise an error is issued.

2. When using the AUTHORIZATION clause of the CREATE SCHEMA
statement, the group membership of the authorization name specified will
not be considered in evaluating the authorizations required to perform the
statements that follow this clause. This may result in an authorization
failure during execution of the CREATE SCHEMA statement.

3. When a package is rebound by a user other than the original binder of the
package, the privileges of the original binder are reevaluated. In this case,
group membership of the original binder are not considered when
reevaluating privileges. This may result in an authorization failure during
rebinding.

DCE authentication as performed by DB2 flows DCE Tickets obtained using
the OSF DCE Generic Security Services Application Programming Interface
(GSSAPI). As such, all authentication for DCE Security takes place at the
database protocol layer. Certain communication mechanisms may provide
additional communication layer security, which is not necessarily integrated
with DCE. In cases where the communication layer authentication can be kept
entirely independent of the database protocol layer authentication, no
restrictions will be enforced. However, the criteria for both the database
protocol layer and the communication layer authenticating must be satisfied
before a connection can be successfully established. In cases where the
database protocol layer and the communication protocol layer authentication
mechanisms interact, their use may be restricted if some combinations result
in a security exposure.

DCE authentication may be used in conjunction with TCPIP SOCKS support;
however, the two security mechanisms work independent of one another. This
may mean that not only must the user provide a valid DCE login context, but
must also be logged on to a local operating system user ID that meets the
criteria of the SOCKS Server.

DCE authentication may be used in conjunction with NT Named Pipes;
however, the two security mechanisms work independent of one another. Not
only must the user provide a valid DCE login context, but he must also be
logged on to the NT Domain to a user ID that meets the criteria for the NT
Named Pipes support.

298 Administration Guide Design and Implementation

In order to address possible confusion where DCE principals and local
operating system user IDs are both used for authentication, as in the above
two examples, an integrated DCE logon can be used. In this case, when
logging on to a system, the user is automatically logged into the appropriate
DCE principal as well. See the DCE documentation for your platform for
details on how to use this feature, if it is supported. Note that in using this
approach, the same name is used for the DCE principal and the local
operating system ID. This may mean that the same value that is contained in
the DCE encrypted ticket also flows on the wire unencrypted in the
communication layer.

DCE authentication can only be used with APPC communications when the
SECURITY parameter is set to NONE. This is to avoid the possibility of
sending an unencrypted principal and/or password in the communication
layer, while using an encrypted DCE token for the same principal in the
database protocol layer. DCE Security at the APPC layer is not supported by
DB2 at this time.

Federated Database Authentication Processing

If you have installed the distributed join installation feature and set the DBM
configuration variable federated to ’YES’, your DB2 system is operating as a
federated system. Database authentication settings in a federated system differ
slightly from standard DB2 definitions. More importantly, in a federated
system you must consider the authentication requirements of your data
sources. In general, data sources (DB2, Oracle, DB2 for OS/390, and so on) are
set up to require authentication. That means you must ensure that IDs and
passwords (as required) can flow to data sources. DB2 provides several
methods for supporting authentication at data sources, all of which are
explained in this section.

Authentication Settings

SERVER
Specifies that clients connecting to DB2 provide a user ID and
password to access DB2. In this case a user ID and password are
available for transmission to data sources. You control what is actually
passed to the data sources through server options and user mappings,
but authentication information is available for transmission to the data
source.

CLIENT
Specifies that authentication takes place on the database partition
where the application is invoked using operating system security. No
passwords are available for transmission directly to data sources. In
this case, if a data source requires authentication, you must create one

Chapter 6. Controlling Database Access 299

or more user mappings. You must also ensure that server options are
set properly to transmit correct user ID and password information to
the data source.

Exercise extreme caution when using CLIENT authentication.
Consider this form of authentication only for secure networks. A user
has SYSADM authority for the federated database when the following
conditions are met:
v Authentication is set to CLIENT.
v The user has root status at the client.
v The user knows the SYSADM’s authorization name.
v The user defines an authorization name on the client that is the

same as the SYSADM’s on DB2.

DCS Specifies that authentication takes place at a data source–not DB2. In
this case, standard DB2 authentication processing is bypassed. User
IDs and passwords are passed directly to data sources, depending on
server option settings. Authentication takes place only at Oracle or
DB2 Family data sources.

Exercise caution when authentication is set to DCS. Authentication is
done at neither the client nor at DB2. Any user who knows the
SYSADM authentication name can assume SYSADM authority for the
federated server.

DCE If authentication is set to DCE, only a user ID is available for
transmission to data sources. No password is available. If a data
source requires authentication processing (user ID and password), you
must define a user mapping that will transmit a password (and
possibly a user ID) to the data source. If the data source trusts the
DB2 connection, user mappings are not required because the ID
received from the external security system can be passed to the data
source.

Other DB2 authentication settings are possible, and one or more can result in
the availability of a password at DB2 for transmission to data sources. If DB2
and client authentication settings result in the transmission of a password to
DB2, that password is available for additional authentication processing at
data sources. See Table 24 on page 290 for more information.

Passing IDs and Passwords to Data Sources

There are four ways to control the transmission of authentication information
to data sources: DB2 authentication settings, user mappings, server options,
and APPC security settings:

300 Administration Guide Design and Implementation

Authentication Settings

The purpose of this section is to clarify how authentication settings influence
global authentication processing in a federated system (the definitions for
authentication settings are in “Authentication Settings” on page 299). For
example, if DB2 authentication is set to SERVER or DCS, a user ID and
password are required for a connection. Therefore, a user ID and password
are available for transmission to data sources. If authentication is set to DCE
or CLIENT, and authentication is not taking place at the DB2 system
containing the federated database, only a user ID is available. If data source
authentication processing requires a password (or perhaps a different user ID
and a password), you must create a user mapping. If authentication is set to
CLIENT, and the trust_clntauth parameter setting is SERVER, it is possible that
a password is sent to DB2 and that it is available for transmission to data
sources.

User Mappings

DB2 can send either the authorization name used to connect to DB2 or an
authorization name defined at DB2. User mappings store authorization names
defined at DB2. They are created with the CREATE USER MAPPING
statement.

User mappings are flexible: you can map an ID to a new ID and password or
just a password. You can use them to provide missing information or to
change an ID and password to values accepted at the data source.

To create or alter a user mapping, you must hold one of the SYSADM or
DBADM authorities, or your authentication ID must match the authorization
name specified for the statement.

An example of a user mapping statement is:
CREATE USER MAPPING FOR "SHAWN" SERVER DB21 OPTIONS (REMOTE_AUTHID "SHAWNBCA",
REMOTE_PASSWORD "MAPLELEAF")

where a DB2 authentication ID (SHAWN) is mapped to the remote ID
SHAWNBCA and remote password MAPLELEAF for a server named DB21.

If the only difference between the authorization name (or password) at DB2
and the authorization name (or password) at the data source is the case of the
passed string, consider using server options to fold the case to the desired
setting instead of creating new IDs and passwords. See “Server Options” on
page 302 for more information.

You must create a user mapping when your authentication setting is DCE and
a data source requires authentication processing (a password is expected). DB2

Chapter 6. Controlling Database Access 301

will only pass the DCE user ID to data sources. A password must be mapped
to that user ID and then sent to the data source.

Server Options

Server options can be used to provide overall authentication support. Use
them to indicate if passwords are passed to data sources (typically yes) and
whether user IDs and passwords need to be folded to uppercase or lowercase.
Server options are set using the CREATE SERVER, ALTER SERVER, and SET
SERVER OPTION statements.

Server options specific to authentication processing are discussed in the rest of
this section. A more complete list of server options is in “Using Server
Options to Help Define Data Sources and Facilitate Authentication Processing”
on page 192.

Password Server Option: The default setting for password is ’Y’ (passwords
are sent to data sources). Leave or set this option to ’Y’ for all cases where a
data source will perform authentication and is not expecting an encrypted
password.

DB2 can transmit encrypted passwords. Set the server option password to
’ENCRYPTION’ if passwords should be sent in an encrypted form to DB2
Family data sources. It is recommended that you set password to
’ENCRYPTION’ if your authentication setting at DB2 is DCS_ENCRYPT or
SERVER_ENCRYPT.

A user ID is always sent to data sources.

ID and Password Folding Options: Authorization names and passwords, in
some cases, might need to change. Different data sources can have different
authorization name and password requirements (regarding the use of
uppercase or lowercase) for IDs and passwords.

DB2 provides two server options that can help you resolve naming
differences. The option names are fold_id and fold_pw, and their settings are:

’U’ DB2 folds the authorization name or password to uppercase before
sending it to the data source.

’N’ DB2 does not fold the authorization name or password.

’L’ DB2 folds the authorization name or password to lowercase before
sending it to the data source.

null DB2 first sends the authorization name or password as uppercase; if
that fails, DB2 folds it to lowercase and sends it again.

302 Administration Guide Design and Implementation

The null setting might seem attractive because it covers many possibilities.
However, from a performance perspective, it is best to set these options so
that only one attempt is made for connections. If both the fold_id and
fold_pw options are set to null, it is possible that DB2 will make four attempts
to send the authorization name and password:

1. Both authorization name and password in uppercase.
2. Authorization name in uppercase and password in lowercase.
3. Authorization name in lowercase and password in uppercase.
4. Both authorization name and password in lowercase.

APPC Security Settings

If you are connecting to a DRDA data source, across APPC, that requires a
user ID and password, or if your authentication setting is DCS and you are
authenticating at a DRDA data source, ensure that your APPC security setting
is PROGRAM for the connection between DB2 and that data source.

Federated Database Authentication Example

This section provides an overview of federated system authentication and
authorization steps. See Figure 23 on page 304 for an overview of federated
database authentication and authorization processing.

Chapter 6. Controlling Database Access 303

The task in this scenario is to enable the user DJINSTL to perform a UNION
operation against two nicknames (NN1 and NN2). The nicknames represent
two tables. One data source is a DB2 for OS/390 system where DJINSTL has a
different user ID and password (see Figure 23) named MVS1. A user mapping
will be required to access information at MVS1. The other data source is a
DB2 system where DJINSTL’s ID and password are the same. This data
source, DB21, simply requires that the user ID and password are sent in
uppercase.

DB2 authentication is set to SERVER. DJINSTL will access DB2 from a
Windows NT client across a TCP/IP connection. The connection from DB2 to
DB2 for OS/390 is also TCP/IP. The federated database name is DJDB1.

First ensure that DB2 is expecting a password and that a password is being
sent. Also, ensure that the client and server authentication types match. Check
the DB2 server authentication type by issuing the command:

GET DATABASE MANAGER CONFIGURATION

from the DB2 server. Check the client authentication type by issuing the
command:

LIST DATABASE DIRECTORY

Figure 23. Federated Database Authentication and Authorization Processing

304 Administration Guide Design and Implementation

from the client. In both cases, ensure that authentication is set to SERVER. If
the setting for the client is DCS or CLIENT, you can change it by using the
UNCATALOG DATABASE and CATALOG DATABASE commands.

Next, ensure that passwords will be sent to the data sources. After connecting
to the federated database DJDB1, issue the commands:

ALTER SERVER MVS1 OPTIONS (SET password 'Y')
ALTER SERVER DB21 OPTIONS (SET password 'Y')

Next, ensure that passwords are sent to the DB21 data source in the proper
case:

ALTER SERVER DB21 OPTIONS (ADD fold_id 'U')
ALTER SERVER DB21 OPTIONS (ADD fold_pw 'U')

The next step is to grant privileges allowing the user DJINSTL to connect to
the federated database DJDB1 and select nicknames:

GRANT CONNECT ON DATABASE DJDB1 TO DJINSTL;

Now, map DJINSTL’s DB2 ID and password to the correct user ID and
password for the MVS1 server:

CREATE USER MAPPING FOR "DJINSTL" SERVER MVS1 OPTIONS (REMOTE_AUTHID "SHAWN",
REMOTE_PASSWORD "MVS4YOU")

At this point, the DB2 user ID DJINSTL can send requests to data sources.
Additional steps might be required to access data source objects referenced by
nicknames (privileges are usually required for tables and views referenced by
nicknames).

Privileges, Authorities, and Authorization

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects
for which they have the appropriate authorization, that is, the required
privilege or authority.

The following authorities exist:
v “System Administration Authority (SYSADM)” on page 307

v “Database Administration Authority (DBADM)” on page 310

v “System Control Authority (SYSCTRL)” on page 308

v “System Maintenance Authority (SYSMAINT)” on page 309.

Chapter 6. Controlling Database Access 305

The following types of privileges exist:

v “Database Privileges” on page 310

v “Schema Privileges” on page 312

v “Table and View Privileges” on page 314

v “Nickname Privileges” on page 316

v “Server Privileges” on page 317

v “Package Privileges” on page 317

v “Index Privileges” on page 318.

Figure 24 illustrates the relationship between authorities and their span of
control (database, database manager).

A user or group can have one or more of the following levels of authorization:

v Administrative authority (SYSADM or DBADM) gives full privileges for a
set of objects.

v System authority (SYSCTRL or SYSMAINT) gives full privileges for
managing the system, but does not allow access to the data.

v Ownership privilege (also called CONTROL privilege in some cases) gives
full privileges for a specific object.

Figure 24. Hierarchy of Authorities

306 Administration Guide Design and Implementation

v Individual privileges may be granted to allow a user to carry out specific
functions on specific objects.

v Implicit privileges may be granted to a user who has the privilege to
execute a package. While users can run the application, they do not
necessarily require explicit privileges on the data objects used within the
package. For more information see “Allowing Indirect Privileges through a
Package” on page 322.

Users with administrative authority (SYSADM or DBADM) or ownership
privileges (CONTROL) can grant and revoke privileges to and from others,
using the GRANT and REVOKE statements. (See “Controlling Access to
Database Objects” on page 318.) It is also possible to grant a table, view, or
schema privilege to another user if that privilege is held WITH GRANT
OPTION. However, the WITH GRANT OPTION does not allow the person
granting the privilege to revoke the privilege once granted. You must have
SYSADM authority, DBADM authority, or CONTROL privilege to revoke the
privilege.

A user or group can be authorized for any combination of individual
privileges or authorities. When a privilege is associated with a resource, that
resource must exist. For example, a user cannot be given the SELECT
privilege on a table unless that table has previously been created.

Note: Care must be taken when an authorization name is given authorities
and privileges and there is no user created with that authorization
name. At some later time, a user can be created with that authorization
name and automatically receive all of the authorities and privileges
associated with that authorization name.

Refer to the Command Reference, the Administrative API Reference, or the SQL
Reference for information about what authorization is required for a particular
command, API, or SQL statement.

System Administration Authority (SYSADM)

SYSADM authority is the highest level of administrative authority. Users with
SYSADM authority can run utilities, issue database and database manager
commands, and access the data in any table in any database within the
database manager instance. It provides the ability to control all database
objects in the instance, including databases, tables, views, indexes, packages,
schemas, servers, aliases, data types, functions, procedures, triggers, table
spaces, nodegroups, buffer pools, and event monitors.

SYSADM authority is assigned to the group specified by the sysadm_group
configuration parameter (refer to “Configuring DB2” in Administration Guide,

Chapter 6. Controlling Database Access 307

Performance). Membership in that group is controlled outside the database
manager through the security facility used on your platform. Refer to the
Quick Beginnings for information on how to use your system security facility
to create, change, or delete SYSADM authorities.

Only a user with SYSADM authority can perform the following functions:
v Migrate a database
v Change the database manager configuration file (including specifying the

groups having SYSCTRL or SYSMAINT authority)
v Grant DBADM authority.

In addition, a user with SYSADM authority can perform the functions of users
with the following authorities:
v “System Control Authority (SYSCTRL)”

v “System Maintenance Authority (SYSMAINT)” on page 309

v “Database Administration Authority (DBADM)” on page 310

Note: When users with SYSADM authority create databases, they are
automatically granted explicit DBADM authority on the database. If the
database creator is removed from the SYSADM group, and if you want
to also prevent them from accessing that database as a DBADM, you
must explicitly revoke this DBADM authority.

System Control Authority (SYSCTRL)

SYSCTRL authority is the highest level of system control authority. This
authority provides the ability to perform maintenance and utility operations
against the database manager instance and its databases. These operations can
affect system resources, but they do not allow direct access to data in the
databases. System control authority is designed for users administering a
database manager instance containing sensitive data.

SYSCTRL authority is assigned to the group specified by the sysctrl_group
configuration parameter (refer to “Configuring DB2” in Administration Guide,
Performance). If a group is specified, membership in that group is controlled
outside the database manager through the security facility used on your
platform.

Only a user with SYSCTRL authority or higher can do the following:
v Update a database, node, or distributed connection services (DCS) directory
v Force users off the system
v Create or drop a database
v Drop, create, or alter a table space

308 Administration Guide Design and Implementation

v Restore to new database.

In addition, a user with SYSCTRL authority can perform the functions of
users with “System Maintenance Authority (SYSMAINT)” authority.

Users with SYSCTRL authority also have the implicit privilege to connect to a
database.

Note: When users with SYSCTRL authority create databases, they are
automatically granted explicit DBADM authority on the database. If the
database creator is removed from the SYSCTRL group, and if you want
to also prevent them from accessing that database as a DBADM, you
must explicitly revoke this DBADM authority.

System Maintenance Authority (SYSMAINT)

SYSMAINT authority is the second level of system control authority. This
authority provides the ability to perform maintenance and utility operations
against the database manager instance and its databases. These operations can
affect system resources, but they do not allow direct access to data in the
databases. System maintenance authority is designed for users maintaining
databases within a database manager instance that contains sensitive data.

SYSMAINT authority is assigned to the group specified by the sysmaint_group
configuration parameter (refer to “Configuring DB2” in Administration Guide,
Performance). If a group is specified, membership in that group is controlled
outside the database manager through the security facility used on your
platform.

Only a user with SYSMAINT or higher system authority can do the following:
v Update database configuration files
v Backup a database or table space
v Restore to an existing database
v Perform roll forward recovery
v Start or stop a database instance
v Restore a table space
v Run trace
v Take database system monitor snapshots of a database manager instance or

its databases.

A user with SYSMAINT, DBADM, or higher authority can do the following:
v Query the state of a table space

Chapter 6. Controlling Database Access 309

v Update log history files
v Quiesce a table space
v Reorganize a table
v Collect catalog statistics using the RUNSTATS utility.

Users with SYSMAINT authority also have the implicit privilege to connect to
a database.

Database Administration Authority (DBADM)

DBADM authority is the second highest level of administrative authority. It
applies only to a specific database, and allows the user to run certain utilities,
issue database commands, and access the data in any table in the database.
When DBADM authority is granted, BINDADD, CONNECT, CREATETAB,
CREATE_NOT_FENCED, and IMPLICIT_SCHEMA privileges are granted as
well. Only a user with SYSADM authority can grant or revoke DBADM
authority. Users with DBADM authority can grant privileges on the database
to others and can revoke any privilege from any user regardless of who
granted it.

Only a user with DBADM or higher authority can do the following:
v Read log files
v Create, activate and drop event monitors
v Run the load utility.

A user with DBADM, SYSMAINT, or higher authority can do the following:
v Query the state of a table space
v Update log history files
v Quiesce a table space.
v Reorganize a table
v Collect catalog statistics using the RUNSTATS utility.

Note: A DBADM can only perform the above functions on the database for
which DBADM authority is held.

Database Privileges

Figure 25 on page 311 shows the database privileges.

310 Administration Guide Design and Implementation

Database privileges involve actions on a database as a whole:

v CONNECT allows a user to access the database
v BINDADD allows a user to create new packages in the database
v CREATETAB allows a user to create new tables in the database
v CREATE_NOT_FENCED allows a user to create a user-defined function

(UDF) or procedure that is “not fenced”. UDFs or procedures that are “not
fenced” must be extremely well tested because the database manager does
not protect its storage or control blocks from these UDFs or procedures. (As
a result, a poorly written and tested UDF or procedure that is allowed to
run “not fenced” can cause serious problems for your system.) (Refer to the
Application Development Guide or the SQL Reference for more information.)

v IMPLICIT_SCHEMA allows any user to create a schema implicitly by
creating an object using a CREATE statement with a schema name that does
not already exist. SYSIBM becomes the owner of the implicitly created
schema and PUBLIC is given the privilege to create objects in this schema.

Only users with SYSADM or DBADM authority can grant and revoke these
privileges to and from other users.

Note: When a database is created, the following privileges are automatically
granted to PUBLIC:
v CREATETAB
v BINDADD
v CONNECT
v IMPLICIT_SCHEMA

Figure 25. Database Privileges

Chapter 6. Controlling Database Access 311

v SELECT privilege on the system catalog views.

To remove any privilege, a DBADM or SYSADM must explicitly revoke the
privilege from PUBLIC.

Implicit Schema Authority (IMPLICIT_SCHEMA) Considerations

When a new database is created, or when a database is migrated from the
previous release, PUBLIC is given IMPLICIT_SCHEMA database authority.
With this authority, any user can create a schema by creating an object and
specifying a schema name that does not already exist. SYSIBM becomes the
owner of the implicitly created schema and PUBLIC is given the privilege to
create objects in this schema.

If control of who can implicitly create schema objects is required for the
database, IMPLICIT_SCHEMA database authority should be revoked from
PUBLIC. Once this is done, there are only three (3) ways that a schema object
is created:
v Any user can create a schema using their own authorization name on a

CREATE SCHEMA statement.
v Any user with DBADM authority can explicitly create any schema which

does not already exist, and can optionally specify another user as the owner
of the schema.

v Any user with DBADM authority has IMPLICIT_SCHEMA database
authority (independent of PUBLIC) so that they can implicitly create a
schema with any name at the time they are creating other database objects.
SYSIBM becomes the owner of the implicitly created schema and PUBLIC
has the privilege to create objects in the schema.

A user always has the ability to explicitly create their own schema using their
own authorization name.

Schema Privileges

Schema privileges are in the object privilege category. Object privileges are
shown in Figure 26 on page 313.

312 Administration Guide Design and Implementation

Schema privileges involve actions on schemas in a database. A user may be
granted any of the following privileges:

v CREATEIN allows the user to create objects within the schema.
v ALTERIN allows the user to alter objects within the schema.
v DROPIN allows the user to drop objects from within the schema.

The owner of the schema has all of these privileges and the ability to grant
them to others. The objects that are manipulated within the schema object
include: tables, views, indexes, packages, data types, functions, triggers,
procedures, and aliases.

Figure 26. Object Privileges

Chapter 6. Controlling Database Access 313

Table and View Privileges

Table and view privileges involve actions on tables or views in a database. A
user must have CONNECT privilege on the database to use any of the
following privileges:
v CONTROL provides the user with all privileges for a table or view

including the ability to drop it, and to grant and revoke individual table
privileges. You must have SYSADM or DBADM authority to grant
CONTROL. The creator of a table automatically receives CONTROL
privilege on the table. The creator of a view automatically receives
CONTROL privilege only if they have CONTROL privilege on all tables
and views referenced in the view definition, or they have SYSADM or
DBADM authority.

v ALTER allows the user to add columns to a table, to add or change
comments on a table and its columns, to add a primary key or unique
constraint and to create or drop a table check constraint. The user can also
create triggers on the table, although additional authority on all the objects
referenced in the trigger (including SELECT on the table if the trigger
references any of the columns of the table) is required. A user with ALTER
privilege on all the descendent tables can drop a primary key; a user with
ALTER privilege on the table and REFERENCES privilege on the parent
table, or REFERENCES privilege on the appropriate columns, can create or
drop a foreign key. A user with ALTER privilege can also COMMENT ON a
table.

v DELETE allows the user to delete rows from a table or view.
v INDEX allows the user to create an index on a table. Creators of indexes

automatically have CONTROL privilege on the index. For more
information, see “Index Privileges” on page 318.

v INSERT allows the user to insert an entry into a table or view, and to run
the IMPORT utility.

v REFERENCES allows the user to create and drop a foreign key, specifying
the table as the parent in a relationship. The user might have this privilege
only on specific columns.

v SELECT allows the user to retrieve rows from a table or view, to create a
view on a table, and to run the EXPORT utility.

v UPDATE allows the user to change an entry in a table, a view, or for one or
more specific columns in a table or view. The user may have this privilege
only on specific columns.

The privilege to grant these privileges to others may also be granted using the
WITH GRANT OPTION on the GRANT statement.

Note: When a user or group is granted CONTROL privilege on a table, all
other privileges on that table are automatically granted WITH GRANT

314 Administration Guide Design and Implementation

OPTION. If you subsequently revoke the CONTROL privilege on the
table from a user, that user will still retain the other privileges that
were automatically granted. To revoke all the privileges that are
granted with the CONTROL privilege, you must either explicitly revoke
each individual privilege or specify the ALL keyword on the REVOKE
statement, for example:

REVOKE ALL
ON EMPLOYEE FROM USER HERON

When working with typed tables, there are implications regarding table and
view privileges.

Note: Privileges may be granted independently at every level of a table
hierarchy. As a result, a user granted a privilege on a supertable within
a hierarchy of typed tables may also indirectly affect any subtables.
However, a user can only operate directly on a subtable if the necessary
privilege is held on that subtable.

The supertable/subtable relationships among the tables in a table hierarchy
mean that operations such as SELECT, UPDATE, and DELETE will affect the
rows of the operation’s target table and all its subtables (if any). This behavior
can be called “substitutability”. For example, suppose that you have created
an Employee table of type Employee_t with a subtable Manager of type
Manager_t. A manager is a (specialized) kind of employee, as indicated by the
type/subtype relationship between the structured types Employee_t and
Manager_t and the corresponding table/subtable relationship between the
tables Employee and Manager. As a result of this relationship, the SQL query:

SELECT * FROM Employee

will return the object identifier and Employee_t attributes for both employees
and managers. Similarly, the update operation:

UPDATE Employee SET Salary = Salary + 1000

will give a thousand dollar raise to managers as well as regular employees.

A user with SELECT privilege on Employee will be able to perform this
SELECT operation even if they do not have an explicit SELECT privilege on
Manager. However, such a user will not be permitted to perform a SELECT
operation directly on the Manage subtable, and will therefore not be able to
access any of the non-inherited columns of the Manager table.

Similarly, a user with UPDATE privilege on Employee will be able to perform
an UPDATE operation on Employee, thereby affecting both regular employees
and managers, even without having the explicit UPDATE privilege on the
Manager table. However, such a user will not be permitted to perform

Chapter 6. Controlling Database Access 315

UPDATE operations directly on the Manager subtable, and will therefore not
be able to update non-inherited columns of the Manager table.

The following manuals provide information about the authorizations required
to execute specific commands, APIs, or SQL statements:
v SQL Reference

v Command Reference

v Administrative API Reference.

Refer to Administration Guide, Performance for information about the
authorization required to update catalog statistics.

For information about how view privileges are determined, refer to the
CREATE VIEW statement in the SQL Reference manual.

Nickname Privileges

Nickname privileges involve actions on nicknames in a database. These
privileges do not affect privileges on the data source objects referenced by
nicknames. A user must have CONNECT privilege on the database to use any
of the following privileges:
v CONTROL provides the user with all privileges for a nickname including

the ability to drop it, and to grant and revoke individual nickname
privileges. You must have SYSADM or DBADM authority to grant
CONTROL. The creator of a nickname automatically receives CONTROL
privilege on the nickname.

v ALTER allows the user to change column names in a nickname, add or
change the DB2 type that the column’s data type maps to, and set column
options for nickname columns.

v INDEX allows the user to create an index specification on a nickname.
Creators of index specifications automatically have CONTROL privilege on
the index.

v REFERENCES allows the user to create and drop a foreign key, specifying
the nickname as the parent in a relationship. The user may have this
privilege only on specific columns.

The privilege to grant these privileges to others can also be granted using the
WITH GRANT OPTION on the GRANT statement.

Note: When a user or group is granted CONTROL privilege on a nickname,
all other privileges on that nickname are automatically granted WITH
GRANT OPTION. If you subsequently revoke the CONTROL privilege
on the nickname from a user, that user will still retain the other
privileges that were automatically granted.

316 Administration Guide Design and Implementation

To access data source data, you must also have the proper authorization for
the objects at data sources referenced by nicknames.

When a user accesses a view that references one or more nicknames, that user
must be authorized to access the view and the objects that the nicknames
reference at data sources.

Server Privileges

There is one server privilege: PASSTHRU. This privilege controls which
authorization IDs can issue DDL and DML statements directly (pass-through
operations) to data sources.

DB2 provides two SQL statements to control pass-through operations:
v GRANT PASSTHRU, which grants the authority to issue SET PASSTHRU

statements against a data source and pass-through DML and DDL
statements to that data source.

v REVOKE PASSTHRU, which revokes the authority to issue SET PASSTHRU
statements against a data source and pass-through DML and DDL
statements to that data source.

A sample statement granting pass-through authorization to the user SHAWN
for the server ORACLE1 is:

GRANT PASSTHRU ON SERVER ORACLE1 TO USER SHAWN

For complete information on the syntax of PASSTHRU statements, see the
SQL Reference.

Package Privileges

A package is a database object that contains the information needed by the
database manager to access data in the most efficient way for a particular
application program. Package privileges enable a user to create and
manipulate packages. The user must have CONNECT privilege on the
database to use any of the following privileges:
v CONTROL provides the user with the ability to rebind, drop, or execute a

package as well as the ability to extend those privileges to others. The
creator of a package automatically receives this privilege. A user with
CONTROL privilege is granted the BIND and EXECUTE privileges, and can
grant BIND and EXECUTE privileges to other users as well. To grant
CONTROL privilege, the user must have SYSADM or DBADM authority.

v BIND allows the user to rebind an existing package.
v EXECUTE allows the user to execute a package.

Chapter 6. Controlling Database Access 317

In addition to these package privileges, the BINDADD database privilege
allows users to create new packages or rebind an existing package in the
database.

Users with the authority to execute a package containing nicknames don’t
need additional privileges or an authority level for the nicknames within the
package; however, they will need to pass authentication checks at the data
sources containing the objects referenced by the nicknames. In addition,
package users must have the appropriate privileges or authority levels for
data source objects at the data source.

It is possible that packages containing nicknames might require additional
authorization steps because DB2 uses dynamic SQL when communicating
with DB2 Family data sources. The authorization ID running the package at
the data source must have the appropriate authority to execute the package
dynamically at that data source. See the SQL Reference for more information
about how DB2 processes static and dynamic SQL.

Index Privileges

The creator of an index or an index specification automatically receives
CONTROL privilege on the index. CONTROL privilege on an index is really
the ability to drop the index. To grant CONTROL privilege on an index, a
user must have SYSADM or DBADM authority.

The table-level INDEX privilege allows a user to create an index on that table
(see “Table and View Privileges” on page 314).

Controlling Access to Database Objects

Controlling data access requires an understanding of direct and indirect
privileges, administrative authorities, and packages. This section explains
these topics and provides some examples.

Directly granted privileges are stored in the system catalog. Methods for
auditing the implementation of the database access control plan are discussed
in “Using the System Catalog” on page 328.

Authorization is controlled in three ways:

v Explicit authorization is controlled through privileges controlled with the
GRANT and REVOKE statements

v Implicit authorization is controlled by creating and dropping objects
v Indirect privileges are associated with packages.

318 Administration Guide Design and Implementation

The following topics are discussed:
v “Granting Privileges”

v “Revoking Privileges” on page 320

v “Managing Implicit Authorizations by Creating and Dropping Objects” on
page 321

v “Allowing Indirect Privileges through a Package” on page 322

v “Controlling Access to Data with Views” on page 324

v “Monitoring Access to Data Using the Audit Facility” on page 327.

Granting Privileges

The GRANT statement allows an authorized user to grant privileges. A
privilege can be granted to one or more authorization names in one statement;
or to PUBLIC, which makes the privileges available to all users. Note that an
authorization name can be either an individual user or a group.

On operating systems where users and groups exist with the same name, you
should specify whether you are granting the privilege to the user or group.
Both the GRANT and REVOKE statements support the keywords USER and
GROUP. If these optional keywords are not used, the database manager
checks the operating system security facility to determine whether the
authorization name identifies a user or a group. If the authorization name
could be both a user and a group, an error is returned.

The following example grants SELECT privileges on the EMPLOYEE table to
the user HERON:

GRANT SELECT
ON EMPLOYEE TO USER HERON

The following example grants SELECT privileges on the EMPLOYEE table to
the group HERON:

GRANT SELECT
ON EMPLOYEE TO GROUP HERON

To grant privileges on most database objects, the user must have SYSADM
authority, DBADM authority, or CONTROL privilege on that object; or, the
user must hold the privilege WITH GRANT OPTION. Privileges can be
granted only on existing objects. To grant CONTROL privilege to someone
else, the user must have SYSADM or DBADM authority. To grant DBADM
authority, the user must have SYSADM authority.

Refer to the SQL Reference for more information about the GRANT statement.

Chapter 6. Controlling Database Access 319

Revoking Privileges

The REVOKE statement allows authorized users to revoke privileges
previously granted to other users. To revoke privileges on database objects,
you must have DBADM authority, SYSADM authority, or CONTROL privilege
on that object. Note that holding a privilege WITH GRANT OPTION is not
sufficient to revoke that privilege. To revoke CONTROL privilege from
another user, you must have SYSADM or DBADM authority. To revoke
DBADM authority, you must have SYSADM authority. Privileges can only be
revoked on existing objects.

Note: A user without DBADM authority or CONTROL privilege on a table or
view is not able to revoke a privilege that they granted through their
use of the WITH GRANT OPTION. Also, there is no cascade on the
revoke to those who have received privileges granted by the person
being revoked. For more information on the authority required to
revoke privileges, refer to the SQL Reference manual.

If a privilege has been granted to both a user and a group with the same
name, you must specify the GROUP or USER keyword when revoking the
privilege. The following example revokes the SELECT privilege on the
EMPLOYEE table from the user HERON:

REVOKE SELECT
ON EMPLOYEE FROM USER HERON

The following example revokes the SELECT privilege on the EMPLOYEE table
from the group HERON:

REVOKE SELECT
ON EMPLOYEE FROM GROUP HERON

Note that revoking a privilege from a group may not revoke it from all
members of that group. If an individual name has been directly granted a
privilege, it will keep it until that privilege is directly revoked.

If a table privilege is revoked from a user, privileges are also revoked on any
view created by that user which depends on the revoked table privilege.
However, only the privileges implicitly granted by the system are revoked. If
a privilege on the view was granted directly by another user, the privilege is
still held.

If an explicitly-granted table (or view) privilege is revoked from a user with
DBADM authority, privileges will not be revoked from other views defined
on that table. This is because the view privileges are available through the
DBADM authority and are not dependent on explicit privileges on the
underlying tables.

320 Administration Guide Design and Implementation

If you have defined a view based on one or more underlying tables or views
and you lose the SELECT privilege to one or more of those tables or views,
then the view cannot be used.

Note: When CONTROL privilege is revoked from a user on a table or a view,
the user continues to have the ability to grant privileges to others.
When given CONTROL privilege, the user also receives all other
privileges WITH GRANT OPTION. Once CONTROL is revoked, all of
the other privileges remain WITH GRANT OPTION until they are
explicitly revoked.

All packages that are dependent on revoked privileges are marked invalid,
but can be validated if rebound by a user with appropriate authority.
Packages can also be rebuilt if the privileges are subsequently granted again
to the binder of the application; running the application will trigger a
successful implicit rebind. If privileges are revoked from PUBLIC, all packages
bound by users having only been able to bind based on PUBLIC privileges are
invalidated. If DBADM authority is revoked from a user, all packages bound
by that user are invalidated including those associated with database utilities.
Attempting to use a package that has been marked invalid causes the system
to attempt to rebind the package. If this rebind attempt fails, an error occurs
(SQLCODE -727). In this case, the packages must be explicitly rebound by a
user with:
v Authority to rebind the packages
v Appropriate authority for the objects used within the packages

These packages should be rebound at the time the privileges are revoked.
Refer to the SQL Reference for more information about the REVOKE and
REBIND PACKAGE statements.

If you have defined a trigger based on one or more privileges and you lose
one or more of those privileges, then the trigger cannot be used.

Managing Implicit Authorizations by Creating and Dropping Objects

The database manager implicitly grants certain privileges to a user who issues
a CREATE SCHEMA, CREATE TABLE, CREATE VIEW, or CREATE INDEX
statement, or who creates a new package using a PREP or BIND command.
Privileges are also granted when objects are created by users with SYSADM
or DBADM authority. Similarly, privileges are removed when an object is
dropped.

When the created object is a table, index, or package, the user receives
CONTROL privilege on the object. When the object is a view, the CONTROL
privilege for the view is granted implicitly only if the user has CONTROL
privilege for all tables and views referenced in the view definition.

Chapter 6. Controlling Database Access 321

When the object explicitly created is a schema, the schema owner is given
ALTERIN, CREATEIN, and DROPIN privileges WITH GRANT OPTION. An
implicitly created schema has CREATEIN granted to PUBLIC.

For information about how view privileges are determined, refer to the
CREATE VIEW statement in the SQL Reference manual.

Establishing Ownership of a Plan or a Package

The BIND and PRECOMPILE commands create or change an application
package. On either one, use the OWNER option to name the owner of the
resulting package. There are simple rules for naming the owner of a package:
v Any user can name themselves as the owner. This is the default if the OWNER

option is not specified.
v An ID with SYSADM or DBADM authority can name any authorization ID

as the owner using the OWNER option.

Not all operating systems that can bind a package using DB2 database
products support the OWNER option.

Refer to the Command Reference for more information on the BIND and
PRECOMPILE commands.

Allowing Indirect Privileges through a Package

Access to data within a database can be requested by application programs, as
well as by persons engaged in an interactive workstation session. A package
contains statements that allow users to perform a variety of actions on many
database objects. Each of these actions requires one or more privileges.

Privileges granted to individuals binding the package and to PUBLIC are used
for authorization checking when static SQL is bound. Privileges granted
through groups are not used for authorization checking when static SQL is
bound. The user who binds a package must either have been explicitly
granted all the privileges required to execute the static SQL statements in the
package or have been implicitly granted the necessary privileges through
PUBLIC. PUBLIC, group, and user privileges are all used when checking to
ensure the user has the appropriate authorization (BIND or BINDADD
privilege) to bind the package.

Packages may include both static and dynamic SQL. To process a package
with static SQL, a user need only have EXECUTE privilege on the package.
This user can then indirectly obtain the privileges of the package binder for
any static SQL in the package but only within the restrictions imposed by the
package.

322 Administration Guide Design and Implementation

To process a package with any dynamic SQL statements, the user must have
EXECUTE privilege on the package. The user needs EXECUTE privilege on
the package plus any privileges required to execute the dynamic SQL
statements in the package. The binder’s authorities and privileges are used for
any static SQL in the package.

Allowing Indirect Privileges through a Package Containing Nicknames

When a package contains references to nicknames, authorization processing
for package creators and package users is slightly more complex. When a
package creator successfully binds packages that contain nicknames, the
package creator does not have to pass authentication checking or privilege
checking for the tables and views that the nicknames reference at the data
source. However, the package executor must pass authentication and
authorization checking at data sources.

For example, assume that a package creator’s .SQC file contains several SQL
statements. One static statement references a local table. Another dynamic
statement references a nickname. When the package is bound, the package
creator’s authid is used to verify privileges for the local table–but no checking
is done for the data source objects that the nickname identifies. When another
user executes the package, assuming they have the EXECUTE privilege for
that package, that user does not have to pass any additional privilege
checking for the statement referencing the table. However, for the statement
referencing the nickname, the user executing the package must pass
authentication checking and privilege checking at the data source.

When the .SQC file contains all dynamic SQL statements and a mixture of
table and nickname references, DB2 authorization checking for local objects
and nicknames is similar. Package users must pass privilege checking for any
local objects (tables, views) within the statements and also pass privilege
checking for nickname objects (package users must pass authentication and
privilege checking at the data source containing the objects that the nicknames
identify). In both cases, users of the package must have the EXECUTE
privilege.

The ID and password of the package executor is used for all data source
authentication and privilege processing. This information can be changed by
creating a user mapping.

Note: Nicknames cannot be specified in static SQL. Do not use the
DYNAMICRULES option (set to BIND) with packages containing
nicknames.

It is possible that packages containing nicknames might require additional
authorization steps because DB2 uses dynamic SQL when communicating

Chapter 6. Controlling Database Access 323

with DB2 Family data sources. The authorization ID running the package at
the data source must have the appropriate authority to execute the package
dynamically at that data source. See the SQL Reference for more information
about how DB2 processes static and dynamic SQL.

Controlling Access to Data with Views

A view provides a means of controlling access or extending privileges to a
table by allowing:
v Access only to designated columns of the table.

For users and application programs that require access only to specific
columns of a table, an authorized user can create a view to limit the
columns addressed only to those required.

v Access only to a subset of the rows of the table.
By specifying a WHERE clause in the subquery of a view definition, an
authorized user can limit the rows addressed through a view.

v Access only to a subset of the rows or columns in data source tables or
views. If you are accessing data sources through nicknames, you can create
local DB2 views that reference nicknames. These views can reference
nicknames from one or many data sources.

Note: Because you can create a view that contains nickname references for
more than one data source, your users can access data in multiple
data sources from one view. These views are called multi-location
views. Such views are useful when joining information in columns of
sensitive tables across a distributed environment or when individual
users lack the privileges needed at data sources for specific objects.

To create a view, a user must have SYSADM authority, DBADM authority, or
CONTROL or SELECT privilege for each table or view referenced in the view
definition. The user must also be able to create an object in the schema
specified for the view. That is, CREATEIN privilege for an existing schema or
IMPLICIT_SCHEMA authority on the database if the schema does not already
exist. See “Creating a View” on page 182 for more information.

If you are creating views that reference nicknames, you do not need
additional authority on the data source objects (tables and views) referenced
by nicknames in the view; however, your users must have SELECT authority
or the equivalent authorization level for the underlying data source objects
when they access the view.

If your users do not have the proper authority at the data source for
underlying objects (tables and views), you can:

v Create a data source view over those columns in the data source table that
are OK for the user to access

324 Administration Guide Design and Implementation

v Grant the SELECT privilege on this view to users
v Create a nickname to reference the view

Users can then access the columns by issuing a SELECT statement that
references the new nickname.

The following scenario provides a more detailed example of how views can
be used to restrict access to information.

Many people might require access to information in the STAFF table, for
different reasons. For example:
v The personnel department needs to be able to update and look at the entire

table.
This requirement can be easily met by granting SELECT and UPDATE
privileges on the STAFF table to the group PERSONNL:

GRANT SELECT,UPDATE ON TABLE STAFF TO GROUP PERSONNL

v Individual department managers need to look at the salary information for
their employees.
This requirement can be met by creating a view for each department
manager. For example, the following view can be created for the manager
of department number 51:

CREATE VIEW EMP051 AS
SELECT NAME,SALARY,JOB FROM STAFF
WHERE DEPT=51

GRANT SELECT ON TABLE EMP051 TO JANE

The manager with the authorization name JANE would query the EMP051
view just like the STAFF table. When accessing the EMP051 view of the
STAFF table, this manager views the following information:

NAME SALARY JOB

Fraye 45150.0 Mgr

Williams 37156.5 Sales

Smith 35654.5 Sales

Lundquist 26369.8 Clerk

Wheeler 22460.0 Clerk

v All users need to be able to locate other employees. This requirement can
be met by creating a view on the NAME column of the STAFF table and
the LOCATION column of the ORG table, and by joining the two tables on
their respective DEPT and DEPTNUMB columns:

CREATE VIEW EMPLOCS AS
SELECT NAME, LOCATION FROM STAFF, ORG
WHERE STAFF.DEPT=ORG.DEPTNUMB

GRANT SELECT ON TABLE EMPLOCS TO PUBLIC

Chapter 6. Controlling Database Access 325

Users who access the employee location view will see the following
information:

NAME LOCATION

Molinare New York

Lu New York

Daniels New York

Jones New York

Hanes Boston

Rothman Boston

Ngan Boston

Kermisch Boston

Sanders Washington

Pernal Washington

James Washington

Sneider Washington

Marenghi Atlanta

O’Brien Atlanta

Quigley Atlanta

Naughton Atlanta

Abrahams Atlanta

Koonitz Chicago

Plotz Chicago

Yamaguchi Chicago

Scoutten Chicago

Fraye Dallas

Williams Dallas

Smith Dallas

Lundquist Dallas

Wheeler Dallas

Lea San Francisco

Wilson San Francisco

Graham San Francisco

Gonzales San Francisco

Burke San Francisco

326 Administration Guide Design and Implementation

NAME LOCATION

Quill Denver

Davis Denver

Edwards Denver

Gafney Denver

Monitoring Access to Data Using the Audit Facility

The DB2 audit facility generates, and allows you to maintain, an audit trail for
a series of predefined database events. While not a facility that prevents access
to data, the audit facility can monitor and keep a record of attempts to access
or modify data objects.

SYSADM authority is required to use the audit facility administrator tool,
db2audit.

See “Chapter 7. Auditing DB2 Activities” on page 333 for a detailed
description of the DB2 audit facility.

Tasks and Required Authorizations

Not all organizations divide job responsibilities in the same manner. Table 25
lists some other common job titles, the tasks that usually accompany them,
and the authorities or privileges that are needed to carry out those tasks.

Table 25. Common Job Titles, Tasks, and Required Authorization

JOB TITLE TASKS REQUIRED AUTHORIZATION

Department Administrator Oversees the departmental
system; creates databases

SYSCTRL authority. SYSADM
authority if the department has
its own instance.

Security Administrator Authorizes other users for some
or all authorizations and
privileges

SYSADM or DBADM authority.

Database Administrator Designs, develops, operates,
safeguards, and maintains one or
more databases

DBADM and SYSMAINT
authority over one or more
databases. SYSCTRL authority in
some cases.

System Operator Monitors the database and
carries out backup functions

SYSMAINT authority.

Chapter 6. Controlling Database Access 327

Table 25. Common Job Titles, Tasks, and Required Authorization (continued)

JOB TITLE TASKS REQUIRED AUTHORIZATION

Application Programmer Develops and tests the database
manager application programs;
may also create tables of test
data

BINDADD, BIND on an existing
package, CONNECT and
CREATETAB on one or more
databases, some specific schema
privileges, and a list of privileges
on some tables.

User Analyst Defines the data requirements for
an application program by
examining the system catalog
views

SELECT on the catalog views;
CONNECT on one or more
databases.

Program End User Executes an application program EXECUTE on the package;
CONNECT on one or more
databases. See the note following
this table.

Information Center Consultant Defines the data requirements for
a query user; provides the data
by creating tables and views and
by granting access to database
objects

DBADM authority over one or
more databases.

Query User Issues SQL statements to retrieve,
add, delete, or change data; may
save results as tables

CONNECT on one or more
databases; CREATEIN on the
schema of the tables and views
being created; and, SELECT,
INSERT, UPDATE, DELETE on
some tables and views.

If an application program contains dynamic SQL statements, the Program End
User may need other privileges in addition to EXECUTE and CONNECT
(such as SELECT, INSERT, DELETE, and UPDATE).

Using the System Catalog

Information about each database is automatically maintained in a set of views
called the system catalog, which is created when the database is generated.
This system catalog describes tables, columns, indexes, programs, privileges,
and other objects.

Six of these views list the privileges held by users and the identity of the user
granting each privilege:

SYSCAT.DBAUTH Lists the database privileges

SYSCAT.TABAUTH Lists the table and view privileges

328 Administration Guide Design and Implementation

SYSCAT.COLAUTH Lists the column privileges

SYSCAT.PACKAGEAUTH Lists the package privileges

SYSCAT.INDEXAUTH Lists the index privileges

SYSCAT.SCHEMAAUTH Lists the schema privileges

SYSCAT.PASSTHRUAUTH Lists the server privilege

Privileges granted to users by the system will have SYSIBM as the grantor.
SYSADM, SYSMAINT and SYSCTRL are not listed in the system catalog.

The CREATE and GRANT statements place privileges in the system catalog.
Users with SYSADM and DBADM authorities can grant and revoke SELECT
privilege on the system catalog views. The following examples show how to
extract information about privileges by using these SQL queries:
v “Retrieving Authorization Names with Granted Privileges”

v “Retrieving All Names with DBADM Authority” on page 330

v “Retrieving Names Authorized to Access a Table” on page 330

v “Retrieving All Privileges Granted to Users” on page 330

v “Securing the System Catalog Views” on page 331.

Retrieving Authorization Names with Granted Privileges

No single system catalog view contains information about all privileges. The
following statement retrieves all authorization names with privileges:

SELECT DISTINCT GRANTEE, GRANTEETYPE, 'DATABASE' FROM SYSCAT.DBAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'TABLE ' FROM SYSCAT.TABAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'PACKAGE ' FROM SYSCAT.PACKAGEAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'INDEX ' FROM SYSCAT.INDEXAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'COLUMN ' FROM SYSCAT.COLAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'SCHEMA ' FROM SYSCAT.SCHEMAAUTH
UNION
SELECT DISTINCT GRANTEE, GRANTEETYPE, 'SERVER ' FROM SYSCAT.PASSTHRUAUTH
ORDER BY GRANTEE, GRANTEETYPE, 3

Periodically, the list retrieved by this statement should be compared with lists
of user and group names defined in the system security facility. You can then
identify those authorization names that are no longer valid.

Chapter 6. Controlling Database Access 329

Note: If you are supporting remote database clients, it is possible that the
authorization name is defined at the remote client only and not on your
database server machine.

Retrieving All Names with DBADM Authority

The following statement retrieves all authorization names that have been
directly granted DBADM authority:

SELECT DISTINCT GRANTEE FROM SYSCAT.DBAUTH
WHERE DBADMAUTH = 'Y'

Retrieving Names Authorized to Access a Table

The following statement retrieves all authorization names that are directly
authorized to access the table EMPLOYEE with the qualifier JAMES:

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH
WHERE TABNAME = 'EMPLOYEE'
AND TABSCHEMA = 'JAMES'

UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

WHERE TABNAME = 'EMPLOYEE'
AND TABSCHEMA = 'JAMES'

To find out who can update the table EMPLOYEE with the qualifier JAMES,
issue the following statement:

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH
WHERE TABNAME = 'EMPLOYEE' AND TABSCHEMA = 'JAMES' AND

(CONTROLAUTH = 'Y' OR
UPDATEAUTH = 'Y' OR UPDATEAUTH = 'G')

UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.DBAUTH

WHERE DBADMAUTH = 'Y'
UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

WHERE TABNAME = 'EMPLOYEE' AND TABSCHEMA = 'JAMES' AND
PRIVTYPE = 'U'

This retrieves any authorization names with DBADM authority, as well as
those names to which CONTROL or UPDATE privileges have been directly
granted. However, it will not return the authorization names of users who
only hold SYSADM authority.

Remember that some of the authorization names may be groups, not just
individual users.

Retrieving All Privileges Granted to Users

By making queries on the system catalog views, users can retrieve a list of the
privileges they hold and a list of the privileges they have granted to other

330 Administration Guide Design and Implementation

users. For example, the following statement retrieves a list of the database
privileges that have been directly granted to an individual authorization
name:

SELECT * FROM SYSCAT.DBAUTH
WHERE GRANTEE = USER AND GRANTEETYPE = 'U'

The following statement retrieves a list of the table privileges that were
directly granted by a specific user:

SELECT * FROM SYSCAT.TABAUTH
WHERE GRANTOR = USER

The following statement retrieves a list of the individual column privileges
that were directly granted by a specific user:

SELECT * FROM SYSCAT.COLAUTH
WHERE GRANTOR = USER

The keyword USER in these statements is always equal to the value of a
user’s authorization name. USER is a read-only special register. Refer to the
SQL Reference for more information on special registers.

Securing the System Catalog Views

During database creation, SELECT privilege on the system catalog views is
granted to PUBLIC. (See “Database Privileges” on page 310 for other
privileges that are automatically granted to PUBLIC.) In most cases, this does
not present any security problems. For very sensitive data, however, it may be
inappropriate, as these tables describe every object in the database. If this is
the case, consider revoking the SELECT privilege from PUBLIC; then grant
the SELECT privilege as required to specific users. Granting and revoking
SELECT on the system catalog views is done in the same way as for any view,
but you must have either SYSADM or DBADM authority to do this.

At a minimum, you should consider restricting access to the following catalog
views:

v SYSCAT.DBAUTH
v SYSCAT.TABAUTH
v SYSCAT.PACKAGEAUTH
v SYSCAT.INDEXAUTH
v SYSCAT.COLAUTH
v SYSCAT.PASSTHRUAUTH
v SYSCAT.SCHEMAAUTH

Chapter 6. Controlling Database Access 331

This would prevent information on user privileges, which could be used to
target an authorization name for break-in, from becoming available to
everyone with access to the database.

You should also examine the columns for which statistics are gathered (refer
to “Catalog Statistics” in the Administration Guide, Performance). Some of the
statistics recorded in the system catalog contain data values which could be
sensitive information in your environment. If these statistics contain sensitive
data, you may wish to revoke SELECT privilege from PUBLIC for the
SYSCAT.COLUMNS and SYSCAT.COLDIST catalog views.

If you wish to limit access to the system catalog views, you could define
views to let each authorization name retrieve information about its own
privileges.

For example, the following view MYSELECTS includes the owner and name
of every table on which a user’s authorization name has been directly granted
SELECT privilege:

CREATE VIEW MYSELECTS AS
SELECT TABSCHEMA, TABNAME FROM SYSCAT.TABAUTH
WHERE GRANTEETYPE = 'U'
AND GRANTEE = USER
AND SELECTAUTH = 'Y'

The keyword USER in this statement is always equal to the value of the
authorization name.

The following statement makes the view available to every authorization
name:

GRANT SELECT ON TABLE MYSELECTS TO PUBLIC

And finally, remember to revoke SELECT privilege on the base table:
REVOKE SELECT ON TABLE SYSCAT.TABAUTH FROM PUBLIC

332 Administration Guide Design and Implementation

Chapter 7. Auditing DB2 Activities

Authentication, authorities, and privileges can be used to control known or
anticipated access to data, but these methods may be insufficient to prevent
unknown or unanticipated access to data. To assist in the detection of this
latter type of data access, DB2 provides an audit facility. Successful
monitoring of unwanted data access and subsequent analysis can lead to
improvements in the control of data access and the ultimate prevention of
malicious or careless unauthorized access to the data. The monitoring of
application and individual user access, including system administration
actions, can provide a historical record of activity on your database systems.

The DB2 audit facility generates, and allows you to maintain, an audit trail for
a series of predefined database events. The records generated from this facility
are kept in an audit log file. The analysis of these records can reveal usage
patterns which would identify system misuse. Once identified, actions can be
taken to reduce or eliminate such system misuse.

The audit facility acts at an instance level, recording all instance level
activities and database level activities.

When working in a partitioned database environment, many of the auditable
events occur at the partition at which the user is connected (the coordinator
node) or at the catalog node (if they are not the same partition). The
implication of this is that audit records can be generated by more than one
partition. Part of each audit record contains information on the coordinator
node and originating node identifiers.

The audit log (db2audit.log) and the audit configuration file (db2audit.cfg) are
located in the instance’s security subdirectory. At the time you create an
instance, read/write permissions are set on these files, where possible, by the
operating system. By default, the permissions are read/write for the instance
owner only. It is recommended that you do not change these permissions.

Users of the audit facility administrator tool, db2audit, must have SYSADM
authority/privileges.

The audit facility must be stopped and started explicitly. When starting, the
audit facility uses existing audit configuration information. Since the audit
facility is independent of the DB2 server, it will remain active even if the
instance is stopped. In fact, when the instance is stopped, an audit record may
be generated in the audit log.

© Copyright IBM Corp. 1993, 1999 333

Authorized users of the audit facility can control the following actions within
the audit facility:
v Start recording auditable events within the DB2 instance.
v Stop recording auditable events within the DB2 instance.
v Configure the behavior of the audit facility, including selecting the

categories of the auditable events to be recorded.
v Request a description of the current audit configuration.
v Flush any pending audit records from the instance and write them to the

audit log.
v Extract audit records by formatting and copying them from the audit log to

a flat file or ASCII delimited files. Extraction is done for one of two reasons:
In preparation for analysis of log records or in preparation for pruning of
log records.

v Prune audit records from the current audit log.

There are different categories of audit records that may be generated. In the
description of the categories of events available for auditing (below), you
should notice that following the name of each category is a one-word
keyword used to identify the category type. The categories of events available
for auditing are:
v Audit (AUDIT). Generates records when audit settings are changed or

when the audit log is accessed.
v Authorization Checking (CHECKING). Generates records during

authorization checking of attempts to access or manipulate DB2 objects or
functions.

v Object Maintenance (OBJMAINT). Generates records when creating or
dropping data objects.

v Security Maintenance (SECMAINT). Generates records when granting or
revoking: Object or database privileges, or DBADM authority. Records are
also generated when the database manager security configuration
parameters SYSADM_GROUP, SYSCTRL_GROUP, or SYSMAINT_GROUP
are modified.

v System Administration (SYSADMIN). Generates records when operations
requiring SYSADM, SYSMAINT, or SYSCTRL authority are performed.

v User Validation (VALIDATE). Generates records when authenticating users
or retrieving system security information.

v Operation Context (CONTEXT). Generates records to show the operation
context when a database operation is performed. This category allows for
better interpretation of the audit log file. When used with the log’s event
correlator field, a group of events can be associated back to a single
database operation. For example, an SQL statement for dynamic SQL, a

334 Administration Guide Design and Implementation

package identifier for static SQL, or an indicator of the type of operation
being performed, such as CONNECT, can provide needed context when
analyzing audit results.

Note: The SQL statement providing the operation context might be very
long and is completely shown within the CONTEXT record. This can
make the CONTEXT record very large.

v You can audit failures, successes, or both.

Any operation on the database may generate several records. The actual
number of records generated and moved to the audit log depends on the
number of categories of events to be recorded as specified by the audit facility
configuration. It also depends on whether successes, failures, or both, are
audited. For this reason, it is important to be selective of the events to audit.

Audit Facility Behavior

The audit facility records auditable events including those affecting database
instances. For this reason, the audit facility is an independent part of DB2 that
can operate even if the DB2 instance is stopped. If the audit facility is active,
then when a stopped instance is started, auditing of database events in the
instance resumes.

The timing of the writing of audit records to the audit log can have a
significant impact on the performance of databases in the instance. The
writing of the audit records can take place synchronously or asynchronously
with the occurrence of the events causing the generation of those records. The
value of the AUDIT_BUF_SZ database manager configuration parameter
determines when the writing of audit records is done.

If the value of this parameter is zero (0), the writing is done synchronously.
The event generating the audit record will wait until the record is written to
disk. The wait associated with each record causes the performance of DB2 to
decrease.

If the value of AUDIT_BUF_SZ is greater than zero, the record writing is done
asynchronously. The value of the AUDIT_BUF_SZ when it is greater than zero
is the number of 4 KB pages used to create an internal buffer. The internal
buffer is used to keep a number of audit records before writing a group of
them out to disk. The statement generating the audit record as a result of an
audit event will not wait until the record is written to disk, and can continue
its operation.

In the asynchronous case, it could be possible for audit records to remain in
an unfilled buffer for some time. To prevent this from happening for an

Chapter 7. Auditing DB2 Activities 335

extended period, the database manager will force the writing of the audit
records regularly. An authorized user of the audit facility may also flush the
audit buffer with an explicit request.

There are differences when an error occurs dependent on whether there is
synchronous or asynchronous record writing. In asynchronous mode there
may be some records lost because the audit records are buffered before being
written to disk. In synchronous mode there may be one record lost because
the error could only prevent at most one audit record from being written.

The setting of the ERRORTYPE audit facility parameter controls how errors
are managed between DB2 and the audit facility. When the audit facility is
active, and the setting of the ERRORTYPE audit facility parameter is AUDIT,
then the audit facility is treated in the same way as any other part of DB2. An
audit record must be written (to disk in synchronous mode; or to the audit
buffer in asynchronous mode) for an audit event associated with a statement
to be considered successful. Whenever an error is encountered when running
in this mode, a negative SQLCODE is returned to the application for the
statement generating an audit record. If the error type is set to NORMAL, then
any error from db2audit is ignored and the operation’s SQLCODE is returned.
See “Audit Facility Usage Scenarios” on page 337 for additional details on the
ERRORTYPE audit facility parameters (and other related parameters).

Depending on the API or SQL statement and the audit settings for the DB2
instance, none, one, or several audit records may be generated for a particular
event. For example, an SQL UPDATE statement with a SELECT subquery may
result in one audit record containing the results of the authorization check for
UPDATE privilege on a table and another record containing the results of the
authorization check for SELECT privilege on a table.

For dynamic data manipulation language (DML) statements, audit records are
generated for all authorization checking at the time that the statement is
prepared. Reuse of those statements by the same user will not be audited
again since no authorization checking takes place at that time. However, if a
change has been made to one of the catalog tables containing privilege
information, then in the next unit of work, the statement privileges for the
cached dynamic SQL statements are re-checked and one or more new audit
records created.

For a package containing only static DML statements, the only auditable event
that could generate an audit record is the authorization check to see if a user
has the privilege to execute that package. The authorization checking and
possible audit record creation required for the static SQL statements in the
package is carried out at the time the package is precompiled or bound. The
execution of the static SQL statements within the package is not auditable.

336 Administration Guide Design and Implementation

When a package is re-bound either explicitly by the user, or implicitly by the
system, audit records are generated for the authorization checks required by
the static SQL statements.

For statements where authorization checking is performed at statement
execution time (for example, data definition language (DDL), GRANT, and
REVOKE statements), audit records are generated whenever these statements
are used.

Note: When executing DDL, the section number recorded for all events
(except the context events) in the audit record will be zero (0) no matter
what the actual section number of the statement might have been.

Audit Facility Usage Scenarios

By considering the syntax of the audit facility, we can review the way the
facility can be used.

Chapter 7. Auditing DB2 Activities 337

The following is a description and the implied use of each parameter:

configure
This parameter allows the modification of the db2audit.cfg

db2audit

describe
extract
flush
prune

Audit Configuration

Audit Extraction

status

database database name
category

audit
checking
objmaint
secmaint
sysadmin
validate
context

audit
checking
objmaint
secmaint
sysadmin
validate
context

both
success
failure

Audit Configuration:

Audit Extraction:

status
failure
success

configure reset

all

all

start
stop

,

,

scope

delasc
file output file

errortype audit
normal

date
pathname

YYYYMMDDHH
Path_with_temp_space

Figure 27. DB2AUDIT Syntax

338 Administration Guide Design and Implementation

configuration file in the instance’s security subdirectory. Updates to
this file can occur even when the instance is shut down. Updates
occurring when the instance is active dynamically affect the auditing
being done by DB2 across all partitions. The configure action on the
configuration file causes the creation of an audit record if the audit
facility has been started and the audit category of auditable events is
being audited.

The following are the possible actions on the configuration file:
v RESET. This action causes the configuration file to revert to the

initial configuration (where SCOPE is all of the categories except
CONTEXT, STATUS is FAILURE, ERRORTYPE is NORMAL, and
AUDIT is OFF). This action will create a new audit configuration
file if the original has been lost or damaged.

v SCOPE. This action specifies which category or categories of events
are to be audited. This action also allows a particular focus for
auditing and reduces the growth of the log. It is recommended that
the number and type of events being logged be limited as much as
possible, otherwise the audit log will grow rapidly.

Note: Please notice that the default SCOPE is all categories except
CONTEXT and may result in records being generated
rapidly. In conjunction with the mode (synchronous or
asynchronous), the selection of the categories may result in a
significant performance reduction and significantly increased
disk requirements.

v STATUS. This action specifies whether only successful or failing
events, or both successful and failing events, should be logged.

Note: Context events occur before the status of an operation is
known. Therefore, such events are logged regardless of the
value associated with this parameter.

v ERRORTYPE. This action specifies whether audit errors are
returned to the user or are ignored. The value for this parameter
can be:
– AUDIT. All errors including errors occurring within the audit

facility are managed by DB2 and all negative SQLCODEs are
reported back to the caller.

– NORMAL. Any errors generated by db2audit are ignored and
only the SQLCODEs for the errors associated with the operation
being performed are returned to the application.

describe
This parameter displays to standard output the current audit
configuration information and status.

Chapter 7. Auditing DB2 Activities 339

extract This parameter allows the movement of audit records from the audit
log to an indicated destination. If no optional clauses are specified,
then all of the audit records are extracted and placed in a flat report
file. If the “extract” parameter is not specified, the audit record is
placed a file called db2audit.out in the security directory. If
output_file already exists, an error message is returned.

The following are the possible options that can be used when
extracting:
v FILE. The extracted audit records are placed in a file (output_file).
v DELASC. The extracted audit records are placed in a delimited

ASCII format suitable for loading into DB2 relational tables. The
output is placed in separate files: one for each category. The
filenames are:
– audit.del
– checking.del
– objmaint.del
– secmaint.del
– sysadmin.del
– validate.del
– context.del

The DELASC choice also allows you to override the default audit
character string delimiter (“0xff”) when extracting from the audit
log. You would use DELASC DELIMITER followed by the new
delimiter that you wish to use in preparation for loading into a
table that will hold the audit records. The new load delimiter can
be either a single character (such as !) or a four-byte string
representing a hexadecimal number (such as 0xff). For more
information, refer to “Audit Facility Tips and Techniques” on
page 356.

v CATEGORY. The audit records for the specified categories of audit
events are to be extracted. If not specified, all categories are eligible
for extraction.

v DATABASE. The audit records for a specified database are to be
extracted. If not specified, all databases are eligible for extraction.

v STATUS. The audit records for the specified status are to be
extracted. If not specified, all records are eligible for extraction.

flush This parameter forces any pending audit records to be written to the
audit log. Also, the audit state is reset in the engine from “unable to
log” to a state of “ready to log” if the audit facility is in an error state.

prune This parameter allows for the deletion of audit records from the audit

340 Administration Guide Design and Implementation

log. If the audit facility is active and the “audit” category of events
has been specified for auditing, then an audit record will be logged
after the audit log is pruned.

The following are the possible options that can be used when
pruning:
v ALL. All of the audit records in the audit log are to be deleted.
v DATE yyyymmddhh. The user can specify that all audit records

that occurred on or before the date/time specified are to be deleted
from the audit log. The user may optionally supply a
pathname

which the audit facility will use as a temporary space when
pruning the audit log. This temporary space allows for the pruning
of the audit log when the disk it resides on is full and does not
have enough space to allow for a pruning operation.

start This parameter causes the audit facility to begin auditing events based
on the contents of the db2audit.cfg file. In a partitioned DB2 instance,
auditing will begin on all partitions when this clause is specified. If
the “audit” category of events has been specified for auditing, then an
audit record will be logged when the audit facility is started.

stop This parameter causes the audit facility to stop auditing events. In a
partitioned DB2 instance, auditing will be stopped on all partitions
when this clause is specified. If the “audit” category of events has
been specified for auditing, then an audit record will be logged when
the audit facility is stopped.

Audit Facility Messages

SQL1322N An error occurred when writing to
the audit log file.

Explanation: The DB2 audit facility encountered
an error when invoked to record an audit event
to the audit log file. There is no space on the file
system where the audit log resides.

User Response: The system administrator
should free up space on this file system or prune
the audit log to reduce its size.

When more space is available, use db2audit to
flush out any data in memory, and to reset the
auditor to a ready state. Ensure that appropriate
extracts have occurred, or a copy of the log has
been made before pruning the log, as deleted

records are not recoverable.

sqlcode: 1322

sqlstate: 50030

SQL1323N An error occurred when accessing
the audit configuration file.

Explanation: The audit configuration file
(db2audit.cfg) could not be opened, or was
invalid. Possible reasons for this error are that
the db2audit.cfg file either does not exist, or has
been damaged.

User Response: Take one of the following
actions:

Chapter 7. Auditing DB2 Activities 341

v Restore from a saved version of the file.

v Reset the audit facility configuration file by
issuing

db2audit reset

sqlcode: 1323

sqlstate: 57019

Audit Facility Record Layouts

When an audit record is extracted from the audit log using the DELASC
extract option, each record will have one of the formats shown in the
following tables. Each table will begin by showing the contents of a sample
record. The description of each item of the record is shown one row at a time
in the associated table. If the item is important, the name of the item will be
highlighted (bold). These items contain information that are of most interest
to you.

Notes:

1. Not all fields in the sample records will have values.
2. Some fields such as “Access Attempted” are stored in the delimited ASCII

format as bitmaps. In this flat report file, however, these fields will appear
as a set of strings representing the bitmap values.

Table 26. Audit Record Layout for AUDIT Events

timestamp=1998-06-24-11.54.05.151232;category=AUDIT;audit event=START;
event correlator=0;event status=0;
userid=boss;authid=BOSS;

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
AUDIT

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: CONFIGURE, DB2AUD, EXTRACT,
FLUSH, PRUNE, START, STOP, and UPDATE_ADMIN_CFG

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where
Successful event > = 0
Failed event < 0

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

342 Administration Guide Design and Implementation

Table 27. Audit Record Layout for CHECKING Events

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;audit event=CHECKING_OBJECT;
event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
object name=FOO;object type=DATABASE;
access approval reason=DATABASE;access attempted=CONNECT;

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
CHECKING

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: CHECKING_OBJECT and
CHECKING_FUNCTION

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where
Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated.
Blank if this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node
Number

SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application Name in use at the time the audit event
occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit
event occurred.

Object Schema VARCHAR (128) Schema of the object for which the audit event was
generated.

Object Name VARCHAR (128) Name of object for which the audit event was generated.

Chapter 7. Auditing DB2 Activities 343

Table 27. Audit Record Layout for CHECKING Events (continued)

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;audit event=CHECKING_OBJECT;
event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
object name=FOO;object type=DATABASE;
access approval reason=DATABASE;access attempted=CONNECT;

NAME FORMAT DESCRIPTION

Object Type VARCHAR (32) Type of object for which the audit event was generated.
Possible values include: TABLE, VIEW, ALIAS, FUNCTION,
INDEX, PACKAGE, DATA_TYPE, NODEGROUP, SCHEMA,
STORED_PROCEDURE, BUFFERPOOL, TABLESPACE,
EVENT_MONITOR, TRIGGER, DATABASE, INSTANCE,
FOREIGN_KEY, PRIMARY_KEY, UNIQUE_CONSTRAINT,
CHECK_CONSTRAINT, WRAPPER, SERVER, NICKNAME,
USER MAPPING, SERVER OPTION, TYPE MAPPING,
FUNCTION MAPPING, SUMMARY TABLES, and NONE.

Access Approval
Reason

CHAR(18) Indicates the reason why access was approved for this audit
event. Possible values include: Those shown in the first list
following this table.

Access Attempted CHAR(18) Indicates the type of access that was attempted. Possible
values include: Those shown in the second list following
this table.

The following is the list of possible CHECKING access approval reasons:

0x0000000000000001 ACCESS DENIED
Access is not approved; rather, it was denied.

0x0000000000000002 SYSADM
Access is approved; the application/user has SYSADM authority.

0x0000000000000004 SYSCTRL
Access is approved; the application/user has SYSCTRL authority.

0x0000000000000008 SYSMAINT
Access is approved; the application/user has SYSMAINT authority.

0x0000000000000010 DBADM
Access is approved; the application/user has DBADM authority.

0x0000000000000020 DATABASE PRIVILEGE
Access is approved; the application/user has an explicit privilege on
the database.

0x0000000000000040 OBJECT PRIVILEGE
Access is approved; the application/user has an explicit privilege on
the object or function.

344 Administration Guide Design and Implementation

0x0000000000000080 DEFINER
Access is approved; the application/user is the definer of the object or
function.

0x0000000000000100 OWNER
Access is approved; the application/user is the owner of the object or
function.

0x0000000000000200 CONTROL
Access is approved; the application/user has CONTROL privilege on
the object or function.

0x0000000000000400 BIND
Access is approved; the application/user has bind privilege on the
package.

The following is the list of possible CHECKING access attempted types:

0x0000000000000002 ALTER
Attempt to alter an object.

0x0000000000000004 DELETE
Attempt to delete an object.

0x0000000000000008 INDEX
Attempt to use an index.

0x0000000000000010 INSERT
Attempt to insert into an object.

0x0000000000000020 SELECT
Attempt to query a table or view.

0x0000000000000040 UPDATE
Attempt to update data in an object.

0x0000000000000080 REFERENCE
Attempt to establish referential constraints between objects.

0x0000000000000100 CREATE
Attempt to create an object.

0x0000000000000200 DROP
Attempt to drop an object.

0x0000000000000400 CREATEIN
Attempt to create an object within another schema.

0x0000000000000800 DROPIN
Attempt to drop an object found within another schema.

0x0000000000001000 ALTERIN
Attempt to alter or modify an object found within another schema.

Chapter 7. Auditing DB2 Activities 345

0x0000000000002000 EXECUTE
Attempt to execute or run an application.

0x0000000000004000 BIND
Attempt to bind or prepare an application.

0x0000000000008000 SET EVENT MONITOR
Attempt to set event monitor switches.

0x0000000000010000 SET CONSTRAINTS
Attempt to set constraints on an object.

0x0000000000020000 COMMENT ON
Attempt to create comments on an object.

0x0000000000040000 GRANT
Attempt to grant privileges on an object to another user ID.

0x0000000000080000 REVOKE
Attempt to revoke privileges on an object from a user ID.

0x0000000000100000 LOCK
Attempt to lock an object.

0x0000000000200000 RENAME
Attempt to rename an object.

0x0000000000400000 CONNECT
Attempt to connect to an object.

0x0000000000800000 Member of SYS Group
Attempt to access or use a member of the SYS group.

0x0000000001000000 USE
Attempt to create a table in a table space.

Table 28. Audit Record Layout for OBJMAINT Events

timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;audit event=CREATE_OBJECT;
event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;
package section=0;object schema=BOSS;object name=AUDIT;object type=TABLE;

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
OBJMAINT

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: CREATE_OBJECT and
DROP_OBJECT

346 Administration Guide Design and Implementation

Table 28. Audit Record Layout for OBJMAINT Events (continued)

timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;audit event=CREATE_OBJECT;
event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;
package section=0;object schema=BOSS;object name=AUDIT;object type=TABLE;

NAME FORMAT DESCRIPTION

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where
Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated.
Blank if this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node
Number

SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application Name in use at the time the audit event
occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit
event occurred.

Object Schema VARCHAR (128) Schema of the object for which the audit event was
generated.

Object Name VARCHAR (128) Name of object for which the audit event was generated.

Object Type VARCHAR (32) Type of object for which the audit event was generated.
Possible values include: TABLE, VIEW, ALIAS, FUNCTION,
INDEX, PACKAGE, DATA_TYPE, NODEGROUP, SCHEMA,
STORED_PROCEDURE, BUFFERPOOL, TABLESPACE,
EVENT_MONITOR, TRIGGER, DATABASE, INSTANCE,
FOREIGN_KEY, PRIMARY_KEY, UNIQUE_CONSTRAINT,
CHECK_CONSTRAINT, WRAPPER, SERVER, NICKNAME,
USER MAPPING, SERVER OPTION, TYPE MAPPING,
FUNCTION MAPPING, SUMMARY TABLES, and NONE.

Chapter 7. Auditing DB2 Activities 347

Table 29. Audit Record Layout for SECMAINT Events

timestamp=1998-06-24-11.57.45.188101;category=SECMAINT;audit event=GRANT;
event correlator=4;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.boss.980624155728;application name=db2bp;
package schema=NULLID;package name=SQLC28A1;
package section=0;object schema=BOSS;object name=T1;object type=TABLE;
grantor=BOSS;grantee=WORKER;grantee type=USER;privilege=SELECT;

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
SECMAINT

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: GRANT, REVOKE,
IMPLICIT_GRANT, IMPLICIT_REVOKE, and
UPDATE_DBM_CFG.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where
Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated.
Blank if this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node
Number

SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application Name in use at the time the audit event
occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit
event occurred.

Object Schema VARCHAR (128) Schema of the object for which the audit event was
generated.

348 Administration Guide Design and Implementation

Table 29. Audit Record Layout for SECMAINT Events (continued)

timestamp=1998-06-24-11.57.45.188101;category=SECMAINT;audit event=GRANT;
event correlator=4;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.boss.980624155728;application name=db2bp;
package schema=NULLID;package name=SQLC28A1;
package section=0;object schema=BOSS;object name=T1;object type=TABLE;
grantor=BOSS;grantee=WORKER;grantee type=USER;privilege=SELECT;

NAME FORMAT DESCRIPTION

Object Name VARCHAR (128) Name of object for which the audit event was generated.

Object Type VARCHAR (32) Type of object for which the audit event was generated.
Possible values include: TABLE, VIEW, ALIAS, FUNCTION,
INDEX, PACKAGE, DATA_TYPE, NODEGROUP, SCHEMA,
STORED_PROCEDURE, BUFFERPOOL, TABLESPACE,
EVENT_MONITOR, TRIGGER, DATABASE, INSTANCE,
FOREIGN_KEY, PRIMARY_KEY, UNIQUE_CONSTRAINT,
CHECK_CONSTRAINT, WRAPPER, SERVER, NICKNAME,
USER MAPPING, SERVER OPTION, TYPE MAPPING,
FUNCTION MAPPING, SUMMARY TABLES, and NONE.

Grantor VARCHAR (128) Grantor ID.

Grantee VARCHAR (128) Grantee ID for which a privilege or authority was granted
or revoked.

Grantee Type VARCHAR (32) Type of the grantee that was granted to or revoked from.
Possible values include: USER, GROUP, or BOTH.

Privilege or
Authority

CHAR(18) Indicates the type of privilege or authority granted or
revoked. Possible values include: Those shown in the list
following this table.

The following is the list of possible SECMAINT privileges or authorities:

0x0000000000000001 Control Table
Control privilege granted or revoked on a table.

0x0000000000000002 ALTER TABLE
Privilege granted or revoked to alter a table.

0x0000000000000004 ALTER TABLE with GRANT
Privilege granted or revoked to alter a table with granting of
privileges allowed.

0x0000000000000008 DELETE TABLE
Privilege granted or revoked to drop a table.

0x0000000000000010 DELETE TABLE with GRANT
Privilege granted or revoked to drop a table with granting of
privileges allowed.

Chapter 7. Auditing DB2 Activities 349

0x0000000000000020 Table Index
Privilege granted or revoked on an index.

0x0000000000000040 Table Index with GRANT
Privilege granted or revoked on an index with granting of privileges
allowed.

0x0000000000000080 Table INSERT
Privilege granted or revoked on an insert on a table.

0x0000000000000100 Table INSERT with GRANT
Privilege granted or revoked on an insert on a table with granting of
privileges allowed.

0x0000000000000200 Table SELECT
Privilege granted or revoked on a select on a table.

0x0000000000000400 Table SELECT with GRANT
Privilege granted or revoked on a select on a table with granting of
privileges allowed.

0x0000000000000800 Table UPDATE
Privilege granted or revoked on an update on a table.

0x0000000000001000 Table UPDATE with GRANT
Privilege granted or revoked on an update on a table with granting of
privileges allowed.

0x0000000000002000 Table REFERENCE
Privilege granted or revoked on a reference on a table.

0x0000000000004000 Table REFERENCE with GRANT
Privilege granted or revoked on a reference on a table with granting
of privileges allowed.

0x0000000000008000 Package BIND
Bind privilege granted or revoked on a package.

0x0000000000010000 Package EXECUTE
Execute privilege granted or revoked on a package.

0x0000000000020000 CREATEIN Schema
Createin privilege granted or revoked on a schema.

0x0000000000040000 CREATEIN Schema with GRANT
Createin privilege granted or revoked on a schema with granting of
privileges allowed.

0x0000000000080000 DROPIN Schema
Dropin privilege granted or revoked on a schema.

350 Administration Guide Design and Implementation

0x0000000000100000 DROPIN Schema with GRANT
Dropin privilege granted or revoked on a schema with granting of
privileges allowed.

0x0000000000200000 ALTERIN Schema
Alterin privilege granted or revoked on a schema.

0x0000000000400000 ALTERIN Schema with GRANT
Alterin privilege granted or revoked on a schema with granting of
privileges allowed.

0x0000000000800000 DBADM Authority
DBADM authority granted or revoked.

0x0000000001000000 CREATETAB Authority
Createtab authority granted or revoked.

0x0000000002000000 BINDADD Authority
Bindadd authority granted or revoked.

0x0000000004000000 CONNECT Authority
Connect authority granted or revoked.

0x0000000008000000 Create not fenced Authority
Create not fenced authority granted or revoked.

0x0000000010000000 Implicit Schema Authority
Implicit schema authority granted or revoked.

0x0000000020000000 Server PASSTHRU
Privilege granted or revoked to use the pass-through facility with this
server (federated database data source).

0x0000000100000000 Table Space USE
Privilege granted or revoked to create a table in a table space.

0x0000000400000000 Column UPDATE
Privilege granted or revoked on an update on one or more specific
columns of a table.

0x0000000800000000 Column UPDATE with GRANT
Privilege granted or revoked on an update on one or more specific
columns of a table with granting of privileges allowed.

0x0000001000000000 Column REFERENCE
Privilege granted or revoked on a reference on one or more specific
columns of a table.

0x0000002000000000 Column REFERENCE with GRANT
Privilege granted or revoked on a reference on one or more specific
columns of a table with granting of privileges allowed.

Chapter 7. Auditing DB2 Activities 351

Table 30. Audit Record Layout for SYSADMIN Events

timestamp=1998-06-24-11.54.04.129923;category=SYSADMIN;audit event=DB2AUDIT;
event correlator=1;event status=0;
userid=boss;authid=BOSS;
application id=*LOCAL.boss.980624155404;application name=db2audit;

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
SYSADMIN

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: Those shown in the list following
this table.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where
Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated.
Blank if this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node
Number

SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application Name in use at the time the audit event
occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit
event occurred.

The following is the list of possible SYSADMIN audit events:

352 Administration Guide Design and Implementation

Table 31. SYSADMIN Audit Events

START_DB2
STOP_DB2
CREATE_DATABASE
DROP_DATABASE
UPDATE_DBM_CFG
UPDATE_DB_CFG
CREATE_TABLESPACE
DROP_TABLESPACE
ALTER_TABLESPACE
CREATE_NODEGROUP
DROP_NODEGROUP
ALTER_NODEGROUP
CREATE_BUFFERPOOL
DROP_BUFFERPOOL
ALTER_BUFFERPOOL
CREATE_EVENT_MONITOR
DROP_EVENT_MONITOR
ENABLE_MULTIPAGE
MIGRATE_DB_DIR
DB2TRC
DB2SET
ACTIVATE_DB
ADD_NODE
BACKUP_DB
CATALOG_NODE
CATALOG_DB
CATALOG_DCS_DB
CHANGE_DB_COMMENT
DEACTIVATE_DB
DROP_NODE_VERIFY
FORCE_APPLICATION
GET_SNAPSHOT
LIST_DRDA_INDOUBT_TRANSACTIONS
MIGRATE_DB
RESET_ADMIN_CFG
RESET_DB_CFG
RESET_DBM_CFG
RESET_MONITOR
RESTORE_DB

ROLLFORWARD_DB
SET_RUNTIME_DEGREE
SET_TABLESPACE_CONTAINERS
UNCATALOG_DB
UNCATALOG_DCS_DB
UNCATALOG_NODE
UPDATE_ADMIN_CFG
UPDATE_MON_SWITCHES
LOAD_TABLE
DB2AUDIT
SET_APPL_PRIORITY
CREATE_DB_AT_NODE
KILLDBM
MIGRATE_SYSTEM_DIRECTORY
DB2REMOT
DB2AUD
MERGE_DBM_CONFIG_FILE
UPDATE_CLI_CONFIGURATION
OPEN_TABLESPACE_QUERY
SINGLE_TABLESPACE_QUERY
CLOSE_TABLESPACE_QUERY
FETCH_TABLESPACE
OPEN_CONTAINER_QUERY
FETCH_CONTAINER_QUERY
CLOSE_CONTAINER_QUERY
GET_TABLESPACE_STATISTICS
DESCRIBE_DATABASE
ESTIMATE_SNAPSHOT_SIZE
READ_ASYNC_LOG_RECORD
PRUNE_RECOVERY_HISTORY
UPDATE_RECOVERY_HISTORY
QUIESCE_TABLESPACE
UNLOAD_TABLE
UPDATE_DATABASE_VERSION
CREATE_INSTANCE
DELETE_INSTANCE
SET_EVENT_MONITOR
GRANT_DBADM
REVOKE_DBADM
GRANT_DB_AUTHORITIES
REVOKE_DB_AUTHORITIES
REDIST_NODEGROUP

Chapter 7. Auditing DB2 Activities 353

Table 32. Audit Record Layout for VALIDATE Events

timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;audit event=CHECK_GROUP_MEMBERSHIP;
event correlator=2;event status=-1092;
database=FOO;userid=boss;authid=BOSS;execution id=newton;
application id=*LOCAL.newton.980624124210;application name=testapp;
auth type=SERVER;

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
VALIDATE

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: GET_GROUPS, GET_USERID,
AUTHENTICATE_PASSWORD, and VALIDATE_USER.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where
Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated.
Blank if this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Execution ID VARCHAR(1024) Execution ID in use at the time of the audit event.

Origin Node
Number

SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application Name in use at the time the audit event
occurred.

Authentication
Type

VARCHAR (32) Authentication type at the time of the audit event.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit
event occurred.

354 Administration Guide Design and Implementation

Table 33. Audit Record Layout for CONTEXT Events

timestamp=1998-06-24-08.42.41.476840;category=CONTEXT;audit event=EXECUTE_IMMEDIATE;
event correlator=3;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;
package section=203;text=create table audit(c1 char(10), c2 integer);

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:
CONTEXT

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: Those shown in the list following
this table.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can
be used to identify what audit records are associated with a
single event.

Database Name CHAR(8) Name of the database for which the event was generated.
Blank if this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node
Number

SMALLINT Node number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Node number of the coordinator.

Application ID VARCHAR (255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR (1024) Application Name in use at the time the audit event
occurred.

Package Schema VARCHAR (128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR (128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit
event occurred.

Statement Text
(statement)

CLOB (32K) Text of the SQL statement, if applicable. Null if no SQL
statement text is available.

The following is the list of possible CONTEXT audit events:

Chapter 7. Auditing DB2 Activities 355

Table 34. CONTEXT Audit Events

CONNECT
CONNECT_RESET
ATTACH
DETACH
DARI_START
DARI_STOP
BACKUP_DB
RESTORE_DB
ROLLFORWARD_DB
OPEN_TABLESPACE_QUERY
FETCH_TABLESPACE
CLOSE_TABLESPACE_QUERY
OPEN_CONTAINER_QUERY
CLOSE_CONTAINER_QUERY
FETCH_CONTAINER_QUERY
SET_TABLESPACE_CONTAINERS
GET_TABLESPACE_STATISTIC
READ_ASYNC_LOG_RECORD
QUIESCE_TABLESPACE
LOAD_TABLE
UNLOAD_TABLE
UPDATE_RECOVERY_HISTORY
PRUNE_RECOVERY_HISTORY
SINGLE_TABLESPACE_QUERY
LOAD_MSG_FILE
UNQUIESCE_TABLESPACE
ENABLE_MULTIPAGE
DESCRIBE_DATABASE
DROP_DATABASE
CREATE_DATABASE
ADD_NODE
FORCE_APPLICATION

SET_APPL_PRIORITY
RESET_DB_CFG
GET_DB_CFG
GET_DFLT_CFG
UPDATE_DBM_CFG
SET_MONITOR
GET_SNAPSHOT
ESTIMATE_SNAPSHOT_SIZE
RESET_MONITOR
OPEN_HISTORY_FILE
CLOSE_HISTORY_FILE
FETCH_HISTORY_FILE
SET_RUNTIME_DEGREE
UPDATE_AUDIT
DBM_CFG_OPERATION
DISCOVER
OPEN_CURSOR
CLOSE_CURSOR
FETCH_CURSOR
EXECUTE
EXECUTE_IMMEDIATE
PREPARE
DESCRIBE
BIND
REBIND
RUNSTATS
REORG
REDISTRIBUTE
COMMIT
ROLLBACK
REQUEST_ROLLBACK
IMPLICIT_REBIND

Audit Facility Tips and Techniques

In most cases, when working with CHECKING events, the object type field in
the audit record is the object being checked to see if the required privilege or
authority is held by the user ID attempting to access the object. For example,
if a user attempts to ALTER a table by adding a column, then the CHECKING
event audit record will indicate the access attempted was “ALTER” and the
object type being checked was “TABLE” (note: not the column since it is table
privileges that must be checked).

However, when the checking involves verifying if a database authority exists
to allow a user ID to CREATE or BIND an object, or to delete an object, then

356 Administration Guide Design and Implementation

although there is a check against the database, the object type field will
specify the object being created, bound, or dropped (rather than the database
itself).

When creating an index on a table, the privilege to create an index is required,
therefore the CHECKING event audit record will have an access attempt type
of “index” rather than “create”.

When binding a package that already exists, then an OBJMAINT event audit
record is created for the DROP of the package and then another OBJMAINT
event audit record is created for the CREATE of the new copy of the package.

SQL Data Definition Language (DDL) may generate OBJMAINT or
SECMAINT events that are logged as successful. It is possible however that
following the logging of the event, a subsequent error may cause a
ROLLBACK to occur. This would leave the object as not created; or the
GRANT or REVOKE actions as incomplete. The use of CONTEXT events
becomes important in this case. Such CONTEXT event audit records,
especially the statement that ends the event, will indicate the nature of the
completion of the attempted operation.

When extracting audit records in a delimited ASCII format suitable for
loading into a DB2 relational table, you should be clear regarding the
delimiter used within the statement text field. This can be done when
extracting the delimited ASCII file and is done using:

db2audit extract delasc delimiter <load delimiter>

The load delimiter can be a single character (such as ") or a four-byte string
representing a hexadecimal value (such as “0xff”). Examples of valid
commands are:

db2audit extract delasc
db2audit extract delasc delimiter !
db2audit extract delasc delimiter 0xff

If you have used anything other than the default load delimiter (“″”) as the
delimiter when extracting, you should use the MODIFIED BY option on the
LOAD command. A partial example of the LOAD command with “0xff” used
as the delimiter follows:

db2 load from context.del of del modified by chardel0xff replace into ...

This will override the default load character string delimiter which is “0xff”.

Chapter 7. Auditing DB2 Activities 357

Controlling DB2 Audit Facility Activities

As part of our discussion on the control of the audit facility activities, we will
use a simple scenario: A user, newton, runs an application called testapp that
connects and creates a table. This same application is used in each of the
examples discussed below.

We begin by presenting an extreme example: You have determined to audit all
successful and unsuccessful audit events, therefore you will configure the
audit facility in the following way:

db2audit configure scope all status both

Note: This creates audit records for every possible auditable event. As a
result, many records are written to the audit log and this reduces the
performance of your database manager. This extreme case is shown
here for demonstration purposes only; there is no recommendation that
you configure the audit facility with the command shown above.

After beginning the audit facility with this configuration (using “db2audit
start”), and then running the testapp application, the following records are
generated and placed in the audit log. By extracting the audit records from
the log, you will see the following records generated for the two actions
carried out by the application:

Action Type of Record Created

CONNECT
timestamp=1998-06-24-08.42.10.555345;category=CONTEXT;
audit event=CONNECT;event correlator=2;database=FOO;
application id=*LOCAL.newton.980624124210;
application name=testapp;

timestamp=1998-06-24-08.42.10.944374;category=VALIDATE;
audit event=AUTHENTICATION;event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;execution id=newton;
application id=*LOCAL.newton.980624124210;application name=testapp;
auth type=SERVER;

timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;
audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;
event status=-1092;database=FOO;userid=boss;authid=BOSS;
execution id=newton;application id=*LOCAL.newton.980624124210;
application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.561187;category=VALIDATE;
audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;
event status=-1092;database=FOO;userid=boss;authid=BOSS;
execution id=newton;application id=*LOCAL.newton.980624124210;
application name=testapp;auth type=SERVER;

358 Administration Guide Design and Implementation

timestamp=1998-06-24-08.42.11.594620;category=VALIDATE;
audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;
event status=-1092;database=FOO;userid=boss;authid=BOSS;
execution id=newton;application id=*LOCAL.newton.980624124210;
application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.622984;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
object name=FOO;object type=DATABASE;access approval reason=DATABASE;
access attempted=CONNECT;

timestamp=1998-06-24-08.42.11.801554;category=CONTEXT;
audit event=COMMIT;event correlator=2;database=FOO;userid=boss;
authid=BOSS;application id=*LOCAL.newton.980624124210;
application name=testapp;

timestamp=1998-06-24-08.42.41.450975;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;object schema=NULLID;
object name=SQLC28A1;object type=PACKAGE;
access approval reason=OBJECT;access attempted=EXECUTE;

CREATE TABLE
timestamp=1998-06-24-08.42.41.476840;category=CONTEXT;
audit event=EXECUTE_IMMEDIATE;event correlator=3;database=FOO;
userid=boss;authid=BOSS;application id=*LOCAL.newton.980624124210;
application name=testapp;package schema=NULLID;package name=SQLC28A1;
package section=203;text=create table audit(c1 char(10), c2 integer);

timestamp=1998-06-24-08.42.41.539692;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;package section=0;
object schema=BOSS;object name=AUDIT;object type=TABLE;
access approval reason=DATABASE;access attempted=CREATE;

timestamp=1998-06-24-08.42.41.570876;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;package section=0;
object name=BOSS;object type=SCHEMA;access approval reason=DATABASE;
access attempted=CREATE;

timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;
audit event=CREATE_OBJECT;event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;package section=0;
object schema=BOSS;object name=AUDIT;object type=TABLE;

Chapter 7. Auditing DB2 Activities 359

timestamp=1998-06-24-08.42.42.018900;category=CONTEXT;audit event=COMMIT;
event correlator=3;database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;

As you can see, there are a significant number of audit records generated from
the audit configuration that requests the auditing of all possible audit events
and types.

In most cases, you will configure the audit facility for a more restricted or
focused view of the events you wish to audit. For example, you may want to
only audit those events that fail. In this case, the audit facility could be
configured as follows:

db2audit configure scope audit,checking,objmaint,secmaint,sysadmin,
validate status failure

Note: This configuration is the initial audit configuration or the one that
occurs when the audit configuration is reset.

After beginning the audit facility with this configuration, and then running
the testapp application, the following records are generated and placed in the
audit log. (And we assume testapp has not been run before.) By extracting the
audit records from the log, you will see the following records generated for
the two actions carried out by the application:

Action Type of Record Created

CONNECT
timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;
audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;
event status=-1092;database=FOO;userid=boss;authid=BOSS;
execution id=newton;application id=*LOCAL.newton.980624124210;
application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.561187;category=VALIDATE;
audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;
event status=-1092;database=FOO;userid=boss;authid=BOSS;
execution id=newton;application id=*LOCAL.newton.980624124210;
application name=testapp;auth type=SERVER;

timestamp=1998-06-24-08.42.11.594620;category=VALIDATE;
audit event=CHECK_GROUP_MEMBERSHIP;event correlator=2;
event status=-1092;database=FOO;userid=boss;authid=BOSS;
execution id=newton;application id=*LOCAL.newton.980624124210;
application name=testapp;auth type=SERVER;

CREATE TABLE
(none)

360 Administration Guide Design and Implementation

The are far fewer audit records generated from the audit configuration that
requests the auditing of all possible audit events (except CONTEXT) but only
when the event attempt fails. By changing the audit configuration you can
control the type and nature of the audit records that are generated.

The audit facility can allow you to create audit records when those you want
to audit have been successfully granted privileges on an object. In this case,
you could configure the audit facility as follows:

db2audit configure scope checking status success

After beginning the audit facility with this configuration, and then running
the testapp application, the following records are generated and placed in the
audit log. (And we assume testapp has not been run before.) By extracting the
audit records from the log, you will see the following records generated for
the two actions carried out by the application:

Action Type of Record Created

CONNECT
timestamp=1998-06-24-08.42.11.622984;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;

timestamp=1998-06-24-08.42.41.450975;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=2;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;object schema=NULLID;
object name=SQLC28A1;object type=PACKAGE;
access approval reason=OBJECT;access attempted=EXECUTE;

timestamp=1998-06-24-08.42.41.539692;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;package section=0;
object schema=BOSS;object name=AUDIT;object type=TABLE;
access approval reason=DATABASE;access attempted=CREATE;

timestamp=1998-06-24-08.42.41.570876;category=CHECKING;
audit event=CHECKING_OBJECT;event correlator=3;event status=0;
database=FOO;userid=boss;authid=BOSS;
application id=*LOCAL.newton.980624124210;application name=testapp;
package schema=NULLID;package name=SQLC28A1;package section=0;
object name=BOSS;object type=SCHEMA;access approval reason=DATABASE;
access attempted=CREATE;

CREATE TABLE
(none)

Chapter 7. Auditing DB2 Activities 361

362 Administration Guide Design and Implementation

Chapter 8. Utilities for Moving Data

The LOAD utility moves data into tables, extends existing indexes, and
generates statistics. LOAD moves the data much faster than the IMPORT
utility when large amounts of data are involved. Data, unloaded using the
EXPORT utility, can be loaded with the LOAD utility.

The AutoLoader utility splits large amounts of data and loads the split data
into the different partitions of a partitioned database.

The IMPORT and EXPORT utilities move data between a table or view and
another database or spreadsheet program; between DB2 databases; and
between DB2 databases and host databases using DB2 Connect.

DataPropagator Relational (DPROPR) is a component of DB2 Universal
Database that allows automatic copying of table updates to other tables in
other DB2 relational databases.

Note: All of the information on these topics, and the comparable topics from
the Command Reference and the Administrative API Reference, have be
consolidated into the Data Movement Utilities Guide and Reference.

The Data Movement Utilities Guide and Reference is your primary, single
source of information for these topics.

© Copyright IBM Corp. 1993, 1999 363

364 Administration Guide Design and Implementation

Chapter 9. Recovering a Database

A database can become unusable because of hardware or software failure (or
both), and the different failure situations may require different recovery
actions. You should have a strategy in place to protect your database against
the possibility of these failure situations. When designing a strategy, you
should also rehearse it. This will allow you to detect any shortcomings in the
plan, and to avoid problems if you have to recover the database.

This chapter discusses the different recovery methods that can be used in the
event there is a problem involving the database. Also discussed are
considerations and decisions that will assist in determining the recovery
method best suited to your business environment. Each recovery method is
described along with the associated concepts, and the commands provided
with the product to support these methods.

The following are major topics within this chapter:
v Overview of Recovery
v Factors Affecting Recovery
v Disaster Recovery Considerations
v Reducing the Impact of Media Failure
v Reducing the Impact of Transaction Failure
v System Clock Synchronization in a Partitioned Database System
v Crash Recovery
v Recovery Method: Version Recovery
v Recovery Method: Roll-Forward Recovery
v ADSTAR Distributed Storage Manager.

If you have tables that contain DATALINK columns, also refer to “DB2 Data
Links Manager Considerations” on page 440.

One type of problem that requires point-in-time roll-forward recovery is the
corruption of data that is caused by errant logic or incorrect input in an
application. You can use roll-forward recovery to recover the database to a
point in time that is close to when the application began working with the
database. Or, you can attempt to back out the effects of the application on the
database by executing the transactions in reverse. You must exercise caution if
you decide to follow the second approach. This chapter does not provide
further information about application errors.

© Copyright IBM Corp. 1993, 1999 365

Overview of Recovery

You need to know the strategies available to you to help when there are
problems with the database. Typically you will deal with media and storage
problems, power interruptions, and application failures. You need to know
that you can back up your database, or individual table spaces, and then
rebuild them should they be damaged or corrupted in some way. The
rebuilding of the database is called recovery. Crash recovery automatically
attempts to recover the database after a failure. There are two ways to recover
a damaged database: version recovery and roll-forward recovery.

Non-recoverable databases have both the logretain and userexit database
configuration parameters disabled. This means that the only logs that are kept
are those required for crash recovery. These logs are known as active logs, and
they contain current transaction data. Version recovery using offline backups is
the primary means of recovery for problems with a non-recoverable database.
(An offline backup means that no other application can use the database when
the backup operation is in progress.) When you restore the database, you can
only restore it offline, and it is restored to the same state it was in when you
took the backup image.

Recoverable databases have either the logretain database configuration
parameter set to “RECOVERY”; or, userexit database configuration parameter
enabled; or both. Active logs are still available for crash recovery, but you also
have the archived logs, which contain committed transaction data. When you
restore the database, you can only restore it offline, and it is restored to the
same state it was in when you took the backup image. However, with
forward recovery, you can then roll the database forward (that is, past the time
of the backup image) by using the active and archived logs to either a specific
point in time, or to the end of the active logs.

Unlike non-recoverable databases, you can perform the backup operation for a
recoverable database either offline or online (online meaning that other
applications can connect to the database during the backup operation). The
database restore and roll forward operations must always be performed
offline. Although during an online backup operation, changes may also be
occurring on the tables, roll-forward recovery ensures that all table changes
are captured and reapplied if that backup is restored.

If you have a recoverable database, you can also back up, restore, and roll
forward individual table spaces in it. When you back up a table space online,
it is still available for use, and changes made to its tables during the backup
are recorded in the logs. When you perform an online restore or roll forward
on a table space, the table space itself is not available for use until the
operation completes, but users are not prevented from accessing tables in
other table spaces.

366 Administration Guide Design and Implementation

Crash recovery protects a database from being left in an inconsistent, or
unusable, state. Transactions, or units of work, against the database can be
interrupted unexpectedly. For example, should a failure (power interruption,
application failure) occur before all of the changes that are part of the unit of
work are completed and committed, the database is left in an inconsistent and
unusable state.

The database then needs to be moved to a consistent and usable state. This is
done by rolling back incomplete transactions and completing committed
transactions that were still in memory when the crash occurred.

When a database is in a consistent and usable state, it is known as a “point of
consistency” for the database. It is a “snapshot” of the database at a point of
time that saves a copy of the data in the database in a backup copy. An offline
database backup is a point of consistency. After a point of consistency is
reached, all transactions have been resolved and all data is free for use by
other users or applications.

You can move to a point of consistency following a crash by entering a
RESTART DATABASE command. If you want this done in every case of a
failure, then you should consider the use of the automatic restart enable
(autorestart) configuration parameter. The default for this configuration
parameter is that the RESTART DATABASE routine will be started every time
it is needed. When (autorestart) is enabled, the next connect request to the
database after the failure causes RESTART DATABASE to be executed.

Crash recovery moves the database to a consistent and usable state. If,
however, crash recovery occurs for a database that is enabled for forward

1

2

3

4

rollback

rollback

rollback

rollback

Units of work

Crash
All four rolled back

TIME

Figure 28. Rolling Back Units of Work

Chapter 9. Recovering a Database 367

recovery (that is, the logretain configuration parameter is set to “RECOVERY”
or the userexit configuration parameter is enabled), and an error occurs during
crash recovery that is attributable to an individual table space, that table space
is taken offline, and cannot be accessed until it is repaired. Crash recovery
continues. See “Rolling Forward Changes in a Table Space” on page 418 for
more information. At the completion of crash recovery, the other table spaces
in the database are still usable and connections to the database can be
established. (There are exceptions involving the table spaces that have the
temporary tables or the system catalog tables. These will be discussed under
roll-forward recovery.)

Following crash recovery, you may need to take additional action. You may
need to work with the table spaces taken offline as mentioned above. You may
need to conduct a version recovery or a roll-forward recovery, depending on
the error.

There are two recovery methods supported by DB2:

1. Version recovery allows for the restoration of a previous version or image
of the database that was made using the BACKUP command.

A database restore will rebuild the entire database using a backup of the
database made at some point earlier. A backup of the database allows you
to restore a database to a state identical to the time when the backup was
made. Every unit of work from the time of the backup to the time of the
failure is lost. (To re-create these units of work requires the roll-forward
recovery method, which is discussed later.)

BACKUP
database

image

BACKUP
database

TIME

create

RESTORE
database

1

2

3

4

Units of work

Figure 29. Restoring a Database

368 Administration Guide Design and Implementation

Using the version recovery method, you must schedule and perform a full
backup of the database on a regular basis.

In a partitioned database environment, the database is located across many
database partition servers (or nodes). You must restore all database
partitions, and the backups that you use for the RESTORE must all have
been taken at the same time. (Each database partition is backed up and
restored separately.) A backup of each database partition taken at the same
time is known as a version backup.

2. To use the roll-forward recovery method, you must have taken a backup
of the database as well as archived the logs (by enabling either the
logretain or userexit database configuration parameters, or both. For
information on the decisions that you must make regarding the logging
procedure that you use, see “Database Logs” on page 373.) If you restore
the database and specify WITHOUT ROLLING FORWARD, it is the same
as the version recovery method. The database is restored to a state
identical to the time when the offline backup was made. If you restore the
database and do not specify WITHOUT ROLLING FORWARD for the
restore operation, the database will be in the roll-forward pending state at
the end of the restore. This allows roll-forward recovery to take place.
The two types of roll-forward recovery to consider are:

a. Database roll-forward recovery follows the restore of the database with
the application of database logs. The database logs record all changes
made to the database. This method completes the recovery of the
database to its state at a particular point in time, or to its state just
before the failure (that is, to the end of the active logs.)

Chapter 9. Recovering a Database 369

In a partitioned database system, the database is located across many
database partitions. In this environment, if you are performing
point-in-time roll-forward recovery, all database partitions must be
rolled forward to ensure that all partitions are at the same level. If you
need to restore a single database partition, you can perform
roll-forward recovery to the end of the logs to bring it up to the same
level as the other database partitions in the database.

b. When the database is enabled for forward recovery, it is also possible
to back up, restore, and roll-forward table spaces. To perform a table
space restore and roll-forward, you need a backup image of either the
entire database (that is, all of the table spaces) or of one or more
individual table spaces; and, you need the log records that affect the
table spaces to be recovered. You can apply the log records by rolling
forward through the logs to one of two points:
v To the end of the logs; or,
v To a particular point in time (called point-in-time recovery).

Notes:

1) Those table spaces not selected at the time of the BACKUP will not
be in the same state as those that were restored.

2) Using the roll-forward recovery method with table spaces, you
must identify “key” table spaces in the database to be recovered as
well as schedule and perform a backup of the database or the
“key” table spaces on a regular basis.

BACKUP
database

image

TIME

create

BACKUP
database

RESTORE
databaseUnits of work

ROLLFORWARD

changes in logs

n archived logs
active logs

Figure 30. Database Roll-Forward Recovery

370 Administration Guide Design and Implementation

Table space roll-forward recovery can be used in the following two
situations:
a. After a table space restore, the table space is always in the roll-forward

pending state, and it must be rolled forward. Again, use the
ROLLFORWARD command to apply the logs against the table spaces
to either a point in time, or to the end of the logs.

b. If one or more table spaces are in a roll-forward pending state after crash
recovery, first correct the problem with the table space. In some cases,
correcting the problem with the table space does not involve
performing a RESTORE. For example, a power loss could leave the
table space in a roll-forward pending state. If the problem is corrected
before crash recovery, crash recovery may be sufficient to take the
database to a consistent, usable state. No RESTORE is required in this
case. Once the problem with the table space is corrected, you can use
the ROLLFORWARD command to apply the logs against the table
spaces to either a point in time, or to the end of the logs.

Note: If the table space in error contains the system catalog tables, you
will not be able to start the database. You must restore the
SYSCATSPACE table space, then perform roll-forward recovery
on it to the end of the logs.

In a partitioned database system, if you are rolling forward a table space to
a point in time, you do not have to supply the list of nodes (database
partitions) on which the table space resides. The database manager
submits the roll-forward request to all database partitions. This means the
table space must be restored on all database partitions on which the table
space resides.

In a partitioned database system, if you are rolling forward a table space to
the end of the logs, you have to supply the list of nodes if you do not want
to roll the table space forward on all database partitions. If you want to
roll forward all table spaces on all database partitions that are in the
roll-forward pending state to the end of the logs, you do not have to
supply the list of nodes. By default, the ROLLFORWARD request is sent to
all database partitions.

Factors Affecting Recovery

To decide which database recovery method to use, you must consider the
following key factors:
v Will the database be recoverable or non-recoverable?
v How near to the time of failure will you need to recover the database (the

point of recovery)?

Chapter 9. Recovering a Database 371

v How much time can be spent recovering the database? This would include:
– Time between backups (will affect roll-forward recovery)?
– Time the database is usable or accessible (backing up online or offline

based on data availability needs)?
v How much storage space can be allocated for backup copies and archived

logs?
v Will you be using table space level or full database level backups?

In general, a database maintenance and recovery strategy should ensure that
all information is available when it is required for database recovery. The
strategy should include a regular schedule for taking database backups, as
well as scheduled backups when a database is created, or in the case of a
partitioned database system, when the system is scaled by adding or
dropping database partition servers (nodes). In addition to these basic
requirements, a good strategy will include elements that reduce the likelihood
and impact of database failure.

The following topics provide additional information:
v Recoverable and Non-Recoverable Databases
v Database Logs
v Reducing Logging on Work Tables
v Point of Recovery
v Frequency of Backups and Time Required
v Recovery Time Required
v Storage Considerations
v Keeping Related Data Together
v Restrictions on Using Different Operating Systems
v Damaged Table Space Recovery
v Recovery Performance Considerations.

While the general focus of this chapter is on the database, your overall
recovery planning should also include recovering:
v The operating system and DB2 executables
v Applications, UDFs, and stored procedure code in operating system

libraries
v Commands for creating DB2 instances and non-DB2 resources
v Operating system security
v Load copies from a LOAD operation (if you specify COPY YES for the

LOAD)

372 Administration Guide Design and Implementation

Recoverable and Non-Recoverable Databases

If you can re-create data easily, the database holding that data is a candidate
to be a non-recoverable database. For example:
v Tables that hold data from an outside source that is used for read-only

applications (and the data is not mixed with existing data) should be
considered for placement within a non-recoverable database.

v Tables with small amounts of data. Here recovery is not a problem. Rather,
there is just not enough logging done for the data to justify the added
complexity of managing log files and rolling forward after a restore.

v Large tables where small numbers of rows are periodically added. Again,
there is not enough volatility to justify managing log files and rolling
forward after a restore.

If you cannot re-create data easily, then the database holding that data is a
candidate to be a recoverable database. The following are examples of data
that should be part of a recoverable database:
v Data that you cannot re-create. This includes data whose source is

destroyed after the data is loaded, and data that is manually entered into
tables.

v Data that is modified by application programs or workstation users after it
is loaded into the database.

Database Logs

All databases have logs associated with them. These logs keep records of
database changes.

Active logs are used by crash recovery to prevent a failure (system power,
application error) from leaving a database in an inconsistent state. The
RESTART DATABASE command uses the active logs, if needed, to move the
database to a consistent and usable state by means of crash recovery. During
crash recovery, changes recorded in these logs that were made to the data but
not committed because of the failure are rolled back. Changes that were
committed but were not physically written from memory (buffer pool) to disk
(database containers) are redone. These actions ensure the integrity of the
database. The ROLLFORWARD command may also use the active logs, if
needed, during a point-in-time recovery or a recovery to the end of the logs.
Active logs are located in the database log path directory.

Archived logs are used specifically for roll-forward recovery. They can be:

online archived logs
When all changes in the active log are no longer needed for

Chapter 9. Recovering a Database 373

normal processing, the log is closed, and becomes an archived
log. An archived log is said to be online when it is stored in
the database log path directory.

offline archived logs
You also have the ability to store archived logs in a location
other than the database log path directory, by using a user exit
program. (See “Appendix G. User Exit for Database Recovery”
on page 733 for additional information.) An archived log is

said to be offline when it is no longer found in the database
log path directory.

Roll-forward recovery can use both archived logs and active logs to rebuild a
database either to the end of the logs, or to a specific point in time. The
roll-forward function achieves this by reapplying committed changes that are
found in the archived and active logs to the restored database.

Roll-forward recovery can also use logs to rebuild a table space by
re-applying committed updates in both archived and active logs. You can
recover a table space to the end of the logs, or to a specific point in time.

Two database configuration parameters allow you to change where archived
logs are stored: The newlogpath parameter and the userexit parameter.
Changing the newlogpath parameter also affects where active logs are stored.
Refer to Administration Guide, Performance for more information on these
configuration parameters.

To determine which log extents in the database log path directory are
archived logs, check the value of the database configuration parameter loghead.
This parameter indicates the lowest numbered log that is active. Those logs

TIME

Units of work Units of work

update update

Logs are used between backups to track the changes to the databases.

BACKUP
database

n archived logs
1 active log

n archived logs
1 active log

Figure 31. Active and Archived Database Logs in Roll-forward Recovery

374 Administration Guide Design and Implementation

with sequence numbers less than loghead are archived logs and can be moved.
You can check the value of this parameter by using the Control Center; or, by
using the command line processor and the GET DATABASE
CONFIGURATION command to view the “First active log file”. Refer to
Administration Guide, Performance for more information on this configuration
parameter.

Notes:

1. If you erase an active log, the database becomes unusable and must be
restored before it can be used again. Also, you will be able to roll forward
the changes from the logs only up to the first log that was erased.

2. If you are concerned that your active logs may be damaged (due to a disk
crash), you should consider mirroring the volumes on which the logs are
stored. By having multiple copies of the logs, you will not lose any
transactions, which may happen when active logs are damaged.

Reducing Logging on Work Tables

If your application creates and populates work tables from master tables, and
you are not concerned about the recoverability of these work tables because
they can be easily re-created from the master tables, you may want to create
the work tables with the NOT LOGGED INITIALLY parameter of the
CREATE TABLE statement. The advantage of using the NOT LOGGED
INITIALLY parameter is that any changes made on the table (including Insert,
Delete, Update, or Create Index operations) in the same unit of work that
creates the table will not be logged. This not only reduces the logging that is
done, but also obtains better performance for your application. You can also
obtain the same behavior for existing tables by using the ALTER TABLE
statement with the NOT LOGGED INITIALLY parameter.

Notes:

1. You can create more than one table with the NOT LOGGED INITIALLY
parameter in the same unit of work.

2. Changes to the catalog tables and other user tables are still logged.

Because changes to the table are not logged, you should consider the
following when deciding to use the NOT LOGGED INITIALLY parameter:
v All changes to the table must be flushed out to disk at commit time. This

means that the commit may take longer.
v An error received for any operation in a unit of work in which the table is

created will result in the rollback of the entire unit of work. In this case, the
application receives the SQLCODE -1476 (SQLSTATE 40506).

v When rolling forward, you cannot recover these tables. If the roll-forward
operation encounters a table that was created with the NOT LOGGED

Chapter 9. Recovering a Database 375

INITIALLY parameter, this table will be marked as unavailable. After the
database is recovered, any attempt to access the table will result in
SQL1477N being returned.

Note: When a table is created, row locks are held on the catalog tables until
a COMMIT is done. To take advantage of the no logging behavior,
you must populate the table in the same unit of work in which it is
created. This has implications for concurrency. Refer to
“Concurrency” in the Administration Guide, Performance for more
information.

Refer to the SQL Reference for more information about creating tables.

Point of Recovery

The version and roll-forward recovery methods provide different points of
recovery. The version method involves making an offline, full database backup
copy of the database at scheduled times. With this method, the recovered
database is only as current as the backup copy that was restored. For instance,
if you make a backup copy at the end of each day and you lose the database
midway through the next day, you will lose a half-day’s worth of changes.

In the roll-forward recovery method, changes made to the database are
retained in logs. With this method, you first restore the database or table
space(s) using a backup copy; then you use the logs to reapply changes that
were made to the database since the backup copy was created.

With roll-forward recovery enabled, you can take advantage of online backup
and table space level backup. For full database and table space roll-forward
recovery, you can choose to recover to the end of the logs or to a specified
point-in-time. For instance, if an application corrupted the database, you
could start with a restored copy of the database, and roll-forward changes up
until just before that application started. All units of work in the logs after the
time specified will not be reapplied.

You can also roll forward table spaces to the end of the logs, or to a specific
point in time. For more information about rolling forward table spaces, see
“Rolling Forward Changes in a Table Space” on page 418.

Frequency of Backups and Time Required

Your recovery plan should allow for regularly scheduled backups, since
backing up a database requires time and system resource.

You should take full database backups regularly, even if you archive the logs
(which allows for roll-forward recovery). If your recovery strategy includes

376 Administration Guide Design and Implementation

roll-forward recovery, a recent full database backup will mean that there are
fewer archived logs to apply to the database, which reduces the amount of
time required by the ROLLFORWARD utility to recover the database.

You should also consider not overwriting backups and logs, saving more than
one full database backup and its associated logs as an extra precaution.

You may have an active database where more logging occurs and more
archived logs are created. If the amount of time needed to apply archived logs
when recovering and rolling forward a database is a major concern, then you
need to consider the cost of having more frequent database backups. More
frequent database backups reduces the number of archived logs you need to
apply when rolling forward through the archived logs.

You can do a backup while the database is either online or offline. If it is online,
other applications or processes can continue to connect to the database as well
as read and modify data while the backup task is running. If the backup is
performed offline, only the backup task can be connected to the database. The
implication of offline backup is that the rest of your organization cannot
connect to the database while the backup task is running.

To reduce the time when the database is not available, consider using online
backups. online backups are supported only if roll-forward recovery is
enabled. If roll-forward recovery is enabled and you have a complete set of
logs, you can rebuild the database should the need arise.

Notes:

1. You can only use an online backup if you have the database log (or logs)
that span the time that backup operation both started and completed.

2. offline backups are faster than online backups.

If a database contains large amounts of long field and LOB data, backing up
the database could be very time-consuming. The BACKUP command provides
the capability to back up selected table spaces. If you use DMS table spaces,
you can store different types of data in their own table spaces to reduce the
time required for backups. You can keep table data in one table space, the
LONG and LOB data in another table space, and the INDEX data in another
table space. By storing long field and LOB data in separate table spaces, the
time required to complete the back up of the data can be reduced by choosing
not to back up the table spaces containing the long field and LOB data. If the
long field and LOB data is critical to your business, backing up these table
spaces should be considered against the time required to complete the restore
task for these table spaces. If the LOB data can be reproduced from a separate
source then, when creating or altering a table to include LOB columns, choose
the NOT LOGGED option.

Chapter 9. Recovering a Database 377

If you reorganize a table, you should back up the affected table spaces after
the operation completes. If you have to restore the table spaces, you will not
have to roll forward through the data reorganization.

Note: If you back up a table space that contains table data without the table
spaces containing the associated the LONG or LOB fields, you cannot
perform point-in-time roll-forward recovery on that table space. All the
table spaces that contain any type of data for a table must be rolled
forward simultaneously to the same point in time.

Recovery Time Required

The time required to recover a database is made up of two parts: the time
required to complete the restore of the backup; and, if the database is enabled
for forward recovery, the time required to apply the logs during the
roll-forward operation. When formulating a recovery plan, you should
determine what is a reasonable amount of time for your business operations
to be impacted while the database is being recovered.

Note: The setting of the enable intra-partition parallelism (intra_parallel)
database manager configuration parameter does not affect the
performance of either backup or restore operations. Multiple processes
will be used for both of these operations, regardless of the setting of the
intra_parallel parameter.

Testing your overall recovery plan will assist you in determining whether the
time required to recover the database is reasonable given your business
requirements. Following each test, you may want to increase the frequency
with which you take a backup. If roll-forward recovery is part of your
strategy, this will reduce the number of logs that are archived between
backups and, as a result, reduce the time required to roll forward the database
after a restore.

Storage Considerations

When deciding which recovery method to use, consider the storage space
required.

The version recovery method requires space to hold the backup copy of the
database and the restored database. The roll-forward recovery method
requires space to hold the backup copy of the database or table spaces, the
restored database, and the archived database logs.

If a table contains long field or large object (LOB) columns, you should
consider placing this data into a separate table space. This will affect your
storage space considerations as well as affect your plan for recovery. With a
separate table space for long field and LOB data, and knowing the time

378 Administration Guide Design and Implementation

required to back up long field and LOB data, you may decide to use a
recovery plan that only infrequently saves a backup of this long field/LOB
table space. You may also choose, when creating or altering a table to include
LOB columns, not to log changes to that column. This will reduce the size of
the log space required and the corresponding log archive space.

The backup of an SMS table space which contains LOBs can be bigger than
the size of the original table space. The backup can be as much as 40 per cent
larger depending on the LOB data size in the table space. For example, if you
take a backup of a 1 GB SMS table space (with LOBs), you will need more
than 1 GB of disk space when you restore it. This situation only occurs on file
systems that support sparse allocation (for example, UNIX operating systems).

To prevent a media failure from destroying a database and your ability to
rebuild it, you should keep the database backup, the database logs, and the
database itself on different devices. For this reason, it is highly recommended
that you use the newlogpath configuration parameter to put database logs on a
separate device once the database is created. (This and other configuration
parameters related to logging are discussed in “Rolling Forward Changes in a
Database” on page 413.)

Because the database logs can take a large amount of storage, if you plan on
using the roll-forward recovery method you must decide how to manage the
archived logs. Your choices are the following:

1. Dedicate enough space in the database log path directory to retain the
logs.

2. Manually copy the logs to a storage device or directory other than the
database log path directory after they are no longer in the active set of
logs.

3. Use a user exit program to copy these logs to another storage device in
your environment. (See “Appendix G. User Exit for Database Recovery” on
page 733 for more information.)

Note: Under OS/2, the database manager supports a user exit program to
handle the storage of both backup copies of databases and database
logs on standard and non-standard devices. See “Appendix G. User Exit
for Database Recovery” on page 733 for more information.

Keeping Related Data Together

As part of your database design, you will know the relationships that exist
between tables. These relationships can be at the application level, where
transactions update more than one table, or at the database level, where
referential integrity exists between tables, or where triggers on one table affect
another table. You should consider these relationships when developing a

Chapter 9. Recovering a Database 379

recovery plan. You will want to back up related sets of data together. The sets
of data can be established at either the table space or the database level. By
keeping related sets of data together, you can recover to a point where all of
the data is consistent. This is especially important if you want to be able to
perform point-in-time roll-forward recovery on table spaces.

Restrictions on Using Different Operating Systems

When working in an environment that has more than one operating system,
you must consider that the backup and recovery plans cannot be integrated.
That is, you may not use the BACKUP DATABASE command on one
operating system and the RESTORE DATABASE command on another
operating system. You should keep the recovery plans for each operating
system separate and independent.

If you must move tables from one operating system to another, use the
db2move command; or, use the EXPORT with the IMPORT or LOAD
commands.

Damaged Table Space Recovery

A damaged table space is a table space that has one or more containers which
cannot be accessed. When a table space is damaged, it is often caused by
media problems that are either permanent (for example, a bad disk), or
temporary (for example, an offline disk, or an unmounted file system).

If the damaged table space is the system catalog table space, the database
cannot be restarted. If the container problems cannot be fixed leaving the
original data intact, then the only options are:
v To restore the database; or,
v To restore the catalog table space.

Note: Table space restore is only valid for recoverable databases since the
database must be rolled forward.

If the damaged table space is not the system catalog table space, then DB2
attempts to make as much of the database available as possible. The overall
success of this attempt is dependent on the logging strategy.

If the damaged table space is a temporary table space and it is the only one
existing, then as soon as a connection to the database is made you should
create a new temporary table space. Once created, the new temporary table
space can be used and normal database operations requiring temporary table
space can resume. You can then, if you wish, drop the OFFLINE temporary
table space. There are special considerations regarding a table reorganization
using a temporary table space:

380 Administration Guide Design and Implementation

v If the database or database manager configuration parameter indexrec is set
to “RESTART”, all invalid indexes must be rebuilt during database
activation — this includes indexes from reorganization that crashed during
the build phase.

v If there are incomplete reorganization requests in a damaged temporary
table space then you may have to set the indexrec configuration parameter
to “ACCESS” to avoid restart failures.

Table Space Recovery: Recoverable Databases

The damaged table space is put in an OFFLINE state and a ROLLFORWARD
PENDING state since crash recovery is necessary. The restart will succeed
assuming there is no additional problem. The damaged table space can be
used again once the user either:
1. Fixes the damaged containers without losing the original data and then

does a table space ROLLFORWARD. (The roll forward will first attempt to
bring it from an OFFLINE to an ONLINE state.)

2. Does a table space RESTORE after fixing the damaged containers (with or
without losing the original data) and then a roll forward.

Table Space Recovery: Non-recoverable Databases

Since crash recovery is necessary, and logs are not kept indefinitely, the restart
can only succeed if the user is willing to drop the damaged table spaces.
(Successful completion of recovery means that the log records necessary to
recover the damaged table space(s) to a consistent state will be gone — thus
the only valid action on such table space(s) would be to drop them.)

The user can do this by:

Issuing an unqualified restart.

It will succeed if there are no damaged table spaces. If it fails with SQL0290N
Table space access is not allowed, the user can then look in the
db2diag.log for a complete list of table spaces that are currently damaged.
v If the user is willing to drop all these table spaces once the restart is

complete, he can then issue a restart listing all the damaged table spaces in
the DROP PENDING TABLESPACES. As restart tries to bring up a table
space, if any table space is damaged it looks to see if that table space is
included in the DROP PENDING TABLESPACE list:
– If it is: The table space is put into DROP PENDING and the users only

allowed action on the table space after recovery is a ’DROP
TABLESPACE’, restart continues but without recovering this table space

– If it is not: the restart fails with SQL0290N.

Chapter 9. Recovering a Database 381

v If the user is unwilling to drop (and thus lose the data in) these table
spaces; his options are to:
1. Wait and fix the damaged containers (without losing the original data)

and then trying the restart again
2. Perform a database restore.

Note: Putting a table space name into the DROP PENDING TABLESPACE list
does not mean the table space will be in DROP PENDING state. This is
true only if the table space is damaged during the restart time. Once
the restart is successful the user should issue ″DROP TABLESPACE″
statements to drop each of the table spaces that are in
DROP_PENDING (do a LIST TABLESPACES if unsure). This way the
space can be reclaimed and or the table spaces can be re-created.

Recovery Performance Considerations

The following items should be considered when thinking about recovery
performance:
v You can improve performance for databases that are frequently updated by

placing the logs on a separate device. All database changes are written in
the logs.
In the case of an online transaction processing (OLTP) environment, often
more I/O is needed for the logs than to store a data row. Placing the logs
on a separate physical disk will minimize disk arm movement that would
be required to move between a log and the physical database files.
You should also consider what other files are on the disk. For example,
moving the logs to the same disk used for system paging in a system that
has insufficient real memory will defeat your tuning efforts.

v To reduce the amount of time required to complete a restore:
– Adjust the restore buffer size. The buffer size must be a multiple of the

buffer size that was used during the backup.
– Increase the number of buffers.

If you use multiple buffers and I/O channels, you should use at least
twice as many buffers as channels to ensure that the channels do not
have to wait for data. The size of the buffers used will also contribute to
the performance of the restore operation. The ideal restore buffer size
should be a multiple of the extent size for the table space(s).
If you have multiple table spaces with different extent sizes, specify a
value that is a multiple of the largest extent size.
A recommended number of buffers is the number of media devices or
containers plus the number used with the PARALLELISM option plus a
few extra.

– Use multiple source devices.

382 Administration Guide Design and Implementation

– Set the PARALLELISM option for the restore operation to be at least one
(1) greater than the number of source devices.

v If a table contains large amounts of long field and LOB data, restoring it
could be very time-consuming. If the database is enabled for forward
recovery, the RESTORE command provides the capability to restore selected
table spaces. If the long field and LOB data is critical to your business,
restoring these table spaces should be considered against the time required
to complete the back up task for these table spaces. By storing long field
and LOB data in separate table spaces, the time required to complete the
restore of the data can be reduced by choosing not to restore the table
spaces containing the long field and LOB data. If the LOB data can be
reproduced from a separate source, when creating or altering a table to
include LOB columns, choose the NOT LOGGED option. If you choose not
to restore the table spaces that contain long field and LOB data, but you
need to restore the table spaces that contain the table, you must roll
forward to the end of the logs so that all table spaces that contain the table
are consistent.

Note: If you back up a table space that contains table data without the
table spaces containing the associated the LONG or LOB fields, you
cannot perform point-in-time roll-forward recovery on that table
space. All the table spaces that contain any type of data for a table
must be rolled forward simultaneously to the same point in time.

Recall that long field and LOB data for the same table must be placed in
the same table space.

v The following apply for both backup and restore operations:
– Multiple I/O buffers and devices should be used.
– Allocate at least twice as many buffers as there are devices being used.
– Do not overload the I/O device controller bandwidth.
– Use more buffers of smaller size rather than a few large buffers.
– Tune the number and the size of the buffers according to the system’s

resources.

It is also recommended that you monitor and measure within your own
system environment. The recommendations are only a starting point: each
business and each environment is unique.

Chapter 9. Recovering a Database 383

Disaster Recovery Considerations

The term disaster recovery is used to describe the activities that need to be
done to restore the database in the event of a fire, earthquake, vandalism, or
other catastrophic events. A plan for disaster recovery can include one or
more of the following:
v A site to be used in the event of an emergency
v A different machine on which to recover the database
v Off-site storage of database backups and archived logs.

If your plan for disaster recovery is to recover the entire database on another
machine, you require at least one full database backup and all the archived
logs for the database. When operating your business with this consideration,
you may choose to keep a standby database up-to-date by applying the logs
to it as they are archived. Or, you may choose to keep the database backup
and log archives in the standby site, and perform a restore/rollforward only
after a disaster has occurred. (In this case, a recent database backup is clearly
desirable.) With a disaster, however, it is generally not possible to recover all
of the transactions up to the time of the disaster.

The usefulness of a table space backup for disaster recovery depends on the
scope of the failure. Typically, disaster recovery requires that you restore the
entire database, so when a major disaster occurs, a full database backup is
needed on a standby site (even if you have a separate backup image of every
table space, you cannot use them to recover the database). If the disaster is a
damaged disk, then a table space backup (for each table space using that disk)
can be used to recover. If you have lost access to a container because of a disk
failure (or for any other reason), you can restore the container to a different
location. For additional information, see “Redefining Table Space Containers
During RESTORE” on page 403.

With critical business data being stored in your database, you should plan for
the possibility of a natural or man-made disaster affecting your database. Both
table space backups and full database backups can have a role to play in any
disaster recovery plan. The DB2 facilities available for backing up, restoring,
and rolling forward data changes provide a foundation for a disaster recovery
plan. You should ensure that you have tested recovery procedures in place to
protect your business.

Reducing the Impact of Media Failure

To reduce the possibility of having to recover from a media failure, and to
simplify recovering from this type of failure, you should:

384 Administration Guide Design and Implementation

v Mirror or duplicate the disks that hold the data and logs for important
databases.

v In a partitioned database environment, set up a more rigorous procedure
for handling the data and logs on the catalog node. Because this node is
very important for maintaining the database, you should put it on a more
reliable disk, duplicate it, and take more frequent backups of it. Also try to
avoid putting user data on it.

Protecting Against Disk Failure

If you are concerned about damaged data or active logs due to a disk crash,
an area you might wish to consider at some point is the use of some form of
tolerance to disk failures. Generally, this would be accomplished through the
use of a disk array. A disk array consists of a collection of disk drives that
appear as a single large disk drive to an application.

Disk arrays involve disk striping, which is the distribution of a file across
multiple disks, mirroring of disks and data parity checks. Through the use of
a disk array, the data and logs are protected from disk faults, and you will not
lose any transactions which may otherwise happen if disk fault tolerance were
not implemented.

Disk arrays are sometimes referred to simply as RAID (Redundant Array of
Inexpensive Disks). The specific term RAID generally applies only to
hardware disk arrays. Disk arrays can also be provided through software in
the operating system or application level. The point of distinction between
hardware and software disk arrays is how CPU processing of I/O requests is
handled. For hardware disk arrays, disk controllers manage the I/O activity,
whereas with software disk arrays this is done by the operating system or
application.

Hardware Disk Arrays (RAID)

With a RAID disk array, multiple disks are used and managed by a disk
controller, complete with its own CPU. All of the logic required to manage the
disks forming the array is contained on the disk controller and so this
implementation is operating system independent.

There are five types of RAID architectures, RAID-1 through RAID-5, and each
provides disk fault-tolerance. Each of the five has some trade-off in function
and performance. By definition, RAID refers to a redundant array. RAID-0,
which provides only data striping and not fault-tolerant redundancy, is
purposely excluded in this discussion about protecting your data in the event
of a disk failure. Although the RAID specification defines five architectures,
only RAID-1 and RAID-5 are typically used today.

Chapter 9. Recovering a Database 385

RAID-1 is also known as disk mirroring or duplexing. Disk mirroring
duplicates data (complete file) from one disk onto a second disk using a single
disk controller. Disk duplexing is the same as mirroring except disks are
attached to a second disk controller (like two SCSI adapters). Data protection
is good. Either disk can fail and data is still accessible from the other disk.
With duplexing, a disk controller could fail as well and still have complete
protection of data. Performance with RAID-1 is also good but the trade-off in
this implementation is that the required disk capacity is twice that of the
actual amount of data, since data is duplicated on pairs of drives.

RAID-5 involves data and parity striping by sectors. RAID-5 stripes data,
sector(s) at a time, across all disks. Parity is interleaved with data information
rather than stored on a dedicated drive. Data protection is good. If any disk
fails, the data can still be accessed by using the information from the other
disks along with the striped parity information. Read performance is good
though write performance is considerably worse than that of RAID-1 or
normal disk. A RAID-5 configuration requires a minimum of three identical
disks. The amount of extra disk space required for overhead varies with the
number of disks in the array. In the case of a RAID-5 configuration of 5 disks,
the space overhead is 20%.

In using a RAID disk array, a failed disk (except RAID-0) will not prevent
users from accessing data on the array. When hot-pluggable or hot-swappable
disks are used in the array, a replacement disk can be swapped with the failed
disk while the array is in use. For RAID-5, if two disks fail at the same time,
all data is lost (but the chance of two disk failures at once is very rare).

You might consider using RAID-1 or software-mirrored disks, described in the
next section, for your logs since this provides for recoverability to the point of
failure and offers good write performance, which is important for logs. In
situations where reliability is crucial so that time cannot be lost in recovering
data in case of a disk failure, and write performance is not quite so critical,
consider using RAID-5 disks. Further, if write performance is crucial and you
are willing to achieve this with the cost of additional disk space, consider
RAID-1 for your data as well as logs.

Software Disk Arrays

A software disk array accomplishes much the same as a hardware disk array
but the management of the disk traffic is done by either an operating system
task or an application program running on the server. The key point is that
like all other programs, the software array must contend for CPU and system
resources. This is not a good option for a CPU-constrained system and it
should be remembered that overall disk array performance is dependent on
the server’s CPU load and capacity.

386 Administration Guide Design and Implementation

A typical software disk array provides disk-mirroring, as with RAID-1.
Although redundant disks are required, a software disk array is comparatively
inexpensive to implement since costly RAID disk controllers are not required.
One caution with software disk arrays is that having the operating system
boot drive in the disk array will prevent your system from starting if that
drive fails. If the drive fails before the disk array is running, the disk array
cannot start to allow access to the drive. Generally, a boot drive separate from
the disk array is also required.

Reducing the Impact of Transaction Failure

To reduce the impact of a transaction failure, try to ensure the following:
v Uninterrupted power supplies.
v Adequate disk space for database logs.
v Reliable communication links among the database partition servers in a

partitioned database environment.
v Synchronization of the system clocks in a partitioned database environment.

See “System Clock Synchronization in a Partitioned Database System” for
more information.

System Clock Synchronization in a Partitioned Database System

You should maintain relatively synchronized system clocks across the
database partition servers to ensure smooth database operations and
unlimited forward recoverability. The time difference among the database
partition servers plus any potential operational and communication delays for
a transaction should be less than the value found in the Maximum Time
Difference Among Nodes (max_time_diff) database manager configuration
parameter.

To ensure that the log record timestamps reflect the sequence of transactions,
DB2 in a partitioned database system uses the system clock on each machine
as the basis for the timestamps in the log records. If, however, the system
clock is set ahead, the log clock is automatically set ahead with it. Although
the system clock can be set backwards, the clock for the logs cannot, and
remains at the same advanced time until the system clock exceeds this time. At
this time, the log time again reflects the system clock. The implication of this
is that a short-term system clock error on a database node can have
long-lasting effect on the timestamps of database logs.

As a hypothetical example, assume that the system clock on database partition
server A is mistakenly set to November 7, 1999 when the year is 1997, and
assume that the mistake is quickly corrected after an update transaction is

Chapter 9. Recovering a Database 387

committed in the database partition at that database partition server. If the
database is in continual use, and is regularly updated over time, any point in
time between November 7, 1997 and November 7, 1999 is virtually
unreachable through roll-forward recovery. When the commit on database
partition server A is done the timestamp in the database log is set to 1999,
and the clock of the database log stays at November 7, 1999, until the system
clock exceeds this time. If you attempt to roll forward to a point in time
within the incorrect time frame, the operation will stop at the first timestamp
that is beyond the specified stop point, which is November 7, 1997.

Although DB2 cannot control updates to the system clock, the max_time_diff
database manager configuration parameter reduces the possibility of this type
of problem occurring in the database system:
v The configurable values for this parameter range from 1 minute to 24

hours. Refer to Administration Guide, Performance for more information on
setting max_time_diff.

v When the first connection request is made to a non-catalog node, this
database partition server sends its time to the catalog node for the database.
The catalog node then checks that the time on the node requesting the
connection and its own time are within the tolerance specified by the
max_time_diff parameter. If the value specified by the parameter is exceeded,
the connection is not allowed.

v An update transaction that involves more than two database partition
servers in the database must verify that the time on the participating
database partition servers is synchronized before the update can be
committed. If two or more database partition servers have a greater time
difference than that allowed by max_time_diff, the transaction is rolled back
to prevent the incorrect time from being propagated into other database
partition servers.

To correct and prevent an incorrect timestamp in a database log from being
propagated further:
1. Adjust the system clock to the correct time.
2. Restore the database partition on the appropriate database partition server

with a backup that was taken before the time was incorrectly set.
3. Roll forward the changes to the end of the log for the database partition.
4. Take a back-up copy of the database partition immediately after the

changes are rolled forward.

After you do these steps, the log time will be adjusted, the incorrect
timestamp will not be propagated, and you will be able to do point-in-time
recovery on the database partition from the last backup that you took of the
partition.

388 Administration Guide Design and Implementation

Crash Recovery

Crash recovery using the RESTART DATABASE command or the automatic
restart enable configuration parameter (autorestart) protects a database from
being left in an inconsistent, or unusable, state.

The following topics provide additional information:
v Getting to a Consistent Database
v Transaction Failure Recovery in a Partitioned Database Environment
v Identifying the Failed Database Partition Server.

Getting to a Consistent Database

Database commands and applications can fail for various reasons. A
transaction failure is not the failure of a database action when it is caused by
an incorrect parameter, a limit being exceeded, or a rollback caused by a
deadlock. Rather, it is a severe error or condition that causes the database or
database manager to end abnormally, and requires that the database be
recovered. Examples include events such as a power failure on a machine
(causing the database manager and database partitions on it to be down), or a
COMMIT/ROLLBACK failure that causes the database to go down because
the disk that contains the database log is full, and no additional log files can
be allocated for writing the COMMIT/ROLLBACK record.

While applications or commands are running against a database, an
interruption in power or the failure of an application may cause the
immediate cessation or stopping of all activity with the database. One or more
of the applications or commands may have started working with the data in
the database but were not complete. Also, some committed units of work may
not have been flushed to disk. The partially completed (or nonflushed) units
of work leave the database in an inconsistent, or unusable, state.

See the following topics for more information:
v Planning to Use Automatic Restart
v Enabling Automatic Restart.

Planning to Use Automatic Restart

The only consideration is whether you want the rollback of incomplete units
of work at the time of a failure to be done automatically by the database
manager. If you do, use the automatic restart enable (autorestart) configuration
parameter. If not, you should be prepared to issue the RESTART DATABASE
command when a database failure occurs.

Chapter 9. Recovering a Database 389

Enabling Automatic Restart

Automatic restart is enabled through the autorestart database configuration
parameter. The default for this parameter is that automatic restart is “on”.
Refer to Administration Guide, Performance for more information on this
parameter.

Transaction Failure Recovery in a Partitioned Database Environment

Typically, database recovery is required on both the failed database partition
server and any other database partition server that was participating in the
same transaction or application. Database recovery on the failed database
partition server is often called crash recovery. Crash recovery occurs on the
database partition server that failed after the condition that caused the failure
is corrected (for example, the power supply is reactivated). Database recovery
on the other (still active) database partition servers occurs immediately after
the failure is detected. Sometimes called database partition failure recovery, in
this recovery process, resources are transparently cleaned up for the failed
transaction or application.

For more information, see “Failure Recovery on an Active Database Partition
Server” on page 391, and “Transaction Failure Recovery on the Failed
Database Partition Server” on page 392.

Two-Phase Commit Protocol

The discussion of two-phase commit protocol here is to introduce crash
recovery in a partitioned database system. For more information about
two-phase commit, refer to “Understanding the Two-Phase Commit Process”
on page 478.

In a partitioned database environment, the database partition server on which
an application is submitted is the coordinator node, and the first agent that
works for the application is the coordinator agent. The coordinator agent is
responsible for distributing work to other database partition servers, and it
keeps track of which ones are involved in the transaction. When the
application issues a COMMIT for a transaction, the coordinator agent commits
the transaction by using the two-phase commit protocol. In the first phase, the
coordinator node distributes a PREPARE request to all the other database
partition servers that are participating in the transaction. These servers then
respond with one of the following:

READ-ONLY No data change occurred at this server

YES Data change occurred at this server

NO Because of an error, the server is not prepared
to commit

390 Administration Guide Design and Implementation

If one of the servers responds “NO”, the transaction is rolled back. Otherwise,
the coordinator node begins the second phase.

In the second phase, the coordinator node writes a COMMIT log record, then
distributes a COMMIT request to all the servers that responded “YES”. After
all the other database partition servers have committed, they send an
acknowledgment of the COMMIT to the coordinator node. The transaction is
complete when the coordinator agent has received all COMMIT
acknowledgments from all the participating servers. At this point, the
coordinator agent writes a FORGET log record.

Failure Recovery on an Active Database Partition Server

If any database partition server detects that another server is down, all work
that is associated with the failed database partition server is stopped:
v If the still active database partition server is the coordinator node for an

application and the application was running on the failed database partition
server (and not ready to COMMIT), the coordinator agent is interrupted to
do failure recovery. If the coordinator agent is in the second phase of
COMMIT processing, the application receives the SQL error message
SQL0279N, and loses its database connection. Otherwise, the coordinator
agent will distribute a ROLLBACK request to all other servers participating
in the transaction, and SQL1229N is returned to the application.

v If the failed database partition server was the coordinator node for the
application, agents that are still working for the application on the active
servers are interrupted to do failure recovery. The current transaction is
rolled back locally on each server, unless it has been prepared and is
waiting for the transaction outcome. In this situation, the transaction is left
indoubt on the active database partition servers, and the coordinator node
is not aware of this (because it is not available). See “Recovering from
Problems During Two-Phase Commit” on page 481 for more information
about how an indoubt transaction is resolved.

v If the application connected to the failed database partition server (before it
failed), but neither the local database partition server nor the failed
database partition server is the coordinator node, agents working for this
application are interrupted. The coordinator node will either send a rollback
or a disconnect message to the other database partition servers. The
transaction will only be indoubt on database partition servers that are still
active if the coordinator node returns SQL0279.

Any process (such as an agent or deadlock detector) that attempts to send a
request to the failed server is informed that it cannot send the request.

Chapter 9. Recovering a Database 391

Transaction Failure Recovery on the Failed Database Partition Server

If the failure caused the database manager to end abnormally, when the
processor is restarted, you can issue DB2START with the RESTART option to
restart the database manager. If you cannot restart the processor, you can also
use DB2START to restart the database manager on a different processor. For
more information, refer to the START DATABASE MANAGER command and
API in the Command Reference and Administrative API Reference respectively.

An abnormal end may result in database partitions on the server being left in
an inconsistent state (meaning that they are unusable). To make them usable,
crash recovery is required to make them consistent. Crash recovery can be
triggered on a database partition server:
v Explicitly with a RESTART DATABASE command
v Implicitly by a CONNECT request when the autorestart database

configuration parameter is on.

Crash recovery reapplies the log records in the active log files to ensure that
the effect of all complete transactions are in the database. After all the changes
are reapplied, all uncommitted transactions are rolled back locally, except for
indoubt transactions. In a partitioned database environment, there are two
types of indoubt transaction:
v On a database partition server that is not the coordinator node, a

transaction is indoubt if it is prepared but not yet committed.
v On the coordinator node, a transaction is indoubt if it is committed but not

yet logged as complete (that is, the FORGET record is not yet written). This
situation occurs when the coordinator agent has not received all the
COMMIT acknowledgments from all the servers that worked for the
application.

Crash recovery attempts to resolve all the indoubt transactions by doing one
of the following. The action that is taken depends on whether the database
partition server was the coordinator node for an application:
v If the server that restarted is not the coordinator node for the application, it

sends a query message to the coordinator agent to discover the outcome of
the transaction.

v If the server that restarted is the coordinator node for the application, it
sends a message to all the other agents (subordinate agents) that the
coordinator agent is still waiting for COMMIT acknowledgments.

It is possible that crash recovery may not be able to resolve all the indoubt
transactions (for example, some of the database partition servers are not
available). In this situation, the SQL warning message SQL1061W is returned.
You should note that indoubt transactions hold resources, such as locks and
active log space. It is possible to get to a point where no changes can be made

392 Administration Guide Design and Implementation

to the database because the active log space is held up by indoubt
transactions. For this reason, you should investigate if indoubt transactions
remain after crash recovery, and recover all database partition servers that are
required to resolve the indoubt transactions as quickly as possible.

If one or more servers that are required to resolve an indoubt transaction
cannot be recovered in time, and access is required to database partitions on
other servers, you can manually resolve the indoubt transaction by making an
heuristic decision. You can use the LIST INDOUBT TRANSACTIONS
command to query, commit, and roll back the indoubt transaction on the
server. For more information, refer to the LIST INDOUBT TRANSACTIONS
command and API in the Command Reference and Administrative API Reference
manuals respectively.

Note: The LIST INDOUBT TRANSACTIONS command is also used for
transactions in a distributed transaction environment. See “Chapter 10.
Distributed Databases” on page 465 and “Chapter 11. Using DB2 with
an XA-Compliant Transaction Manager” on page 489 for more
information about distributed environments. To distinguish between the
two types of indoubt transactions, the “originator” field in the output
that is returned by LIST INDOUBT TRANSACTIONS displays one of
the following:

v DB2 Universal Database Enterprise - Extended Edition, which
indicates that the transaction originated in the partitioned database
environment.

v XA, which indicates that the transaction originated in the distributed
environment.

Identifying the Failed Database Partition Server

When a database partition server fails, the application will typically receive
one of the following SQLCODEs. The method for detecting which database
manager failed depends on the SQLCODE received:

SQL0279N
This SQLCODE is received when a database partition server involved
in a transaction is terminated during COMMIT processing.

SQL1224N
This SQLCODE is received when the database partition server that
failed is the coordinator node for the transaction.

SQL1229N
This SQLCODE is received when the database partition server that
failed is not the coordinator node for the transaction.

Chapter 9. Recovering a Database 393

Determining which database partition server failed is a two-step process. The
SQLCA associated with SQLCODE SQL1229N contains the node number of
the server that detected the error in the sixth array position of the sqlerrd field.
(The node number that is written for the server corresponds to the node
number in the db2nodes.cfg file.) On the database partition server that detects
the error, a message that indicates the node number of the failed server is
written in the db2diag.log file.

Note: If multiple logical nodes are being used on a processor, the failure of
one logical node may cause other logical nodes on the same processor
to fail.

Typically, to recover from the failure of a database partition server:
1. Correct the problem that caused the failure.
2. Restart the database manager with the DB2START command from any

database partition server.
3. Restart the database with the RESTART DATABASE command on the

failed database partition server or servers.

Recovery Method: Version Recovery

Version recovery using the BACKUP command in conjunction with the
RESTORE command puts the database in a state that has been previously
saved. You use this recovery method with non-recoverable databases (that is,
databases for which you do not have archived logs). You can also use this
method with recoverable databases by using the WITHOUT ROLLING
FORWARD option.

In this section, planning considerations and how to invoke the specific utilities
or commands to carry out the method are reviewed. Then, any concepts or
related issues that allow effective use of this method are presented.

The following topics provide additional information:
v Backing Up a Database
v Restoring a Database
v Recovery History File Information.

Backing Up a Database

To make a backup copy of the database, you use the BACKUP command or
the Control Center. Within the Control Center, you select the database to be
backed up and then select the backup action.

394 Administration Guide Design and Implementation

In a partitioned database system, you back up database partitions individually
using the BACKUP DATABASE command. The operation is local to the
database partition server where you issue the command. You can, however,
issue db2_all from one of the database partition servers in the instance to
submit the backup command on a list of servers, which you identify by their
node number. If you do this, you must back up the catalog node first, then
back up the other database partitions. You can also use the Control Center to
backup database partitions.

In a partitioned database system, you can use the LIST NODES command to
determine the list of nodes (database partition servers) that have user tables
on them. Because this recovery method does not support roll-forward
recovery, regularly back up the database on this list of nodes.

In a distributed request system, the BACKUP and RESTORE commands apply
to the distributed request database and the metadata stored within that
database catalog (wrappers, servers, nicknames, etc.). Data source objects
(tables and views) are not backed-up or restored unless those objects are
stored in the distributed request database.

You must keep in mind the recovery method to be used. The following
sections provide requirements and other considerations that apply to this task:
v Planning to Use the BACKUP Command
v Invoking the BACKUP Command
v Backup Images Created by BACKUP.

CREATE
database

BACKUP
database

BACKUP
database

image

TIME

create

RESTORE
database

Units of work

Figure 32. Creating a Database Image

Chapter 9. Recovering a Database 395

Planning to Use the BACKUP Command

Your planning considerations should include:
v You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the

BACKUP command.
v The database may be local or remote. The backup remains on the database

server unless a storage management product such as ADSTAR* Distributed
Storage Manager (ADSM) is used.

v You can back up a database to a fixed disk, a tape, or a location managed
by ADSM or another vendor storage management product. See “ADSTAR
Distributed Storage Manager” on page 452 for information on ADSM.
Under OS/2, you can also back up to diskette or to a user exit.

Note: In OS/2, when backing up a database online to a user exit, note that
the database will be quiesced before the backup starts. As such, the
backup will wait for all transactions to either commit or rollback
before it starts. While the backup is running, all new transactions will
wait until the backup is complete, and, once the backup is
completed, all transactions will continue processing as usual.

v Under Windows NT and Windows 95, you can back up to diskette.
v Under OS/2, a user exit is used when backing up to tape because the

operating system has no native tape support.
Under UNIX-based operating systems and Windows NT, native tape
support is available.

Note: If you use a variable block size with your tape devices, ensure that
the DB2 buffer size is either less than or equal to the maximum
variable block size that the device is configured for. Otherwise, the
backup will succeed but the resulting image is not guaranteed to be
recoverable.

v Multiple files may be created to contain the backed up data from the
database.

v In a partitioned database environment, an offline backup uses an exclusive
connection to the database at that database partition server (that is, the
operation requires an exclusive connection to the database partition), so no
other application can be connected to the database partition. When you do
an offline backup of the catalog node, there can be no activity on the entire
database, including backups of the database on non-catalog database
partition servers. You can use db2_all to back up the database, but you
must ensure that the catalog node is backed up first. After the catalog node
is backed up, the other database partitions can be backed up at the same
time.

396 Administration Guide Design and Implementation

v In a partitioned database system, you should also keep a copy of the
db2nodes.cfg file with any backup copies you take, as protection against
possible damage to this file.

If you have tables that contain DATALINK columns, also see “Backup Utility
Considerations” on page 442.

To use tape devices, DB2 users on SCO UnixWare 7 must specify BUFFER to
be 16. The default value of BUFFER is 1024 pages. If BUFFER is set to zero,
the database manager configuration parameter BACKBUFSZ must be set to
16.

Invoking the BACKUP Command

The following considerations are useful when running the BACKUP
command:
v You must start the database manager (DB2START) before running the

BACKUP command or API. When using the Control Center, you do not
need to explicitly start the database manager.

v When using the command, API, or task under Control Center, you must
specify a database alias name, not the database name itself.

v To reduce the amount of time required to complete a backup:
– Increase the value of the PARALLELISM parameter.

Using this parameter can dramatically reduce the amount of time
required to complete the backup. The PARALLELISM parameter defines
the number of processes or threads that are started to read data from the
database. Each process or thread is assigned to back up a specific table
space. When it completes backing up the table space, it requests another.
You should note, however, that each process or thread requires both
memory and CPU overhead: for a heavily loaded system, you should
leave the PARALLELISM parameter at its default value of 1.

– Increase the backup buffer size.
– Increase the number of buffers.

If you use multiple buffers and I/O channels, you should use at least
twice as many buffers as channels to ensure that the channels do not
have to wait for data. The size of the buffers used will also contribute to
the performance of the backup operation. The ideal backup buffer size
should be a multiple of the extent size for the table space(s).
If you have multiple table spaces with different extent sizes, specify a
value that is a multiple of the largest extent size.
You may specify the number of pages to use for each backup buffer
when you invoke the BACKUP command. The minimum number of
pages is 16. If you do not specify the number of pages, each buffer will

Chapter 9. Recovering a Database 397

be allocated based on the database manager configuration parameter
backbufsz. If there is not enough memory available to allocate the buffer,
an error will be returned.
Refer to Administration Guide, Performance for more information on this
configuration parameter.

– Use multiple target devices.
v In OS/2, when backing up a database to removable media, such as tape,

the database manager writes information to media volume 1. Once the first
media is in the drive, do not remove the media unless the operating system
backup facility prompts you for media 2.

v You cannot back up a database that is not in a usable state except for a
database in the backup pending state.
– If a database is in a partially restored state due to a system crash during

any stage of restoring the database, you must successfully restore the
database before you can back it up.

– If a database was created with a previous release of the database
manager and the database has not been migrated, you must migrate the
database before you can back it up.
See “Appendix B. Planning Database Migration” on page 641, for
information about migrating a database.

– If any of the table spaces in a database is in an “abnormal” state, you
cannot back up the database, unless it is in the backup pending state.

v If a system crash occurs during a critical stage of backing up a database,
you cannot successfully connect to the database until you re-issue the
BACKUP command.

v The BACKUP command provides a concurrency control for multiple
processes that are making backup copies of different databases. The control
keeps the backup target device open until the entire backup process has
ended.
If an error occurs during a backup process and the open container cannot
be closed, other backup processes to the same target drive may receive
access errors. To correct any access errors, you must completely exit the
backup process that caused the error and disconnect from the target device.

v If you are using the BACKUP command for concurrent backup processes to
tape, ensure that the processes do not target the same tape.

Backup Images Created by BACKUP

Backup images are created at the target specified when you call the BACKUP
command:
v In the directory for disk or diskette backups
v At the device specified for tape backups

398 Administration Guide Design and Implementation

v At an ADSTAR Distributed Storage Manager (ADSM) server
v At another vendor’s server
v For OS/2, through the use of a user exit.

The recovery history file is updated automatically with summary information
whenever you carry out a backup or restore of a full database. This file can be
a useful tracking mechanism for restore activity within a database. This file is
created in the same directory as the database configuration file. For more
information on the recovery history file, see “Recovery History File
Information” on page 435.

In UNIX-based environments, the file name(s) created on disk will consist of a
concatenation of the following information, separated by periods; on other
platforms a four-level subdirectory tree is used:

Database alias A 1-to-8 character database alias name that
was supplied when the backup command was
invoked.

Type Type of backup taken, where: “0” is for full
database.

Instance name A 1-to-8 character name of the current instance
of the database manager that is taken from the
DB2INSTANCE environment variable.

Node number The node number.

Catalog node number The node number of the database’s catalog
node.

Time stamp A 14-character representation of the date and
time the backup was performed. The
timestamp is in the format yyyymmddhhnnss,
where:

yyyy is the year (1995 to 9999)
mm is the month (01 to 12)
dd is the day of the month (01 to 31)
hh is the hour (00 to 23)
nn is the minutes (00 to 59)
ss is the seconds (00 to 59)

Sequence number A 3-digit sequence number used as a file
extension.

In UNIX-based operating systems, the format would appear as:
Database alias.Type.Instance name.nodennnn.catnnnnn.timestamp.number

Chapter 9. Recovering a Database 399

On other operating systems, the format would appear as:
Database alias.Type\Instance name.nodennn\catnnnn\yyyymmdd\hhmmss.number

For example in UNIX-based environments, a database named STAFF on the
DB201 instance may be backed up on disk to a file named:
STAFF.0.DB201.NODE0000.CATN0000.19950922120112.001

For tape-directed output, file names are not created; however, the above
information is stored in the backup header for later verification purposes.

Notes:

1. If you want to use tape media for database back-up and restore
operations, a tape device must be available through the standard operating
system interface. On a large partitioned database system, however, it may
not be practical to have a tape device dedicated to each database partition
server. You can connect the tape devices to one or more ADSM servers, so
that access to these tape devices is provided to each database partition
server.

2. On a partitioned database system, you can also use products that provide
virtual tape device functions, such as REELlibrarian 4.2 or CLIO/S. You
use these products to access the tape device connected to other nodes
(database partition servers) through a pseudo tape device. Access to the
remote tape device is provided transparently, and the pseudo tape device
can be accessed through the standard operating system interface.

Restoring a Database

The following sections provide requirements and other considerations that
apply to the RESTORE command:
v Planning to Use the RESTORE Command
v Invoking the RESTORE Command
v Redefining Table Space Containers During RESTORE
v Restoring to an Existing Database
v Restoring to a New Database.

400 Administration Guide Design and Implementation

Planning to Use the RESTORE Command

You should consider the following:
v You must have SYSADM, SYSCTRL, or SYSMAINT, authority to restore to

an existing database from a full database backup. To restore to a new
database, you must have SYSADM or SYSCTRL authority.

v You can only use this command if the database has been previously backed
up with the BACKUP command.

v If you use the Control Center, you cannot restore backups that were taken
previous to the current version of DB2.

v In OS/2, the RESTORE command can call a user exit program only if a user
exit program was used to backup the database.

v You can choose at the time of the restore which type of restore is to be
carried out. You can select from the following types:
– A full restore of everything from the backup
– A restore of only the recovery history file

v The RESTORE command can use the ADSTAR Distributed Storage Manager
(ADSM) utility, and any restrictions of that utility should also be
considered. (See “ADSTAR Distributed Storage Manager” on page 452.)

v Another vendor storage management product may also be used if that
product was used to store the original backup.

v A database restore requires an exclusive connection: that is, no applications
can be running against the database when the task is started. Once it starts,
it prevents other applications from accessing the database until the restore
is completed.

v The database may be local or remote.
v If the WITHOUT DATALINK option is not specified, and the DB2 Data

Links Manager containing the DATALINK data is not available, then the
restore operation will fail.

CREATE
database

BACKUP
database

BACKUP
database

image

BACKUP
database

image

TIME

create create

BACKUP
database

BACKUP
database

image

BACKUP
database

RESTORE
database

Units of work Units of work Units of work

create

Figure 33. Restoring a Database Using a Backup Image

Chapter 9. Recovering a Database 401

If the option is specified and the DB2 Data Links Manager containing the
DATALINK data is not available, all table spaces containing tables with
DATALINK values on the unavailable server are placed in the RESTORE
PENDING state. These table spaces must be restored again when the Data
Links server becomes available.

v To use tape devices, DB2 users on SCO UnixWare 7 must specify BUFFER
to be 16. The default value of BUFFER is 1024 pages. If BUFFER is set to
zero, the database manager configuration parameter BACKBUFSZ must be
set to 16.

If you have tables that contain DATALINK columns, see both “Restore and
Rollforward Utility Considerations” on page 442 and “Restoring Databases
from an offline Backup without Rolling Forward” on page 444.

Invoking the RESTORE Command

The following considerations are useful when running the RESTORE
command:
v The database manager must be started before restoring a database.
v The database to which you restore the data may be the same one as the

data was originally backed up from, or it may be different. You may restore
the data to a new or an existing database.

v During the restore procedures, you have the ability to optionally select to
use multiple buffers to improve the performance of the restore procedure.
The multiple internal buffers may be filled with data from the backup
media.
You may specify the number of pages to use for each restore buffer when
you invoke the RESTORE command. The value you specify must be a
multiple of the number of pages that you specified for the backup buffer.
The minimum number of pages is 16. If you do not specify the number of
pages, each buffer will be allocated based on the database manager
configuration parameter restbufsz. If there is not enough memory available
to allocate the buffer, an error will be returned.
Refer to Administration Guide, Performance for more information on this
configuration parameter.

v The TAKEN AT parameter of the RESTORE DATABASE command requires
the timestamp for the backup. The timestamp can be exactly as it was
displayed after the completion of a successful BACKUP command, that is in
the format yyyymmddhhmmss.
You can also specify a partial timestamp. For example, assume that you
have two different backups with the timestamps 19971001010101 and
19971002010101. If you specify 19971002 for TAKEN AT, the 19971002010101
backup is used.

402 Administration Guide Design and Implementation

If TAKEN AT is not specified, there must only be one backup on the source
media.

v The backup copy of the database to be used by the RESTORE command can
be located on a fixed disk, a tape or a location managed by the ADSTAR*
Distributed Storage Manager (ADSM) utility or another vendor storage
management product. See “ADSTAR Distributed Storage Manager” on
page 452 for information on ADSM.
If you use ADSM and do not specify the TAKEN AT parameter, ADSM
retrieves the latest backup copy.
Under OS/2, the backup copy of the database could also be located on
diskette or through a user exit.
Under Windows 95 and Windows NT, the backup copy of the database
could also be located on diskette.

v Once the RESTORE command starts, the database is not usable until the
RESTORE command completes successfully.

v If a system failure occurs during any stage of restoring a database, you
cannot connect to the database until you reuse the RESTORE command and
successfully complete the restore.

v If the code page of the database being restored does not match a code page
available to an application; or, if the database manager does not support
code page conversions from the database code page to a code page that is
available to an application; then the restored database will not be usable.

v In OS/2, if you backed up your database using the sqluback API in a
previous release of DB2, then you must use the sqludres API to restore your
database. However, this API is no longer supported by the command line.
To restore a back-level backup from the command line, use the db2resdb
utility provided in the misc subdirectory of the sqllib directory. This utility
will make the call to the sqludres API on your behalf, restore the database to
the target drive, then attempt to migrate it to the current release.
The syntax for this utility is:
db2resdb <dbname> <source drive> <target drive>

where
dbname = The name of the database which was backed up
source drive = The drive letter where the backup resides
target drive = The drive letter where the database is to be created

Redefining Table Space Containers During RESTORE

During a backup of a database, a record is kept of all the table space
containers in use by the table spaces that are backed up. During a RESTORE,
all containers listed in the backup are checked to see if they currently exist
and are accessible. If one or more of the containers is inaccessible because of a
media failure (or for any other reason), the RESTORE will fail. In order to

Chapter 9. Recovering a Database 403

allow a restore in such a case, the redirecting of table space containers is
supported during the RESTORE. This support includes adding, changing, or
removing of table space containers.

There are cases in which you want to restore even though the containers listed
in the backup do not exist on the system. An example of such a case is where
you wish to recover from a disaster on a system other than that from which
the backup was taken. The new system may not have the necessary containers
defined. In order to allow a RESTORE in this case, the redirecting of table
space containers at the time of the RESTORE to alternate containers is
supported.

In both situations, this type of RESTORE is commonly referred to as a
redirected restore.

You can redefine table space containers through the restore task from within
the Control Center. You can also use the REDIRECT parameter of the
RESTORE command to specify the redirection. If you are using the Control
Center, one way of performing a redirected restore is to use the Containers
page of the Restore Database notebook. This page provides function that you
can use to add new containers, change the path of an existing container, or
remove a container. If, during the process of the restore database operation an
invalid container path is detected, the Control Center will prompt you to
either change the container path, or remove the container.

Notes:

1. Directory and file containers are automatically created if they do not exist.
No redirection is necessary unless the containers are inaccessible for some
other reason. The database manager does not automatically create device
containers.

2. The ability to perform container redirection on any RESTORE provides
considerable flexibility in managing table space containers. For example,
even though we do not directly support adding containers to SMS table
spaces, you could accomplish this by simply specifying an additional
container on a redirected restore. Similarly, you could move a DMS table
space from file containers to device containers.

3. Redirected restore is also supported through a number of APIs. Although
you could write a program to perform redirected restore for a specific
case, these APIs are primarily intended for developers who want to
produce a general purpose utility.

Restoring to an Existing Database

You may restore a backup copy of a full database backup to an existing
database. To restore to an existing database, you must have SYSADM,

404 Administration Guide Design and Implementation

SYSCTRL, or SYSMAINT authority. The backup image may differ from the
existing database in its alias name, its database name, or its database seed.

A database seed is a unique identifier of a database that remains constant for
the life of the database. This seed is assigned by the database manager when
the database is first created. The seed is unchanged following a restore of a
backup even if the backup has a different database seed. DB2 always uses the
seed from the backup.

When restoring to an existing database, the restore task performs the
following functions:
v Delete table, index, and long field contents for the existing database, and

replace them with the contents from the backup.
v Replace table space table entries for each table space being restored.
v Retain recovery history file unless the one on disk is damaged. If the file on

the disk is damaged, the database manager will copy the file from the
backup.

v Retain the authentication for the existing database.
v Retain the database directories for the existing database that define where

the database resides and how it is cataloged.
v When the database seeds are different:

– Delete the logs associated with the existing database
– Copy the database configuration file from the backup
– Change the database configuration file to indicate that the default log file

path should be used for logging
v When the database seeds are the same:

– Retain the current database configuration file, unless the file is corrupted,
in which case this file will be copied from the backup.

– Delete the logs if the image is of a non-recoverable database. The log
path (which is specified by the logpath parameter) is also changed to the
value specified in the database configuration file that is in the backup.

Restoring to a New Database

As an alternative to restoring a database to a database that already exists, you
may create a new database and then restore the backup of the data. To restore
to a new database, you must have SYSADM or SYSCTRL authority.

Note: The code pages of the backup and the target database must match. If
they do not, first create the new database specifying the correct code
page, then restore it.

Chapter 9. Recovering a Database 405

When you restore to a new database, the RESTORE command will perform
the following functions:
v Create a new database, using the database name and database alias name

that was specified by the target database alias parameter. (If this target
database alias was not specified, the RESTORE command will create a
database with the name and alias the same as the source database alias
parameter.)

v Restore the database configuration file from the backup.
v Modify the database configuration file to indicate that the default log file

path should be used for logging.
v Restore the authentication type from the backup.
v Restore the database comments from the backup for the database

directories.
v Restore the recovery history file for the database.

Recovery Method: Roll-Forward Recovery

Roll-forward recovery using the BACKUP command in conjunction with the
RESTORE and ROLLFORWARD commands allows the database or table space
to be recovered to its state at a specified point in time.

When you first create a database, only circular logging is enabled for it. This
means that logs are re-used (in a circular fashion), and are not saved or
archived. With circular logging, roll-forward recovery is not possible: only
crash recovery or version recovery is enabled. When log archiving is
performed, however, roll-forward recovery is possible, because the logs record
changes to the database after the time that the backup was taken. You
perform log archiving by having either the logretain database configuration
parameter set to ″RECOVERY″; or the userexit database configuration
parameter is enabled; or both. When either of these parameters are configured
as described in the previous sentence, the database is enabled for roll-forward
recovery.

When the database is recoverable, you can perform backup, restore, and
roll-forward recovery at both the database and the table space level. The
backups of the database and table space can be online. online restore and
rollforward are also available at the table space level.

Roll-forward recovery re-applies the completed units of work recorded in the
logs to the restored database, table space, or table spaces. You can specify that
roll-forward recovery is to the end of the logs, or to a particular point in time.

Roll-forward recovery can follow the completion of a full database restore as
described in “Restoring a Database” on page 400. It can also be done with

406 Administration Guide Design and Implementation

table spaces that are in a roll-forward pending state. For considerations on
rolling forward a table space, see “Rolling Forward Changes in a Table Space”
on page 418

For more information about the database configuration parameters associated
with logging, see “Configuration Parameters for Database Logging” on
page 414.

Backup Considerations

Following are the backup considerations that apply when your database is
enabled for forward recovery. For general information that applies to
performing backups, refer to the following:
v “Backing Up a Database” on page 394

v “Planning to Use the BACKUP Command” on page 396

v “Invoking the BACKUP Command” on page 397

v “Backup Images Created by BACKUP” on page 398.

v Roll-forward recovery is not enabled by the default setting (“No”) of the
logretain and userexit configuration parameters. The default for both
parameters is set to “No” because, initially, there is no backup that you can
use to recover the database; initially, the database cannot be recovered, so
you cannot perform forward recovery on it.
To enable a new database for roll-forward recovery, you must enable at
least one of these configuration parameters before taking the first backup of
the database. When you change the value of one or both parameters, the
database will be put into the backup pending state, which requires that you
take an offline backup of the database. After the backup operation
completes successfully, the database can be used.

v You cannot back up a database that is not in a usable state except for a
database in the backup pending state.
– If a database or a table space is in a partially restored state due to a

system crash during any stage of restoring the database, you must
successfully restore the database or the table space before you can back it
up.

– If any of the table spaces in a database is in an “abnormal” state, you
cannot back up the database or that table space, unless it is in the
backup pending state.

v You can back up a database or table space to a fixed disk, a tape, or a
location managed by ADSM or another vendor storage management
product. See “ADSTAR Distributed Storage Manager” on page 452 for
information on ADSM.
Under OS/2, you can also back up to diskette or to a user exit.

Chapter 9. Recovering a Database 407

v If your database is enabled for roll-forward recovery and you are using a
tape system that does not support the ability to uniquely reference a
backup, it is recommended that you do not keep multiple backup copies of
the same database on the same tape.

v Multiple files may be created to contain the backed up data from the
database or table space.
In OS/2, when you restore from a user exit and roll forward the database,
the path to the database is the only reference used to locate the containers.
Therefore, all the containers for that database that are on the backup tape
are restored.

v To reduce the amount of time required to complete a backup:
– Use table space backups.

You can back up (and subsequently recover) part of a database by using
the TABLESPACE option of the BACKUP command. This makes
administering data, index, and long fields/large objects (LOBs) in
separate table spaces easier.

– Increase the value of the PARALLELISM parameter so that it reflects the
number of table spaces that are being backed up.

v The considerations for backing up table spaces are as follows:
– A table space backup and a table space restore cannot be run at the same

time, even if the backup and restore are working on different table
spaces.

– If you have tables that span more than one table space, you should
backup (and restore) the set of table spaces together.

– If each table space is on a different disk, a media error only affects a
particular table space, not the entire database. The table space with the
error is placed in a roll-forward pending state. You can still use the other
table spaces in the database, unless the table space in this state has the
system catalog tables. In this situation, you cannot connect to the
database.

– The system catalog table space can be restored independent of the rest of
the database if a table-space level backup containing the system catalog
table space is available.

– The backup will fail if a list of the table spaces to be backed up contains
a temporary table space.

v The considerations for a partitioned database environment are as follows:
If you want to be able to do forward recovery, you must regularly back up
the database on the list of nodes, and you must have at least one backup of
the rest of the nodes in the system (even those that do not contain user data
for that database). Two situations require the backed-up image of a
database partition at a database partition server that does not contain user
data for the database:

408 Administration Guide Design and Implementation

– You added a database partition server to the database system after
taking the last backup, and you need to do forward recovery on this
database partition server.

– Point-in-time recovery is used, which requires that all database partitions
in the system are in the roll-forward pending state.

The recovery history file is updated automatically with summary information
whenever you carry out a backup or restore of a full database or table space.
This file can be a useful tracking mechanism for restore activity within a
database. This file is created in the same directory as the database
configuration file. For more information on the recovery history file, see
“Recovery History File Information” on page 435.

In UNIX-based environments, the file name(s) created on disk will consist of a
concatenation of the following information, separated by periods; on other
platforms a four-level subdirectory tree is used:

Database alias A 1-to-8 character database alias name that
was supplied when the backup command was
invoked.

Type Type of backup taken, where: “0” is for full
database, “3” is for table space, and “4” is for
copy from a table load.

Instance name A 1-to-8 character name of the current instance
of the database manager that is taken from the
DB2INSTANCE environment variable.

Node number The node number.

Catalog node number The node number of the database’s catalog
node.

Time stamp A 14-character representation of the date and
time the backup was performed. The
timestamp is in the format yyyymmddhhnnss,
where:

yyyy is the year (1995 to 9999)
mm is the month (01 to 12)
dd is the day of the month (01 to 31)
hh is the hour (00 to 23)
nn is the minutes (00 to 59)
ss is the seconds (00 to 59)

Sequence number A 3-digit sequence number used as a file
extension.

Chapter 9. Recovering a Database 409

Restore Considerations

Following are the restore considerations that apply when your database is
enabled for forward recovery. For general information that applies to
performing restores, refer to the following:
v “Restoring a Database” on page 400

v “Planning to Use the RESTORE Command” on page 401

v “Invoking the RESTORE Command” on page 402

v “Redefining Table Space Containers During RESTORE” on page 403

v “Restoring to an Existing Database” on page 404

v “Restoring to a New Database” on page 405.

The items you should consider are:

v You can restore a backup copy of a full database backup or table space
backup to an existing database. To restore to an existing database, you must
have SYSADM, SYSCTRL, or SYSMAINT authority. The backup image may
differ from the existing database in its alias name, its database name, or its
database seed.

v When you restore to an existing database, and the database seeds are the
same, the logs are retained.

v You can only use the RESTORE command if the database or table space has
been previously backed up with the BACKUP command.

v After a database enabled for roll-forward recovery is restored, it is in the
roll-forward pending state. The database is unusable until it is rolled
forward. The exception occurs when a restore WITHOUT ROLLING
FORWARD is specified. You cannot turn roll-forward off if an online
database backup was restored or only selected table space backups were
restored.

v The backup copy of the database or table space to be used by the RESTORE
command can be located on a fixed disk, a tape or a location managed by
the ADSTAR* Distributed Storage Manager (ADSM) utility or another
vendor storage management product. See “ADSTAR Distributed Storage
Manager” on page 452 for information on ADSM.
If you use ADSM and do not specify the TAKEN AT parameter, ADSM
retrieves the latest backup copy.
Under OS/2, the backup copy of the database or table space could also be
located on diskette or through a user exit.
Under Windows 95 and Windows NT, the backup copy of the database or
table space could also be located on diskette.

410 Administration Guide Design and Implementation

v While restore and roll-forward are independent operations, your recovery
strategy may have restore as the first phase of a complete roll-forward
recovery of a database. After a successful restore, a database that was
configured for roll-forward recovery at the time the backup was taken
enters a roll-forward pending state, and is not usable until the
ROLLFORWARD command has been run successfully.
When the ROLLFORWARD command is issued:
– If the database is in the roll-forward pending state, the database is rolled

forward.
– If the database is not in the roll-forward pending state, but table spaces

in the database are, when you issue the ROLLFORWARD command and
specify a list of table spaces, only those table spaces are rolled forward. If
you do not specify a list, all table spaces that are in the roll-forward
pending state are rolled forward.

– If, in a partitioned database environment, some database partitions are in
the roll-forward pending state, and, on other database partitions, some
table spaces are in the roll-forward pending state (but the database
partition is not), you must first roll forward the database partitions, then
roll forward the table spaces.

Another database RESTORE is not allowed when the roll-forward process is
running.

Notes:

1. If you are restoring from a full database backup that was created using
the offline option of the BACKUP command, you can bypass this
roll-forward pending state during the restore process. Using the
WITHOUT ROLLING FORWARD option allows you to use the restored
database immediately without rolling forward the database.

2. If you are restoring from a backup that was created using the online
option of the BACKUP command, you cannot bypass this roll-forward
pending state.

v The considerations for restoring table spaces are as follows:
– You can only restore a table space if the table space currently exists, and

it is the same table space. (The “same table space” means that the table
space was not dropped and re-created between taking the backup image
and the attempt to restore the table space.)

– You cannot restore a table space backup to a new database.
– If you backed up tables that spanned more than one table space, you

should restore the set of table spaces together.
– Once the RESTORE command starts for a table space backup, the table

space is not usable until the RESTORE command followed by a
roll-forward recovery completes successfully.

Chapter 9. Recovering a Database 411

– A table space restore can be online (share mode) or offline (exclusive
mode).

– If a system failure occurs during the restoring of a table space backup,
only the table space being restored is unusable. The other table spaces in
the database can still be used.

– You cannot perform an online table space restore of the system catalog
tables.

– When doing a partial or subset RESTORE, you can use either a table
space backup, or a full database backup and choose one or more table
spaces from that image. All the log files associated with the table space
(or table spaces) must exist from the time the backup was created.
In a partitioned database system, if you intend to roll forward a table
space (or table spaces) to the end of the logs, you do not have to restore
it at each database partition (node). You only need to restore it at the
database partitions that require recovery. If you intend to roll forward a
table space to a point in time, you must restore the table space at each
database partition before rolling forward.

– In OS/2, a partial or subset restore is not possible when restoring from a
user exit.

v The considerations for redirected restore are as follows:
– During a backup of a database or one or more table spaces, a record is

kept of all the table space containers in use by the table spaces that are
backed up. During a RESTORE, all containers listed in the backup are
checked to see if they currently exist and are accessible. If one or more of
the containers is inaccessible because of a media failure (or for any other
reason), the RESTORE will fail. To allow a restore in such a case, the
redirecting of table space containers is supported during the RESTORE.
This support includes adding, changing, or removing of table space
containers.

– A RESTORE is often followed by a ROLLFORWARD to reapply changes
recorded in the database logs after the point in time where the backup
was taken. During a roll-forward operation, you may re-execute or
re-run a transaction which carries out an ALTER TABLESPACE with the
ADD option (to add a container). For the ROLLFORWARD to be
successful, the container to be added must be accessible. If the container
is not accessible, then the roll-forward for the table space is suspended,
and the table space is left in a roll-forward pending state.

– You may or may not wish to re-do the add container operations in the
database logs. In fact, you may not know which containers may have
been added since the backup was taken. Therefore, you cannot anticipate
which containers are needed. Alternatively, depending on why you are
performing a redirected restore, you may simply prefer the list of
containers you specified at the time of the restore, and do not want any
other containers added. To control this behavior, you can indicate at the

412 Administration Guide Design and Implementation

time of the restore whether you want the ROLLFORWARD to re-create
the containers during the roll-forward recovery. (You can edit the list of
table space containers on the CONTAINERS - CHANGE window of the
Restore Database or Restore Table Space notebook in the Control Center.)

Rolling Forward Changes in a Database

Roll-forward recovery builds on a restored database and allows you to restore
a database to a particular time that is after the time that the database backup
was taken. This point can be either the end of the logs, or a point between the
time of the database backup and the end of the logs.

You might use point-in-time recovery if an active or an archived log is not
available. In this situation, you could roll forward to the point where the log
is missing. You might also roll forward to a point in time if a bad transaction
was run against the database. In this situation, you would restore the
database, then roll forward to just before the time that the bad transaction was
run.

You can also perform point-in-time roll-forward recovery on table spaces. For
additional information, see “Rolling Forward Changes in a Table Space” on
page 418.

To use this method, the database must be configured to enable roll-forward
recovery. Considerations for the database configuration file and database logs
are presented in the following topics:

v Configuration Parameters for Database Logging
v Rolling Forward Changes in a Table Space
v Planning to Use the ROLLFORWARD Command
v Invoking the ROLLFORWARD Command
v Using the Load Copy Location File

CREATE
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

ROLLFORWARD

changes in logs
Units of workUnits of work

update update

n archived logs
1 active log

n archived logs
1 active log

Figure 34. Roll-Forward Recovery

Chapter 9. Recovering a Database 413

v Considerations for Managing Log Files
v Losing Logs.

If you have tables that contain DATALINK columns, also see “Restoring
Databases and Table Spaces and Rolling Forward to the End of the Logs” on
page 445 and “Restoring Databases and Table Spaces and Rolling Forward to
a Point in Time” on page 445.

Configuration Parameters for Database Logging

The database configuration file contains parameters related to roll-forward
recovery. The default parameters do not support this recovery, so if you plan
to use it, you need to change some of these defaults. Refer to Administration
Guide, Performance for more information on configuring DB2 UDB.

Primary logs (logprimary)
This parameter specifies the number of primary logs that will be
created.

A primary log, whether empty or full, requires the same amount of
disk space. Thus, if you configure more logs than you need, you use
disk space unnecessarily. If you configure too few logs, you can
encounter a log-full condition. As you select the number of logs to
configure, you must consider the size you make each log and whether
your application can handle a log-full condition.

If you are enabling an existing database for roll-forward recovery,
change the number of primary logs to the sum of the number of
primary and secondary logs, plus 1. Additional information is logged
for long varchar and LOB fields in a database enabled for
roll-forward recovery.

The total log file size limit is 4 GB. That is, the number of logfiles
(LOGPRIMARY + LOGSECOND) multiplied by the size of each logfile
in bytes (LOGFILSIZ * 4096) must be less than 4 GB.

Refer to Administration Guide, Performance for more information on this
configuration parameter.

Secondary logs (logsecond)
This parameter specifies the number of secondary log files that are
created and used for recovery log files (only as needed).

When the primary log files become full, the secondary log files (of
size logfilsiz) are allocated one at a time as needed, up to a maximum
number as controlled by this parameter. An error code will be
returned to the application, and activity against the database will be
stopped, if more secondary log files are required than are allowed by
this parameter.

414 Administration Guide Design and Implementation

Refer to Administration Guide, Performance for more information on this
configuration parameter.

Log size (logfilsiz)
This parameter determines the number of pages for each of the
configured logs. A page is 4 KB in size.

Note: The total log file size limit is 4 GB (that is, (logfilsiz +
logprimary) x logfilsiz < 4 GB/4096).

The size of each primary log has a direct bearing on performance.
When the database is configured to retain logs, each time a log is
filled, a request is issued for allocation and initialization of a new log.
Increasing the size of the log reduces the number of requests required
to allocate and initialize new logs. (Keep in mind, however, that with
a larger log size it takes more time to format each new log). The
formatting of new logs is transparent to applications connected to the
database so that database performance is unaffected by formatting.

Assuming that you have an application that keeps the database open
to minimize the processing time to open a database (see “Recovery
Performance Considerations” on page 382), the value for the log size
should be determined by the amount of time it takes to make offline
archived log copies.

The data transfer speed of the device you use to store offline archived
logs, and the software used to make the copies, must at a minimum
match the average rate at which the database manager writes data in
the logs. If the transfer speed cannot keep up with new log data being
generated, you may run out of disk space if logging activity continues
for a sufficiently long period of time, determined by the amount of
free disk space. If this happens, database processing will stop.

The data transfer speed is most significant when using tape or some
optical medium. (Refer to “Appendix G. User Exit for Database
Recovery” on page 733 for information on using different media for
storing logs.) Some tape devices require the same amount of time to
copy a file, regardless of its size. You must determine the capability of
your archiving device.

Additionally, tape devices have some unique considerations. The
frequency of the archiving request is important. If the time for any
copy operation is five minutes, the log size should be large enough to
hold five minutes of log data during your peak work load. Also, the

Chapter 9. Recovering a Database 415

tape device may have design limits that restrict the number of
operations per day. These factors must be considered when you
determine the log size.

Minimizing log file loss is also an important consideration in setting
the log size. Archiving takes an entire log. If you use a single large
log, you increase the time between archiving. If the medium
containing the log fails, some transaction information will probably be
lost. Decreasing the log size increases the frequency of archiving but
can reduce the amount of information loss in case of a media failure
since the smaller logs before the one lost can be used.

Log Buffer (logbufsz)
This parameter allows you to specify the amount of database shared
memory to use as a buffer for log records before writing these records
to disk. The log records are written to disk when one of the following
occurs:

v A transaction commits
v The log buffer is full
v As a result of some other internal database manager event.

Buffering the log records will result in more efficient logging file I/O,
because the log records will be written to disk less frequently and
more log records will be written at each time.

Number of Commits to Group (mincommit)
This parameter allows you to delay the writing of log records to disk
until a minimum number of commits have been performed. This
delay can help reduce the database manager overhead associated with
writing log records and, as a result, improve performance when you
have multiple applications running against a database and many
commits are requested by the applications within a very short time
frame.

This grouping of commits will only occur when the value of this
parameter is greater than 1, and when the number of applications
connected to the database is greater than the value of this parameter.
When commit grouping is being performed, application commit
requests are held until the earlier of either one second elapsing or the
number of commit requests equals the value of this parameter.

New log path (newlogpath)
The database logs are initially created in SQLOGDIR, which is a
subdirectory of the database directory. You can change the location
where active logs and future archive logs are placed by changing the
value for this configuration parameter to point to either a different
directory, or to a device. Archive logs that are currently stored in the

416 Administration Guide Design and Implementation

database log path directory are not moved to the new location if the
database is configured for roll-forward recovery.

Because you can change the log path location, the logs needed for
roll-forward recovery may exist in different directories or on different
devices. You can change this configuration parameter during the
roll-forward process to allow you to access logs in multiple locations.

The change to the value of newlogpath will not be applied until the
database is in a consistent state. A database configuration parameter
indicates the status of the database. Refer to Administration Guide,
Performance for more information on the database_consistent status
indicator. See “Considerations for Managing Log Files” on page 429
for information about the roles database logs play if a database is not
in a consistent state.

Log retain (logretain)
This parameter causes archived logs to be kept in the database log
path directory. Enabling it by setting it to “RECOVERY” allows the
database manager to use the roll-forward recovery method. You do
not require userexit to be enabled when the logretain configuration
parameter is enabled. Either one of the two parameters is sufficient to
allow the roll-forward recovery method.

Using this parameter means that the circular logging, that is the
default, is being overridden.

User exit (userexit)
This parameter causes the database manager to call a user exit
program for archiving and retrieving logs. With the user exit enabled,
roll-forward recovery is allowed. You do not require logretain to be
enabled when the userexit configuration parameter is enabled. Either
one of the two parameters is sufficient to allow the roll-forward
recovery method.

Using this parameter means that the circular logging, that is the
default, is being overridden. Userexit implies logretain but the reverse
is not true.

See “Appendix G. User Exit for Database Recovery” on page 733, for
information about the user exit program.

The active log path is important when using either the userexit configuration
parameter or the logretain configuration parameter to allow roll-forward
recovery. When the userexit configuration parameter is enabled, the user exit is
called to archive log files away from the active log path. When the logretain
configuration parameter is set to “RECOVERY”, this ensures that the log files
remain in the active log path. The active log path is determined either by the
Path to Log Files or Changed Path to Log Files (newlogpath).

Chapter 9. Recovering a Database 417

Rolling Forward Changes in a Table Space

If the database is enabled for forward recovery, you have the option of
backing up, restoring, and rolling forward table spaces instead of using the
entire database. You may want to implement a recovery strategy for
individual table spaces because this can save time: it takes less time to recover
a portion of the database than it does to recover the entire database. For
example, if a disk is bad and it only contains one table space, the table space
can be restored and rolled forward without having to recover the entire
database (and without impacting user access to the rest of the database). Also,
table-space-level backups allow you to back up critical portions of the
database more frequently than other portions, and requires less time than
backing up the entire database.

If, in a partitioned database environment, some database partitions are in the
roll-forward pending state, and, on other database partitions, some table
spaces are in the roll-forward pending state (but the database partition is not),
you must first roll forward the database partitions, then roll forward the table
spaces.

If the data and long objects of a table are in separate table spaces, and the
table has been reorganized, the table spaces for both the data and long objects
must be restored and rolled forward together. You should take a back up of
the affected table spaces after the table is reorganized.

Different states are associated with a table space to indicate its current status:
v A table space will be placed in the roll-forward pending state after it is

restored, or following an I/O error. When the I/O error is corrected, the
table space must be rolled forward to remove the roll-forward pending
state. If the table space has been restored, it must be rolled forward.

v A table space will be placed in the roll-forward-in-progress state when a
roll-forward operation is in progress on that table space. The table space
will be removed from the roll-forward-in-progress state when
ROLLFORWARD completes successfully.
The table space could also be in the roll-forward-in-progress state if the roll
forward operation did not complete, or AND STOP was not specified for
the operation.

v A table space will be placed in the restore pending state after a
ROLLFORWARD CANCEL or a ROLLFORWARD in which an
unrecoverable error occurs on that table space. The table space must be
restored and rolled forward again.

v A table space will be placed in the backup pending state after a
ROLLFORWARD to a point in time, or after a LOAD NO COPY operation.
The table space must be backed up before it can be used.

418 Administration Guide Design and Implementation

After a table space is restored, it is always in the roll-forward pending state
(that is, if you restore a table space and specify the WITHOUT ROLLING
FORWARD parameter, the WITHOUT ROLLING FORWARD is ignored). To
make the table space usable, you must perform roll-forward recovery on it.
You have the option of rolling forward to the end of the logs, or rolling
forward to a point in time. If you want to roll forward a table space to a point
in time, you should be aware of the following:
v You cannot roll forward system catalog tables to a point in time. These

must be rolled forward to the end of the logs to ensure that all table spaces
in the database remain consistent.

v A table space that is to be rolled forward to a point in time must have been
restored from a backup that is earlier than the point in time specified for
the roll forward.

v If you do not want to roll the table space forward, you can specify
ROLLFORWARD STOP, which is the same as rolling the table space
forward to the time of the restored backup.

Note: You cannot do this if the backup image was taken online. In this
situation you must roll forward to at least the end of the backup.

v If you are rolling forward to a point in time, and a table is contained in
multiple table spaces, all table spaces that contain the table must be rolled
forward simultaneously. If, for example, the table data is contained in one
table space, and the index for the table is contained in another table space,
you must roll forward both table spaces simultaneously to the same point
in time.

v Before rolling forward a table space, use the LIST TABLESPACES SHOW
DETAIL command. This command returns information on the “Minimum
Recover Time”, which is the earliest point in time to which the table space
can be rolled forward. The minimum recovery time is updated when DDL
statements are executed against the table space, or against tables in the
table space. The table space must be rolled forward to at least the minimum
recovery time so that is synchronized with the information in the system
catalog tables.

v It is possible to recover the data from tables that have been accidentally
dropped, give certain conditions. See “Dropped Table Recovery” on
page 427 for more information.

v You can issue QUIESCE TABLESPACES FOR TABLE to create a
transaction-consistent point in time that you can use for rolling forward
table spaces. When you quiesce table spaces for a table (in share, intent to
update or exclusive), the request will wait (through locking) for all running
transactions that are accessing objects in the table spaces to complete while
blocking new requests against the table spaces. When the quiesce request is
granted, all outstanding transactions are already completed (committed or
rolled back) and the table spaces are in a consistent state. You can look in

Chapter 9. Recovering a Database 419

the recovery history file to find quiesce points and check whether they are
past the minimum recovery time to determine a desirable time to stop the
roll forward.

v If you want to roll forward a table space to a point in time and a table in
the table space participates in a referential integrity relationship with
another table that is contained in another table space, you should roll
forward both table spaces simultaneously to the same point in time. If you
do not, both table spaces will be in the check pending state at the end of
the point-in-time roll forward operation. If you roll forward both table
spaces at the same time, the constraint will remain active at the end of the
point-in-time roll forward operation.

v If you want to roll forward a table space to a point in time and a table in
the table space is either of the following:
– An underlying table for a summary table that is in another table space
– A summary table for a table in another table space

You should roll forward both table spaces to the same point in time. If you
do not, the summary table is placed in the check pending state at the end of
the roll-forward operation.

v You should be careful that a point-in-time table space roll forward
operation does not cause a transaction to be rolled back in some table
spaces, and committed in others. This can happen when:
– Point-in-time roll forward is performed on a subset of the table spaces

that were updated by a transaction, and the point in time is before the
time that the transaction committed.

– Any table contained in the table space being rolled forward to a point in
time has an associated trigger, or is updated by a trigger that affects table
spaces other than the one that is being rolled forward.

You should find a point in time to stop rolling forward that will prevent
this from happening.

v After a table space point-in-time roll forward operation completes, the table
space (or table spaces) is placed in the backup pending state. You must take
a backup of the table space because all updates made to it between the
point in time that you rolled forward to and the current time have been
removed. You can no longer roll forward the table space to the current time
from a previous database or table space backup. The following example
shows why the table space backup is required, and how it is used. (To
make the table space available, you can either back up the entire database,
the table space that is in the backup pending state, or a set of table spaces
that includes the table space that is in the backup pending state.)

420 Administration Guide Design and Implementation

In the preceding example, you back up the database at time T1. Then, at
time T3, you roll forward table space TABSP1 to the point in time T2, then
take a back up of the table space after T3. (Because the table space is in the
backup pending state, you must take a backup of it. The timestamp of the
table space backup is after T3, but the table space is at time T2. Log records
are not applied to TABSP1 from between T2 and T3.) At time T4, you
restore the database with the backup you took at T1 and roll forward to the
end of the logs. The table space TABSP1 will be placed into the restore
pending state when time T3 is reached.

The table space is put into the restore pending state at T3 because the
database manager assumes that operations were performed on TABSP1
between T3 and T4 without the log changes between T2 and T3 having
been applied to the table space. If the log changes between T2 and T3 were
reapplied as part of the ROLLFORWARD on the database, this assumption
would be violated. The required backup of a table space that must be taken
after it is rolled forward to a point in time allows you to roll that table
space forward past a previous point-in-time roll forward (T3 in the
example).

Assuming that you want to recover table space TABSP1 to T4, you would
restore the table space from a backup that was taken after T3 (either the
required backup, or a later one) then roll forward TABSP1 to the end of the
logs.

In the preceding example, the most efficient way of restoring the database
to time T4 would be to perform the required steps in the following order.
1. Restore the database.
2. Restore the table space.
3. Roll forward the database.
4. Roll forward the table space.

Database Time of roll forward of Restore
backup. table space TABSP1 to database.

T2. Back up TABSP1. Roll forward
to end of logs.

T1 T2 T3 T4
| | | |
| | | |
|---

| Logs are not
applied to TABSP1
between T2 and T3
when it is rolled
forward to T2.

Figure 35. Table Space Backup Requirement

Chapter 9. Recovering a Database 421

Because you restore the table space before rolling forward the database,
resource is not used to apply log records to the table space when the
database is rolled forward, which would happen if you rolled forward the
database before you restored the table space.

If you cannot find the backup image of TABSP1 that is after time T3, or you
want to restore TABSP1 to T3 or before, you can:
v Roll forward the table space to the T3 point in time. You do not need to

restore the table space again because it was restored from the database
backup.

v Restore the table space again from the backup of the database that you took
at time T1, then roll forward the table space to a time that precedes time
T3.

v Drop the table space.

In a partitioned database environment you must roll forward all portions of
the table space to the same point in time at the same time. This ensures that
the table space is consistent across database partitions.

Planning to Use the ROLLFORWARD Command

Before using the ROLLFORWARD command you should consider the
following items:
v You must have SYSADM, SYSCTRL, or SYSMAINT authority.
v The database may be local or remote.
v In a partitioned database environment, the rollforward must be issued from

the catalog node of the database.
v The database must be configured for roll-forward recovery (that is, either

logretain, userexit, or both must be enabled). When a database is first
configured for the roll-forward function, you must make a backup copy of
it.

v A database must be restored successfully (using the RESTORE command)
before it can be rolled forward; but a table space does not. A table space
may be temporarily put into the roll-forward pending state, but not require
a restore to fix it (for example, if a power interruption occurs).

v A database roll forward runs offline. The database is not available for use
until the roll forward completes (either by reaching the end of the logs
during a table space rollforward, or by specifying STOP on the
ROLLFORWARD command). You can, however, perform an online roll
forward of table spaces as long as SYSCATSPACE is not included. When
you perform an online roll-forward operation on a table space, it is not
available for use, but the other table spaces in the database are.

v When rolling forward, you should:

422 Administration Guide Design and Implementation

1. Issue ROLLFORWARD (without the STOP option).
2. Issue ROLLFORWARD QUERY STATUS.

If you perform end-of-log forward recovery, the QUERY STATUS can
indicate that a log file (or files) is missing if the point in time returned
by QUERY STATUS is earlier than you expect.
If you perform point-in-time forward recovery, the QUERY STATUS will
help you ensure that the roll forward is to the correct point.

3. Issue ROLLFORWARD STOP. After a ROLLFORWARD STOP, it is not
possible to roll forward additional changes.

v You can perform a partial or subset restore of a backup created using the
current version of DB2. This cannot be done with earlier versions of DB2.

v A table space requires roll-forward recovery if it is in a roll-forward
pending state. It is in this state following a table space level restore or being
taken offline because of a media error.

v You do not have to recover your database with the latest backup copy of
the database: you can start with any backup, as long as you have the logs
associated with and following that backup.

v You should continue to make periodic backups of a database in order to
reduce recovery time.

v If you need to cancel a roll-forward operation (that is, ROLLFORWARD
STOP was not specified, or the ROLLFORWARD command failed) to start it
over again, you can use ROLLFORWARD CANCEL to cancel the operation.

TIME

update

ROLLFORWARD

changes in logs

update

Units of workUnits of work

Media
error

BACKUP
table space(s)

BACKUP
table space(s)

n archived logs
1 active log

n archived logs
1 active log

Figure 36. Table Space Roll-forward Recovery

Chapter 9. Recovering a Database 423

If you use ROLLFORWARD CANCEL against a database, this places the
database into the restore pending state, whether or not a roll forward is in
progress against the database.
ROLLFORWARD CANCEL behavior for table spaces is as follows:
– If you issue ROLLFORWARD CANCEL and you specify a list of table

spaces that are in the roll-forward pending state, they are put in the
restore pending state. In this situation, there is no roll forward command
in progress.

Note: If no table space list is specified, SQL4906 is issued.
– If multiple table spaces are being rolled forward to the end of the logs

and you specify ROLLFORWARD CANCEL with a list, only the table
spaces that are in the list are put in the restore pending state. The table
spaces that are not in the list remain in the rollforward-in-progress state.
If you specify ROLLFORWARD CANCEL without a list, all table spaces
that are in the rollforward-in-progress state are put in the restore
pending state and the ROLLFORWARD command is no longer in
progress.

– If you issue ROLLFORWARD CANCEL and one or more table spaces are
being rolled forward to a point in time, they are all put in the restore
pending state, whether you specify a list or not. Even if you specify a
list, the list is ignored and all table spaces that are in the
roll-forward-in-progress state are put in the restore pending state and the
ROLLFORWARD command is no longer in progress.

Note: You cannot use ROLLFORWARD CANCEL to cancel a roll-forward
operation that is running. You can only use it to cancel a roll-forward
operation that completed but did not have ROLLFORWARD STOP
issued for it, or for a roll-forward operation that failed before
completing.

If you have tables that contain DATALINK columns, also see “Restore and
Rollforward Utility Considerations” on page 442.

You cannot roll forward a partitioned database from a Version 2 client.

Invoking the ROLLFORWARD Command

There are a number of considerations before invoking the ROLLFORWARD
command:
v When you invoke the ROLLFORWARD command, you can specify a time

to limit the transactions that will be recovered from the database logs. If
you are restoring from a backup that was created using the online option
of the BACKUP command, the time on the ROLLFORWARD command
must be later than the online backup end time.

424 Administration Guide Design and Implementation

v A log uses a timestamp associated with the completion of a unit of work.
The timestamp in the logs uses the Coordinated Universal Time (CUT),
which helps to avoid having the same timestamp associated with different
logs (because of a change in time associated with daylight savings time, for
example). The timestamp used on the backup is based on the local time that
the BACKUP started. As a result, when you call the ROLLFORWARD
command, you must specify the time in Coordinated Universal Time.

Notes:

1. The special register, CURRENT TIMEZONE, holds the difference
between CUT and the local time at the application server database.
Local time is the CUT plus the current timezone contents.

2. If you are rolling forward a table space (or table spaces) to a point in
time, you must roll forward at least to the minimum recovery time,
which is the last update to the system catalogs for this table space, or its
tables. You can get the minimum recovery time for a table space using
the LIST TABLESPACES SHOW DETAIL command. Refer to the
Command Reference for details on this command.

v If you stop the ROLLFORWARD task before it passes the point that the
online backup ended, the database is left in a roll-forward pending state. If
a table space is being rolled forward, it is left in the rollforward-in-progress
state.

Using the Load Copy Location File

The DB2LOADREC environment variable is used to identify the file with the
load copy location information. This file is used during roll-forward recovery
to locate the load copy. It has information on:
v Media type
v Number of media devices to be used
v Location of the load copy generated during table load
v Filename of the load copy, if applicable

If the location file does not exist or no matching entry is found in the file, the
information from the log record is used.

The information in the file may be overwritten before the roll-forward
recovery takes place.

Notes:

1. In a partitioned database environment, the DB2LOADREC environment
variable must be in the db2profile file.

2. In a partitioned database environment, the load copy file must exist at
each database partition server, and the file name (including the path) must
be the same.

Chapter 9. Recovering a Database 425

3. If an entry in the file identified by the DB2LOADREC environment
variable is not valid, then the old load copy location file will be used to
provide information to replace the invalid entry.

The following information is provided in the location file. The first five
parameters must have valid values and are used to identify the load copy. The
entire structure is repeated for each load copy recorded. For example:
TIMestamp 19950725182542 * Timestamp generated at load time
SCHema PAYROLL * Schema of table loaded
TABlename EMPLOYEES * Table name
DATabasename DBT * Database name
DB2instance TORONTO * DB2INSTANCE
BUFfernumber NULL * Number of buffers to be used for recovery
SESsionnumber NULL * Number of sessions to be used for recovery
TYPeofmedia L * Type of media - L for local device

A for ADSM
O for other vendors

LOCationnumber 3 * Number of locations
ENTry /u/toronto/dbt.payroll.employes.001
ENT /u/toronto/dbt.payroll.employes.002
ENT /dev/rmt0

TIM 19950725192054
SCH PAYROLL
TAB DEPT
DAT DBT
DB2 TORONTO
SES NULL
BUF NULL
TYP A
TIM 19940325192054
SCH PAYROLL
TAB DEPT
DAT DBT
DB2 TORONTO
SES NULL
BUF NULL
TYP O
SHRlib /@sys/lib/backup_vendor.a

Notes:
v The first 3 characters for each keyword are significant. All keywords are

required in the specified order. No blank lines will be accepted.
v The timestamp is in the format yyyymmddhhmmss.
v All fields are mandatory except for BUF and SES which may be NULL. If

SES is NULL, the value specified by configuration parameter
NUMLOADRECSES will be used. If BUF is NULL, the default is SES+2.

v If there is even one of the entries in the location file that is not valid, then
the previous load copy location file is used to provide those entries.

v The type of media may be local device (L for tape, disk or diskettes), ADSM
(A) or other vendor (O). If it is ’L’, the number of locations followed by the

426 Administration Guide Design and Implementation

location entries are required. If the type is ’A’, no further input is required.
If the type is ’O’, the shared library name is required. For details about
using ADSM and other vendor products as backup media, see “ADSTAR
Distributed Storage Manager” on page 452.

v The SHRlib parameter points to a library that has function to store the
LOAD COPY data.

Note: If you run LOAD COPY NO and do not take a backup copy of the
database or affected table spaces after running LOAD, you cannot
restore the database or table spaces to a point in time after the LOAD
was performed. That is, you cannot use roll-forward recovery to rebuild
the database or table spaces to a state after the LOAD. You can only
restore the database or table spaces to a point in time that precedes the
LOAD.

If you want to use a particular load copy, the LOAD timestamps are recorded
in the recovery history file for the database. In a partitioned database
environment, the recovery history file is local to each database partition.

Refer to Data Movement Utilities Guide and Reference for more information on
LOAD.

Dropped Table Recovery

There may be times when you have accidentally dropped one or more tables
whose data you still need. If you have such tables where the data must not be
lost, even accidentally, you should consider making that table recoverable
following a drop.

You can recover the table’s data by using a database RESTORE followed by a
database roll-forward. This may be time consuming if the database is large,
and will make your data unavailable during the recovery. By utilizing the
dropped table recovery you can recover your dropped table’s data using table
space level restore and roll forward. This, in turn, will be faster than a
database level recovery and will allow your database to remain available to
the users.

For a dropped table to be recoverable, the table space in which the table
resides must have its DROPPED TABLE RECOVERY option turned on. This
can be done using the ALTER TABLESPACE statement, or during the CREATE
TABLESPACE statement. Refer to the SQL Reference for more information on
these statements.

Chapter 9. Recovering a Database 427

The DROPPED TABLE RECOVERY option is table space specific. To
determine if a table space has this characteristic, you can query the
DROP_RECOVERY column of the table space name in the syscat.tablespaces
catalog table.

When a DROP TABLE statement is run against a table that is in a table space
having the DROPPED TABLE RECOVERY option “ON”, an additional log
entry is made in the log files. The log entry has information identifying the
dropped table. An entry is also made in the recovery history file and contains
information that can be used to re-create the table.

You can recover a dropped table by doing the following:
1. Obtain the identification of the dropped table. This identification can be

found in the recovery history file by using the LIST HISTORY DROPPED
TABLE command. A list of tables that have been dropped is displayed and
the information needed to re-create the table. Refer to the Command
Reference for more information on this command.

2. Restore a database or table space level backup taken before the table was
dropped.

3. Roll forward to a point in time after the drop using the RECOVER
DROPPED TABLE option on the ROLLFORWARD command. Other
information that is required when using this option includes the dropped
table identification, and the directory path where the output files will be
written. The directory path must either be accessible by all database
partitions, or exist on each partition. Refer to the Command Reference for
more information on this command.

4. Re-create the table using the CREATE TABLE statement from the recovery
history file.

5. Import the data exported by the ROLLFORWARD command into the table.

The exported data is written to files using the following naming convention:
Under the export_directory specified by the user in the ROLLFORWARD
command, a subdirectory is created by each database partition. The user may
create the subdirectories before the roll forward request is issued. This may be
used by you to export the data to a particular drive or machine. The
subdirectories are named “NODEnnnn”, where nnnn is the database partition
or node number. In each subdirectory a data file is exported under the name
“data”. The data files contain the dropped table’s data as it existed on each
database partition.

There are some restrictions on the type of data that is recoverable from the
dropped table. Only a single dropped table can be recovered at a time. To
recover several dropped tables, the recovery sequence presented above must
be carried out each time another table is to be recovered. It is not possible to
recover:

428 Administration Guide Design and Implementation

v LOB or LONG data. The DROPPED TABLE RECOVERY option is not
supported for LONG table spaces. Attempts to use it for a LONG table
space will return error SQL628N. If an attempts to recover a dropped table
that contains LOB or LONG VARCHAR columns, these columns will be set
to NULL in the generated export file. The DROPPED TABLE RECOVERY
option should only be turned “ON” for REGULAR table spaces and not
TEMPORARY or LONG table spaces.

v The names of the linked files associated with DATALINK columns can be
recovered. After importing the data, the table should be reconciled with the
DB2 Data Links Manager. Backups of the files may or may not be restored
by the DB2 Data Links Manager, depending on whether garbage collection
has already deleted them.

v The meta information associated with rowtypes. (The data is recovered, but
not the metadata.) The data in the hierarchy table of the typed table will be
recovered. This data may contain more information than appeared in the
typed table which was dropped.

Considerations for Managing Log Files

There are items to be considered when managing database logs:
v The numbering scheme for archived logs starts with S0000000.LOG, and

goes through S9999999.LOG (10 000 000 logs). The database manager
restarts using S0000000.LOG under these conditions:
– When a database configuration file is changed to enable the roll-forward

function.
– When a database configuration file is changed to disable the roll-forward

function.
– When the logs wrap; that is, after log S9999999.LOG is used.

When the roll-forward recovery method completes successfully, the last log
that was used by roll-forward is truncated, and logging begins with the
next sequential log. The practical effect is that any log in the log path
directory with a sequence number greater than the last log used for
roll-forward recovery is re-used. Ensure you make a copy of the logs before
executing the ROLLFORWARD command. (You may use a user exit
program to copy the logs to another location.)

You can have duplicate names for different logs because:
– The database manager starts renaming logs with S0000000.LOG (as

described above),
– The database manager reuses log names after restoring a database (with

or without roll-forward recovery).

Chapter 9. Recovering a Database 429

The database manager ensures that an incorrect log is not applied during
roll-forward recovery, but it cannot detect the location of the required log.
You must ensure that the correct logs are available for roll-forward
recovery.

v If you moved log files to a location other than that specified by the logpath
database configuration parameter, use the OVERFLOW LOG PATH
parameter of the ROLLFORWARD command to specify the additional path
to them.
If you are rolling forward changes in a database or table space and the
roll-forward operation cannot find the next log, the log name is returned in
the SQLCA, indicating the next log file needed, and roll-forward recovery
stops. At this time, if there are no more logs available, you can use the
ROLLFORWARD command to stop processing.
If you terminate the roll-forward recovery (by specifying the STOP option
on the ROLLFORWARD command) and the log containing the completion
of a transaction has not been applied to the database or table space, the
incomplete transaction will be rolled back to ensure that the database or
table space is left in a consistent state.

v Archived logs are placed in the log path. The log path defaults to the
SQLOGDIR subdirectory but can be changed with the newlogpath
configuration parameter. To place them elsewhere, enable the database for
user exit, or change the log path with newlogpath. In this case, you may
need to use the OVERFLOW LOG PATH parameter of the ROLLFORWARD
command to point to them when you roll forward.

v If you enable a user exit by changing the database configuration file, the
archived logs can be redirected to a user-defined storage device such as a
tape drive. Also, you can use a user exit program to manage the storage of
archived logs. See “Appendix G. User Exit for Database Recovery” on
page 733 for information about a user exit program.

v If you change the newlogpath parameter, any existing archived logs are
unaffected. You must keep track of the location of the logs.

v If a database enabled for roll-forward recovery is restored either without
being rolled forward or with being rolled forward to a specific time, an
archived log may be associated with two or more different log sequences of
a database, because log names are reused. (Figure 37 on page 431 provides
an illustration of the logs that are created. If you now do a restore using
“Backup 2” you must take extra care since there are two log sequences
which could be used.) Before discarding an archived log, you must ensure
that you do not need it.

430 Administration Guide Design and Implementation

v If during a full database recovery you have rolled forward to a point in
time and stopped in the middle of the logs, you have created a new log
sequence. The two (2) log sequences cannot be combined. If you have an
online backup that spans through the first log sequence, you must use the
first log sequence to complete the roll forward recovery.

v If you have created a new log sequence after recovery, any table space
backups taken in the old log sequence are invalidated. Restore rejects the
table space backups in this case. There may be instances where restore fails
to recognize that the backup is no longer valid (particularly for online
backups) and the restore is successful. However, roll-forward for the table
space will fail and the table space is left in a roll-forward pending state.
In the diagram above, assume that a table space backup, Backup 3, is
completed between S0000013.LOG and S0000014.LOG in the top log sequence.
If we restored and rolled forward using database Backup 2, we would need
to roll-forward through S0000012.LOG. After this we could continue to
roll-forward through either the top log sequence or the newer bottom log
sequence. If we rolled forward through the bottom sequence, we would not
be able to use the table space Backup 3 to do a table space restore and
roll-forward recovery.
To be able to complete a table space roll-forward to end of logs using the
table space Backup 3, we would have to restore using database Backup 2
and then roll-forward using the top log sequence. Once the table space
Backup 3 has been restored, you can then request a roll-forward to end of
logs.

v A log uses a timestamp associated with the completion of a unit of work.
The timestamp in the logs uses the Coordinated Universal Time (CUT),
which helps to avoid having the same timestamp associated with different
logs (because of a change in time associated with daylight savings time, for
example). The timestamp used on the backup is based on the local time. As
a result, when you call the ROLLFORWARD command, you must specify
the time in Coordinated Universal Time.

Restore Backup 2
and Roll Forward to

end of log 12.

Backup 1

. . .

. . .

Backup 2 Backup 3

S0000010.LOG S0000011.LOG S0000012.LOG S0000013.LOG S0000014.LOG

S0000013.LOG S0000014.LOG

Figure 37. Reusing Log File Names

Chapter 9. Recovering a Database 431

Note: The special register, CURRENT TIMEZONE, holds the difference
between CUT and the local time at the application server database.
Local time is the CUT plus the current timezone contents.

Using Raw Logs

You can use a raw device for your database log. There are both advantages
and disadvantages in doing so.
v The advantages are:

– You can attach more than 26 physical drives to a system.
– The file I/O path length is shorter. This may improve performance on

your system. You should conduct benchmarks to evaluate if there are
measurable benefits for your work load.

v The disadvantages are:
– The device cannot be shared by other applications; the entire device must

be assigned to DB2.
– The device cannot be operated upon by any operating system utility or

third-party tool which would backup or copy from the device.
– You can easily wipe out the file system on an existing drive if you

specify the wrong physical drive number.

You can configure a raw log with the newlogpath database configuration
parameter. See “RAW I/O” on page 156 for an example of the syntax used to
specify a raw device. Before doing so, however, consider the advantages and
disadvantages listed above, and the additional considerations listed below:

v Only one device is allowed. You can define the device over multiple disks
at the operating system level. DB2 will make an operating system call to
determine the size of the device in 4 KB pages.
If you use multiple disks, this will provide a larger device, and the striping
that results can improve performance by faster I/O throughput.

v DB2 will attempt to write to the last 4 KB page of the device. If the device
size is greater than 2 GB, the attempt to write to the last page will fail on
operating systems that do not provide support for devices larger than 2 GB.
In this situation, DB2 will attempt to use all pages, up to the supported
limit.
Information about the size of the device is used to indicate the size of the
device (in 4 KB pages) available to DB2 under the support of the operating
system. The amount of disk space that DB2 can write to is referred to as the
device-size-available.
The first 4 KB page of the device is not used by DB2 (this space is generally
used by operating system for other purposes.) This means that the total
space available to DB2 is device-size = device-size-available - 1.

432 Administration Guide Design and Implementation

v The logsecond parameter is not used. DB2 will not allocate secondary logs.
The size of active log space is the number of 4 KB pages that result from
logprimary x logfilsiz.

v Log records are still grouped into log extents, each with a log file size
(logfilsiz) of 4 KB pages. Log extents are placed in the raw device, one after
another. Each extent also consists of an extra two pages for the extent
header. This means that the number of available log extents the device can
support is device-size / (logfilsiz+ 2)

v The device must be large enough to support the active log space. That is,
the number of available log extents must be greater than (or equal to) the
value specified for the logprimary configuration parameter.

v If you are using circular logging, the logprimary configuration parameter
will determine the number of log extents that are written to the device. This
may result in unused space on the device.

v If you are using log retention (logretain) without a user exit, after the number
of available log extents are all used up, all operations that result in an update
will receive a log full error. At this time, you must shut down the database
and take an offline backup of it to ensure recoverability. After the database
backup, the log records written to the device are lost. This means that you
cannot use an earlier database backup to restore the database, then roll it
forward. If you take a database backup before the number of available log
extents are all used up, you can restore and roll forward the database.

v If you are using log retention (logretain) with a user exit, the user exit
program is called for each log extent as it is filled with log records. The
user exit program must be able to read the device, and to store the archived
log as a file. DB2 will not call a user exit to retrieve log files to a raw
device. Instead, during roll forward recovery, DB2 will read the extent
headers to determine if the raw device contains the log file to be used. If
the required log file is not found in the raw device, DB2 will search the
overflow log path. If the log file is still not found, DB2 will call the user exit
to retrieve the log file into the overflow log path. If you do not specify an
overflow log path for the rollforward command, DB2 will not call the user
exit to retrieve the log during the roll-forward operations. For additional
information about the calling the user exit program, see “Calling Format for
UNIX-Based or Windows NT Operating Systems” on page 738.

v If you are using DPropR and writing logs to a raw device, the read log API
will not call the user exit to retrieve log files. Requested log records,
however, will be still be returned if they are available on the device. If you
request logs that pre-date the oldest ones on the device, they will not be
returned (the behavior is similar to DB2 not being able to find the log file
that contains the requested log records).

Chapter 9. Recovering a Database 433

Notes:

1. It is recommended that you do not use DPropR when you use a raw
device for logging.

2. If you use the sqlurlog API, you should not use a raw device for
logging.

Losing Logs
v Dropping a database erases all logs in the current database log path

directory. Before dropping a database, you may need to make copies of the
logs.

v If you are rolling forward a database to a point-in-time, the last log used in
the roll-forward recovery and all existing logs following that are reused.
You lose the ability to recover past that particular point-in-time. Therefore,
you should copy all the logs in the current database log path directory
before beginning a point-in-time recovery.
When the roll-forward processing completes, the log file with the last
committed transaction is truncated, and logging begins with the next
sequential log. If you do not have a copy of the log before it was truncated
and those with higher sequence numbers, you cannot recover the database
past the specified point-in-time. (Once normal database activity occurs
following the roll-forward, new logs are created which can then be used in
any subsequent recovery.)

v If you change the log path directory and then remove the subdirectory or
erase any logs in that subdirectory called for in the log path, the database
manager will look for the logs in the default log path, SQLOGDIR, when
the database is opened. If the logs are not found, the database will enter a
backup pending state, and you must back up the database before it is
usable.
This backup must be made even if the subdirectory contained empty logs.

v If you lose the log containing the point in time of the end of the online
backup and you are rolling forward the corresponding restored image, the
database will not be usable. To make the database usable, you must restore
the database from a different backup and all associated logs.

You may encounter a situation similar to the following: You would like to do
a point-in-time recovery on a full database but you are concerned that you
might lose a log during the recovery process. (This scenario could occur if you
have an extended number of archived logs between the time of the last
backup database image and the point-in-time where you would like to have
the database recovered.)

First, you should copy all of the applicable logs to a “safe” location. Then you
can run the RESTORE command and use the roll-forward recovery method to

434 Administration Guide Design and Implementation

the point-in-time you wish for the database. If any of the logs that you need is
damaged or lost during this process, you have a backup copy of all of the
logs elsewhere.

Recovery History File Information

A recovery history file is created with each database and is automatically
updated whenever there is a:
v Back up of a database or table space
v Restore of a database or table space
v Roll forward of a database or table space
v Alter of a table space
v Quiesce of a table space
v Load of a table
v Drop a table
v Reorganization of a table
v Update of table statistics.

You can use the summarized backup information in this file to recover all or
part of the database to a given point in time. The information in the file
includes:
v An identification (ID) field associated with each entry to uniquely identify

that entry
v The part of the database that was copied and how
v The time the copy was made
v The location of the copy (stating both the device information and the logical

way to access the copy)
v The last time a restore was done

CREATE
database

BACKUP
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

RHF is the Recovery History File

RHF

create

RHF

update

RHF

update

RHF

update

RHF

update

ROLLFORWARD

changes in logs
Units of workUnits of work Units of work

RHF

update

Figure 38. Creating and Updating the Recovery History File

Chapter 9. Recovering a Database 435

v The status of the backup: active, inactive, expired, or deleted
v The last log sequence number saved by the database backup or processed

by a roll-forward recovery.

Every backup operation (both table space and full database) includes a copy
of the recovery history file. The recovery history file is linked to the database.
Dropping a database deletes the recovery history file. Restoring a database to
a new location restores the recovery history file. Restoring does not overwrite
the existing history recovery file.

If the current database is unusable or not available and the associated
recovery history file is damaged or deleted, an option on the RESTORE
command allows only the recovery history file to be restored. The recovery
history file can then be reviewed to provide information on which backup to
use to restore the database.

The size of the file is controlled by the rec_his_retentn configuration parameter
that specifies a retention period (in days) for the entries in the file. Even if the
number for this parameter is set to zero (0), the most recent full database
backup plus its restore set is kept. (The only way to remove this copy is to
use the PRUNE with FORCE option.) The retention period has a default of
366 days. The period can be set to an indefinite number of days by using -1.
In this case, explicit pruning of the file is required. Refer to Administration
Guide, Performance for more information on this configuration parameter.

You can query and run commands against the recovery history file by using
an API function call, the command line processor, or the Control Center. The
five basic queries and commands are: OPEN, CLOSE, GET NEXT, UPDATE,
and PRUNE. (For more information on the command syntax refer to the
Command Reference. For more information on the API function call, refer to the
Administrative API Reference. For more information on the Control Center,
access the Control Center from your workstation.)

Detailed information about the history file is recorded in the SQLUHINFO
structure. For more information about this structure, refer to the Administrative
API Reference.

Garbage Collection

The number of DB2 database backups documented in the Recovery History
File is monitored automatically by something called “DB2 Garbage
Collection”. The configuration parameter num_db_backups defines how many
″active″ backups are kept. An active backup is one that can be restored and
rolled forward using the current logs to reach the current state of the

436 Administration Guide Design and Implementation

database. An ″inactive″ backup cannot be restored and rolled forward to reach
the current state of the database because it requires a different set of log files.

Each of the examples shown in the artwork that follows makes the
assumption that num_db_backups has been set to four.

All database backups that are no longer needed are marked as “expired”.
These backups are considered no longer needed because there are several
database backups as defined by num_db_backups that are more recent. All table
space backups and load backup copies that were taken before the database
backup expired are also marked as “expired”.

All database backups that are marked as “inactive” and were taken previous
to the point in time when the expired database backup was taken are also
marked as “expired”. All associated “inactive” table space backups and load
backup copies are also marked as “expired”.

When DATALINK columns are involved with the backups as described in the
next section, all Data Links servers running the DB2 Data Links Manager are
contacted to request the garbage collection of the associated Data Links server
files unlinked before the backup that has expired. After physically deleting
these backups based on the information contained in the history file, you can

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

d2 d4d1 d3 LS1

t1 t4t3t2

Figure 39. Active Database Backups

d2 d4d1 d3 LS1

t1 t4t3t2

d5

t5

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 40. Expired Database Backups

Chapter 9. Recovering a Database 437

use the PRUNE HISTORY command to remove “expired” entries from the
history file. If you do not explicitly prune the history file, the next database
backup will cause the “expired” entries to be pruned automatically.

DB2 Garbage Collection also is responsible for marking the history file entries
for a DB2 database or table space backup as “inactive” if that backup does not
correspond to the current log sequence also called the current log chain. The
current log sequence is determined by the DB2 database backup that has been
restored and the log files that have been processed. Once a database backup is
restored, all database backups that were taken after the backup that was
restored become “inactive”, since the restored backup begins a new log chain.
A table space backup becomes “inactive” when, after restoring it, the current
state of the DB2 database cannot be reached by applying the current sequence
of logs. (When a DB2 database or table space backup becomes “inactive”, DB2
Garbage Collection notifies all Data Links servers running DB2 Data Links
Manager so that the corresponding set of file backups would also be marked
as “inactive”.)

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

d2 d4d1 d3 LS1

t1 t4t3t2

Figure 41. Active Database Backups

438 Administration Guide Design and Implementation

DB2 Garbage Collection is invoked after completing a DB2 database backup.
The value of the db2_num_backups configuration parameter is used to scan the
current history file starting with the last entry.

DB2 Garbage Collection is also invoked after completing a restore of a
database backup with or without rolling forward the logs.

If an “active” database backup is restored, but it is not the most recent
database backup recorded in the history file, any subsequent database
backups belonging to the same log sequence are marked as “inactive”.

If an “inactive” database backup is restored, any inactive database backups
belonging to the current log sequence are marked as “active” again. As with
restoring an “active” database backup, all active database backups that are no
longer in the current log sequence are marked as “inactive”.

If DATALINK columns are part of the database backups being performed,
DB2 Garbage Collection then contacts all Data Links servers running the DB2
Data Links Manager to make the same status changes to the corresponding set
of file backups on the Data Links servers.

After every full database backup, the rec_his_retentn configuration parameter is
used to prune “expired” entries from the history file. All “expired” backups
are removed.

The PRUNE HISTORY command can be used by you at any time to prune
only backups marked as “expired” from the history file unless the WITH
FORCE option is used. (If a backup is pruned that is not “expired”, all Data

d2 d4d1 d3

RS1 d5 d6

LS1

LS2

t1 t3t2

t5

t4

t7t6

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 42. Active Database Backups

Chapter 9. Recovering a Database 439

Links servers are contacted and requested to flag for garbage collection the
corresponding set of file backups.)

DB2 Data Links Manager Considerations

The following sections provide information that applies if you have tables that
contain DATALINK columns. For a full description of DATALINK columns,
refer to the CREATE TABLE statement in the SQL Reference.

Crash Recovery Considerations

When an application issues SQL requests involving Data Links servers
running the DB2 Data Links Manager (using DATALINK columns with the
FILE LINK CONTROL attribute), the database manager distributes the work
to the Data Links servers. It also keeps track of which Data Links servers are

d2 d4d1 d3 LS1

RS1 d5 d6 LS2

t1 t3t2

t5

t4

t7t6 t8

d7

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 43. Mixed Active, Inactive, and Expired Database Backups

d2 d4d1 d3 LS1

RS1
d5 d6 LS2

t1 t3t2

t5

t4

t7t6 t8

d7

t10t9

d9d8

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 44. Expired Log Sequence

440 Administration Guide Design and Implementation

involved in the transaction. When the application issues a COMMIT for a
transaction, the database manager commits the transaction by using
two-phase commit protocol. In the first phase, the database manager writes a
PREPARE log record and distributes a PREPARE request to all Data Links
servers. Each Data Links server then responds with one of the following:
v YES; signifying that the Data Links server is prepared to commit
v NO; because of an error, Data Links server is not prepared to commit.

The first phase is considered successful if all Data Links servers respond
“YES”.

The processing in the second phase depends on the outcome of the first
phase. If at least one of the Data Links servers responded “NO”, the database
manager distributes ABORT requests to all the Data Links servers involved.
The transaction is rolled back and the error message SQL0903N with reason
code “03” is returned to the application. Otherwise, the database manager
proceeds to commit the transaction as it usually does in the absence of
involvement of Data Links servers. At the end of this processing, it distributes
a COMMIT request to all the Data Links servers involved in the transaction.

If a failure occurs on a Data Links server leaving some transactions in the
PREPARED state, these transactions are called indoubt transactions. The
database manager is responsible for tracking the outcome of these transactions
and eventually resolving them on the Data Links server. Whenever the
database manager determines that a failure has potentially created indoubt
transactions on a Data Links server, it marks the state of the Data Links server
as needing crash recovery. It disallows any SQL requests involving the Data
Links server while it is in this state. SQL0357N with reason code “03” is
returned to the application which made the SQL request.

At the time of RESTART, ACTIVATE DATABASE, or first CONNECT
processing, the database manager attempts to connect to each configured Data
Links server and attempts to resolve its indoubt transactions by aborting or
committing them. A Data Links server’s state is marked as available if all of
its indoubt transactions are resolved except those transactions that are also
indoubt on the database manager. In the available state, SQL requests
involving the Data Links server are allowed. At the end of this attempt to
resolve indoubt transactions if the database manager determines that a Data
Links server still potentially has indoubt transactions which need resolution, it
marks the state of the Data Links server as needing crash recovery. This can
happen, for instance, if a Data Links server is not available during RESTART,
ACTIVATE DATABASE, or first CONNECT processing; or, the Data Links
server encounters a failure during that processing.

While a Data Links server configured to a database is in a state needing crash
recovery, the database manager disallows SQL requests involving that

Chapter 9. Recovering a Database 441

particular Data Links server. SQL requests involving other data in the
database are still allowed. The database manager starts a process which
asynchronously attempts to complete crash recovery on each Data Links
server requiring recovery. When the process successfully completes the crash
recovery, the state of the Data Links server is marked as available thereby
allowing further SQL requests involving it.

Backup Utility Considerations

DB2 ensures that by the time the backup utility completes, linked files at Data
Links servers running the DB2 Data Links Manager are also backed up. (The
backup utility can run either online or offline, and the backup image can be of
either a database or a table space.) The description that follows only applies to
files that are linked by DATALINK columns that have the RECOVERY
parameter set to YES. (Files that are referenced by DATALINK columns for
which RECOVERY=NO is specified are not backed up.)

When files are linked, the Data Links servers schedule them to be copied
asynchronously to an archive server such as ADSM, or to disk. When the
backup utility runs, DB2 ensures that all files scheduled for copying have
been copied. At the beginning of backup processing, DB2 also ensures that all
Data Links servers that are specified in the DB2 configuration file are running.
If a Data Links server has one or more linked files, it must be available until
the backup operation completes. If a Data Links server becomes unavailable
before the backup operation completes, the backup operation is declared as
incomplete.

When a file is unlinked, it is either deleted or returned to its previous
permissions, depending on the value specified for the ON UNLINK
parameter. A successful backup operation can cause the Data Links servers to
clean up the archived versions of files on the archive server (either disk or
ADSM). The num_db_backups database configuration parameter specifies the
number of DB2 database backups before archived versions of the files (that
were unlinked) are removed. Refer to Administration Guide, Performance for
more information about this configuration parameter.

When unlinked files are removed, the information about the unlinked files is
also removed from the Data Links server registration tables.

Restore and Rollforward Utility Considerations

The information that follows applies if you have a DATALINK column (or
columns) that is defined with RECOVERY=YES option for a table. If a table
has a DATALINK column defined with the RECOVERY=NO option, the table
is put in the Datalink_Reconcile_Pending state at the end of the restore
operation. See “Reconciling Data Links” on page 450 for more information.

442 Administration Guide Design and Implementation

During restore operations, tables with DATALINK columns may be put into
one of the following states.

v Datalink_Reconcile_Not_Possible

When a table is in the Datalink_Reconcile_Not_Possible state, it is available for
unrestricted manipulative actions for columns other than the DATALINK
columns. When a DATALINK column is involved in a SELECT statement, a
warning is issued. You can issue UPDATE calls to DATALINK columns
(with some restrictions: see “Removing a Table from the
Datalink_Reconcile_Not_Possible State” on page 449 for details). You cannot
issue INSERT and DELETE statements because they involve the DATALINK
column.

v Datalink_Reconcile_Pending

When a table is in the Datalink_Reconcile_Pending state, it is available for
unrestricted manipulative actions for columns other than the DATALINK
columns. When a DATALINK column is involved in a SELECT statement, a
warning is issued. You cannot issue any DML statements such as UPDATE,
INSERT, or DELETE.

These states are reported in the db2diag.log file when the restore or
rollforward utilities run. You can also use the db2dart command to obtain this
information.

When you restore a database or table space and do not specify the WITHOUT
DATALINK option, the following conditions must be satisfied for the restore
operation to succeed:
v All Data Links servers containing the DATALINK data must all be

available.
v All Data Links servers that are recorded in the backup file must be

available.
v Information about all DATALINK columns that are recorded in the backup

file must exist in the appropriate Data Links servers’ registration tables.
If all the information about the DATALINK columns is not recorded in the
registration tables, the table with the missing DATALINK column
information is put into the Datalink_Reconcile_Not_Possible state after the
restore operation (or the roll-forward operation, if used) completes.
If the backup is not recorded in the registration tables, it means that the
backup file that is provided is earlier that the value for num_db_backups and
has already been “garbage collected”. This means that the archived files
from this earlier backup have been removed and cannot be restored. All
tables that have DATALINK columns are put into the Datalink_Not_Possible
state.

Chapter 9. Recovering a Database 443

The table remains available to users, but the values in the DATALINK
columns may not reference the files accurately (for example, a file may not
be found that matches a value for the DATALINK column).
If you do not want this behavior, you can put the table into the check
pending state by issuing the SET CONSTRAINTS for tablename TO
DATALINK RECONCILE PENDING command.
If, after a restore operation, you have a table in the
Datalink_Reconcile_Not_Possible state, you can fix the DATALINK column
data in one of the ways suggested under “Removing a Table from the
Datalink_Reconcile_Not_Possible State” on page 449.

Note: In the process of marking a file from the unlinked state to the linked
state, that file may have to be retrieved from an archive server to the
file system. If an error occurs during this process (for example, a file
cannot be copied into the file system because of duplicate file names),
the corresponding table is placed into the Datalink_Reconcile_Pending
state.

When you restore a database or table space and you do specify the WITHOUT
DATALINK option, and one or more of the Data Links servers containing the
DATALINK data is not available, all table spaces containing tables with
DATALINK values on the unavailable server(s) are placed in the RESTORE
PENDING state.

Restoring Databases from an offline Backup without Rolling Forward

Note: You can only restore without rolling forward at the database level, and
not the table-space level. To restore a database without rolling forward,
you could either restore a nonrecoverable database (that is, a database
that uses circular logging), or you would specify the WITHOUT
ROLLING FORWARD parameter for the restore utility.

If you use the restore utility with the WITHOUT DATALINK option, all tables
with DATALINK columns are placed in the Datalink_Reconcile_Pending state
and no reconciliation is performed with the Data Links servers during the
restore operation.

If you do not use the WITHOUT DATALINK option, and all the Data Links
servers are available and all information about the DATALINK columns is
fully recorded in the registration tables, the following occurs for each Data
Links server recorded in the backup file:
v All files that were linked after the backup image that was used for the

database restore are marked as unlinked (because they are not recorded in
the backup image as being linked).

444 Administration Guide Design and Implementation

v All files that were unlinked after the backup image, but were linked before
the backup image was taken, are marked as linked (because they are
recorded in the backup image as being linked). If the file was subsequently
linked to another table in another database, the restored table is put into
the Datalink_Reconcile_Pending state.

Restoring Databases and Table Spaces and Rolling Forward to the End of
the Logs

If you restore then roll forward the database or table space to the end of the
logs (meaning that all logs are provided), a reconciliation check is not
required (regardless of whether the WITHOUT DATALINK parameter is
specified). If you are not sure whether all the logs were provided for the
roll-forward operation, or think that you may need to reconcile DATALINK
values:
1. Issue the SQL statement for the table (or tables) involved:

SET CONSTRAINTS FOR tablename TO DATALINK RECONCILE PENDING

This puts the table in Datalink_Reconcile_Pending state and check-pending
state.

2. If you do not want a table in the check-pending state, issue the following
SQL statement:

SET CONSTRAINTS FOR tablename IMMEDIATE CHECKED

This takes the table out of the check-pending state, but leaves it in the
Datalink_Reconcile_Pending state. You must use the reconcile utility to take
the table out of this state. For more information, see “Reconciling Data
Links” on page 450.

Restoring Databases and Table Spaces and Rolling Forward to a Point in
Time

When working with Data Links tables, you can roll-forward to the end of the
logs or to a specified point-in-time.

Tables in table spaces that are rolled forward to a point-in-time are placed in
the Datalink_Reconcile_Pending state at the end of the roll-forward operation.
You should use the reconcile utility to remove them from this state. For more
information, see “Reconciling Data Links” on page 450.

Point-in-Time Roll-Forward Example

Following is a simple scenario showing the files that need to be retained in
order to handle backup and recovery. The example shows changes to the
value of a single row in column of type DATALINK together with the files

Chapter 9. Recovering a Database 445

that the DB2 Data Links Manager needs to retain to support recovery. For this
example, the assumption is made that there is no support for point-in-time
recovery of these files earlier than the last backup. Data Links servers running
the DB2 Data Links Manager do not have such a restriction. Observe that
fileA exists until time 3, at which time it is deleted because it was unlinked at
time 2, and the policy for the database in this example is to keep the unlinked
files until the next backup is run (that is, the num_db_backups database
configuration parameter is set to 1).

Time 1 2 3 4 5 6 7

Activity Create Update Backup Update Update Delete Restore to
5

Column
Value

valueA valueB valueB valueC valueD - valueD

Linked File fileA fileB fileB fileC fileD - fileD

Extra Files
Kept by
Data Links
File
Manager

fileA fileB fileB, fileC fileB, fileC,
fileD

fileB, fileC

Note: Recovery of linked files is always done in conjunction with the rest of
the database.

DB2 Data Links Manager and Recovery Interactions

The following table shows the different types of recovery that you can
perform, the DB2 Data Links Manager processing that occurs during restore
and roll-forward processing, and whether you need to run the Reconcile
utility after the recovery is complete:

Type of Recovery DB2 Data Links
Manager Processing
during Restore

DB2 Data Links
Manager Processing
during Rollforward

Reconcile

Non-recoverable database (logretain=NO)

Database restore Fast reconcile is
performed

N/A Can be optionally run if
problem with file links
is suspected

Database restore using
WITHOUT DATALINK
option

Tables put in
Datalink_Reconcile
_Pending state

N/A Required

Recoverable database (logretain=YES)

446 Administration Guide Design and Implementation

Type of Recovery DB2 Data Links
Manager Processing
during Restore

DB2 Data Links
Manager Processing
during Rollforward

Reconcile

Database restore using
WITHOUT ROLLING
FORWARD option

Fast reconcile is
performed

N/A Optional

Database restore using
WITHOUT ROLLING
FORWARD and
WITHOUT DATALINK
options

Tables put in
Datalink_Reconcile
_Pending state

N/A Required

Database restore and
roll forward to end of
logs

No action No action Optional

Database restore using
WITHOUT DATALINK
option and roll forward
to end of logs

No action No action Optional

Table space restore and
roll forward to end of
logs

No action No action Optional

Table space restore
using WITHOUT
DATALINK option and
roll forward to end of
logs

No action No action Optional

Database restore and
roll forward to a point
in time

No action Tables put in
Datalink_Reconcile
_Pending state

Required

Database restore using
WITHOUT DATALINK
option and roll forward
to a point in time

No action Tables put in
Datalink_Reconcile
_Pending state

Required

Table space restore and
roll forward to a point
in time

No action Tables put in
Datalink_Reconcile
_Pending state

Required

Table space restore
using WITHOUT
DATALINK option and
roll forward to a point
in time

No action Tables put in
Datalink_Reconcile
_Pending state

Required

Chapter 9. Recovering a Database 447

Type of Recovery DB2 Data Links
Manager Processing
during Restore

DB2 Data Links
Manager Processing
during Rollforward

Reconcile

Database restore to a
different database name,
alias, hostname, or
instance with no roll
forward (see note 449)

Tables put in
Datalink_Reconcile
_Not_Possible state

N/A Optional, but tables in
Datalink_Reconcile
_Not_Possible state must
be manually fixed

Database restore to a
different database name,
alias, hostname or
instance and roll
forward

No action Tables put in
Datalink_Reconcile
_Not_Possible state

Optional, but tables in
Datalink_Reconcile
_Not_Possible state must
be manually fixed

Database restore from
an unusable backup
(image has been
garbage-collected on the
Data Links server) with
no roll forward (see note
449)

Tables put in
Datalink_Reconcile
_Not_Possible state

N/A Optional, but tables in
Datalink_Reconcile
_Not_Possible state must
be manually fixed

Database restore from
an unusable backup
(image has been
garbage-collected on the
Data Links server) and
roll forward

No action Tables put in
Datalink_Reconcile
_Not_Possible state

Optional, but tables in
Datalink_Reconcile
_Not_Possible state must
be manually fixed

Table space restore from
an unusable backup
(image has been
garbage-collected on the
Data Links server) and
roll forward

No action Tables put in
Datalink_Reconcile
_Not_Possible state

Optional, but tables in
Datalink_Reconcile
_Not_Possible state must
be manually fixed

Database restore from
an unusable backup
(image has been
garbage-collected on the
Data Links server) using
the WITHOUT
DATALINK option and
no roll forward (see note
449)

Tables put in
Datalink_Reconcile
_Pending state

N/A Required

448 Administration Guide Design and Implementation

Type of Recovery DB2 Data Links
Manager Processing
during Restore

DB2 Data Links
Manager Processing
during Rollforward

Reconcile

Database restore from
an unusable backup
(image has been
garbage-collected on the
Data Links server) using
the WITHOUT
DATALINK option and
roll forward

No action Tables put in
Datalink_Reconcile
_Not_Possible state

Optional, but tables in
Datalink_Reconcile
_Not_Possible state must
be manually fixed

Table space restore from
an unusable backup
(image has been
garbage-collected on the
Data Links server) using
the WITHOUT
DATALINK option and
roll forward

No action Tables put in
Datalink_Reconcile
_Not_Possible state

Optional, but tables in
Datalink_Reconcile
_Not_Possible state must
be manually fixed

Note:

A restore using an offline backup and the WITHOUT ROLLING
FORWARD option (logretain is on), or a restore using an offline backup
(logretain is off).

Removing a Table from the Datalink_Reconcile_Not_Possible State

A restored table (or tables) with a DATALINK column is put into the
Datalink_Reconcile_Not_Possible state:
v If a table space is restored from a backup that is earlier than the value

specified for the num_db_backups database configuration parameter. Refer to
Administration Guide, Performance for more information on this configuration
parameter.

DB2 still allows the table to be accessed, even though the DATALINK column
values may not be valid. If you want to prevent access to a table with
possibly inconsistent DATALINK column values, issue the SET
CONSTRAINTS for tablename TO DATALINK RECONCILE PENDING
command. You can update the DATALINK values as follows:
v Using the SQL UPDATE statement, set the data location part of a

DATALINK column value to a zero-length URL if the column is not
nullable, or to NULL if the column is nullable.

v Restore the files on the appropriate Data Links servers. Then run an
application that issues SELECT statements to read the DATALINK column

Chapter 9. Recovering a Database 449

values, and issues UPDATE statements to update the DATALINK column
with the same values. Note that the Datalink_Reconcile_Not_Possible state
must be on while the DATALINK column values are being updated. After
the update operation completes, the files will be marked as linked on the
appropriate Data Links servers.

You then reset the Datalink_Reconcile_Not_Possible state by issuing the
following command:

SET CONSTRAINTS FOR tablename DATALINK RECONCILE PENDING IMMEDIATE UNCHECKED

Reconciling Data Links

You use the reconcile utility to reconcile data links. The utility is initiated from
DB2, and involves all the Data Links servers running the DB2 Data Links
Manager that are referenced by the DATALINK column values. It validates
that the referenced files either exist on the Data Links server, or that links can
be re-established. The following sections describe how DB2 detects whether
you need to reconcile data links, and how to reconcile them.

If a Data Links server file reference does not exist or cannot be re-established,
the reconcile utility places a copy of the rows in error along with a reason for
each into an exception table (if specified), then modifies the offending rows. If
the exception table is not specified, the DATALINK column values for which a
file reference could not be re-established are copied to an exception report file
along with a column-ID and reason. You can use the exception table (if
specified) information or the report to update the rows to make the required
corrections. The exception table used with the reconcile utility is identical to
the exception table used by the Load utility. Refer to Data Movement Utilities
Guide and Reference for more information on the Load utility. The report uses
the naming convention report.exp (the .exp extension is supplied by the
reconcile utility). For example, you can invoke the reconcile utility with the
following statement:

db2 RECONCILE dept DLREPORT /u/scottba/report FOR EXCEPTION excptab

This command reconciles the table called dept, and writes exceptions to the
exception table excptab, which was created by the user. Information about
files that were unlinked during reconciliation are written to the file report.ulk,
which is created in the directory /u/scottba. If FOR EXCEPTION excptab is
not specified, then the exception information is written to the file report.exp,
which is created in the directory /u/scottba. Refer to the Command Reference
for more information on the reconcile utility.

Detection of Situations That Require Reconciliation

Following are some situations when you may need to run the reconcile utility:

450 Administration Guide Design and Implementation

v The entire database is restored and rolled forward to a point in time.
Because the entire database is rolled forward to a committed transaction, no
tables will be in the check pending state (due to referential constraints or
check constraints). All data in the database is brought to a consistent state.
The DATALINK columns, however, may not be synchronized with the
metadata in the DB2 Data Links Manager, and reconciliation is required.
In this situation, tables with DATALINK columns data will already be in
the Datalink_Reconcile_Pending state. You should issue the reconcile utility
for each of these tables.

v A particular Data Links server running the DB2 Data Links Manager loses
track of its metadata. This can occur for different reasons. For example:
– The Data Links server was cold started.
– The Data Links server metadata was restored to a back-level state.

In some situations, such as SQL UPDATEs and DELETEs, DB2 may be able
to detect a problem with the metadata in a Data Links server. In these
situations, DB2 would fail the SQL statement. You would put the table in
the Datalink_Reconcile_Pending state by using the SET CONSTRAINTS
statement, then run the reconcile utility on that table.

v A file system is not available (for example, because of a disk crash) and is
not restored to the current state. In this situation, files may be missing.
An error like this will typically be discovered by an application when it
cannot access the file whose file reference it obtained from the database.
You should put the table in the Datalink_Reconcile_Pending state and run the
reconcile utility on it. Some of the files may be restored from the archive
server if their corresponding DATALINK columns had RECOVERY=YES. In
any case, the reconcile utility will record the exceptions in the exception
table or in the exception report. You can then restore those files or issue
SQL UPDATEs to fix the column.

Summary of Procedure for Reconciliation

If you need to reconcile data links because of point-in-time recovery or
because Data Links servers running the DB2 Data Links Manager and DB2
control information do not match:
1. Put the table in the Datalink_Reconcile_Pending state by issuing the SET

CONSTRAINTS statement. (In some situations, DB2 will do this for you.)
2. Use the reconcile utility to resolve the links, and take the appropriate

actions for the exceptions in the exception table or in the exception report.

Chapter 9. Recovering a Database 451

ADSTAR Distributed Storage Manager

When calling the BACKUP and RESTORE commands, you can specify that
you want to use the ADSTAR Distributed Storage Manager (ADSM) product
to manage the database or table space backup. You can use ADSM Client
Version 3.1.x.3 and later with DB2. The following topics provide additional
information:
v Setting up an ADSTAR Distributed Storage Manager Client for UNIX-Based

Platforms
v Setting up an ADSTAR Distributed Storage Manager Client for Other

Platforms
v Considerations for Using ADSTAR Distributed Storage Manager.

Setting up an ADSTAR Distributed Storage Manager Client for UNIX-Based
Platforms

Before the database manager can use the ADSM option, the following set-up
activities must be performed:
1. On SunOS and Solaris environments, perform the following steps. (For

other UNIX-based platforms, begin at step 2.)

a. Ensure that the required level of operating system is installed: SunOS
5.5.1 or Solaris 2.5.1.

b. Install the ADSM Client Version 3.1.x.3 or later. Ensure that you
remove all previous ADSM packages before installing this version of
the client.

c. Verify that ADSM is installed in the directories /opt/IBMDSMap5,
/opt/IBMDSMba5, and /opt/IBMDSMsa5.

d. Create the following symbolic links in the directory /usr/lib, if they
do not already exist:

libApiDS.so -> libApiDS.so.1
libApiDS.so.1 -> /opt/IBMDSMap5/api/libApiDS.so.2

2. Create or modify the ADSM user configuration options file
/usr/sbin/dsm.opt, and the ADSM system configuration options file
/usr/sbin/dsm.sys to suit your environment.

3. On SunOS and Solaris environments, perform the following steps. (For
other UNIX-based platforms, continue at step 4.)

a. Copy /usr/sbin/dsm.opt and /usr/sbin/dsm.sys to the directory
/opt/IBMDSMap5.

b. Copy /opt/IBMDSMap5/solaris/dsmaptica to the directory
/opt/IBMDSMap5.

4. Set the environment variables used by ADSM:

452 Administration Guide Design and Implementation

DSMI_DIR identifies the user-defined directory path where the API
trusted agent file (dsmapicta or dsmtca) are located.

Note: For the SunOS and Solaris environments, this
should be set to /opt/IBMDSMap5.

DSMI_CONFIG
identifies the user-defined directory path to the dsm.opt
file, which contains the ADSM user options.

Note: For the SunOS and Solaris environments, this
should be set to /opt/IBMDSMap5/dsm.opt.

DSMI_LOG identifies the user-defined directory path where the error
log (dsierror.log) will be created.

5. Establish the ADSM password.
For an ADSM client to be able to interface with an ADSM server, it must
have a password for the server. The executable file dsmapipw is installed in
the INSTHOME/sqllib/adsm directory of the instance owner. This executable
allows you to establish and reset the ADSM password.
To execute the dsmapipw command, you must be logged in as the “root”
user. When this command is executed, you will be prompted for the
following information:
v old password, which is the current password for the ADSM node, as

recognized by the ADSM server. The first time you execute this
command, this password will be the one provided by the ADSM
administrator at the time your node was registered on the ADSM server.

v new password, which is the new password for the node that will be
stored at the ADSM server. (Note that you will be prompted twice for
the new password, to check for input errors.)

Note: The user executing the BACKUP or RESTORE commands does not
need to know this password. The only times you need to run this
command are to establish a password for the initial connection and
if the password has been reset on the ADSM server.

6. If the database manager is running, you should:
v Stop the database manager using the db2stop command.
v Start the database manager using the db2start command.

Setting up an ADSTAR Distributed Storage Manager Client for Other
Platforms

Before the database manager can use the ADSM option, the following set-up
activities must be performed:
1. Set the environment variables used by ADSM:

Chapter 9. Recovering a Database 453

DSMI_DIR identifies the user-defined directory path where the API
trusted agent file (dsmapicta or dsmtca) are located.

DSMI_CONFIG
identifies the user-defined directory path to the dsm.opt
file, which contains the ADSM user options.

DSMI_LOG identifies the user-defined directory path where the error
log (dsierror.log) will be created.

2. If applicable to your operating system, create (or modify) the ADSM
system configuration options file (dsm.sys).

3. Create (or modify) the dsm.opt ADSM user configuration options file. The
environment variable DSMI_CONFIG points to this file.

4. Establish the ADSM password.
For an ADSM client to be able to interface with an ADSM server, it must
have a password for the server. The executable file dsmapipw is installed in
the \sqllib\adsm directory of the instance owner. This executable allows
you to establish and reset the ADSM password.
To execute the dsmapipw command, you must be logged in as the local
administrator. When this command is executed, you will be prompted for
the following information:
v old password, which is the current password for the ADSM node, as

recognized by the ADSM server. The first time you execute this
command, this password will be the one provided by the ADSM
administrator at the time your node was registered on the ADSM server.

v new password, which is the new password for the node that will be
stored at the ADSM server. (Note that you will be prompted twice for
the new password, to check for input errors.)

Note: The user executing the BACKUP or RESTORE commands does not
need to know this password. The only times you need to run this
command are to establish a password for the initial connection and
if the password has been reset on the ADSM server.

5. If the database manager is running, you should:
v Stop the database manager using the db2stop command.
v Start the database manager using the db2start command.

Considerations for Using ADSTAR Distributed Storage Manager

To use specific features within ADSM, you may be required to give the
fully-qualified path name of the object using the feature. (Remember that on
OS/2 and Windows NT platforms the \ will be used instead of /.) The
fully-qualified path name of:
v A full database backup object is:

/<database>/NODEnnnn/FULL_BACKUP.timestamp.seq_no

454 Administration Guide Design and Implementation

v A table space backup object is:
/<database>/NODEnnnn/TSP_BACKUP.timestamp.seq_no

v A load copy object is: /<database>/NODEnnnn/LOAD_COPY.timestamp.seq_no

where <database> is the database alias name, and NODEnnnn is the node
number.

Note: The names shown in upper case must be entered as shown.
v In the case where you have multiple backups using the same database alias

name, the timestamp and sequence number become the distinguishing part
of the fully qualified name. You will need to query ADSM in order to
determine which backup version to use.

v Individual backups are not known to the ADSM graphical user interface.
Backup images are pooled into file spaces which ADSM manages.
Individual backups can only be manipulated through the ADSM APIs, or
through db2adutl which uses these APIs.

v The ADSM server will time-out a session if the ADSM client does not
respond for the period of time specified by the COMMTIMEOUT parameter in
the server’s configuration file. Three factors may contribute to the
occurrence of this timeout problem:
– The COMMTIMEOUT parameter is set too low at the ADSM server. For

example, during a restore, if large DMS table spaces are being created, a
timeout may occur.
The recommended value for this parameter is 6 000 seconds.

– The database manager backup (or restore) buffer is too large.
– The database activity is too high during an online backup.

v The database manager uses the full backup option of ADSM; ADSM
incremental backups are not supported

v Use multiple sessions to increase throughput.
v On non-UNIX-based platforms, the backup and restore utilities do not

allow more than one (1) ADSM session.

The current ADSM client on the Windows operating system and OS/2 is
non-reentrant, and so multiple sessions cannot be created with the backup,
restore, or load utilities from a single machine.

In a single node configuration, if a user attempts to issue a backup command
such as:

db2 backup db sample use adsm open 3 sessions

DB2 will detect that multiple sessions are not supported by ADSM, and will
return SQL2032N. The equivalent scenario also applies to load copies using
ADSM.

Chapter 9. Recovering a Database 455

However, in a multiple logical node (MLN) configuration on Windows NT,
DB2 may not be able to detect the use of multiple sessions on a single
machine if each logical node attempts to create only one session. If multiple
logical nodes are being backed up, restored, or loaded in parallel using
ADSM, DB2 will allow the operation to proceed if each node attempts to use
a single session, even though the logical nodes actually reside on the same
physical hardware. This can lead to failed backup attempts, and hung load
processes, and should not be attempted.

Managing Backups and Log Archives on ADSM

The db2adutl utility allows you to query, extract, and delete backups, logs,
and load copy images saved using ADSM. The utility is installed in the
INSTHOME/sqllib/misc directory on UNIX platforms and in the \sqllib\misc
directory on Intel platforms.

All of the options available through the db2adutl utility are shown:

456 Administration Guide Design and Implementation

Where:

QUERY
Queries the ADSM server for DB2 objects.

EXTRACT
Copies DB2 objects from the ADSM server to the local machine and
directory.

db2adutl

TABLBESPACE
FULL
LOADCOPY

TABLESPACE
FULL
LOADCOPY

TABLESPACE
FULL
LOADCOPY

SHOW INACTIVE

SHOW INACTIVE

KEEP n

OLDER

TAKEN AT

THAN n days

TAKEN AT timestamp

timestamp

timestamp

LOGS

LOGS

LOGS

EXTRACT

DELETE

VERIFY

DATABASE PASSWORD

DB

NODE

NODE NAME WITHOUT PROMPTING

database passwordnode number

node

name

name

QUERY

BETWEEN sn1 AND sn2

BETWEEN sn1 AND sn2

BETWEEN sn1 AND sn2

TABLESPACE
FULL

SHOW INACTIVE TAKEN AT timestamp

Figure 45. Syntax for db2adutl

Chapter 9. Recovering a Database 457

DELETE
Either deactivates backup objects or deletes log archives on the ADSM
server.

VERIFY
Performs consistency checking on the backup copy that is on the
server. (Note that this parameter causes the entire backup image to be
transferred over the network.)

TABLESPACE
Includes only table space backup images.

FULL Includes only full database backup images.

LOADCOPY
Includes only load copy images.

LOGS Includes only log archive images.

BETWEEN sn1 AND sn2
Specifies to use the logs between log sequence number 1 and log
sequence number 2.

SHOW INACTIVE
Includes backup objects that have been deactivated.

TAKEN AT timestamp
Specifies a backup image by its timestamp.

KEEP n
Deactivates all objects of the specified type except for the most recent
n by timestamp.

OLDER THAN timestamp or n_days
Specifies that objects with a timestamp earlier than timestamp or n
days will be deactivated.

DATABASE database_name
Specifies to work with objects associated with database_name only.

NODE node_number
Specifies to work with objects created by node node_number only.

PASSWORD password
Specifies the ADSM client password for this node (if required). If a
specific database is specified and the password is not provided, the
value specified for the adsm_password database configuration
parameter is passed to ADSM; otherwise, no password is used.

NODENAME node_name
Specifies to work with images associated with a specific ADSM node
name only.

458 Administration Guide Design and Implementation

WITHOUT PROMPTING
You are not prompted for verification before objects are deleted.

You can choose which database you wish to work with when you use each
command through the use of the DATABASE parameter. For the EXTRACT
and DELETE commands, you can request not to see the prompts to confirm
your choices through use of the WITHOUT PROMPTING parameter.

The QUERY command of this utility allows you to list backups. logs, and load
copy images. The backups can be full database, table spaces, or both. When
using this command, the default is to list both types of backups, any load
copy images, and any logs. You can select a range of logs to be listed instead
of seeing all of the logs. You can also request to see the inactive backups.

The EXTRACT command of this utility allows you to copy from ADSM to
your current directory backups, logs, or both at the ADSM server. The
backups can be full database, table spaces, or both. When using this
command, the default without qualifiers is to list the active backups and each
log. You can then select which backups and/or logs to extract. You can also
select a range of logs to be listed instead of seeing all of the logs. You can also
request to see the inactive backups. A specific backup for extraction can be
selected by using the TAKEN AT <timestamp> parameter.

The DELETE command of this utility allows you to delete logs or deactivate
backups from ADSM. When using this command, the default without
qualifiers is to list the active backups and each log. You can then select which
backups and/or logs to delete/deactivate. You can qualify the command with
KEEP n to keep the most recent n backups. You can also qualify the command
with OLDER [THAN] <timestamp> or n DAYS. This will delete backups older
than the given date (timestamp) or older than the days specified. You can also
select a range of logs to be listed instead of seeing all of the logs. A specific
backup for deletion can be selected by using the TAKEN AT <timestamp>
parameter.

For DB2, we recommend that the ADSM default policy be used. With the
changes to the backup naming conventions, each backup is now unique. In
order to delete old backups, the policy must be set up so that no active copies
are kept.

For examples of using this utility, see “Examples of Using db2adutl”.

Examples of Using db2adutl:
db2 backup database rawsampl use adsm
Backup successful. The timestamp for this backup is : 19970929130942

Chapter 9. Recovering a Database 459

db2adutl query

Query for database RAWSAMPL

Retrieving full database backup information.
full database backup image: 1, Time: 19970929130942,

Oldest log: S0000053.LOG, Sessions used: 1
full database backup image: 2, Time: 19970929142241,

Oldest log: S0000054.LOG, Sessions used: 1

Retrieving table space backup information.
table space backup image: 1, Time: 19970929094003,

Oldest log: S0000051.LOG, Sessions used: 1
table space backup image: 2, Time: 19970929093043,

Oldest log: S0000050.LOG, Sessions used: 1
table space backup image: 3, Time: 19970929105905,

Oldest log: S0000052.LOG, Sessions used: 1

Retrieving log archive information.
Log file: S0000050.LOG
Log file: S0000051.LOG
Log file: S0000052.LOG
Log file: S0000053.LOG
Log file: S0000054.LOG
Log file: S0000055.LOG

db2adutl delete full taken at 19950929130942 db rawsampl

Query for database RAWSAMPL

Retrieving full database backup information. Please wait.

full database backup image: RAWSAMPL.0.db26000.0.19970929130942.001

Do you want to deactivate this backup image (Y/N)? y

Are you sure (Y/N)? y

db2adutl query

Query for database RAWSAMPL

Retrieving full database backup information.
full database backup image: 2, Time: 19950929142241,

Oldest log: S0000054.LOG, Sessions used: 1

Retrieving table space backup information.
table space backup image: 1, Time: 19950929094003,

Oldest log: S0000051.LOG, Sessions used: 1
table space backup image: 2, Time: 19950929093043,

Oldest log: S0000050.LOG, Sessions used: 1
table space backup image: 3, Time: 19950929105905,

Oldest log: S0000052.LOG, Sessions used: 1

Retrieving log archive information.
Log file: S0000050.LOG

460 Administration Guide Design and Implementation

Log file: S0000051.LOG
Log file: S0000052.LOG
Log file: S0000053.LOG
Log file: S0000054.LOG
Log file: S0000055.LOG

Chapter 9. Recovering a Database 461

462 Administration Guide Design and Implementation

Part 3. Distributed Transaction Processing

© Copyright IBM Corp. 1993, 1999 463

464 Administration Guide Design and Implementation

Chapter 10. Distributed Databases

In the DB2 database manager, a transaction is commonly referred to as a unit
of work. A unit of work is a recoverable sequence of operations within an
application process, and is the basic building block used by the database
manager to ensure that a database is in a consistent state. Any reading or
writing to the database is done within a unit of work. A point of consistency (or
commit point) is a time when all recoverable data that an application accesses
is consistent with related data.

For example, a bank transaction might involve the transfer of funds from a
savings account to a checking account. After the application subtracts the
amount from the savings account, the two accounts are inconsistent; they are
not consistent again until the amount is added to the checking account. When
both steps are completed, the point of consistency is reached, and the changes
can be committed and are made available to other applications.

A unit of work starts when the first SQL statement is issued against the
database. The application must end the unit of work by issuing either a
COMMIT or a ROLLBACK statement. The COMMIT statement makes
permanent all changes made within a unit of work, whereas the ROLLBACK
statement removes these changes from the database. If the application ends
normally without either of these statements, the unit of work is automatically
committed. If it ends abnormally while in the middle of a unit of work, the
unit of work is automatically rolled back. Once issued, a COMMIT or
ROLLBACK cannot be stopped. With some multi-threaded applications, if the
application ends normally without either of these statements, the unit of work
is automatically rolled back. Similarly on some operating systems (such as
Windows platforms), if the application ends normally without either of these
statements, the unit of work is automatically rolled back. The recommendation
when writing your applications is to always explicitly COMMIT or
ROLLBACK your completed unit of work.

In the above banking example, only if both requests are processed
successfully, should the application direct the database manager to commit the
changes. If either request is not processed successfully, the updates should be
rolled back, leaving both tables as they were before the transaction began.
This ensures that requests are neither lost nor duplicated.

The following topics provide additional information:
v “Using a Single Database in a Transaction” on page 466

v “Using Multiple Databases in a Single Transaction” on page 467

© Copyright IBM Corp. 1993, 1999 465

– “Updating a Single Database” on page 467

– “Updating Multiple Databases” on page 469

v “Other Configuration Considerations in Any Environment” on page 474

v “Understanding the Two-Phase Commit Process” on page 478

v “Recovering from Problems During Two-Phase Commit” on page 481

– “Manual Recovery of Indoubt Transactions” on page 482

– “Resynchronizing Indoubt Transactions if AUTORESTART=OFF” on
page 484

v “Recovery of Indoubt Transactions on the Host” on page 485.

For information on creating applications using distributed databases, refer to
the Application Development Guide and the CLI Guide and Reference manuals.

Using a Single Database in a Transaction

The simplest form of database usage is to read and write to only one database
within a single transaction (unit of work). This type of database access is
called remote unit of work.

Figure 46 shows an example of a database client running a funds transfer
application that accesses a database containing checking and savings account
tables, as well as a banking fee schedule. The application performing the
transfer includes the following steps:

1. Accept the amount to transfer from the user interface
2. Subtract the amount from the savings account and determine the new

balance
3. Read the fee schedule to determine the transaction fee for a savings

account with the given balance

Update

Update

Read

Database Client

Savings
Account

Checking
Account

Transaction
Fee

Figure 46. Using a Single Database in a Transaction

466 Administration Guide Design and Implementation

4. Subtract the transaction fee from the savings account
5. Add the amount of the transfer to the checking account
6. Commit the transaction (unit of work).

To set up this funds transfer application, you must:
1. Create the tables for the savings account, checking account and banking

fee schedule in the same database (“Chapter 4. Implementing Your
Design” on page 99)

2. (If physically remote...) Set up the database server to use the appropriate
communications protocol, as described in the Quick Beginnings manuals

3. (If physically remote...) Catalog the node and database to identify the
database on the above database server, as described in the Quick
Beginnings manuals

4. Pre-compile your application program to specify a type 1 connection, that
is, specify CONNECT(1) on the PREP command, as described in the
Application Development Guide manual.

Using Multiple Databases in a Single Transaction

When using multiple databases in a single transaction, the requirements for
setting up and administering your environment are different, depending on
the number of databases that are being updated in the transaction. For more
information, see:
v “Updating a Single Database”

v “Updating Multiple Databases” on page 469.

Updating a Single Database

If your data is distributed across multiple databases, you may wish to update
one database while reading from one or more other databases. This type of
access can be performed within a single unit of work (transaction). This type
of database access is called multisite update or two-phase commit. See “Updating
Multiple Databases” on page 469 for another example of a multisite update.

Chapter 10. Distributed Databases 467

Figure 47 shows an example of a database client running a funds transfer
application that accesses two database servers: one containing the checking
and savings accounts and another containing the banking fee schedule. This
example is similar to the example provided in “Using a Single Database in a
Transaction” on page 466, except for the number of databases and the location
of the tables. As discussed previously, the application performing the transfer
includes the following steps:

1. Accept the amount to transfer from the user interface
2. Subtract the amount from the savings account and determine the new

balance
3. Read the fee schedule to determine the transaction fee for a savings

account with the given balance
4. Subtract the transaction fee from the savings account
5. Add the amount of the transfer to the checking account
6. Commit the transaction (unit of work).

To set up the above environment, you must:
1. Create the necessary tables in the appropriate databases (“Chapter 4.

Implementing Your Design” on page 99)

2. (If physically remote...) Set up the database servers to use the appropriate
communications protocols, as described in the Quick Beginnings manuals

3. (If physically remote...) Catalog the nodes and databases to identify the
databases on the above database servers, as described in the Quick
Beginnings manuals

Savings
Account

Update

Database Client

Read

Checking
Account

Transaction
Fee

Update

Figure 47. Using Multiple Databases in a Single Transaction

468 Administration Guide Design and Implementation

4. Pre-compile your application program, as described in the Application
Development Guide to specify:
a. A type 2 connection, that is, specify CONNECT(2) on the PREP

command
b. One-phase commit, that is SYNCPOINT(ONEPHASE) on the PREP

command.

Performance Tip: You should note that, unlike the scenario described in
“Updating Multiple Databases”, updating a single database while reading
multiple databases only requires a one-phase commit
(SYNCPOINT(ONEPHASE) on PREP command). Using a one-phase commit
process requires less overhead than a two-phase commit process. Therefore,
performance is better when using SYNCPOINT(ONEPHASE) rather than
SYNCPOINT(TWOPHASE) for applications that only update a single database
within a unit of work.

Host and AS/400 Server Additional Information:

v If the databases containing the tables used in the above example are located
on DB2 for MVS/ESA, OS/390, OS/400, VM or VSE host systems, then the
DB2 Connect product is needed. Refer to the DB2 Connect User’s Guide for
additional information on how to set up and use DB2 Connect.

v Refer to the DRDA Connectivity Guide for more information on connectivity
issues.

Federated Server and Pass-Through Session Additional Information:

v You cannot perform insert, update, or delete operations against nicknames.
v If you open a pass-through session to a data source, DB2 assumes that you

intend to insert, update, or delete information at that data source.
Therefore, if your application updates information in one database and then
opens a pass-through session to a data source, within the same
unit-of-work, you must specify SYNCPOINT(TWOPHASE) on the PREP
command.

v Refer to the SQL Reference for more information on pass-through sessions
(SET PASSTHRU).

Updating Multiple Databases

If your data is distributed across multiple databases, you may also wish to
read and update several databases in a single transaction. This type of
database access is called a multisite update. This type of environment is more
complex than that described in “Updating a Single Database” on page 467. As
a result, additional topics will be introduced below.

Chapter 10. Distributed Databases 469

Figure 48 shows an example similar to Figure 47 on page 468, except the
checking and savings accounts are located in different databases. The
application performing the transfer includes the same steps as described in
“Updating a Single Database” on page 467.

1. Accept the amount to transfer from the user interface
2. Subtract the amount from the savings account and determine the new

balance
3. Read the fee schedule to determine the transaction fee for a savings

account with the given balance
4. Subtract the transaction fee from the savings account
5. Add the amount of the transfer to the checking account
6. Commit the transaction (unit of work).

To set up the above environment, you must:
1. Create the necessary tables in the appropriate databases (“Chapter 4.

Implementing Your Design” on page 99)

2. (If physically remote...) Set up the database servers to use the appropriate
communications protocols, as described in the Quick Beginnings manuals

Savings
Account

Update

Database Client

Read

Checking
Account

Transaction
Fee

Update

Figure 48. Updating Multiple Databases

470 Administration Guide Design and Implementation

3. (If physically remote...) Catalog the nodes and databases to identify the
databases on the above database servers, as described in the Quick
Beginnings manuals

4. Pre-compile your application program, as described in the Application
Development Guide to specify:
a. A type 2 connection, that is, specify CONNECT(2) on the PREP

command
b. Two-phase commit, that is SYNCPOINT(TWOPHASE) on the PREP

command.
5. Configure the DB2 transaction manager (TM), as described in “Using the

DB2 Transaction Manager”. This section also provides information about
how the two-phase commit process works.

Using the DB2 Transaction Manager

The database manager provides transaction manager functions that can be
used to coordinate the updating of several databases within a single unit of
work. The database client automatically coordinates the unit of work and uses
a transaction manager database to register each transaction (unit of work) and to
track the completion status of that transaction.

If you are using an XA-compliant transaction manager such as IBM TXSeries,
BEA Tuxedo, or Microsoft Transaction Series, please see “Chapter 11. Using
DB2 with an XA-Compliant Transaction Manager” on page 489 for integration
instructions.

When using DB2 UDB to coordinate your transactions you need to meet
certain configuration requirements. If you use TCP/IP exclusively for
communications and DB2 UDB and DB2 for OS/390 are the only database
server involved in your transactions then configuration is simplified over
environments that do not meet these criteria.

DB2 UDB and DB2 for OS/390 Using TCP/IP Connectivity: If all the
following are true in your environment:

v All communications with remote database servers uses TCP/IP exclusively
v DB2 Universal Database or DB2 for OS/390 are the only database servers

involved in the transaction
v DB2 for OS/390 access is not via the DB2 Syncpoint Manager.

The DB2 Syncpoint Manager is required when:
– SNA connectivity is used with host or AS/400 database servers for

multi-site updates.
– An XA-compliant transaction manager (such as IBM TXSeries CICS) is

coordinating the two-phase commit.

Chapter 10. Distributed Databases 471

This applies to both SNA and TCP/IP connectivity with host or AS/400
database servers. For detailed information, see “Chapter 11. Using DB2
with an XA-Compliant Transaction Manager” on page 489.

then the configuration steps for multisite update are simplified. There is no
need to catalog the Transaction Manager Database at each remote database
server. Nor is there a need to catalog each remote database server at the
Transaction Manager database instance. This information is exchanged
between the DB2 client, the designated transaction manager database instance,
and the DB2 UDB and/or DB2 for OS/390 database servers automatically
without manual database configuration.

The database that will be used as the transaction manager database is
determined at the database client by the database manager configuration
parameter tm_database. Refer to “Configuring DB2” in Administration Guide,
Performance for more information on this configuration parameter. Consider
the following factors when setting this configuration parameter:

v The transaction manager database can be:
– A DB2 UDB database
– A DB2 for OS/390 Version 5 or later database.

This is the recommended database server to use as the transaction
manager database. OS/390 systems are, generally, more secure than
workstation servers. This reduces the possibility of accidental power
downs, reboots, and so on. Therefore the recovery logs, used in the event
of resynchronization, are more secure.

v If the keyword 1ST_CONN is defined for the tm_database parameter, the first
database to which the application connects in the transaction will be used
as the transaction manager database.
Care must be taken when using 1ST_CONN. You should only use this
configuration if it is easy to ensure that all involved databases are cataloged
correctly, for example, in the following situations:
– The database client initiating the transaction is in the same instance that

contains the participating databases, including the transaction manager
database.

– You are using DCE directory services to catalog and manage access to
your databases.

Note that if your application attempts to disconnect from the database
being used as the transaction manager database, you will receive a warning
message and the connection will be held until the unit of work is
committed.

Other Environments: If your transactions involve any of the following
situations:

472 Administration Guide Design and Implementation

v TCP/IP is not used exclusively for communications with remote database
servers (for example, NETBIOS is used)

v DB2 Common Server V2 database server is accessed
v DB2 for MVS V3 or V4, DB2 for AS/400, or DB2 for VM&VSE is accessed
v DB2 for OS/390 is accessed using SNA
v The DB2 Syncpoint Manager is used to access host or AS/400 database

servers

then the configuration steps for multisite update are more involved than the
preceding discussion.

The database that will be used as the transaction manager database is
determined at the database client by the database manager configuration
parameter tm_database. Refer to “Configuring DB2” in Administration Guide,
Performance for more information on this configuration parameter. Consider
the following factors when setting this configuration parameter:
v The transaction manager database can be:

– A DB2 Universal Database database
This is the recommended database.

– A DB2 common server V2 database.
v Catalog databases and nodes to allow the following:

– All database manager instances participating in a distributed transaction
must be able to connect to the transaction manager database that was
specified by the client’s tm_database configuration parameter. An instance
participates in a distributed transaction if the transaction connects to one
or more databases contained in that instance. If, for example, the
tm_database parameter is set to DB2TRMGR at the database client, you
should be able to issue the following command from each participating
instance:

CONNECT TO DB2TRMGR

The result of this command should connect you to the same database, on
the same node from every participating instance, as well as the database
client.

– The database manager instance containing the transaction manager
database must be able to connect to all other databases participating in
the distributed transaction. If, for example, the client connects to the
SAVINGS_DB, CHECKING_DB and FEE_DB, the instance containing the
transaction manager database must also be able to connect to those
databases using the same names or aliases that the database client uses.

Note: The transaction manager database must not be cataloged using the
alias option to specify an alternative name.

Chapter 10. Distributed Databases 473

v If the keyword 1ST_CONN is defined for the tm_database parameter, the first
database to which the application connects in the transaction will be used
as the transaction manager database. In this situation, all databases used in
any transaction initiated from the database client must be able to connect to
one another using the same database aliases as are used at the database
client. This effectively means that each database within a network must
have a unique alias across the network.
Care must be taken when using 1ST_CONN. You should only use this
configuration if it is easy to ensure that all involved databases are cataloged
correctly, for example, in the following situations:
– The database client initiating the transaction is in the same instance that

contains the participating databases, including the transaction manager
database

– You are using DCE directory services to catalog and manage access to
your databases.

Note that if your application attempts to disconnect from the database
being used as the transaction manager database, you will receive a warning
message and the connection will be held until the unit of work is
committed.

The above rules regarding cataloging of aliases affect your ability to recover
from problems (see “Recovering from Problems During Two-Phase Commit”
on page 481).

Other Configuration Considerations in Any Environment

You should consider the values of the following configuration parameters
when you are setting up your environment. For additional information about
setting these parameters, also refer to the DB2 Connect User’s Guide.

474 Administration Guide Design and Implementation

v The following are database manager configuration parameters:
– tm_database

The tm_database database manager configuration parameter identifies the
name of the Transaction Manager (TM) database for each DB2 instance.

– spm_name

The spm_name database manager configuration parameter identifies the
name of the DB2 Syncpoint Manager (SPM) instance to the database
manager. It is defined in the system database directory and, if remote, in
the node directory.
For resynchronization to be successful, the name must be unique across
your network.

– resyn_interval

The resync_interval database manager configuration parameter identifies
the time interval in seconds for which the DB2 Transaction Manager
(TM) database manager, DB2 server database manger, and the DB2
Syncpoint Manager (SPM) should retry the recovery of any outstanding
indoubt transactions.

– spm_log_file_sz

The spm_log_file_sz database manager configuration parameter identifies
the SPM log file size in 4K pages.

– spm_max_resync

The spm_max_resync database manager configuration parameter identifies
the number of agents that can simultaneously perform resync operations.

– spm_log_path

Client
(CAE and application)

DB2 Connect

OS/390 mainframe

DB2 Server

Figure 49. Configuration Considerations

Chapter 10. Distributed Databases 475

The spm_log_path database manager configuration parameter identifies
the log path for the SPM log files.

v The following are database configuration parameters:
– maxappls

The maxappls database configuration parameter specifies the maximum
number of active applications allowed.
The value of this parameter must be equal to or greater than the sum of
the connected applications plus the number of these same applications
which may be concurrently in the process of completing a two-phase
commit or rollback. This sum should then have added to it the
anticipated number of indoubt transactions which might exist at any one
time. See “Recovering from Problems During Two-Phase Commit” on
page 481 for more information on indoubt transactions.
As a result, if you have an environment like the one just described, you
may need to increase the value of the maxappls parameter. Increasing the
value helps ensure that all processes can be accommodated.

– autorestart

This database configuration parameter specifies whether the RESTART
DATABASE routine will be invoked automatically when needed. The
default is yes (that is, enabled).
A database containing indoubt transactions will require the RESTART
DATABASE command/routine to be invoked in order to start up. If the
autorestart option is not enabled, when the last connection to the database
is dropped, the next connection will fail and require an explicit RESTART
DATABASE again. This condition will exist until the indoubt transaction
has been removed either by the transaction manager’s resync operation,
or through a heuristic operation performed by the administrator. When
the RESTART DATABASE is issued, a message will be displayed if there
are any indoubt transactions in the database. The administrator can then
use the LIST INDOUBT TRANSACTION command and other command
line processor commands to find out information about those indoubt
transactions.

Refer to Administration Guide, Performance for more information on these
configuration parameters.

Note: Before installing either a fixpack for, or a new version of DB2, you
should ensure that no indoubt transactions exist with any host or
AS/400 server. Use the LIST DRDA INDOUBT TRANSACTION
command to determine if any indoubt transactions exist.

476 Administration Guide Design and Implementation

Host or AS/400 Applications Which Access a DB2 Universal Database
Server in a Multisite Update

In this situation, SNA connectivity is the only type supported. The DB2
Syncpoint Manager is required in order to permit multisite update. DB2
Universal Database does not support multisite update from host or AS/400
database clients using TCP/IP connectivity.

The database server which is being accessed from the host or AS/400
database client does not have to be local to the workstation which has the
DB2 Syncpoint Manager. The host or AS/400 database client could connect to
a DB2 UDB server using the DB2 Syncpoint Manager workstation as an
interim gateway. This allows you to isolate the DB2 Syncpoint Manager
workstation in a secure environment while the actual DB2 UDB Servers are
remote in your organization. This also permits DB2 Common Server V2
database to be involved in multisite updates originating from host or AS/400
database clients.

The steps are as follows:
v On the workstation which has the DB2 Syncpoint Manager:

1. Install DB2 Universal Database Enterprise Edition or Enterprise Edition
- Extended in order to provide multisite update support with host or
AS/400 database clients.

2. Create a database instance on the same system. For example, you can
use the default instance DB2, or use the following command to create a
new instance:

db2icrt myinstance

3. Supply licensing information as required.
4. Ensure that the registry value db2comm includes the value APPC.
5. Configure SNA communications as required.

The configuration will be easier if the SPM_NAME value is the same
as the LU name, and the SPM uses the same LU as the DB2 Connect
workstation.
On an AIX system, the SPM_NAME value must be same as the names
of:
a. The transaction program (TP) profile used by the SPM.
b. The local side information profile used by the SPM.
c. The SPM instance name on application requesters.

6. Determine the value to be specified for the SPM_NAME database
manager configuration parameter, and optionally values for the
SPM_LOG_FILE_SZ and SPM_MAX_RESYNC database manager
configuration parameters if the defaults are not appropriate for your
situation.

Chapter 10. Distributed Databases 477

7. Update SPM_NAME on the DB2 Universal Database server. For
example, you can use the following command:

update database manager configuration using spm_name SPMNAME

8. Configure communications as required for this DB2 workstation to
connect to remote DB2 UDB servers, if any.

9. Configure communications as required for remote DB2 UDB Servers to
connect to this DB2 Syncpoint Manager workstation.

10. Stop and restart the database manager on the DB2 Universal Database
server to start the SPM for the first time.
You should be able to connect to the remote DB2 UDB servers from
this DB2 Syncpoint Manager workstation.

v On Each Remote DB2 UDB Server which will be accessed by the Host or
AS/400 Database Client
The database administrator must also perform the following steps at each
remote system where a DB2 UDB Server will be accessed by a host or
AS/400 database client.
The remote DB2 UDB Server must have its communications support
configured so that the remote DB2 Syncpoint manager can connect to it
AND so that this DB2 UDB Server can connect to the remote DB2
Syncpoint Manager.
1. Configure communications as required for the remote DB2 Syncpoint

Manager (SPM) workstation to connect to this DB2 UDB Server.
2. Catalog the database directory entry for the remote DB2 Syncpoint

Manager instance, and catalog the node entry for the location of the
SPM. For example:

catalog tcpip node SPMNODE remote SERVERD server db1inst1c
db2 catalog database SPMNAME as SPMNAME at node SPMNODE

The Database alias name must be the same as the actual database name.

You should be able to connect to the SPM from the DB2 Client.
3. Stop and restart the database manager on the application requester.

Understanding the Two-Phase Commit Process

The following example illustrates the steps of the example transaction
(described in “Updating Multiple Databases” on page 469) and the
participants in the transaction. If an error occurs during the two-phase commit
process, understanding how a transaction is managed will help you to resolve
the problem.

478 Administration Guide Design and Implementation

�0� The application is prepared for two-phase commit. This can be
accomplished through precompilation options (refer to the Application

Savings
AccountClient

Connect

Select

Checking
Account

Transaction
Fee

Transaction
Manager

Connect 1

3

2

5

6

4

7

8

9

10

11

12

13

Update

Update
Connect

Connect

Commit

Update

Figure 50. Updating Multiple Databases

Chapter 10. Distributed Databases 479

Development Guide for details). This can also be accomplished through
the DB2 CLI configuration (refer to the CLI Guide and Reference for
details).

�1� When the database client wants to connect to SAVINGS_DB, it first
internally connects to the Transaction Manager (TM) database. The
TM database returns an acknowledgment to the database client.

�2� The connection to the SAVINGS_DB takes place and is acknowledged.

�3� The database client begins the update to the SAVINGS_ACCOUNT
table. This begins the unit of work. The TM database responds to the
database client providing a transaction ID for the unit of work. Note
that the registration of a unit of work occurs when the first SQL
statement in the unit of work is run, not necessarily during connect
time.

�4� After receiving the transaction ID, the database client registers the unit
of work with the database containing the SAVINGS_ACCOUNT table.
A response is sent back to the client to indicate that the unit of work
has been registered successfully.

�5� SQL statements issued against the SAVINGS_DB are handled in the
normal manner. The response to each statement is returned in the
SQLCA when working with SQL statements embedded in a program.
(The SQLCA is described in the Application Development Guide and the
SQL Reference.)

�6� The transaction ID is registered at the FEE_DB database containing the
TRANSACTION_FEE table, during the first access to that database
within the unit of work.

�7� Any SQL statements against the FEE_DB database are handled in the
normal fashion.

�8� Additional SQL statements can be executed against the SAVINGS_DB
by setting the connection as appropriate. Since the unit of work has
already been registered with the SAVINGS_DB �4�, the database client
does not need to perform the registration step again.

�9� Connecting to and using the CHECKING_DB follows the same rules
as described by �6� and �7�.

�10� When the database client requests that the unit of work be committed,
a prepare message is sent to all databases participating in the unit of
work. Each database writes a “PREPARED” record to their log files
and replies to the database client.

�11� After the database client receives a positive response from all of the
databases, it sends a message to the transaction manager database to
inform it that the unit of work is now ready to be committed

480 Administration Guide Design and Implementation

(PREPARED). The transaction manager database writes a
“PREPARED” record to its log file and sends a reply to inform the
client that the second phase of the commit process can be started.

�12� During the second phase of the commit process, the database client
sends a message to all participating databases to tell them to commit.
Each database writes a “COMMITTED” record to its log file and
releases the locks that were held for this unit of work. When the
database has completed committing the changes, it sends a reply to
client.

�13� After the database client receives a positive response from all
participating databases, it sends a request to the transaction manager
database to inform it that the unit of work has been completed. The
transaction manager database then:

v Writes a “COMMITTED” record to its log file, to indicate that the
unit of work is complete

v Replies to the client to indicate it has finished.

Recovering from Problems During Two-Phase Commit

Recovering from error situations is a normal task associated with application
programming, system administration, database administration and system
operation. Distributing databases over several remote servers increases the
potential for error situations resulting from network or communication
failures. To ensure data integrity, the database manager provides the
two-phase commit process which is illustrated in “Understanding the
Two-Phase Commit Process” on page 478 as points �10�, �11� and �12�. The
following explain how the database manager handles errors during this
two-phase commit process:

v First Phase Error
If a database responds that it failed to prepare to commit the unit of work,
the database client will roll back the unit of work during the second phase
of the commit process. A prepare message will not be sent to the
transaction manager database in this case.
During the second phase, the client sends a rollback message to all
participating databases that successfully prepared to commit in the first
phase. Each database then writes an “ABORT” record to their log file and
releases the locks held for this unit of work.

v Second Phase Error
Error handling at this stage is dependent on whether the second phase will
commit or roll back the transaction. The second phase will only roll back
the transaction if the first phase encountered an error.

Chapter 10. Distributed Databases 481

If one of the participating databases fails to commit the unit of work
(possibly due to a communications failure), the transaction manager
database will retry the commit on the failed database. The database
manager configuration parameter resync_interval (refer to “Configuring
DB2” in Administration Guide, Performance) is used to determine how long
the transaction manager database will wait between attempts to commit the
unit of work.
If the transaction manager database fails, it will resynchronize the unit of
work when it is restarted. The resynchronization process will attempt to
complete all indoubt transactions, that is, those transactions that have
finished the first phase and have not completed the second phase of the
commit. The database manager where the transaction manager database
resides will perform the resynchronization by:
1. Connecting to the databases that replied that they were “PREPARED” to

commit during the first phase of the commit process.
2. Attempting to commit the indoubt transaction at that database. (If the

indoubt transaction cannot be found, the database manager assumes
that the database successfully committed the transaction during the
second phase of the commit process.)

3. Committing the indoubt transaction in the transaction manager
database, after all indoubt transactions have been committed in the
participating databases.

If one of the participating databases fails and is restarted, the database
manager for this database will query the status of the transaction manager
database for the status of this transaction to determine whether the
transaction should be rolled back. If the transaction is not found in the log,
the database manager assumes the transaction was rolled back and will roll
back the indoubt transaction for this database. Otherwise, the database will
wait for a commit request from the transaction manager database.

If the transaction was coordinated by a Transaction Processing Monitor
(XA-compliant transaction manager), then the database will always depend
on the Transaction Processing Monitor to initiate the resynchronization.

Manual Recovery of Indoubt Transactions

If, for some reason, you cannot wait for the transaction manager to
automatically resolve the indoubt transaction, there are some actions you can
take to manually resolve the states of indoubt transactions. This manual
process is sometimes referred to as “making a heuristic decision”.

The LIST INDOUBT TRANSACTIONS command (and a related set of APIs)
allows you to query, commit, and roll back indoubt transactions. In addition,
it also allows you to “forget” transactions that have been heuristically

482 Administration Guide Design and Implementation

committed or rolled back by removing the log records and releasing the log
space. For information about the command and APIs, refer to the Command
Reference and the Administrative API Reference manuals.

You should use this command (or APIs) with extreme caution and as a last
resort. The best solution is to wait for the transaction manager to drive the
resynchronization process. You could experience data integrity problems if
you manually commit or roll back a transaction in one of the participating
databases, and the opposite action is taken for another of the databases.
Recovering from data integrity problems requires you to understand the
application logic, the data changed or rolled back, and then to perform a
point-in-time recovery of the database, or manually undo/redo the database
changes.

If you cannot wait for the transaction manager to initiate the
resynchronization process and you must release the resources tied up by an
indoubt transaction, then heuristic operations are necessary. This situation
could occur if the transaction manager will not be available for an extended
period of time to do the resync, and the indoubt transaction is tying up
resources that are urgently needed. An indoubt transaction ties up the
resources that were associated with this transaction before the transaction
manager or participating database became unavailable. These resources
include things such as the locks on tables and indexes, log space, and storage
taken up by the transaction. Each indoubt transaction also decreases (by one)
the maximum number of concurrent transactions that can be handled by the
database.

There are no foolproof ways to perform heuristic operations. You can use the
following steps as a guideline:
1. Connect to the database for which you require all transactions to be

complete.
2. Use the LIST INDOUBT TRANSACTIONS command to display the

indoubt transactions. The xid represents the global transaction ID and is
identical in other databases participating in this transaction, including the
transaction manager database.

3. For each indoubt transaction, use your knowledge about the application
and the tm_database configuration parameter to determine the transaction
manager database as well as the other participating databases.

4. Connect to the transaction manager database.
v If you were able to connect to this database, use the LIST INDOUBT

TRANSACTIONS command to display the indoubt transactions
recorded in the transaction manager database.
– If there is an indoubt transaction with the same xid as recorded in

step 2 and with type TM, you can connect to each database

Chapter 10. Distributed Databases 483

participating in the transaction, and heuristically commit the
transaction using the LIST INDOUBT TRANSACTIONS WITH
PROMPTING command.

– If there is not an indoubt transaction with the same xid as recorded
in step 2 and with type TM, you can connect to the each database
participating in the transaction, and heuristically roll back the
transaction using the LIST INDOUBT TRANSACTIONS WITH
PROMPTING command.

v If you cannot connect to the transaction manager database, you will
have to use the status of the transaction in the other participating
databases to determine what action you should take.
– If at least one of the other databases has committed the transaction,

then you should heuristically commit the transaction in all the
participating databases (using the LIST INDOUBT TRANSACTIONS
WITH PROMPTING command).

– If at least one of the other databases has rolled back the transaction,
then you should heuristically roll back the transaction in all the
participating databases (using the LIST INDOUBT TRANSACTIONS
WITH PROMPTING command).

– If the transaction is in “PREPARED” (indoubt) state in all of the
participating databases, then you should heuristically roll back the
transaction in all the participating databases (using the LIST
INDOUBT TRANSACTIONS WITH PROMPTING command).

– If you are unable to connect to one or more of the other participating
databases, then you should heuristically roll back the transaction in
all the participating databases (using the LIST INDOUBT
TRANSACTIONS WITH PROMPTING command).

Note: The LIST INDOUBT TRANSACTIONS command includes “type”
information to show you the role of the database in each indoubt
transaction:

TM Indicates the indoubt transaction is using the database as a
transaction manager database.

RM Indicates the indoubt transaction is using the database as a
resource manager, meaning that it is one of the databases
participating in the transaction, but is not the transaction
manager database.

Resynchronizing Indoubt Transactions if AUTORESTART=OFF

For configuration considerations in the DB2 Universal Database two-phase
commit environment, see “Other Configuration Considerations in Any
Environment” on page 474.

484 Administration Guide Design and Implementation

In particular, if the autorestart database configuration parameter is OFF and
there are indoubt transactions in either the TM or RM databases, the
RESTART DATABASE command is required in order to start up the
resynchronization process. If issuing the RESTART DATABASE command
from the command line processor, use different sessions. If you restart a
different database from the same session, the connection established by the
previous restart database command will be dropped. The database will need
to be restarted again if the last connection to it is dropped. Issue DB2
TERMINATE to drop the connection after there are no indoubt transactions
listed by the DB2 LIST INDOUBT TRANSACTIONS command.

Recovery of Indoubt Transactions on the Host

If your application has accessed a host or AS/400 database server within a
transaction, there are some differences in how indoubt transactions are
recovered.

To access host or AS/400 database servers, DB2 Connect is used. The recovery
steps differ if DB2 Connect has the DB2 Syncpoint Manager configured.

Recovery when DB2 Connect Has the DB2 Syncpoint Manager Configured

The recovery of indoubt transactions at host or AS/400 servers is normally
performed automatically by the Transaction Manager (TM) and the DB2
Syncpoint Manager (SPM). An indoubt transaction at a host or AS/400 server
does not hold any resources at the local DB2 location, but does hold resources
at the host or AS/400 server as long as the transaction is indoubt at that
location. If the administrator of the host or AS/400 server determines that a
heuristic decision must be made, then the administrator may contact the local
DB2 database administrator (for example via telephone) to determine whether
to commit or roll back the transaction at the host or AS/400 server. If this
occurs, the LIST DRDA INDOUBT TRANSACTIONS command can be used to
determine the state of the transaction at the DB2 Connect instance. The
following steps can be used as a guideline for most situations involving an
SNA communications environment.
1. Connect to the SPM as shown below.

db2 => connect to db2spm

Database Connection Information

Database product = SPM0500
SQL authorization ID = CRUS
Local database alias = DB2SPM

2. Issue the LIST DRDA INDOUBT TRANSACTIONS command to display
the indoubt transactions known to the SPM. The example below shows
one indoubt transaction known to the SPM. The db_name is the local alias

Chapter 10. Distributed Databases 485

for the host or AS/400 server. The partner_lu is the fully qualified luname
of the host or AS/400 server. This provides the best identification of the
host or AS/400 server, and should be provided by the caller from the host
or AS/400 server. The luwid provides a unique identifier for a transaction
and is available at all hosts and AS/400 servers. If the transaction in
question is displayed, then the uow_status field can be used to determine
the outcome of the transaction if the value is C (commit) or R (rollback). If
you issue the LIST DRDA INDOUBT TRANSACTIONS command with the
WITH PROMPTING parameter, you can commit, roll back, or forget the
transaction interactively. For more information, refer to the Command
Reference.
db2 => list drda indoubt transactions
DRDA Indoubt Transactions:
1.db_name: DBAS3 db_alias: DBAS3 role: AR
uow_status: C partner_status: I partner_lu: USIBMSY.SY12DQA

corr_tok: USIBMST.STB3327L
luwid: USIBMST.STB3327.305DFDA5DC00.0001
xid: 53514C2000000017 00000000544D4442 0000000000305DFD A63055E962000000

00035F

3. If an indoubt transaction for the partner_lu and for the luwid is not
displayed, or if the LIST DRDA INDOUBT TRANSACTIONS command
returns as follows:
db2 => list drda indoubt transactions
SQL1251W No data returned for heuristic query.

then the transaction was rolled back.

There is another unlikely but possible situation that may occur. If an
indoubt transaction with the proper luwid for the partner_lu is displayed,
but the uow_status is ″I″, the SPM doesn’t know whether the transaction is
to be committed or rolled back. In this situation, you should use the WITH
PROMPTING parameter to either commit or roll back the transaction on
the DB2 Connect workstation. Then allow DB2 Connect to resynchronize
with the host or AS/400 server based on the heuristic decision.

Recovery when DB2 Connect Does Not Use the DB2 Syncpoint Manager

Use the information in this section when TCP/IP connectivity is used to
update DB2 for OS/390 in a multisite update from either DB2 Connect
Personal Edition or DB2 Connect Enterprise Edition, and the DB2 Syncpoint
Manager is not used. The recovery of indoubt transactions in this situation
differs from that for indoubt transactions involving the DB2 Syncpoint
Manager. When an indoubt transaction occurs in this environment, an alert
entry is generated at the client, at the database server, and (or) at the
Transaction Manager (TM) database, depending on who detected the problem.
The alert entry is placed in the db2alert.log file. For more information on
alerts, refer to the Troubleshooting Guide manual.

486 Administration Guide Design and Implementation

The resynchronization of any indoubt transactions occurs automatically as
soon as the TM and the participating databases and their connections are all
available again. You should allow automatic resynchronization to occur rather
than heuristically force a decision at the database server. If, however, you
must do this then use the following steps as a guideline.

Note: Because the DB2 Syncpoint Manager is not involved, you cannot use
the LIST DRDA INDOUBT TRANSACTIONS command.

1. On the OS/390 host, issue the command DISPLAY THREAD
TYPE(INDOUBT).
From this list identify the transaction that you want to heuristically
complete. Refer to the DB2 for OS/390 Command Reference for details of the
DISPLAY command. The LUWID displayed can be matched to the same
luwid at the Transaction Manager Database.

2. Issue the RECOVER THREAD(<LUWID>) ACTION(ABORT|COMMIT)
command, depending on what you want to do.
Refer to the DB2 for OS/390 Command Reference for details of the RECOVER
command.

Chapter 10. Distributed Databases 487

488 Administration Guide Design and Implementation

Chapter 11. Using DB2 with an XA-Compliant Transaction
Manager

You may want to use your databases with an XA-compliant transaction
manager if you have resources other than DB2 databases that you want to
participate in a two-phase commit transaction. If your transactions only access
DB2 databases, you should use the DB2 transaction manager as described in
“Updating Multiple Databases” on page 469.

The following topics are provided to assist you in using the database manager
with an XA-compliant transaction manager such as IBM TXSeries CICS, IBM
TXSeries Encina, BEA Tuxedo, or Microsoft Transaction Server:

v “Setting Up a Database as a Resource Manager” on page 490

v “Database Connection Considerations” on page 491

v “Making a Heuristic Decision” on page 491

v “Security Considerations” on page 494

v “Configuration Considerations” on page 495

v “XA Function Supported” on page 496

v “XA Interface Problem Determination” on page 499

v “Configuring IBM TXSeries CICS” on page 501

v “Configuring IBM TXSeries Encina” on page 501

v “Configuring BEA Tuxedo” on page 504

v “Configuring Microsoft Transaction Server” on page 505.

If you are using an XA-compliant transaction manager, or are implementing
one, please search our technical support web site. The URL to the web site is:
http://www.software.ibm.com/data/db2/library/

Once there, choose “DB2 Universal Database”. Then search the web site with
keyword “XA” for the latest available information on XA-compliant
transaction managers.

© Copyright IBM Corp. 1993, 1999 489

Setting Up a Database as a Resource Manager

Each database is defined as a separate resource manager (RM) to the
transaction manager (TM), and the database must be identified with an XA
open string that has the following syntax:

"database_alias<,userid<,password>>"

The database_alias is required to specify the database alias name of the
database. This alias name is the same as the database name unless you have
explicitly cataloged an alias name after you created the database. The
username and password are optional, and, depending on the authentication
method, are used to provide authentication information to the database.

When setting up a database as a resource manager, you do not require the XA
close string. This string will be ignored by the database manager if it is
provided.

A program can access different databases using the SQL CONNECT
statement. Each transaction can access one or more databases as described in
“Chapter 10. Distributed Databases” on page 465. Every database to be
accessed in the transaction must be defined as a resource manager using an
XA open string. If a database is not defined as a resource manager, that
database cannot be used within a transaction controlled by an XA-compliant
transaction manager.

The database manager allows both non-XA and global transactions to access
local and remote instances of the database manager. If all the databases reside
on machines separated from the TP Monitor machine, the TP Monitor
machine uses the database client to forward the XA and SQL requests to the
databases. You must have, at a minimum, the DB2 Client Application Enabler
installed on the same machine as the XA Transaction Manager. Database
servers that are accessed by applications controlled by the XA Transaction
Manager can be either local or remote.

Updating Host or AS/400 Database Servers

Host and AS/400 database servers may be updatable depending upon the
architecture of the XA Transaction Manager. If the work and the commit
sequence occur within the same DB2 context (typically the same operating
system thread), and the work is committed before starting a new transaction,
then host and AS/400 database servers can participate in the transaction.
Refer to the Application Development Guide for information about the SQL
statements that are allowed in this environment.

490 Administration Guide Design and Implementation

If you will be updating host or AS/400 database servers, you will require DB2
Connect with the DB2 Syncpoint Manager configured. Refer to the DB2
Connect Enterprise Edition for OS/2 and Windows NT Quick Beginnings manual
for instructions.

Database Connection Considerations

The sections that follow describe the database connection considerations:
v “RELEASE Statement”

v “Transactions Accessing Partitioned Databases (DB2 UDB EEE)”

RELEASE Statement

If a RELEASE statement is used to release a connection to a database, a
CONNECT statement, rather than SET CONNECTION, should be used to
reconnect to that database.

Transactions Accessing Partitioned Databases (DB2 UDB EEE)

In a partitioned database environment, user data may be partitioned across
database partitions. An application accessing the database connects and sends
requests to one of the database partitions (the coordinator node). Different
applications can connect to different database partitions, and the same
application can choose different database partitions for different connections.

For a given transaction executing against a database in a partitioned
environment, all access must be through the same database partition. That is,
the same database partition must be used from the start of the transaction
until (and including) the time that the transaction is committed.

Any transaction executing against the partitioned database must be committed
before disconnecting.

Making a Heuristic Decision

An XA-compliant transaction manager (Transaction Processing Monitor) uses
a two-phase commit process similar to that used by the DB2 transaction
manager as described in “Understanding the Two-Phase Commit Process” on
page 478 . The primary difference between the two environments is that the
TP Monitor provides the function of logging and controlling the transaction,
instead of the DB2 transaction manager and the transaction manager database.

Errors similar to those discussed for the DB2 transaction manager (see
“Recovering from Problems During Two-Phase Commit” on page 481) can

Chapter 11. Using DB2 with an XA-Compliant Transaction Manager 491

occur when using an XA-compliant transaction manager. Similar to the DB2
transaction manager, an XA-compliant transaction manager will attempt to
resynchronize indoubt transactions.

If, for some reason, you cannot wait for the transaction manager to
automatically resolve the indoubt transaction, there are some actions you can
take to manually resolve the states of indoubt transactions. This manual
process is sometimes referred to as “making a heuristic decision”.

The LIST INDOUBT TRANSACTIONS command using the WITH
PROMPTING option (or the use of a related set of APIs) allows you to query,
commit, and roll back indoubt transactions. In addition, it also allows you to
“forget” transactions that have been heuristically committed or rolled back by
removing the log records and releasing the log space. For information about
the command and APIs, refer to the Command Reference and the Administrative
API Reference manuals.

Note: The LIST INDOUBT TRANSACTIONS command (and APIs) can only
be used for Universal Database versions of DB2. Other types of resource
managers, including those controlled by DRDA2-compliant database
managers may have other ways to query indoubt transactions and to
make heuristic decisions for their resources.

You should use this command (or APIs) with extreme caution and as a last
resort. The best solution is to wait for the transaction manager to drive the
resynchronization process. You could experience data integrity problems if
you manually commit or roll back a transaction in one of the participating
databases, and the opposite action is taken for another of the databases.
Recovering from data integrity problems requires you to understand the
application logic, the data changed or rolled back, and then to perform a
point-in-time recovery of the database, or manually undo/redo the database
changes.

If you cannot wait for the transaction manager to initiate the
resynchronization process and you must release the resources tied up by an
indoubt transaction, then heuristic operations are necessary. This situation
could occur if the transaction manager will not be available for an extended
period of time to do the resynchronization and the indoubt transaction is
tying up resources that are urgently needed. An indoubt transaction ties up
the resources that were associated with this transaction before the transaction
manager or resource managers became unavailable. For the database manager,
these resources include things such as the locks on tables and indexes, log
space, and storage taken up by the transaction. Each indoubt transaction also
decreases (by one) the maximum number of concurrent transactions that can
be handled by the database.

492 Administration Guide Design and Implementation

There are no foolproof ways to perform heuristic operations. You can use the
following steps as a guideline:

1. Connect to the database for which you require all transactions to be
complete.

2. Use the LIST INDOUBT TRANSACTIONS command to display the
indoubt transactions. The xid represents the global transaction ID and is
identical to the xid used by the transaction manager and by other resource
managers participating in this transaction.

3. For each indoubt transaction, use your knowledge about the application
and the operating environment to determine the other participating
resource managers.

4. Determine if the transaction manager is available:
v If the transaction manager is available, and the indoubt transaction in a

resource manager was caused by the resource manager not being
available in the second commit phase, or for an earlier
resynchronization process, then you should check the transaction
manager’s log to determine what action has been taken against the other
resource managers. You should then take the same action for the
database, that is, using the LIST INDOUBT TRANSACTION command,
either heuristically commit or heuristically roll back the transaction in
the database.

v If the transaction manager is not available, you will need to use the
status of the transaction in the other participating resource managers to
determine what action you should take:
– If at least one of the other resource managers has committed the

transaction, you should heuristically commit the transaction in all the
resource managers. (For common server versions of DB2, you can use
the LIST INDOUBT TRANSACTIONS command to initiate the
heuristic actions.)

– If at least one of the other resource managers has rolled back the
transaction, you should heuristically roll back the transaction.

– If the transaction is in “PREPARED” (indoubt) state in all of the
participating resource managers, you should heuristically roll back
the transaction.

– If one or more of the other resource managers is not available, you
should heuristically roll back the transaction.

Do not perform the heuristic forget function unless a heuristically committed
or rolled back transaction causes a log full condition, as indicated by the
Logfull condition in the output of the LIST INDOUBT TRANSACTIONS
command. The heuristic forget function releases the log space occupied by
this indoubt transaction. The implication is that if a transaction manager
eventually performs a resynchronization operation for this indoubt

Chapter 11. Using DB2 with an XA-Compliant Transaction Manager 493

transaction, it could potentially make the wrong decision to commit or roll
back other resource managers because there is no log record found for the
transaction in this resource manager. In general a ″missing″ log record implies
that the resource manager had rolled back the transaction.

Security Considerations

As mentioned in “Application Program (AP)” on page 727, the TP monitor
pre-allocates a set of server processes and runs the transactions from different
users under the IDs of the server processes. To the database, each server
process appears as a big application that has many units of work, all being
run under the same ID associated with the server process.

For example, in an AIX environment using CICS, when a CICS for AIX region
is started up, it is associated with the AIX username with which it is defined.
All the CICS Application Server processes are also being run under this CICS
for AIX ″master″ ID, which is usually defined as ″cics″. CICS users can invoke
CICS transactions under their DCE login ID, and while in CICS, they can also
change their ID using the CESN signon transaction.1 In either case, the end
user’s ID is not available to the RM. Consequently a CICS Application Process
might be running transactions on behalf of many users, but they all appear to
the RM as if it is a single program with many units of work from the same
″cics″ ID. Optionally, you may specify a user ID and password on the XA
Open string, and that user ID will be used instead of the ″cics″ ID to connect
to the database.

For static SQL statements, there is not much impact because the binder’s
privileges, not the end user’s privileges, are used to access the database. This
does mean, however, that the EXECUTE privilege of the database packages
must be granted to the server’s ID and not the end user’s.

For dynamic statements, which have their access authentication done at
run-time, this means that the access privileges of the database objects must be
granted to the server’s ID and not to the actual user of those objects. Instead
of relying on the database to control the access of specific users, you must rely
on the TP Monitor system to determine which users can run which programs.
The server ID must be granted all privileges that its SQL users require.

1.

Note that CICS for AIX can also interface with an external security manager to verify the signon ID and password.
An administrator can also define which users can run specific CICS programs through the control of the
Transaction Definition (TD). (TD in CICS for AIX is equivalent to the combination of Program Control Table (PCT)
and Transaction List Table (XLT) in the other CICS family members.)

Several security measures can be used to restrict the usage of CICS by AIX users. A user must first be allowed to
run the cicsh command to gain access to the CICS region. A user who is not defined in the CICS User Definition
(UD) with specific security and transaction level keys can only have public level access.

494 Administration Guide Design and Implementation

To determine who has accessed a database table or view, you can perform the
following steps:

1. From the SYSCAT.PACKAGEDEP catalog view, obtain a list of all packages
that depend on the table or view.

2. Determine the names of the server programs (for example, CICS
programs) that correspond to these packages through the naming
convention used in your installation.

3. Determine the client programs (for example, CICS transaction IDs) that
could invoke these programs, and then use the TP Monitor’s log (for
example, CICS log) to determine who had run these transactions or
programs and at what times.

Configuration Considerations

You should consider the values of the following configuration parameters
when you are setting up your TP Monitor environment:
v tp_mon_name

The tp_mon_name database configuration parameter identifies the name of
the transaction processor (TP) monitor product being used. For example,
″CICS″ or ″ENCINA″.

v tpname

The tpname database configuration parameter identifies the name of the
remote transaction program that the database client must use when issuing
an allocate request to the database server when using the APPC
communications protocol. This database manager configuration parameter
is set in the configuration file at the server and must be the same as the
transaction processor (TP) name configured in the SNA transaction
program. Refer to the Quick Beginnings manuals for more information.

v tm_database

Because DB2 does not coordinate transactions in the XA environment, this
parameter is not used for XA-coordinated transactions.

v maxappls

The maxappls database configuration parameter specifies the maximum
number of active applications allowed.
The value of this parameter must be equal to or greater than the sum of the
connected applications plus the number of these same applications which
may be concurrently in the process of completing a two-phase commit or
rollback. This sum should then have added to it the anticipated number of
indoubt transactions which might exist at any one time. See “Recovering
from Problems During Two-Phase Commit” on page 481 for more
information on indoubt transactions.

Chapter 11. Using DB2 with an XA-Compliant Transaction Manager 495

As a result, for a Transaction Processing Monitor environment (for example,
CICS for AIX) you may need to increase the value of the maxappls
parameter. Increasing the value helps ensure that all TP Monitor processes
can be accommodated.

v autorestart

This database configuration parameter specifies whether the RESTART
DATABASE routine will be invoked automatically when needed. The
default is yes (that is, enabled).
A database containing indoubt transactions will require the RESTART
DATABASE command/routine to be invoked in order to start up. If the
autorestart option is not enabled, when the last connection to the database is
dropped, the next connection will fail and require an explicit RESTART
DATABASE again. This condition will exist until the indoubt transaction
has been removed either by the transaction manager’s resync operation, or
through a heuristic operation performed by the administrator. When the
RESTART DATABASE is issued, a message will be displayed if there are
any indoubt transactions in the database. The administrator can then use
the LIST INDOUBT TRANSACTION command and other command line
processor commands to find out information about those indoubt
transactions.

XA Function Supported

DB2 Universal Database supports the XA91 specification defined in X/Open
CAE Specification Distributed Transaction Processing: The XA Specification manual,
with the following exceptions:
v Asynchronous services

The XA specification allows the interface to use asynchronous services
where the result of a request can be checked at some later time. The
database manager requires the use of the requests to be invoked in
synchronous mode.

v Static registration
The XA interface allows for two ways to register an RM: static registration
and dynamic registration. DB2 UDB implements dynamic registration
which is more advanced and efficient. Refer to “Resource Managers (RM)”
on page 730 for more details about these two methods.

v Association Migration
DB2 Universal Database does not support transaction migration between
threads of control.

496 Administration Guide Design and Implementation

XA Switch Usage and Location

As required by the XA interface, the database manager provides a
db2xa_switch external C variable of type xa_switch_t to return the XA switch
structure to the TM. Other than the addresses of the various XA functions, the
following fields are returned:

Field Value

name The product name of the database manager: for example, DB2 for AIX

flags TMREGISTER | TMNOMIGRATE

Explicitly states that DB2 UDB uses dynamic registration and the TM
should not use association migration. Also implicitly states that
asynchronous operation is not supported.

version
Must be zero.

XA Open and Close Strings Usage

The database manager open string has the following syntax:
"database_alias<,username,password>"

The database_alias is required to specify the database alias name of the
database. This alias name is the same as the database name unless you have
explicitly cataloged an alias name after you created the database. The
username and password are optional, and are used to provide authentication
information to the database if the database is set up with
authentication=SERVER.

The database manager does not use the XA close string and its content will be
ignored.

Using the DB2 Universal Database XA Switch

The XA architecture requires that a Resource Manager (RM) provide a switch
that gives the XA Transaction Manager (TM) access to the resource manager’s
xa_ routines. An RM’s switch uses a structure called xa_switch_t. The switch
contains the RM’s name, non-null pointers to the RM’s xa entry points, a flag,
and a version number.

See the following sections for information on how to use the switch on
different platforms:
v “UNIX Platforms” on page 498

v “OS/2 Platform” on page 498

v “Windows NT Platform” on page 498.

Chapter 11. Using DB2 with an XA-Compliant Transaction Manager 497

For a C sample program, see “Example C Code” on page 499.

UNIX Platforms: DB2 UDB’s switch can be obtained in any of the following
ways:

v Through one additional level of indirection. In a C program, this can be
accomplished by defining the macro:

#define db2xa_switch (*db2xa_switch)

prior to a use of db2xa_switch.
v By calling db2xacic

DB2 UDB provides an API, db2xacic, which returns the address of the
db2xa_switch structure. This function is prototyped as:

struct xa_switch_t * SQL_API_FN db2xacic()

With either method, you must link your application with libdb2.

OS/2 Platform: DB2 UDB’s switch can be obtained in any of the following
ways:
v Through one additional level of indirection. In a C program, this can be

accomplished by defining the macro:
#define db2xa_switch (*db2xa_switch)

prior to a use of db2xa_switch.
v Calling db2xacic

DB2 UDB provides an API, db2xacic, which returns the address of the
db2xa_switch structure. This function is prototyped as:

struct xa_switch_t * SQL_API_FN db2xacic()

With either method, you must link your application with db2api.lib.

Windows NT Platform: The interface to the db2xa_switch data structure is
different for DB2 UDB for Windows NT because of operating system
differences.

The pointer to the xa_switch structure, db2xa_switch, is exported as DLL data.
This implies that a Windows NT application using this structure must
reference it in one of three ways:
v Through one additional level of indirection. In a C program, this can be

accomplished by defining the macro:
#define db2xa_switch (*db2xa_switch)

prior to a use of db2xa_switch.
v If using the Microsoft Visual C++ compiler, db2xa_switch can be defined as:

498 Administration Guide Design and Implementation

extern __declspec(dllimport) struct xa_switch_t db2xa_switch

v DB2 UDB provides an API, db2xacic, which returns the address of the
db2xa_switch structure. This function is prototyped as:

struct xa_switch_t * SQL_API_FN db2xacic()

With any of these methods, ensure that you link with db2api.lib.

Example C Code: The following code illustrates the different ways the
db2xa_switch can be accessed via a C program: on any UDB platform. Be sure
to link with the appropriate library previously specified.
#include <stdio.h>
#include <xa.h>

struct xa_switch_t * SQL_API_FN db2xacic();

#ifdef DECLSPEC_DEFN
extern __declspec(dllimport) struct xa_switch_t db2xa_switch;
#else
#define db2xa_switch (*db2xa_switch)
extern struct xa_switch_t db2xa_switch;
#endif

main()
{

struct xa_switch_t *foo;
printf ("%s \n", db2xa_switch.name);
foo = db2xacic();
printf ("%s \n", foo->name);
return ;

}

Making the Transaction Manager Known to DB2 Universal Database

DB2 must resolve the entry points to ax_reg and ax_unreg with the TM in
order to be able to dynamically register a transaction:
v On UNIX platforms, this is done automatically when the application links

in the DB2 and TM libraries.
v On OS/2 and Windows NT, DB2 UDB must explicitly load the dynamic

link library (DLL) that exports both these entry points at runtime. To
accomplish this, the DLL name and path are retrieved from the
tp_mon_name database manager configuration parameter.

XA Interface Problem Determination

When an error is detected during an XA request from the TM, the application
program may not be able to get the error code from the TM. If your program
abends or gets a cryptic return code from the TP Monitor or the TM, you
should check the First Failure Service Log, which reports XA error information
when diagnostic level 3 or greater is in use.

Chapter 11. Using DB2 with an XA-Compliant Transaction Manager 499

For more information about the First Failure Service Log, refer to the
Troubleshooting Guide manual. In addition to this source of information for
problem determination, you should also consult the console message, TM
error file or other product-specific information provided by the external
transaction processing software being used. Refer to the documentation of
your transaction processing product for more details in this area.

The database manager writes all XA specific errors to the First Failure Service
Log with SQLCODE -998 (transaction or heuristic errors) and the appropriate
reason codes. The following are some of the more common reasons for errors:
v Invalid syntax in the XA open string.
v Failure to connect to the database specified in the open string as a result of

one of the following:
– The database has not been cataloged
– The database has not been started
– The server application’s username/password is not authorized to

connect to the database.
v Communications error.

The following example displays an XA open error generated on an AIX
platform due to a missing XA open string.

Configuring XA Transaction Managers to Use DB2 UDB

The sections that follow describe how to configure specific products to use
DB2 as a resource manager. You can use any of the following:
v “Configuring IBM TXSeries CICS” on page 501

v “Configuring IBM TXSeries Encina” on page 501

v “Configuring BEA Tuxedo” on page 504

v “Configuring Microsoft Transaction Server” on page 505.

Tue Apr 4 15:59:08 1995
toop pid(83378) process (xatest) XA DTP Support sqlxa_open Probe:101
DIA4701E Database "" could not be opened for distributed transaction
processing.
String Title : XA Interface SQLCA pid(83378)
SQLCODE = -998 REASON CODE: 4 SUBCODE: 1
Dump File : /u/toop/diagnostics/83378.dmp Data : SQLCA

Figure 51. Error Log for XA Open Error

500 Administration Guide Design and Implementation

Configuring IBM TXSeries CICS

For information about how to configure IBM TXSeries CICS to use DB2 as a
resource manager, refer to your IBM TXSeries CICS Administration Guide.
TXSeries documentation can be viewed online at starting at
http://www.transarc.com/dfs/public/www/htdocs/.hosts/external/
Library/index.html

Host and AS/400 database servers can participate in CICS-coordinated
transactions.

Configuring IBM TXSeries Encina

The following are the various API and configuration parameters required for
the integration of Encina Monitor and DB2 Universal Database servers or DB2
for MVS, DB2 for OS/390, DB2 for AS/400, or DB2 for VSE&VM when
accessed via DB2 Connect. TXSeries documentation can be viewed online
starting at
http://www.transarc.com/dfs/public/www/htdocs/.hosts/external/
Library/index.html

Host and AS/400 database servers can participate in Encina-coordinated
transactions.

Configuring DB2

To configure DB2:
1. Each database name must be defined in the DB2 database directory. If the

database is a remote database, then a Node Directory entry must also be
defined. You can perform the configuration using the GUI Client
Configuration Assistant (CCA), or the DB2 Command Line Processor
(CLP). For example:
DB2 CATALOG DATABASE inventdb AS inventdb AT NODE host1 AUTH SERVER

DB2 CATALOG TCPIP NODE host1 REMOTE hostname1 SERVER svcname1

2. The DB2 client can optimize its internal processing for Encina if it knows
that it is dealing with Encina. You can specify this by setting the
tp_mon_name database manager configuration parameter to ENCINA. The
default is for no special optimization. If tp_mon_name is set, then the
application must ensure the thread that performs the unit of work also
immediately commits the work after ending it. No other unit of work may
be started. If this is not your environment, then ensure that the value for
tp_mon_name value is NONE (or via the CLP, the value is set to NULL).
The tp_mon_name can be updated by invoking the CCA or by the CLP:
v On AIX use: UPDATE DATABASE MANAGER CONFIGURATION USING

TP_MON_NAME ENCINA

Chapter 11. Using DB2 with an XA-Compliant Transaction Manager 501

v On Windows NT use: UPDATE DATABASE MANAGER CONFIGURATION USING
TP_MON_NAME libEncServer:E

In Intel environments, this parameter contains the path and name of the
DLL in an external transaction manager product containing the
functions ax_reg and ax_unreg, and also informs DB2 which TP Monitor
is being used.

Configuring Encina for Each Resource Manager

To configure Encina for each resource manager, an administrator must define
the Open String, Close String, and Thread of Control Agreement for each DB2
database as a resource manager before the resource manager can be registered
for transactions in an application. The configuration can be performed using
the Enconcole full screen interface, or the Encina command line interface. For
example:

monadmin create rm inventdb -open "inventdb,user1,password1"

There is one resource manager configuration for each DB2 database, and each
resource manager (RM) configuration must have an rm name (″logical RM
name″). To simplify the situation, you should make it identical to the database
name.

The XA Open String contains information that is required to establish a
connection to the database. The content of the string is RM specific. The XA
Open String of DB2 UDB contains the alias name of the database to be
opened, and optionally a userID and password to be associated with the
connection. Note that the database name defined here must also be cataloged
into the regular database directory required for all database access. The name
can be up to 8 bytes long.

The XA Close String is not used by DB2.

The Thread of Control Agreement determines if an application agent thread
can handle more than one transaction at a time. DB2 V5.0 and following
supports the default of TMXA_SERIALIZE_ALL_OPERATIONS, where a
thread can be reused only after a transaction has completed.

If you are accessing DB2 for OS/390, DB2 for MVS, DB2 for AS/400, or DB2
for VSE&VM, then you must use the DB2 Syncpoint Manager. Please refer to
the DB2 Connect Enterprise Edition for OS/2 and Windows NT Quick Beginnings
manual for configuration instructions.

Referencing a DB2 Database from an Encina Application

To reference a DB2 database from an Encina application:

502 Administration Guide Design and Implementation

1. Use the Encina Scheduling Policy API to specify how many application
agents can be run from a single TP Monitor application process. For
example:

rc = mon_SetSchedulingPolicy (MON_EXCLUSIVE)

For DB2 (DB2 Universal Database, host, or AS/400 database servers), you
should use the default setting of MON_EXCLUSIVE. This ensures that:
v The application process is locked during the life time of the transaction.
v The application acts single threaded.

Note: If you are using the ODBC or DB2 Call Level Interface, you must
disable the multithread support. You can do this by setting the CLI
configuration parameter DISABLEMULTITHREAD = 1 (disables
multithreading). The default for DB2 Universal Database is
DISABLEMULTITHREAD = 0 (enables multithreading). Refer to the CLI
Guide and Reference for more information.

2. Use the Encina RM Registration API to provide the XA switch and the
logical RM name to be used by Encina when referencing the RM in an
application process. For example:
rc = mon_RegisterRmi (&db2xa_switch, /* xa switch */

"inventdb", /* logical RM name */
&rmiId); /* internal RM id */

The XA Switch contains the addresses of the XA routines in the RM that
the TM can call, and it also specifies the functionality that is provided by
the RM. The XA Switch of DB2 Universal Database is db2xa_switch, and it
resides in the DB2 client library (db2app.dll on INTEL platforms and
libdb2 on UNIX-based platforms).

The logical RM name is the one used by Encina, and is not the actual
database name that is used by the SQL application that runs under Encina.
The actual database name is specified in the XA Open String in the Encina
RM Registration. To simplify the situation, the logical RM name is set to
be the same as the database name in this example.

The third parameter returns an internal identifier or handle that is used by
the TM to reference this connection.

Note: When using Encina for transaction processing with DB2 through the
TM-XA interface, note that Encina nested transactions are not currently
supported by the DB2 XA interface. If possible, avoid using these
transactions. If you cannot, ensure that SQL work is done in only one
member of the Encina transaction family.

Chapter 11. Using DB2 with an XA-Compliant Transaction Manager 503

Configuring BEA Tuxedo

Note: Applications that access host or AS/400 database servers in a Tuxedo
environment are limited to read-only access to these servers.

To configure Tuxedo to use DB2 as a resource manager, perform the following
steps:
1. Install Tuxedo as specified in the documentation for that product. Ensure

that you perform all basic Tuxedo configuration, including the log files
and environment variables.
You also require a compiler and the DB2 Software Developer’s Kit. Install
these if necessary.

2. At the Tuxedo server ID, set the DB2INSTANCE environment variable to
reference the instance that contains the databases that you want Tuxedo to
use. Also set the PATH variable to include the DB2 program directories.
Then confirm that the Tuxedo server ID can connect to the DB2 databases.

3. For Windows NT only. Update the tp_mon_name database manager
configuration parameter with the name of the DLL that contains the
ax_reg and ax_unreg routines. In Tuxedo, this DLL is called libtux.

4. Add a definition for DB2 to the Tuxedo resource manager definition file. In
the examples that follow, UDB_XA is the locally defined Tuxedo resource
manager name for DB2, and db2xa_switch is the DB2-defined name for a
structure of type xa_switch_t:
v For AIX. In the file ${TUXDIR}/udataobj/RM, add the definition:

DB2 UDB
UDB_XA:db2xa_switch:-L${DB2DIR} /lib -ldb2

Where {TUXDIR} is the directory where you installed Tuxedo, and
{DB2DIR} is the DB2 instance directory.

v For Windows NT. In the file %TUXDIR%\udataobj\rm, add the
definition:

DB2 UDB
UDB_XA;db2xa_switch;%DB2DIR%\lib\db2api.lib

Where %TUXDIR% is the directory where you installed Tuxedo, and
%DB2DIR% is the DB2 instance directory.

5. Build the Tuxedo transaction monitor server program for DB2:
v For AIX:

${TUXDIR}/bin/buildtms -r UDB_XA -o ${TUXDIR}/bin/TMS_UDB

Where {TUXDIR} is the directory where you installed Tuxedo.
v For Windows NT:

%TUXDIR%\bin\buildtms -r UDB_XA -o %TUXDIR%\bin\TMS_UDB

504 Administration Guide Design and Implementation

6. Build the application servers. In the examples that follow, the -r option
specifies the resource manager name, the -f option (used one or more
times) specifies the files that contain the application services, the -s option
specifies the application service names for this server, and the -o option
specifies the output server file name:
v For AIX:

${TUXDIR}/bin/buildserver -r UDB_XA -f svcfile.o -s SVC1,SVC2 -o UDBserver

Where {TUXDIR} is the directory where you installed Tuxedo.
v For Windows NT:

%TUXDIR%\bin\buildserver -r UDB_XA -f svcfile.o -s SVC1,SVC2 -o UDBserver

Where %TUXDIR% is the directory where you installed Tuxedo.
7. Set up the Tuxedo configuration file to reference the DB2 server. In the

*GROUPS section of the UDBCONFIG file, add an entry similar to:
UDB_GRP LMID=simp GRPNO=3
TMSNAME=TMS_UDB TMSCOUNT=2
OPENINFO="UDB_XA:SAMPLE,db2_user,,db2_user_pwd"

Where the TMSNAME parameter specifies the transaction monitor server
program that you built previously, and the OPENINFO parameter specifies
the resource manager name. This is followed by the database name and
the DB2 user and password, which are used for authentication.

The application servers that you built previously are referenced in the
*SERVERS section of the Tuxedo configuration file.

8. Start Tuxedo:
tmboot -y

After the command completes, Tuxedo messages should indicate that the
servers are started. In addition, if you issue the DB2 command LIST
APPLICATIONS ALL, you should see two connections (in this situation,
specified by the TMSCOUNT parameter in the UDB group in the Tuxedo
configuration file, UDBCONFIG.

Configuring Microsoft Transaction Server

DB2 UDB V5.2 and following can be fully integrated with Microsoft
Transaction Server (MTS) Version 2.0. Applications running under MTS on
Windows 32-bit operating systems can use MTS to coordinate two-phase
commit with multiple DB2 UDB, host, and AS/400 database servers, as well
as with other MTS-compliant resource managers.

Chapter 11. Using DB2 with an XA-Compliant Transaction Manager 505

Enabling MTS Support in DB2

Microsoft Transaction Server support is automatically enabled. While you can
set the tp_mon_name database manager configuration parameter to “MTS”, it is
not necessary and will be ignored.

Note: Additional technical information may be provided on the IBM web site
to assist you with installation and configuration of DB2 MTS support.
Set your URL to ″http://www.software.ibm.com/data/db2/library″,
and search for a DB2 Universal Database ″Technote″ with the keyword
″MTS″.

MTS Software Prerequisites

MTS support requires the DB2 Client Application Enabler (CAE) Version 5.2,
or higher, and MTS must be at Version 2.0 with Hotfix 0772 or later releases.

The installation of the DB2 ODBC driver on Windows 32-bit operating
systems will automatically add a new keyword into the registry:
HKEY_LOCAL_MACHINE\software\ODBC\odbcinit.ini\IBM DB2 ODBC Driver:
Keyword Value Name: CPTimeout
Data Type: REG_SZ
Value: 60

Installation and Configuration

Following is a summary of installation and configuration considerations for
MTS. To use DB2’s MTS support, the user must:
1. Install MTS and the DB2 client on the same machine where the MTS

application runs.
2. If host or AS/400 database servers are to be involved in a multisite

update:
a. Install DB2 Connect Enterprise Edition either on your local machine or

on a remote machine. DB2 Connect Enterprise Edition allows host or
AS/400 database servers to participate in a multisite update
transaction.

b. Ensure your DB2 Connect Enterprise Edition Server is enabled for
multisite update. For information on enabling DB2 Connect for
multisite updates please see the DB2 Connect Enterprise Edition Quick
Beginnings manual for your platform.

When running DB2 CLI/ODBC applications the following configuration
keywords (as set in the db2cli.ini file) must not be changed from their
default values:
v CONNECTYPE keyword (default 1)

506 Administration Guide Design and Implementation

v MULTICONNECT keyword (default 1)
v DISABLEMULTITHREAD keyword (default 1)
v CONNECTIONPOOLING keyword (default 0)
v KEEPCONNECTION keyword (default 0)

DB2 CLI applications written to make use of MTS support must not change
the attribute values corresponding to the above keywords. In addition, the
application must not change the default values of the following attributes:
v SQL_ATTR_CONNECT_TYPE attribute (default

SQL_CONCURRENT_TRANS)
v SQL_ATTR_CONNECTON_POOLING attribute (default SQL_CP_OFF)

Note: Additional technical information may be provided on the IBM web site
to assist you with installation and configuration of DB2 MTS support.
Set your URL to ″http://www.software.ibm.com/data/db2/library″,
and search for a DB2 Universal Database ″Technote″ with the keyword
″MTS″.

Verifying the Installation
1. Configure DB2 client and DB2 Connect EE to access your DB2 UDB, host,

or AS/400 server.
2. Verify the connection from the DB2 CAE machine to the DB2 UDB

database servers.
3. Verify the connection from the DB2 Connect machine to your host or

AS/400 database server with DB2 CLP and issue a few queries.
4. Verify the connection from the DB2 CAE machine via the DB2 Connect

gateway to your host or AS/400 database server and issue a few queries.

Supported DB2 Database Servers

The following servers are supported for multi-site update using
MTS-coordinated transactions:
v DB2 Universal Database Enterprise Edition Version 5.2
v DB2 Enterprise - Extended Edition Version 5.2
v DB2 for OS/390
v DB2 for MVS
v DB2 for AS/400
v DB2 for VM&VSE
v DB2 Common Server for SCO, Version 2
v DB2 Universal Database for AIX with PTF U453782
v DB2 Universal Database for HP-UX with PTF U453784
v DB2 Universal Database Enterprise Edition for OS/2 with PTF WR09033

Chapter 11. Using DB2 with an XA-Compliant Transaction Manager 507

v DB2 Universal Database for SOLARIS with PTF U453783
v DB2 Universal Database Enterprise Edition for Windows NT with PTF

WR09034
v DB2 Universal Database Extended Enterprise Edition for UNIX or Windows

NT.

MTS Transaction Time-Out and DB2 Connection Behavior

You can set the transaction time-out value in the MTS Explorer tool. Please
refer to the on-line MTS Administrator Guide for more details.

If a transaction takes longer than the transaction time-out value (default is 60
seconds), MTS will asynchronously issue an abort to all Resource Managers
involved, and the whole transaction is aborted.

For the connection to a DB2 server, the abort is translated into a DB2 rollback
request. Like any other database requests, the rollback request will be
serialized on the connection to guarantee the integrity of the data on the
database server.

As a result:
v If the connection is idle, the rollback is executed immediately.
v If a long running SQL statement is being executed, the rollback request will

wait until the SQL statement finished before it is executed.

Connection Pooling

Connection pooling enables an application to use a connection from a pool of
connections, so that the connection does not need to be reestablished for each
use. Once a connection has been created and placed in a pool, an application
can reuse that connection without performing a complete connection process.
The connection is pooled when the application disconnects from the ODBC
data source, and will be given to a new connection whose attributes are the
same.

Connection pooling has been a feature of ODBC driver Manager 2.x. With the
latest ODBC driver manager (version 3.5) that was shipped with MTS,
connection pooling has some configuration changes and new behavior for
ODBC connections of transactional MTS COM objects (see “Reusing ODBC
Connections Between COM Objects Participating in the Same Transaction” on
page 509).

ODBC driver Manager 3.5 requires that the ODBC driver register a new
keyword in the registry before it allows connection pooling to be activated.
The keyword is:

508 Administration Guide Design and Implementation

Key Name: SOFTWARE\ODBC\ODBCINST.INI\IBM DB2 ODBC DRIVER
Name: CPTimeout
Type: REG_SZ
Data: 60

The DB2 ODBC driver version 6 and later for 32-bit Windows operating
system fully supports connection pooling and therefore this keyword is
registered. Version 5.2 clients must install Fix Pack 3 (WR09024) or later.

The default value (60) means the connection will be pooled for 60 seconds
before it actually is disconnected.

In a busy environment, it is better to increase the CPTimeout value to a large
number (Microsoft sometimes suggests 10 minutes for certain environments)
to prevent too many physical connects and disconnects, because these
consume a large amount of system resources, including system memory and
communications stack resource.

Reusing ODBC Connections Between COM Objects Participating in the
Same Transaction

ODBC connections in MTS COM objects have connection pooling turned on
automatically (whether or not the COM object is transactional) .

For multiple MTS COM objects participating in the same transaction, the
connection can be reused between two or more COM objects in the following
manner.

Suppose there are two COM objects, COM1 and COM2 that connect to the
same ODBC datasource and participate in the same transaction.

After COM1 connects and does its work, it disconnects and the connection is
pooled. However, this connection will be reserved for the use of other COM
objects of the same transaction. It will be available to other transactions only
after the current transaction ends.

When COM2 is invoked in the same transaction, it is given the pooled
connection. MTS will ensure that the connection can only be given to the
COM objects that are participating in the same transaction.

On the other hand, if COM1 does not explicitly disconnect, then it will tie up
the connection until the transaction ends. When COM2 is invoked in the same
transaction, a separate connection will be acquired. Subsequently, this
transaction ties up two connections instead of one.

This reuse of connection feature for COM objects participating in the same
transaction is preferable for the following reasons:

Chapter 11. Using DB2 with an XA-Compliant Transaction Manager 509

v It uses fewer resources in both the client and the server. Only one
connection is needed.

v It eliminates the possibility that two connections participating in the same
transaction (accessing the same database server and accessing the same
data) can lock one another, because DB2 servers treat different connections
from MTS COM objects as separate transactions.

Tuning TCP/IP Communications

If a small CPTimeout value is used in a high-workload environment where
too many physical connects and disconnects occur at the same time, the
TCP/IP stack may encounter resource problems.

To alleviate this problem, you should use the TCP/IP Registry Entries. These
are described in the Windows NT Resource Guide, Volume 1. The registry key
values are located in HKEY_LOCAL_MACHINE-> SYSTEM->
CurrentControlSet-> Services-> TCPIP-> Parameters.

The default values and suggested settings are as follows:

Name Default Value Suggested Value

KeepAlive time 7200000 (2 hours) Same

KeepAlive interval 1000 (1 second) 10000 (10 seconds)

TcpKeepCnt 120 (2 minutes) 240 (4 minutes)

TcpKeepTries 20 (20 re-tries) Same

TcpMaxConnectAttempts 3 6

TcpMaxConnectRetransmission 3 6

TcpMaxDataRetransmission 5 8

TcpMaxRetransmissionAttempts 7 10

If the registry value is not defined, then create it.

Testing DB2 With The MTS ″BANK ″ Sample Application

You can use the ″BANK″ sample program that is shipped with MTS to test the
setup of the client products and MTS.

Follow these steps:
1. Change the file \Program Files\Common Files\ODBC\Data Sources\

MTSSamples.dsn so that it looks like this:

510 Administration Guide Design and Implementation

[ODBC]
DRIVER=IBM DB2 ODBC DRIVER
UID=your_user_id
PWD=your_password
DSN=your_database_alias
Description=MTS Samples

where:
v your_user_idand your_password are the user-ID and password used to

connect to the host.
v your_database_alias is the database alias used to connect to the

database server.
2. Go to ODBC Administration in the Control Panel, click on System DSN

tab and add the data source:
a. Choose IBM ODBC Driver and click on Finish.
b. When presented with the list of database aliases, choose the one that

was specified previously.
c. Click on OK

3. Use DB2 CLP to connect to a DB2 database under the ID your_user_id, as
above.
a. Bind the db2cli.lst:

db2 bind @C:\sqllib\bnd\db2cli.lst blocking all grant public

b. Bind the utilities.
If the server is a DRDA host server, bind ddcsmvs.lst, ddcs400.lst, or
ddcsvm.lst, depending on the host that you are connecting to (OS/390,
AS/400, or VSE or VM). For example:

db2 bind @C:\sqllib\bnd\@ddcsmvs.lst blocking all grant public

Otherwise, bind the db2ubind.lst:
db2 bind @C:\sqllib\bnd\@db2ubind.lst blocking all grant public

c. Then create the sample table and data for the MTS sample application
as follows:

DB2 CREATE TABLE ACCOUNT (ACCOUNTNO INT, BALANCE INT)
DB2 INSERT INTO ACCOUNT VALUES(1, 1)

4. On the DB2 client, ensure that the database manager configuration
parameter tp_mon_name is set to ″MTS″.

5. Run the ″BANK″ application. Select the Account button and the Visual
C++ option, then submit the request. Other options may use SQL that is
specific to SQL Server, and may not work.

Chapter 11. Using DB2 with an XA-Compliant Transaction Manager 511

512 Administration Guide Design and Implementation

Part 4. Ensuring the High Availability of Your System

© Copyright IBM Corp. 1993, 1999 513

514 Administration Guide Design and Implementation

Chapter 12. High Availability Cluster Multi-Processing
(HACMP) on AIX

DB2 UDB provides high availability failover support on many platforms. On
AIX, DB2 UDB supports failover through the capabilities of IBM High
Availability Cluster Multi-Processing (HACMP). Failover capability allows for
the automatic transfer of workload from one processor to another should
there be a hardware failure.

HACMP provides increased availability through clusters of processors which
share resources such as disks or network access. If one processor fails then
another in the cluster can substitute for the failed one.

Note: Do not use a “kill -9” against the db2start process in a high availability
environment. This action is not recommended in any environment, but
in particular such an action may invalidate failover recovery in your
high availability environment.

There are three modes of failover support provided, a brief description of each
mode and its application to DB2 follows. In each case we use the simple
scenario of a two processor HACMP cluster.

Hot Standby
One processor is being actively used to run your DB2 instance and the
second is in standby mode ready to take over the instance if there is
an operating system or hardware failure involving the first processor.

Mutual Takeover
Both processors are either used to run separate DB2 instances, or one
is use to run a DB2 instance while the other is used to run DB2
applications. If there is an operating system or hardware failure on
one of the processors, the other processor takes over the tasks of the
failing processor. Once the failover is complete, the remaining
processor is doing the work of both processors.

Concurrent Access
Multiple processors can be used to scale to a single database instance
using the DB2 Universal Database Extended Enterprise Edition
product. This is done using a shared-nothing model and partitioning
the data such that one or more partitions are running on each
processor in the cluster. If an operating system or hardware failure
occurs on one of the processors, then the other processor will take
over the partitions of the failing processor. DB2 UDB Extended
Enterprise Edition does not require the use of a Concurrent Resource

© Copyright IBM Corp. 1993, 1999 515

Manager to provide redundancy. DB2 co-exists with the Concurrent
Resource Manager, but does not require its capability. Redundancy is
managed by using the previous two modes. The capabilities of this
mode are only required by database managers with a shared
architecture.

Each of the above configurations can be used to failover one or more
partitions of a partitioned database. In addition, each can failover a complete
instance of a single partition installation.

Hot Standby

The Hot Standby capability can be used to failover the entire instance of a
single partition database or a partition of a partitioned database configuration.
If one processor fails then another processor in the cluster can substitute for
the failed processor by automatically transferring the instance. In order to
achieve this, the database instance and the actual database must be accessible
to both the primary and failover processor. This requires that the following
installation and configuration tasks be performed:
v The DB2 installation path can either be on a path shared by both systems or

on a non-shared filesystem. If using a non-shared file system the installation
levels must be identical.

v The DB2 instance path, as with the installation path can either be on a
shared filesystem or on a manually mirrored filesystem.

v Database and the associated containers must be on file systems (or devices)
accessible to both systems.

v There are sample scripts which can be tailored to perform the failover tasks.
Refer to the subsequent examples for more details on these scripts.

v For failover of a partition in a partitioned database configuration, the
partition is restarted on the second processor: the failover script changes the
db2nodes.cfg file to point to the failed partition on the new processor and
starts the partition on that processor.

v When a failover occurs, the external communications addresses for
supported communication protocols are transparently transferred as part of
the failover procedure.

For detailed information on the actual installation requirements and instance
creation, refer to HACMP for AIX, Version 4.2: Installation Guide, SC23-1940.

Examples

Each of the following examples has a sample script stored, on AIX-based
installations, in sqllib/samples/hacmp.

516 Administration Guide Design and Implementation

Instance Failover

The first example of a hot standby failover scenario consists of a single two
processor HACMP cluster running a single-partition database DB2 instance.
Figure 52 shows, at a high level, this configuration. This diagram is intended
to depict the major elements of the cluster, not a complete configuration. For
information on configuring your HACMP cluster, refer to “Additional
HACMP Resources” on page 522.

Both processors have access to the installation directory, the instance directory,
and the database directory. The database instance ″db2inst″ is being actively
executed on processor 1, processor 2 is not active and is being used as a hot
standby. A failure occurs on processor 1 and the instance is taken over by
processor 2. Once the failover is complete both remote and local applications
can access the database within instance ″db2inst″. The database will either
have to be manually restarted; or, if AUTORESTART is on, the first connection
to the database will cause the restart. In the sample script provided, it is
assumed that AUTORESTART is off and the failover script performs the
restart for the database. See “Overview of Recovery” on page 366 for
additional information on AUTORESTART.

Client
Workstation

Network: LAN

Network: RS232 LINKProcessor 1 Processor 2

Processor 1
LAN Connection

Processor 2
LAN Connection

Processor 1 Standby
LAN Connection

db2inst

Figure 52. Instance Failover Example

Chapter 12. High Availability Cluster Multi-Processing (HACMP) on AIX 517

Sample script:

hacmp-s1.sh

Partition Failover

The second example is slightly more complex than that of a simple instance
failover: In this example, we are actually using a partition of an instance as
opposed to the entire instance. We will use the two processor HACMP cluster
as in the previous example, but the machine will represent one of the
partitions of a partitioned database server. Processor 1 will be running a single
partition of the overall configuration and processor 2 will be used as the
failover processor. When processor 1 fails, the partition is restarted on the
second processor. The failover updates the db2nodes.cfg file, pointing the
partition to processor 2’s hostname and netname, and then restarting the
partition at the new processor. Once complete, all other partitions forward the
requests targeted for this partition to processor 2.

The following is a portion of the db2nodes.cfg file before and after the
failover. In this example, node number 2 is running on processor 1 of the
HACMP machine which has a hostname of “node201” and the netname is the
same. After the failover, node number 2 is running on processor 2 of the
HACMP machine which has a hostname of “node202” and the netname is the
same. The failover script will execute the command between the before and
after definitions.
Before:

1 node101 0 node101
2 node201 0 node201 <= HACMP
3 node301 0 node301

db2start nodenum 2 restart hostname node202 port 0 netname node202

After:
1 node101 0 node101
2 node202 0 node202 <= HACMP
3 node301 0 node301

Sample script:
hacmp-s2.sh

Multiple Logical Node Failover

A more complex variation of the previous example involves the failover of
multiple logical nodes from one processor to another. Again, we are using the
same two processor HACMP cluster configuration as above. However, in this
scenario, processor 1 is running 3 logical partitions. The setup is the same as
that for the simple partition failover scenario, but in this case when processor
1 fails each of the logical partitions must be started on processor 2. Each

518 Administration Guide Design and Implementation

logical partition must be started in the order that it is defined in the
db2nodes.cfg file: the logical partition with port number 0 must always be
started first.

The following is a portion of a db2nodes.cfg file which has 3 logical partitions
defined on processor one of the two processor HACMP cluster scenario. The
example uses the same hostnames and netnames as the previous example.
Before:

1 node101 0 node101
2 node201 0 node201 <= HACMP
3 node201 1 node201 <= HACMP
4 node201 2 node201 <= HACMP
5 node301 0 node301

db2start nodenum 2 restart hostname node202 port 0 netname node202
db2start nodenum 3 restart hostname node202 port 1 netname node202
db2start nodenum 4 restart hostname node202 port 2 netname node202

After:
1 node101 0 node101
2 node202 0 node202 <= HACMP
3 node202 1 node202 <= HACMP
4 node202 2 node202 <= HACMP
5 node301 0 node301

Sample script:
hacmp-s3.sh

Mutual Takeover

DB2’s exploitation of the mutual takeover mode has the same basic
characteristics as that for the hot standby mode. In this mode, one processor
can failover the single-partition database instance, or the partitions of a
partitioned database, of a failed processor while running another instance or
other partitions of a partitioned database configuration. As with the hot
standby configuration, the installation path, the instance directory, and the
database must be mutually accessible by each processor which may be
involved in failover processing. The installation and instance paths can either
be on a shared filesystem or mirrored on separate filesystems.

When utilizing the mutual takeover mechanism, for instance failover, the
instances must be defined in such a manner that both instances can be run on
the same processor at the same time. For detailed information on the actual
installation requirements and instance creation, refer to HACMP for AIX,
Version 4.2: Installation Guide, SC23-1940.

Chapter 12. High Availability Cluster Multi-Processing (HACMP) on AIX 519

Examples

Each of the following examples has a sample script stored, on AIX-based
installations, in sqllib/samples/hacmp.

Mutual DB2 Instance Failover

In order to illustrate a mutual instance failover, we will use the simple case of
a HACMP system with two processors known as “node10” and “node20”.

In this example, we have two instances “db2inst1” and “db2inst2”: both are
instances created from a single installation path on a shared filesystem.
Instance “db2inst1” is created with a path of
/u/db2inst1

and instance “db2inst2” is created with a path of
/u/db2inst2

Client
Workstation

Network: LAN

Network: RS232 LINKNode 10 Node 20

Node 10 Standby
LAN Connection

Node 20 Standby
LAN Connection

Node 10
LAN Connection

Node 20
LAN Connection

db2inst 1 db2inst 2

Figure 53. Instance Failover Example

520 Administration Guide Design and Implementation

Both of these paths are on a shared filesystem accessible to both processors.
Each instance has a single database, with a unique path, again on a shared
resource accessible by both processors.

Both instances are accessed via remote clients over the TCP/IP protocol:
“db2inst1” uses the service name “db2inst1_port” (port number 5500) and
“db2inst2” uses the service name “db2inst2_port” (port number 5550). Remote
clients accessing the “db2inst1” instance have this instance cataloged in their
node directory using “node10” as the host name. Remote clients accessing the
“db2inst2” instance have this instance cataloged in their node directory using
“node20” as the host name. Under normal operating conditions, “db2inst1” is
executing on “node10” and “db2inst2” is executing on “node20”. If “node10”
were to fail, the failover script will start “db2inst1” on “node20” and the
external IP address associated with “node10” will be switched over to
“node20”. Once the instance has been started by the failover script and the
database restarted, the remote clients accessing this instance can connect to
the database within this instance as if it were executing on “node10”.

Sample script:
hacmp-s4.sh

Mutual DB2 Partition Failover

Mutual failover of partitions in a partitioned database server environment
requires that the failover of the partition occur as a logical node on the
failover processor. If we have two partitions of a partitioned database server
running on separate processors of a two processor HACMP cluster configured
for mutual takeover, the partitions must failover as logical nodes. The default
partition at each node must be defined as logical node 0, this means that
when a partition fails over from one processor to another it will start as a
logical node which does not have any direct remote communication protocol
listeners. As such, the partition cannot be used as a coordinator node.

One other important consideration when configuring a system for mutual
partition takeover concerns the local partition database path. When a database
is created in a partitioned database environment, it is created on a root path
which is not shared across the partitioned database servers. For example,
consider the following statement:
CREATE DATABASE db_a1 ON /dbpath

This statement is executed under instance “db2inst” and creates the database
db_a1 on the path /dbpath. Each partition creates its actual database partition
on its local /dbpath filesystem under /dbpath/db2inst/nodexxxx where xxxx
represents the node number. With HACMP failover it will attempt to mount
the /dbpath filesystem which is already being used by the other processor. As

Chapter 12. High Availability Cluster Multi-Processing (HACMP) on AIX 521

such, the failover script must mount the filesystem under a different logical
point and set up a symbolic link from that filesystem to the appropriate
/dpath/db2inst/nodexxxx path.

The following example shows a portion of the db2nodes.cfg file before and
after the failover. In this example, node number 2 is running on processor 1 of
the HACMP machine which has a hostname of “node201” and the netname is
the same. Node number 3 is running on processor 2 of the HACMP machine
which has a hostname of “node202” and again the netname is the same. The
failover script will execute the command between the before and after
definitions.
Before:

1 node101 0 node101
2 node201 0 node201 <= HACMP
3 node202 0 node202 <= HACMP
4 node301 0 node301

db2start nodenum 2 restart hostname node202 port 1 netname node202

After:
1 node101 0 node101
2 node202 1 node202 <= HACMP
3 node202 0 node202 <= HACMP
4 node301 0 node301

After the failover, any remote clients trying to directly access node number 2
as the coordinator will have to re-catalog the node entry for the database to
point to the failover node. It is not recommended that you use a mutual
failover scenario for coordinator nodes. If you require redundancy with your
coordinator node, you should you use the hot standby mode.

Sample script:
hacmp-s5.sh

Additional HACMP Resources

For a complete understanding of the HACMP concepts, installation and
configuration refer to the following books:
v HACMP for AIX, Version 4.2: Concepts and Facilities, SC23-1938
v HACMP for AIX, Version 4.2: Installation Guide, SC23-1940
v HACMP for AIX, Version 4.2: Planning Guide, SC23-1939.

522 Administration Guide Design and Implementation

Chapter 13. High Availability Cluster Multi-Processing,
Enhanced Scalability (HACMP ES) for AIX

Enhanced Scalability is a feature of HACMP for AIX Version 4.2.2 which
currently only runs on RS/6000 SP nodes.

This feature provides the same failover recovery as HACMP and has identical
event structure to previous HACMP versions. There are several documented
differences to this event structure documented in the HACMP for AIX, V4.2.2,
Enhanced Scalability Installation and Administration Guide. Beyond these
standard items, the Enhanced Scalability feature provides:
v Larger HACMP clusters with scalability up to 16 nodes per cluster.
v Additional error coverage through “User-Defined Events”. Monitored areas

can trigger user-defined events which can be as diverse as the death of a
process or the fact that paging space is nearing capacity. Once detected,
events are triggered.
Such events include pre- and post-events that can be added to the failover
recovery process, if needed. Extra functions that are specific to the different
implementations can be placed within the HACMP pre- and post-event
streams.
A rules file (/usr/sbin/cluster/events/rules.hacmprd) exists and contains
the HACMP events. User-defined events are added to this file and the
script files to be run when events occur are part of this definition. The rules
file is described in more detail later.

v HACMP client utilities for monitoring and detecting status changes in one
or more clusters from AIX physical nodes outside the HACMP cluster.

v Although not an enhancement, the discussion of HACMP ES concludes
with an overview of the installation and migration planning required for
this feature.

Note: Do not use a “kill -9” against the db2start process in a high availability
environment. This action is not recommended in any environment, but
in particular such an action may invalidate failover recovery in your
high availability environment.

The nodes in HACMP ES clusters exchange messages called “heartbeats” or
“keepalive” packets which inform the other nodes regarding the availability of
each node in the cluster. A node that has stopped responding causes the
remaining nodes in the cluster to invoke recovery. The recovery process is
called a “node_down event” and may also be referred to as “failover”. The

© Copyright IBM Corp. 1993, 1999 523

completion of the recovery process is followed by work done on the node that
is down with the goal being the re-integration of the node into the cluster.
This is called a “node_up event”.

There are two types of events: standard events that are anticipated within the
operations of HACMP ES; and, user-defined events which are associated with
the monitoring of parameters in hardware and software components.

One of the standard events is the node_down event. When planning what
should be done as part of the recovery process, HACMP allows two failover
options: Hot (or idle) Standby; and, Mutual Takeover.

Cluster Configuration

In a hot standby configuration, the AIX processor node that is the takeover
node is not running any other workload. In a mutual takeover configuration,
the AIX processor node that is the takeover node is running other workload.

Generally, DB2 UDB EEE runs in mutual takeover mode with partitions on
each node. One exception is a scenario where the catalog node is part of a hot
standby configuration.

When planning a large DB2 installation on a RS/6000 SP using HACMP ES,
you need to consider how to divide the nodes of the cluster within or
between the RS/6000 SP frames. Having a node and its backup in different SP
frames can allow takeover in the event one frame goes down (that is, the
frame power/switch board fails). However, such failures are expected to be
exceedingly rare because there are N+1 power supplies in each SP frame and
each SP switch has redundant paths along with N+1 fans and power. In the
case of a frame failure, manual intervention may be required to recover the
remaining frames. This recovery procedure is documented in the SP
Administration Guide. HACMP ES provides for recovery of SP node failures;
recovery of frame failures is dependent on proper layout of clusters within the
SP frame(s).

Another planning consideration involves how to manage big clusters: It is
easier to manage a small cluster than a big one; however, it is also easier to
manage one big cluster than many smaller ones. When planning, consider
how your applications will be used in your cluster environment. If there is a
single, large, homogeneous application running on, for example, 16 nodes
then it is probably easier to manage as a single cluster rather than as eight (8)
two-node clusters. If the same 16 nodes contain many different applications
with different networks, disks, and node relationships then it is probably
better to group the nodes into smaller clusters. Keep in mind that nodes
integrate into an HACMP cluster one at a time; it will be faster to start a

524 Administration Guide Design and Implementation

configuration of multiple clusters rather than one large cluster. HACMP ES
supports both single and multiple clusters as long as a node and its backup
are in the same cluster.

HACMP ES failover recovery allows pre-defined (also known as “cascading”)
assignment of a resource group to a physical node. The failover recovery
procedure also allows floating (also known as “rotating”) assignment of a
resource group to a physical node. IP addresses; external disk volume groups,
filesystems, NFS filesystems; and, application servers within each resource
group specify either an application or application component which can be
manipulated by HACMP ES between physical nodes by failover and
reintegration. Failover and reintegration behavior is specified by the type of
resource group created, and by the number of nodes placed in the resource
group.

As an example, consider a DB2 database partition (logical node): If its log and
table space containers were placed on external disks, and other nodes were
linked to that disk, it would be possible for those other nodes to access these
disks and restart the database partition (on a takeover node). It is this type of
operation that is automated by HACMP. HACMP ES can also be used to
recover NFS file systems used by DB2 instance main user directories.

Read the HACMP ES documentation thoroughly as part of your planning for
recovery with DB2 UDB EEE. You should read the Concepts, Planning,
Installation, and Administration guides. Then you can layout the recovery
architecture for your environment. For the subsystems you have identified for
recovery based on the identified points of failure, identify the HACMP
clusters you need and the recovery nodes for each (either hot standby or
mutual takeover). This architecture and planning is a starting point for
completing the HACMP worksheets found in the documentation (mentioned
above).

It is strongly recommended that both disks and adapters are mirrored in your
external disk configuration. For DB2 physical nodes that are configured for
HACMP, care is required to ensure that nodes can vary on the volume group
from the shared external disks. In a mutual takeover configuration, this
arrangement requires some additional planning so that the paired nodes can
access each other’s volume groups without conflicts. Within DB2 UDB EEE
this means that all container names must be unique across all databases.

One way to achieve uniqueness in the names is to include the partition
number as part of the name. You can specify a node expression for container
string syntax when creating either SMS or DMS containers. When you specify
the expression, either the node number is part of the container name, or, if
you specify additional arguments, the result of the argument is part of the
container name. You use the argument “ $N” ([blank]$N) to indicate the node

Chapter 13. HACMP ES for AIX 525

expression. The argument must occur at the end of the container string and
can only be used in one of the following forms. In the table below, the node
number is assumed to be five (5):

Table 35. Arguments for Creating Containers

Syntax Example Value

[blank]$N “ $N” 5

[blank]$N+[number] “ $N+1011” 1016

[blank]$N%[number] “ $N%3” 2

[blank]$N+[number]%[number] “ $N+12%13” 4

[blank]$N%[number]+[number] “ $N%3+20” 22

Notes:

1. % is modulus.

2. In all cases, the operators are evaluated from left to right.

Following are some examples of creating containers using this special
argument:
v Creating containers for use on a two-node system.

CREATE TABLESPACE TS1 MANAGED BY DATABASE USING
(device '/dev/rcont $N' 20000)

The following containers would be used:
/dev/rcont0 - on Node 0
/dev/rcont1 - on Node 1

v Creating containers for use on a four-node system.
CREATE TABLESPACE TS2 MANAGED BY DATABASE USING

(file '/DB2/containers/TS2/container $N+100' 10000)

The following containers would be used:
/DB2/containers/TS2/container100 - on Node 0
/DB2/containers/TS2/container101 - on Node 1
/DB2/containers/TS2/container102 - on Node 2
/DB2/containers/TS2/container103 - on Node 3

v Creating containers for use on a two-node system.
CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING

('/TS3/cont $N%2, '/TS3/cont $N%2+2')

The following containers would be used:
/TS3/cont0 - on Node 0
/TS3/cont2 - on Node 0
/TS3/cont1 - on Node 1
/TS3/cont3 - on Node 1

526 Administration Guide Design and Implementation

The following pictures show some of the planning involved to ensure a highly
available external disk configuration and the ability to access all volume
groups without conflict.

DB2 SSA I/O Subsystem Configuration - No single point of failure

Disks
(1)

Disks
(1)

Disks
(2)

Disks
(2)

Disks
(1)

Disks
(1)

Disks
(2)

Disks
(2)

A1

A1

A2

A2

B1

B1

B2

B2

DB2-1

A1

A1

A2

A2

B1

B1

B2

B2

DB2-2 Disks are twintailed
between nodes.

Note:
Both adapters and
disks are mirrored.

(mirror copy)

Figure 54. No Single Point of Failure

Chapter 13. HACMP ES for AIX 527

Once configured, each database partition in an instance is started by HACMP
ES one physical node at a time. Using multiple clusters is recommended for
starting parallel DB2 configurations that are larger than four (4) nodes.

Note: Each HACMP node in a cluster is started one at a time. For a 64-node
parallel DB2 configuration, it is faster to start 32, two-node HACMP
clusters in parallel rather than four (4), sixteen-node clusters.

A script file, rc.db2pe, is packaged with DB2 UDB EEE to assist in configuring
for HACMP ES failover or recovery in either “hot standby” or “mutual
takeover” nodes. In addition, DB2 buffer pool sizes can be customized during
failover in mutual takeover configurations from within rc.db2pe. (Buffer pool
size modification is needed to ensure proper performance when two database

DB2 SSA I/O Subsystem Configuration -
Volume group and logical volume setup

DB2-1 DB2-2 - keep vg, lv fs names unique
- set vgs not to vary on at ipl

db2 database testdata on filesystem /database instance name powertp

Volume group DB2vg1

- lv dbdlv11 (mountpoint
/database/powertp/NODE0001)
- lv dbd11log (jfslog)
- lv dbdlv12 (raw data)
- lv dbdlv13 (raw data)
(and so on.)

Volume group DB2vg2

- lv dbdlv21 (mountpoint
/database/powertp/NODE0002)
- lv dbd21log (jfslog)
- lv dbdlv22 (raw data)
- lv dbdlv23 (raw data)
(and so on.)

Figure 55. Volume Group and Logical Volume Setup

528 Administration Guide Design and Implementation

partitions run on one physical node. See the next section for additional
information.) The script file, rc.db2pe, is installed on each node in /usr/bin.

Configuration of a DB2 Database Partition

When you create an application server in a HACMP configuration of a DB2
database partition, specify rc.db2pe as a start and stop script in the following
way:

/usr/bin/rc.db2pe <instance> <dpn> <secondary dpn> start <use switch>
/usr/bin/rc.db2pe <instance> <dpn> <secondary dpn> stop <use switch>

where:
<instance> is the instance name.
<dpn> is the database partition number.
<secondary dpn> is the 'companion' database partition number in

'mutual takeover' configurations only; in 'hot standby' configurations
it is the same as <dpn>.

<use switch> is usually blank; when blank, by default this indicates that
the SP Switch network is used for hostname field in the db2nodes.cfg file
(all traffic for DB2 is routed over the SP switch); if not blank, the name
used is the hostname of the SP node to be used.

Note: The DB2 command LIST DATABASE DIRECTORY is used from within
rc.db2pe to find all databases configured for this database partition.
The rc.db2pe script file then looks for /usr/bin/reg.parms.DATABASE
and /usr/bin/failover.parms.DATABASE files, where DATABASE is each
of the databases configured for this database partition. In a “mutual
takeover” configuration, it is recommended you create these parameter
files (reg.parms.xxx and failover.parms.xxx). In the
failover.parms.xxx file, the settings for BUFFPAGE, DBHEAP, and any
others affecting buffer pools should be adjusted to account for the
possibility of more than one buffer pool. Buffer pool size modification is
needed to ensure proper performance when two or more database
partitions run on one physical node. Sample files reg.parms.SAMPLE and
failover.parms.SAMPLE are provided for your use.

One of the important parameters in this environment is START_STOP_TIME. This
database manager configuration parameter has a default value of ten (10)
minutes. However, rc.db2pe sets this parameter to two (2) minutes. You
should modify this parameter within rc.db2pe so that it is set to ten (10)
minutes or perhaps something slightly larger. The length of time in the
context of a failed database partition is the time between the failure of the
partition and the recovery of that partition. If there are frequent “COMMIT”s
used in the applications running on a partition, then ten minutes following
the failure on a database partition should be sufficient time to rollback
uncommitted transactions and reach a point of consistency for the database on
that partition. If your workload is heavy and/or you have many partitions,
you may need to increase the parameter value until there is no longer an

Chapter 13. HACMP ES for AIX 529

additional problem beyond that of the original partition failure. (The
additional problem would be the timeout message resulting from exceeding
the START_STOP_TIME value while waiting for the rollback to complete at the
failed database partition.)

Example of a Mutual Takeover Configuration

The assumption in this example is that the mutual takeover configuration will
exist between physical nodes one and two with a DB2 instance name of
“POWERTP”. The database partitions are one and two, and the database
name is “TESTDATA” on filesystem /database.
Resource group name: db2_dp_1
Node Relationship: cascading
Participating nodenames: node1_eth, node2_eth
Service_IP_label: nfs_switch_1 (<<< this is the switch alias address)
Filesystems: /database/powertp/NODE0001
Volume Groups: DB2vg1
Application Servers: db2_dp1_app
Application Server Start Script: /usr/bin/rc.db2pe powertp 1 2 start
Application Server Stop Script: /usr/bin/rc.db2pe powertp 1 2 stop

Resource group name: db2_pd_2
Node Relationship: cascading
Participating nodenames: node2_eth, node1_eth
Service_IP_label: nfs_switch_2 (<<< this is the switch alias address)
Filesystems: /database/powertp/NODE0002
Volume Groups: DB2vg2
Application Servers: db2_dp2_app
Application Server Start Script: /usr/bin/rc.db2pe powertp 2 1 start
Application Server Stop Script: /usr/bin/rc.db2pe powertp 2 1 stop

Example of a Hot Standby Takeover Configuration

The assumption in this example is that the hot standby takeover configuration
will exist between physical nodes one and two with a DB2 instance name of
“POWERTP”. The database partition is one, and the database name is
“TESTDATA” on filesystem /database.
Resource group name: db2_dp_1
Node Relationship: cascading
Participating nodenames: node1_eth, node2_eth
Service_IP_label: nfs_switch_1 (<<< this is the switch alias address)
Filesystems: /database/powertp/NODE0001
Volume Groups: DB2vg1
Application Servers: db2_dp1_app
Application Server Start Script: /usr/bin/rc.db2pe powertp 1 1 start
Application Server Stop Script: /usr/bin/rc.db2pe powertp 1 1 stop

Note: In both examples, the resource groups contain a Service IP switch alias
address. This switch alias address is used for:
1. NFS access to a file server for the DB2 instance owner filesystems.

530 Administration Guide Design and Implementation

2. Other client access that needs to be maintained in the case of a
failover, ADSM connection, or other similar operations.

If your implementation does not require these aliases, they can be
removed. If removed, be sure to set the MOUNT_NFS parameter to
“NO” in rc.db2pe.

Configuration of a NFS Server Node

Just as with the configuration of a DB2 database partition presented above,
the rc.db2pe script can be used to make available NFS-mounted directories of
DB2 parallel instance user directories. This can be accomplished by setting the
MOUNT_NFS parameter to “YES” in rc.db2pe and configuring the NFS
failover server pair as follows:
v Configure the home directory and export it as “root” using /etc/exports

and exportfs command to the IP address used on the nodes in the same
subnet as the NFS Server’s IP address. Include both the HACMP boot and
service addresses. The NFS Server’s IP address is the same address as the
service address in HACMP that can be taken over by a backup. The home
directory of the DB2 instance owner should be NFS-mounted directly, not
automounted. (The use of the automounter is not supported by the scripts
as a DB2 instance owner home directory.)

v Using SMIT or a bottom-line configuration, a separate /etc/filesystems
entry should be created for this filesystem so that all nodes in the DB2
parallel grouping, including the file server, can mount using the NFS
filesystem command.
For example, an /nfshome JFS filesystem can be exported to all nodes as
/dbhome. Each node creates a NFS filesystem /dbname which is
nfs_server:/nfshome. Therefore, the home directory of the DB2 instance
owner would be /dbhome/powertp when the instance name is “powertp”.
Ensure the NFS parameters for the mount in /etc/filesystems are “hard”,
“bg”, “intr”, and “rw”.

v Ensure the DB2 instance owner definitions associated with the home
directory /dbhome/powertp in /etc/passwd are the same on all nodes.
The user definitions in an SP environment are typically created on the
Control Workstation and “supper” or “pcp” is used to distribute
/etc/passwd, /etc/security/passwd, /etc/security/user, and
/etc/security/group to all nodes.

v Do NOT configure the “nfs_filesystems to export” in HACMP resource
groups for the volume group and the filesystem that is exported. Instead,
configure it normally to NFS. The scripts for the NFS server will control the
exporting of the filesystems.

v Ensure the major number of the volume group where the filesystem resides
is the same on both the primary node and the takeover node. This is
accomplished by using importvg with the -V parameter.

Chapter 13. HACMP ES for AIX 531

v Verify that the MOUNT_NFS parameter is set to “YES” in rc.db2pe and
that each node has the NFS filesystem to mount in /etc/filesystems. If this
is not the case, then rc.db2pe will not be able to mount the filesystem and
start DB2.

v If the DB2 instance owner was already created and you are copying the
user’s directory structure to the filesystem you are creating, ensure you tar
(-cvf) the directory. This ensures the preservation of the symbolic links.

v Do not forget to mirror both the adapters and the disks for the logical
volumes and the filesystem logs of the filesystem you are creating.

Example of a NFS Server Takeover Configuration

The assumptions in this example are that there is an NFS server filesystem
/nfshome in the volume group nfsvg over the IP address “nfs_server”. The
DB2 instance name is “POWERTP” and the home directory is
/dbhome/powertp.
Resource group name: nfs_server
Node Relationship: cascading
Participating nodenames: node1_eth, node2_eth
Service_IP_label: nfs_server (<<< this is the switch alias address)
Filesystems: /nfshome
Volume Groups: nfsvg
Application Servers: nfs_server_app
Application Server Start Script: /usr/bin/rc.db2pe powertp NFS SERVER start
Application Server Stop Script: /usr/bin/rc.db2pe powertp NFS SERVER stop

Note: In this example:
v /etc/filesystems on all nodes would contain an entry for /dbhome as

mounting nfs_server:/nfshome. nfs_server is a Service IP switch
alias address.

v /etc/exports on the nfs_server node and the backup node would
include the boot and service addresses and contain an entry for
/nfsfs -root=nfs_switch_1, nfs_switch_2,

Considerations When Configuring the SP Switch

When implementing HACMP ES with the SP switch, consider the following:
v There are “base” and “alias” addresses on the SP switch. The base

addresses are those defined in the SP System Data Repository (SDR), and
are configured by rc.switch when the system is “booted”. The alias
addresses are IP addresses configured, in addition to the base address, into
the css0 interface through use of the ifconfig command with an alias
attribute. For example:

ifconfig css0 inet alias sw_alias_1 up

v When configuring the DB2 db2nodes.cfg file, SP switch “base” IP address
names should be used for both “hostname” and “netname” fields. Switch IP

532 Administration Guide Design and Implementation

address aliases are ONLY used to maintain NFS connectivity. DB2 failover is
achieved by restarting DB2 with the db2start restart command (which
updates db2nodes.cfg).

v Do not confuse the switch addresses with the etc/hosts aliases. Both the SP
switch addresses and the SP switch alias addresses are real in either
etc/hosts or DNS. The switch alias addresses are not another name for the
SP switch base address: Each has its own separate address.

v The SP switch base addresses are always present on a node when it is up.
HACMP ES does not configure or move these addresses between nodes.

v If you intend to use SP switch alias addresses, configure these to HACMP
as boot and service addresses for “heartbeating” and IP address takeover. If
you do not intend to use SP switch alias addresses, configure the base SP
switch address to HACMP as a service address for “heartbeating” ONLY
(no IP address takeover). Do not, in any configuration, configure alias
addresses AND the switch base address; this configuration is not supported
by HACMP ES.

v Only the SP switch alias addresses are moved between nodes for an IP
takeover configuration and not the SP switch base addresses.

v The need for SP switch aliases arises because there can only be one SP
switch adapter per node. Using alias addresses allows a node to takeover
another node’s switch alias IP address without adding another switch
adapter. This is useful in nodes that are “slot-constrained”. For more
information on handling recovery from SP switch adapter failures, see the
network failure section under “HACMP ES Script Files” on page 547 later in
this document.

v If you configure the SP switch for IP address takeover, you will need to
create two (2) extra alias IP addresses per node: One as a boot address and
one as a service address.

v Do not forget to use “HPS” in the HACMP ES network name definition for
a SP switch base IP address or a SP switch alias IP address.

v rc.cluster in HACMP automatically ifconfigs-in the SP switch boot
address when HACMP is started. No additional configuration is required
other than the creating the IP address and name, and defining them to
HACMP.

v The SP switch Eprimary node is moved between nodes by the SP Parallel
System Support Program (PSSP), and not HACMP. If an Eprimary node
goes offline, the PSSP automatically has a backup node assume
responsibility as the Eprimary node. The switch network is unaffected by
this change and remains up.

v The Eprimary node of the SP switch is the server that implements the Estart
and Efence/Eunfence commands. The HACMP scripts attempt to Eunfence
or to Estart a node when HACMP is started and make the switch available
should it be defined as one of its networks. For this reason, ensure the

Chapter 13. HACMP ES for AIX 533

Eprimary node is available when you start HACMP. The HACMP code
waits up to twelve (12) minutes for an Eprimary failover to complete before
it exits with an error.

DB2 HACMP Configuration Examples

The following examples show different possible failover support
configurations and what happens when failure occurs.

534 Administration Guide Design and Implementation

The previous figure and the next two figures each have the following notes
associated with them:
1. HACMP adapters are defined for ethernet, and SP Switch alias boot and

service aliases — base addresses are untouched. Remember to use a “HPS”
string in the HACMP network name.

DB2 HACMP Mutual Takeover with NFS Failover - Normal

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

node5_sw (base)

nfs_client5 (alias)

SP Switch Adapter

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

node6_sw (base)

nfs_client6 (alias)

SP Switch Adapter

SP

SWITCH

BOARD

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

nfs_client5 (HACMP service addr)

Node 5:

node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr)

nfs_client6 (HACMP service addr)

Node 6:

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:

node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node6_sw 0 node6_sw
...

node 6
DB2 data
and logs

node 5
DB2 data
and logs

/nfshome
and log

Figure 56. Mutual Takeover with NFS Failover - Normal

Chapter 13. HACMP ES for AIX 535

2. The NFS_server/nfshome is mounted as /dbhome on all nodes through
switch aliases.

3. The db2nodes.cfg file contains SP Switch base addresses. The
db2nodes.cfg file is changed by the DB2START RESTART command after a
DB2 database partition (logical node) failover.

4. The Switch alias boot addresses are not shown.
5. Nodes can be in different SP frames.

536 Administration Guide Design and Implementation

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

nfs_client5 (HACMP service addr)

DB2 HACMP Mutual Takeover with NFS Failover - NFS failover

node5_sw (base)

nfs_client5 (alias)

SP Switch Adapter

node88_sw (base)
nfs_backup (alias)
nfs_server (alias)

SP Switch Adapter

node6_sw (base)

nfs_client6 (alias)

SP Switch Adapter

SP

SWITCH

BOARD

Node 5:
node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr)

nfs_client6 (HACMP service addr)

Node 6:

node88_eth (ethernet - HACMP service addr)
node88_sw (switch base addr)
nfs_backup (HACMP service addr)
nfs_server (HACMP service addr)

Node 88:

- nfs_server SP Switch alias IP addr and nfs mounted /nfshome moved from node 87 to 88.

- SP switch arp code has functionality to update all switch arp caches with this move.

/nfshome

and log

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node6_sw 0 node6_sw
...

node 6
DB2 data
and logs

node 5
DB2 data
and logs

Figure 57. Mutual Takeover with NFS Failover - NFS Failover

Chapter 13. HACMP ES for AIX 537

DB2 HACMP Mutual Takeover with NFS Failover - DB2 failover

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

node5_sw (base)
nfs_client5 (alias)
nfs_client6 (alias)

SP Switch Adapter

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

SP

SWITCH

BOARD

node5_eth (ethernet - HACMP service addr)
node5_sw (switch base addr)
nfs_client5 (HACMP service addr)
nfs_client6 (HACMP service addr)

Node 5:

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:
node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

- switch IP address takeover allows other servers (like ADSM) to retain connectivity.

- Node 5 runs 2 logical nodes of DB2.

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node5_sw 1 node5_sw
...

/nfshome

and log

node 6
DB2 data
and logs

node 5
DB2 data
and logs

Figure 58. Mutual Takeover with NFS Failover - DB2 Failover

538 Administration Guide Design and Implementation

The previous figure and the next figure each have the following notes
associated with them:

DB2 HACMP Hot Standby with NFS Failover - Normal

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

node5_sw (base)

nfs_client5 (alias)

SP Switch Adapter

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

node6_sw (base)

nfs_client6 (alias)

SP Switch Adapter

SP

SWITCH

BOARD

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

nfs_client5 (HACMP service addr)

Node 5:
node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr)

nfs_client6 (HACMP service addr)

Node 6:

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:
node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
...

Note: Hot Standby node can back up more than one node, depending on disk cabling.

/nfshome

and log

node 5
DB2 data
and logs

Figure 59. Hot Standby with NFS Failover - Normal

Chapter 13. HACMP ES for AIX 539

1. HACMP adapters are defined for ethernet, and SP Switch alias boot and
service aliases — base addresses are untouched. Remember to use a “HPS”
string in the HACMP network name.

2. The NFS_server/nfshome is mounted as /dbhome on all nodes through
switch aliases.

3. The db2nodes.cfg file contains SP Switch base addresses. The
db2nodes.cfg file is changed by the DB2START RESTART command after a
DB2 database partition (logical node) failover.

4. The Switch alias boot addresses are not shown.

540 Administration Guide Design and Implementation

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

DB2 HACMP Hot Standby with NFS Failover- DB2 Failover

SP

SWITCH

BOARD

Hot Standby node can back up more than one node, depending on disk cabling.

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

node6_sw (base)
nfs_client6 (alias)
nfs_client5 (alias)

SP Switch Adapter

Node 6:

node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

node6_eth (ethernet - HACMP service addr)
node6_sw (switch base addr)
nfs_client6 (HACMP service addr)
nfs_client5 (HACMP service addr)

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:

(db2nodes.cfg)
...
4 node6_sw 0 node6_sw
...

Note:

node 5
DB2 data
and logs

/nfshome
and log

Figure 60. Hot Standby with NFS Failover - DB2 Failover

Chapter 13. HACMP ES for AIX 541

The previous figure and the next figure each have the following notes
associated with them:
1. HACMP adapters are defined for ethernet, and SP Switch base addresses.

Remember that when bases addresses are configured to HACMP as service
addresses, there is no boot address (only a “heartbeat”).

2. Do not forget to use a “HPS” string in the HACMP network name for the
SP Switch.

3. The db2nodes.cfg file contains SP Switch base addresses. The
db2nodes.cfg file is changed by the DB2START RESTART command after a
DB2 database partition (logical node) failover.

4. No NFS failover functions are shown.
5. Nodes can be in different SP frames.

DB2 HACMP Mutual Takeover without NFS Failover - Normal

SP

SWITCH

BOARD

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node6_sw 0 node6_sw
...

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr - HACMP

service addr)

Node 5:
node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr - HACMP

service addr)

Node 6:

node5_sw (base)

SP Switch Adapter

node6_sw (base)

SP Switch Adapter

node 6
DB2 data
and logs

node 5
DB2 data
and logs

Figure 61. Mutual Takeover without NFS Failover - Normal

542 Administration Guide Design and Implementation

DB2 HACMP Startup Recommendations

It is recommended that you do not specify HACMP to be started at boot time
in /etc/inittab. HACMP should be started manually after the nodes are
booted. This allows for non-disruptive maintenance of a failed node.

As an example of “disruptive maintenance”, consider the case where a node
has a hardware failure and crashed. At such a time, service needs to be
performed. Failover would be automatically initiated by HACMP and
recovery completed successfully. However, the failed node needs to be fixed.
If HACMP was configured to be started on reboot in /etc/inittab, then this
node would attempt to reintegrate after boot completion which is not
desirable in this situation.

As an example of “non-disruptive maintenance”, consider manually starting
HACMP on each node. This allows for non-disruptive service of failed nodes

DB2 HACMP Mutual Takeover without NFS Failover - DB2 failover

SP

SWITCH

BOARD

- Node 5 runs 2 logical nodes of DB2.

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node5_sw 1 node5_sw
...

node5_sw (base)

SP Switch Adapter

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

Node 5:

node 6
DB2 data
and logs

node 5
DB2 data
and logs

Figure 62. Mutual Takeover without NFS Failover - DB2 Failover

Chapter 13. HACMP ES for AIX 543

since they can be fixed and reintegrated without affecting the other nodes. The
ha_cmd script is provided for controlling HACMP start and stop commands
from the control workstation.

HACMP ES Event Monitoring and User-Defined Events

The following is an example of a user-defined event: Perhaps you want to
shut down DB2 database partitions on an AIX physical node when paging
space reaches a certain percentage of fullness, and to log this occurrence. An
example to correct a paging space shortage by shutting down a database
partition and forcing a transaction abort to free paging space is provided. The
examples are found in the /SAMPLES directory. Another common example is
process death: You may want to restart a DB2 database partition, or you may
want failover to occur if a process dies on a given node.

With HACMP ES there is a rules file,
/user/sbin/cluster/events/rules.hacmprd, that contains HACMP events.

Each event in the file is made up of nine lines which are:
1. Event name. Each event name must be unique.
2. State. This is the qualifier for the event. The event name and state are the

rule triggers. HACMP ES Cluster Manager initiates recovery only if it
finds a rule with a trigger corresponding to the event name and state.

3. Resource Program Path. This is a full-path specification of the xxx.rp file
containing the recovery program.

4. Recovery Type. This is reserved for future use.
5. Recovery Level. This is reserved for future use.
6. Resource Variable Name. This is used for Event Manager events.
7. Instance Vector. This is used for Event Manager events. Within Event

Management, this is a set of elements, where each element is a name and
value pair of the form “name=value”. The values uniquely identify the
copy of the resource in the system and, by extension, the copy of the
resource variable.

8. Predicate. This is used for Event Manager events. Within Event
Management, this is the relational expression between a resource variable
and other elements that, when true, the Event Management subsystem
generates an event to notify Cluster Manager and the appropriate
application.

9. Rearm Predicate. This is used for Event Manager events. Within Event
Management, this is a predicate used to generate an event that alternates
the status of the primary predicate. This predicate is typically the inverse
of the primary predicate. It can also be used with the event predicate to
establish an upper and a lower boundary for a condition of interest.

544 Administration Guide Design and Implementation

Each object requires one line in the event definition even if the line is not
used. If these lines are removed, HACMP ES Cluster Manager cannot parse
the event definition properly. And this may cause the system to hang. Any
line beginning with “#” is treated as a comment line and is not treated as part
of the event definition.

Note: The rules file requires exactly nine lines for each event definition not
counting any comment lines. When adding a user-defined event at the
bottom of the rules file, it is important to remove the unnecessary
empty line at the end of the file, or the node will hang.

An example of an event definition for node_up follows:
Beginning of the Event Definition: node_up
#
TE_JOIN_NODE
0
/usr/sbin/cluster/events/node_up.rp
2
0
6) Resource variable - only used for event management events

7) Instance vector - only used for event management events

8) Predicate - only used for event management events

9) Rearm predicate - only used for event management events

End of the Event Definition: node_up

This is an example of just one of the event definitions that are found in the
rules.hacmprd file.

In this example, when the node_up event occurs, the recovery program
/usr/sbin/cluster/events/node_up.rp is executed. According to the rules, the
proper values are specified in the state, recovery type, and recovery level lines
in the definition. There are four (4) empty lines for: resource variable, instance
variable, predicate, and rearm predicate.

Users can add their own events to react to non-standard HACMP ES events.
For example, to define the event that the /tmp file system is over 90 per cent
full, the rules.hacmprd file must be modified.

Many events are predefined in the IBM Parallel System Support Program
(PSSP). These events can be exploited when used within user-defined events.
To make this happen, do the following:
1. Stop the cluster.
2. Edit the rules.hacmprd file. Backup the file before modifying it. Add the

predefined PSSP event manually. If you need synchronizing points across

Chapter 13. HACMP ES for AIX 545

all nodes in the cluster, use the barrier command in the recovery
program. (Read more about the barrier command and synchronization of
recovery programs in the HACMP Concepts, Installation, and
Administration Guides.)

3. Restart the cluster. The rules.hacmprd file is stored in memory when
Cluster Manager is started. To accurately implement the changes, restart
all the clusters. There should not be any inconsistent rules in a cluster.

4. Cluster Manager uses all events in the rules.hacmprd file.

HACMP ES uses PSSP event detection to treat user-defined events. The PSSP
Event Management subsystem provides comprehensive event detection by
monitoring various hardware and software resources.

Resource states are represented by resource variables. Resource conditions are
represented as expressions called predicates.

Event Management receives resource variables from the Resource Monitor,
which observes the state of specific system resources and transforms this state
into several resource variables. These variables are periodically passed to
Event Management. Event Management applies predicates that are specified
by the HACMP ES Cluster Manager in rules.hacmprd to each resource
variable. When the predicate is evaluated as being true, an event is generated
and sent to the Cluster Manager. Cluster Manager initiates the voting protocol
and the recovery program file (xxx.rp) is executed on a set of nodes specified
by “node sets” in the recovery program and according to event priority.

The recovery program file (xxx.rp) is made up of one or more recovery
program lines. Each line is declared in the following format:

relationship command_to_run expected_status NULL

There must be at least one space between each value in the format.
“Relationship” is a value used to decide which program should run on which
kind of node. Three types of relationship are supported:
v All. The specified command or program is executed on all nodes of the

current HACMP cluster.
v Event. The specified command or program is executed only on the nodes

where the event occurred.
v Other. The specified command or program is executed on all nodes where

the event did not occur.

“Command_to_run” is a quote-delimiting string with or without a full-path
definition to an executable program. Only HACMP-delivered event scripts can
use a relative-path definition. With other scripts or programs, the full-path
definition must be used (even if these programs are located in the same
directory as the HACMP event scripts). “Expected_states” is the return code

546 Administration Guide Design and Implementation

of the specified command or program. It is an integer value or an “x”. If “x”
is used, Cluster Manager does not care about the return code. For all other
codes, it must be equal to the expected return code. If it is not, Cluster
Manager detects the event failure. The handling of this event “hangs” the
process until the problem is solved through a manual intervention to recover.
Without manual intervention, the node does not hit the barrier to synchronize
with the other nodes. Synchronization across all nodes is a requirement for
the Cluster Manager to control all the nodes. “NULL” is a field reserved for
future use. The word “NULL” must appear at the end of each line except the
barrier line. If you specify multiple recovery commands between two barrier
commands, or before the first one, the recovery commands are executed in
parallel on the node itself and between the nodes.

The barrier command is used to synchronize all the commands across all the
cluster nodes. When a node hits the barrier statement in the recovery
program, Cluster Manager initiates the barrier protocol on this node. Since the
barrier protocol is a two-phase protocol, when all nodes have met the barrier
in the recovery program and “voted” to approve the protocol, then all nodes
are notified that both phases have completed.

In summary, the following actions make up the process:
1. Either Group Services/ES for predefined events, or Event Management for

user-defined events, notifies Cluster Manager of the event.
2. HACMP ES Cluster Manager reads the rules.hacmprd file and determines

the recovery program mapped to the event.
3. HACMP ES Cluster Manager runs the recovery program which consists of

a sequence of recovery commands.
4. The recovery program executes the recovery commands which may be

shell scripts or binary commands.

Note: The recovery commands are the same as the HACMP event scripts
in HACMP for AIX.

5. HACMP ES Cluster Manager receives the return status from the recovery
commands. An unexpected status “hangs” the cluster until manual
intervention using smit cm_rec_aids or the
/usr/sbin/cluster/utilities/clruncmd command is carried out.

HACMP ES Script Files

Included with DB2 UDB EEE are sample scripts for failover/recovery and for
user-defined events. The scripts will work “as is” or you can customize or
change the recovery action.

Chapter 13. HACMP ES for AIX 547

v DB2 database partition recovery script rc.db2pe. This is the script file used
to start and stop the HACMP configuration on a database partition. It also
works as a HACMP start and stop script for a NFS server of the DB2
instance owner.

v DB2-specific user-defined events for HACMP ES. Six default events are
included: one for process recovery, two for paging space, and three for NFS
and automounter recovery.

v DB2 instance NFS fileserver failover. This script provides for failover
recovery of the server of the filesystem for a DB2 instance to a backup.

v Network failover. The scripts network_up_complete, network_back and
network_down_complete, network_down allow SP DB2 database partitions to
failover if their SP Switch adapter should fail.

v Scripts to define monitoring events for the SP GUI Perspectives are
included. Monitoring of failover and user-defined recovery is possible
through the Event and Hardware Perspectives. Read the documentation for
PSSP Administration to find out more about Perspectives.

v Installation scripts to install and remove core scripts and events on the
HACMP ES nodes.

v Script files to create and remove the SP Perspectives problem management
(pman) resources for monitoring the HACMP and DB2 configuration.

The script files are located in the DB2 UDB EEE
$INSTNAME/sqllib/samples/hacmp/es directory.

The recovery scripts need to be installed on each node that will run recovery.
The script files can be centrally installed from the SP control workstation or
other designated SP node. To install, complete the following tasks:
1. Copy the scripts from the $INSTNAME/sqllib/samples/hacmp/es directory to

one of either the SP control workstation or another SP node that can run
the pcp and pexec commands. (The pcp and pexec commands are required
for the install so ensure that you have the ability to run them.)

2. Customize the reg.parms.SAMPLE and failover.parms.SAMPLE files for your
environment by setting key parameters such as BUFFPAGE for failover
configurations. Typically for mutual takeover configurations, your failure
settings will be adjusted lower to one-half the size of your regular settings
or less. Also, you will use a copy of these files renamed with your own
name (instead of “SAMPLE”).

3. Customize as necessary the five (5) parameters NFS_RETRIES,
START_RETRIES, MOUNT_NFS, STOP_RETRIES, and FAILOVER in the
rc.db2pe file. The three retries and the single failover settings should be
adequate for almost all implementations. The MOUNT_NFS setting should
be configured depending on whether you will be using the package for
NFS server availability. You should specify this setting if you wish
rc.db2pe to mount and verify the NFS home directory of the DB2 instance

548 Administration Guide Design and Implementation

owner for you. Setting the FAILOVER parameter to “YES” will cause the
running of db2_proc_restart and attempt to restart a DB2 database
partition. If unsuccessful in this attempt, HACMP will be shutdown with a
failover.

4. Customize db2_paging_action, db2_proc_recovery, and nfs_auto_recovery
in the event file. Also, edit pwq to change this to the DB2 instance owner.
Customize the db2_paging_action to indicate the action to take if paging
space gets more that ninety percent full. (If this does occur, the DB2
database partition is stopped.) Modify the script if additional recovery
actions are required.

5. Use db2_inst_ha to install the scripts and events on the nodes you specify.

Note: HACMP ES must be pre-installed on these nodes before you begin.
The syntax of db2_inst_ha is:

db2_inst_ha $INSTNAME/sqllib/samples/hacmp/es <nodelist> <DATABASENAME>

where

$INSTNAME/sqllib/samples/hacmp/es is the directory where the
scripts/event are located

<nodelist> is the pcp or pexec style of nodes; for example,
1-16 or 1,2,3,4

<DATABASENAME> is the name of the database for regular and
failover parameter files.

The reg.parms.SAMPLE and failover.parms.SAMPLE will be copied to each
node and renamed reg.parms.DATABASENAME. db2_inst_ha will copy files to
each node in /usr/bin and update the HACMP event files:
/usr/sbin/cluster/events/rules.hacmprd,
/usr/sbin/cluster/events/network_up_complete, and
/usr/sbin/cluster/events/network_down_complete.

6. Configure your system and scripts with HACMP.
7. Use the create_db2_events command to install the monitoring events for

problem management resources (pman) and the SP GUI Perspectives.
Additional configuration and customization in Perspectives is needed. For
more information on Perspectives, read the PSSP Administration Guide.

8. Use the ha_db2stop command to shutdown the database partitions without
HACMP ES failover recovery taking place. To use this command, copy the
file to the database user’s home directory and make sure permissions and
ownership are set for that user. To stop the database without failover
recovery, then as that user, type:

ha_db2stop

Chapter 13. HACMP ES for AIX 549

Note: You must wait for the command to return. Exiting by using a ctrl-C
interrupt, or by killing the process, may re-enable failover recovery
prematurely. This would result in not all database partitions being
stopped.

DB2 Recovery Scripts Operations with HACMP ES

HACMP ES invokes the DB2 recovery scripts in the following way:
v node_up_local (starting a node)

1. HACMP will run the node_up sequence, acquiring volume groups,
logical volumes, filesystems, and IP addresses specified in resource
groups owned (via cascading) or assigned (via rotating) to this node.

2. When node_up_local_complete is run, the application server definition
which contains rc.db2pe is initiated to start the database partition
specified in the application server definitions on this physical node.

Note: rc.db2pe, when running in start mode, adjusts the DB2
parameters specified in reg.parms.DATABASE for each DATABASE
in the database directory that matches a parameter (parms) file.

Each node, when starting, follows this sequence. If you have multiple
HACMP clusters and start them in parallel, multiple nodes are brought up
at once.

v node_down_remote (failover)
1. HACMP will acquire volume groups, logical volumes, filesystems, and

IP addresses specified in the resource group on the designated takeover
node.

2. When node_down_remote_complete is run, HACMP will run rc.db2pe as
the application server start script specified in the resource group for this
database partition.

Note: rc.db2pe, when running in a takeover mode (mutual takeover),
will stop the DB2 database partition running on it, adjust the DB2
parameters specified in failover.parms.DATABASE for each
DATABASE in the database directory that matches a parameter
(parms) file, and then starts both database partitions on the
physical takeover node.

v node_up_remote (reintegration of a failed node - cascading mutual takeover
resource group)
1. When node_up_remote is run on the old takeover node, the application

server definition causes rc.db2pe to be run in stop mode.

Note: rc.db2pe, when running in a reintegration mode (mutual
takeover), will stop both of the database partitions running on it,
adjust the DB2 parameters specified in reg.parms.DATABASE for

550 Administration Guide Design and Implementation

each DATABASE in the database directory that matches a
parameter (parms) file, and then starts just the database partition
to be kept on this physical takeover node.

2. The old takeover node releases volume groups, logical volumes,
filesystems, and IP addresses specified in resource groups to be owned
by the reintegrating node.

3. HACMP will re-acquire volume groups, logical volumes, filesystems,
and IP addresses specified in the resource group now owned by the
reintegrating node.

4. When node_up_local_complete is run, the application server definition
which contains rc.db2pe is initiated to start the DB2 database partition
specified in the application server definition on this reintegrating
physical node.

Note: rc.db2pe, when running in start mode will adjust the DB2
parameters specified in reg.parms.DATABASE for each DATABASE
in the database directory that matches a parameter (parms) file.

v node_down_local (node stop or stop with takeover)
1. When node_down_local is run on the stopping node, the application

server definition causes rc.db2pe to be run in stop mode.

Note: rc.db2pe, when running in a stop mode will adjust the DB2
parameters specified in failover.parms.DATABASE for each
DATABASE in the database directory that matches a parameter
(parms) file, and then stops the DB2 database partition (this is for
takeover).

2. HACMP releases volume groups, logical volumes, filesystems, and IP
addresses specified in resource groups now owned by the node.

v db2_proc_recovery (db2 process death)
1. All nodes run the db2_proc_restart script. The node which had the

failure restarts the correct DB2 database partition.
v db2_paging_recovery (paging space recovery)

1. All nodes run the db2_paging_action script. If a node has more than
seventy (70) percent of paging space filled, a wall command is issued. If
a node has more than ninety (90) percent of paging space filled, then
DB2 database partitions on this physical node are stopped and restarted.

v nfs_auto_recovery (nfs or automount process failure)
1. All nodes run the rc.db2pe script in NFS mode. If a NFS process stops

running, then it is restarted. In a similar way, if the automount process
stops running then it is restarted.

v network_down_complete (network failure - SP switch)

Chapter 13. HACMP ES for AIX 551

1. The net_down script is called. This verifies the network as the SP switch
network and verifies it is down. If so, it waits a user-defined time
interval. The default time interval is one hundred (100) seconds.

2. If the SP switch network comes back as indicated by
network_up_complete event, then no recovery is effected.

3. If the time limit is reached, then HACMP is stopped with failover.

Note: All events can be monitored through SP problem management and the
SP Perspectives GUI.

Other Script Utilities

There are other script utilities available for your use which include:
v ha_cmd is a command provided to start HACMP on SP nodes from the

control workstation. The syntax of the command is:
ha_cmd <noderange> <START|STOP|TAKE|FORCE>

where <noderange> is a pcp or pexec style of SP noderange. For example,
ha_cmd 3-6 START would start HACMP on nodes 3,4,5,6. ha_cmd 5 TAKE
would shutdown HACMP on node 5 for takeover.

v ha_mon is a command for monitoring HACMP hacmp_out files from the SP
control workstation. To invoke this command, type ha_mon <node> where
<node> is the SP node to be monitored. ha_mon will “tail -f” the
/tmp/hacmp.out file on the node you specify.

v db2_turnoff_recov is a command designed for extremely rare situations.
This command temporarily disables all HACMP (non-failover) recovery. No
DB2 process, paging, NFS, or automounter recovery is initiated. This
function removes the event stanzas for that recovery from the HACMP
rules file. HACMP must be stopped and restarted. To invoke this command,
type db2_turnoff_recov <nodelist>.

v db2_turnon_recov is a command to re-enable HACMP (non-failover)
recovery. This command would be used after db2_turnoff_recov to restore
HACMP rules files so that user-defined event recovery can occur. HACMP
must be stopped and restarted. To invoke this command, type
db2_turnon_recov <nodelist>.

Monitoring HACMP Clusters

There are scripts provided for creating SP problem management (pman)
events to monitor the DB2 HACMP ES configuration, in addition to those
monitoring utilities already present in HACMP ES. To monitor HACMP status
form the SP control workstation, do the following:
v Install the HACMP client code on the control workstation.

552 Administration Guide Design and Implementation

v Edit the /usr/sbin/cluster/etc/clhosts file and include the SP ethernet IP
addresses of the nodes you wish to monitor.

v Use the command startsrc -s clinfo to start monitoring the clusters.

HACMP supplies an interface for monitoring the clusters:
/usr/sbin/cluster/clstat.

To use the problem management monitoring with SP Perspectives GUI for
HACMP RS and user-defined events:
1. Use create_db2_events <nodelist> where <nodelist> is a pcp or pexec

style of nodes and where the events are to be monitored.
create_db2_events creates five (5) pman events for monitoring by
Perspectives.

Note: The Resource Variables PSSP.pm.User_state12-16 are used in the
creation of these events. If these resource variables are already being
used for some other purpose, create_db2_events and
update_db2_events must be updated to use different resource
variables.

2. Start Perspectives on the control workstation. From the launch pad, choose
the event Perspective. You should see five (5) events: db2_hacmp_recovery,
db2_process_recovery, db2_paging_err, db2_nfs_err, and
Errlog_PERM_entry.

3. Double-click on each event. On the screen that appears, you need to
register (within the Definition Table) a condition for the event. Click next
to the down arrow by Name: "unnamed", and select the same name as the
event you specify as the condition. Select the "Response Options" tab.
Click on the button on the top of the display (“Send Message to
Perspectives event session”). If you desire, you can specify commands,
Errlog entries, as well as SNMP traps for these event occurrences. The
event log displays are maintained only across Perspective sessions;
therefore, you might want to create AIX error log entries for each. Hit the
“OK” Button, and close the window.

4. Next, go back to the Perspectives launch pad. Select the hardware
Perspective.

5. When the Hardware frame GUI appears, select at the top of the menu
“View” and then “Monitor”. You are then provided with a list of events
that can be monitored for your SP. Scrolling to the bottom of the list, you
will find two additional events: one for HACMP DB2 recovery
(db2_ha_ind), and the other for SP node PERM errors (Errlog_PERM_mon.
Select those you wish to monitor. (When an event occurs for a node, it will
receive a red “X” in its display. If all monitored conditions are “OK”, the
display for the node is green.) Typically, host_responds, switch_responds,

Chapter 13. HACMP ES for AIX 553

and node_power_LED are used. You can also monitor the DB2 HACMP
recovery as well as PERM errors on the node.

Note: The db2_hacmp_mon and db2_hacmp_recovery variables for pman and
Perspectives do not reflect HACMP cluster status. Rather, these
variables reflect the status of the rc.db2pe operation to start or stop
DB2. The “real” HACMP status is shown in the HACMP clstat
monitor and reflects the HACMP cluster state. If you wish
db2_hacmp_ind to reflect monitoring similar to HACMP Status, add the
following line to your /etc/inittab file:

haind:2:wait:/usr/bin/db2_update_events HAIND OFF 2>&1 >/dev/null

If you are planning on using NetView for your implementation, consider
using HAVIEW (which is part of HACMP) for monitoring your configuration.
Please use NetView documentation for information on configuring that
product.

DB2 SP HACMP ES Installation

To assist in the planning for the installation of HACMP ES on DB2 UDB, a
step-by-step overview of the installation and migration processes is presented
here.

DB2 SP HACMP ES New Installation

When planning for and implementing HACMP ES in an environment where
you have not installed HACMP before, you should consider the following
tasks:

1. Install the AIX operating system on each of the SP nodes according to the
SP Installation and Administration Guides. Ensure proper paging space is
available on both the control workstation and each of the SP nodes. Also
ensure switch configuration has been considered and implemented along
with any other modifiable configuration parameters. In addition, SP
monitoring (Perspectives) you desire to use should be put in place.
Ensure the SP dsh, pcp, and pexec commands work.

2. Design your database layout. This should, at a minimum, include the
number of nodes to be used, the mapping of DB2 database partitions to
physical nodes, the disk requirements per node/partition, and table space
considerations. You should also consider who the main DB2 instance
owner will be and the access authorization this and other users will
require.

3. Plan your external SSA disk configuration including redundant adapters,
mirrored disks, and the twin-tailing of disks.

554 Administration Guide Design and Implementation

4. Using your database layout and SSA configuration, complete the HACMP
worksheets found in the HACMP Planning, Installation, and
Administration Guides. Using these worksheets, you should be able to
complete the worksheets later in this document.

5. Implement your external SSA disk configuration. Make sure microcode
levels are consistent across all drives and use the Maymap utility for
validating and filling in any gaps in your worksheets.

6. Install DB2 UDB EEE on each SP node.
7. Install HACMP ES on each SP node.
8. Install the DB2 UDB EEE HACMP ES on SP Package using the

db2_inst_ha command.
9. Create the DB2 main instance user and validate it can access all nodes.

This is not a highly available user at this point. This can be temporarily a
SP user on the SP control workstation.

10. Create your DB2 instance and database. Ensure it is operating by using
db2start command. Then ensure it is stopped by using db2stop before
proceeding to the next step.

11. If you wish to implement or load the database before adding HACMP,
then you should do this now.

12. Configure HACMP ES on the SP nodes topology and resource groups
according to the HACMP worksheets and the information in this
document.

13. Beginning with your NFS server node for the DB2 main instance user,
change this user (by modifying /etc/security/user and /etc/passwd on
all nodes in accordance with what is specified in this document. This
user will become a highly available NFS user; and this node and its
backup will update /etc/exports. All nodes will be able to mount this
directory using NFS (with an entry in /etc/filesystems on each node)
through the switch alias IP addresses.

14. “Tar” the home directory of the main instance user and “un-tar” the
home directory in the new location.

15. Create a NFS filesystem on each of the SP nodes to mount a new main
instance home directory.

16. Start HACMP on the NFS server node. Verify that it comes up
successfully by investigating /tmp/hacmp.out. The ha_mon command can
be used to monitor this file as it is written.

17. Bring up the other nodes one at a time; verifying each successful
completion by investigating /tmp/hacmp.out. The ha_mon command can be
used to monitor this file as it is written.

18. Setup the optional monitoring through Perspectives and Problem
Management.

Chapter 13. HACMP ES for AIX 555

19. Validate failover functionality on each node by simulating a concurrent
maintenance action on each node. The ha_cmd nodenum TAKE can be used
to stop HACMP gracefully with takeover. Verify the takeovers and
reintegrations succeed by interrogation of /tmp/hacmp.out and your
monitoring tools.

DB2 SP HACMP ES Migration

If you are migrating from a non-HACMP installation to one with HACMP,
you should review the step-by-step overview that follows:

1. Convert your existing external disks to a highly-available, twin-tailed,
mirrored configuration. Add any extra hardware and disks to achieve this
configuration remembering that names of different logical volumes on
different nodes must be unique when they are twin-tailed. This applies to
volume groups, logical volumes, and filesystems.

2. Complete the HACMP planning and the related worksheets. Also,
complete the worksheets in this document.

3. Implement your external SSA disk configuration changes. Ensure
microcode levels are consistent across all drives and use the Maymap
utility to validate and eliminate any gaps in the worksheets.

Note: SSA disks in a RAID5 configuration is supported. Two SSA
adapters in the same RAID loop is the only configuration
permitted. For a HACMP configuration with the RAID disks
twin-tailed, only one adapter per node is supported. In this
configuration, the adapter is a single point of failure for access to
the disks, and extra configuration is recommended to detect the
adapter outage adn promote this to an HACMP failover event. AIX
error notification is the simplest way to configure a node for fail
over should the SSA adapter fail. Refer to HACMP for AIX, V4.2.2,
Enhanced Scalability Installation and Administration Guide for more
information on AIX error notification.

4. Install HACMP ES on each SP node.
5. Install the “DB2 UDB EEE HACMP ES on SP” Package using the

db2_inst_ha command.
6. Configure HACMP ES on the SP nodes topology and resource groups

according to the HACMP worksheets and the information in this
document.

7. Beginning with your NFS server node for the DB2 main instance user,
change this user (by modifying /etc/security/user and /etc/passwd on
all nodes in accordance with what is specified in this document. This
user will become a highly available NFS user; and this node and its
backup will update /etc/exports. All nodes will be able to mount this
directory using NFS (with an entry in /etc/filesystems on each node)
through the switch alias IP addresses.

556 Administration Guide Design and Implementation

8. “Tar” the home directory of the main instance user and “un-tar” the
home directory in the new location.

9. Create a NFS filesystem on each of the SP nodes to mount a new main
instance home directory.

10. Start HACMP on the NFS server node. Verify that it comes up
successfully by investigating /tmp/hacmp.out. The ha_mon command can
be used to monitor this file as it is written.

11. Bring up the other nodes one at a time; verifying each successful
completion by investigating /tmp/hacmp.out. The ha_mon command can be
used to monitor this file as it is written.

12. Setup the optional monitoring through Perspectives and Problem
Management.

13. Validate failover functionality on each node by simulating a concurrent
maintenance action on each node. The ha_cmd nodenum TAKE can be used
to stop HACMP gracefully with takeover. Verify the takeovers and
reintegrations succeed by interrogation of /tmp/hacmp.out and your
monitoring tools.

DB2 SP HACMP ES Worksheets

The worksheets below are designed to be used with the HACMP worksheets
that were filled out in preparation for your configuration.

In each of two cases, first a worksheet is filled out to give you an idea of how
to plan your configuration. Secondly, a blank sample worksheet is provided
for your use.

The database configuration on external disks documented in the first sample
worksheet is shown in the following figure. The database statement used to
create the database was:

db2 create database pwq on /newdata

Both SSA external adapters and external SSA disks are mirrored and
twin-tailed for logical volumes with no single point of failure. The diagram
pictured is quite similar to the output of the maymap command. Maymap is a
utility available through AIXTOOLS to show the external SSA disk
configuration. Use of this utility is recommended as part of planning your
setup.

Chapter 13. HACMP ES for AIX 557

Before you review the following table, you are expected to have thoroughly
read the HACMP documentation regarding the quorum settings on volume
groups and mirrored write consistency settings on logical volumes. The
settings used for both will directly affect your availability and performance.

Sample DB2 4-node Database External Disks Setup
- Showing twin-tailing for High Availability.

A1

A2

B1

B2

B2

B1

A2

A1

node 3

ssa0

ssa1

A1

A2

B1

B2

B2

B1

A2

A1

node 4

ssa0

ssa1

catalogue nfsserver

A1

A2

B1

B2

B2

B1

A2

A1

node 5

ssa0

ssa1

A1

A2

B1

B2

B2

B1

A2

A1

node 6

ssa0

ssa1

dbnode5 dbnode6

hdisk1

hdisk1

hdisk5

hdisk5

hdisk9

hdisk13

hdisk2

hdisk2

hdisk6

hdisk6

hdisk10

hdisk14

hdisk3

hdisk3

hdisk7

hdisk7

hdisk11

hdisk15

hdisk4

hdisk4

hdisk8

hdisk8

hdisk12

hdisk16

Figure 63. Sample DB2 4-node Database External Disks Setup

558 Administration Guide Design and Implementation

Ensure you review these settings and understand their implications. The
typical setting for both “quorum” and “mirrored write consistency” is “off”.

Table 36. HACMP Volume Groups, Logical Volumes, and Filesystems

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Cop
-ies

hdisk list
Filesystem

Mount Point
(MB)

Filesystem
Log logical

volume

Node
Description
and backup

user
owner of

/dev
logical
device

3 havg3 8 hlv300 10 2 hdisk1
hdisk5

/newdata
/pwq
/NODE0003

hlog301 Catalognode
mount point;
node 4

root *

3 havg3 8 hlog301 1 2 hdisk1
hdisk5

N/A N/A Catalognode
jfslog; node 4

root *

3 havg3 8 hlv301 10 2 hdisk2
hdisk6

N/A N/A Catalognode
rawtemp
space; node 4

pwq **

4 havg4 8 hlv400 10 2 hdisk3
hdisk7

/dbmnt hlog401 nfsserver pwq
home; node 3

root *

4 havg4 8 hlog401 1 2 hdisk3
hdisk7

N/A N/A nfsserver
jfslog; node 3

root *

5 havg5 8 hlv500 10 2 hdisk1
hdisk9

/newdata/
pwq/
NODE0005

HLOG501 Dbnode5
mount point;
node 6

root *

5 havg5 8 hlog501 1 2 hdisk1
hdisk9

N/A N/A Dbnode5
jfslog; node 6

root *

5 havg5 8 hlv501 10 2 hdisk2
hdisk10

N/A N/A Dbnode5 raw
temp space;
node 6

pwq **

5 havg5 8 hlv502 100 2 hdisk2
hdisk10

N/A N/A Dbnode5 raw
table space;
node 6

pwq **

5 havg5 8 halv503 100 2 hdisk3
hdisk11

N/A N/A Dbnode5 raw
table space;
node 6

pwq **

5 havg5 8 halv504 100 2 hdisk3
hdisk11

N/A N/A Dbnode5 raw
table space;
node 6

pwq **

5 havg5 8 halv505 100 2 hdisk4
hdisk12

/dbdata5 hlog501 Dbnode6
system table
space; node 6

root *

6 havg6 8 hlv600 10 2 hdisk5
hdisk13

/newdata/
pwq/
NODE0006

hlog601 Dbnode6
mount point;
node 5

root *

6 havg6 8 hlog601 1 2 hdisk5
hdisk13

N/A N/A Dbnode6
jfslog; node 5

root *

6 havg6 8 hlv601 10 2 hdisk6
hdisk14

N/A N/A Dbnode6 raw
temp space;
node 5

pwq **

6 havg6 8 hlv602 100 2 hdisk6
hdisk14

N/A N/A Dbnode6 raw
table space;
node 5

pwq **

Chapter 13. HACMP ES for AIX 559

Table 36. HACMP Volume Groups, Logical Volumes, and Filesystems (continued)

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Cop
-ies

hdisk list
Filesystem

Mount Point
(MB)

Filesystem
Log logical

volume

Node
Description
and backup

user
owner of

/dev
logical
device

6 havg6 8 hlv603 100 2 hdisk7
hdisk15

N/A N/A Dbnode6 raw
table space;
node 5

pwq **

6 havg6 8 hlv604 100 2 hdisk7
hdisk15

N/A N/A Dbnode6 raw
table space;
node 5

pwq **

6 havg6 8 hlv605 100 2 hdisk8
hdisk16

/dbdata6 hlog601 Dbnode6
system table
space; node 5

root *

Notes:

1. * jfs filesystem logical volumes and logs keep root permissions.

2. ** raw database spaces get database user permissions on /dev raw file entries (/dev/rxxxx).

Table 37. HACMP Volume Groups, Logical Volumes, and Filesystems (blank)

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Cop
-ies

hdisk list
Filesystem

Mount Point
(MB)

Filesystem
Log logical

volume

Node
Description
and backup

user
owner of

/dev
logical
device

560 Administration Guide Design and Implementation

Table 37. HACMP Volume Groups, Logical Volumes, and Filesystems (blank) (continued)

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Cop
-ies

hdisk list
Filesystem

Mount Point
(MB)

Filesystem
Log logical

volume

Node
Description
and backup

user
owner of

/dev
logical
device

Chapter 13. HACMP ES for AIX 561

Table 37. HACMP Volume Groups, Logical Volumes, and Filesystems (blank) (continued)

SP
Node

Volume
Group
Name

PP
Size
(MB)

Logical
Volume
Name

of
PPs

Cop
-ies

hdisk list
Filesystem

Mount Point
(MB)

Filesystem
Log logical

volume

Node
Description
and backup

user
owner of

/dev
logical
device

Table 38. Planning HACMP NFS Server

SP Node
External

Filesystem
Back up

node
SP switch boot and

service IP alias pairs

filesystem to
mount (/etc/
filesystems)

filesystem to
specify as

database home
directory

addresses to export
filesystem to (/etc/

exports)

3 /dbmnt 4 nfs_boot_3 nfs_client_3 nfs_server:/
dbmnt as /dbi

/dbi/pwq nfs_boot_3 nfs_client_3
nfs_server_boot
nfs_server nfs_boot_5
nfs_client_5 nfs_boot_6
nfs_client_6

4 /dbmnt 3 nfs_server_boot
nfs_server

nfs_server:/
dbmnt as /dbi

/dbi/pwq nfs_boot_3 nfs_client_3
nfs_server_boot
nfs_server nfs_boot_5
nfs_client_5 nfs_boot_6
nfs_client_6

5 N/A N/A nfs_boot_5 nfs_client_5 nfs_server:/
dbmnt as /dbi

/dbi/pwq N/A

6 N/A N/A nfs_boot_6 nfs_client_6 nfs_server:/
dbmnt as /dbi

/dbi/pwq N/A

Notes:

1. /etc/passwd must be the same on all nodes. This can be synchronized from the control workstation.

2. Ensure the external filesystem has the permission of the database instance owner.

3. The /etc/filesystems must have the mount parameters: hard, bg, intr, and rw.

4. The /etc/exports will have

-root=ip1:ip2:ip3

only on the server and its backup.

562 Administration Guide Design and Implementation

Table 39. Planning HACMP NFS Server (blank)

SP Node
External

Filesystem
Back up

node
SP switch boot and

service IP alias pairs

filesystem to
mount (/etc/
filesystems)

filesystem to
specify as

database home
directory

addresses to export
filesystem to (/etc/

exports)

Chapter 13. HACMP ES for AIX 563

Table 39. Planning HACMP NFS Server (blank) (continued)

SP Node
External

Filesystem
Back up

node
SP switch boot and

service IP alias pairs

filesystem to
mount (/etc/
filesystems)

filesystem to
specify as

database home
directory

addresses to export
filesystem to (/etc/

exports)

564 Administration Guide Design and Implementation

Chapter 14. High Availability in the Windows NT
Environment

You can set up your database system so that if a machine fails, the database
server on the failed machine can run on another machine. On Windows NT,
you implement failover support with Microsoft Cluster Server (MSCS). To use
MSCS, you require Windows NT Version 4.0 Enterprise Edition with the
MSCS feature installed.

MSCS can perform both failure detection and the restarting of resources in a
clustered environment, such as failover support for physical disks and IP
addresses. (When the failed machine is online again, resources will not
automatically fall back to it, unless you previously configure them to do so.
For more information, see “Fallback Considerations” on page 577.)

Before you enable DB2 instances for failover support, perform the following
planning steps:

1. Decide which disks you want to use for data storage. Each database server
should be assigned at least one disk for its own use. The disk that you use
to store data must be attached to a shared disk subsystem, and must be
configured as an MSCS disk resource.

2. Ensure that you have one IP address for each database server that you
want to use to support remote requests.

When you set up failover support, it can be for an existing instance, or you
can create a new instance when you implement the failover support.

To enable failover support, perform the following steps:
1. Create an input file for the DB2MSCS utility.
2. Run the DB2MSCS utility.
3. If you are using a partitioned database system, register database drive

mapping to enable mutual takeover. See “Registering Database Drive
Mapping for Mutual Takeover Configurations in a Partitioned Database
Environment” on page 577.

After you finish enabling the instance for failover support, your configuration
will resemble Figure 64 on page 566.

© Copyright IBM Corp. 1993, 1999 565

The following sections describe the different types of failover support, and
how to implement them. Before performing any of the steps described below,
you must already have the MSCS software installed on every machine that
you want to use in an MSCS cluster. In addition, you must also have DB2
installed on every machine.

Failover Configurations

Two types of configuration are available:
v Hot standby
v Mutual takeover

Currently, MSCS supports clusters of two machines.

In a partitioned database environment, the clusters do not all have to have the
same type of configuration. You can have some clusters that are set up to use
hot standby, and others that are set up for mutual takeover. For example, if
your DB2 instance consists of five workstations, you can have two machines
set up to use mutual takeover configuration, two to use hot standby
configuration, with the last machine not configured for failover support.

Hot Standby Configuration

In a hot standby configuration, one machine in the MSCS cluster provides
dedicated failover support, and the other machine participates in the database

Machine A Machine B

C: C:

E:

F:

SQLLIB SQLLIB

(Each machine has DB2 code
installed on a local disk)

Quorum disk
used by MSCS

DB2 Group 0

DB2 Group 1

Cluster disks in a disk tower

D:

Figure 64. Example MSCS Configuration

566 Administration Guide Design and Implementation

system. If the machine participating in the database system fails, the database
server on it will be started on the failover machine. If, in a partitioned
database system, you are running multiple logical nodes on a machine and it
fails, the logical nodes will be started on the failover machine. Figure 65
shows an example of a hot standby configuration.

Mutual Takeover Configuration

In a mutual takeover configuration, both workstations participate in the
database system (that is, each machine has at least one database server
running on it). If one of the workstations in the MSCS cluster fails, the
database server on the failing machine will be started to run on the other
machine. In a mutual takeover configuration, a database server on one
machine can fail independently of the database server on another machine.
Any database server can be active on any machine at any given point in time.
Figure 66 on page 568 shows an example of a mutual takeover configuration.

Workstation BWorkstation A

Cluster

Instance A Instance A

Figure 65. Hot Standby Configuration

Chapter 14. High Availability in the Windows NT Environment 567

Using the DB2MSCS Utility

You use the DB2MSCS utility to create the infrastructure for DB2 to support
failover on the Windows NT environment using MSCS support. You can use
this utility to enable failover in both single-partition and partitioned database
environments.

You run the DB2MSCS utility once for each instance on its instance-owning
machine. If there is only one DB2 instance running on one machine in the
MSCS cluster, this sets up a hot-standby configuration. If you have an instance
running on each machine in the MSCS cluster, you would run DB2MSCS once
on each instance-owing machine to set up a mutual takeover configuration.

The DB2MSCS utility performs the following steps:
1. Reads the required MSCS and DB2 parameters from an input file called

DB2MSCS.CFG. See “Specifying the DB2MSCS.CFG File” on page 569 for
information about the full set of input parameters.

2. Validates the parameters in the input file.
3. Registers the DB2 resource type.
4. Creates the MSCS group (or groups) to contain the MSCS and DB2

resources.
5. Creates the IP resource.
6. Creates the Network Name resource.

Workstation BWorkstation A

Cluster

Instance A

Instance B

Instance A

Instance B

Figure 66. Mutual Takeover Configuration

568 Administration Guide Design and Implementation

7. Moves MSCS disks to the group.
8. Creates the DB2 resource (or resources).
9. Adds all required dependencies for the DB2 resource.

10. Converts the non-clustered DB2 instance into a clustered instance.
11. Brings all resources online.

The syntax of the DB2MSCS utility is as follows:

ÊÊ DB2MSCS
-f: input_file

ÊÍ

Where:

-f:input_file
Specifies the DB2MSCS.CFG input file to be used by the MSCS utility.
If this parameter is not specified, the DB2MSCS utility reads the
DB2MSCS.CFG file that is in the current directory.

Specifying the DB2MSCS.CFG File

The DB2MSCS.CFG file is an ASCII text file that contains parameters that are
read by the DB2MSCS utility. You specify each input parameter on separate
line using the following format: PARAMETER_KEYWORD=parameter_value.
For example:

CLUSTER_NAME=WOLFPACK
GROUP_NAME=DB2 Group
IP_ADDRESS=9.21.22.89

Two example configuration files are in the /CFG subdirectory of the /SQLLIB
directory. The first, DB2MSCS.EE, is an example for single-partition database
environments. The second, DB2MSCS.EEE, is an example for partitioned
database environments.

The parameters for the DB2MSCS.CFG file are as follows:

DB2_INSTANCE
The name of the DB2 instance. If the instance name is not specified,
the default instance (the value of the DB2INSTANCE environment
variable) is used.

This parameter has a global scope, and you specify it only once in the
DB2MSCS.CFG file.

This parameter is optional.

Example:
DB2_INSTANCE=DB2

Chapter 14. High Availability in the Windows NT Environment 569

The instance must already exist. For information about creating
instances, refer to the DB2 Enterprise - Extended Edition for Windows NT
Quick Beginnings.

DB2_LOGON_USERNAME
The name of the logon account for the DB2 service.

This parameter has a global scope, and you specify it only once in the
DB2MSCS.CFG file.

This parameter is only required for DB2 Enterprise - Extended Edition
instances.

Example:
DB2_LOGON_USERNAME=db2user

DB2_LOGON_PASSWORD
The password of the logon account for the DB2 service. If the
DB2_LOGON_USERNAME parameter is provided but the
DB2_LOGON_PASSWORD parameter is not, the DB2MSCS utility
prompts for the password. The password is not displayed when it is
typed at the command line.

This parameter has a global scope, and you specify it only once in the
DB2MSCS.CFG file.

This parameter is only required for DB2 Enterprise - Extended Edition
instances.

Example:
DB2_LOGON_PASSWORD=xxxxxx

CLUSTER_NAME
The name of the MSCS cluster. All the resources specified following
this line are created in this cluster until another CLUSTER_NAME tag
is specified.

Specify this parameter once for each cluster.

This parameter is optional. If not specified, the name of the MSCS
cluster on the local machine is used.

Example:
CLUSTER_NAME=WOLFPACK

GROUP_NAME
The name of the MSCS group. If this parameter is specified, a new
MSCS group is created if it does not exist. If the group already exists,
it is used as the target group. Any MSCS resource created following
this line is created in this group until another GROUP_NAME
keyword is specified.

570 Administration Guide Design and Implementation

Specify this parameter once for each group.

This parameter is required.

Example:
GROUP_NAME=DB2 Group

DB2_NODE
The node number of the database partition server (node) to be
included in the current MSCS group. If multiple logical nodes exist on
the same machine, each node requires a separate DB2_NODE
keyword.

You specify this parameter after the GROUP_NAME parameter so that
the DB2 resources are created in the correct MSCS group.

This parameter is only required for DB2 Enterprise - Extended Edition
instances.

Example:
DB2_NODE=0

IP_NAME
The name of the IP Address resource. The value for IP_NAME is
arbitrary, but must be unique. When this parameter is specified, an
MSCS resource of type IP Address is created.

This parameter is required for remote TCP/IP connections. You must
specify this parameter for the instance-owning machine in a
partitioned database environment. This parameter is optional in
single-partition database environments.

Example:
IP_NAME=IP Address for DB2

Note: DB2 clients should use the TCP/IP address of this IP resource
to catalog the TCP/IP node entry. By using the MSCS IP
address, when the database server fails over to the other
machine, DB2 clients can still connect to the database server
because the IP address is available on the fail-over machine.

The attributes of the IP resource are as follows:

IP_ADDRESS
The TCP/IP address of the IP resource. Specify this keyword
to set the TCP/IP address for the preceding IP resource.

This parameter is required if the IP_NAME parameter is
specified.

Example:

Chapter 14. High Availability in the Windows NT Environment 571

IP_ADDRESS=9.21.22.34

IP_SUBNET
The subnet mask for the preceding IP resource.

This parameter is required if the IP_NAME parameter is
specified.

Example:
IP_SUBNET=255.255.255.0

IP_NETWORK
The name of the MSCS network that the preceding IP resource
belongs to. If this parameter is not specified, the first MSCS
network detected by the system is used.

This parameter is optional.

Example:
IP_NETWORK=Token Ring

NETNAME_NAME
The name of the Network Name resource. Specify this parameter to
create the Network Name resource.

This parameter is optional for single-partition database environments.
It is required for partitioned database environments.

Example:
NETNAME_NAME=Network name for DB2

The attributes of the Network Name resource are as follows:

NETNAME_VALUE
The value for the Network Name.

This parameter is required if NETNAME_NAME parameter is
specified.

Example:
NETNAME_VALUE=DB2SRV

NETNAME_DEPENDENCY
The dependency list for the Network Name resource. Each
Network Name resource must have a dependency on an IP
Address resource. If this parameter is not specified, the
Network Name resource has a dependency on the first IP
resource in the group.

This parameter is optional.

Example:
NETNAME_DEPENDENCY=IP Address for DB2

572 Administration Guide Design and Implementation

DISK_NAME
The name of the physical disk resources to be moved to the current
groups. Specify as many disk resources as you need.

Notes:

1. The disk resources must already exist.
2. When the DB2MSCS utility configures the DB2 instance for MSCS

support, the instance directory is copied to the first MSCS disk in
the group. To specify a different MSCS disk for the instance
directory, use the INSTPROF_DISK parameter.

Example:
DISK_NAME=Disk E:
DISK_NAME=Disk F:

INSTPROF_DISK
An optional parameter to specify an MSCS disk to contain the DB2
instance directory. If this parameter is NOT specified, the DB2MSCS
utility uses the first MSCS disk that belongs to the same group as the
instance directory.

The DB2 instance directory is created on the MSCS disk under the
X:\DB2PROFS directory (where X is the MSCS disk drive letter).

Example:
INSTPROF_DISK=Disk E:

Setting up Failover for a Single-Partition Database System

When you run the DB2MSCS utility against a single-partition database
system, one MSCS group contains DB2 and all the dependent MSCS resources
(the IP address, Network Name, and disks). For example, the contents of the
DB2MSCS.CFG for a single-partition database system will look like the
following:

#
DB2MSCS.CFG for a single-partition database system
#
DB2_INSTANCE=DB2
CLUSTER_NAME=MSCS
GROUP_NAME=DB2 Group
IP_NAME=...
IP_ADDRESS=...
IP_SUBNET=...
IP_NETWORK=...
NETNAME_NAME=...
NETNAME_VALUE=...
DISK_NAME=Disk E:

Chapter 14. High Availability in the Windows NT Environment 573

Setting up a Mutual Takeover Configuration for Two Single-Partition
Database Systems

You can set up two single-partition database systems, each on a separate
machine, so that if the database system on any one machine fails, it is
restarted on the other MSCS node.

To setup failover support for this configuration, you need to run the
DB2MSCS utility once on each instance-owning machine. You must tailor the
configuration file for each database system.

Assume that the DB2 instances are called DB2A and DB2B. The
DB2MSCS.CFG file for the DB2A instance would be as follows:

#
DB2MSCS.CFG for first single-partition database system
#
DB2_INSTANCE=DB2A
CLUSTER_NAME=MSCS
GROUP_NAME=DB2A Group
IP_NAME=...
IP_ADDRESS=...
IP_SUBNET=...
IP_NETWORK=...
NETNAME_NAME=...
NETNAME_VALUE=...
DISK_NAME=Disk E:

The DB2MSCS.CFG file for the DB2A instance would be as follows:
#
DB2MSCS.CFG for second single-partition database system
#
DB2_INSTANCE=DB2B
CLUSTER_NAME=MSCS
GROUP_NAME=DB2B Group
IP_NAME=...
IP_ADDRESS=...
IP_SUBNET=...
IP_NETWORK=...
NETNAME_NAME=...
NETNAME_VALUE=...
DISK_NAME=Disk F:

For a full example, see “Example - Setting up Two Single-Partition Instances
for Mutual Takeover” on page 580.

Setting up Multiple MSCS Clusters for a Partitioned Database System

When you run the DB2MSCS utility against a multipartition database system,
one MSCS group is created for each physical machine that participates in the

574 Administration Guide Design and Implementation

system. The DB2MSCS.CFG file must contain multiple sections, and each
section must have a different value for the GROUP_NAME parameter and for
all the required dependent resources for that group.

In addition, you must specify the DB2_NODE parameter for each database
partition server in each MSCS group. If you have multiple logical nodes, each
logical node requires a separate DB2_NODE keyword.

For example, assume that you have a multipartition database system that
consists of four database partition servers on four machines, and you want to
configure two MSCS clusters using mutual takeover configuration. You would
set up the DB2MSCS.CFG configuration file as follows:

#
DB2MSCS.CFG for one partitioned database system with
multiple clusters
DB2_INSTANCE=DB2MPP
DB2_LOGON_USERNAME=db2user
DB2_LOGON_PASSWORD=xxxxxx
CLUSTER_NAME=MSCS1
Group 1

GROUP_NAME=DB2 Group 1
DB2_NODE=0
IP_NAME=...

...
Group 2
GROUP_NAME=DB2 Group 2
DB2_NODE=1
IP_NAME=...

...

CLUSTER_NAME=MSCS2
Group 3
GROUP_NAME=DB2 Group 3
DB2_NODE=2
IP_NAME=...

...
Group 4
GROUP_NAME=DB2 Group 4
DB2_NODE=3
IP_NAME=...

...

For a full example, see “Example - Setting up a Four-Node Partitioned
Database System for Mutual Takeover” on page 582.

Chapter 14. High Availability in the Windows NT Environment 575

Maintaining the MSCS System

When you run the DB2MSCS utility, it creates the infrastructure for failover
support for all machines in the MSCS cluster. To remove support from a
machine, use the db2iclus command with the drop option. To re-enable
support for a machine, use the add option.

The command syntax is as follows:

ÊÊ db2iclus add
drop /i: instance_name

/u: account_name,password Ê

Ê
/m: machine_name /c: cluster_name

ÊÍ

Where:

add Enables failover support on the machine by
adding it to an MSCS cluster. The DB2
resource (database server) can then fail over to
this machine.

drop Removes failover support from the machine
by dropping it from an MSCS cluster.

/i: instance_name Is the name of the instance. (This parameter
overrides the setting of the DB2INSTANCE
environment variable.)

/u: account_name, password Is the domain account used as the logon
account name of the DB2 Service. For
example:

/u:domainA\db2nt,password

This parameter is only required with the add
parameter.

/m:machine_name Is the computer name of the machine that you
want to add to, or drop from, an MSCS
cluster. You must specify this option if you
run the command from a machine other than
the one for which you are modifying failover
support.

/c: cluster_name Is the name of the MSCS cluster as it is
known on the LAN. This name is specified
when the MSCS cluster is first created.

576 Administration Guide Design and Implementation

Fallback Considerations

By default, groups are set not to fall back to the original (failed) machine.
Unless you manually configure a DB2 group to fall back after failing over, it
continues to run on the alternative MSCS node after the cause of the failover
has been resolved.

If you configure a DB2 group to automatically fall back to the original
machine, all the resources in the DB2 group including the DB2 resource will
fall back as soon as the original machine is available. If, during the fall back, a
database connection exists, the DB2 resource cannot be brought offline, and
the fallback processing will fail.

If you want to force all database connections off the database during the
fallback processing, set the DB2_FALLBACK registry variable to ON. This
variable must be set as follows:

db2set DB2_FALLBACK=ON

You do not have to reboot or restart the cluster service after setting this
registry variable.

Registering Database Drive Mapping for Mutual Takeover Configurations in a
Partitioned Database Environment

When you create a database in the partitioned database environment, you can
specify a drive letter for the create database command to indicate where the
database is to be created.

Note: You do not set database drive mapping for single-partition database
environments.

When the create database command runs, it expects that the drive that you
specify will be simultaneously available to all the machines that participate in
the instance. Because this is not possible, DB2 uses database drive mapping to
assign the same drive a different name for each machine.

For example, assume that a DB2 instance called DB2 contains two database
partition servers:

NODE0 is active on machine WOLF_NODE_0
NODE1 is active on machine WOLF_NODE_1

Also assume that the share disk E: belongs to the same group as NODE0, and
that the share disk F: belongs to the same group as NODE1.

Chapter 14. High Availability in the Windows NT Environment 577

To create a database on the share disk E:, the create database command
would be as follows:

db2 create database mppdb on E:

For the create database command to be successful, drive E: must be available
to both machines. In a mutual takeover configuration, each database partition
server may be active on a different machine, and the cluster disk E: is only
available to one machine. In this situation, the create database command will
always fail.

To resolve this problem, the database drive should be mapped as follows:
For NODE0, the mapping is from drive F: to drive E:
For NODE1, the mapping is from drive E: to drive F:

Any database access for NODE0 to drive F: is then mapped to drive E:, and
any database access for NODE1 to drive E: is mapped to drive F:. Using drive
mapping, the create database command will create database files on drive E:
for NODE0 and drive F: for NODE1.

Use the db2drvmp command to set up the drive mapping. The command is
as follows:

The parameters are as follows:

add Assigns a new database drive map.

drop Removes an existing database drive map.

query Queries a database map

reconcile Repairs a database map drive when the registry contents are
damaged. See “Reconciling Database Drive Mapping” on
page 579 for more information.

node_number The node number. This parameter is required for add and
drop operations.

from_drive The drive letter to map from. This parameter is required for
add and drop operations.

to_drive The drive letter to map to. This parameter is required for add
operations. It is not applicable to other operations.

db2drvmp add
drop
query
reconcile

node_number from_drive to_drive

578 Administration Guide Design and Implementation

If you wanted to set up database drive mapping from F: to E: for NODE0,
you would use the following command:

db2drvmp add 0 F E

Note: Database drive mapping does not apply table spaces, containers, or any
other database storage objects.

Similarly, to set up database drive mapping from drive E to drive F for
NODE1, you would issue the following command:

db2drvmp add 1 E F

Note: Any setup of, or changes to, database drive mapping do not take effect
immediately. To activate the database drive mapping, use the Cluster
Administrator tool to bring the DB2 resource offline, then online.

Reconciling Database Drive Mapping

When a database is created on a machine that has database drive mapping in
effect, the map is saved on the drive in a hidden file. This is to prevent the
database drive from being removed after the database is created. To reconcile
the map, run the db2drvmp reconcile command for each database partition
server that contains the database. (A situation in which you would want to
reconcile the database drive mapping would be if you accidentally dropped
the database drive map.) The command syntax is as follows:

The parameters are as follows:

node_number The node number of the node to be repaired. If node_number is
not specified, the command reconciles the mapping for all
nodes.

drive The drive to reconcile. If the drive is not specified, the
command reconciles the mapping for all drives.

The db2drvmp command scans all drives on the machine for database
partitions that are managed by the database partition server, and reapplies the
database drive mapping to the registry as required.

db2drvmp reconcile

node_number drive

Chapter 14. High Availability in the Windows NT Environment 579

Example - Setting up Two Single-Partition Instances for Mutual Takeover

The objective for this example is to set up two single-partition database
instances with failover support in a mutual takeover configuration. In this
example, four servers are configured into two MSCS clusters. By using the
mutual takeover configuration, when any of the machine fails, the database
server configured for that machine will fail over to the alternative machine, as
configured using the MSCS software, and run on the alternative machine.

There are two MSCS clusters in the resulting configuration. Each cluster has:
v Two servers, each with 64 MB of memory and one local SCSI disk of 2 GB
v One SCSI disk tower that has three shared SCSI disks of 2 GB each.

In addition, each machine has one 100X Ethernet Adapter card installed.

Each machine has the following software installed:
v Windows NT Version 4.0 Enterprise Edition with the MSCS feature installed
v DB2 Universal Database Enterprise Edition Version 6.

The resulting network configuration is as follows:

Server 1:

v Machine name:db2test1

v TCP/IP hostname:db2test1

v IP Address: 9.9.9.1

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterA

Server 2:

v Machine name:db2test2

v TCP/IP hostname:db2test2

v IP Address: 9.9.9.2

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterA

Both machines in the network are configured with TCP/IP and connected to a
private LAN using an Ethernet 100 T-base Hub. In the absence of a Domain
Name Server (DNS), all machines have a local TCP/IP hosts file. Each hosts
file contains the following entries:

9.9.9.1 db2test1 # for Server 1
9.9.9.2 db2test2 # for Server 2
9.9.9.3 ClusterA # for MSCS ClusterA
9.9.9.4 db2tcp1 # for DB2 remote client connection to Server 1
9.9.9.5 db2tcp2 # for DB2 remote client connection to Server 2

Preliminary Tasks

Before you perform the following tasks, it is assumed that both machines
belong to the same domain, called DB2NTD:

580 Administration Guide Design and Implementation

1. Create a domain account for DB2 that is a member of the local
Administrators group on those machines where DB2 is going to run. Use
the account for performing all tasks:
v Set the user name to db2nt.
v Set the password to db2nt.

2. Install the MSCS feature on the machines db2test1 and db2test2:
v Name the MSCS cluster ClusterA.
v The cluster IP Address is 9.9.9.3.
v Share disk D: will be used by the MSCS software.
v Share disks E: and F: will be used by DB2.

3. Install DB2 Universal Database Enterprise Edition Version 6 on the
machine db2test1. Install the software on C:\SQLLIB, which is a local
drive.

4. Install DB2 Universal Database Enterprise Edition Version 6 on the
machine db2test2. Install the software on C:\SQLLIB, which is a local
drive.

The next step is to set up the DB2MSCS.CFG file for each instance, then run
the DB2MSCS utility for each instance.

Run the DB2MSCS Utility

To set up the db2test1 machine, perform the following tasks:
1. On the machine db2test1, log on as user db2nt. The password is db2nt.
2. Create the DB2 instance DB2A, if it does not already exist. The command

to create the instance is:
db2icrt DB2A

3. Set up the DB2MSCS.CFG file for the DB2 instance on the machine
db2test1:

#
DB2MSCS.CFG for database system
on machine db2test1
DB2_INSTANCE=DB2A
CLUSTER_NAME=ClusterA
#
Group 1
GROUP_NAME=DB2A Group
IP_NAME=IP Address for DB2A
IP_ADDRESS=9.9.9.4
IP_SUBNET=255.255.255.0
IP_NETWORK=ClusterA
NETNAME_NAME=Network name for DB2A
NETNAME_VALUE=DB2SRV1
NETNAME_DEPENDENCY=IP Address for DB2A
DISK_NAME=Disk E:
INSTPROF_DISK=Disk E:

Chapter 14. High Availability in the Windows NT Environment 581

4. Run the DB2MSCS utility as follows:
db2mscs -f:DB2MSCS.CFG

5. Log out from the db2nt account.
6. On the machine db2test2, log on as user db2nt, which belongs to the

local Administrators group. The password is db2nt.
7. Create the DB2 instance DB2B, if it does not already exist. The command

to create the instance is:
db2icrt DB2B

8. Set up the DB2MSCS.CFG file for the DB2 instance on the machine
db2test2:

#
DB2MSCS.CFG for database system
on machine db2test2
DB2_INSTANCE=DB2B
CLUSTER_NAME=ClusterA
#
Group 1
GROUP_NAME=DB2B Group
IP_NAME=IP Address for DB2B
IP_ADDRESS=9.9.9.5
IP_SUBNET=255.255.255.0
IP_NETWORK=ClusterA
NETNAME_NAME=Network name for DB2B
NETNAME_VALUE=DB2SRV2
NETNAME_DEPENDENCY=IP Address for DB2B
DISK_NAME=Disk F:
INSTPROF_DISK=Disk F:

9. Run the DB2MSCS utility as follows:
db2mscs -f:DB2MSCS.CFG

10. Log out from the db2nt account.

Example - Setting up a Four-Node Partitioned Database System for Mutual
Takeover

The objective for this example is to set up a four-node partitioned database
system with failover support in a mutual takeover configuration. In this
example, four servers are configured into two MSCS clusters. By using the
mutual takeover configuration, when any of the machine fails, the database
partition servers configured for that machine will fail over to the alternative
machine, as configured using the MSCS software, and run as a logical node
on the alternative machine.

There are two MSCS clusters in the resulting configuration. Each cluster has:
v Two servers, each with 64 MB of memory and one local SCSI disk of 2 GB
v One SCSI disk tower that has three shared SCSI disks of 2 GB each.

582 Administration Guide Design and Implementation

In addition, each machine has one 100X Ethernet Adapter card installed.

Each machine has the following software installed:
v Windows NT Version 4.0 Enterprise Edition with the MSCS feature installed
v DB2 Universal Database Extended Enterprise Edition Version 6.

The resulting network configuration is as follows:

Server 1:

v Machine name:db2test1

v TCP/IP hostname:db2test1

v IP Address: 9.9.9.1

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterA

Server 2:

v Machine name:db2test2

v TCP/IP hostname:db2test2

v IP Address: 9.9.9.2

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterA

Server 3:

v Machine name:db2test3

v TCP/IP hostname:db2test3

v IP Address: 9.9.9.3

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterB

Server 4:

v Machine name:db2test4

v TCP/IP hostname:db2test4

v IP Address: 9.9.9.4

(subnet mask: 255.255.255.0

v MSCS cluster name: ClusterB

All machines in the network are configured with TCP/IP and connected to a
private LAN using an Ethernet 100 T-base Hub. In the absence of a Domain
Name Server (DNS), all machines have a local TCP/IP hosts file. Each hosts
file contains the following entries:

9.9.9.1 db2test1 # for Server 1
9.9.9.2 db2test2 # for Server 2
9.9.9.3 db2test3 # for Server 3
9.9.9.4 db2test4 # for Server 4
9.9.9.5 ClusterA # for MSCS Cluster 1
9.9.9.6 ClusterB # for MSCS Cluster 2
9.9.9.7 db2tcp # for DB2 remote client connection

Preliminary Tasks

Before you perform the following tasks, it is assumed that all four machines
belong to the same domain, called DB2NTD:
1. Create a domain account for DB2 that is a member of the local

Administrators group on those machines where DB2 is going to run. Use
the account for performing all tasks:
v Set the user name to db2nt.
v Set the password to db2nt.

2. Create a second domain account with the ″password never expires″
characteristic. This account will be associated with DB2 services:

Chapter 14. High Availability in the Windows NT Environment 583

v Set the user name to db2mpp.
v Set the password to db2mpp.

3. Install the MSCS feature on the machines db2test1 and db2test2:
v Name the MSCS cluster ClusterA.
v The cluster IP Address is 9.9.9.5.
v Share disk D: will be used by the MSCS software.
v Share disks E: and F: will be used by DB2.

4. Install the MSCS feature on the machines db2test3 and db2test4:
v Name the MSCS cluster ClusterB.
v The cluster IP Address is 9.9.9.6.
v Select share disk D: will be used by the MSCS software
v Share disks E: and F: will be used by DB2.

5. Install DB2 Enterprise - Extended Edition on the machine db2test1:
v Select the ″This machine will be the instance-owing database partition server″

option.
v The account for the DB2 service is db2mpp. The password is db2mpp.
v Install the software on C:\SQLLIB, which is a local drive.

6. Install DB2 Enterprise - Extended Edition on the machines db2test2,
db2test3, and db2test4:
v Select the ″This machine will be a new node on an existing partitioned

database system″ option.
v Select db2test1 as the instance-owning machine.
v The account for the DB2 service is db2mpp. The password is db2mpp.
v Install the software on C:\SQLLIB, which is a local drive.

The next step is to set up the DB2MSCS.CFG file and run the DB2MSCS
utility.

Run the DB2MSCS Utility

To set up the db2test1 machine, perform the following tasks:
1. Log on as user db2nt, which belongs to the local Administrators group.

The password is db2nt.
2. Set up the DB2MSCS.CFG file:

#
DB2MSCS.CFG for one partitioned database system with
multiple MSCS clusters
DB2_INSTANCE=DB2MPP
CLUSTER_NAME=ClusterA
DB2_LOGON_USERNAME=db2mpp
DB2_LOGON_PASSWORD=db2mpp
Group 1

584 Administration Guide Design and Implementation

for DB2 node 0
GROUP_NAME=DB2NODE0
DB2_NODE=0
IP_NAME=IP Address for DB2
IP_ADDRESS=9.9.9.7
IP_SUBNET=255.255.255.0
IP_NETWORK=Ethernet
NETNAME_NAME=Network name for DB2
NETNAME_VALUE=DB2WOLF
NETNAME_DEPENDENCY=IP Address for DB2
DISK_NAME=Disk E:
INSTPROF_DISK=Disk E:
#

Group 2
for DB2 node 1
GROUP_NAME=DB2NODE1
DB2_NODE=1
DISK_NAME=Disk F:
#

CLUSTER_NAME=ClusterB
Group 3
for DB2 node 2
GROUP_NAME=DB2NODE2
DB2_NODE=2
DISK_NAME=Disk E:

#
Group 4
for DB2 node 3
GROUP_NAME=DB2NODE3
DB2_NODE=3
DISK_NAME=Disk F:

3. Run the DB2MSCS utility as follows:
db2mscs -f:DB2MSCS.CFG

4. Log out from the db2nt account.

The final steps are to register the database drive mapping for the two MSCS
clusters.

Register the Database Drive Mapping for ClusterA

To register the database drive mapping for MSCS cluster ClusterA, perform
the following tasks:
1. On the machine db2test1, log on as user db2mpp, which is the account

associated with DB2 services. The password is db2mpp.
2. To register the database drive mapping, enter the following commands:

db2drvmp add 0 F E

db2drvmp add 1 E F

3. Bring all DB2 resources offline, then bring them online.

Chapter 14. High Availability in the Windows NT Environment 585

Register the Database Drive Mapping for ClusterB

To register the database drive mapping for MSCS cluster ClusterB, perform
the following tasks:
1. On the machine db2test3, log on as user db2mpp, which is the account

associated with DB2 services. The password is db2mpp.
2. To register the database drive mapping, enter the following commands:

db2drvmp add 2 F E

db2drvmp add 3 E F

3. Bring all DB2 resources offline, then bring them online.

Administering DB2 in an MSCS Environment

If you are using MSCS clusters, your DB2 instance requires additional
planning with regards to daily operation, database deployment, and database
configuration. For DB2 to execute transparently on any MSCS node, additional
administrative tasks must be performed. All DB2 dependent operating system
resources must be available on all MSCS nodes. Some of these operating
system resources fall outside the scope of MSCS. That is, they cannot be
defined as an MSCS resource. You must ensure that each system is configured
such that the same operating system resources are available on all MSCS
nodes. The sections that follow describe the additional work that must be
done.

Starting and Stopping DB2 Resources

You must start and stop DB2 resources from the Cluster Administrator tool.
Several mechanisms are available to start a DB2 instance such as the db2start
command, and the Services option from the Control Panel. However, if DB2 is
not started from the Cluster Administrator, the MSCS software will not be
aware of the state of DB2 instance. If a DB2 instance is started using the
Cluster Administrator and stopped using the db2stop command, the MSCS
software will interpret the db2stop command as a software failure and
attempt to restart DB2. (The current MSCS interfaces do not support
notification of a resource state.)

Similarly, if you use db2start to start a DB2 instance, MSCS cannot detect that
the resource is online. If a database server failed, MSCS would not bring the
DB2 resource online on the failover machine in the cluster.

Three operations can be applied to a DB2 instance:

Online
This operation is equivalent to using the db2start command. If DB2 is

586 Administration Guide Design and Implementation

already active, this operation can be used simply to notify MSCS that
DB2 is active. Any errors during this operation will be written to the
Windows NT Event Log.

Offline
This operation is equivalent to using the db2stop command. If there
are any active connections to an instance, this operation will fail. This
is consistent with the behavior of db2stop.

Fail resource
This operation is equivalent to using the db2stop command with the
force option specified. DB2 will disconnect all applications off the DB2
system and stop all database servers.

Running Scripts

You can execute scripts both before and after a DB2 resource is brought
online. These scripts must reside in the instance profile directory that is
specified for the DB2INSTPROF environment variable. This directory is the
directory path that is specified by the -p parameter of the db2icrt command.
You can obtain this value by issuing the following command:

db2set -i:instance_name DB2INSTPROF

This file path must be on a clustered disk so that the instance directory is
available on all cluster nodes.

These script files are not required, and are only executed if they are found in
the instance directory. They are launched by the MSCS Cluster Service in the
background. The script files must redirect standard output to record any
output as a result of commands within the script file. The output is not
displayed to the screen.

In a partitioned database environment, by default, the same script will be
used by every database partition server in the instance. If you need to
distinguish among the different database partition servers in the instance, use
different assignments of the DB2NODE environment variable to target specific
node numbers (for example, use the IF statement in the db2cpre.bat and
db2cpost.bat files).

Running Scripts Before Bringing DB2 Resources Online

If you want to run a script before you bring a DB2 resource online, the script
must be named db2cpre.bat. DB2 calls functions that will launch this batch file
from the Windows NT command line processor and wait for the command
line processor to complete execution before the DB2 resource is brought
online. You can use this batch file for tasks such as modifying the DB2
database manager configuration. You may want to change some database

Chapter 14. High Availability in the Windows NT Environment 587

manager parameter values if the failover system is constrained, and you must
reduce the system resources consumed by DB2.

The commands placed in the db2cpre.bat script should execute synchronously.
Otherwise the DB2 resource may be brought online before all tasks in the
script are completed, which may result in unexpected behavior. Specifically,
db2cmd should not be executed in the db2cpre.bat script, because it, in turn,
launches another command processor, which will execute DB2 commands
asynchronously to the db2cmd program.

If you want to use DB2 CLP commands in the db2cpre.bat script, the
commands should be placed in a file and executed as a CLP batch file from
within a program that initializes the DB2 environment for the DB2 command
line processor, then waits for the completion of the DB2 command line
processor. For example:
#include <windows.h>

int WINAPI DB2SetCLPEnv_api(DWORD pid);

void main (int argc, char *argv [])
{

STARTUPINFO startInfo = {0};
PROCESS_INFORMATION pidInfo = {0};
char title [32] = "Run Synchronously";
char runCmd [64] =

"DB2 -z c:\\run.out -tvf c:\\run.clp";

/* Invoke API to setup a CLP Environment */
if (DB2SetCLPEnv_api (GetCurrentProcessId ()) == 0)(1 - see notes below)
{

startInfo.cb = sizeof(STARTUPINFO);
startInfo.lpReserved = NULL;
startInfo.lpTitle = title;
startInfo.lpDesktop = NULL;
startInfo.dwX = 0;
startInfo.dwY = 0;
startInfo.dwXSize = 0;
startInfo.dwYSize = 0;
startInfo.dwFlags = 0L;
startInfo.wShowWindow = SW_HIDE;
startInfo.lpReserved2 = NULL;
startInfo.cbReserved2 = 0;

if (CreateProcessA(NULL,
runCmd, (2)
NULL,
NULL,
FALSE,
NORMAL_PRIORITY_CLASS ³ CREATE_NEW_CONSOLE,
NULL,
NULL,
&startInfo,
&pidInfo))

588 Administration Guide Design and Implementation

{
WaitForSingleObject (pidInfo.hProcess, INFINITE);
CloseHandle (pidInfo.hProcess);
CloseHandle (pidInfo.hThread);

}
}
return;

}

Notes:

1. The API DB2SetCLPEnv_api is resolved by the import library DB2API.LIB.
This API sets an environment that allows CLP commands to be invoked. If
this program is invoked from the db2cpre.bat script, the command
processor will wait for the CLP commands to complete.

2. runCmd is the name of the script file that contains the DB2 CLP
commands.

A sample program called db2clpex.exe can be found in the MISC subdirectory
of the DB2 install path. This executable is similar to the example provided,
but accepts the DB2 CLP command as a command line argument. If you want
to use this sample program, copy it to the BIN subdirectory. You can use this
executable in the db2cpre.bat script as follows (INSTHOME is the instance
directory).

db2clpex "DB2 -Z INSTHOME\pre.log -tvf INSTHOME\pre.clp"

All DB2 attach commands or connect statements should explicitly specify a
user, otherwise they will be executed under the user account associated with
the cluster service. CLP scripts should also complete with the terminate
command to end the CLP background process.

The following is an example of a db2cpre.bat file:
db2cpre.bat : (1 - see notes below)

db2clpex "db2 -z INSTHOME\pre-%DB2NODE%.log (2, 3)

-tvf INSTHOME\pre.clp" (4, 5)

PRE.CLP (6)

update dbm cfg using MAXAGENTS 200;
get dbm cfg;
terminate;

Notes:

1. The db2cpre.bat script executes under the user account associated with the
Cluster Service. If DB2 actions are required, the user account associated
with the Cluster Service must be a valid SQL identifier, as defined by DB2.

2. INSTHOME is the instance directory.

Chapter 14. High Availability in the Windows NT Environment 589

3. The name of the log file must be different for each node to avoid file
contention when both logical nodes are brought online at the same time.

4. db2clpex.exe is the sample program previously provided using the
command line argument to specify the CLP command to execute. (This
line of the example has been split at -tvf for formatting reasons.)

5. The db2clpex.exe sample program must be made available on all MSCS
cluster nodes.

6. The CLP commands in this example set a limit on the number of agents.

Running Scripts After Bringing DB2 Resources Online

If you want to run a script after you bring a DB2 resource online, it must be
named db2cpost.bat. The script will be executed asynchronously from MSCS
after the DB2 resource has been successfully brought online. The db2cmd
command can be used in this script to execute DB2 CLP script files. Use the -c
parameter of the db2cmd command to specify that the utility should close all
windows on completion of the task. For example:

db2cmd -c db2 -tvf mycmds.clp

The -c parameter must be the first argument to the db2cmd command, as it
prevents orphaned command processors in the background.

The db2cpost.bat script is useful if you want to perform database activities
immediately after the DB2 resource fails over and becomes active. For
example, you can restart or activate databases in the instance so that they are
primed for user access.

The following is an example of a db2cpost.bat script:
db2cpost.bat (1 - see notes below)

db2cmd -c db2 -z INSTHOME\post-%DB2NODE%.log (2, 3)

-tvf INSTHOME\post.clp (4)

POST.CLP (5)

restart database SAMPLE;
connect reset;
activate database SAMPLE;
terminate;

Notes:

1. The db2cpost.bat script executes under the user account associated with
the Cluster Service. If DB2 actions are required, the user account
associated with the Cluster Service must be a valid SQL identifier, as
defined by DB2.

590 Administration Guide Design and Implementation

2. INSTHOME is the instance directory.
3. The name of the log file must be different for each node to avoid file

contention when both logical nodes are brought online at the same time.
4. The db2cmd command can be used because the db2cpost.bat script can

execute asynchronously. The -c parameter must be used to terminate the
command processor.

5. The CLP script in this example contains commands to restart and activate
the database. This script returns the database to an active state
immediately after the database manager is started. In a partitioned
database system you should remove the activate database command
because multiple DB2 resources are brought online at the same time: the
restart database command may fail because another node is activating the
database. If this occurs, rerun the script to ensure that the database is
restarted correctly.

Database Considerations

When you create a database, ensure that the database path refers to a share
disk. This allows the database to be seen on all MSCS nodes. All logs and
other database files must also refer to clustered disks for DB2 to failover
successfully. If you do not perform these steps, a DB2 system failure will
occur as it will seem to DB2 that files have been deleted or are unavailable.

Also ensure that the database manager and database configuration parameters
are set so that amount of system resources consumed by DB2 is supported on
either MSCS node. The autorestart database configuration parameter should be
set to ON so that the first database connection on failover will bring the
database to a consistent state. The default setting for autorestart is ON. The
database can also be brought to a ready state by using the db2cpost.bat script
to restart and activate the database. This method is preferred, because there
will be no dependency on autorestart, and the database is brought to a ready
state independent of a user connection request.

User and Group Support

DB2 relies on Windows NT for user authentication and group support. For a
DB2 instance to fail over from one MSCS node to another in a seamless
fashion, each MSCS node must have access to the same Windows NT security
databases. You can achieve this by using Windows NT Domain Security.

Define all DB2 users and groups in a Domain Security database. The MSCS
nodes must be members of this Domain or the Domain must be a Trusted
Domain. DB2 will then use the Domain Security database for authentication
and group support, independent of which MSCS node DB2 is executing on.

Chapter 14. High Availability in the Windows NT Environment 591

If you are using local accounts, the accounts must be replicated on each MSCS
node. This approach is not recommended because it is error prone and
requires dual maintenance.

DCE Security is also a supported authentication mode, providing that all
MSCS nodes are clients in the same DCE cell.

You should associate the MSCS service with a user account that follows DB2
naming conventions. This allows the MSCS service to perform actions against
DB2 that may be required in the db2cpre.bat and db2cpost.bat scripts.

Communications Considerations

DB2 supports two LAN protocols in an MSCS Environment:
v TCP/IP
v NetBIOS

TCP/IP is supported because it is a supported cluster resource type. To enable
DB2 to use TCP/IP as a communications protocol for a partitioned database
system, create an IP Address resource and place it in the same group as the
DB2 resource that represents the database partition server that you want to
use as a coordinator node for remote applications. Then create a dependency
using the Cluster Administrator tool to ensure that the IP resource is online
before the DB2 resource is started. DB2 clients can then catalog TCP/IP node
directory entries to use this TCP/IP address.

The TCP/IP port associated with the svcename database manager configuration
parameter must be reserved for use by the DB2 instance on all machines that
participate in the instance. The service name associated with the port number
must also be the same in the services file on all machines.

Although NetBIOS is not a supported cluster resource, you can use NetBIOS
as a LAN protocol because the protocol ensures that NetBIOS names are
unique on the LAN. When DB2 registers a NetBIOS name, NetBIOS ensures
the name is not in use on the LAN. In a failover scenario, when DB2 is moved
from one system to another, the nname used by DB2 will be deregistered from
one partner machine in the MSCS cluster and registered on the other machine.

DB2 NetBIOS support uses NetBIOS Frames (NBF). This protocol stack can be
associated with different logical adapter numbers (LANA). To ensure
consistent NetBIOS access to the server, the LANA associated with the NBF
protocol stack should be the same on all clustered nodes. You can configure
this by using the Networks option from the Control Panel. You should
associate NBF with LANA 0, as this is the default setting expected by DB2.

592 Administration Guide Design and Implementation

System Time Considerations

DB2 uses the system time to timestamp certain operations. All MSCS nodes
that participate in DB2 failover must have the system time zone and system
time synchronized to ensure DB2 behaves consistently on all machines.

Set the system time zone using the Date/Time option from the Control Panel
dialog. MSCS has a time service that synchronizes the date and time when the
MSCS nodes join to form a cluster. The time service, however, only
synchronizes the time every 12 hours, which may result in problems if the
time is changed on one system and DB2 fails over before the time is
synchronized.

If the date/time is changed on one of the MSCS cluster nodes, the time
should be manually synchronized on the other cluster nodes using the
command:

net time /set /y \\remote node

Where remote node is the machine name of the cluster node.

Administration Server and Control Center Considerations in a Partitioned
Database Environment

The DB2 Administration Server is (optionally) created during the installation
of DB2 Universal Database. It is not a partitioned database system. The
Control Center uses the services provided by the Administration Server to
administer DB2 instances and databases.

In a partitioned database system, a DB2 instance can reside on multiple MSCS
nodes. This implies that a DB2 instance must be cataloged on multiple
systems under the Control Center so that the instance remains accessible,
regardless of which MSCS node the DB2 instance is active on.

The Administration Server instance directory is not shared. You must mirror
all user-defined files in the Administration Server directory to all MSCS nodes
to provide the same level of administration to all MSCS nodes. Specifically,
you must make user scripts and scheduled executables available on all nodes.
You must also ensure that scheduled activities are scheduled on all machines
in an MSCS cluster.

Alternatively, instead of duplicating the Administration Server on all
machines, you may want to have the Administration Server fail over. For the
purposes of the following example, assume that you have two MSCS nodes in
the cluster, and they are called MACH0 and MACH1. MACH0 has access to a
cluster disk that will be used by the Administration Server. Also assume that

Chapter 14. High Availability in the Windows NT Environment 593

both MACH0 and MACH1 have an Administration Server. You would
perform the following steps to make the Administration Server highly
available:
1. Stop the Administration Server on both machines by executing the

db2admin stop command on each machine.
2. On all administration client machines, uncatalog all references to the

Administration Servers on MACH0 and MACH1 using the db2 uncatalog
node command. (You can use the db2 list node directory command on the
client machine to determine if any references to the Administration Server
exist.)

3. Drop the Administration Server from MACH1 by executing the db2admin
drop command from MACH1. (You would only perform this step if you
had an Administration Server on both machines.)

4. Determine the name of the Administration Server by issuing the
db2admin command from MACH0. (The default name is DB2DAS00.)

5. Use the DB2MSCS utility to set up fail-over support for the Administration
Server. This entails creating a DB2 resource on MSCS named DB2DAS00 that
has dependencies on the IP and disk resources. (If you have a mutual
takeover configuration, you would put the resource in the group that
holds the DB2 resource for NODE0.) This resource will be used as the
MSCS resource that supports the Administration Server. The
DB2MSCS.ADMIN file would be as follows:

#
db2mscs.admin for Administration Server
run db2mscs -f:db2mscs.admin
#
DB2_INSTANCE=DB2DAS00
CLUSTER_NAME=CLUSTERA
DB2_LOGON_USERNAME=db2admin
DB2_LOGON_PASSWORD=db2admin
put Administration server in the same group as DB2 Node 0
GROUP_NAME=DB2NODE0 (see note below)
DISK_NAME=DISK E:
INSTPROF_DISK=DISK E:
IP_NAME= IP Address for Administration Server
IP_ADDRESS=9.9.9.8
IP_SUBNET=255.255.255.0
IP_NETWORK=Ethernet

Note: This group can be the same as the existing group. This way, you do
not require an additional disk for the instance profile directory.

6. On MACH1 execute the following command to set DB2DAS00 as the
Administration Server:

db2set -g db2adminserver=DB2DAS00

594 Administration Guide Design and Implementation

7. On MACH0, modify the start-up properties of DB2DAS00 through the
Services program so that it is brought up manually and not automatically,
because DB2DAS00 is now controlled by MSCS.

When the Administration Server is enabled for failover, all remote access
should use an MSCS IP resource for communicating with the Administration
Server. The Administration Server will now have the following properties:
v The Administration Server instance directory will fail over with the

Administration Server.
v Clients will only catalog a single node to communicate with the

Administration Server, regardless of which MSCS node it is active on.
v Jobs only need to be scheduled once against the Administration Server.
v Local instances can only be controlled by the Administration Server when

the Administration Server is active on the same MSCS node as the local
instance.

v The Administration Server is not accessible if the Cluster Service is not
active.

Limitations and Restrictions

When you run DB2 in an MSCS environment:
v You cannot use physical I/O on shared disks, unless the shared disks have

the same physical disk number across both MSCS nodes. You can use
logical I/O because the disk is accessed using a partition identifier.

v You must configure all DB2 resource for MSCS support. If you do not,
system errors will occur during DB2 runtime (DB2 cannot properly operate
in the absence of system resources). For example, if the database logs are
not on a MSCS shared disk, DB2 cannot restart the database.

v You must manage a DB2 instance from the Cluster Administrator tool.
MSCS will view other mechanisms that are used to start and stop the
database manager as software inconsistencies. For example, if you use
MSCS to start DB2 and the db2stop command to stop DB2, MSCS will
detect this as a software failure and will restart the instance. This also
means that you should not use the Control Center to start and stop DB2.

v To uninstall DB2, you must first stop MSCS.

Chapter 14. High Availability in the Windows NT Environment 595

596 Administration Guide Design and Implementation

Chapter 15. High Availability in the Solaris Operating
Environment, Single-Partition Database

You can set up your database system so that if a machine fails, the database
server on it can run on another machine. On the Solaris Operating
Environment, you implement failover support with Sun Cluster 2.1.

Sun Cluster 2.1 performs both failure detection and the restarting of resources
in a clustered environment, as well as failover support for physical disks and
IP addresses.

You can implement failover support for both single-partition and partitioned
database systems. For details on setting up failover support for a
single-partition database system, see “Setting up Failover Support for a
Database System” on page 601. For details about setting up failover support
for a partitioned database system, see “Chapter 16. High Availability in the
Solaris Operating Environment, Partitioned Database” on page 607. For
information about clients and clustered environments, see “Client Application
Considerations” on page 606.

Note: Do not use a kill -9 against the db2start process in a high availability
environment. This action is not recommended in any environment, but
in particular such an action may invalidate failover recovery in your
high availability environment.

Cluster Components

Each cluster consists of the following components and resources:

Physical machine
Each physical machine has one public network interface, one or more
private network interfaces on the public network, a set of shared
disks, and a disk for the operating system. Each cluster can contain up
to four physical machines.

Logical host
The logical host essentially borrows the CPU or (CPUs) and memory
from the physical machine, and migrates from machine to machine
during a failover situation. Each logical host consists of the following
resources:
v One logical interface on the public network with its own IP address

and hostname

© Copyright IBM Corp. 1993, 1999 597

Remote clients should always use this IP address when connecting
to failover services, because the address is moved from one
machine to another machine during a failover.

v One or more disk groups
The disk group (or disk set) is a collection of physical disks that are
associated with the logical host. The disk group must be on disks
that are physically shared between the two machines in a cluster.

v One high availability service (that is, DB2).
The high availability service provides a set of scripts that Sun
Cluster 2.1 can use to start, stop, and abort the service.
When a failover occurs, the high availability service from one
machine fails over to another machine. You must ensure that the
physical machine has enough CPU and memory resource to
properly run the system after the failover; otherwise, the services
may fail.

You can have as many logical hosts as you want on a machine, but for
administrative reasons, it is recommended that you assign no more
than one to a machine. The following is an example of the layout for a
logical host filesystem for Sun Cluster 2.1 with DB2. The name of the
logical host in this example is snap, and the DB2 instance is DB2INST:

/snap/ The logical host filesystem (needed for Sun Cluster 2.1).

/snap/home/DB2INST
The place to put the high availability instance home directory.

/snap/disks/DB2INST
The place to put SMS filesystems.

You only need to set up the directories
/logical_host_name/home/DB2_instance and
/logical_host_name/disks/DB2_instance on one logical host in the
cluster.

Private network
Private networks are used for communicating between two nodes.
Heartbeat messages as well as Remote Procedure Calls (RPCs) travel
over these networks to keep the two nodes in synchronous operation
so that they can back up each other in the event of a failover.

Public networks
The public network includes all the primary and logical network
interfaces and IP addresses. The logical network interfaces or logical
hosts should be referred to when communicating with DB2 on the
cluster.

598 Administration Guide Design and Implementation

Disk group
Disk groups contain one or more shared disks and a list of hosts
which can access these disks. Only one host can own the disk sets for
exclusive use at a time.

Disk mirroring
It is highly recommended that you mirror disks to increase disk
availability.

Figure 67 shows an example of the components in a cluster.

The following sections describe the different types of failover support, and
how to implement them.

Machine 1 Machine 2

Disk Group 1

Shared Disks

Disk Group 2

Priv Net 1

Public Net

Disk (OS)
Sun Cluster Software

Disk (OS)
Sun Cluster Software

indicates connection established during failover situation

Priv Net 2

Figure 67. Components in a Cluster

Chapter 15. High Availability in the Solaris Operating Environment, Single-Partition Database 599

Failover Configurations

Two types of configuration are available in a DB2 system:
v Hot standby (asymmetric mode)
v Mutual takeover (symmetric mode)

Hot Standby Configuration

In a hot standby configuration, one machine in the cluster provides dedicated
backup support, and a database server runs on the other machine. If the
machine participating in the database system fails, the database server on it
will be started on the backup machine.

If, in a partitioned database system, you are running multiple logical nodes on
a machine and it fails, they will be started on the backup machine.

Figure 68 shows an example of a hot standby configuration.

If you are using a hot standby configuration, you can use the failover machine
to run applications other than DB2.

Mutual Takeover Configuration

In a mutual takeover configuration, both machines may be running a database
system (that is, each machine has at least one database server running on it).
You would also see this situation with a partitioned database system, in which
a database partition server would be running on each machine in the cluster.
If one of the machines in the cluster fails, the database server on the failing
machine is started to run on the other machine. In a mutual takeover

Workstation BWorkstation A

Cluster

Instance A Instance A

Figure 68. Hot Standby Configuration

600 Administration Guide Design and Implementation

configuration, a database server on one machine can fail independently of the
database server on another machine. Any database server can be active on
any machine at any given point in time. Figure 69 shows an example of a
mutual takeover configuration.

Setting up Failover Support for a Database System

To set up Sun Cluster 2.1, perform the following steps:
1. “Choosing a Failover Configuration”.

2. “Creating a DB2 Instance” on page 602.

3. “Registering the DB2 Resource with Sun Cluster” on page 604.

4. “Enable Failover for an Instance” on page 605.

5. “Starting and Stopping DB2” on page 605.

If you want to remove failover support for DB2, see “Unregistering DB2 for
Failover” on page 606.

Choosing a Failover Configuration

To choose a failover configuration, perform the following steps:
1. Set up the machines to use either a hot standby or mutual takeover

configuration. For a hot standby configuration, use one logical host. For a
mutual takeover, use two logical hosts.

2. Decide on the amount of disk space that is required for each logical host
and its resources, such as raw devices or SMS table space containers.

Workstation BWorkstation A

Cluster

Instance A

Instance B

Instance A

Instance B

Figure 69. Mutual Takeover Configuration

Chapter 15. High Availability in the Solaris Operating Environment, Single-Partition Database 601

Whether you use SMS or DMS (raw devices) table spaces, any disks
belonging to a logical host must be included in its disk sets.
Table space considerations: You must decide on the type of table space
that you want to use. If you want to use SMS table spaces, you must set
them up using disks from the disk groups that belong to a logical host. In
addition, you must include them in the vfstab for the logical host. Refer to
the Sun Cluster 2.1 documentation for information about how to add a file
system to a logical host.
There are benefits and costs associated with using either SMS or DMS
table spaces. For example, SMS table spaces reside on file systems that
must be file-system checked before they are mounted. This can add a
considerable amount of overhead when failover occurs, and can result in
the Sun Cluster 2.1 software timing out. If you use SMS table spaces,
ensure that they are journaled files systems, which require less time to
check after a failover.
DMS table spaces do not have to be file-system checked during failover.
This can reduce the failover time for the high availability scripts, but you
should remember that committed transactions that are written to the logs
will be applied to the database during crash recovery after the database
server fails over.

Creating a DB2 Instance

To create the instance, use the db2icrt command, which is located in the
DB2DIR/instance directory, where DB2DIR is /opt/IBMdb2/V5.0. Before creating
a DB2 instance, ensure that DB2 is installed on each machine in the cluster.

You only create a DB2 instance on the logical host in the cluster where you
created the subdirectories /logical_host_name/home and
/logical_host_name/disks. The syntax of the db2icrt command is:

[-h| -?]

InstName

[-d] [-a AuthType] [-u FencedID]db2icrt

where:

-h or -? Display a help menu for this command.

-d Sets the debug mode that you can use for problem
determination.

-a AuthType Is an optional parameter that specifies the authentication type
for the instance. Valid authentication types are SERVER,
CLIENT, and DCS. If the -a parameter is not specified, the

602 Administration Guide Design and Implementation

authentication type defaults to SERVER, if a DB2 server is
installed. Otherwise, the AuthTypeis set to CLIENT.

Notes:

1. All databases in the instance have the same authentication
type.

2. DCE authentication is not valid for this command;
however, you can enable DCE authentication for an
instance. For more information, refer to the Administration
Guide.

-u FencedID Is the user under which the fenced UDFs and stored
procedures will execute. This is not required if you install the
DB2 Client or the DB2 Software Developer’s Kit. For other
products, this is a required parameter.

Note: FencedID may not be root or bin.

InstName Is the login name of the instance owner.

When you create an instance, ensure that its primary and
secondary groups are different from the Administration
Server’s primary (SYSADM) group. When you create an
instance on the same machine as the Administration Server, its
SYSADM group is automatically added to the secondary
group list of the Administration Server so that you can use the
Control Center to perform administration tasks on that
instance.

To create an instance for a DB2 server, you can use the following command:
db2icrt -u db2fenc1 db2inst1

When an instance is created, its name is also added to the list of instances on
the system.

The db2icrt command creates the INSTHOME/sqllib directory, where
INSTHOME is the home directory of the instance owner.

Note: To avoid a potential loss of data if an instance is deleted, you should
not create user files or directories under the INSTHOME/sqllib
directory, other than those created by DB2. The exception is if your
system supports fenced user defined functions and fenced stored
procedures. In this situation, put the fenced applications in the
INSTHOME/sqllib/function directory.

Chapter 15. High Availability in the Solaris Operating Environment, Single-Partition Database 603

Registering the DB2 Resource with Sun Cluster

Use the db2hareg script as an example of how to register DB2 with Sun
Cluster. The script is located in the /opt/IBMdb2/V5.0/ha/UDB-
EE_SC2.x/bin directory. The db2hareg script is as follows:

#!/bin/ksh

hareg -r db2hareg -b /opt/IBMdb2/V5.0/ha/UDB-EE_SC2.x/bin -m
START_NET=hadb2ee_startnet,STOP_NET=hadb2ee_stopnet,ABORT_NET=hadb2ee_abortnet -t
START_NET=600,STOP_NET=600
-h log0
hareg -y hadb2ee

In the sample, log0 is the logical host. Replace log0 with the logical host that
is to host the DB2 services.

You should run the db2hareg script (or an equivalent script) once for the
cluster, and you must ensure that the script is the same on both machines in
the cluster. You run the script as root. The script both registers DB2 for
failover support, and enables the following scripts for the cluster:
v /var/db2/v5/db2tabee

As root, you must create and edit this configuration file. You must also
ensure that the configuration file exists (and is the same) on both machines
in the cluster. You use the configuration file to enable specific instances for
failover. See “Enable Failover for an Instance” on page 605 for details.

v The following scripts are run if they exist and are executable. Both scripts
only take one argument, which is the number of logical hosts that are
currently being hosted. See “Running Scripts During a Failover” on
page 605 for details.

– /var/db2/v5/failover.ee

This script runs at the very beginning of a failover situation.
– $INSTHOME/sqllib/ha/pre_db2startee

This file runs immediately before the db2start command
– $INSTHOME/sqllib/ha/pre_db2stopee

This file runs immediately before the db2stop command

Note: This script may not be run if the machine crashes.
– $INSTHOME/sqllib/ha/post_failoveree

This file runs just after a failover and is used to restart databases.

604 Administration Guide Design and Implementation

Enable Failover for an Instance

To enable an instance for failover, you create an entry for it in the
/var/db2/v5/db2tabee file. The file must exist on each machine in the cluster.
The file takes entries of the form:

TYPE INSTANCE LOGICAL_HOST ON/OFF

Where:

TYPE Is the type of instance. The value can be one of the following:
v DATA to indicate a database instance.
v ADMIN to indicate an administration server instance.

INSTANCE
Is the user name of the instance owner.

LOGICAL_HOST
Is the logical host on which the DB2 instance runs.

ON/OFF
Specifies whether the instance is highly available (ON) or not (OFF).

Starting and Stopping DB2

To start DB2 in a failover environment, use the hareg -y hadb2ee command.
This command both enables the failover environment, and starts DB2.

If you want to stop DB2, first issue the hareg -n hadb2ee command to disable
the failover environment. Then issue the db2stop command to stop DB2.

Note: If you do not issue hareg -n hadb2ee first, Sun Cluster 2.1 may assume
that the DB2 instance needs to be failed over.

Running Scripts During a Failover

The /var/db2/v5/failover.ee script runs automatically when a failover occurs.
You can use this script to send email (for example, to notify support staff) of
the failover situation. You should keep the commands in this script to a
minimum, because it runs before DB2 is started. Depending on whether DB2
is starting or stopping, the following scripts will also run (if they are
available) for each instance:
v $INSTHOME/sqllib/ha/pre_db2startee

This file takes as an argument the number of logical hosts that are currently
running on the failover machine. If this script exists, it runs immediately
before the db2start command.

v $INSTHOME/sqllib/ha/pre_db2stopee

Chapter 15. High Availability in the Solaris Operating Environment, Single-Partition Database 605

This file takes as an argument the number of logical hosts that are currently
running on the failover machine. If this script exists, it runs immediately
before the db2stop command.

Note: This script may not be run if the machine crashes.
v $INSTHOME/sqllib/ha/post_failoveree

This file runs just after a failover and is used to restart databases.

You can use pre_db2startee to prevent resource contention by adjusting
database manager and database configuration parameters that may consume
substantial amounts of resource (for example, sheapthres). The following is an
example:

#!/bin/ksh

#Very simple example

LOGHOSTS=$1

if [[$LOGHOSTS -eq 1]]
then
db2 update dbm cfg using SHEAPTHRES 40000

else
db2 update dbm cfg using SHEAPTHRES 20000

fi

Unregistering DB2 for Failover

To unregister DB2 for failover, run the hadb2ee.unreg script. This script
deregisters DB2 with Sun Cluster 2.1.

Client Application Considerations

Client applications should communicate with the high availability services
only through the logical hostname of the logical host of the high availability
service. You should ensure that client applications are written to accept a
communications error and possibly retry after a few minutes.

Consider a typical client connection. The client is connected to machineA
through the logical host called snap. If machineA fails, then snap fails over to
machineB. According to machineB, the client connection does not exist, and
will send the client a connect reset message, which will appear to the client as
a communication error. The client must reconnect to the server to obtain a
new connection from machineB when DB2 starts.

606 Administration Guide Design and Implementation

Chapter 16. High Availability in the Solaris Operating
Environment, Partitioned Database

Sun Cluster 2.1 provides increased availability through clusters of servers that
share resources such as disks and network access. If one server fails then
another in the cluster can substitute for the failed one.

Note: Do not use a “kill -9” against the db2start process in a high availability
environment. This action is not recommended in any environment, but
in particular such an action may invalidate failover recovery in your
high availability environment.

Cluster Components

Each cluster consists of the following components and resources:

Physical machine
Each physical machine has one public network interface, one or more
private network interfaces on the public network, a set of shared
disks, and a disk for the operating system. Each cluster can contain up
to four physical machines.

Logical host
The logical host essentially borrows the CPU or (CPUs) and memory
from the physical machine, and migrates from machine to machine
during a failover situation. Each logical host consists of the following
resources:
v One logical interface on the public network with its own IP address

and hostname

Remote clients should always use this IP address when connecting
to failover services, because the address is moved from one
machine to another machine during a failover.

v One or more disk groups
The disk group (or disk set) is a collection of physical disks that are
associated with the logical host. The disk group must be on disks
that are physically shared between the two machines in a cluster.

v One high availability service (that is, DB2)
The high availability service provides a set of scripts that Sun
Cluster 2.1 can use to start, stop, and abort the service.
When a failover occurs, the high availability service from one
machine fails over to another machine. You must ensure that the

© Copyright IBM Corp. 1993, 1999 607

physical machine has enough CPU and memory resource to
properly run the system after the failover; otherwise, the services
may fail.

You can have as many logical hosts as you want on a machine, but for
administrative reasons, it is recommended that you assign no more
than one to a machine. The following is an example of the layout for a
logical host filesystem for Sun Cluster 2.1 with DB2 (See the Sun
Cluster 2.1 documentation for instructions on how to add logical host
filesystems). The name of the logical host in this example is snap:

/snap/ The logical host filesystem (needed for Sun Cluster 2.1).

/snap/home/
The place to put the high availability instance home directory.

/snap/disks/
The place where SMS filesystems should be placed to make
sure that are available after a failover.

Private network
Private networks are used for communicating between two nodes.
Heartbeat messages and Remote Procedure Calls (RPCs) travel over
these networks to keep the two nodes in synchronous operation, so
that they can back up each other in the event of a failover.

Public networks
The public network includes all the primary and logical network
interfaces and IP addresses. The logical network interfaces or logical
hosts should be referred to when communicating with DB2 on the
cluster because these are failed over to the remaining machine at the
time of the failover.

Disk group
Disk groups contain one or more shared disks and a list of hosts that
can access these disks. Only one host can own the disk groups for
exclusive use at a time.

Disk mirroring
It is highly recommended that you mirror disks to increase disk
availability. Without mirroring, there is a single point of failure for
each disk in the system.

Figure 70 on page 609 shows an example of the components in a cluster.

608 Administration Guide Design and Implementation

The following sections describe the different types of failover support, and
how to implement them.

Failover Configurations

Two types of configuration are available in a DB2 system:
v Hot standby (asymmetric mode)
v Mutual takeover (symmetric mode).

Two modes of failover support are provided. A brief description of each mode
and its application to DB2 follows. For each, the simple scenario of a
two-server cluster is described.

Hot Standby
One server is being actively used to run DB2, and the second is in

Machine 1 Machine 2

Disk Group 1

Shared Disks

Disk Group 2

Priv Net 1

Public Net

Disk (OS)
Sun Cluster Software

Disk (OS)
Sun Cluster Software

indicates connection established during failover situation

Priv Net 2

Figure 70. Components in a Cluster

Chapter 16. High Availability in the Solaris Operating Environment, Partitioned Database 609

standby mode ready to take over if there is an operating system or
hardware failure involving the first server.

Mutual Takeover
Multiple servers can be used to scale to a single database instance
using the DB2 Enterprise - Extended Edition product. This is done
using a shared-nothing model and partitioning the data such that one
or more partitions are running on each server in the cluster. If an
operating system or hardware failure occurs on one of the servers,
then the other servers will take over the partition (or partitions) of the
failing server.

Each of the above configurations can be used to failover one or more
partitions of a partitioned database.

Hot Standby Configuration

You can use the hot standby capability to set up failover for a partition or
partitions of a partitioned database configuration. If one server fails, then
another server in the cluster can substitute for the failed server by
automatically transferring the database partitions. To achieve this, the
database instance and the actual database must be accessible to both the
primary and failover server. This requires that the following installation and
configuration tasks be performed:
v The DB2 installation path should be local to each machine and of the same

level.
v The DB2 instance path should be on a shared filesystem via HA-NFS.
v The database and the associated containers must be on file systems (or

devices) that are accessible to both systems. The disks for the filesystems or
devices of a database partition must be in disk groups that are associated
with the logical host that hosts the database partition.

v For failover of a partition in a partitioned database configuration, the
partition is restarted on the second system: the Sun Cluster 2.1 software
modifies the db2nodes.cfg file to point to the failed partition on the new
system and starts the partition on that system.

v When a failover occurs, the external communications addresses for
supported communication protocols are transparently transferred as part of
the failover procedure.

Database Partition Server Failover

Figure 71 on page 611 shows how partitions fail over in a hot standby
configuration. System A is running a one or more partitions of the overall
configuration and System B is used as the failover system. When System A
fails, the partition is restarted on the second system. The failover updates the
db2nodes.cfg file, pointing the partition to System B’s hostname and netname,

610 Administration Guide Design and Implementation

then restarting the partition at the new system. When the failover is complete,
all other partitions forward the requests targeted for this partition to System
B.

The following is a portion of the db2nodes.cfg file before and after the
failover. In this example, node numbers 20, 22 and 24 are running on the
system named MachineA of the cluster with the netname MachineA-scid0. After
the failover, node numbers 20, 22 and 24 are running on the system named
MachineB of the cluster and have a netname of MachineB-scid0.
Before:

20 MachineA 0 MachineA-scid0 <= Sun Cluster 2.1
22 MachineA 1 MachineA-scid0 <= Sun Cluster 2.1
24 MachineA 2 MachineA-scid0 <= Sun Cluster 2.1

db2start nodenum 20 restart hostname MachineB port 0 netname MachineB-scid0
db2start nodenum 22 restart hostname MachineB port 1 netname MachineB-scid0
db2start nodenum 24 restart hostname MachineB port 2 netname MachineB-scid0

After:
20 MachineB 0 MachineB-scid0 <= Sun Cluster 2.1
22 MachineB 1 MachineB-scid0 <= Sun Cluster 2.1
24 MachineB 2 MachineB-scid0 <= Sun Cluster 2.1

Mutual Takeover Configuration

The mutual failover of partitions in a partitioned database environment
requires that the failover of the partition occur as a logical node on the

Workstation BWorkstation A

Cluster

Logical Host 0 Logical Host 0

Figure 71. Hot Standby Configuration

Chapter 16. High Availability in the Solaris Operating Environment, Partitioned Database 611

failover server. If two partitions of a partitioned database system run on
separate servers of a cluster configured for mutual takeover, the partitions
must fail over as logical nodes.

Figure 72 shows an example of a mutual takeover configuration.

Another important consideration when configuring a system for mutual
partition takeover is the database path of the local partition. When a database
is created in a partitioned database environment, it is created on a root path,
which is not shared across the database partition servers. For example,
consider the following statement:

CREATE DATABASE db_a1 ON /dbpath

This statement is executed under instance db2inst and creates the database
db_a1 on the path /dbpath. Each partition creates its actual database partition
on its local /dbpath file system under /dbpath/db2inst/NODExxxx, where xxxx
represents the node number. After a failover, a database partition will start up
on another system with a different /dbpath directory. The only filesystems that
are moved along with the logical host during a failover are the logical host
filesystems. This means that a symbolic link must be created from the logical
host file system to the appropriate /dbpath/db2inst/NODExxxx path.

For example,
cd /dbpath/db2inst
ln -s /log0/disks/db2inst/NODE0001 NODE0001

The hadb2eee_addinst will set up symbolic links from INSTHOME/INSTANCE to
the logical host filesystem that corresponds with the various database

Workstation BWorkstation A

Cluster

Logical Host 0

Logical Host 1

Logical Host 0

Logical Host 1

Figure 72. Mutual Takeover Configuration

612 Administration Guide Design and Implementation

partitions (where INSTHOME is the instance owner’s home directory, INSTANCE is
the instance, and log0 is the logical host that is bound to database partition 1
via the hadb2-eee.cfg file). You must perform this manually for other database
directories.

The following example shows a portion of the db2nodes.cfg file before and
after the failover. In this example, node numbers 20, 22 and 24 are running on
System A which has a hostname of MachineA with a netname of
MachineA-scid0. Node numbers 30, 32, and 34 are running on System B which
has a hostname of MachineB with a netname of MachineB-scid0. System A in
this example is hosting a logical host which is responsible for database
partitions 20, 22, and 24. System B is listed as a backup for this logical host
and it will host it if System A goes down.
Before:

20 MachineA 0 MachineA-scid0 <= Sun Cluster 2.1
22 MachineA 1 MachineA-scid0 <= Sun Cluster 2.1
24 MachineA 2 MachineA-scid0 <= Sun Cluster 2.1
30 MachineB 0 MachineB-scid0 <= Sun Cluster 2.1
32 MachineB 1 MachineB-scid0 <= Sun Cluster 2.1
34 MachineB 2 MachineB-scid0 <= Sun Cluster 2.1

db2start nodenum 20 restart hostname MachineB port 3 netname MachineB-scid0
db2start nodenum 22 restart hostname MachineB port 4 netname MachineB-scid0
db2start nodenum 24 restart hostname MachineB port 5 netname MachineB-scid0

After:
20 MachineB 3 MachineB-scid0 <= Sun Cluster 2.1
22 MachineB 4 MachineB-scid0 <= Sun Cluster 2.1
24 MachineB 5 MachineB-scid0 <= Sun Cluster 2.1
30 MachineB 0 MachineB-scid0 <= Sun Cluster 2.1
32 MachineB 1 MachineB-scid0 <= Sun Cluster 2.1
34 MachineB 2 MachineB-scid0 <= Sun Cluster 2.1

If you do decide to use a mutual takeover environment for the coordinator
node then you may want to adjust the following database manager
configuration parameters:
v conn_elapse

v max_connretries.

Reducing the value of these parameters will reduce the failover time for the
coordinator node, but will increase the risk of an FCM connection timeout.
These parameters should be tuned to meet your requirements.

Setting Up Failover Support for a Database System

To set up Sun Cluster 2.1, perform the following steps:

Chapter 16. High Availability in the Solaris Operating Environment, Partitioned Database 613

1. Ensure that your system meets the requirements detailed in “Preliminary
Requirements” on page 615.

2. Ensure that Sun Cluster 2.1 is installed properly.
3. Create the logical hosts which that will host the database partitions.
4. Create the logical host filesystems, and filesystems for SMS table spaces.
5. Install DB2 on each machine in the cluster (you can use cconsole or

ctelnet, which come with Sun Cluster 2.1).
6. For mutual partition failover, set up HA-NFS either locally or remotely on

a separate cluster to export the highly available instance’s home directory.
7. On one machine only, create an instance on the HA-NFS filesystem, while

ensuring that the user for the instance is created with the same uid on the
other machines in the cluster. Also ensure that the groups and services for
the instance are also created on the other machines in the cluster.

8. Run the hadb2eee_addinst script as root to set up your HA instance or
configure the instance manually. The hadb2eee_addinst script is provided
as an example on how an instance may be set up. The hadb2eee_addinst
script does the following:
v Creates the .rhost file in the specified instance owner’s home directory.
v Creates the db2nodes.cfg file for the instance.
v Creates the ha-db2eee.cfg file which binds database partitions to a

logical host.
v Sets up symbolic links from the default database path (which is

specified by the dftdbpath configuration parameter) to the correct logical
host filesystem for a database partition.

v Adds a line for the instance in the /var/db2/v5/db2tabeee file.
v Tries to run non-interactively on the other machines in the cluster.

9. Run hadb2start to start the high availability environment

Choosing a Failover Configuration

To choose a failover configuration, perform the following steps:
1. Set up the machines to use either a hot standby or mutual takeover

configuration. For a hot standby configuration, use one logical host. For a
mutual takeover, use two or more logical hosts.

2. Decide on the amount of disk space that is required for each logical host
and its resources, such as raw devices or SMS table space containers.
Whether you use SMS or DMS (raw devices) table spaces, any disks
belonging to a logical host must be included in its disk groups.

Table space considerations
You must decide on the type of table space that you want to use.
If you want to use SMS table spaces, you must set them up using
disks from the disk groups that belong to a logical host. In

614 Administration Guide Design and Implementation

addition, you must include the filesystem in the vfstab for the
logical host. Refer to the Sun Cluster 2.1 documentation for
information about how to add a file system to a logical host.

There are benefits and costs associated with using either SMS or
DMS table spaces. For example, SMS table spaces reside on file
systems that must be file-system checked before they are mounted.
This can add a considerable amount of overhead when failover
occurs, and can result in the Sun Cluster 2.1 software timing out. If
you use SMS table spaces, ensure that they are journaled files
systems, which require less time to check after a failover.

DMS table spaces do not have to be file-system checked during
failover, which can reduce the failover time for the high
availability scripts.

You should remember that, for both SMS and DMS table spaces,
committed transactions that are written to the logs will be applied
to the database during crash recovery after the database server
fails over.

Preliminary Requirements

Any logical host that you want in a cluster must have the following
directories available:

/LOGICAL_HOST
Is the name of the logical host that runs the partition

/LOGICAL_HOST/home
Is where the home directories reside

/LOGICAL_HOST/disks
Is where the SMS table spaces reside for the database partitions

For example:
/log0
/log0/home/db2eee
/log0/disks/db2eee

Where log0 is the logical host and db2eee is the highly available instance.

Scripts and Programs

All of the following scripts are in the directory /opt/IBMdb2/V5.0/ha/UDB-
EEE_SC2.x/bin. Included are:

hadb2eee_addinst
The sample instance setup script

Chapter 16. High Availability in the Solaris Operating Environment, Partitioned Database 615

hadb2eee_reg
Registers DB2 Enterprise - Extended Edition for high availability

hadb2eee_startnet
Script that starts partitions for a logical host. This script is run
automatically by Sun Cluster 2.1. You should not run this script
manually.

hadb2eee_stopnet
Script that stops partitions for a logical host. This script is run
automatically by Sun Cluster 2.1. You should not run this script
manually.

hadb2eee_unreg
Unregisters DB2 Enterprise - Extended Edition for high availability

hadb2stat
Shows the current status of DB2 Enterprise - Extended Edition

hadb2start
Starts DB2 in the highly available environment.

hadb2stop
Stops DB2 in the highly available environment.

The hadb2eee_startnet and hadb2eee_stopnet scripts are used during a
failover. The hadb2eee_startnet script starts partitions on a physical machine,
while hadb2eee_stopnet stops partitions on a physical machine. Both the start
and stop scripts read the /var/db2/v5/db2tabeee configuration file to find
out which DB2 instances are highly available. See “Enabling Failover for an
Instance” on page 617 for information about this file.

Creating a DB2 Instance

Refer to the DB2 Enterprise - Extended Edition for UNIX Quick Beginnings for
information about creating an instance.

Registering the DB2 Resource with Sun Cluster 2.1

If you are using local HA-NFS for your cluster, you must register and set up
HA-NFS before HA DB2 EEE. The hadb2eee_reg script may look something
like this:
Make sure you register hanfs with every logical node even though only
one will use it. This is to fix a dependency issue with SC2.x.
#

TIMEOUT=600
STARTUP=1
#DEPONNFS=
DEPONNFS="-d nfs"

616 Administration Guide Design and Implementation

Register HA-NFS
#
#hareg -s -r nfs
#hareg -y nfs

hareg -r hadb2eee -b /opt/IBMdb2/V5.0/ha/UDB-EEE_SC2.x/bin/ -m START=hadb2eee_st
art,START_NET=hadb2eee_startnet,STOP_NET=hadb2eee_stopnet,ABORT_NET=hadb2eee_abo
rtnet -t START_NET=$TIMEOUT,STOP_NET=$TIMEOUT $DEPONNFS

if [[STARTUP -eq 1]]
then
hareg -y hadb2eee

fi

Where:

TIMEOUT
Is the timeout for the Sun Cluster agent to start and stop DB2.

STARTUP
Specifies whether to start the high availability environment after
registering HA DB2 EEE.

DEPONNFS
Set this to an empty string if you are using a remote HA-NFS server.
If you are using a local HA-NFS server, ensure that this is set to -d
nfs, and that the lines that register HA-NFS are uncommented.

Enabling Failover for an Instance

To enable an instance for failover, you create an entry for it in the
/var/db2/v5/db2tabeee file. This file must be kept consistent across all the
machines in the cluster. Entries in this file are in the form:

TYPE INSTANCE NFS_HOST ON HA-NFS_DIR LOCAL_MOUNT_POINT

Where:

TYPE Is the type of instance. The value can be one of the following:
v DATA to indicate a database instance.
v ADMIN to indicate an administration server instance.

INSTANCE
Is the user name of the instance owner.

NFS_HOST
Is the logical host which is hosting the HA-NFS filesystem.

ON/OFF
Specifies whether the instance is highly available (ON) or not (OFF).

Chapter 16. High Availability in the Solaris Operating Environment, Partitioned Database 617

HA-NFS_DIR
The directory on the HA-NFS host to mount.

LOCAL_MOUNT_POINT
The local mount point for the HA-NFS.

An example might be:
DATA db2eee sphere ON /log0/home /export/ha_home

In this example, the instance owner’s home directory should be placed under
/export/ha_home.

Binding Database Partition Servers to a Logical Host

You use the file called $INSTHOME/sqllib/hadb2-eee.cfg to bind database
partitions to a logical host. Bind, in this context, means that the file ensures
that the partitions follow the logical hosts around the cluster, starting on the
machine in the cluster that hosts the logical host. Entries in this file are in the
form:

NODE: log0 0
NODE: log0 10
NODE: log0 12
NODE: log1 33
NODE: log1 45
NODE: log1 59

In this example, logical host log0 is responsible for partitions 0, 10, and 12,
while logical host log1 is responsible for partitions 33, 45, and 59. These
logical hosts are responsible for both starting and stopping the partitions
during a failover situation.

Note: There must be a one-to-one relationship between the partitions in this
file and the db2nodes.cfg file.

How Failover Processing Works

When a failover occurs, the hadb2eee_startnet and hadb2eee_stopnet
programs read the /var/db2/v5/db2tabeee file to find out which DB2
instances are highly available. Then for each highly available instance, they
read the configuration file $INSTHOME/sqllib/hadb2-eee.cfg, which binds
partitions to logical hosts.

Information about the failover process is sent to the syslog using the facility
set to LOG_USER and the priority set to LOG_ERR.

618 Administration Guide Design and Implementation

Setting Up a Hot Standby Configuration

To set up a hot standby configuration, bind all of the partitions to one logical
host that is hosted by one of the servers in the cluster. When you finish, the
$INSTHOME/sqllib/hadb2-eee.cfg file should resemble the following:

NODE: log0 0
NODE: log0 10
NODE: log0 12
NODE: log0 33
NODE: log0 45
NODE: log0 59

If the logical host log0 fails over, all the database partitions associated with it
will fail over as well.

Setting Up a Mutual Takeover Configuration

To set up a mutual takeover configuration, bind the partitions to two or more
logical hosts. When you finish, the $INSTHOME/sqllib/hadb2-eee.cfg file
should resemble the following:

NODE: log0 0
NODE: log0 10
NODE: log0 12
NODE: log0 33
NODE: log1 45
NODE: log1 59

You do not need to set up a completely symmetric configuration. As the
example shows, the logical host log0 supports more partitions than the logical
host log1 (partitions 0, 10, 12 and 33 for logical host log0 versus partitions 45
and 59 for logical host log1). Because you do not have to implement a
symmetric configuration, a mutual takeover configuration provides an amount
of flexibility that will support any situation.

Starting and Stopping DB2

To start DB2 in a failover environment, use the hadb2start command. This
command both enables the failover environment, and starts DB2.

If you want to stop DB2, use the hadb2stop command. This command both
disables the failover environment and stops DB2.

Note: If you do not issue hadb2stop and you use db2stop, Sun Cluster 2.1
may assume that the DB2 instance needs to be failed over.

Chapter 16. High Availability in the Solaris Operating Environment, Partitioned Database 619

Running Scripts During a Failover

The /var/db2/v5/failover.eee script runs automatically when a failover occurs.
You can use this script to send email (for example, to notify support staff) of
the failover situation. You should keep the commands in this script to a
minimum, because it runs before DB2 is started. Depending on whether DB2
is starting or stopping, the following scripts will also run (if they are
available) for each instance.

Note: You must create the $INSTHOME/sqllib/ha directory and create these
scripts to be executables. You should ensure that you have backup
copies of these scripts.

v $INSTHOME/sqllib/ha/pre_db2starteee

This file takes as an argument the number of logical hosts that are currently
running on the failover machine. If this script exists, it runs immediately
before the db2start command.

v $INSTHOME/sqllib/ha/pre_db2stopeee

This file takes as an argument the number of logical hosts that are currently
running on the failover machine. If this script exists, it runs immediately
before the db2stop command.

Note: This script may not be run if the machine crashes.
v $INSTHOME/sqllib/ha/post_failovereee

This file runs just after a failover and is used to such tasks as restart
databases.

Considerations for Table Spaces

You must decide on the type of table space that you want to use. If you want
to use SMS table spaces, you must set them up using disks from the disk
groups that belong to a logical host. In addition, you must include them in
the vfstab for the logical host. Refer to the Sun Cluster 2.1 documentation for
information about how to add a file system to a logical host.

There are benefits and costs associated with using either SMS or DMS table
spaces. For example, SMS table spaces reside on file systems that must be
file-system checked before they are mounted. This can add a considerable
amount of overhead when failover occurs, and can result in the Sun Cluster
2.1 software timing out. If you use SMS table spaces, ensure that they are
journaled file systems, which require less time to check after a failover.

DMS table spaces that use raw devices do not have to be file-system checked
during failover. This can reduce the failover time for the high availability

620 Administration Guide Design and Implementation

scripts, but you should remember that committed transactions that are written
to the logs will be applied to the database during crash recovery after the
database server fails over.

If you are using raw devices for table spaces (that is, you are using DMS table
spaces), you must ensure that the disks are part of the disk group of the
logical host.

Client Application Considerations

Client applications should communicate with the high availability services
only through the logical hostname of the logical host of the high availability
service. You should ensure that client applications are written to accept a
communications error and possibly retry after a few minutes.

Consider a typical client connection. The client is connected to machineA
through the logical host called snap. If machineA fails, then snap fails over to
machineB. According to machineB, the client connection does not exist, and
will send the client a connect reset message, which will appear to the client as
a communication error. The client must reconnect to the server to obtain a
new connection from machineB when DB2 starts.

Chapter 16. High Availability in the Solaris Operating Environment, Partitioned Database 621

622 Administration Guide Design and Implementation

Part 5. Appendixes

© Copyright IBM Corp. 1993, 1999 623

624 Administration Guide Design and Implementation

Appendix A. How the DB2 Library Is Structured

The DB2 Universal Database library consists of SmartGuides, online help,
books and sample programs in HTML format. This section describes the
information that is provided, and how to access it.

To access product information online, you can use the Information Center. You
can view task information, DB2 books, troubleshooting information, sample
programs, and DB2 information on the Web. See “Accessing Information with
the Information Center” on page 636 for details.

Completing Tasks with SmartGuides

SmartGuides help you complete some administration tasks by taking you
through each task one step at a time. SmartGuides are available through the
Control Center and the Client Configuration Assistant. The following table
lists the SmartGuides.

Note: Create Database, Index, and Configure Multisite Update SmartGuide
are available for the partitioned database environment.

SmartGuide Helps You to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click Add.

Back up Database Determine, create, and schedule a backup
plan.

From the Control Center, click with
the right mouse button on the
database you want to back up and
select Backup->Database using
SmartGuide.

Configure Multisite
Update SmartGuide

Perform a multi-site update, a distributed
transaction, or a two-phase commit.

From the Control Center, click with
the right mouse button on the
Database icon and select Multisite
Update.

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, click with
the right mouse button on the
Databases icon and select
Create->Database using
SmartGuide.

© Copyright IBM Corp. 1993, 1999 625

SmartGuide Helps You to... How to Access...

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, click with
the right mouse button on the
Tables icon and select
Create->Table using SmartGuide.

Create Table Space Create a new table space. From the Control Center, click with
the right mouse button on the
Table spaces icon and select
Create->Table space using
SmartGuide.

Index Advise which indexes to create and drop for
all your queries.

From the Control Center, click with
the right mouse button on the
Index icon and select
Create->Index using SmartGuide.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match
your business requirements.

From the Control Center, click with
the right mouse button on the
database you want to tune and
select Configure using
SmartGuide.

Restore Database Recover a database after a failure. It helps
you understand which backup to use, and
which logs to replay.

From the Control Center, click with
the right mouse button on the
database you want to restore and
select Restore->Database using
SmartGuide.

Accessing Online Help

Online help is available with all DB2 components. The following table
describes the various types of help. You can also access DB2 information
through the Information Center. For information see “Accessing Information
with the Information Center” on page 636.

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive
mode, enter:

? command

where command is a keyword or the entire
command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE
command.

626 Administration Guide Design and Implementation

Type of Help Contents How to Access...

Control Center Help

Client Configuration
Assistant Help

Event Analyzer Help

Command Center Help

Explains the tasks you can
perform in a window or
notebook. The help includes
prerequisite information you
need to know, and describes
how to use the window or
notebook controls.

From a window or notebook, click the Help push
button or press the F1 key.

Message Help Describes the cause of a
message, and any action
you should take.

From the command line processor in interactive
mode, enter:

? XXXnnnnn

where XXXnnnnn is a valid message identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext is the file where you want to
save the message help.

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive
mode, enter:

help statement

where statement is an SQL statement.

For example, help SELECT displays help about
the SELECT statement.
Note: SQL help is not available on UNIX-based
platforms.

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive
mode, enter:

? sqlstate or ? class-code

where sqlstate is a valid five-digit SQL state and
class-code is the first two digits of the SQL state.

For example, ? 08003 displays help for the 08003
SQL state, while ? 08 displays help for the 08 class
code.

Appendix A. How the DB2 Library Is Structured 627

DB2 Information – Hardcopy and Online

The table in this section lists the DB2 books. They are divided into two
groups:

Cross-platform books
These books contain the common DB2 information for all
platforms.

Platform-specific books
These books are for DB2 on a specific platform. For example,
there are separate Quick Beginnings books for DB2 on OS/2,
on Windows NT, and on the UNIX-based platforms.

Cross-platform sample programs in HTML
These samples are the HTML version of the sample programs
that are installed with the SDK. They are for informational
purposes and do not replace the actual programs.

Most books are available in HTML and PostScript format, or you can choose
to order a hardcopy from IBM. The exceptions are noted in the table.

On OS/2 and Windows platforms, HTML documentation files can be installed
under the doc\html subdirectory. Depending on the language of your system,
some files may be in that language, and the remainder are in English.

On UNIX platforms, you can install multiple language versions of the HTML
documentation files under the doc/%L/html subdirectories. Any
documentation that is not available in a national language is shown in
English.

You can obtain DB2 books and access information in a variety of different
ways:

View See “Viewing Online Information” on page 635.

Search See “Searching Online Information” on page 638.

Print See “Printing the PostScript Books” on page 638.

Order See “Ordering the Printed Books” on page 639.

Name Description Form Number

File Name for
Online Book

HTML
Directory

Cross-Platform Books

628 Administration Guide Design and Implementation

Name Description Form Number

File Name for
Online Book

HTML
Directory

Administration Guide Administration Guide, Design and
Implementation contains information
required to design, implement, and
maintain a database. It also describes
database access using the Control
Center(whether local or in a
client/server environment), auditing,
database recovery, distributed database
support, and high availability.

Administration Guide, Performance
contains information that focuses on the
database environment, such as
application performance evaluation and
tuning.

You can order both volumes of the
Administration Guide in the English
language in North America using the
form number SBOF-8922.

Volume 1
SC09-2839
db2d1x60

Volume 2
SC09-2840
db2d2x60

db2d0

Administrative API
Reference

Describes the DB2 application
programming interfaces (APIs) and data
structures you can use to manage your
databases. Explains how to call APIs
from your applications.

SC09-2841

db2b0x60

db2b0

Application Building
Guide

Provides environment setup information
and step-by-step instructions about how
to compile, link, and run DB2
applications on Windows, OS/2, and
UNIX-based platforms.

This book combines the Building
Applications books for the OS/2,
Windows, and UNIX-based
environments.

SC09-2842

db2axx60

db2ax

APPC, CPI-C and SNA
Sense Codes

Provides general information about
APPC, CPI-C, and SNA sense codes that
you may encounter when using DB2
Universal Database products.
Note: Available in HTML format only.

No form number

db2apx60

db2ap

Appendix A. How the DB2 Library Is Structured 629

Name Description Form Number

File Name for
Online Book

HTML
Directory

Application Development
Guide

Explains how to develop applications
that access DB2 databases using
embedded SQL or JDBC, how to write
stored procedures, user-defined types,
user-defined functions, and how to use
triggers. It also discusses programming
techniques and performance
considerations.

This book was formerly known as the
Embedded SQL Programming Guide.

SC09-2845

db2a0x60

db2a0

CLI Guide and Reference Explains how to develop applications
that access DB2 databases using the DB2
Call Level Interface, a callable SQL
interface that is compatible with the
Microsoft ODBC specification.

SC09-2843

db2l0x60

db2l0

Command Reference Explains how to use the command line
processor, and describes the DB2
commands you can use to manage your
database.

SC09-2844

db2n0x60

db2n0

Data Movement Utilities
Guide and Reference

Explains how to use the Load, Import,
Export, Autoloader, and Data
Propogation utilities to work with the
data in the database.

SC09-2858

db2dmx60

db2dm

DB2 Connect Personal
Edition Quick Beginnings

Provides planning, installing, and
configuring information for DB2 Connect
Personal Edition.

GC09-2830

db2c1x60

db2c1

DB2 Connect User’s Guide Provides concepts, programming and
general usage information about the DB2
Connect products.

SC09-2838

db2c0x60

db2c0

Connectivity Supplement Provides setup and reference information
on how to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as
DRDA application requesters with DB2
Universal Database servers, and on how
to use DRDA application servers with
DB2 Connect application requesters.
Note: Available in HTML and PostScript
formats only.

No form number

db2h1x60

db2h1

Glossary Provides a comprehensive list of all DB2
terms and definitions.
Note: Available in HTML format only.

No form number

db2t0x50

db2t0

630 Administration Guide Design and Implementation

Name Description Form Number

File Name for
Online Book

HTML
Directory

Installation and
Configuration Supplement

Guides you through the planning,
installation, and set up of
platform-specific DB2 clients. This
supplement contains information on
binding, setting up client and server
communications, DB2 GUI tools, DRDA
AS, distributed installation, and the
configuration of distributed requests and
access methods to heterogeneous data
sources.

GC09-2857

db2iyx60

db2iy

Message Reference Lists messages and codes issued by DB2,
and describes the actions you should
take.

GC09-2846

db2m0x60

db2m0

Replication Guide and
Reference

Provides planning, configuration,
administration, and usage information
for the IBM Replication tools supplied
with DB2.

SC26-9642

db2e0x60

db2e0

SQL Getting Started Introduces SQL concepts, and provides
examples for many constructs and tasks.

SC09-2856

db2y0x60

db2y0

SQL Reference, Volume 1
and Volume 2

Describes SQL syntax, semantics, and the
rules of the language. Also includes
information about release-to-release
incompatibilities, product limits, and
catalog views.

You can order both volumes of the SQL
Reference in the English language in
North America with the form number
SBOF-8923.

SBOF-8923

Volume 1
db2s1x60

Volume 2
db2s2x60

db2s0

System Monitor Guide and
Reference

Describes how to collect different kinds
of information about databases and the
database manager. Explains how to use
the information to understand database
activity, improve performance, and
determine the cause of problems.

SC09-2849

db2f0x60

db2f0

Troubleshooting Guide Helps you determine the source of
errors, recover from problems, and use
diagnostic tools in consultation with DB2
Customer Service.

S10J-8169 db2p0

Appendix A. How the DB2 Library Is Structured 631

Name Description Form Number

File Name for
Online Book

HTML
Directory

What’s New Describes the new features, functions,
and enhancements in DB2 Universal
Database, Version 6.0, including
information about Java-based tools.

SC09-2851

db2q0x60

db2q0

Platform-Specific Books

Administering Satellites
Guide and Reference

Provides planning, configuration,
administration, and usage information
for satellites.

GC09-2821

db2dsx60

db2ds

DB2 Personal Edition
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on the OS/2, Windows 95, and
Windows NT operating systems.

GC09-2831

db2i1x60

db2i1

DB2 for OS/2 Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the OS/2
operating system. Also contains
installing and setup information for
many supported clients.

GC09-2834

db2i2x60

db2i2

DB2 for UNIX Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on
UNIX-based platforms. Also contains
installing and setup information for
many supported clients.

GC09-2836

db2ixx60

db2ix

DB2 for Windows NT
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the
Windows NT operating system. Also
contains installing and setup information
for many supported clients.

GC09-2835

db2i6x60

db2i6

DB2 Enterprise - Extended
Edition for UNIX Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for UNIX.
Also contains installing and setup
information for many supported clients.

GC09-2832

db2v3x60

db2v3

632 Administration Guide Design and Implementation

Name Description Form Number

File Name for
Online Book

HTML
Directory

DB2 Enterprise - Extended
Edition for Windows NT
Quick Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for
Windows NT. Also contains installing
and setup information for many
supported clients.

GC09-2833

db2v6x60

db2v6

DB2 Connect Enterprise
Edition for OS/2 and
Windows NT Quick
Beginnings

Provides planning, migration,
installation, and configuration
information for DB2 Connect Enterprise
Edition on the OS/2 and Windows NT
operating systems. Also contains
installation and setup information for
many supported clients.

This book was formerly part of the DB2
Connect Enterprise Edition Quick
Beginnings.

GC09-2828

db2c6x60

db2c6

DB2 Connect Enterprise
Edition for UNIX Quick
Beginnings

Provides planning, migration,
installation, configuration, and usage
information for DB2 Connect Enterprise
Edition in UNIX-based platforms. Also
contains installation and setup
information for many supported clients.

This book was formerly part of the DB2
Connect Enterprise Edition Quick
Beginnings.

GC09-2829

db2cyx60

db2cy

DB2 Data Links Manager
for AIX Quick Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for AIX.

GC09-2837

db2z0x60

db2z0

DB2 Data Links Manager
for Windows NT Quick
Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for Windows
NT.

GC09-2827

db2z6x60

db2z6

DB2 Query Patroller
Administration Guide

Provides administration information on
DB2 Query Patrol.

SC09-2859

db2dwx60

db2dw

DB2 Query Patroller
Installation Guide

Provides installation information on DB2
Query Patrol.

GC09-2860

db2iwx60

db2iw

DB2 Query Patroller
User’s Guide

Describes how to use the tools and
functions of the DB2 Query Patrol.

SC09-2861

db2wwx60

db2ww

Appendix A. How the DB2 Library Is Structured 633

Name Description Form Number

File Name for
Online Book

HTML
Directory

Cross-Platform Sample Programs in HTML

Sample programs in
HTML

Provides the sample programs in HTML
format for the programming languages
on all platforms supported by DB2 for
informational purposes (not all samples
are available in all languages). Only
available when the SDK is installed.

See Application Building Guide for more
information on the actual programs.
Note: Available in HTML format only.

No form number db2hs/c
db2hs/cli
db2hs/clp
db2hs/cpp
db2hs/cobol
db2hs/cobol_mf
db2hs/fortran
db2hs/java
db2hs/rexx

Notes:

1. The character in the sixth position of the file name indicates the language
of a book. For example, the file name db2d0e60 indicates that the
Administration Guide is in English. The following letters are used in the file
names to indicate the language of a book:

Language Identifier
Brazilian Portuguese b
Bulgarian u
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Russian r
Simp. Chinese c
Slovenian l
Spanish z

634 Administration Guide Design and Implementation

Swedish s
Trad. Chinese t
Turkish m

2. For late breaking information that could not be included in the DB2 books:
v On UNIX-based platforms, see the Release.Notes file. This file is located

in the DB2DIR/Readme/%L directory, where %L is the locale name and
DB2DIR is:
– /usr/lpp/db2_06_01 on AIX
– /opt/IBMdb2/V6.1 on HP-UX, Solaris, SCO UnixWare 7, and Silicon

Graphics IRIX
– /usr/IBMdb2/V6.1 on Linux.

v On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed.

v Under Windows Start menu

Viewing Online Information

The manuals included with this product are in Hypertext Markup Language
(HTML) softcopy format. Softcopy format enables you to search or browse the
information, and provides hypertext links to related information. It also makes
it easier to share the library across your site.

You can view the online books or sample programs with any browser that
conforms to HTML Version 3.2 specifications.

To view online books or sample programs on all platforms other than SCO
UnixWare 7:
v If you are running DB2 administration tools, use the Information Center.

See “Accessing Information with the Information Center” on page 636 for
details.

v Select the Open Page menu item of your Web browser. The page you open
contains descriptions of and links to DB2 information:
– On UNIX-based platforms, open the following page:

file:/INSTHOME/sqllib/doc/%L/html/index.htm

where %L is the locale name.
– On other platforms, open the following page:

sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

Appendix A. How the DB2 Library Is Structured 635

If you have not installed the Information Center, you can open the page
by double-clicking on the DB2 Online Books icon. Depending on the
system you are using, the icon is in the main product folder or the
Windows Start menu.

To view online books or sample programs on the SCO UnixWare 7:
v DB2 Universal Database for SCO UnixWare 7 uses the native SCOhelp

utility to search the DB2 information. You can access SCOhelp by the
following methods:
– entering the ″scohelp″ command on the command line,
– selecting the Help menu in the Control Panel of the CDE desktop or
– selecting Help in the Root menu of the Panorama desktop

For more information on SCOhelp, refer to the Installation and Configuration
Supplement.

Accessing Information with the Information Center

The Information Center provides quick access to DB2 product information.
The Information Center is available on all platforms on which the DB2
administration tools are available.

Depending on your system, you can access the Information Center from the:
v Main product folder
v Toolbar in the Control Center
v Windows Start menu
v Help menu of the Control Center

The Information Center provides the following kinds of information. Click the
appropriate tab to look at the information:

Tasks Lists tasks you can perform using DB2.

Reference Lists DB2 reference information, such as
keywords, commands, and APIs.

Books Lists DB2 books.

Troubleshooting Lists categories of error messages and their
recovery actions.

Sample Programs Lists sample programs that come with the
DB2 Software Developer’s Kit. If the Software
Developer’s Kit is not installed, this tab is not
displayed.

Web Lists DB2 information on the World Wide

636 Administration Guide Design and Implementation

Web. To access this information, you must
have a connection to the Web from your
system.

When you select an item in one of the lists, the Information Center launches a
viewer to display the information. The viewer might be the system help
viewer, an editor, or a Web browser, depending on the kind of information
you select.

The Information Center provides some search capabilities, so you can look for
specific topics, and filter capabilities to limit the scope of your searches.

For a full text search, click the Search button of the Information Center follow
the Search DB2 Books link in each HTML file.

The HTML search server is usually started automatically. If a search in the
HTML information does not work, you may have to start the search server by
double-clicking its icon on the Windows or OS/2 desktop.

Refer to the release notes if you experience any other problems when
searching the HTML information.

Note: Search function is not available in the Linux and Silicon Graphics
environments.

Setting Up a Document Server

By default, the DB2 information is installed on your local system. This means
that each person who needs access to the DB2 information must install the
same files. To have the DB2 information stored in a single location, use the
following instructions:
1. Copy all files and subdirectories from \sqllib\doc\html on your local

system to a Web server. Each book has its own subdirectory containing all
the necessary HTML and GIF files that make up the book. Ensure that the
directory structure remains the same.

2. Configure the Web server to look for the files in the new location. For
information, see the NetQuestion Appendix in Installation and Configuration
Supplement.

3. If you are using the Java version of the Information Center, you can
specify a base URL for all HTML files. You should use the URL for the list
of books.

4. Once you are able to view the book files, you should bookmark commonly
viewed topics. Among those, you will probably want to bookmark the
following pages:

Appendix A. How the DB2 Library Is Structured 637

v List of books
v Tables of contents of frequently used books
v Frequently referenced articles, such as the ALTER TABLE topic
v The Search form

For information about setting up a search, see the NetQuestion Appendix in
Installation and Configuration Supplement book.

Searching Online Information

To search for information in the HTML books, you can do the following:
v Click on Search the DB2 Books at the bottom of any page in the HTML

books. Use the search form to find a specific topic. This function is not
available in the Linux or Silicon Graphics IRIX environments.

v Click on Index at the bottom of any page in an HTML book. Use the index
to find a specific topic in the book.

v Display the table of contents or index of the HTML book, and then use the
find function of the Web browser to find a specific topic in the book.

v Use the bookmark function of the Web browser to quickly return to a
specific topic.

v Use the search function of the Information Center to find specific topics. See
“Accessing Information with the Information Center” on page 636 for
details.

Printing the PostScript Books

If you prefer to have printed copies of the manuals, you can decompress and
print PostScript versions. For the file name of each book in the library, see the
table in “DB2 Information – Hardcopy and Online” on page 628. Specify the
full path name for the file you intend to print.

On OS/2 and Windows platforms:

1. Copy the compressed PostScript files to a hard drive on your system. The
files have a file extension of .exe and are located in the
x:\doc\language\books\ps directory, where x: is the letter representing the
CD-ROM drive and language is the two-character country code that
represents your language (for example, EN for English).

2. Decompress the file that corresponds to the book that you want. Each
compressed book is a self-extracting executable file. To decompress the

638 Administration Guide Design and Implementation

book, simply run it as you would run any other executable program. The
result from this step is a printable PostScript file with a file extension of
.ps.

3. Ensure that your default printer is a PostScript printer capable of printing
Level 1 (or equivalent) files.

4. Enter the following command from a command line:
print filename.ps

On UNIX-based platforms:
1. Mount the CD-ROM. Refer to your Quick Beginnings manual for the

procedures to mount the CD-ROM.
2. Change to /cdrom/doc/%L/ps directory on the CD-ROM, where /cdrom is

the mount point of the CD-ROM and %L is the name of the desired locale.
The manuals will be installed in the previously-mentioned directory with
file names ending with .ps.Z.

3. Decompress and print the manual you require using the following
command:
v For AIX:

zcat filename | qprt -P PSPrinter_queue

v For HP-UX, Solaris, or SCO UnixWare 7:
zcat filename | lp -d PSPrinter_queue

v For Linux:
zcat filename | lpr -P PSPrinter_queue

v For Silicon Graphics IRIX:
zcat < filename | lp -d PSPrinter_queue

where filename is the full path name and extension of the compressed
PostScript file and PSprinter_queue is the name of the PostScript printer
queue.

For example, to print the English version of DB2 for UNIX Quick
Beginnings on AIX, you can use the following command:
zcat /cdrom/doc/en/ps/db2ixe60.ps.Z | qprt -P ps1

Ordering the Printed Books

You can order the printed DB2 manuals either as a set or individually. There
are two sets of books available. The form number for the entire set of DB2
books is SBOF-8926-00. The form number for the books listed under the
heading ″Cross-Platform Books″ is SBOF-8924-00.

Appendix A. How the DB2 Library Is Structured 639

Note: These form numbers only apply if you are ordering books that are
printed in the English language in North America.

You can also order books individually by the form number listed in “DB2
Information – Hardcopy and Online” on page 628. To order printed versions,
contact your IBM authorized dealer or marketing representative, or phone
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

640 Administration Guide Design and Implementation

Appendix B. Planning Database Migration

When you migrate your database, the following events occur, as necessary,
depending on which level of DB2 you are migrating from:
v The following database entities are migrated:

– Database configuration file
– Database system catalog tables
– Database directories
– Database log file header

v The database is relocated to a new database path (only applicable to a
migration from DB2 Version 2.x).

v System catalog tables are changed as follows:
– New columns are added.
– New tables are created.
– A set of catalog views is migrated, and a set of new catalog views is

created, in the SYSCAT schema.
– A set of updatable catalog views is created in the SYSSTAT schema.
– A set of general purpose scalar functions is kept, and a set of new

general purpose scalar functions is created, in the SYSFUN schema. Only
SYSFUN.DIFFERENCE scalar function is dropped and re-created during
database migration.

v A buffer pool file is created in the database directory (only applicable to a
migration from DB2 Version 2.x).

v A database history file and its shadow are created in the database directory.
This file contains a summary of backup information that can be used if a
database must be restored, and it is updated whenever specific operations
are performed on the database. A summary of backup information is also
kept for backup and restore operations on a table space.

To plan your database migration to V6, read the following sections:
v Migration Considerations
v Migrating a Database

The details for migrating your database are found in the Quick Beginnings
manuals for your platform. This appendix will only provide you with an
overview of the migration process for planning purposes.

© Copyright IBM Corp. 1993, 1999 641

Migration Considerations

To successfully migrate a database created with a previous version of the
database manager, you must consider the following:
v Migration Restrictions
v Security and Authorization
v Storage Requirements
v Release-to-Release Incompatibilities

Migration Restrictions

There are certain pre-conditions or restrictions that you should be aware of
before attempting to migrate your database to V6:
v Migration is only supported from V2.x or V5.x. Migration from DB2 V1.2

Parallel Edition is not supported; only DB2 UDB EEE V5.x is supported.
Earlier versions of DB2 (Database Manager) must be migrated to V2.x or
V5.x before attempting to migrate to V6.

v Issuing the migration command from a V6 client to migrate a database on a
V6 Server is supported. However, issuing a migration command from
earlier versions of DB2 clients to a V6 Server is not supported.

v Migration between platforms is not supported.
v User objects within your database cannot have V6 reserved schema names

as object qualifiers. These reserved schema names include: SYSCAT,
SYSSTAT, and SYSFUN.

v Database objects in DB2 Version 2.x with a dependency on the
SYSFUN.DIFFERENCE function must be dropped before migrating the
database. Objects that might have a dependency on this function include:
views, constraints, functions, and triggers.

v User-defined distinct types using the names BIGINT, REAL, DATALINK, or
REFERENCE must be renamed before migrating the database.

v Your database cannot be in one of the following states:
– Backup pending
– Roll-forward pending
– One or more table spaces not in a normal state
– Transaction inconsistent

v Restore of down-level (V2.x or V5.x) database backups is supported but
rolling-forward of down-level logs is not supported.

Security and Authorization

You need SYSADM authority to migrate your database.

642 Administration Guide Design and Implementation

Storage Requirements

Space is required for both the old and new catalogs during the migration, and
the amount of disk space required will vary depending on the complexity of
the database as well as the number and size of the database objects. These
objects include all tables and views. You should make available at least two
times the amount of disk space as the database catalog currently occupies. If
there is not enough disk space, migration fails.

You should also consider increasing the database configuration parameters
associated with the log files. You should increase logfilsiz, logprimary, and
logsecond to prevent the space for these files from running out. If log space is
completely used, you will receive a SQLCODE of SQL1704N with a reason
code of 3. If this happens, increase the log space parameters and re-issue the
database migration command.

Release-to-Release Incompatibilities

To successfully migrate a database, you should consider the impact of the
incompatibilities between the two versions of the product. The following
incompatibilities deserve special attention before you begin your migration:

Configuration Parameters

When migrating from Version 2.x to Version 6, a small number of parameters
are not preserved due to a change in the behavior of the associated heap.

In order to take advantage of Version 6 enhancements, you should re-tune
your database manager and database configuration after migrating your
databases. To assist in this tuning, you may wish to record and compare
configuration parameter values from before and after your migration. (See the
GET DATABASE CONFIGURATION and GET DATABASE MANAGER
CONFIGURATION commands in the Command Reference manual.)

Migrating a Database

The following are the steps you must take to migrate your database. The
database manager must be started before migration can begin.

PRE-MIGRATION:

Note: The pre-migration steps must be done on a previous release (that is, on
your current release before migrating to, or installing, the new release).

1. You cannot migrate a database that is in one of the following states:
v Backup pending
v Roll-forward pending

Appendix B. Planning Database Migration 643

v One or more table spaces not in a normal state
v Database inconsistent

You cannot migrate a Version 2.x database that contains any database
objects with a dependency on scalar function SYSFUN.DIFFERENCE.

In addition, you cannot migrate a database that contains any database
objects which have a qualifier (schema name) of SYSCAT, SYSSTAT, and
SYSFUN. These schema names are reserved for use by the database
manager.

You cannot migrate a database where there are user-defined distinct
types using BIGINT, REAL, DATALINK, or REFERENCE as the name of
the type.

You cannot migrate a database where there are table spaces with
containers which were defined using an absolute database path.

See the Quick Beginnings for information about migrating from previous
releases, and for information about functions to help with the above step
of the migration process. This book also introduces when and how to use
the DB2CKMIG pre-migration utility.

2. All applications and end users must be disconnected from each database
being migrated. Use the LIST APPLICATIONS and the FORCE
APPLICATIONS commands as necessary.

3. Use the DB2CKMIG pre-migration utility presented in the Quick
Beginnings for your platform to check to see if the database can be
migrated. Re-use the utility until there are no more errors. Typical
corrections include:
v Drop and re-create objects using valid schema names.
v Redefine containers so that absolute database paths are not used.
v Correct database connection states.
v Remove all dependencies from objects on scalar function

SYSFUN.DIFFERENCE.
v When a structured type and a user-defined function both live in the

same schema, have identical names, and the function is a
zero-argument function, there can be problems. As an example,
migration might attempt to create a zero-argument constrictor function
for the structured type that returns an initialized instance of the type.
The result would be that this function would clash with the existing
user-defined function (UDF) of the same name.

v Drop and recreate objects using invalid user-defined distinct types,
named BIGINT, REAL, DATALINK, or REFERENCE.

644 Administration Guide Design and Implementation

4. Backup your database.
Migration is not a recoverable process. If you backup your database
before the Version 5 restricted schema names are changed, you will not
be able to restore the database from backup using DB2 Version 6. To
restore the database, you will have to use the version of the database
manager from which you are migrating your databases.
Attention! If you do not have a backup of your database from before you
attempted migration, and the migration failed, you will have no way of
restoring your database using DB2 V6 or your previous version of the
database manager.
You should also be aware that any database transactions done during the
period between the time the backup was completed and the time the
upgrade to V6 is complete are not recoverable. That is, if sometime
following the completion of the installation and migration to V6, the
database needs to be restored (to a V6 level), the logs from before V6
installation cannot be used in roll-forward recovery.

MIGRATION:

5. Migrate the database using one of the following:
v The SQLEMGDB migrate database API
v The MIGRATE DATABASE command-line processor command
v The RESTORE DATABASE command, when restoring a full backup of

the database.

OS/2 Users: The DB2CIDMG migration program, which works in a
Configuration/Installation/Distribution (CID) architecture environment,
is only available on DB2 for OS/2. It allows for remote unattended
installation and configuration on LAN-based workstations. You must
have NetView DM/2 on your LAN to use CID migration.

UNIX Users: The Quick Beginnings describes what to do if you do not
want to migrate all databases in a given instance.

Note: During installation of V6, all of the found local database directories are
migrated. It may be that you require keeping one of your current local
database directories past the time of the installation of Version 6. (For
example, your operating system may allow a dual boot feature: where
you can have the original version of DB2 when “booting”your system
one way, and the new version when “booting” the other way.) If you
keep your current directories, then you may need a way to migrate that
database directory to the Version 6 format at some later time. The
DB2MIGDR utility allows you to complete this migration.

POST-MIGRATION:

Appendix B. Planning Database Migration 645

6. Optionally, use the DB2UIDDL utility to assist in searching all unique
indexes from the migrated database. This utility creates a file containing a
list of CREATE UNIQUE INDEX statements. Executing this file as a DB2
CLP command file results in the unique index being converted to Version
6 semantics. This also includes creating the indexes with bi-directional
pointers which are of benefit when scanning through leaf nodes to
retrieve ascending or descending ranges of values. Refer to the Quick
Beginnings manuals for more details.

7. Optionally, issue RUNSTATS on tables that are particularly critical to
performance of SQL queries. Old statistics form the previous level
database are retained in the migrated database. Therefore, any new
statistics that are modified for, or are new to, Version 6 will not be added
to the migrated database unless you issue RUNSTATS.

8. Optionally, rebind all packages. If migrating from a Version 2 database,
there may be inoperative packages. Inoperative packages remain
identified as inoperative following migration. All existing valid packages
are marked as invalid during catalog migration. You can use the
DB2RBIND utility to revalidate all packages, or allow package
revalidation to occur implicitly when a package is first used. DB2RBIND
has an argument called “all” which, when specified, rebinds all valid and
invalid packages. The REBIND PACKAGE or BIND commands will
selectively bind a particular package.

9. Tune your database and database manager configuration parameters to
take advantage of Version 6 enhancements.

10. Optionally, migrate Explain tables if you have been using the Explain
tables and are planning to use them in Version 6. There are several new
columns in the tables. Refer to the “SQL Explain Facility” and the
“Explain Tables and Definitions” in Administration Guide, Performance for
more information. The Quick Beginnings manuals have details on
migrating Version 2.x and Version 5.x Explain tables to Version 6.

Complete details on the migration steps are found in the Quick Beginnings
manuals for your platform.

646 Administration Guide Design and Implementation

Appendix C. Incompatibilities Between Releases

This appendix identifies the incompatibilities that exist between DB2
Universal Database and previous releases of DB2.

An “incompatibility” is defined to be a part of DB2 Universal Database that
works differently than it did in a previous release of DB2 in such a way that if
it is used in an existing application, it will either produce a different result,
necessitate a change to the application, or reduce performance. In this
definition, “application” can apply to a broad range of things, such as:
v Application program code
v Third-party utilities
v Interactive SQL queries
v Command and/or API invocation.

This appendix does not describe incompatibilities where certain operations in
the current release are less likely to generate an error condition than they did
in the previous release, as those changes will only have a positive impact on
existing applications.

This appendix lists incompatibilities in the following categories:
v System Catalog Views
v Application Programming
v SQL
v Database Security and Tuning
v Utilities and Tools
v Connectivity and Coexistence
v Configuration Parameters.

These categories are found in each of two major sections:
v DB2 Universal Database Version 6 Incompatibilities
v DB2 Universal Database Version 5 Incompatibilities

Each incompatibility includes a description of the change in that particular
version that causes an incompatibility with previous releases, the symptom or
effect this will have on your environment if no changes are made to it, and
the possible resolutions that are available. There is also an indicator at the
beginning of each incompatibility telling you what platforms are applicable, as
follows:

© Copyright IBM Corp. 1993, 1999 647

OS/2 OS/2

UNIX Unix-based operating systems supported by DB2

WIN Microsoft Windows platforms supported by DB2

Extended
DB2 Extended Edition, and/or Enterprise – Extended Edition

DB2 PE
DB2 Parallel Edition, Version 1.2 (shown only for previous version
consistency)

DB2 Universal Database Planned Incompatibilities

This section focuses on the DB2 Universal Database incompatibilities that we
are reserving the right to do two versions in the future, following Version 6.
Users of DB2 Universal Database are warned to code applications with these
in mind, as well as to modify existing applications to make migration to
future versions easier.

Read-only Views in a Future Version of DB2 Universal Database

UNIX OS/2 WIN Extended

Change

The system catalog views will be read-only views. The SYSSTAT views will
continue to be updateable.

Symptom

UPDATE statements which used to work against columns in the SYSCAT
views will fail.

Explanation

Tools or applications are coded to change values in the catalog by updating
the column as defined in the SYSCAT view.

Resolution

Change the tool or application to change the catalog by updating the column
as defined in the SYSSTAT view.

PK_COLNAMES and FK_COLNAMES in a Future Version of DB2 Universal
Database

UNIX OS/2 WIN Extended

648 Administration Guide Design and Implementation

Change

The SYSCAT.REFERENCES columns PK_COLNAMES and FK_COLNAMES
will no longer be available.

Symptom

Column does not exist and an error is returned.

Explanation

Tools or applications are coded to use the obsolete PK_COLNAMES and
FK_COLNAMES columns.

Resolution

Change the tool or application to use the SYSCAT.KEYCOLUSE view instead.

COLNAMES No Longer Available in a Future Version of DB2 Universal
Database

UNIX OS/2 WIN Extended

Change

The SYSCAT.INDEXES column COLNAMES will no longer be available.

Symptom

Column does not exist and an error is returned.

Explanation

Tools or applications are coded to use the obsolete COLNAMES column.

Resolution

Change the tool or application to use the SYSCAT.INDEXCOLUSE view
instead.

DB2 Universal Database Version 6 Incompatibilities

This section focuses on the DB2 Universal Database Version 6
incompatibilities.

Appendix C. Incompatibilities Between Releases 649

System Catalog Views

System Catalog Views in DB2 Universal Database Version 6

UNIX OS/2 WIN

Change:

In the system catalog views, new codes have been introduced: “U” for typed
tables, and “W” for typed views.

Symptom:

Queries that search for tables and views in the system catalogs, using the
typecode “T” for tables and “V” for views, will no longer find typed tables
and views.

Explanation:

Several system catalogs, including the system catalog views named TABLES,
PACKAGEDEP, TRIGDEP, and VIEWDEP, have a column named TYPE or
BTYPE containing a one-letter typecode. In Version 5.2, the typecode “T” was
used for all tables, and “V” was used for all views. In Version 6, untyped
tables will continue to have a typecode of “T” and typed tables will have a
new typecode of “U”. Similarly, untyped views will continue to have a
typecode of “V” and typed views will have a new typecode of “W”. Also, a
new kind of table called a hierarchy table, not directly created by users but
used by the system to implement table hierarchies, will appear in the system
catalog tables with a typecode of “H”.

Resolution:

Change the tool or application to recognize the codes for typed tables and
views. If the tool or application needs a logical view of tables, then typecodes
“T”, “U”, “V”, and “W” should be used. If the tool or application needs a
physical view of tables, including hierarchy tables, then typecodes “T” and
“H” should be used.

Primary and Foreign Key Column Names in DB2 Universal Database
Version 6

UNIX OS/2 WIN

Change:

Data type change to two SYSCAT.REFERENCES columns, PK_COLNAMES
and FK_COLNAMES, from VARCHAR(320) to VARCHAR(640).

650 Administration Guide Design and Implementation

Symptom:

Primary key and/or foreign key column names are truncated, are not correct,
or are missing.

Explanation:

When column names greater than 18 bytes in length are used in a primary
key or foreign key, the format under which the list of column names are
stored in these two columns cannot remain the same. The 20-byte blank
delimited column name(s) coming after the column whose length is greater
than 18 will be shifted to the right the number of bytes that the column
whose length is greater than 18 is over 18 bytes. As well, if the list of column
names exceeds 640 bytes, the column will contain the empty string.

Resolution:

The view SYSCAT.KEYCOLUSE contains the list of columns that make up a
primary, foreign, as well as a unique key and should be used instead of the
columns in SYSCAT.REFERENCES. Alternatively, users can restrict the length
of column names to 18 bytes or restrict the total length of the list of columns
to 640 bytes.

SYSCAT.VIEWS Column TEXT in DB2 Universal Database Version 6

UNIX OS/2 WIN

Change:

View text in the SYSCAT.VIEWS column TEXT will now not be split across
multiple rows. The data type is changed from VARCHAR(3600) to
CLOB(64K).

Symptom:

The complete view text is not given by the tool or in the application.

Explanation:

Tools or applications which were coded expecting no more than 3600 (or
perhaps 3900) bytes to be returned from the TEXT column at one time are not
handling the increased size of this field. The mechanism of retrieving multiple
rows and reconstructing the view text using the SEQNO field is no longer
necessary. The SEQNO value will now only ever be 1.

Resolution:

Appendix C. Incompatibilities Between Releases 651

Change the tool or application to be able to handle values from the TEXT
column which are greater than 3600 bytes. Alternatively, the view TEXT could
be rewritten to fit within 3600 bytes.

SYSCAT.STATEMENTS Column TEXT in DB2 Universal Database Version
6

UNIX OS/2 WIN

Change:

Statement text in the SYSCAT.STATEMENTS column TEXT will now not be
split across multiple rows. The data type is changed from VARCHAR(3600) to
CLOB(64K).

Symptom:

The complete statement text is not given by the tool or in the application.

Explanation:

Tools or applications which were coded expecting no more than 3600 (or
perhaps 3900) bytes to be returned from the TEXT column at one time are not
handling the increased size of this field. The mechanism of retrieving multiple
rows and reconstructing the statement text using the SEQNO field is no
longer necessary. The SEQNO value will now only ever be 1.

Resolution:

Change the tool or application to be able to handle values from the TEXT
column which are greater than 3600 bytes. Alternatively, the statement TEXT
could be rewritten to fit within 3600 bytes.

SYSCAT.INDEXES Column COLNAMES in DB2 Universal Database
Version 6

UNIX OS/2 WIN

Change:

The SYSCAT.INDEXES column COLNAMES data type is changed from
VARCHAR(320) to VARCHAR(640).

Symptom:

Column names are missing in an index.

Explanation:

652 Administration Guide Design and Implementation

Tools or applications are coded to retrieve from a column with a data type of
VARCHAR(320) and cannot handle the increased size of this field.

Resolution:

The view SYSCAT.INDEXCOLUSE contains the list of columns that make up
an index and should be used instead of the column COLNAMES.
Alternatively, remove a column from the index or reduce the size of the name
of a column so that the list of column names (with the leading + or −) will fit
in 320 bytes.

SYSCAT.CHECKS Column TEXT in DB2 Universal Database Version 6

UNIX OS/2 WIN

Change:

CHECKS Column TEXT data type is changed from CLOB(32K) to CLOB(64K).

Symptom:

Check constraint clause is incomplete.

Explanation:

Tools or applications are coded to retrieve from a column with a data type of
CLOB(32K) and cannot handle the increased size of this field.

Resolution:

Change the tool or application to be able to handle values from the TEXT
column which are longer than 32K bytes. Alternatively, rewrite the check
constraint clause to use fewer characters such that it will fit in 32K bytes.

Column Data Type to BIGINT in DB2 Universal Database Version 6

UNIX OS/2 WIN

Change:

Several system catalog view columns have had their data type changed from
INTEGER to BIGINT.

Symptom:

Values are much smaller (or larger) than expected, especially statistical
information.

Appendix C. Incompatibilities Between Releases 653

Explanation:

Tools or applications are coded to retrieve from a column with a data type of
INTEGER and cannot handle the increased size of this field.

Resolution:

Change the tool or application to be able to handle values which are greater
than the maximum or minimum value which can be stored in an INTEGER
field. Alternatively, change the underlying structure or SQL code which causes
the value to be greater than what can be represented in an INTEGER field.

Column Mismatch in DB2 Universal Database Version 6

UNIX OS/2 WIN

Change:

New columns are not inserted at the end of views in the SYSCAT view
definition.

Symptom:

Re-preprocessing fails with several column mismatches or column data type
mismatches.

Explanation:

New columns are introduced to the system catalog views and placed in a
position that is useful in an ad-hoc query environment, specifically, shorter
columns are placed before very long columns and the REMARKS column is
always the last one.

Resolution:

Explicitly name the columns in the select list instead of coding “SELECT *”.

SYSCAT.COLUMNS and SYSCAT.ATTRIBUTES in DB2 Universal Database
Version 6

UNIX OS/2 WIN

Change:

SYSCAT.COLUMNS and SYSCAT.ATTRIBUTES now contain entries for
inherited columns and attributes.

Symptom:

654 Administration Guide Design and Implementation

Queries of SYSCAT.COLUMNS to retrieve the columns of a typed table or
view, and queries of SYSCAT.ATTRIBUTES to retrieve the attributes of a
structured type, may return more rows in V6 than in V5.2, if the subject of the
query is a subtable, subview, or subtype.

Explanation:

In Version 5.2, for a given table, view, or structured type, the COLUMNS and
ATTRIBUTES catalogs contained entries only for columns and attributes that
were introduced by that table, view, or type. Columns and attributes that
were inherited from supertables or supertypes were not represented in the
catalogs. However, in V6, the COLUMNS and ATTRIBUTES catalogs will
contain entries for inherited columns and attributes.

Resolution:

Change the tool or application to recognize the new entries in the COLUMNS
and ATTRIBUTES catalogs.

OBJCAT Views No Longer Supported in DB2 Universal Database Version
6

UNIX OS/2 WIN Extended

Change:

The recursive catalog views in the OBJCAT schema of Version 5.2 are no
longer part of the shipped DB2 Universal Database product.

Symptom:

Queries written against the OBJCAT catalog views will no longer run
successfully.

Resolution:

Most of the information formerly in the OBJCAT views has been incorporated
into the regular SYSCAT catalog views. In most cases, you can obtain the
information from the system catalog views. If you migrate from Version 5.2,
and the OBJCAT catalog views exist, they should be dropped. This can be
done by executing the CLP script called objcatdp.db2 found under the misc
subdirectory of the sqllib subdirectory.

If you wish, you could also create your own set of OBJCAT views that are
equivalent to the catalog views supported in Version 5.2.

Appendix C. Incompatibilities Between Releases 655

In version 5.2, the SQL Reference in Appendix E warned users that the
OBJCAT catalog views were temporary and would not be supported in future
releases.

Dependency Codes Changed in DB2 Universal Database Version 6

UNIX OS/2 WIN Extended

Change:

In the system catalog views, the hierarchic dependencies formerly denoted by
code “H” are now denoted by code “O”.

Symptom:

Queries that search for hierarchic dependencies by code “H” in the catalog
views will no longer work correctly.

Explanation:

Several system catalogs, including the system catalog views named
PACKAGEDEP, TRIGDEP, and VIEWDEP have a column named BTYPE. In
Version 5.2, the OBJCAT views denoted hierarchic dependencies with the code
“H”. In Version 6, these dependencies are denoted with the code “O”.

Resolution:

These queries will need to be revised to search for code “O”.

SYSIBM Base Catalog Tables in DB2 Universal Database Version 6

UNIX OS/2 WIN Extended

Change:

The following are changes made to the SYSIBM base catalog tables, which
customers may be using despite our encouragement for them to use the
SYSCAT views. Customers who are not following our recommendation of
coding to the SYSCAT views may experience incompatibilities due to the
following changes:
1. Deleted fields (but still in the SYSCAT views):
v SYSSTMT.SEQNO
v SYSVIEWS.SEQNO

656 Administration Guide Design and Implementation

2. Renamed catalog table: SYSTRIGDEP named to SYSDEPENDENCIES. As
well, the columns BCREATOR and DCREATOR were renamed to
BSCHEMA and DSCHEMA respectively. The view SYSCAT.TRIGDEP did
not change.

3. Deleted fields (were never in the SYSCAT views):
v SYSATTRIBUTES.DEFAULT_VALUE
v SYSATTRIBUTES.NULLS
v SYSCOLUMNS.SERVERTYPE
v SYSDATATYPES.REFREP_TYPENAME
v SYSDATATYPES.REFREP_TYPESCHEMA
v SYSDATATYPES.REFREP_LENGTH
v SYSDATATYPES.REFREP_SCALE
v SYSDATATYPES.REFREP_CODEPAGE
v SYSINDEXES.TEXT

(Was in the view, but reserved for future use only.)
v SYSPLANDEP.PUBLICPRIV
v SYSSECTION.SEQNO
v SYSTABAUTH.UPDATE_BY_COLS
v SYSTABAUTH.REF_BY_COLS
v SYSTABLES.MINPDLENGTH
v SYSTABLESPACES.READONLY
v SYSTABLESPACES.REMOVABLEMEDIA

4. Data type changes:
v SYSSECTION.SECTION from VARCHAR(3600) to CLOB(10M)
v SYSPLANDEP.COLUSAGE from VARCHAR(3000) FOR BIT DATA to

BLOB(5K)

Application Programming

VARCHAR Data Type in DB2 Universal Database Version 6

UNIX OS/2 WIN

Change:

Maximum possible size of VARCHAR (VARGRAPHIC) data type has
increased from 4 000 characters (2 000 double bytes characters), to 32 672
characters (16 336 double bytes characters) in Version 6.

Symptom:

Appendix C. Incompatibilities Between Releases 657

An application that uses fixed length buffers of 4 000 bytes for a VARCHAR
(VARGRAPHIC) data type has the potential for buffer overwrite or truncation,
if it fetches a VARCHAR field which is longer than 4 000 bytes into a buffer
that is too small. The CLI function - SQLGetTypeInfo() now returns the size of
VARCHAR as 32 672. CLI applications that use this value in table DDLs may
get errors due to sufficient page size table spaces not being available. See
“User Table Data” on page 59 for more information on table space page size.

Resolution:

The application should be coded, in the recommended manner, of first
describing the columns of the result set by using the DESCRIBE statement,
and then using buffers whose size is based on the data type’s length as
returned from the DESCRIBE of the column.

Java Programming Positioned UPDATE and DELETE in DB2 Universal
Database Version 6

UNIX OS/2 WIN

Change:

When programming using Java in Version 6, positioned UPDATE and
DELETE statements use the default authorization identifier of the person that
bound the cursor package. This is different from Version 5.2 where the
authorization identifier of the person running the package was used.

Symptom:

The package containing the positioned UPDATE and DELETE statements may
not run because the authorization identifier of the person who bound the
package does not have sufficient authority.

Resolution:

The authorization identifier of the person who binds the package must be
granted sufficient authority to run the positioned UPDATE and DELETE
statements found in the package. Grant the correct privileges and then re-bind
the package.

Syntax Change in FOR UPDATE Clause in DB2 Universal Database
Version 6

UNIX OS/2 WIN

Change:

658 Administration Guide Design and Implementation

In Version 5.2, in an SQLJ program, the FOR UPDATE clause can be used in a
SELECT statement to identify the columns that can be updated in subsequent
positioned UPDATE statements. The syntax is changed for Version 6.

Symptom:

You will receive the error message SQJ0204E if a SELECT statement contains a
FOR UPDATE clause.

Resolution:

Remove the FOR UPDATE clause from the SELECT statement. Specify an
updatable iterator through the iterator declaration clause. For example:

#sql public iterator DelByName implements sqlj.runtime.ForUpdate(String EmpNo)
with updateColumns = (salary);

If you want to explicitly identify what columns are updateable, specify them
through the updateColumns keyword, used in conjunction with the WITH
clause.

Refer to Application Development Guide for more information on positioned
iterator declarations.

Character Name Sizes in DB2 Universal Database Version 6

UNIX OS/2 WIN Extended

Change:

DB2 Universal Database Version 6 supports 128 byte table/view/alias names
and 30 byte column names. The former support was for 18 byte names for
each of these entities.

USER and CURRENT SCHEMA special registers were CHAR(8) and are now
VARCHAR(128). The CURRENT EXPLAIN MODE special register was
CHAR(8) and is now VARCHAR(254). The output for TYPE_SCHEMA and
TABLE_SCHEMA built-in functions were CHAR(8) and are now
VARCHAR(128).

Symptom:

If applications that were developed before Version 6 are run against a Version
6 database that does not utilize the longer limits, then the application
behavior should not change at all. However, running these applications
against a Version 6 database that does utilize longer names, could result in
certain side effects, depending on how these applications were coded.

Appendix C. Incompatibilities Between Releases 659

Here are some examples:
v Consider an existing application that FETCHes a table or column name

(typically from a catalog view) into a host variable that was defined to be
18 bytes long. Since 18 bytes was the limit on the size of the table or
column name until Version 6, this application may not bother to check the
sqlwarn1 bit of the SQLCA, assuming that there should never be truncation.
This application may proceed with subsequent logic, assuming that no
truncation has occurred whereas truncation actually did occur.

v Consider an application that FETCHes a table or column name (typically
from a catalog view) into an SQLDA where the size of the sqldata field was
allocated based on the sqllen field from a DESCRIBE of the SELECT. This
will result in the correct (untruncated) result being returned to the
application even though the size of the table/column names may have
increased. If other application logic relies on the assumption that column
names or lengths are limited to 18 bytes, then the longer names that have
been returned may introduce unintended behavior in the application. As a
simple example, the display of a longer column name may be truncated at
18 bytes.

v Since the SQLCA token field (sqlerrmc) is limited to 70 bytes, this may
affect existing applications that attempt to insert a row into a table. In the
event of the error message SQL0204N, this application determines the name
of the table from the SQLCA sqlerrmc field and then performs some
operations based on that object name. Whereas with earlier versions of DB2,
the table/schema identifier limit guaranteed that the table name was
included in the SQLCA in its entirety (as in the case with the error message
SQL0204N), this is not the case with Version 6.

v An application using a downlevel API (such as LIST HISTORY, or GET
SNAPSHOT) will only get the first 18 bytes of a table name.

v Existing CLI and ODBC applications that use the schema functions (such as
SQLTables(), or SQLColumns(), and others) will be affected if connecting to
a server with support for greater than 18 byte names. Although there will
be truncation warnings, the application may not check for this warning and
may proceed with a truncated name.

Resolution:

The best way to resolve problems of this type is to re-code the application to
handle longer table and column names. Otherwise, ensure that these
applications are not run against Version 6 databases that use > 18 byte names.

PC/IXF Format Changes in DB2 Universal Database Version 6

UNIX OS/2 WIN Extended

Change:

660 Administration Guide Design and Implementation

DB2 Universal Database Version 6 supports 128 byte table/view/alias names
and 30 byte column names. The former support was for 18 byte names for
each of these entities.

Symptom:

A DB2 Universal Database Version 5 client is not able to import a PC/IXF that
was exported by a DB2 Universal Database Version 6 export client. The error
message SQL3059N will result.

Also, a PC/IXF file (an export from a DB2 Universal Database Version 6
client) cannot be loaded into a DB2 Universal Database Version 5 database.
The error message SQL3059N will result.

Resolution:

Always be aware of the version level of the PC/IXF file when running.

SQLNAME in a Non-doubled SQLVAR in DB2 Universal Database Version
6

UNIX OS/2 WIN Extended

Change:

DB2 Universal Database Version 6 supports 30 byte column names. The
former support was for 18 byte names. In Version 5, the documented behavior
was that “0xFF” is placed in the 30th byte of an SQLNAME field for a
non-doubled SQLVAR. Also in Version 5, for system-generated names and for
user-specified column names specified in an “AS” clause, “0x00” is placed in
the 30th byte.

In Version 6, the new behavior only returns “0xFF” in the 30th column if the
name is system-generated.

Symptom:

Any applications that rely on the 30th-byte of the SQLNAME to determine
whether it is a user-specified column name or a system-generated name may
receive unexpected logic checks if the user-specifed column name is 30
characters long. This should be a rare occurrence.

Resolution:

These applications should be modified to only check for “0xFF” in the 30th
byte of the SQLNAME field if the length of the SQLNAME is less than 30. In
this case, the name is user-generated.

Appendix C. Incompatibilities Between Releases 661

Obsolete DB2 CLI/ODBC Configuration Keywords in DB2 Universal
Database Version 6

WIN

Change:

When moving from version to version, you can change the behavior of the
DB2 CLI/ODBC driver by specifying a set of optional keywords in the
db2cli.ini file.

In Version 6, the TRANSLATEDLL and the TRANSLATEOPTION keywords
became obsolete.

Symptom:

These keywords will be ignored if they still exist. You may notice behavioral
changes based on the removal of these settings.

Resolution:

You will need to review the new list of valid parameters to decide what the
appropriate keywords and settings are for your environment. See the CLI
Guide and Reference for information on these keywords.

Event Monitor Output Stream Format in DB2 Universal Database Version
6

UNIX OS/2 WIN Extended

Change:

Event monitor output streams have no version control. As a result, adding
support for the greater than 18 byte table names requires the move to an
output stream format.

Symptom:

Applications that parse the event monitor output streams will no longer
function as in previous releases.

Resolution:

There are two options:
1. Update the application to use the new data stream.
2. Set the registry variable DB2OLDEVMON=evmonname1,evmonname2,...

where “evmonname” is the name of the event monitor you wish to have

662 Administration Guide Design and Implementation

write in the old data format. Note that any new fields in the event monitor
will not be accessible in the old format.

SQL

Datalink Columns in DB2 Universal Database Version 6

UNIX

Change:

Datalink values inserted in DB2 Universal Database Version 6 will require an
extra four bytes of space in the column value descriptor.

Symptom:

When datalink columns created in Version 5.2 are updated, an additional four
bytes are required on the data page to store the new column value. As a
result, there may not be enough space in the data page to complete the
update and it may have to be moved to a new page. This could cause the
update to run out of space.

Resolution:

You will need to add more space on your system to allow for updates.

SYSFUN String Function Signatures in DB2 Universal Database Version 6

UNIX OS/2 WIN Extended

Change:

A number of string functions in the SYSFUN schema now have improved
versions defined in the SYSIBM schema (built-in functions). The function
names are LCASE, LTRIM, RTRIM, and UCASE.

Symptom:

When preparing statements or creating views, the returned data type from
any of these functions may be different than running the same statement on
versions previous to Version 6. This occurs because the built-in functions
(under the SYSIBM schema) are usually resolved before functions in the
SYSFUN schema.

Resolution:

No action is required. Usually, the behavior of the new built-in function is
desired over the function as found in the SYSFUN schema. The previous

Appendix C. Incompatibilities Between Releases 663

version behavior can be restored by switching the SQL path so that SYSFUN
precedes SYSIBM, but performance of function resolution is degraded.
Alternatively, the previous version function can be invoked by qualifying the
function name with the schema name SYSFUN.

Migrated packages, views, summary tables, triggers, and constraints that
reference these functions continue to use the version from the SYSFUN
schema unless explicit action is taken such as explicitly binding the package
or re-creating the view, summary table, trigger, or constraint.

SYSTABLE Column Change With New Integrity State in DB2 Universal
Database Version 6

UNIX OS/2 WIN Extended

Change:

The “U” states in the CONST_CHECKED column of SYSCAT.TABLES changes
differently when a SET INTEGRITY ... OFF statement is run.

Symptom:

Prior to Version 6, any “U” state in CONST_CHECKED column changes to an
“N” when a SET INTEGRITY ... OFF statement is run. There is now another
state, “W”, to which the “U” state is changed.

Resolution:

No action is required.

The new “W” state in a CONST_CHECKED byte is used to indicate that the
type of constraint was previously checked by the user and some data in the
table may need to be checked for integrity.

Without this new state, the “U” state would be changed to the “N” state on a
SET INTEGRITY ... OFF as it did in previous versions. From the “N” state
alone, the database manager would not be sure if there exists any old data
that has not yet been verified by the database manager. On a subsequent a
SET INTEGRITY ... IMMEDIATE CHECKED INCREMENTAL statement, the
database manager has to return an error. The error is returned because the
database manager will not be able to guarantee data integrity if only the new
change (if any) were checked.

With the new “W” state, on a subsequent a SET INTEGRITY ... IMMEDIATE
CHECKED INCREMENTAL statement, the “W” state can be changed back to
the “U” state if the INCREMENTAL option is specified to indicate that the
user is still responsible for the data integrity of the table. If the

664 Administration Guide Design and Implementation

INCREMENTAL option is not specified, the database manager will pick full
processing, change the “W” state to a “Y” state, and re-assume the
responsibility of maintaining data integrity.

Database Security and Tuning

Creating Databases Using Clients in DB2 Universal Database Version 6

UNIX OS/2 WIN Extended

Change:

The method used by clients to create a database.

Symptom:

Using a down-level client (from a previous release than that of the server) to
create a database will result in errors.

Resolution:

When using a client to create a database, only use clients at the same level as
that of the server.

SELECT Privilege Required on Hierarchy in DB2 Universal Database
Version 6

UNIX OS/2 Windows 32-bit Extended

Change:

Specification of the ONLY keyword with a table now requires that the user
have SELECT privilege on all subtables of the specified typed table. Similarly,
specification of the ONLY keyword with a view now requires that the user
have SELECT privilege on all subviews of a specified typed table. Previous
versions only required SELECT privilege on the specified table or view.

Symptom:

There are two possible symptoms:
1. An authorization error (SQLCODE -551, SQLSTATE 42501) occurs when

rebinding a package containing an SQL statement that specified the ONLY
keyword in a FROM clause, if the authorization ID under which the
package was bound lacks SELECT privilege on the subtables of the named
typed table (or view).

2. If the definition of a view or trigger contains the keyword ONLY used in a
FROM clause, the view or trigger will continue to work normally.

Appendix C. Incompatibilities Between Releases 665

However, the definition of the view or trigger can no longer be used to
create a new view or trigger unless the creator holds SELECT privilege on
all the subtables of the named table (or view).

Resolution:

The authorization ID that needs to rebind a package or to crate a new view or
trigger should be granted SELECT privilege on all subtables (and subviews) of
the table (or view) specified following the ONLY keyword.

Obsolete Profile Registry and Environment Variables in DB2 Universal
Database Version 6

UNIX OS/2 WIN DB2 PE

Change:

The following profile registry values or environment variables are obsolete:
v DB2_VECTOR

Resolution:

There is no longer a need for these profile registry or environment variables.

Utilities and Tools

Current Explain Mode in DB2 Universal Database Version 6

UNIX OS/2 WIN

Change:

The type of the “CURRENT EXPLAIN MODE” special register has changed
from CHAR(8) to VARCHAR(254).

Symptom: If the application assumes that the type is still CHAR(8), then the
value may be truncated from 254 to 8 bytes.

Resolution:

Redefine the type of all host variables which read the special register from
CHAR(8) to VARCHAR(254).

This change is required to accommodate two new values for the “CURRENT
EXPLAIN MODE” special register. These new values are “EVALUATE
INDEXES” and “RECOMMEND INDEXES”.

666 Administration Guide Design and Implementation

The USING and SORT BUFFER Parameters in DB2 Universal Database
Version 6

UNIX OS/2 WIN DB2 PE

Change:

As of Version 6, the USING and SORT BUFFER parameters of the LOAD
command are no longer supported (the parameters are ignored).

Symptom:

If specified on the LOAD command, the use receives a warning message
saying that USING and SORT BUFFER parameters are no longer supported
and are ignored by the LOAD utility.

Resolution:

Ignore the warning message. See Data Movement Utilities Guide and Reference
for additional information.

Connectivity and Coexistence

Replace RUMBA with PCOMM in DB2 Universal Database Version 6

WIN

Change:

In Version 6, RUMBA is replaced by PCOMM on Windows NT, Windows 95,
and Windows 98 only. RUMBA on Windows 3.1 will not be replaced.

Symptom:

None.

Resolution:

Windows 3.1 users will continue using RUMBA.

Configuration Parameters

Obsolete Database Configuration Parameters

UNIX OS/2 WIN

Change:

Appendix C. Incompatibilities Between Releases 667

The following database configuration parameters are obsolete with this
version:
v DL_NUM_BACKUP (replaced by NUM_DB_BACKUP database

configuration parameter)

Resolution:

Applications should be updated to not reference these parameters.

DB2 Universal Database Version 5 Incompatibilities

This section focuses on the DB2 Universal Database Version 5
incompatibilities.

System Catalog Views

System Catalog Views Column Changes

UNIX OS/2 WIN

Change:

A variety of changes have been made to the system catalog views. This
section will discuss the subset which could cause incompatibilities. To see a
description of all changes (for example, new columns, new values in a
column, and so on) refer to the SQL Reference.

SYSCOLUMNS

COLTYPE:
Changed values: “FLOAT” to “DOUBLE”

NULLS:
Changed values: “D” to “N”. (Default flag now found in
SYSCAT.COLUMNS.DEFAULT)

HIGH2KEY:
Changed type: VARCHAR(16) to VARCHAR(33). Changed
values: Values now stored in printable format rather than
binary format

LOW2KEY:
Changed type: VARCHAR(16) to VARCHAR(33). Changed
values: Values are now stored in printable format rather than
binary format for all datatypes.

SYSINDEXES

668 Administration Guide Design and Implementation

CLUSTERRATIO:
Changed value: Value will always be -1 if the columns
CLUSTERFACTOR and PAGE_FETCH_PAIRS are populated.

SECT_INFO:
Changed type: LONG VARCHAR to BLOB(1M).

HOST_VARS:
Changed type: LONG VARCHAR to BLOB(1M).

ISOLATION:
Changed type: CHAR(1) to CHAR(2). Changed values: “R” to
“RR”, “S” to “RS”, “C” to “CS”, “U” to “UR”.

SYSRELS

RELNAME:
Changed type: CHAR(8) to VARCHAR(18).

SYSSECTION

SECTION:
Changed type: VARCHAR(3900) to VARCHAR(3600)

SYSSTMT

TEXT: Changed type: VARCHAR(3900) to VARCHAR(3600)

SYSTABLES

PACKED_DESC:
Changed type: LONG VARCHAR to BLOB(10M)

VIEW_DESC:
Changed type: LONG VARCHAR to BLOB(32K)

REL_DESC
Changed type: LONG VARCHAR to BLOB(32K)

FID Will no longer uniquely identify a table on its own. Must be
used with TID to uniquely identify a table.

SYSVIEWS

CHECK:
Changed values: ″Y″ to ″L″.

TEXT: Changed type: VARCHAR(3900) to VARCHAR(3600). Contains
the full text of the create view statement (including the
CREATE VIEW). In Version 1, only the select portion was
shown.

Symptom:

A variety of symptoms could occur.

Appendix C. Incompatibilities Between Releases 669

If you have an application which has a qualified search on a field that has had
a value change (for example, ISOLATION in SYSIBM.SYSPLAN) this will
cause your application to react differently than you would want.

If you have an application which accesses some field where the field type or
size has changed (such as SECTION in SYSIBM.SYSSECTION), you could
retrieve an incomplete set of data, too much data, or have the wrong type
defined in your application to represent the data type of the table column.

Resolution:

If you use the SYSIBM tables for application processing or anything else, you
must review the changes listed above to decide whether or not you are
affected and what the appropriate action to correct the situation is. You may
need to refer to the SQL Reference to understand what the new columns, new
values for columns and other changes that were made to these tables.

If you need a rough approximation of the degree of clustering, select both
CLUSTERRATIO and CLUSTERFACTOR and choose the “greater” one.

Application Programming

External Table Functions in DB2 Universal Database Version 5

UNIX OS/2 WIN Extended

Change:

In Version 5.2, the user has been given explicit control over scratchpad
duration.

For User Defined Functions (UDFs) which are table functions:
v FINAL CALL is now optional for the CREATE FUNCTION statement for

table functions, as it is for scalar functions. NO FINAL CALL (the default)
may thus be specified for table functions.

v When writing a table function which has a scratchpad, you can elect to
have the scratchpad be initialized for each OPEN call to the function, by
specifying NO FINAL CALL, in which case the table function is expected to
release resources on each CLOSE call.
Or, you can elect to have the scratchpad content be preserved across OPEN
calls, by specifying FINAL CALL. If you do this, you need not release
resources during the CLOSE call processing, because a FINAL call will be
made to the table function at end-of-statement. The FINAL CALL is new
with this change, as is the balancing FIRST call which takes place before the
first OPEN call. These two new call types occur only on table functions
which specify FINAL CALL.

670 Administration Guide Design and Implementation

v For Java table functions, there is a change to the execution model based on
the new rules declared above. Refer to the Application Development Guide for
details on the changes to table function processing.

Symptom:

The introduction of new call types may generate unexpected calls and may
result in bad results being returned from the function depending on how the
UDF is written to examine the call-type arguments.

Resolution:

Customers who have existing table functions should examine them knowing
the changes introduced by the new call types and the new execution model.
The following changes should be considered:
v If you depend on the new scratchpad rules implied by FINAL CALL then

you may have to change your UDF to add the new call types, because with
FINAL CALL specified, the new calls will be made to the UDF. Also, any
acquired resources should be freed when the FINAL call is handled by the
table function.

v If you wish to use the rules implied by NO FINAL CALL, you are advised
to change and rerun your CREATE FUNCTION statement with NO FINAL
CALL instead of FINAL CALL, so that your UDF will not get the new calls.

v If you have a Java table function, then you will have to change your
function to conform to the new execution models. For either execution
model (depending on whether you choose FINAL CALL or NO FINAL
CALL), you will note that additional calls are made to the UDF method.
This gives additional power to the UDF writer, but means that the writer
must distinguish the calls. Use of the new getCallType method in the
parent class included by DB2 provides this capability.

Refer to the Application Development Guide for detailed information on
managing these changes.

NS, NW and NX Locks

UNIX OS/2 WIN DB2 PE

Change:

Due to the addition of NS and NX lock modes in DB2 Version 5, there is a
difference in the behavior of index scans with isolation level Cursor Stability
(CS) or Read Stability (RS).

Symptom:

Appendix C. Incompatibilities Between Releases 671

In DB2 Version 5, an index scan with isolation level, CS or RS, will not see an
uncommitted delete of a row that is within the scanned range. In DB2 Version
2, the scanner would not see an uncommitted delete of a row that was at the
end of the scanned range. However, if the deleted row was within the range,
the scanner would remain in a lock wait until the delete was committed or
rolled back.

For example in DB2 Version 5, the following can occur with an index on
Column A:

Sequence Application 1 Application 2
1 delete from t1 where a=3
2 select a from t1 where a>1 and a<5

A

2
4
5

3 rollback
4 select a from t1 where a>1 and a<5

A

2
3
4
5

The same scenario in previous versions of DB2 would result in application 2
being in lock wait until Application 1 committed or rolled back.

Resolution:

There is no resolution as this is an enhancement to isolation level Cursor
Stability or Read Stability.

Symptom: The previous example showed what occurs with an uncommitted
deletion. A similar situation could also arise when inserting new values.

For example, you could have a scenario where you are scanning a table using
an index on a column and looking for a value greater than or equal to two,
but less than or equal to six, while using an isolation level of RS. The existing
values that qualify in this example are two, four, and six. Then another user
inserts five. An NS lock is obtained on columns returning two, four, and six;
and the NW lock attempt on the column containing six succeeds, so the
insertion of five is not blocked by the scan.

672 Administration Guide Design and Implementation

In Version 2, an S lock would be obtained on columns with the values two,
four, and six; and the attempt to get an X lock on the column returning six
would wait. The insert of five would wait for the S lock on six to be released.

Resolution: In general, since more concurrency is supported in Version 5,
applications built with a previous version of DB2 that were created with
dependencies on some lock waiting may require modification.

DB2 Call Level Interface (DB2 CLI) Defaults

UNIX OS/2 WIN

Change:

When moving from Version 2 to Version 5, the default values for
AUTOCOMMIT and CURSORHOLD have changed. Both AUTOCOMMIT
and CURSORHOLD will now default to ON.

Symptom:

If an application was written assuming that AUTOCOMMIT was OFF or that
WITH HOLD semantics was NOT used for cursors, then these default
changes could cause the application to fail.

Resolution:

Add one or both of the following two lines to your DB2CLI.INI file.
v AUTOCOMMIT = 0
v CURSORHOLD = 0

DB2 CLI SQLSTATEs

UNIX OS/2 WIN

Change:

When moving from Version 2 to Version 5, a more explicit set of SQLSTATEs
(in the S1090 to S1110 range) has replaced the generic SQLSTATE S1009.

Symptom:

SQLSTATE values returned to the application calling DB2 CLI APIs have
changed.

Resolution:

Appendix C. Incompatibilities Between Releases 673

Update your application to check for the new SQLSTATEs. Refer to the
Message Reference for a complete list of these SQLSTATEs.

DB2 CLI/ODBC Configuration Keyword Defaults

UNIX OS/2 WIN

Change:

When moving from Version 2 to Version 5, the default value for the
CLI/ODBC configuration keyword DEFERREDPREPARE has changed. In DB2
CLI Version 5 deferred prepare is now on by default.

Symptom:

Applications that rely on the prepare to be executed as soon as it is issued
will not function as expected. In particular, the row and cost estimates
normally returned in the SQLERRD(3) and SQLERRD(4) of the SQLCA of a
prepare statement may become zeros. The application will not be able to use
this information to decide whether or not to continue the execution of the
SQL statement.

Resolution:

Add the following line to your db2cli.ini file:
DEFERREDPREPARE = 0

Obsolete DB2 CLI/ODBC Configuration Keywords in DB2 Universal
Database Version 5

UNIX OS/2 WIN

Change:

When moving from version to version, you can change the behavior of the
DB2 CLI/ODBC driver by specifying a set of optional keywords in the
db2cli.ini file.

In Version 5, the AUTOCOMMIT keyword became obsolete.

Symptom:

These keywords will be ignored if they still exist. You may notice behavioral
changes based on the removal of these settings.

Resolution:

674 Administration Guide Design and Implementation

You will need to review the new list of valid parameters to decide what the
appropriate keywords and settings are for your environment. See the CLI
Guide and Reference for information on these keywords.

DB2 CLI SQLSTATEs

UNIX OS/2 WIN

Change:

When moving from Version 2 to Version 5, the category of SQLSTATEs that
started with S1 in DB2 CLI Version 2 have been renamed to begin with HY in
Version 5. For example, the SQLSTATE S1010 is now HY010.

Symptom:

SQLSTATE values returned to the application calling DB2 CLI APIs have
changed.

Resolution:

Applications should be updated to expect the new HY class of SQLSTATEs.
Alternatively, the environment attribute SQL_ATTR_ODBC_VERSION can be
set to SQL_OV_ODBC2 using the DB2 CLI function SQLSetEnvAttr(). The
DB2 CLI/ODBC driver will then return the S1 class of SQLSTATEs.

Stored Procedure Catalog Table

UNIX OS/2 WIN

Change:

When moving from Version 2 to Version 5, Version 5 now has 2 system
catalog views used to store information about all the stored procedures on the
server (SYSCAT.PROCEDURES and SYSCAT.PROCPARMS). These replace the
Version 2 pseudo catalog table for stored procedures

Symptom:

By default the server will look in the new system catalog views for
information about stored procedures, not the older pseudo catalog table. DB2
CLI functions such as SQLProcedureColumns() and SQLProcedures() will
therefore not return the appropriate information.

Resolution:

Appendix C. Incompatibilities Between Releases 675

Register the stored procedures using the CREATE PROCEDURE SQL
command. See the SQL Reference for more information. Alternatively, the DB2
CLI/ODBC configuration keyword PATCH1 can be set to 262144 to force the
DB2 CLI/ODBC driver to use the pseudo catalog table as it did in Version 2.

Change to SMALLINT Constants

UNIX OS/2 WIN

Change:

Integer constants in the range -32,768 to 32,767 are now treated as INTEGER
types, rather than SMALLINT. This resolves an incompatibility with IBM SQL,
as well as simplifying the rules for determining literal types.

It is also worth mentioning that the smallest INTEGER constant in Version 1
(-2 147 483 648) is a DECIMAL constant with a precision of 10 and a scale of 0
in Version 5.

Further, the smallest literal representation of a large INTEGER constant is
-2 147 483 647 and not -2 147 483 648 (which is the limit for large INTEGER
values). The INTEGER constant -2 147 483 648 is a BIGINT, not a DECIMAL
(as it was before Version 5.2).

In general, if an integer constant is outside the range of a large integer and
within the range of a BIGINT, then it is a BIGINT. If it is too big for a BIGINT,
then it is a DECIMAL.

Symptom:

This affects the result precision and scale of decimal operations. (Which
impacts, for example, the print width of decimal fields.)

Resolution:

There is no resolution. This change in handling integers results in an increase
in precision.

Down-level Client and Distinct Types Sourced on BIGINT

UNIX OS/2 WIN DB2 PE

Change:

A distinct type based on BIGINT in a Version 5.2 server is reported in a
DESCRIBE to a down-level client as a DECIMAL(19,0) instead of as a BIGINT
which is not supported by the client. This data type cannot be implicitly cast

676 Administration Guide Design and Implementation

on assignment to the distinct type on which it is based. This is different than
other situations where the client perceives a distinct type as a built-in data
type and is able to assign host variables of the built-in type to columns of the
associated distinct type.

Symptom:

An SQLCODE of -408 (SQLSTATE 42821) is returned when using a data type
of DECIMAL(19,0) for the host variable (or parameter marker) assigned to the
distinct type value that was described to the down-level client as
DECIMAL(19,0).

Resolution:

The database should include a function that will cast a DECIMAL(19,0) to the
distinct type. This can be defined as a sourced function based on the function
that casts a BIGINT to the distinct type. The application (at the client) must
then explicitly apply this function to the DECIMAL(19,0) host variable (or
parameter marker) in the INSERT or UPDATE statement.

For example, if the distinct type sourced on BIGINT is called DT1, then
updating the column C1 of type DT1 would require the following sourced
function to be defined:

CREATE FUNCTION DT1(DECIMAL(19,0)) RETURNS DT1 SOURCE DT1(BININT);

And then the update statement in the application would be:
UPDATE table SET c1=DT1(:dechv1);

Maximum Number of Sections in a Package

UNIX OS/2 WIN

Change:

The limit for the maximum number of sections in a package has changed from
400 to whatever the storage allows. This limit used to be hard-coded at 400,
but now depends on the type of SQL statements in the program. As a result
of this change, the constant for the maximum number of SQL statements has
been removed from the common include files sql.h, sql.cbl, and sql.f.

Symptom: If an application program references the following constants, it
will not compile successfully in Version 5:
v SQL_MAXSTMTS (in sql.h)
v SQL-MAXSTMTS (in sql.cbl)
v SQL_MAXSTMTS (in sql.f)

Appendix C. Incompatibilities Between Releases 677

Resolution:

Remove references to these constants or define them directly within your
application.

Bind Options

UNIX OS/2 WIN

Change:

The new SQLWARN bind option has a default value of ‘YES’.

Symptom:

By default, positive SQLCODEs may now be returned on DESCRIBE,
PREPARE, and EXECUTE IMMEDIATE requests which were previously not
returned. (For instance, a SQLCODE of +236 may be returned).

Resolution:

Rebind with SQLWARN NO if your application cannot tolerate positive
SQLCODEs or treats them as errors.

Supported Level of JDBC

UNIX OS/2 WIN

Change:

The supported level of the JDBC (Java Support) API has changed. DB2
Version 5 provides a driver for JDBC 1.1 instead of JDBC 1.0, which came
with DB2 Version 2.1.2.

Symptom:

Compiled JDBC 1.0 clients fail when executed directly as a DB2 Version 5
client. Old Java classes are not found.

Resolution:

To continue using JDBC 1.0 clients, run them on a DB2 Version 2.1.2 client,
with a remote DB2 Version 5 server. Modify the client source code to upgrade
to the JDBC 1.1 API. Run the JDBC 1.1 clients on a Java Development Kit
Version 1.1-compatible virtual machine.

678 Administration Guide Design and Implementation

Java Runtime Environment

UNIX OS/2 WIN

Change:

The level of the Java runtime environment required for Java stored
procedures, user-defined functions, and JDBC clients has changed in DB2
Version 5.

Symptom:

The JDBC DLL will not load when JDBC 1.1 clients are run. Java stored
procedures and UDFs will fail.

Resolution:

Install a compatible Java 1.1.2 or Java 1.2 runtime environment at the client
and server. At the server, set the jdk11_path configuration parameter.

SQL

Updating Partitioning Key Columns

UNIX OS/2 WIN DB2 PE

Change:

In DB2 PE Version 1.2, partitioning key columns could be updated if the table
was in a single-node nodegroup. In DB2 Version 5, partitioning key columns
can be updated if the table is in a table space in a single-node nodegroup, and
there is no partitioning key defined.

Symptom:

An update statement fails with SQL270N (SQLCODE -270, SQLSTATE 42997)
with reason code 2. The same error is returned if the table is in a table space
in a single or multiple node nodegroup.

Resolution:

If the table is in a table space in a single node nodegroup, then use the
ALTER TABLE statement to DROP the partitioning key. As with DB2 PE
Version 1.2, if the table is in a table space in a multiple node nodegroup, the
nodegroup must be changed to a single-node nodegroup and REDISTRIBUTE
NODEGROUP must be issued before attempting to update partitioning key
columns.

Appendix C. Incompatibilities Between Releases 679

Column NGNAME

UNIX OS/2 WIN DB2 PE

Change:

In DB2 PE Version 1.2, a table was directly associated with a nodegroup. In
DB2 Version 5, a table is in a table space, which is within a nodegroup. Since
there is no longer a direct relationship with a nodegroup, there is no need for
a column, named NGNAME in the SYSIBM.SYSTABLES catalog table.

Symptom:

An SQL statement that refers to the NGNAME column from
SYSIBM.SYSTABLES catalog table will return an SQLCODE of −206
(SQLSTATE 42703).

Resolution:

Remove the column NGNAME from the SQL statement. To determine the
nodegroup name for the table, refer to NGNAME in the row of
SYSCAT.TABLESPACES catalog view, that relates to the table space in which
the table is stored.

Node Number Temporary Space Usage

UNIX OS/2 WIN DB2 PE

Change:

When moving from Parallel Edition Version 1. 2 to DB2 Universal Database
Version 5, and using a temporary table that requires row identifiers, the
amount of space needed is increased to include the node number. The space
limit for temporary tables is 4 005 bytes. If temporary tables are close to the
4 005 byte limit, any further increase can exceed this limit.

Symptom:

There are two possible symptoms of this change.
v An SQL statement may fail to compile and return an SQLCODE of

SQL0670N (SQLSTATE 54010).
v The temporary table is not used, which may affect the performance of the

query.

Resolution:

680 Administration Guide Design and Implementation

You should review and use the directions in the Actions section of the
message details for SQL0670N to fix the error.

Authorities for Create and Drop Nodegroups

UNIX OS/2 WIN DB2 PE

Change:

In Version 5, the authorization required for creating or dropping a nodegroup
changed from SYSADM or DBADM to SYSADM or SYSCTRL. A user ID with
DBADM authority cannot create, alter, or drop nodegroups.

Symptom:

A user ID, with DBADM authority, issuing a CREATE NODEGROUP or
DROP NODEGROUP statement will receive an SQL00551N (SQLSTATE
42501).

Resolution:

Issue the statement using a user ID that has SYSADM or SYSCTRL authority.
For your convenience, you may wish to include the user ID in the SYSCTRL
group. Refer to the Administration Guide for further information.

Target Map in REDISTRIBUTE NODEGROUP

UNIX OS/2 WIN DB2 PE

Change:

Beginning in Version 5, the specification of a target map in the
REDISTRIBUTE NODEGROUP command or API no longer causes database
partitions to be implicitly added or dropped from the node group. This means
that the target map cannot include nodes that are not defined to the node
group. An undefined node that is included in the target map file will cause an
error to be returned. A database partition, which has been defined to the node
group, can be excluded from the target map file and will not appear in the
partition map.

Symptom:

If a node is included in the target map file and was not defined to the node
group, the REDISTRIBUTE NODEGROUP command will return an
SQLCODE–6053 with a reason code 6.

Resolution:

Appendix C. Incompatibilities Between Releases 681

Before issuing the REDISTRIBUTE NODEGROUP command, add the database
partition to the node group, using the ALTER NODEGROUP statement. You
can also drop the node from the node group using the ALTER NODEGROUP
statement, either before or after issuing the REDISTRIBUTE NODEGROUP
command. Refer to the SQL Reference for further information on the ALTER
NODEGROUP statement.

Node Group for Create Table

UNIX OS/2 WIN DB2 PE

Change:

In DB2 PE Version 1, a table was directly associated with a node group. In
DB2 Version 5, a table is in a table space within a node group. When a user
issues a CREATE TABLE statement, the name following the IN keyword is a
table space name, not a node group name. The default table space selected
may not be defined in the IBMDEFAULTGROUP node group, which was the
default node group in DB2 PE Version 1.

Symptom:

If you use existing CREATE TABLE statements from DB2 PE Version 1, they
may fail with an SQLCODE of SQL0204N (SQLSTATE 42704), with the name
specified following the IN keyword in the message. This will occur if a table
space with the same name as the node group has not been automatically
created during database migration.

If you are using CREATE TABLE statements that do not specify the IN
keyword, the table space selected, by default, may not be using the node
group, IBMDEFAULTGROUP, and will not include data on all the database
nodes. You can check the partition map for the table to confirm this.

Resolution:

Ensure that any name specified following the IN keyword on the CREATE
TABLE statement is the name of a defined table space. For existing statements,
you could set up a table space for each node group with the same name.

To ensure that tables default to the IBMDEFAULTGROUP for all users, define
a table space called IBMDEFAULTGROUP, defined in the node group,
IBMDEFAULTGROUP. This ensures that tables created by any users will
default to use this table space.

Note: This is done automatically during database migration from DB2 PE
Version 1 to DB2 Version 5.

682 Administration Guide Design and Implementation

Revoking CONTROL on Tables or Views

UNIX OS/2 WIN DB2 PE

Change:

A user can grant privileges on a table or view using the CONTROL privilege.
In DB2 Version 5, the WITH GRANT OPTION provides a mechanism to
determine a user’s authorization to grant privileges on tables and views to
other users. This mechanism is used in place of CONTROL to determine
whether a user may grant privileges to others. When CONTROL is revoked,
users will continue to be able to grant privileges to others.

Symptom:

A user can still grant privileges on tables or views, following the revocation of
CONTROL privilege.

Resolution:

If a user should no longer be authorized to grant privileges on tables or views
to others, revoke all privileges on the table or view and grant only those
required.

High Level Qualifiers for Objects in DB2 Version 5

UNIX OS/2 WIN DB2 PE

Change:

In DB2 PE Version 1, users would create a table, view, index or package with
any schema name or qualifier with the exception of SYSIBM. This differs from
other IBM database products and is not compliant with SQL92. In DB2
Version 5, there are limits of the schema names that you can use.
v The schema names for tables, views, indexes, and packages cannot be

SYSIBM, SYSCAT, SYSSTAT, OR SYSFUN.

Note: The schema names for all other objects must not start with SYS.
v Each schema is an object defined in the database catalog.

Users require IMPLICIT_SCHEMA authority to implicitly create a schema.
Once a schema is created, specific privileges allow users to create objects
(CREATEIN privilege), drop any object in the schema (DROPIN privilege),
or alter (comment on) any object in the schema (ALTERIN privilege). The
change to supporting schemas, as objects with privileges, has resulted in
changes to privileges associated with various statements.

Appendix C. Incompatibilities Between Releases 683

– For creating objects in an existing schemas, you must have CREATEIN
privilege.

– For creating objects in a schema that does not exist, you must have
IMPLICIT_SCHEMA authority.

– For dropping objects in a schema, you must be the definer of the object,
have CONTROL privilege, or have DROPIN privilege on the schema.

– For altering, including commenting on, objects in a schema you must be
the definer of the object, have CONTROL privilege, or have ALTERIN
privilege on the schema.

Note: For altering or commenting on a table, the ALTER privilege on the
table is also valid.

Symptom:

If you create an object with an invalid schema name, the CREATE statement
returns an SQLCODE of SQL0553N. This message indicates that the object
cannot be created with the schema name.

If a CREATE, ALTER, COMMENT ON or DROP statement returns an
SQLCODE of SQL0551N, you did not have the necessary privilege. This may
be the result of schema-related privileges and could indicate that:
v The object cannot be created because the schema does exist and you do not

have the IMPLICIT_SCHEMA authority.
v The object cannot be created because the schema does not exist and you do

not have the CREATEIN privilege.
v The object cannot be dropped because another user created the object and

you do not have the DROPIN privilege.
v The object cannot be altered (commented on) because another user created

the object and you do not have ALTERIN privilege.

Resolution:

Depending on the symptom:
v Do not create schema names with SYS.
v If a user can create a table, view, index or package, grant the necessary

authority or privilege using the GRANT (Database Authorities) statement
for IMPLICIT_SCHEMA authority, or the GRANT (Schema Privileges)
statement for CREATEIN, DROPIN or ALTERIN privilege on the schema. A
user with DBADM authority must first create the schema.

684 Administration Guide Design and Implementation

Database Security and Tuning

Creating Databases Using Clients in DB2 Universal Database Version 5

UNIX OS/2 WIN Extended

Change:

The method used by clients to create a database.

Symptom:

Using a down-level client (from a previous release than that of the server) to
create a database will result in errors.

Resolution:

When using a client to create a database, only use clients at the same level as
that of the server.

Utilities and Tools

LOAD TERMINATE

DB2 PE

Change:

The LOAD TERMINATE command has a different function in DB2 UDB than
it did in DB2 Parallel Edition Version 1.x. In DB2 Parallel Edition, you could
use LOAD TERMINATE if an error occurred during the load operation to
ensure that the table data was consistent. In DB2 Universal Database Version 5
however, if you use LOAD TERMINATE, the table space is moved into the
recovery pending state. (When the table space is in the recovery pending
state, you must either restore the table space or drop it.)

Symptom:

Instead of being placed in a consistent state, the table space is placed in a
recovery pending state.

Resolution:

Instead of using LOAD TERMINATE to clean up after a failed load operation,
you should use LOAD RESTART or LOAD REPLACE. You also have the
option of dropping and re-creating the table space.

Appendix C. Incompatibilities Between Releases 685

REORG - Alternate Path Option

UNIX OS/2

Change:

When moving from Version 2 to Version 5, the REORG command and API no
longer support an “alternate path” as a work area, but rather support the
name of a table space to be used as a work area. APIs and commands will not
fail, however, this option will be ignored.

Symptom: REORG invocations from downlevel clients will ignore the
alternate work path and arbitrarily choose a temporary table space to use as a
work area.

Another symptom is you may run out of disk space.

Resolution:

Your applications will continue to function, but you should consider
upgrading to the DB2 Version 5 calls which contain valid options.

Connectivity and Coexistence

There are no incompatibilities for this area.

Configuration Parameters

LOGFILSIZ

OS/2 WIN UNIX DB2 PE

Change:

The data type of this database configuration parameter has changed from
being an unsigned 2-byte integer to an unsigned 4-byte integer. A new token
has been added for the configuration APIs indicating a 4-byte integer.

For DB2 Version 5, the token is SQLF_DBTN_LOGFIL_SIZ
For DB2 Version 2, the token is SQLF_DBTN_LOGFILSIZ

The configuration API will still recognize the Version 2 token, but the full
range of values of this parameter is greater than what is supported by a
2-byte integer.

Symptom:

686 Administration Guide Design and Implementation

Existing applications will continue to work using the configuration API or via
REXX, but the results might be unpredictable because of the larger range in
DB2 Version 5.

Resolution:

Re-code the application or REXX script to use the new token. For users of the
Command Line Processor or the Control Center, this change in the token
would not affect your applications.

BUFFPAGE and Multiple Buffer Pools

UNIX OS/2 WIN DB2 PE

Change:

Before Version 5, each database had one buffer pool, which was created when
the database was created. You could change the size of the buffer pool using
the buffpage parameter. In DB2 Version 5 and later, each database can have
multiple buffer pools. You can create additional buffer pools of possibly
different page sizes or change the size of a buffer pool through the CREATE
BUFFERPOOL or ALTER BUFFERPOOL statements or through the Control
Center using the appropriate command.

If the buffer pool size is specified to be −1, then the value of the database
configuration parameter is used as the size of the buffer pool.

Note: When the BUFFPAGE database configuration parameter is updated,
you will receive an SQLCODE SQL1482W warning.

Symptom:

In DB2 Version 5, a new or migrated database has a default buffer pool. For a
new database created in DB2 Version 5, the size of the default buffer pool is
determined by the operating system. For a migrated database, the size of the
buffer pool is set to −1, which then refers to the buffpage configuration
parameter.

Resolution:

To resolve this problem, you will need to do the following:
1. For a new database created in DB2 Version 5, you may change the size of

the buffer pool using the ALTER BUFFERPOOL statement.
2. Following the creation or migration of a database, you can then create

additional buffer pools for the database using the CREATE BUFFERPOOL
statement.

Appendix C. Incompatibilities Between Releases 687

NEWLOGPATH

OS/2 WIN UNIX DB2 PE

Change:

In DB2 Version 5, in a partitioned database, the node number is appended to
the path in the form path_name \NODExxxx (path_name /NODExxxx on
UNIX-based systems), where xxxx is the 4 digit node number. This maintains
the uniqueness of the path across the database partitions.

Symptom:

When updating the NEWLOGPATH configuration parameter, the node
number is automatically appended to the path name. This may result in path
names that are too long (greater than 242 characters), and the configuration
parameter update may fail.

Resolution:

Be aware that the log files will reside in the path that includes the node
numbering designation. If the configuration parameter update failed, ensure
that the path length, including the node number designation, is less than or
equal to 242 characters.

MULTIPAGE_ALLOC

DB2 PE

Change:

In DB2 PE Version 1.2, this database configuration parameter was known as
MULTIPGAL and the data type of this database configuration parameter was
an unsigned 1-byte integer. In DB2 Version 5, the data type of this parameter
is an unsigned 2-byte integer, using a new token.

For DB2 Version 5, the token is SQLF_DBTN_MULTIPAGE_ALLOC
For DB2 PE Version 1, the token is SQLF_DBTN_MULTIPGAL

Symptom:

Existing applications will continue to work using either the
SQLF_DBTN_MULTIPGAL or the SQLF_DBNR_MULTIPAGE_ALLOC tokens.

Resolution:

While the configuration APIs support both tokens, applications should be
updated to use the new tokens.

688 Administration Guide Design and Implementation

LOCKLIST

UNIX OS/2

Change:

In DB2 Version 5, the size of a lock request block has been changed to 36
bytes. As a result, fewer lock request blocks will fit in the configured amount
of space allocated for the lock list.

Symptom:

This may result in more frequent lock escalations.

Resolution:

You should increase the setting of the LOCKLIST configuration parameter
accordingly.

Appendix C. Incompatibilities Between Releases 689

690 Administration Guide Design and Implementation

Appendix D. Naming Rules

Use the naming rules shown below when you provide names for the
following databases and database objects:
v Database Names
v Database and Database Alias Names
v User IDs and Passwords
v Schema Names
v Group and User Names
v Object Names.

Do not use IBM SQL or ISO/ANSI SQL92 reserved words to name tables,
views, columns, indexes, or authorization IDs. A list of these words is
included in the SQL Reference manual.

Refer to the Quick Beginnings manuals for naming rules about authorization
IDs (including user names and group names) and workstations, and for
additional platform restrictions.

Database Names

Every time a new database is created, the database manager creates a separate
directory to store the control files and data files for that database.

The naming scheme for these directories is SQL00001 through SQLnnnnn, where
SQL00001 contains control files associated with the first database created,
SQL00002 contains control files for the second database created, and so on.

These directories are maintained automatically. To avoid potential directory
naming problems, do not create your own directories using the same naming
schema as used by the database manager, and do not manipulate directories
that have already been created by the database manager.

Database and Database Alias Names

Database names are the identifying names you or your users provide as part of
the CREATE DATABASE command or API. These names must be unique
within the location in which they are cataloged. For example, for UNIX-based
implementations of DB2, this location is a directory path, while in OS/2
implementations it is a drive letter.

© Copyright IBM Corp. 1993, 1999 691

Database alias names are local synonyms given to local or remote databases.
These names must be unique within the System Database Directory, in which
all aliases are stored for the individual instance of the database manager.
When a new database is created, the alias defaults to the database name. As a
result, you cannot create a database using a name that exists as a database
alias, even if there is no database with that name.

When naming a database or a database alias, the name you specify:
v Can contain 1 to 8 characters
v Must begin with one of the following:

– A through Z (converts lowercase letters to uppercase)
– @, #, or $

v Other characters can include:
– A through Z (converts lowercase letters to uppercase)
– 0 through 9
– @, #, $, and _ (underscore)

Note: To avoid potential problems, do not use the special characters @, #, and
$ in a database name if you intend to use the database in a
communications environment. Also, because these characters are not
common to all keyboards, do not use them if you plan to use the
database in another country. Finally, on Windows NT systems, ensure
that no instance name is the same as a service name.

User IDs and Passwords

When creating a user ID or password, the name you create:
v Cannot be any of the following:

– USERS, ADMINS, GUESTS, PUBLIC, LOCAL, or any SQL reserved word
listed in the SQL Reference manual.

v Cannot begin with:
– SQL, SYS, or IBM

v Other characters can include:
– A through Z

Note: Some operating systems allow case-sensitive user IDs and
passwords. You should check with your operating system
information to see if this is the case.

– 0 through 9
– @, #, or $

692 Administration Guide Design and Implementation

Note: You may be required to perform password maintenance tasks. Since
such tasks are required at the server, and many of the users are not
able or comfortable working with the server environment, carrying
these tasks can pose a significant challenge. DB2 UDB provides a way
to update and verify passwords without having to be at the server. For
example, DB2 for OS/390 Version 5 supports this method of changing a
user’s password. If an error message SQL1404N “Password expired” is
received, then to change the password use the CONNECT statement as
follows:

CONNECT TO <database> USER <userid> USING
<password> NEW <new_password>
VERIFY <new_password>

The “Password change” dialogue of the DB2 Client Configuration
Assistant (CCA) may also be used to make a change to the password.
See the SQL Reference and the CCA online help for further information
on these methods to change the password.

Schema Names

The following schema names are reserved words and must not be used:
v SYSCAT
v SYSFUN
v SYSIBM
v SYSSTAT

In general, you should avoid schema names that begin with SYS to avoid
potential migration problems in the future. The database manager will not
allow you to create triggers, user-defined types or user-defined functions
using a schema name beginning with SYS.

Group and User Names

On UNIX, groups and users can have the same name. For the GRANT
statement you must specify whether you are referring to a group or a user.
For the REVOKE statement specifying user or group depends on whether or
not there are multiple rows in the authorization catalog tables for the
GRANTEE with different values of GRANTEETYPE.

On OS/2, groups and users cannot have the same name.

On Windows NT, Local Group names, Global Group names and User IDs
cannot have the same name.

Appendix D. Naming Rules 693

Object Names

Database objects include the following:
v Schemas
v Tables
v Views
v Columns
v Indexes
v User-defined functions (UDFs)
v User-defined types (UDTs)
v Triggers
v Aliases
v Table spaces
v Stored procedures
v Nodegroups
v Buffer pools
v Event monitors.

When naming database objects, the name you specify:
v Can contain 1 to 18 characters (bytes)

Note: There are exceptions:
– Schemas only allow 1 to 8 characters
– Columns allow 1 to 30 characters
– Tables, views, and aliases allow 1 to 128 characters.

v Must begin with one of the following:
– A through Z (converts lowercase letters to uppercase)
– A valid accented letter (such as ö)
– A multibyte character, except multibyte spaces (for multibyte

environments)
v Other characters can include:

– A through Z (converts lowercase letters to uppercase)
– A valid accented letter (such as ö)
– 0 through 9
– @, #, $, and _ (underscore)
– Multibyte characters, except multibyte spaces (for multibyte

environments)

694 Administration Guide Design and Implementation

v Keywords can be used. If the keyword is used in a context where it could
also be interpreted as an SQL keyword, it must be specified as a delimited
identifier. Refer to the SQL Reference for information on delimited
identifiers.

v For maximum portability, use the IBM SQL and ISO/ANSI SQL92 reserved
words. For a list of these words, refer to the SQL Reference manual.

Notes:

1. Using delimited identifiers, it is possible to create an object that violates
these naming rules; however, subsequent use could lead to error
situations. To avoid potential problems with the use and operation of your
database, do not violate the above rules.
For example, if you created a column with a + or − sign included in the
name and you subsequently use that column in an index, you will
experience problems when you attempt to reorganize the table.

2. For information about National Language Support (NLS) related to object
names, see “Appendix H. National Language Support (NLS)” on page 745.

Federated Database Object Names

Federated database objects include:
v Index specifications
v Nicknames
v Servers
v Wrappers
v Function mappings
v Type mappings
v User mappings

Limits apply when naming federated database objects. A complete list of
object names and associated identifier limits and requirements are located in
the SQL Reference. In summary, object names:
v Have limits. Mapping, index specification, server, wrapper, and nickname

names cannot exceed 128 bytes.
v Must begin with one of the following:

– A through Z (names without quotes are converted to uppercase)
– A valid accented letter (such as ö)
– A multibyte character, except multibyte spaces (for multibyte

environments)
v Must follow internal naming conventions. Non-leading characters can

include:

Appendix D. Naming Rules 695

– A through Z
– A valid accented letter (such as ö)
– 0 through 9
– @, #, $, and _ (underscore)
– Multibyte characters, except multibyte spaces (for multibyte

environments)

Keywords can be used. If the keyword is used in a context where it could also
be interpreted as an SQL keyword, it must be specified as a delimited
identifier. Refer to the SQL Reference for information on delimited identifiers.

For maximum portability, use the IBM SQL and ISO/ANSI SQL92 reserved
words. For a list of these words, refer to the SQL Reference manual.

Options (server, nickname) and option settings are limited to 255 bytes.

How Case-Sensitive Values Are Preserved in a Federated System

In distributed requests, you sometimes need to specify identifiers and
passwords that are case-sensitive at the data source. To ensure that their case
is correct when they’re passed to the data source, follow these guidelines:
v Specify them in the required case and enclose them in double quotes.
v If you’re specifying a user ID, set the fold_id server option to ’n’ (“No,

don’t change case”) for the data source. If you’re specifying a password, set
the fold_pw server option to ’n’ for the data source.
There is an alternative for user IDs and passwords. If a data source requires
a user ID to be in lowercase, you can specify it in any case and set the
fold_id server option to ’l’ (“Send this ID to the data source in lowercase”).
If the data source requires the ID to be in uppercase, you can specify it in
any case and set fold_id to ’u’ (“Send this ID to the data source in upper
case”). In the same way, if a data source requires a password to be in
lowercase or uppercase, you can meet this requirement by setting the
fold_pw server option to ’l’ or ’u’.
For more information about server options, see “Using Server Options to
Help Define Data Sources and Facilitate Authentication Processing” on
page 192.

v If you enclose a case-sensitive identifier or password in double quotes at an
operating system’s command prompt, you need to ensure that the system
parses the double quotes correctly. To do this:
– On a UNIX operating system, enclose the statement in single quotes.
– On a Windows NT operating system, precede each quote with a

backward slash.

696 Administration Guide Design and Implementation

For example, many delimited identifiers in DB2 family data sources are
case-sensitive. Suppose you want to create a nickname, NICK1, for a DB2 for
CS view, "my_schema"."wkly_sal", that resides in a data source called
NORBASE. If you’re entering the SQL for creating the nickname from a UNIX
command prompt, you would type:
db2
'create nickname nick1 for norbase."my_schema"."wkly_sal"'

From an NT command prompt, you would type:
db2 create nickname nick1 for norbase.\"my_schema\".\"wkly_sal\"

If you enter the SQL from the DB2 interactive mode command prompt, or if
you specify it in an application program, you don’t need the single quotes or
the slashes. For example, from the DB2 command prompt on either a UNIX or
NT system, you would type:
create nickname nick1 for norbase."my_schema"."wkly_sal"

Appendix D. Naming Rules 697

698 Administration Guide Design and Implementation

Appendix E. Using Distributed Computing Environment
(DCE) Directory Services

DCE provides the Cell Directory Service (CDS) and Global Directory Service
(GDS). For more information about DCE concepts and these services, refer to
the Introduction to OSF DCE manual. The DB2 function for DCE Directory
Services supports CDS only. With this support, the user does not have to
create each database, node, and DCS database on every single client. All of
this information is centralized in DCE CDS.

The following sections describe how to setup and access a database using
DCE Directory Services:
v Creating Directory Objects
v Attributes of Each Object Class
v Directory Services Security
v Configuration Parameters and Registry Variables
v CATALOG and ATTACH Commands, and the CONNECT Statement
v How a Client Connects to a Database
v How Directories are Searched
v Temporarily Overriding DCE Directory Information
v Directory Services Tasks
v Directory Services Restrictions

DCE directory services may not be supported by all DB2 clients. If DCE
directory services is supported for a DB2 client, your Quick Beginnings manual
provides additional information.

Creating Directory Objects

There are three types of directory objects that the database administrator
needs to create:
v “Database Objects” on page 700

v “Database Locator Objects” on page 701

v “Routing Information Objects” on page 703

Each object contains attributes. Refer to “Attributes of Each Object Class” on
page 704 for a complete description of the attributes.

© Copyright IBM Corp. 1993, 1999 699

Before the database administrator can create the objects, the DCE
administrator needs to add database information into a CDS table and grant
create privileges to the database administrator. Refer to “DCE Administrator
Tasks” on page 721 for the details.

Database Objects

A database object is required for each target database. The object has a name
that contains the cell name concatenated to the directory name and the name
of the database, for example:

/.../cell_name/dir_name1/dir_name2/OBJ_NAME

Note: The following is recommended for the name of the database. The name
should be less than or equal to 8 characters and all the characters
should be upper case. If the name is mixed case or longer than 8
characters, you need to use the CATALOG GLOBAL DATABASE
command to assign an alias. See “CATALOG GLOBAL DATABASE
Command” on page 713 for details about the command.

The following is an example of a database object. The object stored in the
DCE directory contains other information such as a timestamp. The letter to
the left of each attribute indicates if the attribute is required - R, optional - O,
or a comment - C.

Object name: /.../CELL_TORONTO/subsys/database/AIXDB1
R DB_Object_Type: D
C DB_Product_Name: DB2_for_AIX
C DB_Product_Release: V5R1M000
R DB_Native_Database_Name: AIXDBASE
R DB_Database_Protocol: DB2RA
R DB_Authentication: CLIENT
O DB_Communication_Protocol:
O DB_Database_Locator_Name: /.../CELL_TORONTO/subsys/database/AIX_INST
C DB_Comment: Test_database_on_AIX

If the database is one of many databases associated with a database manager
instance, the database object should contain the name of a database locator
object and the communication protocol should be blank. The name of the
database locator object is the fully-qualified name of the database manager or
DB2 Connect instance.

Here is an example of the DCE commands to create the object. Before any
objects can be created, the DCE administrator needs to do the steps described
in “DCE Administrator Tasks” on page 721.

First you must type the following in a file called cdscp.inp:

700 Administration Guide Design and Implementation

create object /.:/subsys/database/AIXDB1

add object /.:/subsys/database/AIXDB1 DB_Object_Type = D
add object /.:/subsys/database/AIXDB1 DB_Product_Name = DB2_for_AIX
add object /.:/subsys/database/AIXDB1 DB_Product_Release = V5R1M000
add object /.:/subsys/database/AIXDB1 DB_Native_Database_Name = AIXDBASE
add object /.:/subsys/database/AIXDB1 DB_Database_Protocol = DB2RA
add object /.:/subsys/database/AIXDB1 DB_Authentication = CLIENT
add object /.:/subsys/database/AIXDB1 DB_Database_Locator_Name = /...
/CELL_TORONTO/subsys/database/AIX_INST
add object /.:/subsys/database/AIXDB1 DB_Comment = Test_database_on_AIX

Then you must run either

v dcelogin principal password (on OS/2); or,
v dce_login principal password (on UNIX, Windows NT, or Windows 95).

This should be followed by
v cdscp < cdscp.inp

Use the following command to display the object:
cdscp show object /.:/subsys/database/AIXDB1

If the database is the only database associated with a database manager
instance, the database object should contain values for the Communication
Protocol attribute and the name of the database locator object should be
blank. For example:

Object name: /.../CELL_TORONTO/subsys/database/MVSDB
R DB_Object type: D
C DB_Product_Name: DB2_for_MVS
C DB_Product_Release: V5R1M00
R DB_Native_Database_Name: MVSDBASE
R DB_Database_Protocol: DRDA
R DB_Authentication: SERVER
O DB_Communication_Protocol: APPC;NET1;TARGETLU1;DB2DRDA;MODE1;PROGRAM
O DB_Database_Locator_Name:
C DB_Comment: Test_database_on_MVS

Database Locator Objects

These objects contain the details about all the communication protocols used
by a DBMS instance or a DB2 Connect instance. One database locator object is
required for:
v Each instance with both DBMS and DB2 Connect
v Each DBMS instance which is associated with more than one database, but

without an associated DB2 Connect
v Each DB2 Connect instance without an associated DBMS.

Appendix E. DCE Directories 701

The object has a name that contains the cell name concatenated to the
directory name and the one-part name of the database instance, for example:

/.../cell_name/dir_name1/dir_name2/AIX_INST

Note: If the instance is used as the target of an ATTACH, the one-part name
must be less than or equal to 8 characters and all upper case.

The following is an example of a database locator object. The object stored in
the DCE directory contains other information such as a timestamp. The letter
to the left of each attribute indicates if the attribute is required - R, optional -
O, or a comment - C.

Object name: /.../CELL_TORONTO/subsys/database/AIX_INST
R DB_Object_Type: L
C DB_Product_Name: DB2_for_AIX
C DB_Product_Release: V5R1M00
R DB_Communication_Protocol: TCPIP;HOSTNAME1;1234
R DB_Communication_Protocol: APPC;NET1;TARGETLU1;TPN1;MODE;PROGRAM
C DB_Comment: Test_instance_on_AIX

When an attribute is defined in both the database object and the database
locator object, the value in the database object is used.

Here is an example of the DCE commands to create the object. Before any
objects can be created, the DCE administrator needs to do the steps described
in “DCE Administrator Tasks” on page 721.

First you must type the following in a file called cdscp.inp:
create object /.:/subsys/database/AIX_INST

add object /.:/subsys/database/AIX_INST DB_Object_Type = L
add object /.:/subsys/database/AIX_INST DB_Product_Name = DB2_for_AIX
add object /.:/subsys/database/AIX_INST DB_Product_Release = V5R1M00
add object /.:/subsys/database/AIX_INST DB_Communication_Protocol = TCPIP;
HOSTNAME1;1234
add object /.:/subsys/database/AIX_INST DB_Communication_Protocol = APPC;NET1;
TARGETLU;TPN1;MODE;PROGRAM
add object /.:/subsys/database/AIX_INST DB_Comment = Test_instance_on_AIX

Then you must run either

v dcelogin principal password (on OS/2); or,
v dce_login principal password (on UNIX, Windows NT, or Windows 95).

This should be followed by
v cdscp < cdscp.inp

Use the following command to display the object:
cdscp show object /.:/subsys/database/AIX_INST

702 Administration Guide Design and Implementation

Routing Information Objects

Routing information objects are required for host access. When a mismatch
exists in the database protocol used by a client and the database protocol used
by the target database, the routing object tells the client which DB2 Connect
instance to use. Attributes exist for each target database, which include the
database protocols that are available and the name of the database locator
object for the DB2 Connect instance. The object has a name that contains the
cell name concatenated to the directory name and a unique one-part name, for
example:

/.../cell_name/dir_name1/dir_name2/ROUTE1

The following is an example of a routing information object. The object stored
in the DCE directory contains other information such as a timestamp. The
letter to the left of each attribute indicates if the attribute, and each token
within an attribute is required - R, optional - O, or a comment - C.

Client group 1 is Client_1, Client_2, and Client_3 in Figure 73 on page 715.
Object name: /.../CELL_TORONTO/subsys/database/ROUTE1

R DB_Object_Type: R
C DB_Comment: Routing_for_client_group_1

R DB_Target_Database_Info
R Database name = /.../CELL_TORONTO/subsys/database/MVSDB
R Outbound protocol from router = DRDA
R Inbound protocol to router = DB2RA
R Authenticate at gateway = 1
O Parameter string = NOMAP,D,INTERRUPT_ENABLED
R DB_Database_Locator_Name = /.../CELL_TORONTO/subsys/database/GW_INST

R DB_Target_Database_Info
R Database name = *OTHERDBS
R Outbound protocol from router = DRDA
R Inbound protocol to router = DB2RA
R Authenticate at gateway = 0
O Parameter string =
R DB_Database_Locator_Name = /.../CELL_TORONTO/subsys/database/OTH_INST

The database name *OTHERDBS is a special value that identifies a common
router used to access any target database not explicitly defined in the routing
information object.

Here is an example of the DCE commands to create the object. The backslash
(\) character is a continuation character.

Before any objects can be created, the DCE administrator needs to do the
steps described in “DCE Administrator Tasks” on page 721.

First you must type the following in a file called cdscp.inp:

Appendix E. DCE Directories 703

create object /.:/subsys/database/ROUTE1

add object /.:/subsys/database/ROUTE1 DB_Object_Type = R
add object /.:/subsys/database/ROUTE1 DB_Comment = Routing_for_client_group_1
add object /.:/subsys/database/ROUTE1 DB_Target_Database_Info = \
/.../CELL_TORONTO/subsys/database/MVSDB;\
drda;db2ra;1;NOMAP,D,INTERRUPT_ENABLE;\
/.../CELL_TORONTO/subsys/database/GW_INST
add object /.:/subsys/database/ROUTE1 DB_Target_Database_Info = \
*OTHERDBS;drda;db2ra;0;;\
/.../CELL_TORONTO/subsys/database/OTH_INST

Then you must run either

v dcelogin principal password (on OS/2); or,
v dce_login principal password (on UNIX, Windows NT, or Windows 95).

This should be followed by
v cdscp < cdscp.inp

Use the following command to display the object:
cdscp show object /.:/subsys/database/ROUTE1

For more information about the DCE commands, refer to the following DCE
publications:
v DCE Administration Guide

v DCE Administration Reference

Attributes of Each Object Class

In the DCE environment, each object and object attribute is identified by an
object ID (OID). Each OID is obtained from a hierarchy of allocation
authorities, where the highest authority is the International Organization for
Standardization (ISO).

Table 40 shows the attributes for each object class and Table 41 on page 705
shows their attributes.

Table 40. Object Attribute Classes

Object Class Object ID (OID) Required
Attributes

Optional
Attributes

(DB) Database_Object 1.3.18.0.2.6.12 DAU, DOT,
DDP, DNN

DCO, DPN,
DRL, DLN,
DCP, DPR

(DL) Database_Locator_Object 1.3.18.0.2.6.13 DOT, DCP DCO, DPN,
DRL

704 Administration Guide Design and Implementation

Table 40. Object Attribute Classes (continued)

Object Class Object ID (OID) Required
Attributes

Optional
Attributes

(RI) Routing_Information_Object 1.3.18.0.2.6.14 DOT, DTI DCO, DPN,
DRL

Table 41. Object Class Attributes

Attribute Name OID Minimum
Length

Maximum
Length

Syntax

(DAU) DB_Authentication 1.3.18.0.2.4.39 1 1024 Char

(DCO) DB_Comment 1.3.18.0.2.4.30 1 1024 Char

(DCP)
DB_Communication_Protocol

1.3.18.0.2.4.31 1 1024 Char

(DDP) DB_Database_Protocol 1.3.18.0.2.4.32 1 1024 Char

(DLN)
DB_Database_Locator_Name

1.3.18.0.2.4.33 1 1024 Char

(DNN)
DB_Native_Database_Name

1.3.18.0.2.4.34 1 1024 Char

(DOT) DB_Object_Type 1.3.18.0.2.4.35 1 1 Char

(DPN) DB_Product_Name 1.3.18.0.2.4.36 1 1024 Char

(DRL) DB_Product_Release 1.3.18.0.2.4.37 1 1024 Char

(DTI) DB_Target_Database_Info 1.3.18.0.2.4.38 1 1024 Char

(DPR) DB_Principal 1.3.18.0.2.4.63 1 1024 Char

Note: Multiple values are allowed for DCP, DDP, and DTI. Only one value is allowed
for the other attributes.

Details About Each Attribute

The following section describes each attribute.

Note: DCE Directory Services does not check that the entries are valid for
DB2. Ensure that you enter the attributes that are required and that you
enter the correct values.

DB_Authentication (DAU)
Authentication method required by the object. This attribute is
required for the database object of a DB2 server. The value must be
CLIENT, SERVER, or DCE.

DB_Principal (DPR)
If authentication method is “DCE”, enter the DCE principal in this
attribute.

Appendix E. DCE Directories 705

DB_Comment (DCO)
For documentation purposes only.

DB_Communication_Protocol (DCP)
A multi-value attribute where each value consists of tokens that
describe the network protocol supported. Examples of the network
protocols are TCP/IP, APPC, IPX/SPX, and NetBIOS. (These last two
are appropriate for OS/2 only.) Each token is separated by a
semicolon. Do not put spaces between the tokens.
v The tokens for TCP/IP are:

1. tcpip
2. Host name of the target node
3. Port number used by the object to listen for incoming TCP/IP

connect requests
4. (Optional) Security can be either NONE or SOCKS.

For example: tcpip;HOSTNAME;1234
v The tokens for APPC are:

1. appc
2. Network ID of the target to which to object belongs.
3. LU name where the target can be found.
4. Transaction Program Name (TPN) representing the object in the

LU (For DB2 for MVS/ESA, use DB2DRDA as the TPN.)
5. Mode name
6. Type of security used by the target. The values are:

– NONE
– PROGRAM
– SAME

For example: appc;NETID;TARGETLU;TPNAME;MODE;PROGRAM

Note: For APPC, the client must use its local control point (CP) as
its LU name.

v (OS/2, Windows NT, or Windows 95 only) The tokens for IPX/SPX
are:
1. ipxspx
2. Name of the file server
3. Name of the object

For example: ipxspx;SVR_NAME;OBJ_NAME

706 Administration Guide Design and Implementation

v (OS/2, Windows NT, or Windows 95 only) The tokens for NetBIOS
are:
1. netbios
2. Node name of the server

For example: netbios;SVR_NNME where the client adapter number is
found in either the registry value db2clientadpt or the database
manager configuration parameter dft_client_adpt.

v (Windows NT or Windows 95 only) The tokens for NPIPE are:
1. NPIPE
2. Computer name of the server
3. Instance name of the server

For example: npipe;computername;instance

DB_Database_Protocol (DDP)
The database protocol or protocols supported by the target database.
Examples of the values are DB2RA and DRDA. The following are the
cdscp commands to add two protocols.
add object /.:/subsys/database/AIXDB1 DB_Database_Protocol db2ra
add object /.:/subsys/database/AIXDB1 DB_Database_Protocol drda

DB_Database_Locator_Name (DLN)
The DCE name of the database locator object. In the database object,
the name is for the DBMS instance. In the routing information object,
the name is for the DB2 Connect instance.

For example, /.../CELL_TORONTO/subsys/database/AIX_INST

DB_Native_Database_Name (DNN)
The database name or alias by which the database is known within
the instance containing the database. This is the name that a local
application on the instance uses to connect to that database.

The name is up to 8 characters for a DB2 for Universal Database
database. For other databases, the length of the name may be
different. For example it can be up to 18 characters for databases on
DB2 for MVS/ESA.

DB_Object_Type (DOT)
The type of object. This attribute is required for all objects and can be
one of the following:

D Database object

L Database locator object

R Routing information object

Appendix E. DCE Directories 707

DB_Product_Name (DPN)
The identification of the product. For documentation purposes only.

DB_Product_Release (DRL)
The product release level. For documentation purposes only.

DB_Target_Database_Info (DTI)
A multi-value attribute where each value consists of a fixed number of
tokens, separated by a semicolon. Do not put spaces between the
tokens. The tokens must be in the following order:
1. Database name. The DCE name of a target database for which the

routing service is provided. The value *OTHERDBS specifies a
default gateway for any target databases not explicitly defined in
the routing information object.

2. Outbound protocol from router. The database protocol used by the
target database, or the database protocol the routing DB2 Connect
instance uses to communicate with that target database. For
example, DRDA.

3. Inbound protocol to router. The database protocol accepted by the
routing DB2 Connect instance object. For example, DB2RA.

4. Authenticate at gateway. The valid values are 0 or 1. See Table 42
on page 710 for more details.

5. Parameter string which contains information specific to the DB2
Connect gateway. The string contains tokens that must be in the
order described below. The tokens are separated by commas. For
tokens that are not specified, the default is used.
v Map-file name. The fully-qualified name of the SQLCODE

mapping file that overrides the default SQLCODE mapping. To
turn off SQLCODE mapping, specify NOMAP.

v D. The application disconnects from the DRDA server database
when specific SQLCODEs are returned. Refer to the DB2 Connect
User’s Guide for details about the SQLCODEs.

v INTERRUPT_ENABLED. DB2 Connect will drop the connection
and roll back the unit of work when a client issues an interrupt
while connected to the DRDA server.

The following are some examples:
NOMAP
/u/username/sqllib/map/dcs1new.map,D
/u/username/sqllib/map/dcs1new.map,D,INTERRUPT_ENABLED

Where defaults are used, use a comma to preserve the order of the
tokens, for example:

,D

708 Administration Guide Design and Implementation

or
,,INTERRUPT_ENABLED

Refer to the DB2 Connect User’s Guide for details about the
Parameter string.

6. The DCE name of the DB2 Connect instance that provides the
routing service.

The following is an example of the DB_Target_Database_Info:
/.../CELL_TORONTO/subsys/database/MVSDB;\
drda;db2ra;0;;\
/.../CELL_TORONTO/subsys/database/GW_INST

Note: In the above example, the back slash (\) is a line continuation
character.

Directory Services Security

When using DCE directory services in an environment without a DB2 Connect
gateway, authentication is the same as is used for other clients accessing
database servers. For more information, see “Authentication” on page 282.

When using DCE directory services in an environment with a DB2 Connect
gateway, the DB2 Connect administrator determines where user names and
passwords are validated. With DCE directories, specify the following:

v The security type of the communication protocol in the database locator
object representing the DB2 Connect workstation. (If a remote client is
connected to the DB2 Connect Extended Edition gateway via an APPC
connection, specify a security type of NONE in the DCE Locator Object of
the gateway.)

v The authentication type in the database object.
v The security type of the communication protocol in the database object (or

its associated locator object).
v The authenticate at gateway token in the routing information object.

Table 42 on page 710 shows the possible combinations of these values and
where validation is performed for each combination using APPC connections.
The combinations shown in this table are supported by DB2 Connect with
DCE Directory Services.

Appendix E. DCE Directories 709

Table 42. Valid Security Scenarios with DCE using APPC Connections

Database Object of the
Server

Routing
Object

Validation

Case Authentication Security Authenticate
at Gateway

1 CLIENT SAME 0 Remote client (or DB2
Connect workstation)

2 CLIENT SAME 1 DB2 Connect
workstation

3 SERVER PROGRAM 0 DRDA server

4 SERVER PROGRAM 1 DB2 Connect
workstation and DRDA
server

5 DCE NONE NOT APPLICABLE DCE

Table 43 shows the possible combinations of these values and where
validation is performed for each combination using TCP/IP connections. The
combinations shown in this table are supported by DB2 Connect with DCE
Directory Services.

Table 43. Valid Security Scenarios with DCE using TCP/IP Connections

Case Authentication Authenticate at
Gateway

Validation

1 CLIENT 0 Client

2 CLIENT 1 DB2 Connect workstation

3 SERVER 0 DRDA server

4 NOT APPLICABLE NOT APPLICABLE None

5 DCE NOT APPLICABLE DCE

Each combination is applicable to both APPC and TCP/IP and is described in
more detail below:

1. The user name and password are validated only at the remote client. (For
a local client, the user name and password are validated only at the DB2
Connect workstation.)
The user is expected to be authenticated at the location he or she first
signs on to. The user ID is sent across the network, but not the password.
Use this type of security only if all client workstations have adequate
security facilities.

2. The user name and password are validated at the DB2 Connect
workstation only. The password is sent across the network from the
remote client to the DB2 Connect workstation but not to the DRDA server.

710 Administration Guide Design and Implementation

3. The user name and password are validated at the DRDA server only. The
password is sent across the network from the remote client to the DB2
Connect workstation and from the DB2 Connect workstation to the DRDA
server.

4. The user name and password are validated at both the DB2 Connect
workstation and the DRDA server. The password is sent across the
network from the remote client to the DB2 Connect workstation and from
the DB2 Connect workstation to the DRDA server.
Because validation is performed in two places, the same set of user names
and passwords must be maintained at both the DB2 Connect workstation
and the DRDA server.

5. A DCE token is obtained from the DCE Security Server.

Notes:

1. For AIX-based systems, all users using security type SAME must belong to
the AIX system group.

2. For AIX-based systems with remote clients, the instance of the DB2
Connect product running on the DB2 Connect workstation must belong to
the AIX system group.

3. Access to a DRDA server is controlled by its own security mechanisms or
subsystems; for example, the Virtual Telecommunications Access Method
(VTAM) and Resource Access Control Facility (RACF). Access to protected
database objects is controlled by the SQL GRANT and REVOKE
statements.

Configuration Parameters and Registry Variables

The following configuration parameters are used with DCE directories. An
example of the values is shown. Refer to “Distributed Services” within the
chapter “Configuring DB2” in Administration Guide, Performance for details.
v dir_obj_name is the database instance name which is concatenated with

dir_path_name. If the instance name is used as the target of the ATTACH
command, the name must be less than or equal to 8 characters and all
upper case, for example:

AIX_INST

v dir_type identifies whether or not to use DCE directory services. To enable
DCE directory services, this parameter must be set to:

DCE

Note that dir_type is set to NONE and cannot be updated on database
clients that do not support the use of DCE directory services.

v dir_path_name is the directory path name provided by the DCE
administrator, for example:

Appendix E. DCE Directories 711

/.:/subsys/database/

v route_obj_name is an optional parameter that provides the DCE directory
services name of the routing information object. The name can be
fully-qualified, for example:

/.:/subsys/database/ROUTE1

or a one-part name that will be concatenated with dir_path_name, for
example:

ROUTE1

v dft_client_comm is an optional DCE parameter that specifies the
communications protocol used by the client, for example:

TCPIP

This parameter can also specify more than one protocol, for example:
TCPIP,APPC (on UNIX-based platforms)
TCPIP,APPC,IPXSPX,NETBIOS (on OS/2 platforms)
TCPIP,APPC,IPXSPX,NETBIOS,NPIPE (on Windows NT or Windows 95 platforms)

v dft_client_adpt is an optional DCE parameter that specifies the default client
adapter number for the NetBIOS protocol on OS/2, Windows NT, or
Windows 95. The valid range of numbers is zero through fifteen (0 to 15). If
this parameter contains a non-numeric value, then the value defaults to
zero (0). If this parameter contains a value outside the range allowed, then
the value defaults to zero (0).

For the following parameters, registry variables can override the parameter
values.

Configuration Parameter Registry Variable

dir_path_name DB2DIRPATHNAME

route_obj_name DB2ROUTE

dft_client_comm DB2CLIENTCOMM

dft_client_adpt DB2CLIENTADPT

The rules for setting these registry variables is the same as their
corresponding configuration parameter. For example, like the dft_client_comm
parameter, the DB2CLIENTCOMM is a character string that can have multiple
values, each separated by a comma, for example:

db2set DB2CLIENTCOMM=TCPIP,APPC

712 Administration Guide Design and Implementation

CATALOG and ATTACH Commands, and the CONNECT Statement

DCE information needs to be specified in the following commands:
v CATALOG GLOBAL DATABASE Command
v CONNECT Statement
v ATTACH Command

CATALOG GLOBAL DATABASE Command

Use the CATALOG GLOBAL DATABASE command when the client and
server have a different path name, or when the database name contains more
than 8 characters or mixed case characters. The database administrator enters
the DCE name of the database and directory type DCE.

For example:
v When the path names are different, for example if dir_path_name =

/.../CELL_TORONTO/subsys/database/:
CATALOG GLOBAL DATABASE
/.../CELL_VANCOUVER/subsys/database/VMDB AS VANVMDB
USING DIRECTORY DCE WITH "comment-string"

v When the database name contains more than 8 characters, such as the name
DB_LONGNAME:

CATALOG GLOBAL DATABASE
/.../CELL_VANCOUVER/subsys/database/DB_LONGNAME AS VANVMDB
USING DIRECTORY DCE WITH "comment-string"

CONNECT Statement

To retrieve the appropriate DCE directory object, the client must know the
fully-qualified DCE name of the database or the DBMS instance. Some of the
methods of specifying the name in the CONNECT statement follow.
v Enter the alias, for example:

CONNECT TO VANVMDB

v Enter the one-part name, for example:
CONNECT TO VMDB

In this case, the path name specified at the client must be the same as the
path name specified at the server. (The path name is specified by the
dir_path_name configuration parameter or the corresponding registry value.)

ATTACH Command

The effective path name of the client must be the same as the path name of
the target DBMS instance.

Appendix E. DCE Directories 713

If the dir_path_name is the same for client and server (for example,
/.../CELL_TORONTO/subsys/database/) and the dir_obj_name at the database
server is AIX_INST, the command to attach to the instance is:

ATTACH TO AIX_INST

How a Client Connects to a Database

Figure 73 on page 715 shows a sample configuration of a database network
with two DCE cells. /.../CELL_TORONTO and /.../CELL_VANCOUVER are the
names of the cells. (Each of these cells contains a directory called
/.:/subsys/database/ and while not illustrated in diagram, is used in other
examples.)

714 Administration Guide Design and Implementation

To allow the clients in the TORONTO cell to access all the databases in both
cells, values must be specified in the database manager configuration
parameters and the following objects must be created:

v A database object for each database.
v A database locator object for the two database servers for DB2 for AIX and

DB2 for OS/2.

/ . . . /CELL_TORONTO / . . . /CELL_VANCOUVER

MVSDB VMDB

AIXDB1
OS2DB

DB2 Connect DB2 Connect

DB2 for AIX DB2 for OS/2

DRDA

DRDA

LAN

Client_1

Client_2

Client_3

Client_4

AIXDB2

DBMS
Instance

MVS_INST

DBMS
Instance

VM_INST

DBMS
Instance

AIX_INST

DBMS
Instance

OS2_INST

DB2
for MVS

DB2
for VM

BOUNDARY

CELL

DB2RADB2RA

Figure 73. Configuration of A Network Database

Appendix E. DCE Directories 715

v A single routing information object that is known to all clients. The
attributes specify which DB2 Connect node to use for the MVSDB and
VMDB databases.

The following provide examples of how a client connects to a database:
v Connecting to Databases in the Same Cell
v Connecting to a Database in a Different Cell.

These examples include the database manager configuration parameters that
must be specified.

Connecting to Databases in the Same Cell

This section describes several examples of how clients connect to databases in
the same cell.
1. Client_1 connects to AIXDB2. The database shares the same directory path

name as the client.
The database administrator needs to:
v Specify the directory path name value in the configuration parameter

dir_path_name (or the DB2DIRPATHNAME registry value).
v Specify the directory services type value to be DCE in the configuration

parameter dir_type.
v Specify the communication protocol in the configuration parameter

dft_client_comm (or the DB2CLIENTCOMM registry value).

The local system database directory does not contain AIXDB2, so the DCE
directory is searched using the fully-qualified name. The name is created
by concatenating the value for the configuration parameter dir_path_name
(or the DB2DIRPATHNAME registry value) with AIXDB2.

The sequence of events is:
a. Client_1 obtains the database object for AIXDB2 using the DCE name

of the database /.../CELL_TORONTO/subsys/database/AIXDB2.
b. From this object, Client_1 knows that AIXDB2 uses the DB protocol

DB2RA, which is the same protocol that Client_1 uses.
c. The DB protocols match, so Client_1 reads the DBMS locator object for

AIX_INST, retrieves the communications protocol attribute value that
matches the one it uses, and uses the information to start a
conversation with that DBMS instance.

2. Client_3 connects to MVSDB. The database shares the same directory path
name as the client and uses a different database protocol from the client.
The database administrator needs to:

716 Administration Guide Design and Implementation

v Specify the directory path name value in the configuration parameter
dir_path_name (or the DB2DIRPATHNAME registry value).

v Specify the directory services type value to be DCE in the configuration
parameter dir_type.

v Specify the communication protocol in the configuration parameter
dft_client_comm (or the DB2CLIENTCOMM registry value).

v Specify the DCE name of the default routing information object in the
configuration parameter route_obj_name (or the DB2ROUTE registry
value).

The sequence of events is:
a. Client_3 obtains the database object for MVSDB using the DCE name

of the database /.../CELL_TORONTO/subsys/database/MVSDB.
b. From this object, Client_3 finds that MVSDB only uses the DB protocol

DRDA, which is not the protocol that Client_3 uses.
c. Client_3 then obtains the routing information object using the name

defined in the route_obj_name configuration parameter or the
DB2ROUTE registry value. The client finds the target database
information for MVSDB.

d. Client_3 reads the database locator object associated with the MVSDB
target database information, retrieves the communication protocol, and
sends an SQL CONNECT request to the router.

e. The router then sets up an APPC connection with MVSDB.

Connecting to a Database in a Different Cell

This section describes an example of how a client connects to a database in a
different cell when the database protocols are different.
1. Client_3 has previously been configured to use the following:
v DCE directory services, by specifying DCE for the dir_type parameter.
v A cell other than CELL_VANCOUVER through the configuration

parameter dir_path_name, for example:
/.../CELL_TORONTO/subsys/database/

2. In order for Client_3 to connect to VMDB, the database administrator
needs to:
v Explicitly catalog VMDB in the local system database directory.

Associate the DCE name for VMDB with a locally unique database alias,
and issue the CONNECT statement with the alias value. For example:

CATALOG GLOBAL DATABASE
/.../CELL_VANCOUVER/subsys/database/VMDB AS VANVMDB
USING DIRECTORY DCE WITH "comment-string"

followed by:

Appendix E. DCE Directories 717

CONNECT TO VANVMDB

v Specify the communication protocol in the configuration parameter
dft_client_comm (or the DB2CLIENTCOMM registry value).

v Specify the DCE name of the default routing information object in the
configuration parameter route_obj_name (or the DB2ROUTE registry
value).

The sequence of events is:
a. Client_3 finds the fully qualified DCE name of VANVMDB in its

system database directory.
b. Client_3 obtains the database object for VMDB using the DCE name of

the database /.../CELL_VANCOUVER/subsys/database/VMDB.
c. From this object, Client_3 finds that VMDB only uses the DB protocol

DRDA, which is not the protocol that Client_3 uses.
d. Client_3 then obtains the routing information object using the name

defined in the route_obj_name configuration parameter or the
DB2ROUTE registry value. The client finds the target database
information for VMDB.

e. Client_3 reads the database locator object associated with the VMDB
target database information and retrieves the communication protocol
and sends an SQL CONNECT request to the router.

f. The router then sets up an APPC connection with VMDB.

How Directories are Searched

If the DCE directory is used in an environment where all the target databases
share the same directory path name, no local directories are required on the
clients.

This section describes the order in which directories are searched for the
following:
v ATTACH Command
v CONNECT Statement

ATTACH Command

Figure 74 on page 719 shows how the directories are searched when a client
attaches to a DBMS instance called ABC_INST.

718 Administration Guide Design and Implementation

CONNECT Statement

Figure 75 on page 720 shows how the directories are searched when a client
connects to a database called DBTEST.

NO

YES

YES

Attach to local ABC_INST

Attach to ABC_INST

NO

Search DCE directory
Attach to ABC_INST

Environment variable
DB2INSTANCE
= ABC_INST?

Local node
directory entry
= ABC_INST?

Figure 74. How Directories are Used to Attach a Database

Appendix E. DCE Directories 719

Temporarily Overriding DCE Directory Information

You can use the local database directory to override the DCE directory
information. For example, if you CONNECT TO DBTEST where
/.:/subsys/database/DBTEST is defined in the DCE directory as residing on a
host called JAGUAR, you can temporarily change DBTEST to a different
database residing on a host called STORM. Catalog DBTEST locally as a
remote database with a node directory entry pointing to STORM.

YES
Connect to local DBTEST

YES

NO

YES

YES YES

Search DCE directory
Connect to DBTEST

Search DCE directory
Connect to DBTEST

Local node
directory entry
for DBTEST?

Connect to
remote DBTEST

1. Use node name and
as the name of database locator object

2. Search DCE directory
3. Connect to DBTEST

dir_path_nameError

NO

NO

NO NO

System database
directory entry
= DBTEST?

Directory type
= DCE?

Directory type
= indirect?

Directory type
= remote?

Figure 75. How Directories are Used to Connect a Database

720 Administration Guide Design and Implementation

You can create an alias for a database whose DCE name does not follow the
directory path name of the client. See “CATALOG GLOBAL DATABASE
Command” on page 713 for details about the command.

Directory Services Tasks

The tasks that must be performed to setup and use DCE Directory Services
are listed below. The following sections describe the details of each task.
v DCE Administrator Tasks

The DCE administrator must update the DCE directory so that the new
database resource information can be added.

v Database Administrator Tasks
The database administrator must update the DCE directory and supply
information for DB2 installation and configuration.

v Database User Tasks
The database user must log in to DCE and know the target database name.

In addition, the network administrator sets up the network access for each
user node. Refer to the network documentation for the details.

DCE Administrator Tasks

The DCE administrator must do the following tasks before the directory
objects can be created or read:
v Assign the directory subtree for DB2, for example /.:/subsys/database
v Grant the privileges to the database administrator to create directory objects
v Grant the privileges to the database users to read the directory objects
v Add the information for the new DCE directory object attributes to the DCE

attribute table.
Edit the CDS attributes file (on UNIX platforms /etc/dce/cds_attributes; on
OS/2 X:\opt\dcelocal\etc\cds_attr, where ″X″ is the appropriate drive) and
append the following:
1.3.18.0.2.4.30 DB_Comment char
1.3.18.0.2.4.31 DB_Communication_Protocol char
1.3.18.0.2.4.32 DB_Database_Protocol char
1.3.18.0.2.4.33 DB_Database_Locator_Name char
1.3.18.0.2.4.34 DB_Native_Database_Name char
1.3.18.0.2.4.35 DB_Object_Type char
1.3.18.0.2.4.36 DB_Product_Name char
1.3.18.0.2.4.37 DB_Product_Release char
1.3.18.0.2.4.38 DB_Target_Database_Info char
1.3.18.0.2.4.39 DB_Authentication char
1.3.18.0.2.4.63 DB_Principal char

Appendix E. DCE Directories 721

v Ensure DCE is running when users need access to the databases using DCE
Directory Services.

For more information, refer to the DCE documentation for the platform you
are using.

Database Administrator Tasks

The database administrator must do the following tasks:
v Obtain the directory subtree for the database resources from the DCE

administrator. For example, /.:/subsys/database
v During installation of the DB2 database manager, ask the DCE

administrator to add the new DCE directory object attributes required by
DB2.

v Assign a unique name for each DBMS instance in the DCE directory
subtree. For example, /.:/subsys/database/AIX_INST

v For each DBMS instance specify the database manager configuration
parameters for DCE.
– dir_type

– dir_obj_name

– dir_path_name

– route_obj_name

– dft_client_comm

– dft_client_adpt

Some of the configuration parameters can be temporarily overridden by
registry values set by the client. Refer to “Configuration Parameters and
Registry Variables” on page 711 for more information.

v Assign a unique name for each database in the DCE directory subtree.
Specify the name in the dir_obj_name parameter in the database
configuration file.

v Create the objects for DCE Directory Services using the DCE cdscp
commands to create and display objects. The objects are created separately
from the database manager installation process and the database manager
instance start process.
Three types of objects exist.
– A database object is required for each target database.
– A database locator object is required for each DB2 Connect instance and

each DBMS instance (without DB2 Connect) which is associated with
more than one database.

– Routing information objects are required to access a host database.

722 Administration Guide Design and Implementation

v Depending on each environment, the database administrator must
determine:
– How to group the clients into logical groups considering what databases

they access, and what communications protocols they use.
– How many routing information objects are required.
– Which target databases should be recorded in each routing information

object.
– Which routing information objects should be known to which group of

clients.

Refer to “Creating Directory Objects” on page 699 for details about the
objects.

Database User Tasks

The database user must do the following tasks:
v Obtain the name of the database from the database administrator. This

name can be a simple one-part name, or a fully-qualified DCE name.
v If needed, specify the values required for DCE Directory Services in the

registry values. Registry values set by the client can temporarily override
the configuration parameters.
– If host database access is required, obtain the fully-qualified DCE name

of the routing information object from the database administrator. If this
name is not specified in the route_obj_name, or it is a different name,
specify this name in the DB2ROUTE registry value before trying to
connect to the host database.

– If your preferred communication protocol is not specified in
dft_client_comm, or it is a different protocol, specify the communication
protocol for the client in the DB2CLIENTCOMM registry value. Here are
some UNIX examples:
db2set DB2CLIENTCOMM=tcpip
db2set DB2CLIENTCOMM=appc
db2set DB2CLIENTCOMM=tcpip,appc
db2set DB2CLIENTCOMM=appc,tcpip

Some OS/2 examples are:
db2set DB2CLIENTCOMM=ipxspx
db2set DB2CLIENTCOMM=netbios
db2set DB2CLIENTCOMM=tcpip,ipxspx,netbios
db2set DB2CLIENTCOMM=netbios,tcpip,ipxspx,appc

Some Windows NT and Windows 95 examples are:

Appendix E. DCE Directories 723

db2set DB2CLIENTCOMM=npipe
db2set DB2CLIENTCOMM=netbios
db2set DB2CLIENTCOMM=tcpip,ipxspx,netbios
db2set DB2CLIENTCOMM=netbios,tcpip,ipxspx,appc,npipe

If more than one communication protocol exists, the first one specified is
used.

v If any of the databases has a DCE name that is not in the directory path
defined in the dir_path_name configuration parameter or the
DB2DIRPATHNAME registry value, then explicitly catalog the database
with the CATALOG GLOBAL DATABASE command. Refer to “CATALOG
GLOBAL DATABASE Command” on page 713 for more information.

v Log in to DCE before connecting to the target database or attaching to the
database instance. Refer to the OSF DCE Administration Guide for more
information about the login command.

Directory Services Restrictions

This section describes what is not supported.
v Not all database clients may be supported. See your Quick Beginnings

manual to determine whether DCE directory services is supported from
your DB2 client. Currently, support is only provided for DB2 Clients for all
UNIX, OS/2, Windows NT, and Windows 95 platforms.

v A client cannot use DCE Directory Services to connect to a DB2 for OS/2
Version 1 server.

v Only Windows NT or Windows 95 clients can use any or all of the TCP/IP,
APPC, NetBIOS, IPX/SPX, or NPIPE protocols. Only OS/2 clients can use
any or all of the TCP/IP, APPC, NetBIOS, and IPX/SPX protocols. All
supported UNIX clients can only use the TCP/IP and APPC protocols.

v LIST DATABASE (or NODE) DIRECTORY COMMANDS only provide
entries from the local directories and not entries from the DCE directory.
You can use the cdscp show object command in DCE to display the objects.

v When all of the following conditions exist, the owner of the database
manager instance must login to DCE before starting the database manager
(using the db2start command).
– The database manager instance is configured to support DCE directory

services through the dir_type configuration parameter
– The cell directory services object can only be read by explicitly logging

into DCE
– The DCE directory must be accessed to support either of the following:

- A transaction manager database (specified by the tm_database
configuration parameter) located on another instance

724 Administration Guide Design and Implementation

- A client that cannot support DCE directory services, or is not
configured to use DCE directory services.

Note: When performing the DCE login, you should use a principal that has
a long ticket lifetime.

v When using a DDCS Version 2.2 (or earlier) gateway to connect a client that
is using DCE directory services to a DRDA server, you must catalog the
database alias in the gateway’s local directory. This database alias must be
the same as the alias on the client and it must represent the same database.

v When using Windows NT, Windows 95, or Windows 98 clients,
DB2DCE.DLL will be used. This file is found in the bin subdirectory of the
sqllib subdirectory. If the DCE provider is Gradient**, by default the file
DB2DCE.GRD is equivalent to DB2DCE.DLL. If the DCE provider is IBM,
the file DB2DCE.IBM must be copied to DB2DCE.DLL.

Appendix E. DCE Directories 725

726 Administration Guide Design and Implementation

Appendix F. X/Open Distributed Transaction Processing
Model

The following figure illustrates the X/Open Distributed Transaction Processing
(DTP) model and the relationship between the three components included in
this model.

The following sections provide an overview of each of the components
included in the Distributed Transaction Processing model:
v Application Program (AP)
v Transaction Manager (TM)
v Resource Managers (RM).

Application Program (AP)

The application program (AP) defines transaction boundaries, and specifies
the application-specific actions that make up the transaction.

For example, a CICS* application program might want to access resource
managers (RMs) such as a database and a CICS Transient Data Queue, and
use programming logic between these accesses to manipulate the data. Each
access request is passed to the appropriate resource managers through

Application Program (AP)

Transaction
Manager

(TM)
Resource
Managers

(RMs)

(1) AP uses
resources from

a set of RMs

(3) TM and RMs exchange transaction information

(2) AP defines
transaction boundaries

through TM
interfaces

Figure 76. X/Open Distributed Transaction Processing (DTP) Model

© Copyright IBM Corp. 1993, 1999 727

function calls specific to that RM. In the case of DB2, these could be function
calls generated by the DB2 precompiler for each SQL statement, or database
calls coded directly by the programmer using the APIs.

A transaction manager product usually includes a transaction processing (TP)
Monitor to run the user’s application. The TP Monitor provides APIs to allow
an application to start and end a transaction, and to perform application
scheduling and load balancing among the many users who want to run the
application. Therefore the application program (AP) in a DTP environment is
really a combination of both the user application and the TP monitor.

To facilitate an efficient online transaction processing (OLTP) environment, the
TP Monitor pre-allocates a number of server processes at startup, and then
schedules and reuses them among the many user transactions. This saves on
the amount of system resources by allowing more concurrent users to be
supported with a smaller number of server processes and their corresponding
RM processes. Reusing these processes also avoids the overhead of starting up
a process in the TM and RMs for each user transaction or program. (A
program invokes one or more transactions.) This also means the server
processes are the actual ″user processes″ to the TM and the RMs. This has
implications for security administration and application programming. See
“Security Considerations” on page 494 for details.

The following types of transactions are possible from a TP Monitor:

v Non-XA transactions
These transactions involve RMs that are not defined to the TM, and are
therefore not coordinated under the two-phase commit protocol of the TM.
This might be necessary if the application needs to access an RM that does
not support the XA interface. The user basically just uses the TP monitor as
a mechanism that provides efficient scheduling of applications and load
balancing. Since the TM does not explicitly ″open″ the RM for XA
processing, the RM treats this application as any other application that runs
in a non-DTP environment.

v Global transactions
These transactions involve RMs that are defined to the TM, and are under
the TM’s two-phase commit control. A global transaction is a unit of work
that could involve one or more RMs. A transaction branch is the part of
work between a TM and an RM to support the global transaction. A global
transaction could have multiple transaction branches when multiple RMs
are accessed through one or more application processes that are coordinated
by the TM.
Loosely coupled, global transactions exist when each of a number of
application processes accesses the RMs as if they are in a separate global
transaction, but those applications are under the coordination of the TM.

728 Administration Guide Design and Implementation

Each application process will have its own transaction branch within an
RM. When a commit or rollback is requested by any one of the APs, TM, or
RMs, the transaction branches are completed altogether. It is the
application’s responsibility to ensure that resource deadlock does not occur
among the branches. (Note that the transaction coordination performed by
the DB2 transaction manager for applications prepared with the
SYNCPOINT(TWOPHASE) option is roughly equivalent to these global,
loosely-coupled transactions. See “Updating Multiple Databases” on
page 469.)
Tightly coupled global transactions exist when multiple application
processes take turns to do work under the same transaction branch in an
RM. To the RM, the two application processes are treated as a single entity.
The RM must ensure that resource deadlock does not occur within the
transaction branch.

Transaction Manager (TM)

The transaction manager (TM) assigns identifiers to transactions, monitors
their progress, and takes responsibility for transaction completion and failure.
The transaction branch identifiers (known as XIDs) are assigned by the TM to
identify both the global transaction and the specific branch within an RM.
This is the correlation token between the log in a TM and the log in an RM.
The XID is needed for two-phase commit, or rollback, to perform the
resynchronization operation (also known as resync) on a system startup, or to
let the administrator perform a heuristic operation (also known as manual
intervention) if necessary.

After a TP Monitor is started up, it will ask the TM to open all the RMs that a
set of application servers have defined. The TM will pass the xa_open calls to
the RMs so that they can be initialized for DTP processing. As part of this
startup procedure, the TM will perform the resync to recover all indoubt
transactions. An indoubt transaction is a global transaction that was left in an
uncertain state. This occurs when either the TM or at least one RM becomes
unavailable after successfully completing the first phase (that is, the prepare
phase) of the two-phase commit protocol. The RM will not know whether to
commit or rollback its branch of the transaction until the TM can consolidate
its own log with the RMs’ when they become available again. To perform the
resync operation, the TM will issue the xa_recover call one or more times to
each of the RMs to identify all the indoubt transactions. The TM will compare
the replies with the information in its own log to determine whether it should
inform the RMs to xa_commit or xa_rollback those transactions. If an RM had
already committed or rolled back its branch of an indoubt transaction through
a heuristic operation by its administrator, the TM will issue an xa_forget call
to that RM to complete the resync operation.

Appendix F. X/Open Distributed Transaction Processing Model 729

When a user application requests a commit or rollback, it must use the API
provided by the TP Monitor or TM so that the TM can coordinate the commit
and rollback among all the RMs involved. For example, when a CICS
application issues the CICS SYNCPOINT request to commit a transaction, the
CICS/6000* TM will in turn issue the XA calls such as xa_end, xa_prepare,
xa_commit, or xa_rollback to request the RM to commit or rollback the
transaction. The TM could choose to use one-phase instead of two-phase
commit if only one RM is involved, or if an RM replies that its branch is
read-only.

Resource Managers (RM)

A resource manager (RM) provides access to shared resources such as
databases.

DB2 as a resource manager of a database resource can participate in a global
transaction that is being coordinated by an XA-compliant TM. As required by
the XA interface, the database manager provides a db2xa_switch external C
variable of type xa_switch_t to return the XA switch structure to the TM. This
data structure contains the addresses of the various XA routines to be invoked
by the TM, and the operating characteristics of the RM. For more information
on the XA functions supported by the database manager see “XA Function
Supported” on page 496.

There are two methods for the RM to register its participation in each global
transaction: static registration and dynamic registration. The database
manager implements the more advanced and efficient dynamic registration
method:

v Static registration requires the TM to issue for every transaction the
xa_start, xa_end, xa_prepare series of calls to all the RMs defined for the
server application regardless whether this particular RM is used by the
transaction or not. This is inefficient when not every transaction involves
every RM. This inefficiency gets worse if there are many RMs defined.

v Dynamic registration is provided by the XA specification for flexibility and
efficiency. An RM will register to the TM using the ax_reg call only when
the RM receives a request for its resource. Note that there is no
performance disadvantage with this method even when there is only one
RM defined, or when every RM is used by every transaction because the
ax_reg and xa_start calls have similar paths in the TM.

The XA interface provides two-way communication between a TM and an
RM. It is a system-level interface between the two DTP software components,
not an ordinary application program interface to which an application
developer codes. However, application developers should be familiar with the

730 Administration Guide Design and Implementation

programming function and restrictions that the DTP software components
impose. See the Application Development Guide for information about the
X/Open XA interface programming considerations.

Although the XA interface is invariant, each XA-compliant TM may have
product specific ways of integrating an RM. For information about integrating
your DB2 product as a resource manager with a specific transaction manager,
see the appropriate TM product documentation.

Appendix F. X/Open Distributed Transaction Processing Model 731

732 Administration Guide Design and Implementation

Appendix G. User Exit for Database Recovery

User exits allow you to develop your own user exit program to interact with
storage devices that are not directly supported by the operating system.

The following topics describe the purpose of and considerations for a user exit
program, and discuss the sample exit programs and error handling:
v Overview for OS/2
v Overview for UNIX-Based Operating Systems
v Invoking a User Exit Program
v Sample User Exit Programs
v Calling Format
v Archive and Retrieve Considerations
v Backup and Restore Considerations (DB2 for OS/2 only)
v Error Handling.

As noted in the sections, some of the information may only be applicable to
certain operating platforms. For example, backup and restore user exits are
not applicable to UNIX-based platforms.

Overview for OS/2

The database manager can optionally call a user exit program to backup and
restore a database, to archive and retrieve log files, or both. Calling a user exit
program for one pair of tasks (backup and restore or archive and retrieve)
does not require that a user exit program be used for the other pair of tasks.
For example, if you archive and retrieve logs with a user exit program, you
are not required to back up and restore databases with a user exit program.

The database manager can call a user exit program with one of the following
actions:

Backup
The BACKUP DATABASE utility calls a user exit program when you
specify 0: as the target drive parameter from the command line
processor, or U as the media type on the API call. Refer to “Backing
Up a Database” on page 394 for additional information about backing
up a database.

Restore
The RESTORE DATABASE utility calls a user exit program to retrieve

© Copyright IBM Corp. 1993, 1999 733

database files that were previously stored by BACKUP DATABASE
calling a user exit program. The RESTORE DATABASE utility calls a
user exit program by specifying 0: as the source drive parameter from
the command line processor, or U as the media type on the API call.
Refer to “Restoring a Database” on page 400 for additional
information about restoring a database.

Archive and Retrieve
The database manager archive and retrieve functions call a user exit
program to store and retrieve log files and to manage the location of
archived log files if the database configuration parameter, userexit, is
on. Using a user exit program to archive and retrieve files enables a
database for roll-forward recovery (refer to “Rolling Forward Changes
in a Database” on page 413).

Note: The userexit configuration parameter applies to the archiving and
retrieving of log files only.

Overview for UNIX-Based Operating Systems

The database manager can call a user exit program to store and retrieve log
files and to manage the location of archived log files if the database
configuration parameter, userexit, is on. Using a user exit program to archive
and retrieve files enables a database for roll-forward recovery (refer to
“Rolling Forward Changes in a Database” on page 413).

Invoking a User Exit Program

When the user exit program is invoked, the database manager passes control
to the executable file, [db2uext2].

Note: Backup and restore operations call [db2usrxt.cmd] first which in turn
calls [db2uext2].

The database manager passes parameters to this program, and on completion
the program passes a return code back to the database manager. Because the
database manager can only handle a limited set of return conditions, the user
exit program should handle error conditions.

Only one user exit program can be invoked within a database manager
instance. Therefore, each program must have sections for all of the actions it
may need to perform, including: archive, retrieve, backup (OS/2 only) and
restore (OS/2 only). One of the parameters passed to the user exit program
indicates which of these actions is requested.

734 Administration Guide Design and Implementation

Sample User Exit Programs

A number of sample programs are provided to demonstrate the usage of the
user exit function for a different device or software interface. The program
listings identify the version of the device support software used.

You may modify or otherwise use these programs in any way you wish.
Comments within these sample programs provide technical information for
writing your own user exit programs.

The following topics provide information about the sample programs related
to your operating system:
v Sample User Exit Programs for OS/2
v Sample User Exit Programs for UNIX-Based Operating Systems.

Sample User Exit Programs for OS/2

The user exit sample programs for DB2 for OS/2 are found in the instance
subdirectory of the \sqllib\samples\rexx directory. The last user exit sample
program (dbuexit.CAD) is an exception: it is found in the instance subdirectory
of the \sqllib\samples\c directory. The sample you choose to implement
should be renamed with the executable file name of db2uexit with an
extension of either .cmd or .exe. This renamed file should be placed in the
\sqllib\bin directory for use as a user exit program.

While the samples provided are mostly REXX command files, your user exit
program can be written in a different programming language. The executable
file name must be db2uexit with an extension of either .cmd or .exe.

There are five OS/2 sample programs provided:
v db2uexit.ex1

This program uses the Sytos Premium** Version 2.2 program, available from
Seagate** Software Inc., to store and retrieve data on an IBM external tape
device.

Note: Only Version 2.2 of the Sytos Premium product is currently
supported. You require the OS/2 FixPack 26 to use this product.

Review the sample program listing to determine requirements such as
predefining procedures.

v db2uexit.ex2

This program uses the Filesafe** program, available from the Mountain**
Corporation, to store and retrieve data on a Mountain tape device.

Appendix G. User Exit for Database Recovery 735

A unique volume label is assigned to each backup copy of a database so
that multiple backups of the same database or different databases can be
stored on the same tape. When a database is being restored, this program
selects the most recent backup copy. This feature can be bypassed by
modifying the backup log file.

v db2uexit.ex3

This program uses the MaynStream** program, available from the
Maynard** Corporation, to store and retrieve data on a Maynard tape
device.
MaynStream does not support redirecting the restored database to a drive
other than the one on which the database was backed up.

v db2uexit.ex4

This program uses the OS/2 XCOPY command. The storage device can be
any device supported by OS/2, such as a fixed disk, diskette, or optical
cartridge. These devices can be LAN redirected drives if the workstation is
set up to support redirected drives.
XCOPY cannot be used for backing up and restoring databases.

v db2uexit.CAD

This C program is equivalent to the ADSTAR Distributed Storage Manager
(ADSM) sample program to archive and retrieve database logfiles as
presented in the sample programs for UNIX-based operating systems.

Sample User Exit Programs for UNIX-Based Operating Systems

The userexit configuration parameter causes the database manager to call a
user exit program for archiving and retrieving logs. There are three
IBM-supplied sample user exit programs on UNIX platforms: one for disk,
one for tape, and one for ADSM. It is not mandatory that you use these
programs. You may choose to create your own user exit programs. The
sample programs may provide you with a model or suggestions that you can
use when creating your user exit programs. Useful information is found in the
header information in each sample program.

While the samples provided are coded in the C language, your user exit
program can be written in a different programming language. The user exit
program must be an executable file whose name is db2uext2.

There are four UNIX-based operating system sample programs provided:
v db2uext2.cadsm

This program uses the ADSTAR Distributed Storage Manager utility to
archive and retrieve database log files.

v db2uext2.ctape

This program archives and retrieves the database log files using tape media.

736 Administration Guide Design and Implementation

v db2uext2.cdisk

This program uses the operating system copy command to archive and
retrieve database log files using disk media.

v db2uxt2.cxbsa

This program uses the Legato NetWorker** Version 4.2.5 utility from
Legato** Systems, Incorporated to archive and retrieve database log files.
This program is only applicable to AIX.

Calling Format

The database manager will call the user exit program as required and will
pass a set of parameters to it. These parameters have a data type of character
string or character.

The calling format is dependent on your operating environment as is
described in the following topics:
v Calling Format for OS/2
v Calling Format for UNIX-Based or Windows NT Operating Systems.

Calling Format for OS/2

The following is the database manager format for calling an OS/2 user exit
program:

action drive db_alias log_path log_file indicator

action Contains the value BACKUP, RESTORE, ARCHIVE, or RETRIEVE.

drive For BACKUP, this parameter contains the drive where the
database to be backed up resides.

For RESTORE, this parameter contains the drive where the
database is to be restored.

For ARCHIVE and RETRIEVE, this parameter contains the
drive where the database is located.

The format of this parameter is the drive letter followed by a
colon (for example, C:).

db_alias Contains the database alias, or, if no alias exists for the
database, the database name.

log_path For BACKUP, this parameter contains a fully qualified name
of a response file, which contains a list of files to be backed
up. Each file name in the list is a fully qualified name and
may contain wild cards.

Appendix G. User Exit for Database Recovery 737

For RESTORE, this parameter contains the fully qualified
name of a response file, which is the list of files to be restored.
Each file name in the list is a fully qualified name and may
contain wild cards. The drive letter and path are the source
drive and path at the time the database file was backed up.
For example, if C:\SQLUTIL\dbname.MH1 is contained in the
response file, it means that the dbname.MH1 file was backed up
from C:\SQLUTIL.

For ARCHIVE and RETRIEVE, this parameter contains the log
path directory (for example, C:\SQL00001\SQLOGDIR\).

log_file For BACKUP, this parameter contains a media label generated
by the BACKUP DATABASE utility. This label is composed of
the database alias name and timestamp.

For RESTORE, this parameter contains the path name of the
database subdirectory where the files are to be restored. The
drive letter is not included, because it is indicated in the drive
parameter. The format is \SQLnnnnn\.

For ARCHIVE and RETRIEVE, this parameter contains the log
file name (for example, S0000001.LOG).

indicator An indicator used to support multiple calls during a backup
or restore operation. The first call has a value of the character
'1', and subsequent calls have a value of the character '2'.

The user exit program is called multiple times during a
backup or restore operation. The first call backs up or restores
media header files (the .MHn files), and the second call backs
up or restores the entire set of database files.

For ARCHIVE and RETRIEVE, this parameter is not used.

Calling Format for UNIX-Based or Windows NT Operating Systems

The following is the database manager format for calling a UNIX-based or
Windows NT operating system user exit program to archive or retrieve data:
db2uext2 -OS<os> -RL<db2rel> -RQ<request>
-DB<dbname> -NN<nodenum> -LP<logpath>
-LN<logname> -AP<adsmpasswd> -SP<startpage>
-LS<logsize>

os Platform on which the instance is running: AIX, NT, SUN, HP,
SNI, SCO, 95, 98, and SGI.

db2rel DB2 release level. For example, DB2_V5.1.0 or DB2_V5.1.1.

request Request type. This can be ARCHIVE or RETRIEVE.

dbname Database name.

738 Administration Guide Design and Implementation

nodenum Local node number, such as 5.

logpath Fully qualified path to the log files. The path must contain the
trailing path separator. For example, /u/database/log/path/
or d:\logpath\.

logname Name of log file to be archived or retrieved, such as
S0000123.LOG.

adsmpasswd ADSM password. It will be passed to the user exit if it is
provided in the database configuration.

startpage Log extent starts at this number of offset 4 KB pages of the
device.

logsize The size of this log extent in 4 KB pages.

Notes:

1. Windows NT only supports user exits for archiving logs.
2. The -LS and -SP parameters are only used if a raw device is used for

logging. If you are using an existing user exit program that uses files for
logging, you do not have to change it.

Archive and Retrieve Considerations

The following considerations apply to calling a user exit program for
archiving and retrieving log files:
v The database configuration file parameter userexit specifies whether the

database manager invokes a user exit program to archive files or to retrieve
log files during roll-forward recovery of databases. A request to retrieve a
log file is made when the roll-forward database recovery utility needs a log
file that is not found in the log path directory.

Notes:

1. Table space roll-forward recovery does not support the retrieval of log
files using user exits.

2. On Windows NT, you cannot use a REXX user exit to archive logs.
v When archiving, a log file is passed to the user exit when it is full, even if

the log file is still active and is needed for normal processing. This allows
copies of the data to be moved away from volatile media as quickly as
possible. The log file passed to the user exit is retained in the log path
directory until it is no longer needed for normal processing. At this point,
the disk space is reused.

v DB2 opens a file in read mode when it starts a user exit to archive a log
file. Therefore, the user exit should not be able to delete the file while the

Appendix G. User Exit for Database Recovery 739

file is still active. DB2 closes the file when it becomes inactive. If the user
exit finishes when the file is inactive, the log file can be deleted but there is
a performance cost for doing so.

v When a log file has been archived, and it is inactive, DB2 does not delete
the file but renames it as the next log file when such a file is needed. This
results in a performance gain since when creating a new log file (instead of
renaming the file), all pages must be written out to guarantee the disk
space. It is better to re-use than to free up and then re-acquire the necessary
pages on disk.

v DB2 will NOT invoke the user exit to retrieve the log file in either crash
recovery nor rollback.

v A user exit program does not guarantee roll-forward recovery to the point
of failure, but only attempts to make the failure window smaller. As log
files fill, they are queued for the user exit routine. Should the disk
containing the log fail before a log file is filled, the data in that log file is
lost. Also, since the files are queued for archiving, the disk can fail before
all the files are copied. Any log files in the queue are lost.

v The configured size of each individual log file has a direct bearing on the
user exit. If each log file is very large, a large amount of data can be lost if
a disk fails. A log file configured with small log files causes the data to be
passed to the user exit routine more often.
However, if you are moving the data to a slower device such as tape, you
might want to have larger log files to prevent the queue from building up.
If the queue becomes full, archive and retrieve requests will not be
processed. Processing will resume when there is room on the queue. Any
requests not processed will not be automatically re-queued.

v An archive request to the user exit program occurs only when userexit is
configured and each time an active log file is filled. It is possible that an
active log file is not full when the last disconnection from the database
occurs and the user exit program is also called for a partially filled active
log file.

Note: To free unused log space, the log file is truncated before it is
archived.

v A copy of the log should be made to another physical device so that the
offline log file can be used by roll-forward recovery if the device containing
the log file has a media failure. This should not be the same device
containing the database data files.

v In some cases, if a database is closed before a positive response has been
received from a user exit program for an archive request, the database
manager will send another request when the database is opened. Thus, a
log file may be archived more than once. If you do not want this multiple
archiving to occur, the user exit program must not allow the subsequent
requests for archiving the same file.

740 Administration Guide Design and Implementation

v If a user exit program receives a request to archive a file that does not exist
(because there were multiple requests to archive and the file was deleted
after the first successful archiving), or to retrieve a file that does not exist
(because it is located in another directory or the end of the logs has been
reached), it should ignore this request and return a successful return code.

v A user exit may be interrupted if a remote client loses its connection to the
DB2 server. That is, while handling the archiving of logs through a user
exit, one of the other SNA-connected clients dies or powers off resulting in
a signal (SIGUSR1) being sent to the server. The server passes the signal to
the user exit causing an interrupt. The user exit program can be modified to
check for an interrupt and then continue.

v The user exit program should allow for the existence of different log files
with the same name after a point-in-time recovery; it should be written to
preserve both log files and to associate those log files with the correct
recovery path. (See “Considerations for Managing Log Files” on page 429.)

v If two or more databases are using a device at the same time, and one of
the operations involves a roll-forward operation, a log file needed for
roll-forward recovery may not exist on the medium currently in the drive.
Two conditions can occur:
– If the user exit program passes a zero (successful) return code back to

the database manager and the requested log file has not been retrieved,
the database manager assumes the roll-forward operation is complete to
the end of the logs, and the roll-forward operation stops. However,
roll-forward processing may not have gone to the end of the logs.

– If a non-zero return code is returned, the database will be in a
roll-forward pending state, and you must either resume or stop
roll-forward processing.

To prevent either situation from occurring, you can ensure that no other
databases on the node that calls the user exit program are open during the
roll-forward operation, or write a user exit program to handle this situation.

Backup and Restore Considerations (DB2 for OS/2 only)

The following considerations apply if you are writing a user exit program
which is called from the BACKUP DATABASE and RESTORE DATABASE
utilities:
v A non-zero return code returned by a user exit program causes the utility to

fail, and no retry is attempted.
v A wild card must be supported in the file name of a fully qualified file

name. For example, C:\SQL00001*.* and C:*.MH* are both acceptable
search criteria.

Appendix G. User Exit for Database Recovery 741

v The user exit program must handle the response file format of one fully
qualified file name per line with each line terminated by a carriage return
and line feed. There is no end-of-file character in the file.

v If multiple backups of the same database are placed on one media, the user
exit program should be designed so that the correct version of the backup
will be selected during the restore operation. (See the db2uexit.ex2 sample,
as described in “Sample User Exit Programs for OS/2” on page 735.)

v Two concurrently running backup processes that are sharing one backup
device must be serialized.

v If a backup image is spanned over more than one media, the prompting for
the media must be handled by the user exit program or an application it
may call. To support this feature, BACKUP DATABASE and RESTORE
DATABASE open an operating system foreground session to call the user
exit program.

v The user exit program must not back up any subdirectory within the
database directory.

v When restoring a database using a user exit program, RESTORE
DATABASE requires complete control over that database. However, the
workstation can have active connections to databases other than the one
being restored.

v If a database is being backed up or restored with a user exit program and
another operation is using the same tape device, the backup or restore
operation could fail. The backup or restore operation will have to be
restarted. To avoid this situation, you can ensure that no other databases on
the workstation that call the user exit program for logging are in use while
a backup or restore operation is in progress, or you can ensure that the user
exit program retries the backup or restore operation at a later time if a
device is not ready.

v During the restore operation, the drive letter and the path can be different
from those specified during the backup operation. For example, if file
dbname.MH1 is backed up from C:\SQLUTIL, you can restore it into d:\xxx.

Error Handling

In order for the database manager to properly handle the return codes from
the user exit program, the program must be coded to provide specific return
codes to show specific results.

Table 44 on page 743 shows the return codes that can be returned by a user
exit program. and how the database manager interprets that return code. If a
return code is not listed in the table, it is treated as if its value were 32.

742 Administration Guide Design and Implementation

Table 44. User Exit Return Codes and Results

Return Code Result (Note 1) Explanation

0 — Successful.

4 Note 2 Temporary resource error encountered.

8 Note 2 Operator intervention is required.

12 Note 3 Hardware error.

16 Note 3 Error with the user exit program or a software
function used by the program.

20 Note 3 Error with one or more of the parameters passed
to the user exit program. Verify that the user exit
program is correctly processing the parameters
provided.

24 Note 3 The user exit program was not found. For OS/2
this error message also means that a file needed
to complete a RESTORE DATABASE operation
could not be found in the current backup media.

28 Note 3 Error caused by an I/O failure or the operating
system.

32 (and all other
values)

Note 3 The user exit program was terminated by the
user.

Notes:

1. Applies to archive and retrieve actions only.
2. For archive and retrieve, a return code of 4 or 8 causes a retry in five

minutes. The request for an archive involving the same log file is retried in
five minutes.

3. User exit program requests are suspended for five minutes. During this
time, all requests are ignored including the log file request that caused the
return code.
Following the five minute suspension in processing requests, the next
request is processed. If no error occurs with the processing of this request,
then processing of new user exit program requests continues. If a return
code of greater than 8 is generated during the retry, requests are
suspended for an additional five minutes. The five minute suspensions
continue until the problem is corrected or the database is stopped and
restarted.
Once all applications disconnect from the database and then the database
is reopened, the request involving the log file that originated the problem
will be repeated. If successfully processed, any additional requests
generated during the time of suspension are processed.
If the user exit program was called to archive log files, your disk can be
filled with log files and performance may be degraded because of extra

Appendix G. User Exit for Database Recovery 743

work to format these log files. Once the disk becomes full, database
manager will not accept further application requests for database changes.
If the user exit program was called to retrieve log files, roll-forward
recovery is suspended but not stopped unless a stop was specified in the
ROLLFORWARD DATABASE utility. If a stop was not specified, you can
correct the problem and resume recovery.

4. For archive and retrieve actions, an alert message is issued for all return
codes except 0, 4, and 24. The alert message contains the return code from
the user exit program and a copy of the input parameters that were
provided to the user exit program.

Because the user exit program is called by the underlying operating system
command processor, there is a possibility that non-zero return codes are
returned from the operating system. These error codes are not remapped.
Consult the operating system message help information for a description of
those error codes.

Error Handling for OS/2:

For the BACKUP DATABASE and RESTORE DATABASE utilities, any
non-zero return code returned by a user exit program causes the utility to fail
and no retry is attempted. The utilities report a general SQLCODE -2029. The
message text for this SQLCODE displays the return code returned from the
user exit program or from the operating system.

744 Administration Guide Design and Implementation

Appendix H. National Language Support (NLS)

This appendix contains information about the National Language Support
(NLS) provided by DB2, including information about countries, languages,
and code pages (code sets) supported and how to configure and use DB2 NLS
features in both your applications and databases.

Deriving Code Page Values

The application code page is derived from the active environment when the
database connection is made. If the DB2CODEPAGE registry variable is set, its
value is taken as the application code page. However, it is not necessary to set
the DB2CODEPAGE registry variable because DB2 will determine the
appropriate code page value from the operating system. Setting the
DB2CODEPAGE registry variable to incorrect values may cause unpredictable
results.

The database code page is derived from the value specified (explicitly or by
default) at the time the database is created. The following defines how the
active environment is determined in different operating environments, for
example:

UNIX In UNIX-based environments, the active environment is determined
from the locale setting, which includes information about language,
territory and code set.

OS/2 In OS/2, primary and secondary code pages are specified in the
CONFIG.SYS file. You can use the chcp command to display and
dynamically change code pages within a given session.

DOS In DOS, the active code page is determined by the value specified in
the COUNTRY command in the CONFIG.SYS file. You can use the chcp
command to display and dynamically change code pages within a
given session.

Macintosh
For the Macintosh operating system, if the DB2CODEPAGE
environment variable is not set, the Macintosh code page is derived
from the Regional version code from the installed script.

Windows
For Windows, if the DB2CODEPAGE environment variable is not set,
the Windows code page is derived from the country ID, as specified
in the iCountry value in the [intl] section of the Windows WIN.INI
file.

© Copyright IBM Corp. 1993, 1999 745

Windows 32-bit operating systems
For all Windows 32-bit operating systems, if the DB2CODEPAGE
environment variable is not set, the code page is derived from the
ANSI code page setting in the Registry.

For a complete list of environment mappings for code page values, see
Table 45 on page 747.

Deriving Locales in Application Programs

Locales are implemented one way in Windows and another in UNIX-based
systems. In UNIX-based systems there are two locales:
v The environment locale allows you to specify the language, currency

symbol, and so on, that you want to use.
v The program locale contains the current language, currency symbol, and so

on, of a program that is executing.

In Windows, the cultural preferences can be set through Regional Settings of
the Control Panel. However, there is no environmental locale like the one on
UNIX systems.

When your program is started, it gets a default C locale. It does not get a
copy of the environment locale. If you set the program locale to any locale
other than “C”, DB2 Universal Database uses your current program locale to
determine the code page and territory settings for your application
environment. Otherwise, these values are obtained from the operating system
environment. You should note that setlocale() is not thread-safe, and if you
issue setlocale() from within your application, the new locale is set for the
entire process.

How DB2 Derives Locales

With UNIX, the active locale used by DB2 is determined from the LC_CTYPE
portion of the locale. For details, see the NLS documentation for your
operating system.
v If LC_CTYPE of the program locale has a value other than that of ’C’, DB2

will use this value to determine the application code page by mapping it to
its corresponding code page.

v If LC_CTYPE has the value of ’C’ (the ’C’ locale), DB2 will set the program
locale according to the environment locale using the setlocale() function.

v If LC_CTYPE still has a value of ’C’, DB2 will assume the default of the US
English environment, and code page 819 (ISO 8859-1).

v If LC_CTYPE’s value is no longer ’C’, its new value will be used to map to
a corresponding code page. For information on the default locale for a

746 Administration Guide Design and Implementation

particular platform, see Table 45. Additional information may be found in
the Application Building Guide.

Country Code and Code Page Support

Table 45 shows the languages and code sets supported by the Database
Servers and how these values are mapped to country code and code page
values that are used by the database manager.

The following is an explanation of each column of the table:

1. Code Page shows the IBM-defined code page as mapped from the
operating system code set.

2. Group shows whether a code page is single-byte (“S”) or multi-byte (“D”).
The “-n” is a number used to create a letter-number combination.
Matching combinations show where connection and conversion is allowed
by DB2. For example, all “S-1” groups can work together.

3. Code Set shows the code set associated with the supported language. The
code set is mapped to the DB2 Code Page.

4. Tr. shows the two letter territory identifier.
5. Country Code shows the country code that is used by the database

manager internally for providing country-specific support.
6. Locale shows the locale values supported by the database manager.
7. OS shows the operating system that supports the languages and code sets.
8. Country Name shows the name of the country or countries.

Table 45. Supported Languages and Code Sets

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

437 S-1 IBM-437 AL 355 - OS2 Albania
850 S-1 IBM-850 AL 355 - OS2 Albania
819 S-1 ISO8859-1 AL 355 sq_AL AIX Albania
850 S-1 IBM-850 AL 355 Sq_AL AIX Albania
819 S-1 iso88591 AL 355 - HP Albania
1051 S-1 roman8 AL 355 - HP Albania
819 S-1 ISO8859-1 AL 355 - Sun Albania
1252 S-1 1252 AL 355 - WIN Albania
1275 S-1 1275 AL 355 - Mac Albania
37 S-1 IBM-037 AL 355 - HOST Albania
1140 S-1 IBM-1140 AL 355 - HOST Albania

Appendix H. National Language Support (NLS) 747

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

864 S-6 IBM-864 AA 785 - OS2 Arabic Countries
1046 S-6 IBM-1046 AA 785 Ar_AA AIX Arabic Countries
1089 S-6 ISO8859-6 AA 785 ar_AA AIX Arabic Countries
1089 S-6 iso88596 AA 785 ar_SA.iso88596 HP Arabic Countries
1256 S-6 1256 AA 785 - WIN Arabic Countries
420 S-6 IBM-420 AA 785 - HOST Arabic Countries

437 S-1 IBM-437 AU 61 - OS2 Australia
850 S-1 IBM-850 AU 61 - OS2 Australia
819 S-1 ISO8859-1 AU 61 en_AU AIX Australia
850 S-1 IBM-850 AU 61 En_AU AIX Australia
819 S-1 iso88591 AU 61 - HP Australia
1051 S-1 roman8 AU 61 - HP Australia
819 S-1 ISO8859-1 AU 61 en_AU Sun Australia
819 S-1 ISO8859-1 AU 61 en_AU SCO Australia
1252 S-1 1252 AU 61 - WIN Australia
1275 S-1 1275 AU 61 - Mac Australia
37 S-1 IBM-037 AU 61 - HOST Australia
1140 S-1 IBM-1140 AU 61 - HOST Australia

437 S-1 IBM-437 AT 43 - OS2 Austria
850 S-1 IBM-850 AT 43 - OS2 Austria
819 S-1 ISO8859-1 AT 43 ge_AT AIX Austria
850 S-1 IBM-850 AT 43 Ge_AT AIX Austria
819 S-1 iso88591 AT 43 - HP Austria
1051 S-1 roman8 AT 43 - HP Austria
819 S-1 ISO8859-1 AT 43 de_AT SCO Austria
819 S-1 ISO8859-1 AT 43 de_AT Sun Austria
1252 S-1 1252 AT 43 - WIN Austria
1275 S-1 1275 AT 43 - Mac Austria
37 S-1 IBM-037 AT 43 - HOST Austria
1140 S-1 IBM-1140 AT 43 - HOST Austria

915 S-11 IS08859-5 BY 375 - OS2 Belarus
915 S-11 ISO8859-5 BY 375 be_BY AIX Belarus
1131 S-11 IBM-1131 BY 375 - OS2 Belarus
1251 S-11 1251 BY 375 - WIN Belarus
1283 S-11 1283 BY 375 - Mac Belarus
1025 S-11 IBM-1025 BY 375 - HOST Belarus

748 Administration Guide Design and Implementation

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

437 S-1 IBM-437 BE 32 - OS2 Belgium
850 S-1 IBM-850 BE 32 - OS2 Belgium
819 S-1 ISO8859-1 BE 32 nl_BE AIX Belgium

fr_BE
850 S-1 IBM-850 BE 32 Nl_BE AIX Belgium

Fr_BE
819 S-1 iso88591 BE 32 - HP Belgium
819 S-1 ISO8859-1 BE 32 fr_BE SCO Belgium
819 S-1 ISO8859-1 BE 32 nl_BE SCO Belgium
819 S-1 ISO8859-1 BE 32 nl_BE Sun Belgium

fr_BE
1252 S-1 1252 BE 32 - WIN Belgium
1275 S-1 1275 BE 32 - Mac Belgium
500 S-1 IBM-500 BE 32 - HOST Belgium
1148 S-1 IBM-1148 BE 32 - HOST Belgium

855 S-5 IBM-855 BG 359 - OS2 Bulgaria
915 S-5 ISO8859-5 BG 359 - OS2 Bulgaria
915 S-5 ISO8859-5 BG 359 bg_BG AIX Bulgaria
915 S-5 iso88595 BG 359 bg_BG.iso88595 HP Bulgaria
1251 S-5 1251 BG 359 - WIN Bulgaria
1283 S-5 1283 BG 359 - Mac Bulgaria
1025 S-5 IBM-1025 BG 359 - HOST Bulgaria

850 S-1 IBM-850 BR 55 - OS2 Brazil
850 S-1 IBM-850 BR 55 - AIX Brazil
819 S-1 ISO8859-1 BR 55 pt_BR AIX Brazil
819 S-1 ISO8859-1 BR 55 - HP Brazil
819 S-1 ISO8859-1 BR 55 pt_BR SCO Brazil
819 S-1 ISO8859-1 BR 55 pt_BR Sun Brazil
1252 S-1 1252 BR 55 - WIN Brazil
37 S-1 IBM-037 BR 55 - HOST Brazil
1140 S-1 IBM-1140 BR 55 - HOST Brazil

850 S-1 IBM-850 CA 1 - OS2 Canada
850 S-1 IBM-850 CA 1 En_CA AIX Canada
819 S-1 ISO8859-1 CA 1 en_CA AIX Canada
819 S-1 iso88591 CA 1 fr_CA.iso88591 HP Canada
1051 S-1 roman8 CA 1 fr_CA.roman8 HP Canada
819 S-1 ISO8859-1 CA 1 en_CA SCO Canada
819 S-1 ISO8859-1 CA 1 fr_CA SCO Canada
819 S-1 ISO8859-1 CA 1 en_CA Sun Canada
819 S-1 ISO8859-1 CA 1 en_CA Sun Canada
1252 S-1 1252 CA 1 - WIN Canada
1275 S-1 1275 CA 1 - Mac Canada
37 S-1 IBM-037 CA 1 - HOST Canada
1140 S-1 IBM-1140 CA 1 - HOST Canada
863 S-1 IBM-863 CA 2 - OS2 Canada (French)

Appendix H. National Language Support (NLS) 749

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

1381 D-4 IBM-1381 CN 86 - OS2 China (PRC)
1386 D-4 GBK CN 86 - OS2 China (PRC)
1383 D-4 IBM-eucCN CN 86 zh_CN AIX China (PRC)
1386 D-4 GBK CN 86 Zh_CN.GBK AIX China (PRC)
1383 D-4 hp15CN CN 86 zh_CN.hp15CN HP China (PRC)
1383 D-4 eucCN CN 86 zh_CN SCO China (PRC)
1383 D-4 eucCN CN 86 zh_CN.eucCN SCO China (PRC)
1383 D-4 gb2312 CN 86 zh Sun China (PRC)

chinese
1381 D-4 IBM-1381 CN 86 - WIN China (PRC)
1386 D-4 GBK CN 86 - WIN China (PRC)
935 D-4 IBM-935 CN 86 - HOST China (PRC)
1388 D-4 IBM-1388 CN 86 - HOST China (PRC)

852 S-2 IBM-852 HR 385 - OS2 Croatia
912 S-2 ISO8859-2 HR 385 hr_HR AIX Croatia
912 S-2 iso88592 HR 385 hr_HR.iso88592 HP Croatia
912 S-2 ISO8859-2 HR 385 hr_HR.ISO8859-2 SCO Croatia
1250 S-2 1250 HR 385 - WIN Croatia
1282 S-2 1282 HR 385 - Mac Croatia
870 S-2 IBM-870 HR 385 - HOST Croatia

852 S-2 IBM-852 CZ 42 - OS2 Czech Republic
912 S-2 ISO8859-2 CZ 42 cs_CZ AIX Czech Republic
912 S-2 iso88592 CZ 42 cs_CZ.iso88592 HP Czech Republic
912 S-2 ISO8859-2 CZ 42 cs_CZ.ISO8859-2 SCO Czech Republic
1250 S-2 1250 CZ 42 - WIN Czech Republic
1282 S-2 1282 CZ 42 - Mac Czech Republic
870 S-2 IBM-870 CZ 42 - HOST Czech Republic

850 S-1 IBM-850 DK 45 - OS2 Denmark
819 S-1 ISO8859-1 DK 45 da_DK AIX Denmark
850 S-1 IBM-850 DK 45 Da_DK AIX Denmark
819 S-1 iso88591 DK 45 da_DK.iso88591 HP Denmark
1051 S-1 roman8 DK 45 da_DK.roman8 HP Denmark
819 S-1 ISO8859-1 DK 45 da SCO Denmark
819 S-1 ISO8859-1 DK 45 da_DA SCO Denmark
819 S-1 ISO8859-1 DK 45 da_DK SCO Denmark
819 S-1 ISO8859-1 DK 45 da Sun Denmark
819 S-1 ISO8859-1 DK 45 da Sun Denmark
1252 S-1 1252 DK 45 - WIN Denmark
1275 S-1 1275 DK 45 - Mac Denmark
277 S-1 IBM-277 DK 45 - HOST Denmark
1142 S-1 IBM-1142 DK 45 - HOST Denmark

750 Administration Guide Design and Implementation

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

922 S-10 IBM-922 EE 372 - OS2 Estonia
922 S-10 IBM-922 EE 372 Et_EE AIX Estonia
922 S-10 IBM-922 EE 372 - WIN Estonia
1122 S-10 IBM-1122 EE 372 - HOST Estonia

437 S-1 IBM-437 FI 358 - OS2 Finland
850 S-1 IBM-850 FI 358 - OS2 Finland
819 S-1 ISO8859-1 FI 358 fi_FI AIX Finland
850 S-1 IBM-850 FI 358 Fi_FI AIX Finland
819 S-1 iso88591 FI 358 fi_FI.iso88591 HP Finland
819 S-1 ISO8859-1 FI 358 fi SCO Finland
819 S-1 ISO8859-1 FI 358 fi_FI SCO Finland
819 S-1 ISO8859-1 FI 358 sv_FI SCO Finland
819 S-1 ISO8859-1 FI 358 - Sun Finland
1051 S-1 roman8 FI 358 - HP Finland
1252 S-1 1252 FI 358 - WIN Finland
1275 S-1 1275 FI 358 - Mac Finland
278 S-1 IBM-278 FI 358 - HOST Finland
1143 S-1 IBM-1143 FI 358 - HOST Finland

855 S-5 IBM-855 MK 389 - OS2 FYR Macedonia
915 S-5 ISO8859-5 MK 389 - OS2 FYR Macedonia
915 S-5 ISO8859-5 MK 389 mk_MK AIX FYR Macedonia
915 S-5 iso88595 MK 389 - HP FYR Macedonia
1251 S-5 1251 MK 389 - WIN FYR Macedonia
1283 S-5 1283 MK 389 - Mac FYR Macedonia
1025 S-5 IBM-1025 MK 389 - HOST FYR Macedonia

437 S-1 IBM-437 FR 33 - OS2 France
850 S-1 IBM-850 FR 33 - OS2 France
819 S-1 ISO8859-1 FR 33 fr_FR AIX France
850 S-1 IBM-850 FR 33 Fr_FR AIX France
819 S-1 iso88591 FR 33 fr_FR.iso88591 HP France
1051 S-1 roman8 FR 33 fr_FR.roman8 HP France
819 S-1 ISO8859-1 FR 33 fr Sun France
819 S-1 ISO8859-1 FR 33 fr SCO France
819 S-1 ISO8859-1 FR 33 fr_FR SCO France
1252 S-1 1252 FR 33 - WIN France
1275 S-1 1275 FR 33 - Mac France
297 S-1 IBM-297 FR 33 - HOST France
1147 S-1 IBM-1147 FR 33 - HOST France

Appendix H. National Language Support (NLS) 751

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

437 S-1 IBM-437 DE 49 - OS2 Germany
850 S-1 IBM-850 DE 49 - OS2 Germany
819 S-1 ISO8859-1 DE 49 de_DE AIX Germany
850 S-1 IBM-850 DE 49 De_DE AIX Germany
819 S-1 iso88591 DE 49 de_DE.iso88591 HP Germany
1051 S-1 roman8 DE 49 de_DE.roman8 HP Germany
819 S-1 ISO8859-1 DE 49 de SCO Germany
819 S-1 ISO8859-1 DE 49 de_DE SCO Germany
819 S-1 ISO8859-1 DE 49 de Sun Germany
1252 S-1 1252 DE 49 - WIN Germany
1275 S-1 1275 DE 49 - Mac Germany
273 S-1 IBM-273 DE 49 - HOST Germany
1141 S-1 IBM-1141 DE 49 - HOST Germany
819 S-1 ISO8859-1 DE 49 De_DE.88591 SINIX Germany
819 S-1 ISO8859-1 DE 49 De_DE.6937 SINIX Germany
NOTE: DB2 supports as ISO 8859-1; it should be ISO 6937

813 S-7 ISO8859-7 GR 30 - OS2 Greece
869 S-7 IBM-869 GR 30 - OS2 Greece
813 S-7 ISO8859-7 GR 30 el_GR AIX Greece
813 S-7 iso88597 GR 30 el_GR.iso88597 HP Greece
813 S-7 ISO8859-7 GR 30 el_GR.ISO8859-7 SCO Greece
737 S-7 737 GR 30 - WIN Greece
1253 S-7 1253 GR 30 - WIN Greece
1280 S-7 1280 GR 30 - Mac Greece
423 S-7 IBM-423 GR 30 - HOST Greece
875 S-7 IBM-875 GR 30 - HOST Greece

852 S-2 IBM-852 HU 36 - OS2 Hungary
912 S-2 ISO8859-2 HU 36 hu_HU AIX Hungary
912 S-2 iso88592 HU 36 hu_HU.iso88592 HP Hungary
912 S-2 ISO8859-2 HU 36 hu_HU.ISO8859-2 SCO Hungary
1250 S-2 1250 HU 36 - WIN Hungary
1282 S-2 1282 HU 36 - Mac Hungary
870 S-2 IBM-870 HU 36 - HOST Hungary

850 S-1 IBM-850 IS 354 - OS2 Iceland
819 S-1 ISO8859-1 IS 354 is_IS AIX Iceland
850 S-1 IBM-850 IS 354 Is_IS AIX Iceland
819 S-1 iso88591 IS 354 is_IS.iso88591 HP Iceland
1051 S-1 roman8 IS 354 is_IS.roman8 HP Iceland
819 S-1 ISO8859-1 IS 354 is SCO Iceland
819 S-1 ISO8859-1 IS 354 is_IS SCO Iceland
819 S-1 ISO8859-1 IS 354 - Sun Iceland
1252 S-1 1252 IS 354 - WIN Iceland
1275 S-1 1275 IS 354 - Mac Iceland
871 S-1 IBM-871 IS 354 - HOST Iceland
1149 S-1 IBM-1149 IS 354 - HOST Iceland

752 Administration Guide Design and Implementation

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

437 S-1 IBM-437 IE 353 - OS2 Ireland
850 S-1 IBM-850 IE 353 - OS2 Ireland
819 S-1 ISO8859-1 IE 353 en_IE AIX Ireland
850 S-1 IBM-850 IE 353 En_IE AIX Ireland
819 S-1 iso88591 IE 353 - HP Ireland
1051 S-1 roman8 IE 353 - HP Ireland
819 S-1 ISO8859-1 IE 353 en_IE Sun Ireland
819 S-1 ISO8859-1 IE 353 en_IE.ISO8859-1 SCO Ireland
1252 S-1 1252 IE 353 - WIN Ireland
1275 S-1 1275 IE 353 - Mac Ireland
285 S-1 IBM-285 IE 353 - HOST Ireland
1146 S-1 IBM-1146 IE 353 - HOST Ireland

862 S-8 IBM-862 IL 972 - OS2 Israel
916 S-8 ISO8859-8 IL 972 iw_IL AIX Israel
1255 S-8 1255 IL 972 - WIN Israel
424 S-8 IBM-424 IL 972 - HOST Israel

437 S-1 IBM-437 IT 39 - OS2 Italy
850 S-1 IBM-850 IT 39 - OS2 Italy
819 S-1 ISO8859-1 IT 39 it_IT AIX Italy
850 S-1 IBM-850 IT 39 It_IT AIX Italy
819 S-1 iso88591 IT 39 it_IT.iso88591 HP Italy
1051 S-1 roman8 IT 39 it_IT.roman8 HP Italy
819 S-1 ISO8859-1 IT 39 it SCO Italy
819 S-1 ISO8859-1 IT 39 it_IT SCO Italy
819 S-1 ISO8859-1 IT 39 it Sun Italy
1252 S-1 1252 IT 39 - WIN Italy
1275 S-1 1275 IT 39 - Mac Italy
280 S-1 IBM-280 IT 39 - HOST Italy
1144 S-1 IBM-1144 IT 39 - HOST Italy

Appendix H. National Language Support (NLS) 753

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

932 D-1 IBM-932 JP 81 - OS2 Japan
942 D-1 IBM-942 JP 81 - OS2 Japan
943 D-1 IBM-943 JP 81 - OS2 Japan
954 D-1 IBM-eucJP JP 81 ja_JP AIX Japan
932 D-1 IBM-932 JP 81 Ja_JP AIX Japan
954 D-1 eucJP JP 81 ja_JP.eucJP HP Japan
5039 D-1 SJIS JP 81 ja_JP.SJIS HP Japan
954 D-1 eucJP JP 81 ja SCO Japan
954 D-1 eucJP JP 81 ja_JP SCO Japan
954 D-1 eucJP JP 81 ja_JP.EUC SCO Japan
954 D-1 eucJP JP 81 ja_JP.eucJP SCO Japan
954 D-1 eucJP JP 81 ja Sun Japan

japanese
943 D-1 IBM-943 JP 81 - WIN Japan
930 D-1 IBM-930 JP 81 - HOST Japan
939 D-1 IBM-939 JP 81 - HOST Japan
5026 D-1 IBM-5026 JP 81 - HOST Japan
5035 D-1 IBM-5035 JP 81 - HOST Japan

949 D-3 IBM-949 KR 82 - OS2 Korea, South
970 D-3 IBM-eucKR KR 82 ko_KR AIX Korea, South
970 D-3 eucKR KR 82 ko_KR.eucKR HP Korea, South
970 D-3 eucKR KR 82 ko_KR.eucKR SGI Korea, South
970 D-3 5601 KR 82 ko Sun Korea, South

korean
1363 D-3 1363 KR 82 - WIN Korea, South
933 D-3 IBM-933 KR 82 - HOST Korea, South
1364 D-3 IBM-1364 KR 82 - HOST Korea, South

437 S-1 IBM-437 Lat 3 - OS2 Latin America
850 S-1 IBM-850 Lat 3 - OS2 Latin America
819 S-1 ISO8859-1 Lat 3 - AIX Latin America
850 S-1 IBM-850 Lat 3 - AIX Latin America
819 S-1 iso88591 Lat 3 - HP Latin America
819 S-1 ISO8859-1 Lat 3 - Sun Latin America
1051 S-1 roman8 Lat 3 - HP Latin America
1252 S-1 1252 Lat 3 - WIN Latin America
1275 S-1 1275 Lat 3 - Mac Latin America
284 S-1 IBM-284 Lat 3 - HOST Latin America
1145 S-1 IBM-1145 Lat 3 - HOST Latin America

921 S-10 IBM-921 LV 371 - OS2 Latvia
921 S-10 IBM-921 LV 371 Lv_LV AIX Latvia
921 S-10 IBM-921 LV 371 - WIN Latvia
1112 S-10 IBM-1112 LV 371 - HOST Latvia

754 Administration Guide Design and Implementation

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

921 S-10 IBM-921 LT 370 - OS2 Lithuania
921 S-10 IBM-921 LT 370 Lt_LT AIX Lithuania
921 S-10 IBM-921 LV 370 - WIN Lithuania
1112 S-10 IBM-1112 LV 370 - HOST Lithuania

437 S-1 IBM-437 NL 31 - OS2 Netherlands
850 S-1 IBM-850 NL 31 - OS2 Netherlands
819 S-1 ISO8859-1 NL 31 nl_NL AIX Netherlands
850 S-1 IBM-850 NL 31 Nl_NL AIX Netherlands
819 S-1 iso88591 NL 31 nl_NL.iso88591 HP Netherlands
1051 S-1 roman8 NL 31 nl_NL.roman8 HP Netherlands
819 S-1 ISO8859-1 NL 31 nl SCO Netherlands
819 S-1 ISO8859-1 NL 31 nl_NL SCO Netherlands
819 S-1 ISO8859-1 NL 31 nl Sun Netherlands
1252 S-1 1252 NL 31 - WIN Netherlands
1275 S-1 1275 NL 31 - Mac Netherlands
37 S-1 IBM-037 NL 31 - HOST Netherlands
1140 S-1 IBM-1140 NL 31 - HOST Netherlands

850 S-1 IBM-850 NZ 64 - OS2 New Zealand
850 S-1 IBM-850 NZ 64 En_NZ AIX New Zealand
819 S-1 ISO8859-1 NZ 64 en_NZ AIX New Zealand
819 S-1 ISO8859-1 NZ 64 - HP New Zealand
819 S-1 ISO8859-1 NZ 64 en_NZ SCO New Zealand
819 S-1 ISO8859-1 NZ 64 en_NZ Sun New Zealand
1252 S-1 1252 NZ 64 - WIN New Zealand
37 S-1 IBM-037 NZ 64 - HOST New Zealand
1140 S-1 IBM-1140 NZ 64 - HOST New Zealand

850 S-1 IBM-850 NO 47 - OS2 Norway
819 S-1 ISO8859-1 NO 47 no_NO AIX Norway
850 S-1 IBM-850 NO 47 No_NO AIX Norway
819 S-1 iso88591 NO 47 no_NO.iso88591 HP Norway
1051 S-1 roman8 NO 47 no_NO.roman8 HP Norway
819 S-1 ISO8859-1 NO 47 no SCO Norway
819 S-1 ISO8859-1 NO 47 no_NO SCO Norway
819 S-1 ISO8859-1 NO 47 no Sun Norway
1252 S-1 1252 NO 47 - WIN Norway
1275 S-1 1275 NO 47 - Mac Norway
277 S-1 IBM-277 NO 47 - HOST Norway
1142 S-1 IBM-1142 NO 47 - HOST Norway

Appendix H. National Language Support (NLS) 755

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

852 S-2 IBM-852 PL 48 - OS2 Poland
912 S-2 ISO8859-2 PL 48 pl_PL AIX Poland
912 S-2 iso88592 PL 48 pl_PL.iso88592 HP Poland
912 S-2 ISO8859-2 PL 48 pl_PL.ISO8859-2 SCO Poland
1250 S-2 1250 PL 48 - WIN Poland
1282 S-2 1282 PL 48 - Mac Poland
870 S-2 IBM-870 PL 48 - HOST Poland

860 S-1 IBM-860 PT 351 - OS2 Portugal
850 S-1 IBM-850 PT 351 - OS2 Portugal
819 S-1 ISO8859-1 PT 351 pt_PT AIX Portugal
850 S-1 IBM-850 PT 351 Pt_PT AIX Portugal
819 S-1 iso88591 PT 351 pt_PT.iso88591 HP Portugal
1051 S-1 roman8 PT 351 pt_PT.roman8 HP Portugal
819 S-1 ISO8859-1 PT 351 pt SCO Portugal
819 S-1 ISO8859-1 PT 351 pt_PT SCO Portugal
819 S-1 ISO8859-1 PT 351 pt Sun Portugal
1252 S-1 1252 PT 351 - WIN Portugal
1275 S-1 1275 PT 351 - Mac Portugal
37 S-1 IBM-037 PT 351 - HOST Portugal
1140 S-1 IBM-1140 PT 351 - HOST Portugal

852 S-2 IBM-852 RO 40 - OS2 Romania
912 S-2 ISO8859-2 RO 40 ro_RO AIX Romania
912 S-2 iso88592 RO 40 ro_RO.iso88592 HP Romania
912 S-2 ISO8859-2 RO 40 ro_RO.ISO8859-2 SCO Romania
1250 S-2 1250 RO 40 - WIN Romania
1282 S-2 1282 RO 40 - Mac Romania
870 S-2 IBM-870 RO 40 - HOST Romania

866 S-5 IBM-866 RU 7 - OS2 Russia
915 S-5 ISO8859-5 RU 7 - OS2 Russia
915 S-5 ISO8859-5 RU 7 ru_RU AIX Russia
915 S-5 iso88595 RU 7 ru_RU.iso88595 HP Russia
915 S-5 ISO8859-5 RU 7 ru_RU.ISO8859-5 SCO Russia
1251 S-5 1251 RU 7 - WIN Russia
1283 S-5 1283 RU 7 - Mac Russia
1025 S-5 IBM-1025 RU 7 - HOST Russia

855 S-5 IBM-855 SP 381 - OS2 Serbia/Montenegro
915 S-5 ISO8859-5 SP 381 - OS2 Serbia/Montenegro
915 S-5 ISO8859-5 SP 381 sr_SP AIX Serbia/Montenegro
915 S-5 iso88595 SP 381 - HP Serbia/Montenegro
1251 S-5 1251 SP 381 - WIN Serbia/Montenegro
1283 S-5 1283 SP 381 - Mac Serbia/Montenegro
1025 S-5 IBM-1025 SP 381 - HOST Serbia/Montenegro

756 Administration Guide Design and Implementation

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

852 S-2 IBM-852 SK 938 - OS2 Slovakia
912 S-2 ISO8859-2 SK 938 sk_SK AIX Slovakia
912 S-2 iso88592 SK 938 sk_SK.iso88592 HP Slovakia
912 S-2 ISO8859-2 SK 938 sk_SK.ISO8859-2 SCO Slovakia
1250 S-2 1250 SK 938 - WIN Slovakia
1282 S-2 1282 SK 938 - Mac Slovakia
870 S-2 IBM-870 SK 938 - HOST Slovakia

852 S-2 IBM-852 SI 386 - OS2 Slovenia
912 S-2 ISO8859-2 SI 386 sl_SI AIX Slovenia
912 S-2 iso88592 SI 386 sl_SI.iso88592 HP Slovenia
912 S-2 ISO8859-2 SI 386 sl_SI.ISO8859-2 SCO Slovenia
1250 S-2 1250 SI 386 - WIN Slovenia
1282 S-2 1282 SI 386 - Mac Slovenia
870 S-2 IBM-870 SI 386 - HOST Slovenia

437 S-1 IBM-437 ZA 27 - OS2 South Africa
850 S-1 IBM-850 ZA 27 - OS2 South Africa
819 S-1 ISO8859-1 ZA 27 en_ZA AIX South Africa
850 S-1 IBM-850 ZA 27 En_ZA AIX South Africa
819 S-1 iso88591 ZA 27 - HP South Africa
1051 S-1 roman8 ZA 27 - HP South Africa
819 S-1 ISO8859-1 ZA 27 - Sun South Africa
819 S-1 ISO8859-1 ZA 27 en_ZA.ISO8859-1 SCO South Africa
1252 S-1 1252 ZA 27 - WIN South Africa
1275 S-1 1275 ZA 27 - Mac South Africa
285 S-1 IBM-285 ZA 27 - HOST South Africa
1146 S-1 IBM-1146 ZA 27 - HOST South Africa

437 S-1 IBM-437 ES 34 - OS2 Spain
850 S-1 IBM-850 ES 34 - OS2 Spain
819 S-1 ISO8859-1 ES 34 es_ES AIX Spain

ca_ES Spain (Catalan)
850 S-1 IBM-850 ES 34 Es_ES AIX Spain

Ca_ES Spain (Calalan)
819 S-1 iso88591 ES 34 es_ES.iso88591 HP Spain
1051 S-1 roman8 ES 34 es_ES.roman8 HP Spain
819 S-1 ISO8859-1 ES 34 es Sun Spain
819 S-1 ISO8859-1 ES 34 es SCO Spain
819 S-1 ISO8859-1 ES 34 es_ES SCO Spain
1252 S-1 1252 ES 34 - WIN Spain
1275 S-1 1275 ES 34 - Mac Spain
284 S-1 IBM-284 ES 34 - HOST Spain
1145 S-1 IBM-1145 ES 34 - HOST Spain

Appendix H. National Language Support (NLS) 757

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

437 S-1 IBM-437 SE 46 - OS2 Sweden
850 S-1 IBM-850 SE 46 - OS2 Sweden
819 S-1 ISO8859-1 SE 46 sv_SE AIX Sweden
850 S-1 IBM-850 SE 46 Sv_SE AIX Sweden
819 S-1 iso88591 SE 46 sv_SE.iso88591 HP Sweden
1051 S-1 roman8 SE 46 sv_SE.roman8 HP Sweden
819 S-1 ISO8859-1 SE 46 sv SCO Sweden
819 S-1 ISO8859-1 SE 46 sv_SE SCO Sweden
819 S-1 ISO8859-1 SE 46 sv Sun Sweden
1252 S-1 1252 SE 46 - WIN Sweden
1275 S-1 1275 SE 46 - Mac Sweden
278 S-1 IBM-278 SE 46 - HOST Sweden
1143 S-1 IBM-1143 SE 46 - HOST Sweden

437 S-1 IBM-437 CH 41 - OS2 Switzerland
850 S-1 IBM-850 CH 41 - OS2 Switzerland
819 S-1 ISO8859-1 CH 41 de_CH AIX Switzerland
850 S-1 IBM-850 CH 41 De_CH AIX Switzerland
819 S-1 iso88591 CH 41 - HP Switzerland
1051 S-1 roman8 CH 41 - HP Switzerland
819 S-1 ISO8859-1 CH 41 de_CH SCO Switzerland
819 S-1 ISO8859-1 CH 41 fr_CH SCO Switzerland
819 S-1 ISO8859-1 CH 41 it_CH SCO Switzerland
819 S-1 ISO8859-1 CH 41 de_CH Sun Switzerland
1252 S-1 1252 CH 41 - WIN Switzerland
1275 S-1 1275 CH 41 - Mac Switzerland
500 S-1 IBM-500 CH 41 - HOST Switzerland
1148 S-1 IBM-1148 CH 41 - HOST Switzerland

938 D-2 IBM-938 TW 88 - OS2 Taiwan
948 D-2 IBM-948 TW 88 - OS2 Taiwan
950 D-2 big5 TW 88 - OS2 Taiwan
950 D-2 big5 TW 88 Zh_TW AIX Taiwan
964 D-2 IBM-eucTW TW 88 zh_TW AIX Taiwan
950 D-2 big5 TW 88 zh_TW.big5 HP Taiwan
964 D-2 eucTW TW 88 zh_TW.eucTW HP Taiwan
950 D-2 big5 TW 88 big5 Sun Taiwan

zh_TW.big5
964 D-2 cns11643 TW 88 zh_TW Sun Taiwan

tchinese
950 D-2 big5 TW 88 - WIN Taiwan
937 D-2 IBM-937 TW 88 - HOST Taiwan

874 S-20 TIS620-1 TH 66 - OS2 Thailand
874 S-20 TIS620-1 TH 66 Th_TH AIX Thailand
874 S-20 tis620 TH 66 th_TH.tis620 HP Thailand
874 S-20 TIS620-1 TH 66 - WIN Thailand
838 S-20 IBM-838 TH 66 - HOST Thailand

758 Administration Guide Design and Implementation

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

857 S-9 IBM-857 TR 90 - OS2 Turkey
920 S-9 ISO8859-9 TR 90 tr_TR AIX Turkey
920 S-9 iso88599 TR 90 tr_TR.iso88599 HP Turkey
920 S-9 ISO8859-9 TR 90 tr_TR.ISO8859-9 SCO Turkey
1254 S-9 1254 TR 90 - WIN Turkey
1281 S-9 1281 TR 90 - Mac Turkey
1026 S-9 IBM-1026 TR 90 - HOST Turkey

437 S-1 IBM-437 GB 44 - OS2 U.K.
850 S-1 IBM-850 GB 44 - OS2 U.K.
819 S-1 ISO8859-1 GB 44 en_GB AIX U.K.
850 S-1 IBM-850 GB 44 En_GB AIX U.K.
819 S-1 iso88591 GB 44 en_GB.iso88591 HP U.K.
1051 S-1 roman8 GB 44 en_GB.roman8 HP U.K.
819 S-1 ISO8859-1 GB 44 en_UK Sun U.K.
819 S-1 ISO8859-1 GB 44 en_GB SCO U.K.
819 S-1 ISO8859-1 GB 44 en SCO U.K.
1252 S-1 1252 GB 44 - WIN U.K.
1275 S-1 1275 GB 44 - Mac U.K.
285 S-1 IBM-285 GB 44 - HOST U.K.
1146 S-1 IBM-1146 GB 44 - HOST U.K.
819 S-1 88591 GB 44 En_GB.88591 SINIX U.K.
819 S-1 ISO8859-1 GB 44 En_GB.6937 SINIX U.K.
NOTE: DB2 supports as ISO 8859-1; it should be ISO 6937

1125 S-12 IBM-1125 UA 380 - OS2 Ukraine
1124 S-12 IBM-1124 UA 380 uk_UA AIX Ukraine
1251 S-12 1251 UA 380 - WIN Ukraine
1123 S-12 IBM-1123 UA 380 - HOST Ukraine

437 S-1 IBM-437 US 1 - OS2 USA
850 S-1 IBM-850 US 1 - OS2 USA
819 S-1 ISO8859-1 US 1 en_US AIX USA
850 S-1 IBM-850 US 1 En_US AIX USA
819 S-1 iso88591 US 1 en_US.iso88591 HP USA
1051 S-1 roman8 US 1 en_US.roman8 HP USA
819 S-1 ISO8859-1 US 1 en_US Sun USA
819 S-1 ISO8859-1 US 1 en_US SGI USA
819 S-1 ISO8859-1 US 1 en_US SCO USA
1252 S-1 1252 US 1 - WIN USA
1275 S-1 1275 US 1 - Mac USA
37 S-1 IBM-037 US 1 - HOST USA
1140 S-1 IBM-1140 US 1 - HOST USA

1163 S-13 IBM-1163 VN 84 - OS2 Vietnam
1163 S-13 IBM-1163 VN 84 vi_VN AIX Vietnam
1258 S-13 1258 VN 84 - WIN Vietnam
1164 S-13 IBM-1164 VN 84 - HOST Vietnam

Appendix H. National Language Support (NLS) 759

Table 45. Supported Languages and Code Sets (continued)

Code Country
Page Group Code-Set Tr. Code Locale OS Country Name
---- ----- -------- -- --- ----- ---- --------------

Note:

The following map to Arabic Countries (AA):
--

/* Arabic (Saudi Arabia) */
/* Arabic (Iraq) */
/* Arabic (Egypt) */
/* Arabic (Libya) */
/* Arabic (Algeria) */
/* Arabic (Morocco) */
/* Arabic (Tunisia) */
/* Arabic (Oman) */
/* Arabic (Yemen) */
/* Arabic (Syria) */
/* Arabic (Jordan) */
/* Arabic (Lebanon) */
/* Arabic (Kuwait) */
/* Arabic (United Arab Emirates) */
/* Arabic (Bahrain) */
/* Arabic (Qatar) */

The following map to English (US):

/* English (Jamaica) */
/* English (Carribean) */

The following map to Latin America (Lat):
--

/* Spanish (Mexican) */
/* Spanish (Guatemala) */
/* Spanish (Costa Rica) */
/* Spanish (Panama) */
/* Spanish (Dominican Republic) */
/* Spanish (Venezuela) */
/* Spanish (Colombia) */
/* Spanish (Peru) */
/* Spanish (Argentina) */
/* Spanish (Ecuador) */
/* Spanish (Chile) */
/* Spanish (Uruguay) */
/* Spanish (Paraguay) */
/* Spanish (Bolivia) */

Note: The Solaris code page 950 does not support the following characters in
IBM 950:

760 Administration Guide Design and Implementation

Code Range Description Sun Big-5 IBM Big-5

C6A1-C8FE Symbols Reserved area Symbols

F9D6-F9FE ETen extension Reserved area ETen extension

F286-F9A0 IBM selected chars Reserved area IBM selected

Note: Euro-symbol support is provided with this version of DB2 UDB.
Microsoft Windows ANSI code pages are modified according to the
latest definition from Microsoft to include the Euro-symbol in position
0x80. This position was previously undefined. In addition, the
definition of code page 850 has changed to replace the character Dotless
i (found at position 0xD5) with the Euro-symbol. DB2 UDB uses the
new definitions of these code pages as the default to provide
Euro-symbol support. This implementation is the appropriate default
for current DB2 UDB customers who require Euro-symbol support, and
should not impact other customers. However, if you would like to
continue to use the previous definition of these code pages, you may
copy the following files:
v 12520850.cnv
v 08501252.cnv
v IBM00850.ucs
v IBM01252.ucs

from this directory
sqllib/conv/alt/

to this directory
sqllib/conv/

after installation is complete. You may want to backup the existing
IBM01252.usc and IBM00850.ucs before copying the non-euro versions
over them. After copying the files you will not have the euro currency
symbol support from DB2 UDB.

Unicode/UCS-2 and UTF-8 Support in DB2 UDB

These two standards are documented here.

Introduction

The Unicode character encoding standard is a fixed-length, character encoding
scheme that includes characters from almost all the living languages of the
world. Unicode characters are usually shown as “U+xxxx” where xxxx is the
hexadecimal code of the character.

Appendix H. National Language Support (NLS) 761

Each character is 16 bits (2 bytes) wide, regardless of the language. While the
resulting 65 000 code elements are sufficient for encoding most of the
characters of the major languages of the world, the Unicode standard also
provides an extension mechanism, that allows for encoding as many as a
million more characters. This extension reserves a range of code values
(U+D800 to U+D8FF, known as “surrogates”) for encoding some 32-bit
characters as two successive code elements.

The International Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC) 10646 standard (ISO/IEC 10646) specifies
the Universal Multiple-Octet Coded Character Set (UCS) that has a 2-byte
version (UCS-2) and a 4-byte version (UCS-4). The 2-byte version of this ISO
standard UCS-2 is identical to Unicode without surrogates. ISO 10646 also
defines an extension technique, for encoding some UCS-4 codes in a UCS-2
encoded string. This extension called UTF-16, is identical to Unicode with
surrogates.

DB2 UDB supports UCS-2, that is, Unicode without surrogates.

UTF-8

With UCS-2 or Unicode encoding, ASCII and control characters are also two
bytes long, and the lead byte is zero. For example, NULL is U+0000 and
CAPITAL LETTER A is represented by U+0041. This could be a major
problem for ASCII-based applications and ASCII file systems, because in a
UCS-2 strings, extraneous NULLs may appear anywhere in the string. A
transformation algorithm, known as UTF-8, can be used to circumvent this
problem for programs that rely on ASCII code being invariant.

UTF-8 (UCS Transformation Format 8), is an algorithmic transformation which
transforms fixed-length UCS-4 characters into variable-length byte strings. In
UTF-8, ASCII characters are represented by their usual single-byte codes, but
non-ASCII characters in UCS-2 become two or three bytes long. In other
words, UTF-8 transforms UCS-2 characters to a multi-byte codeset, for which
ASCII is invariant. The number of bytes for each UCS-2 character in UTF-8
format can be determined from the following table:

UCS-2 (hex) UTF-8 (binary) Description
------------ -------------------------- ----------------
0000 to 007F 0xxxxxxx ASCII
0080 to 07FF 110xxxxx 10xxxxxx up to U+07FF
0800 to FFFF 1110xxxx 10xxxxxx 10xxxxxx other UCS-2

NOTE: The range D800 to DFFF is to be excluded from treatment
by the third row of this table which governs the UCS-4 range
0000 0800 to 0000 FFFF.

762 Administration Guide Design and Implementation

In all the above, a series of x’s indicate the UCS bit representation of the
character. For example, U0080 transforms into 11000010 10000000.

UCS-2/UTF-8 Implementation in DB2 UDB

Code Page/CCSID Numbers

Within IBM, the UCS-2 code page has been registered as code page 1200. All
code pages are defined with growing character sets, that is, when new
characters are added to a code page, the code page number does not change.
Code page 1200 always refers to the current version of Unicode/UCS-2, and
has been used for UCS-2 support in DB2 UDB.

A specific repertoire of the UCS standard, as defined by Unicode 2.0 and
ISO/IEC 10646-1, has also been registered within IBM as CCSID 13488. This
CCSID (13488) has been used internally by DB2 UDB for storing graphic
string data in euc-Japan and euc-Taiwan databases. CCSID 13488 and code
page 1200 both refer to UCS-2, and are handled the same way except for the
value of their “double-byte” (DBCS) space:

CP/CCSID Single Byte (SBCS) space Double Byte (DBCS) space
--------- ------------------------ ------------------------
1200 N/A U+0020
13488 N/A U+3000

NOTE: In a UCS-2 database, U+3000 has no special meaning.

Regarding the conversion tables, since code page 1200 is a superset of CCSID
13488, the exact same (superset) tables are used for both.

In IBM, UTF-8 has been registered as CCSID 1208 with growing character set
(sometimes also referred to as code page 1208). As new characters are added
to the standard, this number (1208) will not change either. 1208 is used as the
multi-byte code page number for DB2’s UCS-2/UTF-8 support.

DB2 UDB supports UCS-2 as a new multi-byte code page. The MBCS code
page number is 1208, which is the database code page number, and the code
page of character string data within the database. The double-byte code page
number (for UCS-2) is 1200 which is the code page of graphic string data
within the database. When a database is created in UCS-2/UTF-8, CHAR,
VARCHAR, LONG VARCHAR, and CLOB data, are stored in UTF-8, and
GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, and DBCLOB data, are
stored in UCS-2. We will simply refer to this as a UCS-2 database.

Creating a UCS-2 Database

By default, databases are created in the code page of the application creating
them. Therefore, if you create your database from a UTF-8 client (for example,

Appendix H. National Language Support (NLS) 763

the UNIVERSAL locale of AIX), or if DB2CODEPAGE environment variable
on the client is set to 1208, your database will be created as a UCS-2 database.
Alternatively, you can explicitly specify “UTF-8” as the CODESET name, and
use any valid two letter TERRITORY code supported by DB2 UDB.

For example, to create a UCS-2 database from the CLP, with the territory code
for United States, issue:

DB2 CREATE DATABASE dbname USING CODESET UTF-8 TERRITORY US

To create a UCS-2 database using the sqlecrea API, you should set the values
in sqledbcountryinfo accordingly. For example, set sqledbcountryinfo to “UTF-8”,
and sqldblocale to any valid territory code (for example, “US”).

The default collation sequence for a UCS-2 database is IDENTITY, which
provides UCS-2 code point order. Therefore, by default, all UCS-2/UTF-8
characters are ordered and compared according to their UCS-2 code point
sequence.

All cultural-sensitive parameters such as date/time format, decimal separator,
and others, are based on the current territory of the client.

A UCS-2 database allows connection from every single-byte and multi-byte
code page supported by DB2 UDB. Code page character conversions between
client’s code page and UTF-8 are automatically performed by the database
manager. Data in graphic string types, is always in UCS-2 and does not go
through code page conversions. The Command Line Processor (CLP)
environment is an exception. If you SELECT graphic string (UCS-2) data from
the CLP, the returned graphic string data is converted (by the CLP) from
UCS-2 to the code page of your client environment.

Every client is limited by the character repertoire, the input methods, and the
fonts supported by its environment, but the UCS-2 database itself accepts and
stores all UCS-2 characters. Therefore, every client usually works with a
subset of UCS-2 characters, but the database manager allows the entire
repertoire of UCS-2 characters.

When characters are converted from a local code page to UTF-8, there is a
possibility of expansion in the number of bytes. There is no expansion for
ASCII characters, but other UCS-2 characters expand by a factor of two or
three. The number of bytes of each UCS-2 character in UTF-8 format can be
determined from the above table (section about UTF-8).

Data Types

All data types supported by DB2 UDB, are also supported in a UCS-2
database. In particular, graphic string data, is supported for UCS-2 database

764 Administration Guide Design and Implementation

and is stored in UCS-2/Unicode. Every client, including SBCS clients, can
work with graphic string data types in UCS-2/Unicode when connected to a
UCS-2 database.

A UCS-2 database is like any MBCS database where character string data is
measured in number of bytes. When working with character string data in
UTF-8, one should not assume that each character is one byte. In multi-byte
UTF-8 encoding, each ASCII character is one byte, but non-ASCII characters
take two or three bytes each. This should be taken into account when defining
CHAR fields. Depending on the ratio of ASCII to non-ASCII characters, a
CHAR field of size n bytes, can contain anywhere from n/3 to n characters.

Using character string UTF-8 encoding versus graphic string UCS-2 data type
also has an impact on the total storage requirements. For a situation where the
majority of characters are ASCII, with some non-ASCII characters in between,
storing UTF-8 data may be a better alternative because the storage
requirements are closer to one byte per character. On the other hand, for
situations where the majority of characters are non-ASCII characters that
expand to three-byte UTF-8 sequences (for example ideographic characters),
the UCS-2 graphic-string format may be a better alternative because every
UCS-2 character requires exactly two bytes, rather than three bytes for each
corresponding character in UTF-8 format.

SQL scalar functions that operate on character strings, such as LENGTH,
SUBSTR, POSSTR, MAX, MIN, and the like, in MBCS environments operate
on number of “bytes” rather than number of “characters”. The behavior is the
same in a UCS-2 database but you should take extra care when specifying
offsets and lengths for a USC-2 database because these values are always
defined in the context of the database code page. That is, in the case of UCS-2
database should be defined in UTF-8. Since some single-byte characters
require more than one byte in UTF-8, SUBSTR indexes that are valid for a
single-byte database may not be valid for a UCS-2 database. If you specify
incorrect indexes, you will get SQLCODE -191, SQLSTATE 22504. Refer to the
SQL Reference for a description of the behavior of these functions.

SQL CHAR data types are supported by C language’s char data type in user
programs. SQL GRAPHIC data types are supported by sqldbchar in user C
programs. Note that, for a UCS-2 database, sqldbchar data is always in
big-endian (high byte first) format. When an application program is connected
to a UCS-2 database, character string data is converted between the
application code page and UTF-8 by DB2 UDB, but graphic string data is
always in UCS-2.

Appendix H. National Language Support (NLS) 765

Identifiers

In a UCS-2 database, all identifiers are in multi-byte UTF-8. Therefore, it is
possible to use any UCS-2 character in identifiers where the use of a character
in the extended character set (for example, an accented character, or a
multi-byte character) is allowed by DB2 UDB. Please refer to the appendix
“Naming Rules” in the Administration Guide for details of which identifiers
allow use of extended characters.

Clients can enter any character which is supported by their SBCS/MBCS
environment, and all the characters in the identifiers will be converted to
UTF-8 by the database manager. Two points need to be taken into account
when specifying National Language characters in identifiers in a UCS-2
database:
1. Each non-ASCII character takes two or three bytes. Therefore, an n-byte

identifier, can only hold somewhere between n/3 and n characters,
depending the ratio of ASCII to non-ASCII characters. If you have only
one or two non-ASCII (for example, accented) characters, the limit is closer
to n characters, while for an identifier which is completely non-ASCII (for
example, in Japanese), only n/3 characters can be used.

2. If identifiers are to be entered from different client environments, they
should be defined using the common subset of characters available to
those clients. For example, if a UCS-2 database is to be accessed from
Latin-1, Arabic, and Japanese environments, all identifiers should
realistically be limited to ASCII.

UCS-2 Literals

UCS-2 literals can be specified in two ways:
1. As a GRAPHIC string constant using the G’...’, or N’....’ format as

described in the SQL Reference, Chapter 3 “Language Elements”, the
section “Constants”, the subsection “Graphic String Constants.” Any literal
specified in this way will be converted by the database manager from the
application code page to UCS-2.

2. As a UCS-2 hexadecimal string, using the UX’....’ or GX’....’ format. The
constant specified between quotes after UX or GX must be a multiple of 4
hexadecimal digits. Each four digits represent one UCS-2 code point.

When using the Command Line Processor (CLP), the first method is easier if
the UCS-2 character exists in the local application code page (for example, for
entering any code page 850 character from a terminal that is using code page
850). The second method should be used for characters which are outside the
application code page repertoire (for example, for specifying Japanese
characters from a terminal that is using code page 850).

766 Administration Guide Design and Implementation

Pattern Matching in a UCS-2 Database

Pattern matching is one area where the behavior of existing MBCS databases
is slightly different from the behavior of a UCS-2 database.

For MBCS databases in DB2 UDB, the current behavior is as follows: If the
match-expression contains MBCS data, the pattern can include both SBCS and
MBCS characters. The special characters in the pattern are interpreted as
follows:
v An SBCS underscore refers to one SBCS character.
v A DBCS underscore refers to one MBCS character.
v A percent (either SBCS or DBCS) refers to a string of zero or more SBCS or

MBCS characters.

If the match-expression contains graphic string DBCS data, the expressions
contain only DBCS characters. The special characters in the pattern are
interpreted as follows:
v A DBCS underscore refers to one DBCS character.
v A DBCS percent refers to a string of zero or more DBCS characters.

In a UCS-2 database, there is really no distinction between “single-byte” and
“double-byte” characters; every UCS-2 character occupies two bytes. Although
the UTF-8 format is a “mixed-byte” encoding of UCS-2 characters, there is no
real distinction between SBCS and MBCS characters in UTF-8. Every character
is a UCS-2 character, irrespective of its number of bytes in UTF-8 format.
When specifying a character string, or a graphic string expression, an
underscore refers to one UCS-2 characters and a percent refers to a string of
zero or more UCS-2 characters.

On the client side, the character string expressions are in the code page of the
client, and will be converted to UTF-8 by the database manager. SBCS client
code pages, do not have any DBCS percent or DBCS underscore, but every
supported code page contains a single-byte percent (corresponding to U+0025)
and a single-byte underscore (corresponding to U+005F). The interpretation of
special characters for a UCS-2 database is as follows:
v An SBCS underscore (corresponding to U+0025) refers to one UCS-2

character in a graphic string expression, or to one UTF-8 character in a
character string expression.

v An SBCS percent (corresponding to U+005F) refers to a string of zero or
more UCS-2 characters in a graphic string expression, or to a string of zero
or more UTF-8 characters in a character string expression.

Appendix H. National Language Support (NLS) 767

DBCS code pages, additionally support a DBCS percent sign (corresponding
to U+FF05) and a DBCS underscore (corresponding to U+FF3F). These
characters have no special meaning for a UCS-2 database.

For the optional “escape-expression” which specifies a character to be used to
modify the special meaning of the underscore and percent characters, only
ASCII characters, or characters that expand into a two-byte UTF-8 sequence,
are supported. If you specify an ESCAPE character which expands to a
three-byte UTF-8 value, you will get an error message (SQL0130N error,
SQLSTATE 22019).

IMPORT/EXPORT/LOAD Considerations

The DEL, ASC, and PC/IXF file formats are supported for a UCS-2 database
as described in this section. The WSF format is not supported.

When exporting from a UCS-2 database to an ASCII delimited (DEL) file, all
character data is converted to the application code page. Both character string
and GRAPHIC string data are converted to the same SBCS or MBCS code
page of the client. This is the existing behavior for the export of any database,
and cannot be changed because the entire ASCII delimited file can have only
one code page. Therefore, if you export to an ASCII delimited file, only those
UCS-2 characters that exist in your application code page would be saved.
Other characters are replaced with the default substitution character for the
application code page. For UTF-8 clients (code page 1208) there is no data loss
because all UCS-2 characters are supported by UTF-8 clients.

When importing from an ASCII file (DEL or ASC) to a UCS-2 database,
character string data is converted from the application code page to UTF-8,
and GRAPHIC string data is converted from the application code page to
UCS-2. There is no data loss. If you want to import ASCII data that has been
saved under a different code page, you should switch the data file code page
before issuing the import command. One way to accomplish this, is to set
DB2CODEPAGE to the code page of the ASCII data file.

The range of valid ASCII delimiters, for SBCS and MBCS clients is identical to
what is currently supported by DB2 UDB for these clients. The range of valid
delimiters for UTF-8 clients is 0x01 to 0x7F, with the usual restrictions. Refer
to the “IMPORT/EXPORT/LOAD Utility File Formats” appendix in the
Command Reference for a complete list of these restrictions.

When exporting from a UCS-2 database to a PC/IXF file, character string data
is converted to the SBCS/MBCS code page of the client. GRAPHIC string data
is not converted and is stored in UCS-2 (code page 1200). There is no data
loss.

768 Administration Guide Design and Implementation

When importing from an PC/IXF file to a UCS-2 database, character string
data is assumed to be in the SBCS/MBCS code page stored in the PC/IXF
header and GRAPHIC string data is assumed to be in the DBCS code page
stored in the PC/IXF header. Character string data is converted by the
IMPORT utility from the code page specified in the PC/IXF header to the
code page of the client, and then from the client code page to UTF-8 (by the
INSERT statement). GRAPHIC string data is converted by the IMPORT utility
from the DBCS code page specified in the PC/IXF header directly to UCS-2
(code page 1200).

LOAD directly places the data into the database and by default, assumes data
in ASC or DEL files is in the code page of the database. Therefore, by default
no code page conversion takes place for ASCII files. When the code page of
the data file has been explicitly specified (using the MODIFIED BY
codepage=x command parameter), LOAD uses this information to convert
from the specified code page x into the database code page before loading the
data. For PC/IXF files, LOAD always converts from the code pages specified
in the IXF header to the database code page (1208 for CHAR, 1200 for
GRAPHIC).

The code page of DBCLOB files (as specified using the MODIFIED BY
lobsinfile command parameter) is always 1200 for UCS-2. The code page of
the CLOB files is the same as the code page of the data files being imported,
loaded or exported. For example, for load or import using PC/IXF format, the
CLOB file is assumed to be in the code page specified by the PC/IXF header.
If the DBCLOB file is in ASC or DEL format, for LOAD the CLOB data is
assumed to be in the code page of the database (unless explicitly specified
otherwise using the MODIFIED BY codepage=x command parameter), and for
IMPORT it is assumed to be in the client application code page.

The NOCHECKLENGTHS option is always set to TRUE for a UCS-2 database
because in a UCS-2 database, any SBCS can be connected to the database for
which there is no DBCS code pages; and also because character strings in
UTF-8 format usually have different length than corresponding length in client
code pages.

Refer to Data Movement Utilities Guide and Reference for more information on
the LOAD, EXPORT, and IMPORT utilities.

Incompatibilities

An application connected to a UCS-2 database, the graphic string data is
always in UCS-2 (code page 1200). For applications connected to non UCS-2
databases, the graphic string data is in the applications DBCS code page; or,
not allowed if the application code page is SBCS. For example, when a 932
client is connected to a Japanese non UCS-2 database, then the graphic string

Appendix H. National Language Support (NLS) 769

data is in code page 301. But for the 932 client applications connected to a
UCS-2 database, the graphic string data is in UCS-2.

Character Sets

The database manager does not, in general, restrict the character set available
to an application except as noted below.

DBCS Character Sets

Each combined Single-Byte Character Set (SBCS) or Double-Byte Character Set
(DBCS) code page allows for both single- and double-byte character code
points. This is usually accomplished by reserving a subset of the 256 available
code points of a mixed code table for single-byte characters, with the
remainder of the code points either undefined or allocated to the first byte of
double-byte code points. These code points are shown in the following table.

Table 46. Mixed Character Set Code Points

Country Supported Mixed
Code Page

Code Points for
Single-byte
Characters

Code Points for
First Byte of
Double-Byte

Characters

Japan 932, 943 x00-7F, xA1-DF x81-9F, xE0-FC

Japan 942 x00-80, xA0-DF,
xFD-FF

x81-9F, xE0-FC

Taiwan 938 (*) x00-7E x81-FC

Taiwan 948 (*) x00-80, FD, FE x81-FC

Korea 949 x00-7F x8F-FE

Taiwan 950 x00-7E x81-FE

China 1381 x00-7F x8C-FE

Korea 1363 x00-7F x81-FE

China 1386 x00 x81-FE

Notes:

1. (*) means that this is an old code page and is not recommended anymore.

Code points not assigned to either category above are not defined, and are
processed as single-byte undefined code points.

Within each implied DBCS code table, there are 256 code points available as
the second byte for each valid first byte. Second byte values can have any

770 Administration Guide Design and Implementation

value from 0x40 to 0x7E and from 0x80 to 0xFE. Note that in DBCS
environments, DB2 does not perform validity checking on individual
double-byte characters.

Extended UNIX Code (EUC) Character Sets

Each EUC code page allows for both single-byte character code points, and up
to three different sets of multi-byte character code points. This is accomplished
by reserving a subset of the 256 available code points of each implied SBCS
code page identifier for single-byte characters. The remainder of the code
points is undefined, allocated as an element of a multi-byte character, or
allocated as a single-shift introducer of a multi-byte character. These code
points are shown in the following tables.

Table 47. Japanese EUC Code Points

Group 1st Byte 2nd Byte 3rd Byte 4th Byte

G0 x20-7E n/a n/a n/a

G1 xA1-FE xA1-FE n/a n/a

G2 x8E xA1-FE n/a n/a

G3 x8E xA1-FE xA1-FE n/a

Table 48. Traditional Chinese EUC Code Points

Group 1st Byte 2nd Byte 3rd Byte 4th Byte

G0 x20-7E n/a n/a n/a

G1 xA1-FE xA1-FE n/a n/a

G2 x8E xA1-FE xA1-FE xA1-FE

G3 n/a n/a n/a n/a

Table 49. Korean EUC Code Points

Group 1st Byte 2nd Byte 3rd Byte 4th Byte

G0 x20-7E n/a n/a n/a

G1 xA1-FE xA1-FE n/a n/a

G2 n/a n/a n/a n/a

G3 n/a n/a n/a n/a

Table 50. Simplified Chinese EUC Code Points

Group 1st Byte 2nd Byte 3rd Byte 4th Byte

G0 x20-7E n/a n/a n/a

G1 xA1-FE xA1-FE n/a n/a

G2 n/a n/a n/a n/a

G3 n/a n/a n/a n/a

Appendix H. National Language Support (NLS) 771

Code points not assigned to the categories shown above are not defined, and
are treated as single-byte undefined code points.

Character Set for Identifiers

The basic character set that may be used in database names consists of the
single-byte uppercase and lowercase Latin letters (A...Z, a...z), the Arabic
numerals (0...9) and the underscore character (_). This list of letters is
augmented with the three special characters #, @ and $ to provide
compatibility with host database products. However, these special characters
should be used with care in an NLS environment because they are not
included in the NLS host (EBCDIC) invariant character set.

When naming database objects (such as tables and views), program labels,
host variables, cursors and statements alphabetics from the extended character
set may also be used. For example, those letters with diacritical marks. The
available characters depend on the code page in use and if you are using the
database in a multiple code page environment, you must ensure that all code
pages support any alphabetics you plan on using from the extended character
set. See the SQL Reference for a discussion of delimited identifiers which can
be used in SQL statements and can also contain characters outside the
extended character set.

Extended Character Set Definition for DBCS Identifiers

In DBCS environments, the extended character set consists of all the
characters in the basic character set, plus those identified as a letter or digit as
follows:
v All double-byte characters in each DBCS code page, except the double-byte

space, are valid letters.
v The double-byte space is a special character.
v The single-byte characters available in each mixed code page are assigned

to various categories as follows:

Category
Valid Code Points within each Mixed Code Page

Digits x30-39

Letters
x23-24, x40-5A, x61-7A, xA6-DF (A6-DF for code pages 932 and 942
only)

Special Characters
All other valid single-byte character code points

772 Administration Guide Design and Implementation

Coding of SQL Statements

The coding of SQL statements is not language dependent. SQL is a
programming language and, like other programming languages such as C, it
is language invariant. The SQL keywords must be typed as shown, although
they may be typed in uppercase, lowercase, or mixed case. The names of
database objects, host variables and program labels that occur in an SQL
statement cannot contain characters outside the database manager extended
character set as described above.

Bidirectional CCSID Support

The following BiDi attributes are required for correct handling of Bidirectional
data on different platforms:

- Text type (LOGICAL vs VISUAL)
- Shaping (SHAPED vs UNSHAPED)
- Orientation (RIGHT-TO-LEFT vs LEFT-TO-RIGHT)
- Numeral shape (ARABIC vs HINDI)
- Symmetric swapping (YES or NO)

Defaults on different platforms are not the same, problems appear when DB2
data is sent from one platform to another. For example, Windows platforms
use LOGICAL UNSHAPED data, while data on OS/390 is usually in SHAPED
VISUAL format. Therefore, without any support for bidirectional attributes,
data sent from DB2 Universal Database for OS/390 to DB2 UDB on a
Windows 32-bit operating systems may display incorrectly.

Bidirectional-specific CCSIDs

DB2 supports bidirectional data attributes through special bidirectional Coded
Character Set Identifiers (CCSIDs). The following bidirectional CCSIDs have
been defined and are implemented with DB2 UDB:

CCSID | Code | String
| Page | Type

-------+--------+----------
00420 420 4
00424 424 4
08612 420 5
08616 424 6
62208 856 4
62209 862 4
62210 916 4
62211 424 5
00856 856 5
62213 862 5
00916 916 5
01255 1255 5
01046 1046 5
00864 864 5

Appendix H. National Language Support (NLS) 773

01089 1089 5
01256 1256 5
62220 856 6
62221 862 6
62222 916 6
62223 1255 6
62224 420 6
62225 864 6
62226 1046 6
62227 1089 6
62228 1256 6
62235 424 10
62236 856 10
00862 862 10
62238 916 10
62239 1255 10
62240 424 11
62241 856 11
62242 862 11
62243 916 11
62244 1255 11

Where CDRA String Types are defined:
String | Text | Numerical | Orientation | Shaping | Symmetrical
Type | Type | Shape | | | Swapping

---------+-------+------------+-------------+-----------+-------------
4 Visual Arabic LTR Shaped OFF
5 Implicit Arabic LTR Unshaped ON
6 Implicit Arabic RTL Unshaped ON
7(*) Visual Arabic Contextual(*) Unshaped-Lig OFF
8 Visual Arabic RTL Shaped OFF
9 Visual Passthru RTL Shaped ON

10 Implicit Contextual-L ON
11 Implicit Contextual-R ON

Note: (*) Field orientation is left-to-right (LTR) when the first alphabetic
character is a Latin one, and right-to-left (RTL) when it is a
bidirectional (RTL) character. Characters are unshaped, but LamAlef
ligatures are kept, and not broken into constituents.

DB2 Universal Database Implementation of Bidirectional Support

Bidirectional layout transformations are implemented in DB2 Universal
Database using the new CCSID definitions. For the new BiDi-specific CCSIDs,
layout transformations are performed instead of or in addition to code page
conversions. To use this support, the DB2BIDI registry variable must be set to
YES. By default, this variable is not set. This variable is used by the server for
all conversions, and can only be set when the server is started. Setting
DB2BIDI to YES may have some performance impact because of additional
checking and layout transformations.

774 Administration Guide Design and Implementation

To specify a specific bidirectional CCSID in non-DRDA environment, select the
appropriate CCSID from the above table that matches the characteristics of
your client, and set DB2CODEPAGE to that value. If you already have a
connection to the database, you must issue a TERMINATE command and
connect again to make the new setting of DB2CODEPAGE take effect. If you
select a CCSID which is not correct for code page or string type of your client
platform, results would be unexpected. If you select an incompatible CCSID
(i.e., Hebrew CCSID for connection to an Arabic database or vice-versa), or if
DB2BIDI has not been set for the server, you will receive an error message
when you try to connect.

For DRDA environments, if the HOST EBCDIC platform also supports these
bidirectional CCSIDs, you need to only set DB2CODEPAGE as mentioned
above. However, if HOST platform does not support these CCSIDs, you must
specify a CCSID override for the HOST database server that you are
connecting to. This is necessary because, in DRDA environment, code page
conversions and layout transformations are performed by the receiver of data.
However, if HOST server does not support these bidirectional CCSIDs, it does
not perform layout transformation on the data that it receives from DB2 UDB.
If you use a CCSID override, the DB2 UDB client performs layout
transformation on the outbound data as well. For details of how to set a
CCSID override, please refer to DB2 Connect Release Notes.

CCSID override is not supported for cases where the HOST EBCDIC platform
is the client and DB2 UDB is the server.

DB2 Connect Implementation of Bidirectional Support

When data is exchanged between DB2 Connect and a database on a server, it
is usually the receiver that performs conversion on the incoming data. The
same convention would normally apply to bidirectional layout
transformations also, which is in addition to the usual code page conversion.
DB2 Connect has the optional ability to perform bidirectional layout
transformation on data it is about to send to the server database in addition to
data received from the server database.

In order for DB2 Connect to perform bidirectional layout transformation on
outgoing data for a server database, the bidirectional Coded Character Set
Identifier (CCSID) of the server database will have to be overridden. This is
accomplished through the use of the BIDI parameter in the PARMS field of
the DCS database directory entry for the server database.

Note: If you would like DB2 Connect to perform layout transformation on the
data it is about to send to the DB2 host database, even though you do
not have to override its CCSID, you still have to add the BIDI

Appendix H. National Language Support (NLS) 775

parameter in the DCS database directory PARMS field. In this case, the
CCSID that you should provide is the default DB2 host database
CCSID.

The BIDI parameter is to be specified as the ninth parameter in the PARMS
field along with the bidirectional CCSID with which the user would like to
override the default server database bidirectional CCSID in the following
format:

",,,,,,,,BIDI=xyz"

where xyz is the CCSID override.

Note: The registry variable, DB2BIDI, must be set to “YES” in order for the
BIDI parameter to take effect.

A list of the bidirectional CCSIDs that are supported along with their string
types is found in “Bidirectional-specific CCSIDs” on page 773.

The use of this feature is best illustrated with an example.

Suppose you have a Hebrew DB2 client running CCSID 62213 (bidirectional
string type 5) and you would like to access a DB2 host database running
CCSID 00424 (bidirectional string type 4). However, you know that the data
contained in the DB2 host database is instead based on CCSID 08616
(bidirectional string type 6).

There are two problems in this situation: The first is that the DB2 host
database does not know the difference in the bidirectional string types with
CCSIDs 00424 and 08616. The second problem is that the DB2 host database
does not recognize the DB2 client CCSID of 62213. It only supports CCSID
00862, which is based on the same code page as CCSID 62213.

You will need to make sure that data sent to the DB2 host database is in
bidirectional string type 6 format to begin with and also let DB2 Connect
know that it has to perform bidirectional transformation on data it receives
from the DB2 host database. You will need to use following catalog command
for the DB2 host database:

db2 catalog dcs database nydb1 as telaviv parms ",,,,,,,,BIDI=08616"

What this command does is tell DB2 Connect to override the DB2 host
database CCSID of 00424 with 08616. This override includes the following
processing:

1. DB2 Connect connects to the DB2 host database using CCSID 00862.

776 Administration Guide Design and Implementation

2. DB2 Connect performs bidirectional layout transformation on the data it is
about to send to the DB2 host database. The transformation is from CCSID
62213 (bidirectional string type 5) to CCSID 62221 (bidirectional string type
6).

3. DB2 Connect performs bidirectional layout transformation on data it
receives from the DB2 host database. The transformation is from CCSID
08616 (bidirectional string type 6) to CCSID 62213 (bidirectional string type
5).

Note: In some cases, use of a bidirectional CCSID may cause the SQL query
itself to be modified such that it is not recognized by the DB2 server.
Specifically, you should avoid using IMPLICIT CONTEXTUAL and
IMPLICIT RIGHT-TO-LEFT CCSIDs when a different string type can be
used. CONTEXTUAL CCSIDs can produce unpredictable results if the
SQL query contains quoted strings. Avoid using quoted strings in SQL
statements and use host variables instead whenever possible.

If a specific bidirectional CCSID is causing problems which cannot be
rectified by following these recommendations, then you should set
DB2BIDI=NO.

Collating Sequences

The database manager compares character data using a collating sequence. This
is an ordering for a set of characters that determines whether a particular
character sorts higher, lower, or the same as another.

Note: Character string data defined with the FOR BIT DATA attribute, or
BLOB data, is sorted using the binary sort sequence.

For example, a collating sequence can be used to indicate that lowercase and
uppercase versions of a particular character are to be sorted equally.

The database manager allows databases to be created with custom collating
sequences. The following sections help you determine and implement a
particular collating sequence for a database.

Overview

In a database, each single-byte character is represented internally as a unique
number between 0 and 255, (in hexadecimal notation, between X'00' and
X'FF'). This number is referred to as the code point of the character; the
assignments of numbers to characters in a set are collectively called a code
page. A collating sequence is a mapping between the code point and the
desired position of each character in a sorted sequence. The numeric value of
the position is called the weight of the character in the collating sequence. The

Appendix H. National Language Support (NLS) 777

simplest collating sequence is one where the weights are identical to the code
points. This is called the identity sequence.

For example, consider the characters B (X'42'), and b (X'62'). If, according to
the collating sequence table, they both have a sort weight of X'42' (B), then
they collate the same. If the sort weight for B is X'9E' and the sort weight for b
is X'9D', then b will be sorted before B. Actual weights depend on the collating
sequence table used which depends on the code set and locale. Note that a
collating sequence table is not the same as a code page table, which defines
code points.

Consider the following example. In ASCII, the characters A through Z are
represented by X'41' through X'5A'. To describe a collating sequence where
these are sorted in order, and consecutively (no intervening characters), you
can write X'41', X'42', &ellipsis; X'59', X'5A'.

For multi-byte characters, the hexadecimal value of the multi-byte character is
also used as the weight. For example, X'8260', X'8261' are the code points for
double byte character A and B. In this case, the collation weights for X'82',
X'60', and X'61' are used to sort these two characters according to their code
points.

The values of the weights in a collating sequence need not be unique. For
example, you could give uppercase letters and their lowercase equivalents the
same weight.

Specifying the collating sequence can be simplified if a collating sequence
provides weights for all 256 code points. The weight of each character can be
determined using the code point of the character. This is the method used to
specify a collating sequence for the database manager: a string of 256 bytes,
where the nth byte (starting with 0) contains the weight of code point n.

In all cases, DB2 uses the collation table which was specified at database
creation time. If you require the multi-byte characters to sort the way they
appear in their code point table, you must specify IDENTITY as your collation
sequence when you create the database.

Note: For DBCS characters in GRAPHIC fields, the sort sequence is always
IDENTITY without regard to the collation sequence specified at
database creation time.

Character Comparisons: Once a collating sequence is established, character
comparison is performed by comparing the weights of two characters, instead
of directly comparing their code point values.

778 Administration Guide Design and Implementation

If weights that are not unique are used, characters that are not identical may
compare equally. Because of this, string comparison must be a two-phase
process:
1. Compare the characters of each string based on their weights.
2. If step 1 yielded equality, compare the characters of each string based on

their code point values.

If the collating sequence contains 256 unique weights, only the first step is
performed. If the collating sequence is the identity sequence only the second
step is performed. In either case, there is a performance benefit.

For more information on character comparisons, see the SQL Reference.

Case Independent Comparisons: To perform character comparisons that are
independent of whether they are upper or lower case, you can use the
TRANSLATE function to select and compare mixed case column data by
translating it to upper case, but only for the purposes of comparison. Consider
the following data:

Abel
abels
ABEL
abel
ab
Ab

For the following select statement:
SELECT c1 FROM T1 WHERE TRANSLATE(c1) LIKE 'AB%'

you would receive the following results:
ab
Ab
abel
Abel
ABEL
abels

Note: You could also set the select as in the following view v1, and then
make all your comparisons against the view (in upper case) and your
inserts into the table in mixed case:

CREATE VIEW v1 AS SELECT TRANSLATE(c1) FROM t1

At the database level, you can set the collating sequence as part of the CREATE
DATABASE API. This allows you to decide if ’a’ is processed before ’A’, or if
’A’ is processed after ’a’, or if they are processed with equal weighting. This
will make them equal when collating or sorting using the ORDER BY clause.

Appendix H. National Language Support (NLS) 779

If you have two values of ’a’ and ’A’, ’A’ will always come before ’a’, because
in all senses they are equal, so the only difference upon which to sort is the
hexadecimal value.

Thus if you issue SELECT c1 FROM t1 WHERE c1 LIKE ’ab%’, you receive
the following output:

ab
abel
abels

If you issue SELECT c1 FROM t1 WHERE c1 LIKE ’A%’, you receive the
following output:

Abel
Ab
ABEL

If you issue SELECT c1 FROM t1 ORDER BY c1, you receive the following:
ab
Ab
abel
Abel
ABEL
abels

Thus, you may want to consider using the scalar function TRANSLATE(), as
well as the CREATE DATABASE API. Note that you can only specify a
collating sequence using the CREATE DATABASE API. You cannot specify a
collating sequence from the Command Line Processor. For information on the
TRANSLATE() function, see the SQL Reference. For information on the
CREATE DATABASE API see the Administrative API Reference.

You can also use the UCASE function as follows, but note that DB2 performs
a table scan instead of using an index for the select:

SELECT * FROM EMP WHERE UCASE(JOB) = 'NURSE'

Collating Sequence Sort Order: EBCDIC and ASCII Example

The order in which data in a database is sorted depends on the collating
sequence defined for the database. For example, suppose that database A uses
the EBCDIC code page’s default collating sequence and that database B uses
the ASCII code page’s default collating sequence. Sort orders at these two
databases would differ, as shown in Figure 77 on page 781.

780 Administration Guide Design and Implementation

Similarly, character comparisons in a database depend on the collating
sequence defined for that database. So if database A uses the EBCDIC code
page’s default collating sequence and database B uses the ASCII code page’s
default collating sequence, the results of character comparisons at the two
databases would differ. Figure 78 illustrates the difference.

If you are creating a federated database, consider specifying that your
collating sequence matches the collating sequence at a data source. This
approach will maximize “pushdown” opportunities and possibly increase
query performance. See the Administration Guide, Performance for more
information on the relationship between pushdown analysis, collating
sequences, and query performance.

Specifying a Collating Sequence

The collating sequence for a database is specified at database creation time.
Once the database has been created, the collating sequence cannot be changed.

SELECT.....
ORDER BY COL2

EBCDIC-Based Sort ASCII-Based Sort

COL2 COL2
---- ----
V1G 7AB
Y2W V1G
7AB Y2W

Figure 77. Example of How a Sort Order in an EBCDIC-Based Sequence Differs from a Sort Order
in an ASCII-Based Sequence

SELECT.....
WHERE COL2 > 'TT3'

EBCDIC-Based Results ASCII-Based Results

COL2 COL2
---- ----
TW4 TW4
X72 X72
39G

Figure 78. Example of How a Comparison of Characters in an EBCDIC-Based Sequence Differs
from a Comparison of Characters in an ASCII-Based Sequence

Appendix H. National Language Support (NLS) 781

The CREATE DATABASE API accepts a data structure called the Database
Descriptor Block (SQLEDBDESC). You can define your own collating sequence
within this structure.

To specify a collating sequence for a database:
v Pass the desired SQLEDBDESC structure, or
v Pass a NULL pointer. The collating sequence of the operating system (based

on current country code and code page) is used. This is the same as
specifying SQLDBCSS equal to SQL_CS_SYSTEM (0).

The SQLEDBDESC structure contains:

SQLDBCSS
A 4-byte integer indicating the source of the database collating
sequence. Valid values are:

SQL_CS_SYSTEM
The collating sequence of the operating system (based on
current country code and code page) is used.

SQL_CS_USER
The collating sequence is specified by the value in the
SQLDBUDC field.

SQL_CS_NONE
The collating sequence is the identity sequence. Strings are
compared byte for byte, starting with the first byte, using a
simple code point comparison.

Note: These constants are defined in the SQLENV include file.

SQLDBUDC
A 256-byte field. The nth byte contains the sort weight of the nth
character in the code page of the database. If SQLDBCSS is not equal
to SQL_CS_USER, this field is ignored.

Sample Collating Sequences: Several sample collating sequences are
provided (as include files) to facilitate database creation using the EBCDIC
collating sequences instead of the default workstation collating sequence.

The collating sequences in these include files can be specified in the
SQLDBUDC field of the SQLEDBDESC structure. They can also be used as
models for the construction of other collating sequences.

General Concerns: Once a collating sequence is defined, all future character
comparisons for that database will be performed with that collating sequence.
Except for character data defined as FOR BIT DATA or BLOB data, the
collating sequence will be used for all SQL comparisons and ORDER BY

782 Administration Guide Design and Implementation

clauses, and also in setting up indexes and statistics. For more information on
how the database collating sequence is used, see the section on String
Comparisons in the SQL Reference.

Potential problems may occur in the following cases:
v An application merges sorted data from a database with application data

that was sorted using a different collating sequence.
v An application merges sorted data from one database with sorted data from

another, but the databases have different collating sequences.
v An application makes assumptions about sorted data that are not true for

the relevant collating sequence. For example, numbers collating lower than
alphabetics might or might not be true for a particular collating sequence.

A final point to remember is that the results of any sort based on a direct
comparison of code points of characters will only match the results of a query
ordered using an identity collating sequence.

Federated Database Concerns: Your choice of database collating sequence
can affect federated system performance. If a data source uses the same
collating sequence as the DB2 federated database, DB2 can pushdown
order-dependent processing involving character data to the data source. If a
data source collating sequence does not match DB2’s, data is retrieved and all
order-dependent processing on character data is done locally (which can slow
performance).

To determine if a data source and DB2 have the same collating sequence,
consider the following factors:
v National language support

The collating sequence is related to the language supported on a server.
Compare DB2 NLS information to data source NLS information.

v Data source characteristics
Some data sources are created using case-insensitive collating sequences,
which can yield different results from DB2 in order-dependent operations.

v Customization
Some data sources provide multiple options for collating sequences or allow
the collating sequence to be customized.

Choose the collating sequence for a DB2 federated database based on the mix
of data sources that will be accessed from that database. For example:
v If a DB2 database will access mostly Oracle databases with the same code

page (NLS) as DB2, specify SQL_CS_NONE for the SQLDBCSS structure
(Oracle databases use an equivalent collating sequence).

Appendix H. National Language Support (NLS) 783

v If a DB2 database will access only DB2 UDB databases, ensure that you
match SQLDBCSS values.

For information on how to set up a MVS collating sequence, you should refer
to theAdministrative API Reference for samples under the “sqlecrea” topic.
These samples contain collation tables for EBCIDIC 500, 37, and 5026/5035
code pages.

After you set the collating sequence for the DB2 database, ensure that you set
the collating_sequence server option for each data source server. The
collating_sequence option indicates if the collating sequence of a given data
source server matches the collating sequence of the DB2 database.

Set the collating_sequence option to “Y” if the collating sequences match. This
setting allows the DB2 optimizer to consider order-dependent processing at a
data source, which can improve performance. However, if the data source
collating sequence is not the same as the DB2 database collating sequence,
you can receive incorrect results. For example, if your plan uses merge joins,
the DB2 optimizer will pushdown ordering operations to the data sources as
much as possible. If the data source collating sequence is not the same, the
join results may not have a correct result set.

Set the collating_sequence option to “N” if the collating sequences do not
match. Use this value when data source collating sequences differ from DB2
or when the data source collating operations might be case insensitive. For
example, in a case insensitive data source with an English code page,
TOLLESON, ToLLeSoN, and tolleson would all be considered equal. Set the
collating_sequence option to “N” if you are not sure that the collating
sequence at the data source is identical to the DB2 collating sequence.

Datetime Values

The datetime data types are described below. Although datetime values can be
used in certain arithmetic and string operations and are compatible with
certain strings, they are neither strings nor numbers.

Date

A date is a three-part value (year, month, and day). The range of the year part
is 0001 to 9999. The range of the month part is 1 to 12. The range of the day
part is 1 to x, where x depends on the month.

The internal representation of a date is a string of 4 bytes. Each byte consists
of 2 packed decimal digits. The first 2 bytes represent the year, the third byte
the month, and the last byte the day.

784 Administration Guide Design and Implementation

The length of a DATE column, as described in the SQLDA, is 10 bytes, which
is the appropriate length for a character string representation of the value.

Time

A time is a three-part value (hour, minute, and second) designating a time of
day under a 24-hour clock. The range of the hour part is 0 to 24; while the
range of the other parts is 0 to 59. If the hour is 24, the minute and second
specifications will be zero.

The internal representation of a time is a string of 3 bytes. Each byte is 2
packed decimal digits. The first byte represents the hour, the second byte the
minute, and the last byte the second.

The length of a TIME column, as described in the SQLDA, is 8 bytes, which is
the appropriate length for a character string representation of the value.

Timestamp

A timestamp is a seven-part value (year, month, day, hour, minute, second, and
microsecond) that designates a datetime as defined above, except that the time
includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of 10 bytes, each of
which consists of 2 packed decimal digits. The first 4 bytes represent the date,
the next 3 bytes the time, and the last 3 bytes the microseconds.

The length of a TIMESTAMP column, as described in the SQLDA, is 26 bytes,
which is the appropriate length for the character string representation of the
value.

String Representations of Datetime Values

Values whose data types are DATE, TIME, or TIMESTAMP are represented in
an internal form that is transparent to the SQL user. Dates, times, and
timestamps can, however, also be represented by character strings, and these
representations directly concern the SQL user since there are no constants or
variables whose data types are DATE, TIME, or TIMESTAMP. Thus, to be
retrieved, a datetime value must be assigned to a character string variable.
The character string representation is normally the default format of datetime
values associated with the country code of the database, unless overridden by
specification of the F format option when the program is precompiled or
bound to the database. See Table 53 on page 788 for a listing of the string
formats for the various country codes.

Appendix H. National Language Support (NLS) 785

When a valid string representation of a datetime value is used in an operation
with an internal datetime value, the string representation is converted to the
internal form of the date, time, or timestamp before the operation is
performed. The following sections define the valid string representations of
datetime values.

Date Strings

A string representation of a date is a character string that starts with a digit
and has a length of at least 8 characters. Trailing blanks may be included;
leading zeros may be omitted from the month and day portions.

Valid string formats for dates are listed in Table 1. Each format is identified by
name and includes an associated abbreviation and an example of its use.

Table 51. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards
Organization

ISO yyyy-mm-dd 1991-10-27

IBM USA standard USA mm/dd/yyyy 10/27/1991

IBM European standard EUR dd.mm.yyyy 27.10.1991

Japanese Industrial Standard
Christian era

JIS yyyy-mm-dd 1991-10-27

Site-defined (Local) LOC Depends on
database country
code

—

Time Strings

A string representation of a time is a character string that starts with a digit
and has a length of at least 4 characters. Trailing blanks may be included; a
leading zero may be omitted from the hour part of the time and seconds may
be omitted entirely. If you choose to omit seconds, an implicit specification of
0 seconds is assumed. Thus, 13.30 is equivalent to 13.30.00.

Valid string formats for times are listed in Table 52. Each format is identified
by name and includes an associated abbreviation and an example of its use.

Table 52. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards
Organization

ISO hh.mm.ss 13.30.05

IBM USA standard USA hh:mm AM or
PM

1:30 PM

786 Administration Guide Design and Implementation

Table 52. Formats for String Representations of Times (continued)

Format Name Abbreviation Time Format Example

IBM European standard EUR hh.mm.ss 13.30.05

Japanese Industrial Standard
Christian Era

JIS hh:mm:ss 13:30:05

Site-defined (Local) LOC Depends on
application
country code

—

Notes:

1. In ISO, EUR and JIS format, .ss (or :ss) is optional.
2. In the case of the USA time string format, the minutes specification may

be omitted, indicating an implicit specification of 00 minutes. Thus 1 PM is
equivalent to 1:00 PM.

3. In the USA time format, the hour must not be greater than 12 and cannot
be 0 except for the special case of 00:00 AM. Using the ISO format of the
24-hour clock, the correspondence between the USA format and the
24-hour clock is as follows:

12:01 AM through 12:59 AM corresponds to 00.01.00 through 00.59.00.
01:00 AM through 11:59 AM corresponds to 01.00.00 through 11.59.00.
12:00 PM (noon) through 11:59 PM corresponds to 12.00.00 through
23.59.00.
12:00 AM (midnight) corresponds to 24.00.00 and 00:00 AM (midnight)
corresponds to 00.00.00.

Timestamp Strings

A string representation of a timestamp is a character string that starts with a
digit and has a length of at least 16 characters. The complete string
representation of a timestamp has the form yyyy-mm-dd-hh.mm.ss.nnnnnn.
Trailing blanks may be included. Leading zeros may be omitted from the
month, day, and hour part of the timestamp, and microseconds may be
truncated or entirely omitted. If you choose to omit any digit of the
microseconds portion, an implicit specification of 0 is assumed. Thus,
1991-3-2-8.30.00 is equivalent to 1991-03-02-08.30.00.000000.

MBCS Considerations

Date and timestamp strings must contain only single-byte characters and
digits.

Date and Time Formats: The character string representation of date and time
formats is the default format of datetime values associated with the country

Appendix H. National Language Support (NLS) 787

code of the application. This default format may be overridden by
specification of the F format option when the program is precompiled or
bound to the database.

The following is a description of the input and output formats for date and
time:
v Input Time Format

– There is no default input time format
– All time formats are allowed as input for all country codes.

v Output Time Format
– The default output time format is equal to the local time format.

v Input Date Format
– There is no default input date format
– Where the local format for date conflicts with an ISO, JIS, EUR, or USA

date format, the local format is recognized for date input. For example,
see the UK entry in Table 53.

v Output Date Format
– The default output date format is shown in Table 53.

Note: Table 53 also shows a listing of the string formats for the various
country codes.

Table 53. Date and Time Formats by Country Code

Country Code Local Date
Format

Local Time
Format

Default
Output
Date Format

Input Date
Formats

785 Arabic dd/mm/yyyy JIS LOC LOC, EUR, ISO

001 Australia (1) mm-dd-yyyy JIS LOC LOC, USA, EUR,
ISO

061 Australia dd-mm-yyyy JIS LOC LOC, USA, EUR,
ISO

032 Belgium dd/mm/yyyy JIS LOC LOC, EUR, ISO

055 Brazil dd.mm.yy JIS LOC LOC, USA, EUR,
ISO

359 Bulgaria dd.mm.yyyy JIS EUR LOC, USA, EUR,
ISO

001 Canada mm-dd-yyyy JIS USA LOC, USA, EUR,
ISO

002 Canada (French) dd-mm-yyyy ISO ISO LOC, USA, EUR,
ISO

788 Administration Guide Design and Implementation

Table 53. Date and Time Formats by Country Code (continued)

Country Code Local Date
Format

Local Time
Format

Default
Output
Date Format

Input Date
Formats

385 Croatia yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

042 Czech Republic yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

045 Denmark dd-mm-yyyy ISO ISO LOC, USA, EUR,
ISO

358 Finland dd/mm/yyyy ISO EUR LOC, EUR, ISO

389 FYR Macedonia dd.mm.yyyy JIS EUR LOC, USA, EUR,
ISO

033 France dd/mm/yyyy JIS EUR LOC, EUR, ISO

049 Germany dd/mm/yyyy ISO ISO LOC, EUR, ISO

030 Greece dd/mm/yyyy JIS LOC LOC, EUR, ISO

036 Hungary yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

354 Iceland dd-mm-yyyy JIS LOC LOC, USA, EUR,
ISO

972 Israel dd/mm/yyyy JIS LOC LOC, EUR, ISO

039 Italy dd/mm/yyyy JIS LOC LOC, EUR, ISO

081 Japan mm/dd/yyyy JIS ISO LOC, USA, EUR,
ISO

082 Korea mm/dd/yyyy JIS ISO LOC, USA, EUR,
ISO

001 Latin America (1) mm-dd-yyyy JIS LOC LOC, USA, EUR,
ISO

003 Latin America dd-mm-yyyy JIS LOC LOC, EUR, ISO

031 Netherlands dd-mm-yyyy JIS LOC LOC, USA, EUR,
ISO

047 Norway dd/mm/yyyy ISO EUR LOC, EUR, ISO

048 Poland yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

351 Portugal dd/mm/yyyy JIS LOC LOC, EUR, ISO

086 PRC mm/dd/yyyy JIS ISO LOC, USA, EUR,
ISO

040 Romania yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

Appendix H. National Language Support (NLS) 789

Table 53. Date and Time Formats by Country Code (continued)

Country Code Local Date
Format

Local Time
Format

Default
Output
Date Format

Input Date
Formats

007 Russia dd/mm/yyyy ISO LOC LOC, EUR, ISO

381
Serbia/Montenegro

yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

042 Slovakia yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

386 Slovenia yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

034 Spain dd/mm/yyyy JIS LOC LOC, EUR, ISO

046 Sweden dd/mm/yyyy ISO ISO LOC, EUR, ISO

041 Switzerland dd/mm/yyyy ISO EUR LOC, EUR, ISO

088 Taiwan mm-dd-yyyy JIS ISO LOC, USA, EUR,
ISO

066 Thailand (2) dd/mm/yyyy JIS LOC LOC, EUR, ISO

090 Turkey dd/mm/yyyy JIS LOC LOC, EUR, ISO

044 UK dd/mm/yyyy JIS LOC LOC, EUR, ISO

001 USA mm-dd-yyyy JIS USA LOC, USA, EUR,
ISO

Notes:

1. Countries using the default C locale are assigned country code 001.

2. yyyy is in Buddhist era: Gregorian + 543 years.

790 Administration Guide Design and Implementation

Appendix I. Issuing Commands to Multiple Database
Partition Servers

In a partitioned database system, you may want to issue commands to be run
on machines in the instance, or on database partition servers (nodes). You can
do so using the rah command or the db2_all command. The rah command
allows you to issue commands that you want to run at machines in the
instance. If you want the commands to run at database partition servers in the
instance, you run the db2_all command. This section provides an overview of
these commands. The information that follows applies to partitioned database
systems only.

Notes:

1. On UNIX-based platforms, your login shell can be a Korn shell or any
other shell; however, there are differences in the way the different shells
handle commands containing special characters.

2. On Windows NT, to run the rah command or the db2_all command, you
must be logged on with a user account that is a member of the
Administrators group.

To determine the scope of a command, refer to the Command Reference. This
book indicates whether a command runs on a single database partition server,
or on all of them. If the command runs on one database partition server and
you want it to run on all of them, use db2_all. The exception is the db2trc
command, which runs on all the logical nodes (database partition servers) on
a machine. If you want to run db2trc on all logical nodes on all machines, use
rah.

Commands

You can run the commands sequentially at one database partition server after
another, or you can run the commands in parallel. On UNIX-based platforms,
if you run the commands in parallel, you can either choose to have the output
sent to a buffer and collected for display (the default behavior) or the output
can be displayed at the machine where the command is issued. On Windows
NT, if you run the commands in parallel, the output is displayed at the
machine where the command is issued.

To use the rah command, type:
rah command

To use the db2_all command, type:

© Copyright IBM Corp. 1993, 1999 791

db2_all command

To obtain help about rah syntax, type
rah "?"

The command can be almost anything which you could type at an interactive
prompt, including, for example, multiple commands to be run in sequence.
On UNIX-based platforms, you separate multiple commands using a
semicolon (;). On Windows NT, you separate multiple commands using an
ampersand (&). Do not use the separator character following the last
command.

The following example shows how to use the db2_all command to change the
database configuration on all database partition servers that are specified in
the node configuration file. Because the ; character is placed inside double
quotation marks, the request will run concurrently:
db2_all ";UPDATE DB CFG FOR sample USING LOGFILSIZ=100"

Command Descriptions

You can use the following commands:

Command Description

rah Runs the command on all machines.

db2_all Runs the command on all database partition servers that you
specify.

db2_kill Abruptly stops all processes being run on multiple database
partition servers and cleans up all resources on all database
partition servers. This command renders your databases
inconsistent. Do not issue this command except under
direction from IBM service.

db2_call_stack
On UNIX-based platforms, causes all processes running on all
database partition servers to write call traceback to the syslog.

On Windows NT, causes all processes running on all database
partition servers to write call traceback to the Pxxxx.nnn file in
the instance directory, where Pxxxx is the process ID and nnn
is the node number.

On UNIX-based platforms, these commands execute rah with certain implicit
settings such as:
v Run in parallel at all machines

792 Administration Guide Design and Implementation

v Buffer command output in /tmp/$USER/db2_kill,
/tmp/$USER/db2_call_stack respectively.

On Windows NT, these commands execute rah to run in parallel at all
machines.

Specifying the Command to Run

You can specify the command:
v From the command line as the parameter
v In response to the prompt if you don’t specify any parameter.

You should use the prompt method if the command contains the following
special characters:

| & ; < > () { } [] unsubstituted $

If you specify the command as the parameter on the command line, you must
enclose it in double quotation marks if it contains any of the special characters
just listed.

Note: On UNIX-based platforms, the command will be added to your
command history just as if you typed it at the prompt.

All special characters in the command can be entered normally (without being
enclosed in quotation marks, except for \). If you need to include a \ in your
command, you must type two backslashes (\\).

Note: On UNIX-based platforms, if you are not using a Korn shell, all special
characters in the command can be entered normally (without being
enclosed in quotation marks, except for " \ unsubstituted $, and the
single quotation mark (')). If you need to include one of these
characters in your command, you must precede them by three
backslashes (\\\). For example, if you need to include a \ in your
command, you must type four backslashes (\\\\).

If you need to include a double quotation mark (") in your command, you
must precede it by three backslashes, for example, \\\".

Notes:

1. On UNIX-based platforms, You cannot include a single quotation mark (')
in your command unless your command shell provides some way of
entering a single quotation mark inside a singly quoted string.

2. On Windows NT, you cannot include a single quotation mark (') in your
command unless your command window provides some way of entering a
single quotation mark inside a singly quoted string.

Appendix I. Issuing Commands to Multiple Database Partition Servers 793

Running Commands in Parallel on UNIX-Based Platforms

Note: The information in this section applies to UNIX-based platforms only.
By default, the command is run sequentially at each machine, but you can
specify to run the commands in parallel using background rshells by prefixing
the command with certain prefix sequences. If the rshell is run in the
background, then each command puts the output in a buffer file at its remote
machine, This process retrieves the output in two pieces:
1. After the remote command completes.
2. After the rshell terminates, which may be later if some processes are still

running.

The name of the buffer file is /tmp/$USER/rahout by default, but it can be
specified by the environment variables $RAHBUFDIR/$RAHBUFNAME.

When you specify that you want the commands to be run concurrently, by
default, this script prefixes an additional command to the command sent to all
hosts to check that $RAHBUFDIR and $RAHBUFNAME are usable for the
buffer file. It creates $RAHBUFDIR. To suppress this, export an environment
variable RAHCHECKBUF=no. You can do this to save time if you know the
directory exists and is usable.

Before using rah to run a command concurrently at multiple machines, ensure
that:
v A directory /tmp/$USER exists for your user ID at each machine. To create a

directory if one does not already exist, run:
rah ")mkdir /tmp/$USER"

v Add the following line to your .kshrc (for Korn shell syntax) or .profile, and
also type it into your current session:

export RAHCHECKBUF=no

v Ensure that each machine ID at which you run the remote command has an
entry in its .rhosts file for the ID which runs rah; and the ID which runs
rah has an entry in its .rhosts file for each machine ID at which you run the
remote command.

Monitoring rah Processes on UNIX-Based Platforms

Note: The information in this section applies to UNIX-based platforms only.
While any remote commands are still running or buffered output is still being
accumulated, processes started by rah monitor activity to:
v Write messages to the terminal indicating which commands have not been

run
v Retrieve buffered output.

794 Administration Guide Design and Implementation

The informative messages are written at an interval controlled by the
environment variable RAHWAITTIME. Refer to the help information for
details on how specify this. All informative messages can be completely
suppressed by exporting RAHWAITTIME=0.

The primary monitoring process is a command whose command name (as
shown by the ps command) is rahwait>or. The first informative message tells
you the pid (process id) of this process. All other monitoring processes will
appear as ksh commands running the rah script (or the name of the symbolic
link). If you want, you can stop all monitoring processes by the command:

kill <pid>

where <pid> is the process ID of the primary monitoring process. Do not
specify a signal number. Leave the default of 15. This will not affect the
remote commands at all, but will prevent the automatic display of buffered
output. Note that there may be two or more different sets of monitoring
processes executing at different times during the life of a single execution of
rah. However, if at any time you stop the current set, then no more will be
started.

If your regular login shell is not a Korn shell (for example /bin/ksh), you can
use rah, but there are some slightly different rules on how to enter commands
containing the following special characters:

" unsubstituted $ '

For more information, type rah "?". Also, in a UNIX-based environment, if
the login shell at the ID which executes the remote commands is not a Korn
shell, then the login shell at the ID which executes rah must also not be a
Korn shell. (rah makes the decision as to whether the remote ID’s shell is a
Korn shell based on the local ID). The shell must not perform any substitution
or special processing on a string enclosed in single quotation marks. It must
leave it exactly as is.

Additional Rah (Run All Hosts) Information (Solaris and AIX only)

To enhance performance, rah has been extended to use tree_logic on large
systems. That is, rah will check how many nodes the list contains, and if that
number exceeds a threshold value, it constructs a subset of the list and sends
a recursive invocation of itself to those nodes. At those nodes, the recursively
invoked rah follows the same logic until the list is small enough to follow the
standard logic (now the ″leaf-of-tree″ logic) of sending the command to all
nodes on the list. The threshold can be specified by environment variable
RAHTREETHRESH, or defaults to 15.

In the case of a multiple-logical-node-per-physical-node system, db2_all will
favor sending the recursive invocation to distinct physical nodes, which will

Appendix I. Issuing Commands to Multiple Database Partition Servers 795

then rsh to other logical nodes on the same physical node, thus also reducing
inter-physical-node traffic. (This point applies only to db2_all, not rah, since
rah always sends only to distinct physical nodes.)

This version of rah has nearly identical syntax and semantics as the old
version (supplied in the product as rah.sh_old), except for some minor
restrictions on what options can be used:
v The user must use ksh (kornshell) as the shell. If the user is using a

different shell, rah_tree will issue a warning and use non-tree logic.
v The single quotation mark (’) prefix character, requesting echo of the

command, cannot be honored, and is ignored.
v When both the < (all-but-me) and > (substitute <> by host index) options

are specified, the host index is different from what non-tree rah/db2_all
would have substituted.

Note: The () and ## substitutions should work identically to the old
rah/db2_all.

v It is strongly recommended that the user ID setup at all nodes in the list be
identical; for example, the current working directory from which the
rah_tree command or the db2_tree command is issued should exist on all
nodes; the rah_tree executable must be found in the current $PATH on all
nodes (the one in effect when the rah_tree command is issued); the
rahwaitfor executable must be found in that path, and so on. Certain
environment differences between nodes can be tolerated, but many can not.

v The command to be executed must not start with the characters -o, -b,
-d, or -x, because rah_tree will interpret these to be flags.

v When specifying parallel execution, the order in which hosts return their
output is likely to be different from the order generated by non-tree rah,
which tends to return output in list order.

v Whenever rah_tree or db2_tree is invoked, it compares the number of
destination nodes with a threshold value, as described above. The threshold
can be specified by environment variable:

export RAHTREETHRESH=nn
where nn can be any positive integer

or defaults to 15.

Prefix Sequences

A prefix sequence is one or more special characters. Type one or more prefix
sequences immediately preceding the characters of the command without any
intervening blanks. If you want to specify more than one sequence, you can
type them in any order, but characters within any multicharacter sequence

796 Administration Guide Design and Implementation

must be typed in order. If you type any prefix sequences, you must enclose
the entire command, including the prefix sequences in double quotation
marks, as in the following examples:
v On UNIX-based platforms:

rah "};ps -F pid,ppid,etime,args -u $USER"

v On Windows NT:
rah "||db2 get db cfg for sample"

The prefix sequences are:

Sequence
Purpose

| Runs the commands in sequence in the background.

|& Runs the commands in sequence in the background and terminates
the command after all remote commands have completed, even if
some are still running. This may be later if, for example, child
processes (on UNIX-based platforms) or background processes (on
Windows NT) are still running. In this case, the command starts a
separate background process to retrieve any remote output generated
after command termination and writes it back to the originating
machine.

Note: On UNIX-based platforms, specifying & degrades performance,
because more rsh commands are required.

|| Runs the commands in parallel in the background.

||& Runs the commands in parallel in the background and terminates the
command after all remote commands have completed as described for
the |& case above.

Note: On UNIX-based platforms, specifying & degrades performance,
because more rsh commands are required.

; Same as ||& above. This is an alternative shorter form.

Note: On UNIX-based platforms, specifying ; degrades performance
relative to ||, because more rsh commands are required.

] Prepends dot-execution of user’s profile before executing command.

Note: Available on UNIX-based platforms only.

} Prepends dot-execution of file named in $RAHENV (probably .kshrc)
before executing command.

Note: Available on UNIX-based platforms only.

Appendix I. Issuing Commands to Multiple Database Partition Servers 797

]} Prepends dot-execution of user’s profile followed by execution of file
named in $RAHENV (probably .kshrc) before executing command.

Note: Available on UNIX-based platforms only.

) Suppresses execution of user’s profile and of file named in $RAHENV.

Note: Available on UNIX-based platforms only.

' Echoes the command invocation to the machine.

< Sends to all the machines except this one.

<<−nnn<
Sends to all-but-database partition server nnn (all database partition
servers in db2nodes.cfg except for node number nnn, see the note
below).

<<+nnn<
Sends to only database partition server nnn (the database partition
server in db2nodes.cfg whose node number is nnn, see the note
below).

Runs the remote command in the background with stdin, stdout and
stderr all closed. This option is valid only when running the
command in the background, that is, only in a prefix sequence which
also includes | or ;. It allows the command to complete much sooner
(as soon as the remote command has been initiated). If you specify
this prefix character on the rah command line, then either enclose the
command in single quotation marks, or enclose the command in
double quotation marks, and precede the by \. For example,
rah ';mydaemon'

or
rah ";\ mydaemon"

When run as a background process, the rah command will never wait
for any output to be returned.

> Substitutes occurrences of <> with the machine name.

" Substitutes occurrences of () by the machine index, and substitutes
occurrences of ## by the node number.

Notes:

1. The machine index is a number that associated with a machine in
the database system. If you are not running multiple logical nodes,
the machine index for a machine corresponds to the node number
for that machine in the node configuration file. To obtain the
machine index for a machine in a multiple logical node

798 Administration Guide Design and Implementation

environment, do not count duplicate entries for those machines
that run multiple logical nodes. For example, if MACH1 is running
two logical nodes and MACH2 is also running two logical nodes,
the node number for MACH3 is 5 in the node configuration file.
The machine index for MACH3, however, would be 3.
On Windows NT, do not edit the node configuration file. To obtain
the machine index, use the db2nlist command. Refer to the DB2
Enterprise - Extended Edition for Windows NT Quick Beginnings
manual for details.

2. When " is specified, duplicates are not eliminated from the list of
machines. See “Eliminating Duplicate Entries from the List of
Machines” on page 800 if you want to eliminate duplicates.

When using the <<−nnn< and <<+nnn< prefix sequences, nnn is any 1-, 2- or
3-digit partition number which must match the nodenum value in the
db2nodes.cfg file.

Note: Prefix sequences are considered to be part of the command. If you
specify a prefix sequence as part of a command, you must enclose the
entire command, including the prefix sequences, in double quotation
marks.

Specifying the List of Machines

By default, the list of machines is taken from the node configuration file,
db2nodes.cfg. You can override this by:
v Specifying a pathname to the file that contains the list of machines by

exporting (on UNIX-based platforms) or setting (on Windows NT) the
environment variable RAHOSTFILE.

v Specifying the list explicitly, as a string of names separated by spaces, by
exporting (on UNIX-based platforms) or setting (on Windows NT) the
environment variable RAHOSTLIST.

Note: If both of these environment variables are specified, RAHOSTLIST
takes precedence.

Note: On Windows NT, to avoid introducing inconsistencies into the node
configuration file, do not edit it manually. To obtain the list of machines
in the instance, use the db2nlist command. Refer to the DB2 Enterprise -
Extended Edition for Windows NT Quick Beginnings manual for details.

Appendix I. Issuing Commands to Multiple Database Partition Servers 799

Eliminating Duplicate Entries from the List of Machines

If you are running DB2 Enterprise - Extended Edition with multiple logical
nodes (database partition servers) on one machine, your db2nodes.cfg file will
contain multiple entries for that machine. In this situation, the rah command
needs to know whether you want the command to be executed once only on
each machine or once for each logical node listed in the db2nodes.cfg file. Use
the rah command to specify machines. Use the db2_all command to specify
logical nodes.

Note: On UNIX-based platforms, if you specify machines, rah will normally
eliminate duplicates from the machine list, with the following
exception: if you specify logical nodes, db2_all prepends the following
assignment to your command:
export DB2NODE=nnn (for Korn shell syntax)

where nnn is the node number taken from the corresponding line in the
db2nodes.cfg file, so that the command will be routed to the desired
database partition server.

When specifying logical nodes, you can restrict the list to include all logical
nodes except one, or only specify one database partition server using the
<<−nnn< and <<+nnn< prefix sequences. You may want to do this if you want
to run a command at the catalog node first, and when that has completed, run
the same command at all other database partition servers, possibly in parallel.
This is usually required when running the db2 restart database command.
You will need to know the node number of the catalog node to do this. See
“Prefix Sequences” on page 796 for information about the prefix sequences.

If you execute db2 restart database using the rah command, duplicate entries
are eliminated from the list of machines. However if you specify the ” prefix,
then duplicates are not eliminated, because it is assumed that use of the ”
prefix implies sending to each database partition server, rather than to each
machine.

Controlling the rah Command

You can use the following environment variables to control the rah command.

800 Administration Guide Design and Implementation

Table 54.

Name Meaning Default

$RAHBUFDIR
Note: Available on
UNIX-based
platforms only.

directory for buffer /tmp/$USER

$RAHBUFNAME
Note: Available on
UNIX-based
platforms only.

filename for buffer rahout

$RAHOSTFILE (on
UNIX-based
platforms);
RAHOSTFILE (on
Windows NT)

file containing list of hosts db2nodes.cfg

$RAHOSTLIST (on
UNIX-based
platforms);
RAHOSTLIST (on
Windows NT)

list of hosts as a string extracted from $RAHOSTFILE

$RAHCHECKBUF
Note: Available on
UNIX-based
platforms only.

if set to ″no″, bypass checks not set

$RAHSLEEPTIME
(on UNIX-based
platforms);
RAHSLEEPTIME
(on Windows NT)

time in seconds this script will wait for
initial output from commands run in
parallel

86400 seconds for db2_kill, 200 seconds
for all other

$RAHWAITTIME
(on UNIX-based
platforms);
RAHWAITTIME (on
Windows NT)

on Windows NT, interval in seconds
between successive checks that remote
jobs are still running.

On UNIX-based platforms, interval in
seconds between successive checks that
remote jobs are still running and rah:
waiting for <pid> ... messages.

On all platforms, specify any positive
integer. Prefix value with a leading zero
to suppress messages, for example,
export RAHWAITTIME=045.

It is not necessary to specify a low value
as rah does not rely on these checks to
detect job completion.

45 seconds

Appendix I. Issuing Commands to Multiple Database Partition Servers 801

Table 54. (continued)

Name Meaning Default

$RAHENV
Note: Available on
UNIX-based
platforms only.

specifies filename to be executed if
$RAHDOTFILES=E or K or PE or B

$ENV

$RAHUSER (on
UNIX-based
platforms);
RAHUSER (on
Windows NT)

on UNIX-based platforms, user ID
under which the remote command is to
be run.

On Windows NT, the logon account
associated with the DB2 Remote
Command Service

$USER

Note: On UNIX-based platforms, the value of $RAHENV where rah is run is
used, not the value (if any) set by the remote shell.

$RAHDOTFILES on UNIX-Based Platforms

Note: The information in this section applies to UNIX-based platforms only.
Following are the ·files that are run if no prefix sequence is specified:

P .profile

E File named in $RAHENV (probably .kshrc)

K Same as E

PE .profile followed by file named in $RAHENV (probably .kshrc)

B Same as PE

N None (or Neither)

Note: If your login shell is not a Korn shell, any dot files you specify to be
executed will be executed in a Korn shell process, and so must conform
to Korn shell syntax. So, for example, if your login shell is a C shell, to
have your .cshrc environment set up for commands executed by rah,
you should either create a Korn shell INSTHOME/.profile equivalent to
your .cshrc and specify in your INSTHOME/.cshrc:

setenv RAHDOTFILES P

or you should create a Korn shell INSTHOME/.kshrc equivalent to
your .cshrc and specify in your INSTHOME/.cshrc:

setenv RAHDOTFILES E
setenv RAHENV INSTHOME/.kshrc

802 Administration Guide Design and Implementation

Also, it is essential that your .cshrc does not write to stdout if there is
no tty (as when invoked by rsh). You can ensure this by enclosing any
lines which write to stdout by, for example,
if { tty -s } then echo "executed .cshrc";
endif

Setting the Default Environment Profile on Windows NT

Note: The information in this section applies to Windows NT only.
To set the default environment profile for the rah command, use a file called
db2rah.env, which should be created in the instance directory. The file should
have the following format:

; This is a comment line
DB2INSTANCE=instancename
DB2DBDFT=database
; End of file

You can specify all the environment variables that you need to initialize the
environment for rah.

Determining Problems with rah on UNIX-Based Platforms

Note: The information in this section applies to UNIX-based platforms only.
Here are suggestions on how to handle some problems that you may
encounter when you are running rah:
1. rah hangs (or takes a very long time)

This problem may be caused because:
v rah has determined that it needs to buffer output, and you did not

export RAHCHECKBUF=no. Therefore, before running your command, rah
sends a command to all machines to check the existence of the buffer
directory, and to create it if it does not exist.

v One or more of the machines where you are sending your command is
not responding. The rsh command will eventually time out but the
time-out interval is quite long, usually about 60 seconds.

2. You have received messages such as:
v Login incorrect
v Permission denied

Either one of the machines does not have the ID running rah correctly
defined in its ·hosts file, or the ID running rah does not have one of the
machines correctly defined in its ·rhosts file.

3. When running commands in parallel using background rshells, although
the commands run and complete within the expected elapsed time at the
machines, rah takes a long time to detect this and put up the shell prompt.

Appendix I. Issuing Commands to Multiple Database Partition Servers 803

The ID running rah does not have one of the machines correctly defined in
its ·rhosts file.

4. Although rah runs fine when run from the shell command line, if you run
rah remotely using rsh, for example,
rsh somewher -l $USER db2_kill

rah never completes.

This is normal. rah starts background monitoring processes, which
continue to run after it has exited. Those processes will normally persist
until all processes associated with the command you ran have themselves
terminated. In the case of db2_kill, this means termination of all database
managers. You can terminate the monitoring processes by finding the
process whose command is rahwait>or and kill <process_id>. Do not
specify a signal number. Instead, use the default (15).

5. The output from rah is not displayed correctly, or rah incorrectly reports
that $RAHBUFNAME does not exist, when multiple commands of rah
were issued under the same $RAHUSER.
This is because multiple concurrent executions of rah are trying to use the
same buffer file (for example, $RAHBUFDIR/$RAHBUFNAME) for
buffering the outputs. To prevent this problem, use a different
$RAHBUFNAME for each concurrent rah command, for example in the
following ksh:
export RAHBUFNAME=rahout
rah ";$command_1" &
export RAHBUFNAME=rah2out
rah ";$command_2" &

or use a method that makes the shell choose a unique name automatically
such as:

RAHBUFNAME=rahout.$$ db2_all "....."

Whatever method you use, you must ensure you clean up the buffer files
at some point if disk space is limited. rah does not erase a buffer file at the
end of execution, although it will erase and then re-use an existing file the
next time you specify the same buffer file.

6. You entered
rah '"print from ()'

and received the message:
ksh: syntax error at line 1 : (' unexpected

Prerequisites for the substitution of () and ## are:
v Use db2_all, not rah.

804 Administration Guide Design and Implementation

v Ensure a RAHOSTFILE is used either by exporting RAHOSTFILE or by
defaulting to your /sqllib/db2nodes.cfg file. Without these prerequisites,
rah will leave the () and ## as is. You receive an error because the
command print from () is not valid.

For a performance tip when running commands in parallel, use | rather
than |&, and use || rather than ||& or ; unless you truly need the
function provided by &. Specifying & requires more rsh commands and
therefore degrades performance.

Appendix I. Issuing Commands to Multiple Database Partition Servers 805

806 Administration Guide Design and Implementation

Appendix J. How DB2 for Windows NT Works with
Windows NT Security

When you install Windows NT, it allows you to create two administrator
usernames:
v One is called “Administrator”
v The other is a name of your choice. It must have administrator authority

and must comply with DB2’s naming rules. For more information on DB2’s
naming rules, see “Appendix D. Naming Rules” on page 691.

The user may logon to the local machine, or when the machine is installed in
a Windows NT Advanced Server Domain, the user may logon to the Domain.
DB2 for Windows NT supports both of these options. To authenticate the user,
DB2 checks the local machine first, then the Domain Controller for the current
Domain, and finally any Trusted Domains known to the Domain Controller.

To illustrate how this works, suppose that the DB2 instance requires Server
authentication. The configuration is as follows:

Domain 1

Client Machine
"Ivan"

Domain 2

Logon to Domain 1

Windows NT Server
"Servr"

Trusting
Domain Controller

"DC1"

Database Request

Authentication

Database Request

Trust Relationship

Trusted
Domain Controller

"TDC2"

Logon to Domain 2

Client Machine
"Abdul"

Figure 79. Authentication Using Windows NT Domains

© Copyright IBM Corp. 1993, 1999 807

Each machine has a security database, Security Access Management (SAM),
unless a client machine is running Windows 95. Windows 95 machines do not
have a SAM database. DC1 is the domain controller, in which the client
machine, Ivan, and the DB2 for Windows NT server, Servr, are enrolled. TDC2
is a trusted domain for DC1 and the client machine, Abdul, is a member of
TDC2’s domain.

A Sample Scenario with Server Authentication:

1. Abdul logs on to the TDC2 domain (that is, he is known in the TDC2
SAM database).

2. Abdul then connects to a DB2 database that is cataloged to reside on
SRV3:

db2 connect to remotedb user Abdul using fredpw

3. SRV3 determines where Abdul is known. The API that is used to find this
information first searches the local machine (SRV3) and then the domain
controller (DC1) before trying any trusted domains. Username Abdul is
found on TDC2. This search order requires a single namespace for users
and groups.

4. SRV3 then:
a. Validates the username and password with TDC2.
b. Finds out whether Abdul is an administrator by asking TDC2.
c. Enumerates all Abdul’s groups by asking TDC2.

A Sample Scenario with Client Authentication and a Windows NT Client
Machine:

1. Dale, the administrator, logs on to SRV3 and changes the authentication
for the database instance to Client:

db2stop myinst
db2 update dbm cfg using authentication client
db2start myinst

2. Ivan, at a Windows NT client machine, logs on to the DC1 domain (that is,
he is known in the DC1 SAM database).

3. Ivan then connects to a DB2 database that is cataloged to reside on SRV3:
DB2 CONNECT to remotedb user Ivan using johnpw

4. Ivan’s machine validates the username and password. The API used to
find this information first searches the local machine (Ivan) and then the
domain controller (DC1) before trying any trusted domains. Username
Ivan is found on DC1.

5. Ivan’s machine then validates the username and password with DC1.
6. SRV3 then:

a. Determines where Ivan is known.

808 Administration Guide Design and Implementation

b. Finds out whether Ivan is an administrator by asking DC1.
c. Enumerates all Ivan’s groups by asking DC1.

Note: Before attempting to connect to the DB2 database, ensure that DB2 for
Window NT Security Service has been started. The Security Service is
installed by DB2 and is set up to run as a Windows NT service;
however, it is not started automatically. To start the DB2 Security
Service, enter the NET START DB2NTSECSERVER command.

A Sample Scenario with Client Authentication and a Windows 95 Client Machine:

1. Dale, the administrator, logs on to SRV3 and changes the authentication
for the database instance to Client:

db2stop myinst
db2 update dbm cfg using authentication client
db2start myinst

2. Ivan, at a Windows 95 client machine, logs on to the DC1 domain (that is,
he is known in the DC1 SAM database).

3. Ivan then connects to a DB2 database that is cataloged to reside on SRV3:
db2 connect to remotedb user Ivan using johnpw

4. Ivan’s Windows 95 machine cannot validate the username and password.
The username and password are therefore assumed to be valid.

5. SRV3 then:
a. Determines where Ivan is known.
b. Finds out whether Ivan is an administrator by asking DC1.
c. Enumerates all Ivan’s groups by asking DC1.

Note: Because a Windows 95 client cannot validate a given username and
password, client authentication under Windows 95 is inherently
insecure. If the Windows 95 machine has access to a Windows NT
security provider, however, some measure of security can be imposed
by configuring the Windows 95 system for validated pass-through
logon. For details on how to configure your Windows 95 system in this
way, refer to the Microsoft documentation for Windows 95.

DB2 also supports global groups. In order to use global groups, you must
include global groups inside a local group that is on the security server. When
DB2 enumerates all the groups that a person is a member of, it also lists the
local groups the user is a member of indirectly (by the virtue of being in a
global group that is itself a member of one or more local groups).

Appendix J. How DB2 for Windows NT Works with Windows NT Security 809

Using a Backup Domain Controller with DB2

If the server you use for DB2 also acts as a backup domain controller, you can
improve DB2 performance and reduce network traffic if you configure DB2 to
use the backup domain controller.

You specify the backup domain controller to DB2 by setting the db2dmnbckctlr
registry value.

If you know the name of the domain for which DB2 server is the backup
domain controller, use:

db2dmnbckctlr=DOMAIN_NAME

where DOMAIN_NAME must be in upper case.

To have DB2 determine the domain for which the local machine is a backup
domain controller, use:

db2dmnbckctlr=?

Note: DB2 does not use an existing backup domain controller by default
because a backup domain controller can get out-of-sync with the
primary domain controller, causing a security exposure. Domain
controllers get out-of-sync when the primary domain controller’s
security database is updated but the changes are not propagated to a
backup domain controller. This can happen if there are network
latencies or if the computer browser service is not operational.

810 Administration Guide Design and Implementation

Appendix K. Using the Windows NT Performance Monitor

There are two performance monitors available to DB2 for Windows NT users:
v DB2 Performance Monitor

The DB2 Performance Monitor provides snapshot and event data related to
DB2 and DB2 Connect only. (For more information, click on the Help push
button in the Control Center and see the Getting Started online help.)

v Windows NT Performance Monitor

The Windows NT Performance Monitor enables you to monitor both
database and system performance, retrieving information from any of the
performance data providers registered with the system. Windows NT also
provides performance information data on all aspects of machine operation
including:
– CPU usage
– Memory utilization
– Disk activity
– Network activity

Registering DB2 with the Windows NT Performance Monitor

The setup program automatically registers DB2 with the Windows NT
Performance Monitor for you.

To make DB2 and DB2 Connect performance information accessible to the
Windows NT Performance Monitor, you must register the DLL for the DB2 for
Windows NT Performance Counters. This also enables any other Windows NT
application using the Win32 performance APIs to get performance data.

To install and register the DB2 for Windows NT Performance Counters DLL
(DB2Perf.DLL) with the Windows NT Performance Monitor, type:

db2perfi -i

This copies the DLL to the directory \SYSTEM32 under the system directory. To
find the name of the system directory, type:

echo %systemroot%

Registering the DLL also creates a new key in the services option of the
registry. One entry gives the name of the DLL, which provides the counter
support. Three other entries give names of functions provided within that
DLL. These functions include:

© Copyright IBM Corp. 1993, 1999 811

v Open

Called when the DLL is first loaded by the system in a process.
v Collect

Called to request performance information from the DLL.
v Close

Called when the DLL is unloaded.

Enable Remote Access to DB2 Performance Information

If your DB2 for Windows NT workstation is networked to other Windows NT
machines, you can use the feature described in this section.

In order to see Windows NT performance objects from another DB2 for
Windows NT machine, you must register an administrator username and
password with DB2. (The default Windows NT Performance Monitor
username, SYSTEM, is a DB2 reserved word and cannot be used.) To register
the name, type:

db2perfr -r username password

Note: The username used must conform to the naming rules.

The username and password data is held in a key in the registry, with
security that allows access only by administrators and the SYSTEM account.
The data is encoded to prevent security concerns about storing an
administrator password in the registry.

Notes:

1. Once a username and password combination has been registered with
DB2, even local instances of the Performance Monitor will explicitly log on
using that username and password. This means that if the username
information registered with DB2 does not match, local sessions of the
Performance Monitor will not show DB2 performance information.

2. The username and password combination must be maintained to match
the username and password values stored in the Windows NT Security
database. If the username or password is changed in the Windows NT
Security database, the username and password combination used for
remote performance monitoring must be reset.

3. To deregister, type:
db2perfr -u

812 Administration Guide Design and Implementation

Displaying DB2 and DB2 Connect Performance Values

To display DB2 and DB2 Connect performance values using the Performance
Monitor, simply choose the performance counters whose values you want
displayed from the Add to box. This box displays a list of performance objects
providing performance data. Select an object to see a list of the counters it
supplies.

A performance object can also have multiple instances. For example, the
LogicalDisk Object provides counters such as “% Disk Read Time” and “Disk
Bytes/sec”; it also has an instance for each logical drive in the machine,
including “C:” and “D:”.

Windows NT provides the following performance objects:
v DB2 Database Manager

This object provides general information for a single Windows NT instance.
The DB2 instance being monitored appears as the object instance.
For practical and performance reasons, you can only get performance
information from one DB2 instance at a time. The DB2 instance that the
Performance Monitor shows is governed by the db2instance registry
variable in the Performance Monitor process. If you have multiple DB2
instances running simultaneously and want to see performance information
from more than one, you must start a separate session of the Performance
Monitor, with db2instance set to the relevant value for each DB2 instance
to be monitored.

v DB2 Databases

This object provides information for a particular database. Information is
available for each currently active database.

v DB2 Applications

This object provides information for a particular DB2 application.
Information is available for each currently active DB2 application.

v DB2 DCS Databases

This object provides information for a particular DCS database. Information
is available for each currently active database.

v DB2 DCS Applications

This object provides information for a particular DB2 DCS application.
Information is available for each currently active DB2 DCS application.

Which of these objects will be listed by the Windows NT Performance
Monitor depends on what is installed on your Windows NT machine and
what applications are active. For example, if DB2 UDB is installed and the
Database Manager has been started, the DB2 Database Manager object will be
listed. If there are also some DB2 databases and applications currently active

Appendix K. Using the Windows NT Performance Monitor 813

on that machine, the DB2 Databases and DB2 Applications objects will be
listed as well. If you are using your Windows NT system as a DB2 Connect
gateway and there are some DCS databases and applications currently active,
the DB2 DCS Databases and DB2 DCS Applications objects will be listed.

Accessing Remote DB2 Performance Information

Enabling remote access to DB2 Performance Information was discussed in an
earlier section. In the Add to box, select another computer to monitor. This
brings up a list of all the available performance objects on that computer.

In order to be able to monitor DB2 Performance object on a remote computer,
the level of the DB2 UDB or DB2 Connect code installed on that computer
must be Version 6 or higher.

Resetting DB2 Performance Values

When an application calls the DB2 monitor APIs, the information returned is
normally the cumulative values since the DB2 server was started. However,
often it is useful to:
v Reset performance values
v Run a test
v Reset the values again
v Re-run the test.

To reset database performance values, use the db2perfc program. Type:
db2perfc

By default, this resets performance values for all active DB2 databases.
However, you can also specify a list of databases to reset. You can also use the
-d option to specify that performance values for DCS databases should be
reset. For example:

db2perfc
db2perfc dbalias1 dbalias2 ... dbaliasn

db2perfc -d
db2perfc -d dbalias1 dbalias2 ... dbaliasn

The first example resets performance values for all active DB2 databases. The
next example resets values for specific DB2 databases. The third example
resets performance values for all active DB2 DCS databases. The last example
resets values for specific DB2 DCS databases.

814 Administration Guide Design and Implementation

The program resets the values for ALL programs currently accessing database
performance information for the relevant DB2 server instance (that is, the one
held in db2instance in the session in which you run db2perfc.

Invoking db2perfc also resets the values seen by anyone remotely accessing
DB2 performance information when the db2perfc command is executed.

Note: There is a DB2 API, sqlmrset, that allows an application to reset the
values it sees locally, not globally, for particular databases.

Appendix K. Using the Windows NT Performance Monitor 815

816 Administration Guide Design and Implementation

Appendix L. Configuring Multiple Logical Nodes

You can configure multiple logical nodes in one of two ways:
v Configure the logical nodes (database partitions) in the db2nodes.cfg file.

You can then start all the logical and remote nodes with the DB2START
command or its associated API.

v Restart a logical node on another processor on which other logical database
partitions (nodes) are already running. This allows you to override the
hostname and port number specified for the logical database partition in
db2nodes.cfg.

To configure a logical database partition (node) in db2nodes.cfg, you must
make an entry in the file to allocate a logical port number for the node.
Following is the syntax you should use:

nodenumber hostname logical-port netname

Note: You must ensure that you define enough ports in etc/services for
FCM communications.

© Copyright IBM Corp. 1993, 1999 817

818 Administration Guide Design and Implementation

Appendix M. Using Virtual Interface (VI) Architecture

Virtual Interface (VI) Architecture is the inter-node communication protocol
alternative to TCP/IP in a Windows NT massively parallel processing (MPP)
environment. VI is a new communication architecture that was developed
jointly by Intel, Microsoft, and Compaq to improve performance over a
System Area Network (SAN). Refer to http://www.viarch.org for more
information on the architecture.

Products exist which may be acquired separately from DB2 UDB that have a
VIA-enabled network interface card (NIC), switch, and software driver
implementation. Several Independent Hardware Vendors (IHVs) have
released, or plan to release, such products.

As shown in Figure 80, there are some similarities between the Public
Interconnect which uses as an example Ethernet and TCP/IP and the Private
Interconnect which uses a Network Interface Card and a protocol.

The Network Interface Card and protocol used in this instance could be either
a GigaNet Network Interface Card and the VI protocol; or a ServerNet
Network Interface Card and the VI protocol.

VI Architecture has low latency and high bandwidth. In a
communication-intensive environment, using VI Architecture improves the

Private Interconnect (Network Interface Card/VI)

Public Interconnect (Ethernet/TCP/IP)

CPU

Memory

Database Partition

CPU

Memory

Database Partition

CPU

Memory

Database Partition

CPU

Memory

Database Partition

To other machines

Figure 80. Network Interface Card and Protocol

© Copyright IBM Corp. 1993, 1999 819

overall system throughput. The greater the number of nodes in the cluster,
and the greater the amount of data transferred, the greater the benefit from
using VI Architecture.

DB2 UDB supports VI Architecture implementations that comply with the
Virtual Interface Architecture Specification, Version 1.0; the Intel Virtual Interface
(VI) Architecture Developers’ Guide, Version 1.0; and pass the “Virtual Interface
Architecture Conformance Suite”. The specification is found at
http://www.intel.com/design/servers/vi/the_spec/specification.htm on the
Web. The Developer’s Guide is found at
http://www.intel.com/design/servers/vi/developer/ia_imp_guide.htm on
the Web. Information on the conformance suite is also found at this same
URL.

Overview of DB2 UDB Extended Enterprise Edition

DB2 UDB EEE is a relational database management system that enables local
and remote client applications to create, update, control, and manage
relational databases using Structured Query Language (SQL), ODBC, JDBC, or
CLI. Its main feature is the ability for a database to be partitioned across
multiple independent machines of a common platform. To the end-user and
application developer, it still appears as a single database on a single machine.
This fully scalable database system enables an application to use a database
that is simply too large for a single machine to handle efficiently. SQL
operations and utilities can execute in parallel both within and between the
individual database partitions, thereby speeding up the execution time of a
single query or command.

IBM announced support for Virtual Interface (VI) Architecture with DB2 UDB
EEE V5.2.

To find out about other products adhering to VI Architecture and supported
by DB2 UDB EEE, please contact the DB2 UDB support organization at
http://www.software.ibm.com/data or call 1-800-237-5511 (only in the U.S.A).

The products that have been tested with DB2 UDB include:
v GigaNet Interconnect, see “Running DB2 UDB for Windows NT with

GigaNet Interconnect” on page 821 for details.

v ServerNet Interconnect, see “Running DB2 UDB for Windows NT with
ServerNet Interconnect” on page 823 for details.

There may be other products that work with DB2 Universal Database. Check
with the vendor of that product, and with IBM Service and Support, to ensure
that the other product is supported.

820 Administration Guide Design and Implementation

Running DB2 UDB for Windows NT with GigaNet Interconnect

To find out about GigaNet products, or to contact GigaNet Service and
Support, please use the following URL: http://www.giganet.com/

Setup Procedure for GigaNet Interconnect

The list of the hardware and software required to setup this environment
include the following products:
v GigaNet GNN1000 Network Interface Card
v GigaNet GNX5000 Switch
v GigaNet GNCxx11 Copper Interconnect Cables
v GigaNet cLAN Software, Version 2.0.

The steps required to ensure that GigaNet Interconnect can work with DB2
UDB are shown below. Each step is a summary of what is required at each
step: all of the details associated with each step are not presented here. You
should also use the referenced documentation at each step which does
provide detailed instructions and direction needed.

Each GigaNet GNN1000 is packaged with a GigaNet cLAN Software
CD-ROM. The CD-ROM contains all of the necessary software to set-up the
GigaNet Interconnect. In addition, the CD-ROM also contains the VI
Architecture SDK and Adobe Acrobat Reader. These two items are only
needed by those individuals that are developing VI-enabled applications.

Summary of steps:
1. Install Adapter Cards
2. Install Switches and Cables
3. Install Adapter Drivers
4. Install cLAN Management Console
5. Test the Interconnect

Here are the steps:
1. Install the GigaNet GNN1000 Network Interface Card. Please refer to the

GigaNet GNN1000 User Guide for installation instructions.
2. Install the GigaNet GNX5000 Switch and Cables. Please refer to the

GigaNet GNX5000 User Guide for installation instructions.
3. Install the GigaNet GNN1000 Adapter Driver software on each node

connected to the GNX5000 Switch. Please refer to the GigaNet GNN1000
User Guide for installation instructions. Here are additional details if you
are installing drivers provided by GigaNet:

Appendix M. Using Virtual Interface (VI) Architecture 821

a. Remove any previous version of the GNN1000 Driver already installed.
Removal requires the node to be re-booted.

b. Use Start→Setting→Control Panel→Networks→Adapters→Add to install
the driver.

c. Click Have Disk... and specify the Driver directory on the CD-ROM.
For example, if F: is your CD-ROM drive, then you would use
F:\Driver

d. Select “GNN1000 NDIS Adapter” and then click OK.
e. Configure Network protocols to complete the installation.

GigaNet Adapter Driver software is also available on GigaNet’s web site,
http://www.giganet.com. Please refer to the download and installation
instructions found on the support page of GigaNet’s web site.

The installation of the GNN1000 Adapter Driver causes the node to
re-boot.

4. The GigaNet cLAN Management Console (GMC) can be used to test the
integrity of the GigaNet Interconnect. The GigaNet cLAN Management
Console is comprised of two parts: the Console, and the Agent. The Agent
must be installed on all nodes in the cluster. The Console can be installed
on any network node that has access to the nodes in the cluster. The most
versatile and recommended installation is that which has both the Console
and the Agent installed on each node in the cluster.
Install the GigaNet cLAN Management Console. Please refer to the
GigaNet GNN1000 User Guide for installation instructions and additional
information about the cLAN Management Console. Here are additional
details on the installation procedure:
a. Insert the cLAN Software CD into the CD-ROM drive.
b. Wait for the CD automatic installation menu to appear.
c. Click on “Install cLAN Management Console.”
d. Repeat this installation procedure on each remaining node in the

cluster.

GigaNet cLAN Management Console software is also available on
GigaNet’s web site, http://www.giganet.com. Please refer to the download
and installation instructions found on the support page of GigaNet’s web
site.

The installation of the cLAN Management Console may cause the node to
re-boot.

5. Test that the GigaNet Hardware is working. This can be done by doing the
following:
a. Open the GMC. (Programs→GigaNet→cLAN Management Console)

822 Administration Guide Design and Implementation

b. A dialog box is displayed showing all accessible machines in the LAN.
Press ESC.

c. Select Console→Local from the menu bar.
d. Confirm that all the members in the cluster are shown and that they

are all “Active”.
e. Select Utilities→VI Throughput from the menu bar. This will run a

throughput test to check that the data is actually going through the
hardware.

f. Enter in uppercase letters the computer names of the two nodes you
wish to use in the test. Identify the local node as the source node.

g. Click Start Measuring. You should see data being transferred at a rate
of at least 65 MB per second.

h. Click Stop Measuring to stop the connection test.
i. Repeat the test for the other nodes in the cluster by measuring

throughput between the local node (Source) and the other nodes (Sink).

If the connection test does not appear to be working, refer to the
troubleshooting sections of the GigaNet GNN1000 User Guide and the
GigaNet GNX5000 User Guide.

See “Install DB2 Universal Database Version 5.2 or Later (EEE)” on page 826
for information on how to install and implement DB2 UDB to work with
GigaNet Interconnect.

Running DB2 UDB for Windows NT with ServerNet Interconnect

To find out about ServerNet products, or to contact ServerNet Service and
Support, please use the following URL: http://www.servernet.com/

Setup Procedure for ServerNet Interconnect

The list of the hardware and software required to setup this environment
include the following products:
v ServerNet PCI Adapter Driver (SPAD), (product ID T0089), version 1.3.5 or

later
v ServerNet Switch 1
v ServerNet Area Network Manager (SANMan), (product ID T0087), version

1.1.3 or later.

The following are the steps required to ensure that ServerNet Interconnect can
work with DB2 UDB. Each step is a summary of what is required at each
step: all of the details associated with each step are not presented here. You

Appendix M. Using Virtual Interface (VI) Architecture 823

should also use the referenced documentation at each step which does
provide detailed instructions and direction needed.

The steps shown below also assume that you are only using up to six (6)
nodes in the cluster. Contact ServerNet if you have a requirement to use more
than six nodes.

Here are the steps:
1. Install the ServerNet Network Interface Card. Please refer to the

ServerNet-I Virtual Interface Software Release Document, (product ID N0031)
for installation instructions.

2. Install the ServerNet Switch 1. Please refer to the ServerNet-I Virtual
Interface Software Release Document, (product ID N0031) for installation
instructions.

3. Uninstall previous ServerNet drivers. (Skip this step if this is your first
time installing ServerNet.)
a. Open the Network control panel. (Start→Setting→Control

Panel→Network)
b. Click on the Adapters Tab.
c. Remove Tandem ServerNet PCI Adapter Driver.
d. Click on the Services Tab.
e. Remove SANMan.
f. Click on the Protocols Tab.
g. Remove Tandem ServerNet-I VI Protocol.

4. Install the Tandem ServerNet PCI Adapter Driver. Here are additional
details if you are installing using the software CD provided by ServerNet:
a. Open the Network control panel. (Start→Setting→Control

Panel→Network)
b. Click on the Adapters Tab. (The Adapters screen appears.)
c. Ensure the new ServerNet driver is placed in a separate drive and/or

directory. Then, from the command prompt referencing the correct
drive and/or directory, type “ernnn.exe -d” to start the self-extracting
program. (“ernnn.exe” is the name of the Engineering Release followed
by a number — ERnnn.EXE — that identifies the specific version of the
ServerNet driver to be installed.)

d. Change to the drive and/or directory where the extracted files are
located. Change to the “Spad n.n.n \ Free” sub-directory (where
“n.n.n” is the specific version of the product). (If you are working in a
troubleshooting or a development environment, then change to the
“Spad n.n.n \ Checked” sub-directory instead of the “Spad n.n.n \
Free” sub-directory.)

e. Rename the “oemsetup.multi_node” file to “oemsetup.inf”.

824 Administration Guide Design and Implementation

f. Choose Add in the Adapters Tab. (The Select Adapters screen appears.)
g. Click Have Disk.... (The Insert Disk screen appears.)
h. Enter the drive and/or directory where the oemsetup.inf file is located.
i. Ensure the dialog box shows “Tandem ServerNet PCI Adapter Driver”

and then click OK. Ensure the list of adapters now shows the ServerNet
adapter. Click Close.

j. Choose Yes to restart the computer. Or, select No and continue
installing SANMan and the VI Software Developer’s Kit (SDK).

5. Install SANMan. Here are additional details if you are installing using
the software CD provided by ServerNet:
a. Open the Network control panel. (Start→Setting→Control

Panel→Network)
b. Click on the Services Tab. (The Services screen appears.)
c. Ensure the new ServerNet driver is placed in a separate drive and/or

directory. Then, from the command prompt referencing the correct
drive and/or directory, type “ernnn.exe -d” to start the self-extracting
program. (“ernnn.exe” is the name of the Engineering Release
followed by a number — ERnnn.EXE — that identifies the specific
version of the ServerNet driver to be installed.)

d. Choose Add in the Services Tab. (The Select Services screen appears.)
e. Change to the drive and/or directory where the extracted files are

located. Change to the “SANMan n.n.n \Free” sub-directory (where
“n.n.n” is the specific version of the product). (If you are working in a
troubleshooting or a development environment, then change to the
“SANMan n.n.n \ Checked” sub-directory instead of the “SANMan
n.n.n \ Free” sub-directory.)

f. Determine if the Switch is X or Y by looking at the light on the Switch.
One light says “X”, and the one light says “Y”.

g. If an X Switch, select X=1 and Y=0. Ensure all cables are connected to
the X port on the network cards.

h. If a Y Switch, select X=0 and Y=1. Ensure all cables are connected to
the Y port on the network cards.

i. Provide the port number of the switch to which the network card on
the current machine is connected.

j. Select “PC” for all six (6) ports.
6. Install the Virtual Interface Protocol. Here are additional details if you are

installing using the software CD provided by ServerNet:
a. Open the Network control panel. (Start→Setting→Control

Panel→Network)

Appendix M. Using Virtual Interface (VI) Architecture 825

b. Click on the Protocols Tab. (The Network Protocols screen appears.)
c. Ensure the new ServerNet driver is placed in a separate drive and/or

directory. Then, from the command prompt referencing the correct
drive and/or directory, type “ernnn.exe -d” to start the self-extracting
program. (“ernnn.exe” is the name of the Engineering Release
followed by a number — ERnnn.EXE — that identifies the specific
version of the ServerNet driver to be installed.)

d. Choose Add in the Protocols Tab. (The Select Network Protocols
screen appears.)

e. Click Have Disk.... (The Insert Disk screen appears.)
f. Enter the drive and/or directory where the extracted files are located.

7. Test that the ServerNet Hardware is working. There are no test programs
available. Instead, simply use DB2 to test the ServerNet hardware.
If the hardware does not appear to be working, refer to the ServerNet-I
Virtual Interface Software Release Document, (product ID N0031) for additional
troubleshooting help.

See “Install DB2 Universal Database Version 5.2 or Later (EEE)” for
information on how to install and implement DB2 UDB to work with
ServerNet Interconnect.

Install DB2 Universal Database Version 5.2 or Later (EEE)

Detailed installation information is found in DB2 Enterprise - Extended Edition
for Windows NT Quick Beginnings.

You will require the first (1st) DB2 UDB Version 5.2 (EEE) FixPak to be able to
use DB2 UDB Version 5.2 with a VI product. Later versions of DB2 UDB will
not require this FixPak. If you are not sure of the level of the DB2 UDB
product you have already installed, you should use the db2level command
and record the information returned. If you contact DB2 Service and Support
about VI, this information will be helpful to determine your installed DB2
level of code including any FixPaks.

This product must be installed in each of the partitions/nodes using the
Virtual Interface Protocol. During the installation procedure, when prompted
choose “This machine will be an instance owning node” on each of the
partitions/nodes.

Update the hosts file with the IP address and host name for each of the
partitions/nodes. The hosts file is found under
“\winnt\system32\drivers\etc\” directory on the drive where the operating
system was installed. The hosts file must be updated on each of the nodes.

826 Administration Guide Design and Implementation

Create the partitioned database (MPP) instance using the instance create
utility. Choose one machine to act as the coordinator node. On this machine,
open a DB2 Command Window and enter:

db2icrt <instance_name> /mpp /u:<username>,<password>

This machine is then known as the coordinator node or the instance-owning
machine. Node 0 is automatically created on this machine.

On the other partitions/nodes in the database, open a DB2 Command
Window and enter:

db2ncrt /n:<node_number> /u:<username>,<password>
/i:<instance_name> /o:<instance_owner_name>

The node_number is used to uniquely identify the database partition server
within the database environment. The number must be from 1 to 999. The
instance_owner_name is the computer name of the instance-owning machine
(coordinator node).

Testing the installation and create an index:
1. Open a DB2 Command Window.
2. Enter set DB2INSTANCE=<instance_name>

3. Ensure the database manager starts on all nodes by entering: db2start
4. Create a sample database by entering: db2sampl
5. Connect to the sample database by entering: db2 connect to sample

6. Try a few SELECT statements with the sample database.

When problems occur in this environment, you can take action based on the
type of problem as presented below:
v Instance creation fails.

Ensure c:\profiles is present and is present with each of the share name
“profiles”. Ensure all partitions are “pingable” from the coordinator node.

v DB2START fails.
Review the explanation for the returned error code by using the db2 ?
sqlxxxx command. There will be a suggested action associated with this
error which you should follow.
A system error may be returned. If this is the case, use a db2stop and retry
the db2start. If the problem persists, attempt to reboot on all partitions and
then retry.
Ensure all partitions have the same date, time, and time zone. The time
does not need to be identical: within one hour is sufficient.
Ensure all the partitions are in one domain and that the user name and
password used belongs to the following groups:

Appendix M. Using Virtual Interface (VI) Architecture 827

– On the domain controller:
- Administrators
- Domain Administrators
- Domain Users
- Users

– On other machines:
- Administrators
- Users

Review the contents of the Control panel—>Services to ensure that all the
DB2:<instance_name> –X services have the correct DB2ADMIN account
information.

v Command line variable has not been initialized:
Ensure you are running the command in a “DB2 command window”. The
title of this window is “DB2 CLP”.

v The rah command returns immediately without executing the commands
specified:
Run db2set -g DB2TEMPDIR=C:\TMP on all machines in the instance. Ensure
the DB2 Remote Command Service is started and with the correct
DB2ADMIN account information. Finally, ensure c:\temp and c:\tmp are
present.

Implement DB2 to Run Using VI

On each database partition server in the instance, set the following DB2
registry variables and carry out the following tasks:
v Set DB2_VI_ENABLE=ON
v Set DB2_VI_DEVICE=nic0
v Set DB2_VI_VIPL=vipl.dll
v Enter db2start on the MPP instance.
v Review the db2diag.log file. There should be one message for each partition

stating that “VI is enabled.”

828 Administration Guide Design and Implementation

Appendix N. Lightweight Directory Access Protocol (LDAP)
Directory Services

Lightweight Directory Access Protocol (LDAP) is an industry standard access
method to directory services. Each instance of the database server will publish
its existence and provide the protocol communication information in the
LDAP directory. When a client connects to the database server, the
communication information for the server can be retrieved from the LDAP
directory. Each client is no longer required to store the server connection
information by cataloging a node entry locally on each machine. Instead,
when a database is created, the database publishes its existence using the
LDAP directory. Client applications search the LDAP directory for the
database location and the information required to connect to the database.

A caching mechanism exists so that the client only searches the LDAP
directory once. Once the information is retrieved, it is stored or cached on the
local machine. Subsequent access to the same information is through the
cached information and not through another search using the LDAP directory.

Registration of DB2 Servers After Installation

Each DB2 server instance must be registered in LDAP to publish the protocol
configuration information that is used by the client applications to connect to
it. When registering an instance of the database server, you need to specify a
node name. The node name is used by client applications when they connect or
attach to the server. You can catalog another alias name for the LDAP node by
using the CATALOG LDAP NODE command.

The REGISTER command appears as follows:
db2 register db2 server in ldap

as <ldap_node_name>
protocol tcpip

The protocol clause specifies the communication protocol to use when
connecting to this database server.

When creating an instance for DB2 Universal Database EEE that includes
multiple physical machines, the REGISTER command must be invoked once
for each machine. The rah command is used to issue the REGISTER command
on all machines.

© Copyright IBM Corp. 1993, 1999 829

Note: The same ldap_node_name cannot be used for each machine since the
name must be unique in LDAP. You will want to substitute the
hostname of each machine for the ldap_node_name in the REGISTER
command. For example:

rah ">DB2 REGISTER DB2 SERVER IN LDAP AS <> PROTOCOL TCPIP"

The “<>” is substituted by the hostname on each machine where the
rah command is run. In the rare occurrence where there are multiple
DB2 Universal Database EEE instances, the combination of the instance
and host index may be used as the node name in the rah command.

The REGISTER command can be issued for a remote DB2 server. To do so,
you must specify the remote computer name, instance name, and the protocol
configuration parameters when registering a remote server. The command can
be used as follows:

db2 register db2 server in ldap
as <ldap_node_name>
protocol tcpip
hostname <host_name>
svcename <tcpip_service_name>
remote <remote_computer_name>
instance <instance_name>

The following convention is used for the computer name:
v If TCP/IP is configured, the computer name must be the same as the

TCP/IP hostname.
v If APPC is configured, the computer name must be the same as the LU

name.

When running in a high availability or fail-over environment, and using
TCP/IP as the communication protocol, the cluster IP address must be used.
Using the cluster IP address allows the client to connect to the server on
either machines without having to catalog a separate TCP/IP node for each
machine. The cluster IP address is specified using the hostname parameter,
shown as follows:

db2 register db2 server in ldap
as <ldap_node_name>
protocol tcpip
hostname n.nn.nn.nn

where n.nn.nn.nn is the cluster IP address.

Refer to the Command Reference for additional information on the REGISTER
command.

830 Administration Guide Design and Implementation

Update the Protocol Information for the DB2 Server

The DB2 server information in LDAP must be kept current. For example,
changes to the protocol configuration parameters or the server network
address require an update to LDAP.

To update the DB2 server in LDAP on the local machine, use the following
command:

db2 update db2 server in ldap ...

Examples of protocol configuration parameters that can be updated include:
v A TCP/IP hostname and service name of port number parameters.
v A computer name for Named Pipe support.
v An IPX address.
v APPC protocol information like TP name, partner LU, or mode.

To update a remote DB2 server protocol configuration parameters use the
UPDATE command with a node parameter:

db2 update db2 server in ldap
node <node_name>
hostname <host_name>
svcename <tcpip_service_name>

Catalog a Node Alias for ATTACH

A node name for the DB2 server must be specified when registering the server
in LDAP. Applications use the node name to attach to the database server. If a
different node name is required such as when the node name is hard-coded in
an application, use the CATALOG LDAP NODE command to make the
change. The command would be similar to:

db2 catalog ldap node <ldap_node_name>
as <new_alias_name>

To uncatalog a LDAP node, use the UNCATALOG LDAP NODE
COMMAND. The command would appear similar to:

db2 uncatalog ldap node <ldap_node_name>

Deregistering the DB2 Server

Deregistration of an instance from LDAP also removes all the node, or alias,
objects and the database objects referring to the instance.

Appendix N. Lightweight Directory Access Protocol (LDAP) Directory Services 831

Deregistration of the DB2 server on either a local or a remote machine
requires the LDAP node name be specified for the server:

db2 deregister db2 server in ldap
node <node_name>

When the DB2 server is deregistered, any LDAP node entry and LDAP
database entries referring to the same instance of the DB2 server is also
uncataloged.

Registration of Databases

During the creation of a database within an instance, the database is
automatically registered in LDAP. Registration allows remote client connection
to the database without having to catalog the database and node on the local
machine. When a client attempts to connect to a database, if the database does
not exist in the database directory on the local machine then the LDAP
directory is searched.

If the name already exists in the LDAP directory, the database is still created
on the local machine but a warning message is returned stating the naming
conflict in the LDAP directory. For this reason you can manually catalog a
database in the LDAP directory. The user can register databases on a remote
server in LDAP by using the CATALOG LDAP DATABASE command. When
registering a remote database, you specify the name of the LDAP node that
represents the remote database server. You must register the remote database
server in LDAP using the REGISTER DB2 SERVER IN LDAP command
before registering the database.

To register a database manually in LDAP, use the CATALOG LDAP
DATABASE command:

db2 catalog ldap database <dbname>
at node <node_name>
with "My LDAP database"

Attaching to a Remote Server

In the LDAP environment, you can attach to a remote database server using
the LDAP node name on the ATTACH command:

db2 attach to <ldap_node_name>

When a client application attaches to a node or a database for the first time,
since the node is not in the local node directory, DB2 searches the LDAP
directory for the target node entry. If the entry is found in the LDAP directory,
the database location and the protocol information of the remote server is

832 Administration Guide Design and Implementation

retrieved. Using this information, DB2 automatically catalogs a database entry
and a node entry on the local machine. The next time the client application
attaches to the same node or database, the information in the local database
directory is used without having to search the LDAP directory.

Deregistering the Database

The database is automatically deregistered from LDAP when:
v The database is dropped.
v The owning instance is deregistered from LDAP.

The database can be manually deregistered from LDAP using:
db2 uncatalog ldap database <dbname>

Refreshing LDAP Entries in Local Database and Node Directories

LDAP information is subject to change, so it is necessary to refresh the LDAP
entries in the local and node directories. The local database and node
directories are used to cache the entries in LDAP.

To refresh the database entries that refer to LDAP resources, use the following
command:

db2 refresh ldap database directory

To refresh the node entries on the local machine that refer to LDAP resources,
use the following command:

db2 refresh ldap node directory

As part of the refresh, all the LDAP entries that are saved in the local
database and node directories are removed. The next time that the application
accesses the database or node, it will read the information directly from LDAP
and generate a new entry in the local database or node directory.

To ensure the refresh is done in a timely way, you may want to:
v Schedule a refresh that is run periodically.
v Run the REFRESH command during system bootup.
v Use an available administration package to invoke the REFRESH command

on all client machines.

Appendix N. Lightweight Directory Access Protocol (LDAP) Directory Services 833

Searching

DB2 searches the current LDAP directory partition. In an environment where
there are multiple LDAP directory partitions or domains, you can set the
search scope. For example, if the information is not found in the current
partition or domain, automatic search of all other partitions or domains can be
requested. On the other hand, the search scope can be restricted to search only
the local machine.

The search scope is controlled through the DB2 profile registry variable,
db2ldap_search_scope. To set the search scope value at the global level in LDAP,
use the “-gl” option, which means “global in LDAP”, on the db2set command:

db2set -gl db2ldap_search_scope=<value>

Possible values include: “local”, “domain”, or “global”. The default value is
“domain”. Setting the search scope in LDAP allows the setting of the default
search scope for the entire enterprise. For example, you may want to initialize
the search scope to “global” after a new database is created. This allows any
client machine to find a database that is defined in a particular partition or
domain. Once the entry has been recorded on each machine after the first
connect or attach for each client, the search scope can be changed to “local”.
Once changed to “local”, each client will not scan any partition or domain.

Note: The DB2 profile registry variable db2ldap_search_scope is the only
registry variable that supports setting the variable at the global level in
LDAP.

Configure Host Database

You can manually configure host database information in LDAP so that each
client does not need to manually catalog the database and node locally on
each machine. The process follows:
1. Register the host database server in LDAP. The NODE TYPE parameter

must be set to “DCS” for the REGISTER command to indicate that this is a
host database server.

2. Register the host database in LDAP using the CATALOG LDAP
DATABASE command. Any additional DRDA parameters can be specified
by using the PARMS parameter. The database authentication type should
be set to “DCS”.

834 Administration Guide Design and Implementation

Setting DB2 Registry Variables at the User Level

Under the LDAP environment, the DB2 profile registry variables can be set at
the user level which allows a user to customize their own DB2 environment.
To set the DB2 profile registry variables at the user level, use the -ul option:

db2set -ul variable=value

DB2 has a caching mechanism. The DB2 profile registry variables at the user
level are cached on the local machine. If the -ul parameter is specified, DB2
always reads from the cache for the DB2 registry variables. The cache is
refreshed when:
v You update or reset a DB2 registry variable at the user level.
v You explicitly force the refresh of the registry variables at the user level by

using the REFRESH command. For example:
db2 refresh ldap profile variables

Enable LDAP Support After Installation is Complete

To enable LDAP support at some point following the completion of the
installation process, use the following procedure:
v Install the LDAP support binary files. Run the setup program and select the

LDAP Directory Exploitation support from Custom install. The setup
program installs the binary files and sets the DB2 profile registry variable
db2_enable_ldap to “YES”

v Register the current instance of the DB2 server in LDAP by using the
REGISTER DB2 SERVER IN LDAP command. For example:
db2 register db2 server in ldap protocol tcpip

v If you have databases you would like to register in LDAP, run the
CATALOG LDAP DATABASE command. For example:

db2 catalog ldap database <dbname> as <alias_dbname>

Disable LDAP Support

To disable LDAP support, use the following procedure:
v For each instance of the DB2 server, deregister the DB2 server from LDAP:

db2 deregister db2 server in ldap node <nodename>

v Set the DB2 profile registry variable db2_enable_ldap to “NO”.

Appendix N. Lightweight Directory Access Protocol (LDAP) Directory Services 835

Security Considerations

Before accessing information in the LDAP directory, an application or user is
authenticated by the LDAP server. The authentication process is called binding
to the LDAP server.

When accessing LDAP for the first time, DB2 detects which LDAP server is
being used and dynamically loads the LDAP support code using the
appropriate LDAP client. If the LDAP server is IBM eNetwork Directory, the
IBM LDAP client is used. The information about the server is saved in the
local registry to allow the same library to be used the next time.

It is important to apply access control on the information stored in the LDAP
directory to prevent anonymous users from adding, deleting, or modifying the
information.

Access control is managed by the LDAP server.

Access control is inherited by default and can be applied at the container
level. When a new object is created, it inherits the same security attribute as
the parent object. An administration tool available for the LDAP server can be
used to define access control for the container object.

By default, access control is defined as follows:
v For database and node entries in LDAP, everyone (or any anonymous user)

has read access. Only the Directory Administrator and the owner or creator
of the object has read/write access.

v For user profiles, the profile owner and the Directory Administrator have
read/write access. One user cannot access the profile of another user if that
user does not have Directory Administrator authority.

Note: The authorization check is always performed by the LDAP server and
not by DB2. The LDAP authorization check is not related to DB2
authorization. An account or auth ID that has SYSADM authority may
not have access to the LDAP directory.

Managing Multiple User Accounts

When running in the LDAP environment, the user account must be defined in
several locations:
v In the operating system. DB2 uses the operating system account to perform

DB2 authentication. The account must be defined at both the DB2 client and
the DB2 server machine for DB2 server authentication. That is, before

836 Administration Guide Design and Implementation

connecting to the database: you need an account on the client machine to
log on; and an account on the DB2 server machine to authenticate.

v In the LDAP directory for LDAP authentication. System management tools,
such as Tivoli, or synchronization tools, are available to manage accounts in
multiple places. These tools are used to ensure that any account update,
like the changing of a password, is applied to all locations where the
account is defined.

Extending the Directory Schema with DB2 Object Classes and Attributes

The LDAP Directory Schema defines object classes and attributes for the
information stored in the LDAP directory entries. An object class consists of a
set of mandatory and optional attributes. Every entry in the LDAP directory
has an object class associated with it.

Before DB2 can store the information into LDAP, the Directory Schema for the
LDAP server must include the object classes and attributes that DB2 uses. The
process of adding new object classes and attributes to the base schema is
called extending the Directory Schema.

Note: If you are using IBM SecureWay LDAP Directory v3.1, all the object
classes and attributes that are required by DB2 are included in the base
schema. You do not have to extend the base schema with DB2 object
classes and attributes.

Extending the Directory Schema for IBM eNetwork Directory Version 2.1

When using the IBM eNetwork Directory Version 2.1, you must extend the
base schema with the object classes and attributes that are used by DB2.

Use the following steps to extend the base schema for IBM eNetwork
Directory Version 2.1:
1. Copy the DB2 attribute definition file, db2.at, and object class definition

file, db2.oc, to the same directory that contains the system attribute and
object class definition files, slapd.at.conf and slapd.oc.conf. The DB2
attribute and object class definition files can be found in the cfg
subdirectory of the sqllib subdirectory. The system attribute and object
class definition files are located in the etc subdirectory of the %LDAPHome%
subdirectory.

2. Review the DB2 attribute and object class definition files. Comment out
any object classes and attributes that have been defined in your current
LDAP Directory Schema.

3. Add a line at the end of the slapd.oc.conf file as follows:
include db2.oc

Appendix N. Lightweight Directory Access Protocol (LDAP) Directory Services 837

4. Add a line at the end of the slapd.oc.conf file as follows:
include db2.at

5. Restart the LDAP server.

Object Classes and Attributes Used by DB2

The following tables describe the object classes that are used by DB2:

Table 55. The eProperty Object Class

Class eProperty

Description The eProperty object class is used to specify application specific
settings for user preference properties.

Required
Attributes

cn

Optional
Attributes

propertyType

cisProperty

(may contain other IBM defined attributes)

Type Structural

OID (object
identifier)

1.3.18.0.2.6.90

Special Notes The eProperty object class is defined in the IBM Directory Schema
and may contain other attributes. The attributes that are used by
DB2 UDB are:

1. cn - name. The name of the eProperty object. For the DB2
Registry Variable, the object name should be “db2Env”. For CLI
configuration, the object name should be “DSN -
<DSN_Name>”, where <DSN_Name> is the CLI/ODBC
Datasource Name.

2. propertyType - The type of the eProperty object. It should be
set to “DB2ENV” for DB2 Registry Variable, or “DB2CLI” for
CLI configuration.

3. cisProperty - a multi-value attribute, each a value contains a
keyName=keyValue pair.

Table 56. The eApplicationSystem Object Class

Class eApplicationSystem

Description This object class describes application subsystems such as DB2 and
CICS as well as systems such as Orion and GSO. An application
system may span multiple computer systems or it may reside on a
single computer system.

Required
Attributes

838 Administration Guide Design and Implementation

Table 56. The eApplicationSystem Object Class (continued)

Class eApplicationSystem

Optional
Attributes

systemName

(may contain other IBM defined attributes)

Type Structural

OID (object
identifier)

1.3.18.0.2.6.8

Special Notes The eApplicationSystem object class is defined in the IBM
Directory Schema and may contain other attributes. The attribute
that is used by DB2 UDB is: systemName which is set to “DB2”

Table 57. The DB2Node Object Class

Class DB2Node

Description This object class describes an instance of a DB2 database server.

Required
Attributes

db2nodeName

Optional
Attributes

db2nodeAlias

db2instanceName

db2Type

host

protocolInformation

Type Structural

OID (object
identifier)

1.3.18.0.2.6.116

Special Notes The attributes are used by DB2 as follows:

1. db2nodeName - The name of the DB2Node object. This node
name is used by client applications when connecting to the
database server.

2. db2nodeAlias - Alternate node name

3. db2instanceName - The instance name of database server

4. db2Type - set to one of the following values:

v SERVER - for single partition database server

v MPP - for multi-partitioned database server

v DCS - for host database server

5. host - the TCP/IP hostname of the machine where the server
resides

6. protocolInformation - protocol specific information.

Appendix N. Lightweight Directory Access Protocol (LDAP) Directory Services 839

The protocolInformation attribute contains the communication protocol
information to bind to the service. It consists of tokens that describe the
network protocol supported. Each token is separated by a semicolon. There is
no space between the tokens. You may specify an asterisk (*) for an optional
parameter.

The tokens for TCP/IP are:
v “TCP/IP”
v server hostname or IP address
v (optional) security (NONE or SOCKS)

The tokens for APPN are:
v “APPNP”
v Network ID
v Partner LU
v Transaction Program (TP) Name
v Mode
v Security (either NONE, SAME, or PROGRAM)
v (optional) LAN adapter address
v (optional) Change password LU

The tokens for IPX/SPX are:
v “IPXSPX”
v IPX address

The tokens for NetBIOS are:
v “NETBIOS”
v Server NetBIOS workstation name

The tokens for Named Pipe are:
v “NPIPE”
v Computer name of the server
v Instance name of the server

Table 58. The DB2Database Object Class

Class DB2Database

Description This object class describes a DB2 database.

Required
Attributes

db2databaseName

db2nodePtr

840 Administration Guide Design and Implementation

Table 58. The DB2Database Object Class (continued)

Class DB2Database

Optional
Attributes

db2databaseAlias

db2additionalParameters

db2ARLibrary

db2authenticationLocation

db2gwPtr

db2databaseRelease

DCEPrincipalName

Type Structural

OID (object
identifier)

1.3.18.0.2.6.117

Special Notes The attributes are described as follows:

1. db2databaseAlias - the database alias name. This is the name
specified when cataloging the database.

2. db2databaseName - native database name. This is the name
specified when creating the database.

3. db2nodePtr - pointer to the Node object for the database server
which owns the database. This relationship allows the client
application to retrieve the required protocol communication
information to connect to the database server.

4. db2gwPtr - pointer to the Node object for the gateway server
for non-DRDA client. In a gateway environment when there is a
dedicated gateway that is configured to connect to host
databases, all clients connect to the gateway before the database
request is routed to the host. (To use DRDA, the user needs to
install a separate product, called DB2 Connect, which allows the
client to use DRDA to communicate with the host database
server.) When the database protocol is set to use DRDA and
DB2 Connect is not installed on the client machine, the client
will connect to the gateway pointed to by the db2gwPtr
attribute.

5. db2additionalParameters - any additional parameter used when
connecting to the host database server.

6. db2ARLibrary - name of the Application Requester library

7. db2authenticationLocation - CLIENT, SERVER, DCS, or DCE

8. db2databaseRelease - database release number

9. DCEPrincipalName - when the authentication location is DCE,
this attributes contains the DCE Principal Name.

Appendix N. Lightweight Directory Access Protocol (LDAP) Directory Services 841

The following table describes the attributes that are used by DB2:

Table 59. The Attribute Specifications

Attribute Name Syntax Maximum
Length

Multi-Valued OID

cn Case Ignored
String

256 Multi-valued 2.5.4.3

propertyType Case Ignored
String

64 Multi-valued 1.3.18.0.2.4.320

cisProperty Case Ignored
String

250000 Multi-valued 1.3.18.0.2.4.309

systemName Case Ignored
String

256 Single-valued 1.3.18.0.2.4.329

db2nodeName Case Ignored
String

1024 Single-valued 1.3.18.0.2.4.419

db2nodeAlias Case Ignored
String

1024 Multi-valued 1.3.18.0.2.4.420

db2instanceName Case Ignored
String

256 Single-valued 1.3.18.0.2.4.428

db2Type Case Ignored
String

64 Single-valued 1.3.18.0.2.4.418

host Case Ignored
String

256 Multi-valued 1.3.18.0.2.4.486

protocolInformation binary 5000 Multi-valued 2.5.4.48

db2databaseName Case Ignored
String

1024 Single-valued 1.3.18.0.2.4.421

db2databaseAlias Case Ignored
String

1024 Multi-valued 1.3.18.0.2.4.422

db2nodePtr Distinguished
Name

1000 Single-valued 1.3.18.0.2.4.423

db2gwPtr Distinguished
Name

1000 Single-valued 1.3.18.0.2.4.424

db2additionalParameters Case Ignored
String

1024 Single-valued 1.3.18.0.2.4.426

db2ARLibrary Case Ignored
String

256 Single-valued 1.3.18.0.2.4.427

db2authenticationLocation Case Ignored
String

64 Single-valued 1.3.18.0.2.4.425

db2databaseRelease Case Ignored
String

64 Single-valued 1.3.18.0.2.4.429

842 Administration Guide Design and Implementation

Table 59. The Attribute Specifications (continued)

Attribute Name Syntax Maximum
Length

Multi-Valued OID

DCEPrincipalName Case Ignored
String

2048 Single-valued 1.3.18.0.2.4.443

Appendix N. Lightweight Directory Access Protocol (LDAP) Directory Services 843

844 Administration Guide Design and Implementation

Appendix O. Extending the Control Center

In Version 6, you can extend the DB2 Universal Database Control Center by
using the new plug-in architecture to provide additional function.

The concept of the plug-in architecture is to provide the ability to add items
for a given object in the Control Center popup menu, and add new buttons to
the tool bar. A set of Java interfaces, which you must implement, is shipped
along with the tools. These interfaces are used to communicate to the Control
Center what additional actions to include.

Performance Considerations

The plug-in extensions (db2plug.zip) are loaded at the startup time of the
Control Center tools. This may increase the startup time of the tools,
depending on the size of the ZIP file; however, we expect that the plug-in ZIP
file will be small for most users and the impact should be minimal.

Packaging Considerations

You must ZIP the extension class files according to the rules of a Java archive
file. To run the Control Center tools as an application, the ZIP file
(db2plug.zip) must be in the classpath. To run the Control Center tools as an
applet, the ZIP file must be located where the <codebase> tag points to in the
Control Center html file.

The ZIP file should be built will no compression and maintain the relative
path positions of all the class files (zip -r0 db2plug.zip *.class).

Interface Descriptions

The following interfaces are shipped:
v CCExtension
v CCObject
v CCMenuAction
v CCToolbarAction.

The interfaces are described in the next sections, followed by an example.

© Copyright IBM Corp. 1993, 1999 845

CCExtension

The CCExtension interface allows you to extend the Control Center user
interface by adding new toolbar buttons, new menu items, and overriding
existing menu actions.

The external interface is defined as follows:
public interface CCExtension
{

/**
* Get an array of CCObject subclass objects which define
* a list of objects to be inserted or overridden in the
* Control Center
* @return CCObject[] CCObject subclass objects array
*/

public CCObject[] getObjects();

/**
* Get an array of CCToolbarAction subclass objects which represent
* a list of buttons to be added to the Control Center
* main toolbar.
* @return CCToolbarAction[] CCToolbarAction subclass objects array
*/

public CCToolbarAction[] getToolbarActions();
}

To use CCExtension, create a Java class which imports the
″com.ibm.db2.tools.cc.navigator″ package and implements this interface. The
new class must provide the implementation of the getObjects() and
getToolbarActions() methods.

The getObjects() method returns an array of CCObject which defines the
existing objects which the user would like to add new menu actions or
remove a predefined set of menu actions.

The getToolbarActions() method returns an array of CCToolbarAction which
will be added to the Control Center main toolbar.

A single CCExtension subclass file or multiple CCExtension subclass files can
be used to define the Control Center extensions. For the Control Center to use
these extensions, use the following setup procedure:
1. Create a ″db2plug.zip″ file which contains all the CCExtension subclass

files. The files should not be compressed. For example, if the CCExtension
files are in the plugin package and they are located in the plugin directory,

zip -r0 db2plug.zip plugin*.class

This command will put all the plugin package class files into the
db2plug.zip file and preserve their relative path information.

846 Administration Guide Design and Implementation

2. To run the Control Center as an applet, put the db2plug.zip file in where
the <codebase> tag points to in the Control Center html file. To run the
Control Center as an application, put the db2plug.zip in a directory
pointed to by the CLASSPATH environment variable.

For browsers that support multiple archives, just add ″db2plug.zip″ to the
archive list of the Control Center html page. Otherwise, all the CCExtension,
CCObject, CCToolbarAction, and CCMenuAction subclass files will have to be
in their relative directories depending on which package they belong to.

CCObject

The CCObject interface allows you to change the behavior of the menu actions
of an existing object.

The external interface is defined as follows:
public interface CCObject
{

/**
* The following static constants defines a list of object type
* available to be added to the Control Center tree.
*/

public static final int UDB_SYSTEMS_FOLDER = 0;
public static final int UDB_SYSTEM = 1;
public static final int UDB_INSTANCES_FOLDER = 2;
public static final int UDB_INSTANCE = 3;
public static final int UDB_DATABASES_FOLDER = 4;
public static final int UDB_DATABASE = 5;
public static final int UDB_TABLES_FOLDER = 6;
public static final int UDB_TABLE = 7;
public static final int UDB_TABLESPACES_FOLDER = 8;
public static final int UDB_TABLESPACE = 9;
public static final int UDB_VIEWS_FOLDER = 10;
public static final int UDB_VIEW = 11;
public static final int UDB_ALIASES_FOLDER = 12;
public static final int UDB_ALIAS = 13;
public static final int UDB_TRIGGERS_FOLDER = 14;
public static final int UDB_TRIGGER = 15;
public static final int UDB_SCHEMAS_FOLDER = 16;
public static final int UDB_SCHEMA = 17;
public static final int UDB_INDEXES_FOLDER = 18;
public static final int UDB_INDEX = 19;
public static final int UDB_CONNECTIONS_FOLDER = 20;
public static final int UDB_CONNECTION = 21;
public static final int UDB_REPLICATION_SOURCES_FOLDER = 22;
public static final int UDB_REPLICATION_SOURCE = 23;
public static final int UDB_REPLICATION_SUBSCRIPTIONS_FOLDER = 24;
public static final int UDB_REPLICATION_SUBSCRIPTION = 25;
public static final int UDB_BUFFERPOOLS_FOLDER = 26;
public static final int UDB_BUFFERPOOL = 27;
public static final int UDB_APPLICATION_OBJECTS_FOLDER = 28;
public static final int UDB_USER_DEFINED_DISTINCT_DATATYPES_FOLDER = 29;
public static final int UDB_USER_DEFINED_DISTINCT_DATATYPE = 30;

Appendix O. Extending the Control Center 847

public static final int UDB_USER_DEFINED_DISTINCT_FUNCTIONS_FOLDER = 31;
public static final int UDB_USER_DEFINED_DISTINCT_FUNCTION = 32;
public static final int UDB_PACKAGES_FOLDER = 33;
public static final int UDB_PACKAGE = 34;
public static final int UDB_STORE_PROCEDURES_FOLDER = 35;
public static final int UDB_STORE_PROCEDURE = 36;
public static final int UDB_USER_AND_GROUP_OBJECTS_FOLDER = 37;
public static final int UDB_DB_USERS_FOLDER = 38;
public static final int UDB_DB_USER = 39;
public static final int UDB_DB_GROUPS_FOLDER = 40;
public static final int UDB_DB_GROUP = 41;
public static final int UDB_DRDA_TABLE = 42;

public static final int S390_SUBSYSTEMS_FOLDER = 43;
public static final int S390_SUBSYSTEM = 44;
public static final int S390_BUFFERPOOLS_FOLDER = 45;
public static final int S390_BUFFERPOOL = 46;
public static final int S390_VIEWS_FOLDER = 47;
public static final int S390_VIEW = 48;
public static final int S390_DATABASES_FOLDER = 49;
public static final int S390_DATABASE = 50;
public static final int S390_TABLESPACES_FOLDER = 51;
public static final int S390_TABLESPACE = 52;
public static final int S390_TABLES_FOLDER = 53;
public static final int S390_TABLE = 54;
public static final int S390_INDEXS_FOLDER = 55;
public static final int S390_INDEX = 56;
public static final int S390_STORAGE_GROUPS_FOLDER = 57;
public static final int S390_STORAGE_GROUP = 58;
public static final int S390_ALIASES_FOLDER = 59;
public static final int S390_ALIAS = 60;
public static final int S390_SYNONYMS_FOLDER = 61;
public static final int S390_SYNONYM = 62;
public static final int S390_APPLICATION_OBJECTS_FOLDER = 63;
public static final int S390_COLLECTIONS_FOLDER = 64;
public static final int S390_COLLECTION = 65;
public static final int S390_PACKAGES_FOLDER = 66;
public static final int S390_PACKAGE = 67;
public static final int S390_PLANS_FOLDER = 68;
public static final int S390_PLAN = 69;
public static final int S390_PROCEDURES_FOLDER = 70;
public static final int S390_PROCEDURE = 71;
public static final int S390_DB_USERS_FOLDER = 72;
public static final int S390_DB_USER = 73;
public static final int S390_LOCATIONS_FOLDER = 74;
public static final int S390_LOCATION = 75;
public static final int S390_DISTINCT_TYPES_FOLDER = 76;
public static final int S390_DISTINCT_TYPE = 77;
public static final int S390_USER_DEFINED_FUNCTIONS_FOLDER = 78;
public static final int S390_USER_DEFINED_FUNCTION = 79;
public static final int S390_TRIGGERS_FOLDER = 80;
public static final int S390_TRIGGER = 81;
public static final int S390_SCHEMAS_FOLDER = 82;
public static final int S390_SCHEMA = 83;
public static final int S390_CATALOG_TABLES_FOLDER = 84;

848 Administration Guide Design and Implementation

public static final int S390_CATALOG_TABLE = 85;

public static final int DCS_GATEWAY_CONNECTIONS_FOLDER = 86;
public static final int DCS_GATEWAY_CONNECTION = 87;

/**
* Total number of object types
*/

public static final int NUM_OBJECT_TYPES = 88;

/**
* Get the name of these object
* The function returns the name of this object. This name
* can be of three types:
* (1) Fully qualified name
* Syntax: xxxxx-yyyyy-zzzzz
* where xxxxx-yyyyy is the fully quality name of the
* parent object and zzzzz is the name of the new object.
* Note: Parent and child object name is separated by '-' character.
* If a schema name is required to identify object, the fully
* qualified name is represented by xxxxx-yyyyy-wwwww.zzzzz
* where wwwww is the schema name.
* Only the behavior of the object that matches this fully
* qualified name will be affected.
* (2) Parent fully qualified name
* Syntax: xxxxx-yyyyy
* where xxxxx-yyyyy is the fully qualified name of the
* parent object.
* When the object type is folder (ie. DATABASES_FOLDER), the
* getName() should only return the fully qualified name of the
* folder's parent.
* Only the behavior of the object that match this name
* and the specific type return by the getType() function will be
* affected.
* (3) null
* Syntax: null
* If null is return, the CCActions returns by the getActions()
* call will be applied to all objects of type returns by the
* getType() call.
* @return String object name
*/

public String getName();

/**
* Get the type of this object
* @return int return one of the static type constants defined
* in this interface
*/

public int getType();

/**
* Get the CCMenu Action array which defines the list of menu actions
* to be created for the selected object
* return CCMenuAction[] CCMenuAction array
*/

Appendix O. Extending the Control Center 849

public CCMenuAction[] getMenuActions();

/**
* Check if this object is editable.
* If not, the Alter related menu items will be removed from
* the object's popup menu return boolean If false, the Alter
* menu item will be removed from the object's popup menu
*/
public boolean isEditable();

/**
* Check if this object is configurable.
* If not, the configuration related menu items will be
* removed from the object's popup menu return boolean If
* false, the Configuration related menu item will be removed
* from the object's popup menu
*/
public boolean isConfigurable();

}

Note: At this time, the last two methods in CCObject: isEditable() and
isConfigurable() should always return true.

CCMenuAction

The CCMenuAction interface allows you to define a new action to be used by
a Control Center object.

The external interface is defined as follows:
public interface CCMenuAction
{

/**
* Get the name of this action
* @return String Name text on the menu item
*/
public String getMenuText();

/**
* Invoked when an action occurs. Use the getActionCommand()
* method of the ActionEvent to get the fully qualified name of
* the invoked Control Center object.
* @param e Action event
*/
public void actionPerformed(ActionEvent e);

}

CCToolBarAction

The CCToolbarAction interface allows you to define a new action on the
Control Center toolbar.

The external interface is defined as follows:

850 Administration Guide Design and Implementation

public interface CCToolbarAction
{

/**
* Get the name of this action
* @return String Name text on the menu item, or toolbar
* button hover help
*/

public String getHoverHelpText();

/**
* Get the icon for the toolbar button
* Any toolbar CCAction should implement this function and return
* a valid ImageIcon object. Otherwise, the button will have no icon.
* @return ImageIcon Icon to be displayed
*/

public ImageIcon getIcon();

/**
* Invoked when an action occurs.
* @param e Action event
*/

public void actionPerformed(ActionEvent e);
}

Usage Scenario

The code in the following example will:
1. Update the actions of the SAMPLE Database (see “MySample.java” on

page 852)

2. Update the actions of all Database objects (see “MyDatabaseActions.java”
on page 853)

3. Add a new instance object (see “MyInstance.java” on page 854)

4. Update the actions of the DB2 instance (see “MyDB2.java” on page 854)

5. Update the actions of the Databases folder (see “MyDatabases.java” on
page 855)

6. Update the actions of the SYSIBM.SYSPLAN table (see
“MySYSPLAN.java” on page 856)

7. Add a new table object (see “MyTable.java” on page 856)

8. Update the actions of the DB_User object under the Application object (see
“MyDBUser.java” on page 857)

9. Add a button to the Control Center toolbar (see “MyToolbarAction.java”
on page 858).

The main extension file is MyExtension.java. All the class files are stored in
the plugin directory and are zipped up by the command:

Appendix O. Extending the Control Center 851

zip -r0 db2plug.zip plugin

The output db2plug.zip is then placed in the CLASSPATH or in the codebase
directory depending whether the Control Center is running as an application
or an applet.

MyExtension.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyExtension implements CCExtension
{

public CCObject[] getObjects()
{

CCObject[] objs = new CCObject[10];
objs[0] = new MySample();
objs[1] = new MyDatabaseActions();
objs[2] = new MyInstance();
objs[3] = new MyDB2();
objs[4] = new MyDatabases();
objs[5] = new MySYSPLAN();
objs[6] = new MyTable();
objs[7] = new MyDBUser();
return objs;

}

public CCAction[] getActions()
{

CCAction[] actions = new CCAction[1];
actions[0] = new MyToolbarAction();
return actions;

}
}

MySample.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MySample implements CCObject
{

public String getName()
{

return "LOCAL - DB2 - SAMPLE";
}

public int getType()
{

return DATABASE;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

852 Administration Guide Design and Implementation

public boolean isNew()
{

return false;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[2];
acts[0] = new MyAlterAction();
acts[1] = new MyAction();
return acts;

}

}

MyDatabaseActions.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyDatabaseActions implements CCObject
{

public String getName()
{

return null;
}

public int getType()
{

return DATABASE;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return false;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[2];
acts[0] = new MyDropAction();
acts[1] = new MyAction();
return acts;

}

}

Appendix O. Extending the Control Center 853

MyInstance.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyInstance implements CCObject
{

public String getName()
{

return "LOCAL - MyInstance";
}

public int getType()
{

return INSTANCE;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return true;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[2];
acts[0] = new MyAlterAction();
acts[1] = new MyAction();
return null;

}

}

MyDB2.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyDB2 implements CCObject
{

public String getName()
{

return "LOCAL - DB2";
}

public int getType()
{

return INSTANCE;
}

public javax.swing.ImageIcon getIcon()
{

854 Administration Guide Design and Implementation

return null;
}

public boolean isNew()
{

return false;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[3];
acts[0] = new MyAlterAction();
acts[1] = new MyAction();
acts[2] = new MyCascadeAction();
return acts;

}
}

MyDatabases.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyDatabases implements CCObject
{

public String getName()
{

return "LOCAL - DB2 - Databases";
}

public int getType()
{

return DATABASE;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return false;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[1];
acts[0] = new MyCreateAction();
return acts;

}

}

Appendix O. Extending the Control Center 855

MySYSPLAN.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MySYSPLAN implements CCObject
{

public String getName()
{

return "LOCAL - DB2 - SAMPLE - SYSIBM - SYSPLAN";
}

public int getType()
{

return TABLE;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return false;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[2];
acts[0] = new MyAlterAction();
acts[1] = new MyAction();
return acts;

}

}

MyTable.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyTable implements CCObject
{

public String getName()
{

return "LOCAL - DB2 - SAMPLE - SYSIBM - MyTable";
}

public int getType()
{

return TABLE;
}

public javax.swing.ImageIcon getIcon()
{

856 Administration Guide Design and Implementation

return null;
}

public boolean isNew()
{

return true;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[2];
acts[0] = new MyAlterAction();
acts[1] = new MyAction();
return acts;

}

}

MyDBUser.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyDBUser implements CCObject
{

public String getName()
{

return "LOCAL - DB2 - TEST-DB Users";
}

public int getType()
{

return DB_USER;
}

public javax.swing.ImageIcon getIcon()
{

return null;
}

public boolean isNew()
{

return false;
}

public CCAction[] getActions()
{

CCAction[] acts = new CCAction[2];
acts[0] = new MyAlterAction();
acts[1] = new MyAction();
return acts;

}

}

Appendix O. Extending the Control Center 857

MyToolbarAction.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;
import javax.swing.*;

public class MyToolbarAction extends CCAction
{

public MyToolbarAction()
{

super("MyToolbarAction");
}

public ImageIcon getIcon()
{

return <Your icon>;
}

public boolean actionPerformed(String objectName)
{

System.out.println("My action performed, object name = " +
objectName);

return true;
}

}

MyAlterAction.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyAlterAction extends CCAction
{

public MyAlterAction()
{

super(0);
}

public boolean actionPerformed(String objectName)
{

System.out.println("My alter action performed, object name = " +
objectName);

return true;
}

}

MyAction.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyAction extends CCAction
{

public MyAction()
{

super("MyAction");
}

858 Administration Guide Design and Implementation

public boolean actionPerformed(String objectName)
{

System.out.println("My action performed, object name = " +
objectName);

return true;
}

}

MyDropAction.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyDropAction extends CCAction
{

public MyDropAction()
{

super(1);
}

public boolean actionPerformed(String objectName)
{

System.out.println("My drop action performed, object name = " +
objectName);

return true;
}

}

MyCascadeAction.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyCascadeAction extends CCAction
{

public MyCascadeAction()
{

super(11,2);
}

public boolean actionPerformed(String objectName)
{

System.out.println("My cascade action performed, object name = " +
objectName);

return true;
}

}

MyCreateAction.java
package plugin;
import com.ibm.db2.tools.cc.navigator.*;

public class MyCreateAction extends CCAction
{

public MyCreateAction()

Appendix O. Extending the Control Center 859

{
super(0);

}

public boolean actionPerformed(String objectName)
{

System.out.println("My create action performed, object name = " +
objectName);

return true;
}

}

860 Administration Guide Design and Implementation

Appendix P. Notices

Any reference to an IBM licensed program in this publication is not intended
to state or imply that only IBM’s licensed program may be used. Any
functionally equivalent product, program or service that does not infringe any
of IBM’s intellectual property rights may be used instead of the IBM product,
program, or service. Evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, is the user’s
responsibility.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the

IBM Director of Licensing
IBM Corporation, North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

© Copyright IBM Corp. 1993, 1999 861

Trademarks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States and/or other countries:

ACF/VTAM
ADSTAR
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Universal Database
Distributed Relational Database Architecture
DRDA
Extended Services
FFST
First Failure Support Technology
IBM
IMS
LAN Distance

MVS/ESA
MVS/XA
OS/400
OS/390
OS/2
PowerPC
QMF
RACF
RISC System/6000
SP
SQL/DS
SQL/400
S/370
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WIN-OS/2

Trademarks of Other Companies

The following terms are trademarks or registered trademarks of the
companies listed:

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or
both.

HP-UX is a trademark of Hewlett-Packard.

Java, HotJava, Solaris, Solstice, and Sun are trademarks of Sun Microsystems,
Inc.

862 Administration Guide Design and Implementation

Microsoft, Windows, Windows NT, Visual Basic, and the Windows logo are
trademarks or registered trademarks of Microsoft Corporation in the United
States, other countries, or both.

PC Direct is a trademark of Ziff Communications Company in the United
States, other countries, or both and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk (**), may be trademarks or service marks of others.

Appendix P. Notices 863

864 Administration Guide Design and Implementation

Index

Special Characters
$RAHBUFDIR 794
$RAHBUFNAME 794
$RAHCHECKBUF 794
$RAHENV 802

A
access control 287

authentication 287
database manager 318
database objects 318
view to table 324
XA interface considerations 494

active logs
definition 373
definition of 374
versus archive logs 374

adding a scope 217
adding constraint 218
adding DB2 for OS/390

subsystems 247
adding space to a table space 276
adding table check constraint 219
adding unique constraint 218
Administering Satellites Guide and

Reference 632
administration client 236
Administration Guide 628
Administration Server 247
administration tools

Command Center 252
overview 236
Script Center 252

administration using GUI tools 235
Administrative API Reference 629
ADSTAR Distributed Storage

Manager (ADSM)
backup restrictions 455
client set up (on Intel) 453
client set up (UNIX-based

platforms) 452
environment variables (on

Intel) 453
environment variables

(UNIX-based platforms) 452
managing backups and log

archives 456
setting password (on Intel) 454

ADSTAR Distributed Storage
Manager (ADSM) (continued)

setting password (UNIX-based
platforms) 455

system options file (on
Intel) 454

timeout problem resolution 455
use with BACKUP

command 452
use with RESTORE

command 452
user options file (on Intel) 454
using 454

aggregating function 176
alias

authority 190
naming rules 694
using 189

alias, creating 189
alias (DB2 for MVS/ESA) 190
ALTER COLUMN 217
ALTER NICKNAME statement,

example of 231
ALTER privilege, definition 314
ALTER SERVER statement, example

of 230
ALTER TABLE statement

adding check constraint
example 219

adding columns example 217
adding keys example 218
adding unique constraint

example 218
dropping check constraint

example 220
dropping keys example 220
dropping unique constraint

example 219
tips for adding constraints 218

ALTER TABLESPACE statement
example of 215

altering a column 217
altering a nickname 230
altering a server 230
altering a structured type 223
altering a table 216
altering constraint 218
altering nodegroup 214
altering table space 214

altering view 227
APPC, CPI-C and SNA Sense

Codes 629
Application Building Guide 629
application design

collating sequences,
guidelines 782

Application Development
Guide 629

application program 390
database partition server failure

detection 393
transaction recovery,

overview 390
transaction recovery on the failed

database partition server 392
transaction recovery when the

database partition server is
active 391

archive log files
for OS/2 734
for UNIX-based systems 734

archive logs
definition 373
ROLLFORWARD command

support 373, 374
versus active logs 374
where stored 374

ATTACH command
overview of 102
specifying Distributed

Computing Environment (DCE)
information 713

attribute
definition of 30

attributes 35
audit activities 333
AUDIT_BUF_SZ 335
audit facility

actions 334
asynchronous record

writing 336
audit events table 342
authorities/privileges 333
behavior 335
checking events table 343
CONTEXT events table 355
controlling activities 358
error handling 336

© Copyright IBM Corp. 1993, 1999 865

audit facility (continued)
ERRORTYPE parameter 334
events 334
examples 358
messages 341
OBJMAINT events table 346
parameter descriptions 338
record layouts 342
SECMAINT events table 348
synchronous record writing 336
syntax 337
SYSADMIN events table 352
tips and techniques 356
usage scenarios 337
VALIDATE events table 354

authentication 287
DCE security services 293
definition of 287
Distributed Computing

Environment (DCE) directory
services 709

distributed transaction processing
considerations 490

federated database
processing 299

partitioned database
considerations 293

remote client 292
authentication type 287

CLIENT 288
DCE 290
DCE_SERVER_ENCRYPT 291
DCS 290
DCS_ENCRYPT 290
SERVER 287
SERVER_ENCRYPT 288

authority 307
database administration

(DBADM) 310, 312
levels of 305
removing DBADM from

SYSADM 308
removing DBADM from

SYSCTRL 309
required for BACKUP

command 396
required for RESTORE

command 401
required for ROLLFORWARD

command 422
system control (SYSCTRL) 308
system maintenance

(SYSMAINT) 309
tasks and required

authorities 327

authorization 305
choosing for database access 53
definition 305
system administration

(SYSADM) 307
trusted client 289

authorization names
create view for privileges

information 332
retrieving for privileges

information 329
retrieving names with DBADM

authority 330
retrieving names with table

access authority 330
retrieving privileges granted

to 330
automatic restart 389
AUTORESTART 367
autorestart database configuration

parameter 484
DB2 transaction manager

considerations 476
XA interface considerations 496

B
backing up database

fixed-disk media 400
backup 394

buffer for 397
container names 399
frequency 376
images 398
invoking 397
offline 376
online 376
planning 396
planning your strategy 396
quiesce 396
storage considerations 378
user exit program 379

BACKUP command
access errors, error handling 398
authority required 396
buffer 398
concurrency control 398
considerations for 395
database alias restriction 397
DB2 Data Links Manager

considerations 442
disk output created 399
overview of 394
system crash 398, 407
tape output created 400

BACKUP command (continued)
use with ADSTAR Distributed

Storage Manager 398
Backup Database SmartGuide 237
BACKUP DATABASE utility

considerations for user exit
program 741

error handling for user exits 744
user exit program for OS/2 733

backup domain controller
configuring DB2 to use 811

backups
active 437
expired 437
inactive 437
log chain 438
log sequence 438

bidirectional CCSID support 773
CCSID table 773
DB2 Connect

implementation 775
DB2 UDB implementation 774

BIND command
OWNER option 322

BIND privilege
definition of 317

BINDADD privilege, definition 311
binding

command line processor 152
database utilities 152
rebinding invalid packages 321

BLOB 62
block-structured devices 155
buffer pool

larger page size and storage
requirements 87

mapping table space to 87

C
call level interface

binding to a database 152
calling format for user exits

for OS/2 737
for UNIX-based systems 738

candidate keys
identifying 38

CASCADE delete rule
overview of 49

cascading assignment 525
case sensitive names, federated

database 696
CATALOG DATABASE

example of 152

866 Administration Guide Design and Implementation

CATALOG GLOBAL DATABASE
command

specifying Distributed
Computing Environment (DCE)
information 713

catalog node 385
description 104
importance for recovery 385

catalog views 77
cataloging database 152
CDS 699
cell directory service (CDS) 699
changing database

configuration 212
changing environment

variables 212
changing node configuration

file 212
changing partitioning key 221
changing passwords 693
changing registry variables 212
changing table attributes 222
character comparison,

overview 778
character serial devices 155
character sets

extended UNIX code (EUC) 771
checking available space (DMS) 275
CLI Guide and Reference 630
client

backing up database,
restriction 409

CLIENT, authentication type 288
Client Configuration Assistant 256
CLIENT level security 288
clients

trusted 288
untrusted 288, 289

CLOB 62
cluster configuration 524
cluster management 525
Cluster Manager 546
cluster monitoring for HACMP

ES 552
code page

DB2CODEPAGE environment
variable 745

how determined 745
locales

deriving in applications 746
how DB2 derives locales 746

RESTORE command 403
supported Windows 95 code

pages 745

code page (continued)
supported Windows NT code

pages 745
code point 777
code point, definition of 777
collating sequence

case independent
comparisons 779

code point 777
collating_sequence option 784
EBCDIC and ASCII sort order

example 780
federated database concerns 783
general concerns 782
identity sequence 778
multi-byte characters 778
overview of 777
samples of 782
sort order example 780
specifying 781
use in character

comparisons 778
collating_sequence server

option 194
collocation

replicated summary tables 74
column

adding 217
altering 217
attribute 30
defining 34, 159
estimating row size 60
naming rules 694

column options
numeric string 231
varchar_no_trailing_blanks 232

column UDF 176
comm_rate server option 194, 195
Command Center 252
command line processor

binding to a database 152
Command Reference 630
commit

errors during two-phase 481
two-phase 478

communication protocol
VI Architecture 819

composite key
definition of 37, 46

concurrency control
BACKUP command 398

concurrent access mode 515
configuration parameter

AUTORESTART 367, 389

configuration parameter (continued)
Distributed Computing

Environment (DCE) 367
migration of 643
partitioned database 105

configuration parameters
database logging 414

Configure Multisite Update
SmartGuide 237

CONNECT privilege, definition 311
CONNECT statement

specifying Distributed
Computing Environment (DCE)
information 713

connection pooling, MTS 508
Connectivity Supplement 630
constraint

adding 218
changing 218
defining unique 162
dropping 219

constraint name
defining foreign keys 165
defining table check

constraints 166
constraints

types of 44
container names 399
containers

adding (to DMS table
space) 215

DMS table space design 83
logical file system 80
logical volume device 84
overview of 75
SMS table space 79
SMS table space design 79

Control Center
displaying systems 247

Control Center as a Java
Applet 279

CONTROL privilege
definition of 314
implicit issuance 321
package privileges 317

controlling the rah command 800
cooked devices 155
cpu_ratio server option 195
crash recovery 389

offline table space 367
overview of 367
point of consistency 367
RESTART DATABASE 367
triggering 392

Index 867

CREATE ALIAS statement
example of 189
using 189

CREATE DATABASE API
SQLEDBDESC structure 781

CREATE DATABASE command
example of 145

Create Database SmartGuide 237
create HACMP ES container

examples 526
CREATE INDEX statement

example of 204
online reorganization 202, 205
unique index 204

CREATE_NOT_FENCED privilege,
definition 311

Create Table SmartGuide 237
Create Table space SmartGuide 237
CREATE TABLE statement

defining check constraints 167
defining referential

constraints 164
example of 159
using multiple table spaces 172

CREATE TABLESPACE statement
example of 154

CREATE TRIGGER statement
example of 175

CREATE VIEW statement
changing column names 183
example of 183

CREATETAB privilege, definition
of 311

creating 31
creating a function mapping 177
creating a function template 178
creating a nickname 198
creating a server 191
creating a type mapping 182
creating a wrapper 190
creating alias 189
creating an index specification 200
creating index 200
creating schema 157
creating table 158
creating table in multiple table

spaces 172
creating table space 153
creating trigger 174
creating typed table 167
creating typed view 184
creating user-defined distinct

type 179
creating user-defined function 176

creating user-defined structured
type 180

creating user-defined type 179
creating view 182
CURRENT SCHEMA 157
CURRENT SCHEMA special

register 103
customized Control Center 244

D
damaged table spaces 380
data

changing distribution 214
data integrity

unique index 200
Data Movement Utilities Guide and

Reference 630
data security

controlling database access 281
importance of 281
securing system catalog 331

data structure
SQLEDBDESC 781

data transfer
overview of 363

data type
column definition 34, 159
multi-byte character set 159

database 385
altering nodegroup 214
backup 394
catalog node, media failure

considerations 385
cataloging 152
changing 213
changing distribution of

data 214
connection considerations 491
considerations before

changing 206
considerations for creating 105
crash recovery 392
creating 145
creating across all nodes 105
database partition

synchronization, recovery
considerations 387

deciding what data to record 29,
31

defining tables 31
designing 29
determining list of data

nodes 395
dropping 214
enabling data partitioning 104
estimating size 58

database 97 (continued)
federated database design

considerations 214
implementing design 99
inconsistent after restart 392
migration 641
naming rules 692
normalizing tables 39
object naming rules 691
other design considerations 51
package dependencies 233
physical design 55
recovering failed database

partition server 393
recovery log 151
resource manager in TP Monitor

environment 490
restore 400
roll-forward changes 413
subdirectory created 55
transaction recovery,

overview 390
transaction recovery on the failed

database partition server 392
transaction recovery when the

database partition server is
active 391

uniquely identifying entities 38
updating multiple databases 469
using multiple databases in a

single transaction 467
database access

choosing authorizations 53
controlling 281
privileges through package with

SQL 322
database administrator (DBADM)

authority
privileges 310
retrieving names with 330

database alias 691
for BACKUP command 397
naming rules 692
RESTORE command 402

database configuration
changing 212
created file 142

database creation, specifying
collating sequence 781

Database Descriptor Block
(SQLEDBDESC), specifying
collating sequences 781

database files
index data 82
log files 56

868 Administration Guide Design and Implementation

database files (continued)
notes of caution 82
SMS table space 81
SQLINSLK 57
table data 81

database locator objects
creating 701
example 702

database logs 373
configuration parameters 414

database managed storage 82
database manager 390

access control 318
binding utilities 152
index 203
naming rules 691
recovering failed database

partition server 393
starting and stopping 100
transaction failure, reducing

impact 387
transaction recovery,

overview 390
transaction recovery on the failed

database partition server 392
transaction recovery when the

database partition server is
active 391

database objects
access control 318
creating 700
example 700
naming rules 694, 772

database restore
overview of 368

database roll-forward recovery
overview 369

database seed 405
databases

non-recoverable 373
recoverable 373

Datalink_Reconcile_Not_Possible
state 444

DataPropagator Relational
(DPROPR)

overview 363
date

definition of 784
formats 787

date strings
definition of 786

datetime values
overview of 784
string representations 785

DAU (DB_Authentication) 705

DB_Authentication (DAU) 705
DB_Comment (DCO) 705
DB_Communication_Protocol

(DCP) 706
DB_Database_Locator_Name

(DLN) 707
DB_Database_Protocol (DDP) 707
DB_Native_Database_Name

(DNN) 707
DB_Object_Type (DOT) 707
DB_Principal (DPR) 705
DB_Product_Name (DPN) 708
DB_Product_Release (DRL) 708
DB_Target_Database_Info (DTI) 708
DB2

starting on Windows NT 101
DB2 Administration Server

update configuration 140
update instance lists 139
using CCA and Control

Center 139
DB2 Administration Server

(DAS) 130
communications 132
configuration 132
configuring 127
Control Center

communications 132
creating 125
enabling discovery of 135
environment 135
internode administrative

communications 133
internode administrative

communications in partitioned
database system (UNIX) 133

internode administrative
communications in partitioned
database system (Windows
NT) 134

listing 127
overview 124
ownership rules 122
registry variable

considerations 135
registry variables 135
removing 129
security 134
security considerations 128
service ports 133
setting up with partitioned

database system 130
example 130

starting and stopping 126
UNIX EEE servers 133

DB2 Administration Server
(DAS) 128 (continued)

updating 132
Windows NT EEE servers 134

db2_all 791, 792
db2_call_stack 792
DB2 Connect 363
DB2 Connect Enterprise Edition for

OS/2 and Windows NT Quick
Beginnings 633

DB2 Connect Enterprise Edition for
UNIX Quick Beginnings 633

DB2 Connect Personal Edition Quick
Beginnings 630

DB2 Connect User’s Guide 630
DB2 Data Links Manager

backup utility
considerations 442

crash recovery 440
Datalink_Reconcile_Not_Possible

state 444
Datalink_Reconcile_Pending

state 444
detection of situations requiring

reconciliations 450
garbage collection 437
indoubt transactions 441
interactions with recovery 446
point-in-time roll-forward

example 445
reconciliation procedure 451
reconciling 450
removing table from

Datalink_Reconcile_Not_Possible
state 449

restore utility considerations 442
restoring databases 445
restoring databases from an

offline backup without rolling
forward 444

restoring table spaces 445
rollforward utility

considerations 442
rolling forward databases to a

point in time 445
rolling forward databases to end

of logs 445
rolling forward table spaces to a

point in time 445
rolling forward table spaces to

end of logs 445
two-phase commit 441

DB2 Data Links Manager for AIX
Quick Beginnings 633

Index 869

DB2 Data Links Manager for
Windows NT Quick
Beginnings 633

DB2 Enterprise - Extended Edition
for UNIX Quick Beginnings 632

DB2 Enterprise - Extended Edition
for Windows NT Quick
Beginnings 632

DB2 failover examples 520
DB2 for Windows NT Performance

Counters 811
db2_kill 792
DB2 library

books 628
Information Center 636
language identifier for

books 634
late-breaking information 635
online help 626
ordering printed books 639
printing PostScript books 638
searching online

information 638
setting up document server 637
SmartGuides 625
structure of 625
viewing online information 635

DB2 Personal Edition Quick
Beginnings 632

DB2 Query Patroller Administration
Guide 633

DB2 Query Patroller Installation
Guide 633

DB2 Query Patroller User’s
Guide 633

DB2 shared nothing model 515
DB2 Syncpoint Manager

recovery of indoubt
transactions 485

when required 472
DB2 Syncpoint Manager (SPM) 485
DB2 transaction manager

database configuration
considerations 474

db2adutl utility 456
DELETE command 459
EXTRACT command 459
QUERY command 459

db2adutl utility examples 459
db2audit 337
db2audit.log 333
db2dmnbckctlr

using 811
db2icrt command 110

DB2INSTANCE environment
variable

defining default instance 102
DB2LOADREC 425
DB2MSCS utility

DB2MSCS.CFG parameters 569
overview 568
setting up a single-partition

database system 573
setting up partitioned database

system 574
setting up two single-partition

database systems for mutual
takeover 574

db2nodes.cfg file 140
DB2RHIST.ASC database file 57
DB2RHIST.BAK database file 57
db2set command 114, 116
db2start command 100
db2stop command 100
db2uexit

user exit programs for OS/2 735
user exit programs for

UNIX-based systems 736
DBCLOB 62
dbname server option 195
DCE, authentication type 290
DCE network database

connecting 716, 717
creating 715

DCE_SERVER_ENCRYPT,
authentication type 291

DCO (DB_Comment) 705
DCP

(DB_Communication_Protocol) 706
DCS

authentication type 290
federated database

processing 300
DCS_ENCRYPT, authentication

type 290
DDP (DB_Database_Protocol) 707
default attribute specification 159
default value

alternative to null value 36
column definition 36

defining referential constraint 163
defining table check constraint 166
defining unique constraint 162
DELETE privilege, definition 314
DELETE rules

types of 48
DELETE statement

referential integrity implications
for 48

deleting rows from typed
tables 223

dependent row
definition of 47

dependent table
definition of 47

dereference operator 171
design, implementing 99
design of database

altering 206
DETACH command

overview of 102
determining problems with rah 803
directories

local database directory 148
node directory 150
system database directory 149

directory cache
effect of cataloging

databases 153
directory objects

creating 699
object classes attributes 704

disaster recovery
considerations 384

Discovery
configuration 140
hiding server instances 137
setting parameters 137

disk-mirroring 386
Distributed Computing Environment

(DCE)
ATTACH command 713, 718
authentication 293
CATALOG GLOBAL DATABASE

command 713
CDS 699
configuration parameters and

registry variables 711
CONNECT statement 713, 719
directory services

restrictions 724
directory services tasks 721
GDS 699
how directories are

searched 718
overview of directory

services 150
restrictions 298
security services 293
setup DB2 client instance 297
setup DB2 server 295
setup DB2 user 294
temporarily overriding DCE

directory information 720

870 Administration Guide Design and Implementation

Distributed Computing Environment
(DCE) (continued)

using directory services 713
distributed transaction

processing 727
DLN

(DB_Database_Locator_Name) 707
DMS table space

adding containers 84
advantages 94
allocating space 83
choosing extent size 90
creating 154
increasing storage 84
overview of 82
size 83
types of 83

DNN
(DB_Native_Database_Name) 707

DOT (DB_Object_Type) 707
double byte character set user

data type 159
DPN (DB_Product_Name) 708
DPR (DB_Principal) 705
DPROPR 363
DRL (DB_Product_Release) 708
drop a temporary table space 216
DROP DATABASE command

example of 214
DROP INDEX statement; example

of 232
DROP NICKNAME statement,

example of 231
DROP SERVER statement, example

of 230
DROP TABLE statement

example of 224
DROP TABLESPACE statement;

example of 216
DROP VIEW statement; example

of 227
dropped table

recovery 427
dropping a nickname 230
dropping a server 230
dropping a summary table 228
dropping a wrapper 229
dropping constraint 219
dropping database 214
dropping index 232
dropping schema 216
dropping table 224
dropping table check constraint 220
dropping trigger 225
dropping unique constraint 219

dropping user-defined function 226
dropping user-defined type 227
dropping user table space 215
dropping view 227
DSMI_CONFIG 453, 454
DSMI_DIR 452, 453
DSMI_LOG 453, 454
DTI (DB_Target_Database_Info) 708
dynamic SQL

EXECUTE privilege for database
access 322

E
eliminating duplicate entries from

machine list 800
enhanced scalability 523
entity

definition of 29
values 38

environment variables 114
changing 212
DB2LOADREC 425
setting on OS/2 118
setting on UNIX 121
setting on Windows 3.x 123
setting on Windows 95 119
setting on Windows NT 119

Eprimary node 534
error handling

access errors, BACKUP
command 398

access errors, RESTORE
command 403

indoubt transaction in TP
Monitor environment 491

indoubt transactions 482
log full 414
system crash during

BACKUP 398, 407
two-phase commit 482
user exit program 742
user exit program for OS/2 744
XA interface 499

estimating size 274
event definition example for

HACMP ES 545
Event Management 546
event monitoring 544
EXECUTE privilege

database access with dynamic
SQL 322

database access with static
SQL 322

definition of 317
explicit schema use 103

extended UNIX code (EUC)
character sets 771

extent size
choosing the value 89
definition of 76
SMS table space design 80

F
failover examples 516
failover support 515, 523
FCM communications 144
federated database

APPC setting 303
authentication details 299
authentication example 303
authentication overview 284
authorization overview 284
case-sensitive names 696
collating sequences,

guidelines 783
DCS setting 300
function mapping, creating 177
function template, creating 178
index specification, creating 200
nickname, creating 198
nickname, identifying 199
nickname, working with 199
object names 695
passing IDs and passwords to

data sources 300
referencing nicknames 199
server, creating 191
server options, security 302
type mapping, creating 182
user mapping, creating 301
wrapper, creating 190

files 56
filter 241
fold_id server option 195
fold_pw server option 195
foreign key

adding 218
composite 165
constraint name 165
DROP FOREIGN KEY clause,

ALTER TABLE statement 220
IMPORT utility, referential

integrity implications for 166
LOAD utility, referential integrity

implications for 166
privileges required for

dropping 220
rules for foreign key

definitions 165

Index 871

foreign key (continued)
update, referential integrity

implications for 218
FOREIGN KEY clause

referential constraints 165
rules for foreign key

definitions 165
function mapping, creating 177
function template, creating 178

G
garbage collection 436
gateway connections 248
GDS 699
generate DDL 240
global directory service (GDS) 699
global level profile registry 115
Glossary 630
GRANT statement

implicit issuance 321
security 711
use of 319

GRANT statement; example of 319
granting authorities and

privileges 271

H
HACMP 515, 523
HACMP ES 523

blank NFS server worksheet 563
blank volume and filesystems

worksheet 560
cascading assignment 525
cluster configuration 524
cluster management 525
Cluster Manager 546
cluster monitoring 552
configuration examples 534
configuring 529
create container examples 526
enhanced scalability 523
Eprimary 534
event definition example 545
Event Management 546
event monitoring 544
failover 524
heartbeats 524
hot standby takeover 530
installation 554
keepalive packets 524
messages 524
migration 556
mutual takeover 530
new install 554
NFS server node 531, 533

HACMP ES 532 (continued)
NFS server takeover

example 563
NFS server worksheet 562
node availability 524
node_down event 524
non-disruptive maintenance 544
other scripts 552
process summary 547
rc.db2pe 529
rc.db2pe script 531
recovery program file 546
recovery scripts 550
rotating assignment 525
rules file 544
rules file restriction 545
rules.hacmprd file 544
script file installation 548
script files 547
shutdown 550
SP frame 524
SP switch alias address 533
SP switch considerations 532
START_STOP_TIME 530
startup recommendations 543
switch alias address 530
unique names 526
user-defined event 544
user-defined events 524
volume and filesystems

worksheet 559
worksheets 557

HACMP ES configuration
examples 534

HACMP ES rules file 523

hardware disk arrays 385

heartbeats 524

heuristic operations

guidelines 483, 493
recovering indoubt

transactions 482

hierarchy table 171

High Availability Cluster
Multi-Processing
configurations 515

hot standby mode 516
modes of failover support 515
mutual takeover mode 519
overview 515

hot standby mode 515

hot standby takeover HACMP ES
example 530

I
IBM eNetwork Directory

extending the directory
schema 837

object classes and attributes 838
IBMCATGROUP nodegroup 146
IBMDEFAULTGROUP

nodegroup 146
IBMTEMPGROUP nodegroup 146
identifying nicknames 199
identity sequence 778
images

backup 398
IMPLICIT_SCHEMA authority 157
IMPLICIT_SCHEMA privilege,

definition of 311
implicit schema use 103
IMPORT utility

binding to a database 152
LOAD 166
referential integrity implications

for 166
incompatibilities

COLNAMES (planned) 649
Column Data Type to

BIGINT 653
column mismatch 654
creating databases 665, 685
description 647
FK_COLNAMES (planned) 648
foreign key column names 650
PK_COLNAMES (planned) 648
planned 648
primary key column names 650
read-only views (planned) 648
SYSCAT.CHECKS Column

TEXT 653
SYSCAT.INDEXES Column

COLNAMES 652
SYSCAT.STATEMENTS column

TEXT 652
SYSCAT.VIEWS column

TEXT 651
Version 5 668
Version 6 649

incompatibilities for Version 5
external table functions 670

incompatibilities for Version 6
character name sizes 659
current explain mode 666
datalink columns 663
dependency codes 656
event monitor output stream

format 662
FOR UPDATE syntax 658

872 Administration Guide Design and Implementation

incompatibilities for Version 6
(continued)

Java programming 659
OBJCAT views 655
obsolete configuration

keywords 662
obsolete database configuration

parameters 667
PC/IXF format changes 660
RUMBA 667
SELECT privilege on

hierarchy 665
SQLNAME in a non-doubled

SQLVAR 661
SYSFUN string function

signatures 663
SYSIBM base catalogs 656
SYSTABLE column change 664
USING and SORT BUFFER 667
VARCHAR data type 657

index
changing 232
CREATE INDEX statement 204
CREATE UNIQUE INDEX

statement 204
creating 200
definition of 201
DROP INDEX statement 232
estimating size 63
how used 203
naming rules 694
non-unique 204
nonprimary 233
optimizing number 201
primary 163
primary versus user-defined 201
privileges 318
temporary space 63
unique 204
unique on primary key 36
unique on unique key 36

index key, definition 201
INDEX privilege, definition 314
Index SmartGuide 237
indexes

online reorganization 202, 205
indoubt transactions

definition of 482
recovering 482, 485, 729
recovery when not using DB2

Syncpoint Manager 486
recovery when using DB2

Syncpoint Manager 485
resynchronizing 484

INSERT privilege, definition 314

INSERT statement
referential integrity implications

for 48
Installation and Configuration

Supplement 630
installation tasks for HACMP

ES 554
instance 247

adding a partition server 209
default 107
definition 106
directory 106
dropping a partition server 210
owner 109
removing 211
setting the current 113

instance level profile registry 115
instance owner 109
instance profile registry 115
instance user

setting the environment 107
instances

altering 207
auto-starting 113
creating 107
disadvantages 106
listing 113, 207
listing database partition

servers 207
overview of 102
reasons for using 106
running multiple 114
starting 100
stopping 100
updating 208

intra-partition parallelism
enabling 104

io_ratio server option 195
issuing commands to multiple

database partition servers 791

J
java applet 279
join path

definition of 38

K
keepalive packets 524
keeping related data together 379
key 36

composite 46
definition of 36, 46
foreign 46
primary 36
unique 36

L
Large Object (LOB)

column considerations 160
large objects

allocation objects 62
column definition 34
data objects 62
estimating size 62

LDAP 150, 278, 829
License Center 255
license information

altering 206
license management 114
lightweight directory access

protocol 150
Lightweight Directory Access

Protocol 278
lightweight directory access

protocol 829
attaching remotely 832
cataloging a node entry 831
configure host databases 834
deregistering databases 833
deregistering servers 831
disable 835
enable 835
extending directory schema 837
IBM eNetwork Directory 837
multiple user security 836
object classes and attributes 838
refreshing entries 833
registering databases 832
searching 834
security 836
setting registry variables 835
updating protocol

information 831
LIST INDOUBT TRANSACTIONS

command
use in performing heuristic

actions 483, 493
LIST NODES CMD

backing up database, determining
list of data nodes 395

LIST NODES command, using when
backing up database 395

LOAD utility
overview 363

LOB 62
local database directory

overview of 148
locales

deriving in application
programs 746

how DB2 derives 746

Index 873

Locate 250
log

audit 333
log sequence 438
logbufsz configuration

parameter 416
logfilsiz configuration

parameter 415
logging

raw devices 156
logging facility 373
logical file system

limits 80
logprimary configuration

parameter 414
logretain configuration

parameter 417
logs

active 373
archived 373
estimating size 66
identifying 429
location 430
losing 434
managing 429
offline archived logs 374
online archived logs 373
storage required 379
use of timestamp 431
userexit program 379

logsecond configuration
parameter 414

long field data
alternatives to 62
estimating size 61

losing logs 434

M
managing DB2 for OS/390

objects 247
managing remote databases 269
managing storage 274
managing users 271
many-to-many relationships 32
many-to-one relationships 31
maxappls configuration parameter

DB2 transaction manager
considerations 476

XA interface considerations 495
media failure

logs 379
Message Reference 631
messages

audit facility 341
Microsoft Transaction Server

connection pooling 508

Microsoft Transaction Server
(continued)

enabling support in DB2 508
installation and

configuration 506
reusing ODBC connections 509
software prerequisites 506
supported DB2 database

servers 507
testing DB2 with sample

application 510
transaction time-out and DB2

connection behavior 508
tuning TCP/IP

communications 510
verifying the installation 507

migration 641
authority required 642
overview of 641
release-to-release

incompatibilities 643
restrictions 642
steps required 643
storage requirements 643

migration tasks for HACMP ES 556
mincommit configuration

parameter 416
minimum recovery time 425
MINPCTUSED clause 205
modifying a column 217
modifying a table 216
monitoring rah processes 794
moving data 272, 363
multimedia objects 30
multiple instances 102

use with ADSTAR Distributed
Storage Manager 455

multiple logical node failover 518
multiple logical nodes 817
multisite update 465

overview of 467
recovering indoubt

transactions 482
updating multiple databases 469

mutual takeover HACMP ES
example 530

mutual takeover mode 515

N
naming scheme, database

directories 55
national language support (NLS)

bidirectional CCSID support 773
character sets 770
datetime values 784

newlogpath configuration
parameter 416

NFS server node 531, 533
NFS server takeover example 532
nickname

creating 198
package privilege

processing 323
privileges 316
views across data sources 324

NO ACTION delete rule
overview of 48

node 385
catalog, recovery

considerations 385
cataloging 104
changing in nodegroup 214
creating database across all 105
data location, determining 70
determining list of data

nodes 395
failed database partition server,

recovering 393
synchronization, recovery

considerations 387
transaction recovery on a failed

database partition server 392
transaction recovery on an active

database partition server 391
node configuration file 67

changing 212
creating 140

node_down event 524
node level profile registry 115
node number 141
node server option 196
nodegroup

altering 214
creating 151
designing 67
IBMDEFAULTGROUP, table

created in by default 173
initial definition 146
mapping table spaces 88
partitioning key, changing 221
partitioning map entries 69
recovering failed database

partition server 393
table considerations 173
transaction recovery on a failed

database partition server 392
transaction recovery when a

database partition server is
active 391

874 Administration Guide Design and Implementation

non-disruptive maintenance for
HACMP ES 544

non-recoverable databases 373
non-unique index

dropping 233
nonprimary index

dropping 233
dropping implications for

applications 233
normal form

first 40
fourth 43
overview of 40
second 40
third 42

normalizing
definition of 39
tables 39

null value
alternative to default value 36
column definition 159

numeric string column option 231

O
object class attributes

DB_Authentication (DAU) 705
DB_Comment (DCO) 705
DB_Communication_Protocol 706
DB_Database_Locator_Name 707
DB_Database_Protocol 707
DB_Native_Database_Name 707
DB_Object_Type 707
DB_Principal (DPR) 705
DB_Product_Name 708
DB_Product_Release 708
DB_Target_Database_Info 708

object names, federated
database 695

occurrence
definition of 30

offline archived logs
ROLLFORWARD command

support 374
offline table space 367
OFFLINE table spaces 380
one-to-many relationships 31
one-to-one relationships 33
online archived logs

ROLLFORWARD command
support 373

online reorganization
indexes 202

opening the Journal 254
operating system restrictions 380
OS/2 user exit

archive considerations 739

OS/2 user exit (continued)
archiving log files 739
BACKUP DATABASE

considerations 741
BACKUP DATABASE

utility 733
calling format 737
db2uexit 734
db2uexit.CAD 736
db2uexit.ex1 735
db2uexit.ex2 735
db2uexit.ex3 736
db2uexit.ex4 736
error handling 744
invoking 734
overview 733
RESTORE DATABASE

considerations 741
RESTORE DATABASE

utility 733
retrieve considerations 739
retrieving log files 734
sample user exit programs 735

P
package

access privileges with SQL 322
dependencies 233
dropping 233
inoperative 233
invalid after adding foreign

key 219
owner 322
privileges 317
revoking privileges 321

page size
considerations 61

parallelism, intra-partition
enabling 104

parallelism concepts
overview 5

parent row
definition 47

parent table
definition 46

partitioned database environment
replicated summary tables 74

partitioned failover 518
partitioning data 104

designing your physical
database 69

partition compatibility 73
partitioning key and partitioning

map interaction 70

partitioning data 71 (continued)
partitioning keys, designing your

physical database 69
partitioning map, definition 70

partitioning key
changing 221
data hashing 70
index partitioned on partitioning

key 203
table considerations 173

partitioning map
definition 69
example 70
purpose 69

passing IDs and passwords to data
sources 300

password server option 196
passwords

changing 693
naming 692

performance
catalog information, reducing

contention for 104
considerations for

ROLLFORWARD
command 382

replicated summary tables 74
summary table 187

Performance Configuration
SmartGuide 212, 237

performance information
accessing remote 814
displaying 813
enable remote access 812
resetting values 814

performance monitor
Windows NT 811

plan_hints server option 196
point of recovery 376
populating typed table 169
PRECOMPILE command

OWNER option 322
prefix sequences 799
primary index

definition of 36
dropping 232
uniqueness for primary key 163

primary key
adding 218
composite key 37
criteria for choosing 38
definition of 36, 46
DROP PRIMARY KEY clause,

ALTER TABLE statement 220
primary index 163

Index 875

primary key (continued)
primary index, creating 218
privileges required for

dropping 220
UPDATE, referential integrity

implications for 50
when to create 163

PRIMARY KEY clause
adding primary key 218
restrictions 162

privileges
ALTER 314
BINDADD 310
CONNECT 310
CONTROL 314
CREATE_NOT_FENCED 310
create view for information 332
CREATETAB 310
database manager 310
definition of 305
DELETE 314
GRANT statement 319
granting and revoking

authority 310
hierarchy 306
implicit for packages 306
IMPLICIT_SCHEMA 310
INDEX 318
indirect privileges,

nicknames 323
individual 306
INSERT 314
nickname 316
ownership (CONTROL) 306
package 317
PUBLIC 312
REFERENCES 314
retrieving authorization names

with 329
retrieving for names 330
REVOKE statement 320
schema 312
SELECT 314
server 317
summary of 306
system catalog listing 328
table 314
tasks and required

authorities 327
view 314
views with nicknames 324

problem determination
XA interface 499

process summary for HACMP
ES 547

profile registry 114
PUBLIC

privileges 312
pushdown server option 196

Q
qualified object names 103
query rewrite

summary table 187
Quick Beginnings for OS/2 632
Quick Beginnings for UNIX 632
Quick Beginnings for Windows

NT 632

R
RACF 711
rah 791, 792
RAHDOTFILES 802
RAHOSTFILE 799
RAHOSTLIST 799
RAHWAITTIME 794
RAID 385

optimize performance 95
raw devices 155
raw I/O 156
raw logs 156
rc.db2pe 529
rc.db2pe script 531
reconcile pending state 444
records

audit 333
recoverable databases 373
recovering inoperative summary

table 229
recovering inoperative view 228
recovery

allocating log during database
creation 151

consistent database 389
crash 389
damaged table spaces 380
definition of 366
dropped table 427
factors affecting 371
history file 435
interaction with DB2 Data Links

Manager 446
operating system

restrictions 380
overview of 365
performance 382
point-in-time 370, 434
point of 376
reducing logging on work

tables 375
roll-forward 406

recovery (continued)
storage required 151
time required 378
to end of logs 370
two-phase commit protocol 390
version 394

recovery history file 435
recovery log 151
recovery program file for HACMP

ES 546
recovery scripts for HACMP

ES 550
redistributing data

across nodes 214
reducing logging on work

tables 375
reference type 35

design 52
REFERENCES clause

adding foreign key 218
delete rules 165
referential constraints 165
use of 165

REFERENCES privilege,
definition 314

referential constraints 47
add to table 218
defining 163
definition of 47
FOREIGN KEY clause,

CREATE/ALTER TABLE
statements 163

overview of 45
PRIMARY KEY clause,

CREATE/ALTER TABLE
statements 163

REFERENCES clause,
CREATE/ALTER TABLE
statements 163

referential integrity 47
definition of 45
DELETE rules 48
INSERT rules 48
overview of 46

refreshing data in summary
table 222

registry variables
changing 212
Distributed Computing

Environment (DCE) 711
relationship

many-to-many 32
many-to-one 31
one-to-many 31
one-to-one 33

876 Administration Guide Design and Implementation

relationship (continued)
types of 32

release to release incompatibilities
description 647

remote administration 130
remote system 270
remote unit of work

overview of 466
renaming table 223
REORG utility

binding to a database 152
replicated summary tables 74
replicating data 277
replication

configuration 143
Replication Guide and

Reference 631
resource access control facility

(RACF) 711
RESTART DATABASE

command 389
restore

buffer(s) 402
database 368
existing database 404
invoking 402
new database 405
planning 401
redirected 403
table space 370

RESTORE command
access errors, error handling 403
authority required 401
buffer 402
code page restriction 403
considerations for 400
database alias restriction 402
DB2 Data Links Manager,

restoring database without roll
forward 444

DB2 Data Links Manager
considerations 442

overview of 400
use in roll-forward recovery 411
use with ADSTAR Distributed

Storage Manager 452
Restore Database SmartGuide 237
RESTORE DATABASE utility

considerations for user exit
program 741

error handling for user exits 744
user exit program for OS/2 733

restoring a database
overview of 400
RESTORE command 400

restoring database
catalog node considerations 385
database partition

synchronization 387
log disk, considerations for media

recovery 384
node synchronization 387
recovering failed database

partition server 393
reducing impact of media

failure 384
timestamp considerations 387
transaction recovery,

overview 390
transaction recovery on the failed

database partition server 392
transaction recovery when the

database partition server is
active 391

RESTRICT
delete rule, overview of 48

resync_interval configuration
parameter

DB2 transaction manager
considerations 475

retrieve log files
for OS/2 734
for UNIX-based systems 734

retrieving data
index 203

REVOKE statement
example of 320
implicit issuance 321
security 711
use of 320

revoking Authorities and
Privileges 271

roll-forward recovery 406
authority required 422
invoking 424
long space requirements 66
overview of 369
planning 422
rolling forward table space 418
table space 371

ROLLFORWARD command
backup considerations 407
configuration file parameters

support 414
DB2 Data Links Manager,

point-in-time roll forward
example 445

DB2 Data Links Manager, rolling
forward to a point in time 445

ROLLFORWARD command
(continued)

DB2 Data Links Manager, rolling
forward to end of logs 407

DB2 Data Links Manager
considerations 442

log management
considerations 429

performance considerations 382
restore considerations 410
timestamps 424

root type 35
rotating assignment 525
routing information objects

creating 703
example 703

row
delete from parent table 48
deleting related rows 49
dependent 47
occurrence 30
parent 47
partitioning key and partitioning

map determine location 70
rules file for HACMP 544
rules file restriction 545
rules.hacmprd file 544
rules.hadmprd file 523
running commands in parallel 794

S
sample user exit programs

for OS/2 735
for UNIX-based systems 736
overview 735

scalability to 16 nodes 523
scalar UDF 176
scheduling saved command

scripts 253
schema

creating 157
dropping 216
naming rules 693
overview of 103

SCO UnixWare 7
tape devices 397

scope 35
adding 217

Script Center 252
using an existing script 253

script file installation for HACMP
ES 548

script files for HACMP ES 547
Search Discovery

additional settings 136
searching for databases 256

Index 877

security
APPC setting for federated

systems 303
authentication 282
authentication, federated

database details 299
authentication, federated

database overview 284
authorization 283
authorization, federated database

overview 284
CLIENT level 288
DCS processing, federated

system 300
Distributed Computing

Environment (DCE) directory
services 709

federated database ID and
password processing 300

federated server authentication
example 303

overview of 282
planning for 281
server options 302
user mappings 301

SELECT privilege, definition 314
SELECT statement

referential integrity implications
for 48

select a view 183
server

creating 191
privileges 317

SERVER, authentication type 287
SERVER_ENCRYPT, authentication

type 288
server options

collating_sequence 194
comm_rate 194
connectstring 195
cpu_ratio 195
dbname 195
fold_id 195, 302
fold_pw 195, 302
io_ratio 195
node 196
password 196, 302
plan_hints 196
pushdown 196
security details 302
varchar_no_trailing_blanks 197

SET NULL delete rule
overview of 49

setting schema 157

setting the default environment
profile for rah 803

setting up document server 637
setting VARCHAR 217
shared nothing model 515
Show Related 239
Show SQL 239
shutdown HACMP ES 550
SmartGuide

Performance Configuration 212
SmartGuides 237
SMS table space

advantages 94
containers 79
creating 154
design factors 79
multiple containers 81
overview 78
physical files 81
SYSCATSPACE 77
TEMPSPACE1 table space 78
USERSPACE1 77

software disk arrays 386
Solaris Operating Environment

failover
partitioned database system 607

binding partitions to a logical
host 618

choosing a failover
configuration 614

client application
considerations 621

components 607
creating DB2 instance 616
DMS table spaces 621
enabling the instance for

failover 617
hot standby

configuration 610
hot standby partition

failover 610
how failover processing

works 618
mutual takeover

configuration 611
preliminary

requirements 615
registering DB2 resource with

Sun Cluster 2.1 616
running scripts during

failover 620
scripts and programs 615
setting up failover

support 613

Solaris Operating Environment
failover (continued)

partitioned database system 607
(continued)
setting up hot standby

configuration 618
setting up mutual takeover

configuration 619
starting and stopping

DB2 619
table space

considerations 614, 620
types 609

single-partition database system
choosing a failover

configuration 601
client application

considerations 606
components 597
creating a DB2 instance 602
enabling the instance for

failover 605
hot standby 600
mutual takeover 600
overview 597
registering the DB2

resource 604
running scripts during

failover 605
setting up 601
starting and stopping

DB2 605
table space

considerations 602
types 600
unregistering DB2 for

failover 606

sorting, specifying collating
sequence 781

SP frame 524

SP switch alias address 533

SP switch considerations 532

sparse file allocation 161

specifying list of machines for
rah 799

spm_log_file_sz configuration
parameter

DB2 transaction manager
considerations 475

spm_log_path configuration
parameter

DB2 transaction manager
considerations 475

878 Administration Guide Design and Implementation

spm_max_resync configuration
parameter

DB2 transaction manager
considerations 475

spm_name configuration parameter
DB2 transaction manager

considerations 475
SQL Getting Started 631
SQL Reference 631
SQL statements

inoperative 233
SQL00001

example of database
subdirectory 55

SQLBP.1 database file 57
SQLBP.2 database file 57
SQLDBCON database file 56
SQLINSLK database file 57
SQLOGCTL.LFH database file 56
SQLSPCS.1 database file 57
SQLSPCS.2 database file 57
SQLTAG.NAM 81
SQLTMPLK database file 57
sqluback

support 396, 403
standards

X/Open XA interface 496
START_STOP_TIME parameter 530
starting DB2 100
startup recommendations for

HACMP ES 543
static SQL

EXECUTE privilege for database
access 322

stopping DB2 100
storage

for backup 378
for recovery 378
media failure considerations 379

Structured Query Language (SQL)
referential integrity implications

for 48
structured type 35

altering 223
attributes 35
definition 35
hierarchy 35
subtype 35
supertype 35

subtype 35
summary table

creating 187
dropping 228
refreshing data 222

summary tables 74

summary tables 69 (continued)
alternative to partial

clustering 69
recovering inoperative 229
why replicate 69

supertype 35
supported DB2 database servers for

MTS-coordinated transactions 507
switch alias address 530
synonym (DB2 for MVS/ESA) 190
SYSCAT views 328
SYSCATSPACE table space 77, 147
system administration (SYSADM)

authority 307
overview 307
privileges 307

system catalog
adding new column 217
dropping a table 224
dropping view implications 228
estimating initial size 59
privileges listing 328
retrieving authorization names

with privileges 329
retrieving names with DBADM

authority 330
retrieving names with table

access authority 330
retrieving privileges granted to

names 330
security 331
setting up 148
table space used 77

system catalog table
stored on database catalog

node 104
system database directory

overview of 149, 150
system log facility

XA interface example 500
XA interface use of 499

system managed storage 78
System Monitor Guide and

Reference 631

T
table

add referential constraints 218
ALTER TABLE statement 217
altering 216
assigning to nodegroup 151
changing attributes 222
changing partitioning key 221
CREATE TABLE statement 158
creating in partitioned

database 173

table (continued)
default table space 218
defining, for a relationship 31,

34
defining check constraint 166
defining referential

constraints 163
defining unique constraint 162
delete connected 50
dependent 47
descendent 47
dropping 224
estimating size 60
naming 158
naming rules 694
normalizing 39
parent 46
partitioning map 70
referential cycle 47
renaming 223
retrieving names with access

to 330
revoking privileges 320
self-referencing 47
table space considerations 88
temporary 147
temporary table space 78
understanding page use 59
volatile 221

table check constraint
adding 219
defining 166
dropping 220

table check constraints
overview of 50

table collocation 73
table space 78, 82

adding container 215
administration considerations 89
changing 214
creating 153
database managed space

(DMS) 82
default at database creation 147
definition of 75
designing 85
device container example 154
dropping 215
dropping a temporary 216
extents 76
file container example 154
file system container

example 154
in nodegroups 156
mapping to buffer pools 87

Index 879

table space 215, 82 (continued)
mapping to nodegroups 215
minimum space required 90
naming rules 694
offline 367
overview of 75
page size and performance 93
recommendations for catalog

table spaces 92
recommendations for temporary

table spaces 90
restoring to an existing

database 405
separating types of data,

example 172
system managed space (SMS) 78
workload considerations 93

table space containers
redefining 403

table space restore
overview of 370

table space roll-forward recovery
overview of 371

table spaces
OFFLINE 380

table UDF 176
TAKEN AT parameter 403
tape devices

SCO 397
tape system

backup considerations 396
target row 35
target table 35
target type 35
target view 35
temporary table space

queries and larger page sizes 78
TEMPSPACE1 78
TEMPSPACE1 table space 147
time

definition of 785
formats 787

time required for database
recovery 378

time strings
definition of 786

timestamp
definition of 785
for logs 431

timestamp strings
definition of 787

tm_database configuration parameter
DB2 transaction manager

considerations 475
XA interface considerations 495

tp_mon_name configuration
parameter

XA interface considerations 495
tpname configuration parameter

XA interface considerations 495
trail

audit 333
transaction 390, 465

accessing partitioned
databases 491

database connection
considerations 491

failure 389
failure recovery, overview 390
failure recovery on a failed

database partition server 392
failure recovery on an active

database partition server is
active 391

global 728
loosely coupled 728
non-XA 728
recovering failed database

partition server 393
RELEASE statement 491
tightly coupled 729
two-phase commit 728

transaction failure
on the failed database partition

server 392
recovering failed database

partition server 393
transaction manager 729

implementing using IBM
TXSeries CICS 501

implementing using IBM
TXSeries Encina 501

configuring DB2 501
configuring Encina for each

resource manager 502
referencing a DB2 database

from and Encina
application 502

implementing using Microsoft
Transaction Server 505

implementing using Tuxedo 504
not using TCP/IP

connectivity 472
part of database manager 471
specify database when not using

TCP/IP connectivity 473
specify database when using

TCP/IP connectivity 472
using TCP/IP connectivity 471

transaction processing
configuring XA transaction

managers 500
transaction recovery on coordinator

node 391
trigger

benefits of 175
creating 174
dependencies 175
dropping 225
naming rules 694
overview of 51

triggering crash recovery with
DB2START 392

troubleshooting 276
Troubleshooting Guide 631
trusted clients

authentication 288, 289
CLIENT level security 288

two-phase commit
error handling 481
overview of 478
setting up your

environment 468
when DB2 Syncpoint Manager is

required 472
two-phase commit protocol 390
type hierarchy 35
type mapping, creating 182
typed table 35

creating 167
design 52
hierarchy table 171
overview 52
populating 169
updating rows 223

typed tables
deleting rows 223

typed view 35
typed view, creating 184

U
UDF 176
UDT 179
unique constraint

adding 218
defining 162
dropping 219

unique constraints 45
unique HACMP container

names 526
unique key 46
unit of work 465

COMMIT statement 465
definition of 465
ROLLBACK statement 465

880 Administration Guide Design and Implementation

unit of work 465 (continued)
using multiple databases 465
using one database 466

UNIX user exit
archive considerations 739
archiving log files 734
calling format 738
db2uexit 734
db2uexit.cadsm 736
db2uexit.cdisk 737
db2uexit.ctape 736
db2uxt2.cxbsa 737
error handling 742
invoking 734
overview 734
retrieve considerations 739
retrieving log files 734
sample user exit programs 736

untrusted clients 288, 289
update DAS configuration 140
update instance lists 139
UPDATE privilege, definition 314
UPDATE rules

referential integrity
implications 50

UPDATE statement
rules for referential integrity

implications 50
updating typed table 223
user-defined distinct type

column definition 35
user-defined distinct type,

creating 179
user-defined distinct type (UDT)

creating 179
dropping 227
naming rules 694

user-defined events 523
user-defined functions (UDF)

creating 176
dropping 226
naming rules 694
privilege to create

non-fenced 311
types 176

user-defined HACMP ES event 544
user-defined structured type,

creating 180
user exit

archive and retrieve
considerations 739

BACKUP DATABASE
utility 741

error handling 742
overview 733

user exit (continued)
RESTORE DATABASE

utility 739
user exit program

backup storage 379
logs storage 379

user IDs
naming 692

user mapping, creating 301
userexit configuration

parameter 417
USERSPACE1 table space 77, 147

V
varchar_no_trailing_blanks column

option 232
varchar_no_trailing_blanks server

option 197
version recovery 394

overview of 368
VI Architecture 819
view

access control to table 324
access privileges, examples

of 325
altering 227
CHECK OPTION clause,

CREATE VIEW statement 183
column access 324
creating 182
data integrity 184
data security 182
dropping 227
dropping implications for system

catalogs 227
for privileges information 332
inoperative 228
migration of 643
naming rules 694
recovering inoperative 228
restrictions 227
row access 324

Virtual Interface (VI)
Architecture 819

virtual telecommunications access
method (VTAM) 711

VTAM 711

W
weight, definition of 777
What’s New 631
Windows 95 code pages 745

DB2CODEPAGE environment
variable 745

supported code pages 745

Windows 95 failover
Administration Server

considerations 593
Control Center

considerations 593
Windows NT code pages 745

DB2CODEPAGE environment
variable 745

supported code pages 745
Windows NT failover

communications
considerations 592

considerations for administering
DB2 586

database considerations 591
DB2MSCS utility

DB2MSCS.CFG
parameters 569

overview 568
setting up a single-partition

database system 573
setting up partitioned

database system 574
setting up two single-partition

database systems for mutual
takeover 574

fallback considerations 577
hot standby 566
limitations 595
maintaining the MSCS

system 576
mutual takeover 567
overview 565
planning 565
reconciling database drive

mapping 579
restrictions 595
running scripts, overview 587
running scripts after DB2

resource brought online 590
running scripts before DB2

resource brought online 587
setting database drive mapping

for mutual takeover in a
partitioned database
environment 577

setting up partitioned database
system for mutual takeover
example

objectives 582
preliminary tasks 583
registering database drive

mapping for ClusterA 585
registering database drive

mapping for ClusterB 586

Index 881

Windows NT failover (continued)
run DB2MSCS utility 592

setting up two instances for
mutual takeover example

objectives 580
preliminary tasks 580
run DB2MSCS utility 581

starting and stopping DB2
resources 586

system time considerations 593
types 566
user and group support 591

Windows NT Performance
Monitor 811

registering DB2 811
work space, estimating size 67
worksheets for HACMP ES 557
wrapper, creating 190

X
X/Open transactional manager

interface (XA) 727
application program (AP)

overview 727
database configuration

considerations 495
database connection

considerations 491
DB2 UDB XA switch 497
DB2 UDB XA switch, example C

code 499
DB2 UDB XA switch on

OS/2 498
DB2 UDB XA switch on UNIX

platforms 498
DB2 UDB XA switch on

Windows NT 498
making the transaction manager

known to the resource
manager 499

problem determination 499
registration of resource

manager 730
resource managers (RM) 730
security considerations 494
support for host databases 490
supported function

limitations 496
transaction manager (TM)

overview 729
XA close string 497
XA open string 490, 497
XA switch usage 497

XA transaction managers
configuring 500

882 Administration Guide Design and Implementation

Contacting IBM

This section lists ways you can get more information from IBM.

If you have a technical problem, please take the time to review and carry out
the actions suggested by the Troubleshooting Guide before contacting DB2
Customer Support. Depending on the nature of your problem or concern, this
guide will suggest information you can gather to help us to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

Telephone

If you live in the U.S.A., call one of the following numbers:
v 1-800-237-5511 to learn about available service options.
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, see
Appendix A of the IBM Software Support Handbook. You can access this
document by accessing the following page:
http://www.ibm.com/support/

then performing a search using the keyword “handbook”.

Note that in some countries, IBM-authorized dealers should contact their
dealer support structure instead of the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2 information about
news, product descriptions, education schedules, and more. The DB2 Product
and Service Technical Library provides access to frequently asked questions,
fixes, books, and up-to-date DB2 technical information. (Note that this
information may be in English only.)

Anonymous FTP Sites
ftp.software.ibm.com

© Copyright IBM Corp. 1993, 1999 883

Log on as anonymous. In the directory /ps/products/db2, you can find
demos, fixes, information, and tools concerning DB2 and many related
products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-l

These newsgroups are available for users to discuss their experiences with
DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification Program for DB2 Universal
Database, go to http://www.software.ibm.com/data/db2/db2tech/db2cert.html

884 Administration Guide Design and Implementation

IBMR

Part Number: CT6DANA

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2839-00

CT
6D
AN
A

